JP2000282852A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JP2000282852A
JP2000282852A JP11088968A JP8896899A JP2000282852A JP 2000282852 A JP2000282852 A JP 2000282852A JP 11088968 A JP11088968 A JP 11088968A JP 8896899 A JP8896899 A JP 8896899A JP 2000282852 A JP2000282852 A JP 2000282852A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
catalyst layer
nox reduction
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11088968A
Other languages
Japanese (ja)
Inventor
Yasuo Asaumi
海 靖 男 浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP11088968A priority Critical patent/JP2000282852A/en
Publication of JP2000282852A publication Critical patent/JP2000282852A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device which can restrain deterioration of catalyst due to poisoning of NOx and due to heating, which is small-sized, and which can remove both PM and NOx simultaneously. SOLUTION: This exhaust emission control device, incorporated in an exhaust system of a combustion engine, includes a wall-flow type filter 1. The wall surface 3 of the filter 1 is coated thereover an NOx reduction catalyst layer 5 formed of NOx reduction catalyst on the engine side, and the NOx reduction catalyst layer 5 is coated thereover with an oxidizing catalyst layer 7 formed of an oxidizing catalyst, on the engine side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼機関の排気系
に介装され、ウオールフロータイプのフィルタを有する
排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device which is provided in an exhaust system of a combustion engine and has a wall-flow type filter.

【0002】[0002]

【従来の技術】従来の排気浄化装置では、排気ガス中の
パーティキュレート(粒子状物質、以降PMと略記す
る。)と窒素酸化物(NOx)とを除去するために、デ
ィーゼルエンジンではDPF(ディーゼルパーティキュ
レートフィルタ)とNOx還元触媒を併用する方法が採
られている。図8及び図9に現在最も一般的に使用され
ているウオールフロータイプのフィルタ(DPF)20
Aを示す。多孔質のコーディエライトあるいは炭化ケイ
素のハニカムのチャネルChの入口と出口を交互に目封
じBeをして、排気ガスが壁面Wを流過する際にPMが
捕集される様な構成になっている。
2. Description of the Related Art In a conventional exhaust gas purification apparatus, a diesel engine is provided with a DPF (Diesel Engine) to remove particulates (particulate matter, hereinafter abbreviated as PM) and nitrogen oxides (NOx) in exhaust gas. (Particulate filter) and a NOx reduction catalyst are used in combination. 8 and 9 show the most commonly used wall-flow type filter (DPF) 20 at present.
A is shown. The inlet and the outlet of the channel Ch of porous cordierite or silicon carbide honeycomb are alternately plugged with Be so that PM is trapped when the exhaust gas flows through the wall surface W. ing.

【0003】ここで、PM捕集に要する流過面積と強度
保証のための容積、重量が、車両重量増となって問題と
なっている。また、PMがNOx還元触媒に付着する
と、NOx還元効率が低下するので、DPFをNOx還
元触媒の上流に配置する必要がある。このような通常の
DPF、NOx還元触媒の直列配置は、スペースをとる
こと及び重量が嵩む不具合がある。そのために、NOx
還元触媒へのPM付着を避けてかつ、DPFとNOx還
元触媒を一体化する方法が提案されている。しかし、こ
の様な方法においては、フィルタ内温度を示す図7から
明らかな様に、捕集したPMを燃焼除去するフィルタの
再生処理の際に、フィルタ内温度Tiは、(図7中)点
線に示すように、1000℃近い非常に高い温度にまで
昇温してしまう(所謂「ピーク」を生じてしまう)。そ
のため、触媒を劣化させてしまうという欠点がある。な
お、図7において、実線で示すのはフィルタ前面(エン
ジン側表面)温度Toである。
[0003] Here, the flow area required for PM collection and the volume and weight for ensuring the strength are increasing the weight of the vehicle, which is a problem. Further, when PM adheres to the NOx reduction catalyst, the NOx reduction efficiency is reduced, so that it is necessary to arrange the DPF upstream of the NOx reduction catalyst. Such a normal arrangement of the DPF and the NOx reduction catalyst in series has a problem that it takes up space and increases the weight. Therefore, NOx
A method has been proposed in which DPF and the NOx reduction catalyst are integrated while avoiding PM attachment to the reduction catalyst. However, in such a method, as is evident from FIG. 7 showing the temperature in the filter, the temperature Ti in the filter is reduced by a dotted line (in FIG. 7) during the regeneration processing of the filter for burning and removing the trapped PM. As shown in (1), the temperature rises to a very high temperature close to 1000 ° C. (a so-called “peak” occurs). Therefore, there is a disadvantage that the catalyst is deteriorated. In FIG. 7, the solid line indicates the temperature To of the filter front surface (engine side surface) To.

【0004】DPFとNOx還元触媒に関しては、その
他の従来技術としては、例えば、特開平5ー21492
3号公報は、DPFとリーンNOx還元触媒を有効に作
用させる上での消費電力の低減技術が開示されている。
また、特開平6ー146863号公報では、エンジンの
運転状態に応じた還元剤を供給してNOxを低減する技
術を開示しており、特開平7ー119444号公報で
は、N0x還元触媒に炭化水素系液体を噴射して反応熱
でPMを燃焼させる技術を開示している。さらに、特開
平9ー88569号公報では、上流のDPFと下流のN
Ox還元触媒との間からEGRガス用の還流取出し口を
設け、還流量を調整してNOx低減をはかる技術を開示
しており、また、本出願人による特開平6ー12711
号公報では、捕集トラップの担体構造の技術を開示して
いる。しかし、これ等の従来技術は、いずれも上述した
様な各種欠点や問題点を解決するものではない。
[0004] Regarding the DPF and the NOx reduction catalyst, other conventional techniques include, for example, Japanese Patent Application Laid-Open No. 5-249292.
No. 3 discloses a technique for reducing power consumption for effectively operating a DPF and a lean NOx reduction catalyst.
Japanese Patent Application Laid-Open No. 6-148663 discloses a technique for reducing NOx by supplying a reducing agent in accordance with the operating state of an engine. A technique of injecting a system liquid and burning PM with reaction heat is disclosed. Further, Japanese Patent Application Laid-Open No. 9-88569 discloses that an upstream DPF and a downstream NPF are used.
A technology is disclosed in which a reflux outlet for EGR gas is provided between the Ox reduction catalyst and the amount of recirculation is adjusted to reduce NOx.
In the publication, a technology of a carrier structure of the trap is disclosed. However, none of these prior arts solves the above-mentioned various drawbacks and problems.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述した従来
技術の問題点に鑑みて提案されたものであり、NOx還
元触媒の被毒や熱による劣化の少ない、小型軽量で、P
MとNOxとを同時に除去できる排気浄化装置を提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned problems of the prior art, and is small in size and light in weight with little poisoning of the NOx reduction catalyst and deterioration due to heat.
It is an object of the present invention to provide an exhaust gas purification device capable of simultaneously removing M and NOx.

【0006】[0006]

【課題を解決するための手段】本発明の排気浄化装置
は、燃焼機関の排気系に介装され、ウオールフロータイ
プのフィルタを有する排気浄化装置において、前記フィ
ルタの壁面のエンジン側にNOx還元触媒から成る層を
被覆し、該層のエンジン側に酸化触媒から成る層を被覆
している。
An exhaust gas purifying apparatus according to the present invention is provided in an exhaust system of a combustion engine. The exhaust gas purifying apparatus has a wall-flow type filter. And a layer comprising an oxidation catalyst is coated on the engine side of the layer.

【0007】本発明によれば、DPFフィルタのエンジ
ン側壁面に塗布被覆された酸化触媒層によって、排気ガ
ス中のPMが濾過されてNOx還元触媒に付着せず、触
媒作用が保持されてPM及びNOx排出を同時に低減す
る。
According to the present invention, the PM in the exhaust gas is filtered by the oxidation catalyst layer applied and coated on the side wall of the engine of the DPF filter and does not adhere to the NOx reduction catalyst. NOx emissions are reduced at the same time.

【0008】また、別発明の排気浄化装置は、燃焼機関
の排気系に介装され、ウオールフロータイプのフィルタ
を有する排気浄化装置において、前記フィルタの壁面の
エンジン側に酸化触媒から成る層を被覆し、前記フィル
タの壁面の排気出口側にNOx還元触媒から成る層を被
覆している。
According to another aspect of the present invention, there is provided an exhaust gas purifying apparatus which is provided in an exhaust system of a combustion engine and has a wall-flow type filter. The exhaust outlet side of the wall of the filter is covered with a layer made of a NOx reduction catalyst.

【0009】本発明によれば、DPFフィルタのエンジ
ン側壁面に塗布被覆された酸化触媒層およびフィルタノ
壁面によって、排気ガス中のPMが濾過されるのでNO
x還元触媒層の機能保持がされ、PM及びNOx排出を
同時に低減する。
According to the present invention, since the PM in the exhaust gas is filtered by the oxidation catalyst layer and the filter wall surface coated and coated on the engine side wall surface of the DPF filter, NO
The function of the x reduction catalyst layer is maintained, and PM and NOx emissions are simultaneously reduced.

【0010】[0010]

【発明の実施の形態】以下図面を参照して、ディーゼル
エンジンへの適用を例とする本発明の排気浄化装置10
の実施の形態を説明する。排気浄化装置10は、フィル
タ1と明示しない関連装置及び部材とで構成されてい
る。図1に、図2及び図3に示すフィルタ1の断面局部
Aを示す。図1において、図面上方がエンジンに通じる
ガス入路Icであり、図面下方が排気出口側であってマ
フラに通じるガス出路Ocを示している。従来のウオー
ルフロータイプのフィルタと同様に、多孔質のコージェ
ライトまたは炭化ケイ素等で押し出し形成された全チャ
ネル中半数のチャネルChの出口部Ouをセラミック材
の目封じ2oで封じられて複数のガス入路Icが形成さ
れ、ガス入路Ic以外のチャネルChの入口部Iiをセ
ラミック材の目封じ2iで封じられて複数のガス出路O
cが形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an exhaust gas purifying apparatus 10 according to the present invention, which is applied to a diesel engine, will be described as an example.
An embodiment will be described. The exhaust gas purification device 10 is composed of a filter 1 and related devices and members not explicitly shown. FIG. 1 shows a local cross section A of the filter 1 shown in FIGS. 2 and 3. In FIG. 1, the upper part of the drawing is a gas inlet Ic leading to the engine, and the lower part of the drawing is a gas outlet Oc leading to the muffler on the exhaust outlet side. As in the case of the conventional wall-flow type filter, the outlet Ou of half of all the channels Ch formed by extrusion with porous cordierite or silicon carbide is sealed with a ceramic plugging 2o to form a plurality of gases. An inlet Ic is formed, and the inlet Ii of the channel Ch other than the gas inlet Ic is sealed with a ceramic plug 2i to form a plurality of gas outlets O.
c is formed.

【0011】そして、図1に示すように、各チャネルC
hの壁面3のガス入路Ic側に2種の触媒層が塗布被覆
されている。即ち、壁面3のエンジン側である上面にN
0x還元触媒(例えばゼオライト系触媒)層5が塗布被
覆され、そのエンジン側である上面に酸化触媒(例えば
貴金属系触媒)層7が塗布被覆されている。図1は、断
面局部Aの拡大図であるが、各触媒層5、7は壁面3の
ガス入路Ic全域にわたって塗布被覆されている。図1
中の符号8は、排気ガスGiが壁面3を流通時に付着す
るPM層を模式的に示したものである。
[0011] Then, as shown in FIG.
Two types of catalyst layers are applied and coated on the gas entrance Ic side of the wall surface 3 of h. That is, the upper surface on the engine side of the wall 3 is N
An 0x reduction catalyst (for example, a zeolite-based catalyst) layer 5 is applied and coated, and an oxidation catalyst (for example, a noble metal-based catalyst) layer 7 is applied and coated on the upper surface on the engine side. FIG. 1 is an enlarged view of the local section A of the cross section, and each of the catalyst layers 5 and 7 is applied and coated over the entire area of the gas passage Ic of the wall surface 3. FIG.
Reference numeral 8 in the middle schematically shows a PM layer to which the exhaust gas Gi adheres when flowing through the wall surface 3.

【0012】上記構成によるフィルタ1を含む排気浄化
装置10の作用を説明する。図1及び図2において、入
口排気ガスGiがフィルタ1のガス入路Icに流入し、
ガス入路Icの上〜下流にわたって壁面3を流過してガ
ス出路Ocに流入し、浄化された出口排気ガスGoとな
って出口部Ouから排出される。
The operation of the exhaust gas purifying apparatus 10 including the filter 1 having the above configuration will be described. In FIGS. 1 and 2, the inlet exhaust gas Gi flows into the gas inlet Ic of the filter 1,
The gas passes through the wall surface 3 from the upper to the lower stream of the gas inlet Ic, flows into the gas outlet Oc, becomes a purified outlet exhaust gas Go, and is discharged from the outlet Ou.

【0013】この、フィルタ1を入口排気ガスGiが通
過するに際しては、入口排気ガスGiはガス入路Icか
ら壁面3の上面に塗布された酸化触媒層7を流過し、つ
いでNOx還元触媒層5を流過し、つぎに壁面3を流過
してガス出路Ocにいたる。そして、排気ガスGiは、
酸化触媒層7にPMを付着させPM層8となって堆積す
る。これによって、NOx還元触媒層5へのPM付着は
なく、PMによる被毒等の性能劣化が抑制される。
When the inlet exhaust gas Gi passes through the filter 1, the inlet exhaust gas Gi flows from the gas inlet Ic through the oxidation catalyst layer 7 applied to the upper surface of the wall 3, and then the NOx reduction catalyst layer. 5 and then the wall 3 to the gas outlet Oc. And the exhaust gas Gi is
PM is attached to the oxidation catalyst layer 7 and deposited as the PM layer 8. Thereby, PM does not adhere to the NOx reduction catalyst layer 5, and performance deterioration such as poisoning by PM is suppressed.

【0014】また、壁面3への酸化触媒層7の塗布被覆
によって、フィルタ内のPM燃焼温度を300〜400
℃に低減させ、塗布被膜なしでの600℃以上に比較し
て大幅に低減させている。これによってPM燃焼による
フィルタ1の再生時の温度即ち、NOx還元触媒が曝さ
れる温度が600℃以下となり、酸化被膜なしでの温度
Tiの900〜1000℃に対し大幅に低減される。ゼ
オライト系触媒の最高使用温度が約600℃であること
から、極めて有効な対策である。換言すれば、図4で示
すように、酸化触媒の塗付層を形成することにより、フ
ィルタ内温度Ti及びフィルタ前面(エンジン側表面)
温度Toが、図7で示す従来技術における温度特性と比
較すれば明らかな様に、確実に低温度化している。ま
た、フィルタ内温度Ti(図4、図7において、点線で
温度特性を示している)については、図4で示す酸化触
媒の塗付層を形成した場合には、温度のピークが発生し
ておらず、温度上昇或いは温度変化が緩やかとなる。
Further, the PM combustion temperature in the filter is set to 300 to 400 by coating and coating the oxidation catalyst layer 7 on the wall surface 3.
° C, which is significantly lower than 600 ° C or higher without a coating film. As a result, the temperature at the time of regeneration of the filter 1 by the PM combustion, that is, the temperature to which the NOx reduction catalyst is exposed becomes 600 ° C. or less, and is greatly reduced from the temperature Ti without an oxide film of 900 to 1000 ° C. Since the maximum operating temperature of the zeolite-based catalyst is about 600 ° C., this is an extremely effective measure. In other words, as shown in FIG. 4, by forming the coating layer of the oxidation catalyst, the temperature Ti in the filter and the front surface of the filter (the surface on the engine side) are formed.
As is clear from the comparison between the temperature To and the temperature characteristic in the conventional technique shown in FIG. 7, the temperature To is surely lowered. In addition, as for the temperature Ti in the filter (temperature characteristics are shown by dotted lines in FIGS. 4 and 7), when the coating layer of the oxidation catalyst shown in FIG. 4 is formed, a temperature peak occurs. In other words, the temperature rise or temperature change becomes gradual.

【0015】このような通常運転時の作用の結果堆積し
たPM層8は、バーナあるいはヒータ等の任意公知の方
法によって高温に加熱、燃焼除去され、フィルタ1が再
生される。また、再生時のPM層の燃焼時に酸化触媒層
7の被覆によってNOx還元触媒層5は、熱による劣化
を抑制し、保護される。
The PM layer 8 deposited as a result of the operation at the time of the normal operation is heated to a high temperature by any known method such as a burner or a heater, burned off, and the filter 1 is regenerated. Further, the NOx reduction catalyst layer 5 is protected and protected by heat by the coating of the oxidation catalyst layer 7 when the PM layer is burned during regeneration.

【0016】また、NOx還元触媒の還元効率を向上さ
せるために、軽油を添加して排気ガス中のHC濃度を高
める方法が採られている。しかし、軽油は炭素鎖が長い
ためその効果は、炭素分子が2〜3程度の低分子量炭化
水素には劣っている。図5は、この状態を示したもの
で、還元剤/NOx比に対するNOx還元効率は、低分
子量炭化水素Hbが軽油Kより優れている。本発明で
は、フィルタ1に塗布された酸化触媒層7が軽油を低分
子量の炭化水素に分解させるので、軽油の場合に比べて
還元効率を向上させている。
Further, in order to improve the reduction efficiency of the NOx reduction catalyst, a method of increasing the concentration of HC in exhaust gas by adding light oil has been adopted. However, the effect of gas oil is inferior to low molecular weight hydrocarbons having about 2 to 3 carbon molecules due to its long carbon chain. FIG. 5 shows this state. In the NOx reduction efficiency with respect to the reducing agent / NOx ratio, the low molecular weight hydrocarbon Hb is superior to the light oil K. In the present invention, since the oxidation catalyst layer 7 applied to the filter 1 decomposes light oil into low molecular weight hydrocarbons, the reduction efficiency is improved as compared with the case of light oil.

【0017】また本発明では、通常はそのまま大気に排
出されるSOFが酸化触媒層7によって分解されて、N
Ox還元触媒の還元剤として作用するので、排気ガス中
に添加する軽油の量を低減させている。
In the present invention, the SOF that is normally discharged to the atmosphere as it is is decomposed by the oxidation catalyst layer 7 and
Since it acts as a reducing agent for the Ox reduction catalyst, the amount of light oil added to the exhaust gas is reduced.

【0018】図6は別発明を示し、触媒層の塗布、被覆
の位置を前記実施形態と変えて、PMのNOx触媒への
付着と悪影響を一層低減させている。前記実施形態の図
2を参照して、異なる部分を主に説明する。図6におい
て、図面上方がエンジンに通じるガス入路Icであり、
図面下方がマフラに通じるガス出路Ocを示している。
前記実施例と同様に、従来のウオールフロータイプのフ
ィルタと同様に、多孔質のコージェライトまたは炭化ケ
イ素等で押し出し形成された全チャネル中半数のチャネ
ルChの出口部Ouをセラミック材の目封じ2oで封じ
られて複数のガス入路Icが形成され、ガス入路Ic以
外のチャネルChの入口部Iiをセラミック材の目封じ
2iで封じられて複数のガス出路Ocが形成されてい
る。
FIG. 6 shows another invention, in which the position of application and coating of the catalyst layer is changed from that of the above-mentioned embodiment, and the adhesion of PM to the NOx catalyst and the adverse effect are further reduced. The different parts will be mainly described with reference to FIG. 2 of the embodiment. In FIG. 6, the upper part of the drawing is a gas entrance Ic leading to the engine,
The lower part of the drawing shows the gas outlet Oc leading to the muffler.
In the same manner as in the previous embodiment, similarly to the conventional wall flow type filter, the outlet portion Au of half of all the channels Ch formed by extrusion with porous cordierite or silicon carbide or the like is sealed with ceramic material 2o. To form a plurality of gas inlet paths Ic, and the inlet portion Ii of the channel Ch other than the gas inlet path Ic is sealed with a ceramic plug 2i to form a plurality of gas outlet paths Oc.

【0019】そして、各チャネルChの壁面3Bの上面
に酸化触媒層7Bが塗布被覆され、壁面3Bの下面にN
0x還元触媒層5Bが塗布被覆されている。図6は説明
のために使用する参照用の図2の断面局部Aの拡大図で
あるが、触媒層は壁面3Bのガス入路Ic全域にわたっ
て塗布被覆されている。図6中の符号8Bは、入口排気
ガスGiが壁面3Bを流通時に付着するPM層8Bを模
式的に示したものである。
An oxidation catalyst layer 7B is applied and coated on the upper surface of the wall 3B of each channel Ch, and N
The 0x reduction catalyst layer 5B is applied and coated. FIG. 6 is an enlarged view of the cross-sectional local portion A of FIG. 2 for reference used for description, but the catalyst layer is applied and coated over the entire gas inlet Ic of the wall surface 3B. Reference numeral 8B in FIG. 6 schematically shows the PM layer 8B to which the inlet exhaust gas Gi adheres when flowing through the wall surface 3B.

【0020】上記構成によるフィルタ1Aを含む排気浄
化装置10Aの作用を説明する。図6において、排気ガ
スGiがフィルタ1Aのガス入路Icに流入し、ガス入
路Icの上〜下流にわたって壁面3Bに流入する。壁面
3Bを流過して浄化された排気ガスGiは、ガス出路O
cに流出して浄化された出口排気ガスGoとなってフィ
ルタ1Aから排出される。
The operation of the exhaust gas purifying apparatus 10A including the filter 1A having the above configuration will be described. In FIG. 6, the exhaust gas Gi flows into the gas inlet Ic of the filter 1A, and flows into the wall surface 3B from above to downstream of the gas inlet Ic. The exhaust gas Gi, which has been purified by flowing through the wall surface 3B,
c, and is discharged from the filter 1A as the purified outlet exhaust gas Go.

【0021】この、フィルタ1Aを入口排気ガスGiが
通過するに際して、排気ガスGiはガス入路Icから壁
面3Bの上面に塗布された酸化触媒層7Bを通過し、つ
いで壁面3Bを通過し、つぎにNOx触媒層5Bを通過
してガス出路Ocにいたる。ここで、入口排気ガスGi
は、酸化触媒層7BにPMを付着させPM層8として堆
積させる。PMは、さらに壁面3Bで濾過されるので、
NOx還元触媒層5へのPM付着はなく、PMによる被
毒等の性能劣化が抑制される。したがって、前記実施形
態10よりNOx還元触媒層5BへのPM被毒は一層低
減され、フィルタ1A再生時のPM燃焼熱による熱影響
は軽減される。
When the inlet exhaust gas Gi passes through the filter 1A, the exhaust gas Gi passes from the gas inlet Ic through the oxidation catalyst layer 7B applied to the upper surface of the wall 3B, and then passes through the wall 3B. The gas passes through the NOx catalyst layer 5B to reach the gas outlet Oc. Here, the inlet exhaust gas Gi
Is to deposit PM as the PM layer 8 by attaching PM to the oxidation catalyst layer 7B. Since PM is further filtered on the wall 3B,
PM does not adhere to the NOx reduction catalyst layer 5, and performance deterioration such as poisoning by PM is suppressed. Therefore, the PM poisoning of the NOx reduction catalyst layer 5B is further reduced as compared with the tenth embodiment, and the heat effect due to the PM combustion heat during the regeneration of the filter 1A is reduced.

【0022】[0022]

【発明の効果】本発明の作用効果を、以下に列記する。The effects of the present invention are listed below.

【0023】(1) 本発明の排気浄化装置によって、
壁面に被覆された酸化触媒層にPMが付着することで、
NOx還元触媒の被毒や熱による劣化の少ない、小型軽
量装置でPMとNOxを同時に除去できる。
(1) According to the exhaust gas purifying apparatus of the present invention,
By attaching PM to the oxidation catalyst layer coated on the wall,
PM and NOx can be removed at the same time by a small and lightweight device with little poisoning of the NOx reduction catalyst and deterioration due to heat.

【0024】(2) 酸化触媒をフィルタ壁面に被覆す
ることでPM燃焼温度を低減でき、また再生処理する際
のフィルタ温度を下げて、NOx還元触媒の熱的劣化を
抑制できる。
(2) By coating the oxidation catalyst on the filter wall surface, the PM combustion temperature can be reduced, and the filter temperature at the time of the regeneration treatment can be lowered to suppress the thermal deterioration of the NOx reduction catalyst.

【0025】(3) 排気ガス中にNOx還元剤として
添加する軽油を、還元剤としての効果が大きい低分子量
炭化水素に分解することで、軽油に比べてNOx還元触
媒の還元効率を向上させることができる。。
(3) The reduction efficiency of the NOx reduction catalyst as compared with light oil is improved by decomposing light oil added as a NOx reducing agent into exhaust gas into low molecular weight hydrocarbons having a large effect as a reducing agent. Can be. .

【0026】(4) 排気ガス中にNOx還元剤として
添加する軽油によるHC濃度上昇に加えて、酸化触媒層
によってPM中のSOF成分が低分子量の炭化水素に分
解されHC濃度上昇をさらに援けることで、NOx還元
剤として添加する軽油量を低減できる。
(4) In addition to the increase in HC concentration due to light oil added as a NOx reducing agent to the exhaust gas, the oxidation catalyst layer decomposes the SOF component in PM into low-molecular-weight hydrocarbons, thereby further supporting the increase in HC concentration. Thus, the amount of light oil added as a NOx reducing agent can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気浄化装置に使用されるDPFの壁
面局部を示す側断面図。
FIG. 1 is a side sectional view showing a local wall portion of a DPF used in an exhaust gas purification apparatus of the present invention.

【図2】図1のDPFの側断面図。FIG. 2 is a side sectional view of the DPF of FIG. 1;

【図3】図1の正面図。FIG. 3 is a front view of FIG. 1;

【図4】フィルタへの酸化触媒塗布被覆によるフィルタ
再生時の温度低下を示す図。
FIG. 4 is a diagram showing a temperature decrease during regeneration of a filter due to coating of the filter with an oxidation catalyst.

【図5】NOx還元効率への軽油と低分子量炭化水素の
寄与を示す図。
FIG. 5 is a graph showing the contribution of light oil and low molecular weight hydrocarbons to NOx reduction efficiency.

【図6】別発明の排気浄化装置に使用されるDPFの壁
面局部を示す側断面図。
FIG. 6 is a side sectional view showing a local wall portion of a DPF used in an exhaust gas purification apparatus of another invention.

【図7】酸化触媒の塗布被覆がされないフィルタの再生
処理時の温度上昇を示す図。
FIG. 7 is a diagram showing a temperature rise during regeneration processing of a filter that is not coated with an oxidation catalyst.

【図8】従来のDPFの壁面局部を示す側断面図。FIG. 8 is a side sectional view showing a local wall portion of a conventional DPF.

【図9】図8の正面図。FIG. 9 is a front view of FIG. 8;

【符号の説明】[Explanation of symbols]

Gi・・入口排気ガス Go・・出口排気ガス Ic・・ガス入口 Ii・・入口部 Oc・・ガス出路 Ou・・出口部 1、1A・・・フィルタ 2i・・入り口側目封じ 2o・・出口側目封じ 3・・・壁面 5・・・NOx還元触媒層 7・・・酸化触媒層 8・・・PM層 10、10A・・排気浄化装置 Gi ... Inlet exhaust gas Go ... Outlet exhaust gas Ic ... Gas inlet Ii ... Inlet Oc ... Gas outlet Ou ... Outlet 1,1A ... Filter 2i ... Inlet-side plugging 2o ... Outlet Side sealing 3 ・ ・ ・ Wall surface 5 ・ ・ ・ NOx reduction catalyst layer 7 ・ ・ ・ Oxidation catalyst layer 8 ・ ・ ・ PM layer 10, 10A ・ ・ Exhaust gas purification device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 101A Fターム(参考) 3G090 AA02 CA04 EA01 3G091 AA18 AB02 AB04 AB05 AB13 BA07 BA11 BA14 BA15 BA19 BA33 CA02 CA03 FB10 FC02 GA06 GA18 GA24 GB01X GB05W GB09X GB13X GB17X 4D048 AA06 AA18 AB01 AB02 BA11Y BA30Y BA31Y BA32Y BA33Y BA34Y CA07 CC32 CD05 CD08 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 B01D 53/36 101A F-term (Reference) 3G090 AA02 CA04 EA01 3G091 AA18 AB02 AB04 AB05 AB13 BA07 BA11 BA14 BA15 BA19 BA33 CA02 CA03 FB10 FC02 GA06 GA18 GA24 GB01X GB05W GB09X GB13X GB17X 4D048 AA06 AA18 AB01 AB02 BA11Y BA30Y BA31Y BA32Y BA33Y BA34Y CA07 CC32 CD05 CD08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃焼機関の排気系に介装され、ウオールフ
ロータイプのフィルタを有する排気浄化装置において、
前記フィルタの壁面のエンジン側にNOx還元触媒から
成るNOx還元触媒層を被覆し、該NOx還元触媒層の
エンジン側に酸化触媒から成る酸化触媒層を被覆したこ
とを特徴とする排気浄化装置。
1. An exhaust gas purification apparatus which is provided in a combustion engine exhaust system and has a wall flow type filter,
An exhaust emission control device, wherein an engine side of a wall surface of the filter is coated with a NOx reduction catalyst layer made of a NOx reduction catalyst, and an engine side of the NOx reduction catalyst layer is coated with an oxidation catalyst layer made of an oxidation catalyst.
【請求項2】燃焼機関の排気系に介装され、ウオールフ
ロータイプのフィルタを有する排気浄化装置において、
前記フィルタの壁面のエンジン側に酸化触媒から成る酸
化触媒層を被覆し、前記フィルタの壁面の排気出口側に
NOx還元触媒から成るNOx還元触媒層を被覆したこ
とを特徴とする排気浄化装置。
2. An exhaust gas purifying apparatus interposed in an exhaust system of a combustion engine and having a wall flow type filter.
An exhaust emission control device, wherein an oxidation catalyst layer made of an oxidation catalyst is coated on an engine side of a wall surface of the filter, and a NOx reduction catalyst layer made of a NOx reduction catalyst is coated on an exhaust outlet side of a wall surface of the filter.
JP11088968A 1999-03-30 1999-03-30 Exhaust emission control device Pending JP2000282852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088968A JP2000282852A (en) 1999-03-30 1999-03-30 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088968A JP2000282852A (en) 1999-03-30 1999-03-30 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2000282852A true JP2000282852A (en) 2000-10-10

Family

ID=13957625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088968A Pending JP2000282852A (en) 1999-03-30 1999-03-30 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2000282852A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276337A (en) * 2001-03-15 2002-09-25 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
KR100368034B1 (en) * 2000-10-20 2003-01-14 채재우 Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof
JP2007162575A (en) * 2005-12-14 2007-06-28 Honda Motor Co Ltd Exhaust emission control device
JP2007239616A (en) * 2006-03-09 2007-09-20 Babcock Hitachi Kk Exhaust emission control device, exhaust emission control method, and purification catalyst
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx
DE102008039112A1 (en) * 2008-08-21 2010-02-25 Deutz Ag aftertreatment system
JP2016020676A (en) * 2014-07-15 2016-02-04 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
DE102022109190A1 (en) 2021-04-30 2022-11-03 Cataler Corporation EMISSION CONTROL DEVICE
US11602742B2 (en) 2020-03-12 2023-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US11660589B2 (en) 2019-05-24 2023-05-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368034B1 (en) * 2000-10-20 2003-01-14 채재우 Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof
JP2002276337A (en) * 2001-03-15 2002-09-25 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP4604374B2 (en) * 2001-03-15 2011-01-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx
JP4523911B2 (en) * 2005-12-14 2010-08-11 本田技研工業株式会社 Exhaust gas purification device
JP2007162575A (en) * 2005-12-14 2007-06-28 Honda Motor Co Ltd Exhaust emission control device
JP2007239616A (en) * 2006-03-09 2007-09-20 Babcock Hitachi Kk Exhaust emission control device, exhaust emission control method, and purification catalyst
DE102008039112A1 (en) * 2008-08-21 2010-02-25 Deutz Ag aftertreatment system
US8372364B2 (en) 2008-08-21 2013-02-12 Deutz Aktiengesellschaft Exhaust gas aftertreatment system
JP2016020676A (en) * 2014-07-15 2016-02-04 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
US11660589B2 (en) 2019-05-24 2023-05-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US11602742B2 (en) 2020-03-12 2023-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
DE102022109190A1 (en) 2021-04-30 2022-11-03 Cataler Corporation EMISSION CONTROL DEVICE

Similar Documents

Publication Publication Date Title
US7566425B2 (en) Refractory exhaust filtering method and apparatus
US8808418B2 (en) Low temperature diesel particulate matter reduction system
US8844274B2 (en) Compact diesel engine exhaust treatment system
JP4507901B2 (en) Exhaust gas purification system and exhaust gas purification method thereof
JP2003184542A (en) Exhaust gas emissions control system for diesel engine
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
JP2011214577A (en) Process and device for removing soot particle from diesel engine exhaust gas
KR20010090826A (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
JP2000282852A (en) Exhaust emission control device
US6426316B2 (en) Exhaust emission control catalyst for diesel engines
JP2000199423A (en) Exhaust emission control device for diesel engine
EP2761146B1 (en) Apparatus and method for filtering engine exhaust gases
WO2005119021A1 (en) Particulate filter
AU2006311275A1 (en) Refractory exhaust filtering method and device
CN111335984A (en) Compact diesel engine pollutant discharge countercurrent catalytic conversion co-processing device and system
JP2000170526A (en) Exhaust emission control device for diesel engine
EP1553269B1 (en) Apparatus for purifying exhaust gas and method for purifying exhaust gas
JP2019157739A (en) Exhaust purifying device for internal combustion engine
KR101526373B1 (en) Exhaust gas purification system
JP2005291062A (en) Filter device, and exhaust emission control device provided with the same
EP3617465B1 (en) Device for treating exhaust gas from engine and method for manufacturing said device
JP3954760B2 (en) Exhaust purification device
JPH0450421A (en) Exhaust gas purifying device used for diesel engine
JP2005273546A (en) Exhaust emission control system
JPH04129829U (en) diesel engine catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081112