JP3111491B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JP3111491B2
JP3111491B2 JP03062044A JP6204491A JP3111491B2 JP 3111491 B2 JP3111491 B2 JP 3111491B2 JP 03062044 A JP03062044 A JP 03062044A JP 6204491 A JP6204491 A JP 6204491A JP 3111491 B2 JP3111491 B2 JP 3111491B2
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
copper
ion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03062044A
Other languages
Japanese (ja)
Other versions
JPH04215848A (en
Inventor
伸一 竹島
俊明 田中
清彦 大石
悳太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP03062044A priority Critical patent/JP3111491B2/en
Priority to EP91110697A priority patent/EP0463626B1/en
Priority to DE69118024T priority patent/DE69118024T2/en
Priority to US07/723,306 priority patent/US5141906A/en
Publication of JPH04215848A publication Critical patent/JPH04215848A/en
Application granted granted Critical
Publication of JP3111491B2 publication Critical patent/JP3111491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車などの内燃機関や
工業プラントなどの排気ガス浄化用触媒に関し、更に詳
しくは、例えば、理論空燃費より比較的空燃比が大きい
運転条件での自動車排気ガスのようにガス中の残存酸素
が比較的多いNOx 含有ガスを浄化するのに適した排気ガ
ス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for an internal combustion engine of an automobile or the like or an industrial plant, and more particularly, for example, an automobile exhaust gas under an operating condition where the air-fuel ratio is relatively larger than the stoichiometric air-fuel efficiency. The present invention relates to an exhaust gas purifying catalyst suitable for purifying a NOx-containing gas having a relatively large amount of residual oxygen in the gas.

【0002】[0002]

【従来の技術】自動車などの内燃機関や工業プラントな
どの排気ガス浄化用触媒として、一酸化炭素や炭化水素
などの酸化と、窒素酸化物 (NOx ) の還元を同時に行う
触媒が排気ガス浄化用触媒として汎用されている。この
ような触媒としては、典型的にはコージエライトなどの
耐火性担体上にγ−アルミナスラリーを塗布し、焼成
後、パラジウム、白金、ロジウムなどの貴金属又はそれ
らの任意の混合物を担持させたものが知られている。特
にその触媒活性を高めるために数多くの提案がなされて
おり、例えば希土類酸化物で安定化したγ−アルミナ粒
子上に貴金属等を分散させるタイプの触媒において実質
的に希土類酸化物を含まない粒子上にロジウムを分散さ
せた触媒が特開昭61-11147号公報に開示されている。
2. Description of the Related Art A catalyst that simultaneously oxidizes carbon monoxide and hydrocarbons and reduces nitrogen oxides (NOx) is used as an exhaust gas purifying catalyst for internal combustion engines such as automobiles and industrial plants. It is widely used as a catalyst. As such a catalyst, typically, a γ-alumina slurry is applied on a refractory carrier such as cordierite, and after firing, a palladium, platinum, one carrying a noble metal such as rhodium or any mixture thereof is supported. Are known. In particular, many proposals have been made to enhance the catalytic activity, for example, in a type of catalyst in which a noble metal or the like is dispersed on γ-alumina particles stabilized with rare earth oxides, on particles substantially containing no rare earth oxides. A catalyst in which rhodium is dispersed is disclosed in JP-A-61-11147.

【0003】しかしながら、これらの触媒は、エンジン
の設定空燃比によって浄化特性が大きく左右され、空燃
比の大きいリーン側、即ち希薄混合気では燃焼後も酸素
量が多いために、酸化作用が活発になり、還元作用が不
活発となる。これに対し、空燃比の小さいリッチ側では
燃焼後の酸素量が少なくなるために酸化作用が不活発に
なり、還元作用が活発となる現象がある。この酸化と還
元のバランスがとれる理論空燃比(A/F=14.6)付近
で触媒が最も有効に働くため、排気系の酸素濃度を検出
して混合気を理論空燃比付近に保つようにフィードバッ
ク制御することが行なわれていた。
[0003] However, the purification characteristics of these catalysts are greatly affected by the set air-fuel ratio of the engine. On the lean side where the air-fuel ratio is large, that is, on the lean mixture, the amount of oxygen is large even after combustion, so that the oxidizing action becomes active. And the reducing action becomes inactive. On the other hand, on the rich side where the air-fuel ratio is small, the amount of oxygen after combustion becomes small, so that the oxidizing action becomes inactive and the reducing action becomes active. Since the catalyst works most effectively near the stoichiometric air-fuel ratio (A / F = 14.6) where this oxidation and reduction can be balanced, feedback control is performed to detect the oxygen concentration in the exhaust system and maintain the mixture near the stoichiometric air-fuel ratio. Was being done.

【0004】かかる状況下に、リーン側でもNOx を還元
除去できる排気ガス浄化用触媒が提案されている(特開
平1−130735号公報参照)。この触媒は遷移金属でイオ
ン交換されたゼオライトから成り、空燃比がリーン側と
なる酸素過剰雰囲気においてもNOx を高効率に浄化でき
る触媒である。
Under such circumstances, there has been proposed an exhaust gas purifying catalyst capable of reducing and removing NOx even on the lean side (see Japanese Patent Application Laid-Open No. 1-130735). This catalyst is made of zeolite ion-exchanged with a transition metal, and is a catalyst that can efficiently purify NOx even in an oxygen-excess atmosphere where the air-fuel ratio is lean.

【0005】またゼオライト構造中に銅イオンを含むゼ
オライト型銅アルミノ珪酸塩から成る炭素物質燃焼用触
媒が例えば特公昭57-36015号公報に記載されている。
A catalyst for burning a carbon material comprising a zeolite type copper aluminosilicate containing a copper ion in a zeolite structure is described, for example, in Japanese Patent Publication No. 57-36015.

【0006】[0006]

【発明が解決しようとする課題】前記した銅などの遷移
金属でイオン交換されたゼオライト触媒は希薄燃焼条件
下でもNOx の還元に有効であるが、本発明者らの知見に
よれば、実際の使用条件あるいは排気規制モードでは、
NOx の浄化率が低くなる傾向にあった。これは、ゼオラ
イトのイオン交換点以外に例えば銅イオンが付着する
と、触媒製造の乾燥及び焼成工程において銅が酸化銅に
なり、これが以下の反応で炭化水素(HC)を完全酸化
させ、NOx の還元に使われる炭化水素の量が減少し、NO
x の浄化率が低下することに起因するようである。
The above-mentioned zeolite catalyst ion-exchanged with a transition metal such as copper is effective in reducing NOx even under a lean combustion condition. In operating conditions or emission control mode,
NOx purification rates tended to decrease. This is because, for example, when copper ions adhere to a point other than the ion exchange point of zeolite, copper becomes copper oxide in the drying and calcining steps of the catalyst production, and this completely oxidizes hydrocarbons (HC) by the following reaction and reduces NOx. The amount of hydrocarbons used for
It appears to be due to the reduced purification rate of x.

【0007】2HC → H2O+CO2 [0007] 2HC → H 2 O + CO 2

【0008】この反応は高温で特に顕著になるため、実
際の使用条件あるいは排気規制モードでは、NOx 浄化率
が一層低くなるおそれがあるという問題があった。ま
た、経時的にゼオライト触媒のゼオライト構造が破壊さ
れるおそれがあり、触媒の耐久性にも懸念があった。
[0008] Since this reaction becomes particularly noticeable at high temperatures, there has been a problem that the NOx purification rate may be further lowered under actual use conditions or the exhaust gas regulation mode. In addition, there is a possibility that the zeolite structure of the zeolite catalyst may be destroyed over time, and there is a concern about the durability of the catalyst.

【0009】従って、本発明は前記問題を解決して希薄
燃焼条件下においてもNOx を効果的に還元浄化できる排
気ガス浄化用触媒を提供することを目的とする。
Accordingly, it is an object of the present invention to provide an exhaust gas purifying catalyst capable of effectively reducing and purifying NOx even under lean combustion conditions by solving the above-mentioned problems.

【0010】[0010]

【課題を解決するための手段】本発明に従えば、銅又は
コバルトでイオン交換されたゼオライト触媒を硫黄化合
物を含むガス気流中で熱処理してなる排気ガス浄化用触
媒が提供される。
According to the present invention, copper or
There is provided an exhaust gas purifying catalyst obtained by heat treating a zeolite catalyst ion-exchanged with cobalt in a gas stream containing a sulfur compound.

【0011】本発明に係る触媒はゼオライトを先ず銅又
はコバルトでイオン交換し、これを硫黄化合物を含むガ
ス気流中で熱処理して製造することができる。
The catalyst according to the present invention is obtained by first converting zeolite to copper or zeolite.
Can be produced by ion exchange with cobalt and heat treatment in a gas stream containing a sulfur compound.

【0012】ゼオライトは、周知の通り、一般式: xM2/nO ・Al2O3 ・ySiO2 で表される結晶性アルミノケイ酸塩(M:Na ,K,C
a ,Ba などの金属で、nは原子価数、x及びyは正
数)でM,x及びyの違いによって結晶構造中の細孔径
その他が異なり、そのカチオン交換能や分子ふるい作用
を利用して触媒、分子ふるい、吸着剤などとして汎用さ
れており、多くの種類のものが市販されている。
[0012] Zeolites are, as is well known, the general formula: xM 2 / n O · Al 2 O 3 · crystalline aluminosilicate ySiO represented by 2 (M: Na, K, C
a, Ba, etc., where n is a valence number, x and y are positive numbers) and the pore size and other factors in the crystal structure are different depending on the difference between M, x and y, and use their cation exchange ability and molecular sieving action. It is widely used as a catalyst, molecular sieve, adsorbent, etc., and many types are commercially available.

【0013】本発明に係る触媒の製造においては、これ
らの任意のゼオライトを出発物質として用いることがで
きるが、浄化すべきNOX 分子の径よりも僅かに大きい約
5〜10Åの細孔径を有するものを使用するのが好まし
い。本発明では、先ず、Cu 又はCo ゼオライト中の
金属イオンをイオン交換させる。Cu 又はCo のイオン
交換は、例えばゼオライトをCu 又はCo イオン溶液で
処理することによって行なうことができる。このCu 又
はCo でイオン交換したゼオライトは、例えばアルミナ
ゾルやシリカゾルから成るバインダーと混練し、得られ
たスラリーを適当な担体(例えばコージエライト製ハニ
カム担体など)にウォッシュコートして焼成することに
よって、固体触媒形とすることができる。なお、ゼオラ
イトと、例えばアルミナゾルやシリカゾルからなるバイ
ンダーと混練し、得られたスラリーを前記したような適
当な担体にウォッシュコートした後、Cu 又はCo イオ
ンでイオン交換させ、焼成することもできる。
In the preparation of the catalyst according to the invention, any of these zeolites can be used as starting material, but have a pore size of about 5 to 10 °, which is slightly larger than the diameter of the NO X molecules to be purified. It is preferred to use one. In the present invention, first, metal ions in zeolite are ion-exchanged with Cu or Co. The ion exchange of Cu or Co can be performed, for example, by treating the zeolite with a Cu or Co ion solution. This Cu or
The zeolite ion-exchanged with Co is kneaded with a binder made of, for example, alumina sol or silica sol, and the obtained slurry is wash-coated on a suitable carrier (for example, a cordierite honeycomb carrier) and calcined to form a solid catalyst type. can do. It is also possible to knead the zeolite with a binder made of, for example, alumina sol or silica sol, wash coat the obtained slurry on a suitable carrier as described above, and then perform ion exchange with Cu or Co ions, followed by firing.

【0014】次に、Cu 又はCo でイオン交換したゼオ
ライトは本発明に従って硫黄化合物を含むガス気流中で
熱処理する。硫黄化合物としては例えば硫化水素などを
用いることができる。
Next, the zeolite ion-exchanged with Cu or Co is heat-treated in a gas stream containing a sulfur compound according to the present invention. For example, hydrogen sulfide or the like can be used as the sulfur compound.

【0015】本発明に従ってCu 又はCo イオンでイオ
ン交換されたゼオライト触媒を硫黄化合物を含むガス気
流中で熱処理する装置の一例として銅イオンを用い、
これを硫化水素含有ガスで熱処理して本発明に係る触媒
を製造する方法を図1を参照し乍ら以下に説明する。
As an example of an apparatus for heat-treating a zeolite catalyst ion-exchanged with Cu or Co ions according to the present invention in a gas stream containing a sulfur compound , copper ions are used.
A method for producing a catalyst according to the present invention by heat-treating this with a hydrogen sulfide-containing gas will be described below with reference to FIG.

【0016】図1に示すように、銅イオンでイオン交換
されたゼオライト触媒1を、例えば電気炉2にいれ、硫
化水素ボンベ3より硫化水素含有ガス4(H2S濃度には特
に制限はないが、好ましくは、 1,000〜10,000ppm 程
度)を流通させ、電気炉をヒータ5で昇温させ(生成硫
化物が安定である限り、温度には特に制限はないが、通
常約 500〜700 ℃程度の温度)、イオン交換でイオン交
換点以外の部位に付着して酸化された酸化銅などを硫化
させて硫化銅とし、酸化活性を消失させる。なお、この
操作においてゼオライトのイオン交換点に置換した銅イ
オンは安定に存在し、硫化されない状態で残存する。な
お、図1において6は熱電対である。
As shown in FIG. 1, a zeolite catalyst 1 ion-exchanged with copper ions is placed in, for example, an electric furnace 2 and a hydrogen sulfide-containing gas 4 (H 2 S concentration is not particularly limited) from a hydrogen sulfide cylinder 3. However, preferably, the electric furnace is heated by a heater 5 (the temperature is not particularly limited as long as the produced sulfide is stable, but usually about 500 to 700 ° C.). ), And oxidizes copper oxide and the like adhering to sites other than the ion exchange point by ion exchange to sulfurate to form copper sulfide, thereby losing oxidation activity. In this operation, the copper ion substituted at the ion exchange point of the zeolite is stably present and remains without being sulfurized. In FIG. 1, reference numeral 6 denotes a thermocouple.

【0017】[0017]

【作用】本発明では、Cu 又はCo でイオン交換された
ゼオライト触媒を硫黄化合物を含むガス気流中で熱処理
して、ゼオライトのイオン交換点以外の部位に付着した
遷移金属イオンに由来する遷移金属酸化物を硫化物に変
換せしめるので、炭化水素を酸化させる酸化物の触媒作
用を失わせて、NOx 浄化プロセスにおけるNOx の浄化率
を向上させることができる。また遷移金属が酸化物の状
態で触媒中に存在するとゼオライトの構造破壊を来たす
ことがあるが、酸化物を硫化物に変換させることによっ
てかかる構造破壊を効果的に防止することができる。
According to the present invention, a zeolite catalyst ion-exchanged with Cu or Co is heat-treated in a gas stream containing a sulfur compound to convert a transition metal ion derived from a transition metal ion attached to a site other than the ion exchange point of the zeolite. Since the substances are converted into sulfides, the catalytic action of oxides that oxidize hydrocarbons is lost, and the NOx purification rate in the NOx purification process can be improved. If the transition metal is present in the catalyst in the form of an oxide, the structure of the zeolite may be destroyed. By converting the oxide into a sulfide, such a structure can be effectively prevented.

【0018】[0018]

【実施例】以下、添付図面を参照し乍ら本発明の実施例
を説明するが、本発明の技術的範囲を以下の実施例に限
定するものでないことはいうまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings, but it goes without saying that the technical scope of the present invention is not limited to the following embodiments.

【0019】例1(製造例) Si /Al 比40、細孔径5.5Åの ZSM-5型ゼオライト
(東ソー製)の粉末を濃度0.01Nの酢酸銅水溶液中に数
日間常温で浸漬して銅イオンが交換したゼオライトを得
た。一方、アルミナゾルとシリカゾルをSi /Al 比が
40となるように混合してスラリー状バインダーを得、こ
のバインダ70重量部中に、上記の銅イオン交換したゼオ
ライト 100重量部及び水 100重量部を加えて混合し、pH
が7.0〜8.6となるようにアンモニア水(希釈)で調整
してスラリーを得た。このスラリーをコージエライト製
ハニカム担体(日本碍子製)0.7リットルにウォッシュ
コートし、乾燥後、 600〜650 ℃に焼成して銅イオン交
換ゼオライト触媒(以下触媒Aという)を得た。
Example 1 (Production Example) A powder of ZSM-5 type zeolite (manufactured by Tosoh Corporation) having a Si / Al ratio of 40 and a pore diameter of 5.5 mm was immersed in a 0.01N copper acetate aqueous solution at room temperature for several days to obtain copper. An ion-exchanged zeolite was obtained. On the other hand, alumina sol and silica sol have a Si / Al ratio of
A slurry-like binder was obtained by mixing so as to be 40, and 100 parts by weight of the above-mentioned copper ion-exchanged zeolite and 100 parts by weight of water were added to and mixed with 70 parts by weight of the binder to obtain a pH.
Was adjusted to 7.0 to 8.6 with aqueous ammonia (dilution) to obtain a slurry. This slurry was wash-coated on 0.7 liter of a cordierite honeycomb carrier (manufactured by Nippon Insulator), dried, and calcined at 600 to 650 ° C. to obtain a copper ion-exchanged zeolite catalyst (hereinafter referred to as catalyst A).

【0020】次に、上で得た触媒Aを図1に示した電気
炉2中に触媒1として入れ、硫化水素ボンベからH2S 10
00ppm のガス(N2 で希釈したガス)を流通させた。電
気炉2は出口排ガス温度が約 600℃になるように調整
し、約4時間反応させた。このようにしてイオン交換に
よりイオン交換点以外の部位に付着した銅(実際には酸
化銅)は硫化され、硫化処理触媒(以下、触媒Bとい
う)を得た。
Next, put the catalyst A obtained above as a catalyst 1 in an electric furnace 2 shown in FIG. 1, H 2 S 10 hydrogen sulfide bomb
A gas of 00 ppm (gas diluted with N 2 ) was passed. The electric furnace 2 was adjusted so that the exhaust gas temperature at the outlet was about 600 ° C., and reacted for about 4 hours. In this way, the copper (actually copper oxide) adhered to a portion other than the ion exchange point by the ion exchange was sulfided to obtain a sulfide treatment catalyst (hereinafter, referred to as catalyst B).

【0021】例2(製造例) 例1において酢酸銅に代えて酢酸コバルトと硝酸コバル
トの混合物(1:1)を用いた以外は全く同様にしてコ
バルトイオン交換ゼオライト触媒(触媒A′という)を
得、電気炉2の出口排ガス温度が約 700℃になるように
した以外は例1と同様にして硫化処理触媒(触媒B′と
いう)を得た。
Example 2 (Preparation Example) A cobalt ion exchanged zeolite catalyst (referred to as catalyst A ') was prepared in exactly the same manner as in Example 1 except that a mixture of cobalt acetate and cobalt nitrate (1: 1) was used instead of copper acetate. A sulfurization treatment catalyst (referred to as catalyst B ') was obtained in the same manner as in Example 1 except that the temperature of the exhaust gas at the outlet of the electric furnace 2 was set to about 700 ° C.

【0022】例3(評価例) 例1及び2で製造した触媒A及びA′(対照例)並びに
B及びB′(本発明例)を用いて10モードでこれらの触
媒の浄化活性を評価した(触媒容量:0.7リットル、車
両:1.6リットルリーンバーン、走行モード:10モー
ド)。結果は以下の表1に示す通りであった。
Example 3 (Evaluation Example) Using the catalysts A and A '(control example) and B and B' (invention example) prepared in Examples 1 and 2, the purifying activity of these catalysts was evaluated in 10 modes. (Catalyst capacity: 0.7 liter, vehicle: 1.6 liter lean burn, running mode: 10 modes). The results were as shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から明らかなように、本発明に
係る触媒B及びB′では炭化水素(HC)の浄化率が大
幅に減少し、この触媒の酸化能が減少していることを明
らかに示している。
As is evident from the results in Table 1, the catalysts B and B 'according to the present invention have a significantly reduced hydrocarbon (HC) purification rate and a reduced oxidizing ability. Is shown in

【0025】次に触媒容量を0.7リットルから1.7リッ
トルに増大させて10モードで同様の試験を行なった。結
果は表2に示す通りであった。
Next, a similar test was performed in 10 modes while increasing the catalyst capacity from 0.7 liter to 1.7 liter. The results were as shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】表2の結果から明らかなように、触媒の容
量を増大させると、本発明の触媒B及びB′ではNOx 浄
化率が上昇したのに対し、対照触媒A及びA′ではNOx
浄化率の実質的な増大は認められなかった。
As is evident from the results in Table 2, when the capacity of the catalyst was increased, the NOx purification rate was increased in the catalysts B and B 'of the present invention, whereas the NOx purification rate was increased in the control catalysts A and A'.
No substantial increase in purification rate was observed.

【0028】例4(評価例) 例1及び2で製造した触媒A及びA′(対照例)並びに
B及びB′(本発明例)を用いて、触媒容量を0.7リッ
トルとして、高速のリーン側運転時の排気浄化触媒の性
能を評価した。
Example 4 (Evaluation example) Using catalysts A and A '(control) and B and B' (invention) prepared in Examples 1 and 2, the catalyst capacity was increased to 0.7 liter, and The performance of the exhaust gas purification catalyst during the lean operation was evaluated.

【0029】結果は図2に示す通りである。図2に示す
通り、高速時には排気触媒系への触媒入口ガス温度が 6
00〜700 ℃まで上昇し、炭化水素の酸化反応が一層顕著
になり、触媒A及びA′(対照触媒)ではNOx 浄化率が
温度上昇と共に著しく減少する。これに対し、触媒B及
びB′(本発明触媒)ではNOx 浄化率の低下は余り認め
られていない。
The results are as shown in FIG. As shown in Fig. 2, at high speed, the catalyst inlet gas temperature to the exhaust catalyst system is 6
The temperature rises from 00 to 700 ° C., and the oxidation reaction of hydrocarbons becomes more remarkable. In the catalysts A and A ′ (control catalysts), the NOx purification rate decreases remarkably with increasing temperature. On the other hand, in the catalysts B and B '(the catalyst of the present invention), a decrease in the NOx purification rate was not so much recognized.

【0030】[0030]

【発明の効果】本発明に従えば、以上説明したように、
銅やコバルトイオン交換されたゼオライト触媒を硫化
水素などの硫黄化合物を含むガス気流中で熱処理して、
例えばゼオライトのイオン交換点以外の部位に存在する
酸化銅や酸化コバルトなどの銅又はコバルトの酸化物を
硫化銅や硫化コバルトなどの硫化物に交換させて安定化
させるため、酸化銅や酸化コバルトなどの酸化物の酸化
能によって排気ガス中の炭化水素が酸化されて排気ガス
中のNOx 浄化率が低下するという問題を酸化物を硫化物
に変換せしめることによって効果的に解決することがで
きた。一方、酸化銅や酸化コバルトはゼオライトの構造
を破壊する悪影響をおよぼすため、細孔が閉塞されてイ
オン交換された銅などの遷移金属が折出し触媒活性が失
われた。
According to the present invention, as described above,
Heat treatment of zeolite catalyst ion-exchanged with copper or cobalt in a gas stream containing sulfur compounds such as hydrogen sulfide,
For example, in order to stabilize by exchanging copper or cobalt oxide such as copper oxide or cobalt oxide present at a site other than the ion exchange point of zeolite with sulfide such as copper sulfide or cobalt sulfide, such as copper oxide or cobalt oxide The problem that the hydrocarbons in the exhaust gas are oxidized by the oxidizing ability of the oxides and the purification rate of NOx in the exhaust gases is reduced can be solved effectively by converting the oxides into sulfides. On the other hand, copper oxide and cobalt oxide have an adverse effect of destroying the structure of the zeolite, so that transition metals such as ion-exchanged copper are clogged and pores are blocked, and the catalytic activity is lost.

【0031】本発明の硫化処理により酸化銅や酸化コバ
ルトなどは硫化銅や硫化コバルトなどとなって安定化さ
れるため、ゼオライトの構造破壊が防止され触媒の耐久
性が大幅に向上する。
The sulfurization treatment of the present invention stabilizes copper oxide, cobalt oxide, and the like into copper sulfide, cobalt sulfide, and the like, so that the structural destruction of zeolite is prevented and the durability of the catalyst is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に従って銅又はコバルトでイオ
ン交換されたゼオライト触媒を硫黄化合物を含む気流中
で熱処理する装置の一例を示す図面であり、
FIG. 1 is a drawing showing an example of an apparatus for heat-treating a zeolite catalyst ion-exchanged with copper or cobalt in an air stream containing a sulfur compound according to the present invention;

【図2】図2は、例4の試験結果を示すグラフ図であ
る。
FIG. 2 is a graph showing test results of Example 4.

【符号の説明】[Explanation of symbols]

1…触媒 2…電気炉 3…硫化水素ボンベ 4…硫化水素含有ガス 5…ヒータ 6…熱電対 DESCRIPTION OF SYMBOLS 1 ... Catalyst 2 ... Electric furnace 3 ... Hydrogen sulfide cylinder 4 ... Hydrogen sulfide containing gas 5 ... Heater 6 ... Thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 悳太 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平3−157126(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shigta Inoue 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-3-157126 (JP, A) (58) Investigated Field (Int.Cl. 7 , DB name) B01J 21/00-37/36 B01D 53/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅又はコバルトでイオン交換されたゼオ
ライト触媒を硫黄化合物を含むガス気流中で熱処理して
成る排気ガス浄化用触媒。
An exhaust gas purifying catalyst obtained by heat-treating a zeolite catalyst ion-exchanged with copper or cobalt in a gas stream containing a sulfur compound.
JP03062044A 1990-06-29 1991-03-26 Exhaust gas purification catalyst Expired - Fee Related JP3111491B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03062044A JP3111491B2 (en) 1990-06-29 1991-03-26 Exhaust gas purification catalyst
EP91110697A EP0463626B1 (en) 1990-06-29 1991-06-27 Catalyst for purifying exhaust gas
DE69118024T DE69118024T2 (en) 1990-06-29 1991-06-27 Catalytic converter for cleaning exhaust gases
US07/723,306 US5141906A (en) 1990-06-29 1991-06-28 Catalyst for purifying exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17022690 1990-06-29
JP2-170226 1990-06-29
JP03062044A JP3111491B2 (en) 1990-06-29 1991-03-26 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH04215848A JPH04215848A (en) 1992-08-06
JP3111491B2 true JP3111491B2 (en) 2000-11-20

Family

ID=26403111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03062044A Expired - Fee Related JP3111491B2 (en) 1990-06-29 1991-03-26 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3111491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820035B2 (en) 2004-03-22 2010-10-26 Exxonmobilchemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US8173854B2 (en) 2005-06-30 2012-05-08 Exxonmobil Chemical Patents Inc. Steam cracking of partially desalted hydrocarbon feedstocks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820035B2 (en) 2004-03-22 2010-10-26 Exxonmobilchemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US8173854B2 (en) 2005-06-30 2012-05-08 Exxonmobil Chemical Patents Inc. Steam cracking of partially desalted hydrocarbon feedstocks

Also Published As

Publication number Publication date
JPH04215848A (en) 1992-08-06

Similar Documents

Publication Publication Date Title
JP6411358B2 (en) Ammonia oxidation catalyst
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
JP6559673B2 (en) Zeolite blend catalyst for treating exhaust gas containing NOX
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
KR20000064436A (en) Zeolites for the adsorption and oxidation of hydrocarbons in diesel engine exhaust gases
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH08192030A (en) Method and catalyst for decreasing simultaneously huydrocarbon,oxygenated organic compound,carbon monoxide andnitrogen oxide included in internal combustion engine
JP2020508843A (en) Exhaust gas purification catalyst for diesel engines
CA2506468C (en) Exhaust gas purifying catalyst and method for purifying exhaust gas
US5141906A (en) Catalyst for purifying exhaust gas
JPH01135541A (en) Catalyst for purifying exhaust gas
JP2529739B2 (en) Exhaust gas purification catalyst and method
JP3111491B2 (en) Exhaust gas purification catalyst
JP3278514B2 (en) Exhaust gas purification catalyst structure
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP2661383B2 (en) Exhaust gas purification catalyst
JP2003320222A (en) Method for catalytically removing nitrogen oxide and apparatus therefor
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3362401B2 (en) Exhaust gas purification catalyst
JP2932106B2 (en) Exhaust gas purification catalyst
JPH0557196A (en) Production of catalyst for purifying exhaust gas
JPH0523546A (en) Waste gas cleaning catalyst and waste gas cleaning method using same
JPH06254352A (en) Method for purifying waste combustion gas and catalyst used in this method
JPH0817945B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees