JPH06320006A - Catalyst for catalytic reduction of nox - Google Patents

Catalyst for catalytic reduction of nox

Info

Publication number
JPH06320006A
JPH06320006A JP5108118A JP10811893A JPH06320006A JP H06320006 A JPH06320006 A JP H06320006A JP 5108118 A JP5108118 A JP 5108118A JP 10811893 A JP10811893 A JP 10811893A JP H06320006 A JPH06320006 A JP H06320006A
Authority
JP
Japan
Prior art keywords
catalyst
solid acid
cerium oxide
acid carrier
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108118A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Ritsu Yasukawa
律 安川
Katsumi Miyamoto
勝見 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP5108118A priority Critical patent/JPH06320006A/en
Priority to DE69427932T priority patent/DE69427932T2/en
Priority to EP94107281A priority patent/EP0624393B1/en
Publication of JPH06320006A publication Critical patent/JPH06320006A/en
Priority to US08/628,855 priority patent/US5733837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for catalytic reduction of NOx capable of efficient reduction of NOx in exhaust gas without using a large amt. of a reducing agent and excellent in durability even in the presence of moisture by carrying cerium oxide on a solid acid carrier. CONSTITUTION:Cerium oxide is carried on a solid acid carrier to obtain the objective catalyst for catalytic reduction of NOx with hydrocarbon or an oxygen-contg. org. compd. as a reducing agent. The solid acid carrier is a carrier exhibiting solid acidity in a temp. region in which the catalyst is used. A zeolite type or oxide type solid acid carrier may be used as the solid acid carrier and the pref. amt. of the cerium oxide carried on the solid acid carrier is 5-80wt.% of the total amt. of them. The catalyst itself can be formed into one of various shapes such as a honeycomb or sphere shape by a known forming method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素又は含酸素有
機化合物を還元剤として使用する窒素酸化物接触還元用
触媒に関し、詳しくは、工場、自動車等から排出される
排ガスの中に含まれる有害な窒素酸化物を還元除去する
のに好適である窒素酸化物接触還元用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing organic compound as a reducing agent, and more specifically, it is contained in exhaust gas discharged from factories, automobiles and the like. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides, which is suitable for reducing and removing harmful nitrogen oxides.

【0002】[0002]

【従来の技術】従来、排ガス中に含まれる窒素酸化物
は、窒素酸化物を酸化した後、アルカリに吸収させる方
法や、アンモニア、水素、一酸化炭素、炭化水素等の還
元剤を用いて、窒素に変換する方法等によつて除去され
ている。しかしながら、前者の方法によれば、生成する
アルカリ廃液を処理して、公害の発生を防止する方策が
必要である。他方、後者の方法によれば、還元剤として
アンモニアを用いるときは、これが排ガス中のイオウ酸
化物と反応して塩類を生成し、その結果、触媒の還元活
性が低下する問題がある。また、水素、一酸化炭素、炭
化水素等を還元剤として用いる場合でも、これらが低濃
度に存在する窒素酸化物よりも高濃度に存在する酸素と
反応するため、窒素酸化物を低減するためには多量の還
元剤を必要とするという問題がある。
2. Description of the Related Art Conventionally, nitrogen oxides contained in exhaust gas have been produced by oxidizing nitrogen oxides and then absorbing it in an alkali, or by using a reducing agent such as ammonia, hydrogen, carbon monoxide, or hydrocarbon. It is removed by a method such as conversion to nitrogen. However, according to the former method, it is necessary to treat the generated alkaline waste liquid to prevent pollution. On the other hand, according to the latter method, when ammonia is used as the reducing agent, it reacts with the sulfur oxide in the exhaust gas to form salts, and as a result, the reducing activity of the catalyst is lowered. Even when hydrogen, carbon monoxide, hydrocarbon, etc. are used as a reducing agent, they react with oxygen present in a higher concentration than nitrogen oxide present in a low concentration, and therefore, in order to reduce nitrogen oxides. Has a problem that it requires a large amount of reducing agent.

【0003】このため、最近では、還元剤の不存在下に
窒素酸化物を触媒にて直接分解する方法も提案されてい
るが、しかし、従来知られているそのような触媒は、窒
素酸化物分解活性が低いために実用に供し難いという問
題がある。また、炭化水素や含酸素有機化合物を還元剤
として用いる新たな窒素酸化物接触還元用触媒として、
H型ゼオライトやCuイオン交換ZSM−5等が提案さ
れている。特に、H型ZSM−5(SiO2 /Al2
3 モル比=30〜40)が最適であるとされている。し
かしながら、このようなH型ZSM−5でも、未だ十分
な還元活性を有するものとはいい難く、特に、ガス中に
水分が含まれるとき、ゼオライト構造体中のアルミニウ
ムが脱アルミニウムして、性能が急激に低下するので、
一層高い還元活性を有し、更に、ガスが水分を含有する
場合にも、すぐれた耐久性を有する窒素酸化物接触還元
用触媒が要望されている。
For this reason, recently, a method of directly decomposing a nitrogen oxide with a catalyst in the absence of a reducing agent has been proposed. However, such a conventionally known catalyst has been proposed as a nitrogen oxide. There is a problem that it is difficult to put it into practical use because of its low decomposition activity. Further, as a new nitrogen oxide catalytic reduction catalyst using a hydrocarbon or an oxygen-containing organic compound as a reducing agent,
H-type zeolite and Cu ion exchange ZSM-5 have been proposed. In particular, H-type ZSM-5 (SiO 2 / Al 2 O
3 molar ratio = 30-40) is said to be optimal. However, even with such H-type ZSM-5, it is hard to say that it still has sufficient reducing activity, and in particular, when water is contained in the gas, aluminum in the zeolite structure is dealuminated, resulting in poor performance. Because it drops sharply
There is a demand for a catalyst for catalytic reduction of nitrogen oxides, which has a higher reduction activity and has excellent durability even when the gas contains water.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したよ
うな事情に鑑みてなされたものであつて、その目的とす
るところは、炭化水素又は含酸素有機化合物を還元剤と
して用いる場合に、酸素の共存下においても、そして、
特に、酸素及び水分の共存下においても、窒素酸化物が
炭化水素又は含酸素有機化合物と選択的に反応するた
め、多量の還元剤を用いることなく、排ガス中の窒素酸
化物を効率よく還元することができ、しかも、水分の存
在下においても、耐久性にすぐれる窒素酸化物接触還元
用触媒を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to use a hydrocarbon or an oxygen-containing organic compound as a reducing agent. Even in the presence of oxygen, and
In particular, since nitrogen oxides selectively react with hydrocarbons or oxygen-containing organic compounds even in the presence of oxygen and water, nitrogen oxides in exhaust gas can be efficiently reduced without using a large amount of reducing agent. Another object of the present invention is to provide a catalyst for catalytic reduction of nitrogen oxides, which can be obtained and has excellent durability even in the presence of water.

【0005】[0005]

【課題を解決するための手段】本発明による炭化水素又
は含酸素有機化合物を還元剤として用いる窒素酸化物接
触還元用触媒は、固体酸担体に酸化セリウムを担持させ
てなることを特徴とする。本発明における固体酸担体と
は、触媒が使用される温度領域において固体酸性を示す
担体をいう。固体酸性の確認は、アンモニアを用いた昇
温脱離法や、アンモニア又はピリジンを用いる in situ
FTIR(フーリエ変換赤外線吸収スペクトル)法に
よりなされる。固体酸担体としては、次に示すゼオライ
ト系固体酸担体や酸化物系固体酸担体等を挙げることが
できる。
A catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing organic compound as a reducing agent according to the present invention is characterized in that cerium oxide is supported on a solid acid carrier. The solid acid carrier in the present invention means a carrier which exhibits solid acidity in the temperature range in which the catalyst is used. Solid acidity can be confirmed by the thermal desorption method using ammonia, or in situ using ammonia or pyridine.
It is performed by the FTIR (Fourier transform infrared absorption spectrum) method. Examples of the solid acid carrier include the following zeolite-based solid acid carriers and oxide-based solid acid carriers.

【0006】ゼオライト系固体酸担体は、Na−モルデ
ナイト、Na−ZSM−5、Na−USY(USY:ウ
ルトラステイブル又は超安定Y型ゼオライト)、ゼオラ
イト中のアルミニウムの一部又は全部を他の金属元素、
特に、鉄、ガリウム、亜鉛、ランタン、銅、モリブデ
ン、クロム、ゲルマニウム、チタン、ホウ素等にて置換
されたメタロシリケート等、耐熱性にすぐれるゼオライ
トを硫酸アンモニウム等のアンモニウム塩の水溶液又は
硫酸等の酸で処理して、ゼオライト中のアルカリ金属の
一部又は全部をアンモニウムイオン又は水素イオンにて
イオン交換することによつて得ることができる。アンモ
ニウムイオンでイオン交換する方法による場合は、最後
に焼成処理を必要とする。
Zeolite-based solid acid carriers include Na-mordenite, Na-ZSM-5, Na-USY (USY: ultrastable or ultra-stable Y-zeolite), and some or all of the aluminum in the zeolite to other metal elements. ,
Particularly, iron, gallium, zinc, lanthanum, copper, molybdenum, chromium, germanium, titanium, metallosilicate substituted with boron, etc., such as zeolite having excellent heat resistance, an aqueous solution of ammonium salt such as ammonium sulfate or an acid such as sulfuric acid. Can be obtained by ion-exchange of a part or all of the alkali metal in the zeolite with ammonium ion or hydrogen ion. In the case of the method of performing ion exchange with ammonium ions, a calcination treatment is finally required.

【0007】ゼオライト系固体酸担体の一例として、例
えば、次式
As an example of the zeolite-based solid acid carrier, for example, the following formula

【0008】[0008]

【化1】 [Chemical 1]

【0009】で表わされるモルデナイト型ゼオライトを
酸処理して得られる酸型モルデナイトであつて、SiO
2 /Al2 3 モル比が13〜40であり、且つ、Si
2 /H2 Oモル比が25〜200である酸型モルデナ
イトを挙げることができる。但し、上式中、Mはアルカ
リ金属イオンを示し、rはゼオライトの合成条件により
変動する値である。
An acid-type mordenite obtained by acid-treating a mordenite-type zeolite represented by
2 / Al 2 O 3 molar ratio is 13-40, and Si
An acid type mordenite having an O 2 / H 2 O molar ratio of 25 to 200 can be mentioned. However, in the above formula, M represents an alkali metal ion, and r is a value that varies depending on the synthesis conditions of zeolite.

【0010】また、ゼオライト系固体酸担体の他の一例
として、例えば、次式
Another example of the zeolite-based solid acid carrier is, for example, the following formula

【0011】[0011]

【化2】 [Chemical 2]

【0012】で表わされるゼオライト中のイオンMの一
部又は全部をランタンイオン(La3+)、ガリウムイオ
ン(Ga3+)、セリウムイオン(Ce4+)、チタンイオ
ン(Ti4+)、ジルコニウムイオン(Zr4+)、スズイ
オン(Sn4+)等にて交換して得られるゼオライトを挙
げることができる。但し、上式中、M’はアルカリ金属
イオン、アルカリ土類金属イオン又は水素イオンを示
し、nA=p(nはイオンMの価数である。)、q/p
≧5である。
Part or all of the ions M in the zeolite represented by lanthanum ion (La 3+ ), gallium ion (Ga 3+ ), cerium ion (Ce 4+ ), titanium ion (Ti 4+ ), zirconium A zeolite obtained by exchanging ions (Zr 4+ ) and tin ions (Sn 4+ ) can be mentioned. However, in the above formula, M ′ represents an alkali metal ion, an alkaline earth metal ion, or a hydrogen ion, nA = p (n is the valence of the ion M), q / p.
≧ 5.

【0013】酸化物系固体酸担体としては、Al
2 3 、TiO2 、TiO2 /SO4 2- 、ZrO2 、Z
rO2 /SO4 2- 等の単一金属酸化物や、SiO2 /A
2 3 、TiO2 /Al2 3 、TiO2 /ZrO2
等の複合酸化物等を挙げることができる。これらの中で
は、耐熱性の点から、Al2 3 、ZrO2 、SiO2
/Al2 3 が好ましい。
As the oxide type solid acid carrier, Al is used.
2 O 3 , TiO 2 , TiO 2 / SO 4 2- , ZrO 2 , Z
Single metal oxides such as rO 2 / SO 4 2- , SiO 2 / A
l 2 O 3 , TiO 2 / Al 2 O 3 , TiO 2 / ZrO 2
And other complex oxides. Among these, from the viewpoint of heat resistance, Al 2 O 3 , ZrO 2 , SiO 2
/ Al 2 O 3 is preferred.

【0014】固体酸担体の他の例としては、ゼオライト
類似の多孔構造又は層状構造を有する一種の結晶性リン
酸アルミニウム(ALPO)や、その近縁物質である結
晶性ケイ酸リン酸アルミニウム(SAPO)、ALPO
のリン又はリン−アルミニウムの一部をチタン、鉄、マ
グネシウム、亜鉛、マンガン、コバルト等の金属で置換
した結晶性リン酸金属アルミニウム(MAPO)等を挙
げることができる。
As another example of the solid acid carrier, a kind of crystalline aluminum phosphate (ALPO) having a zeolite-like porous structure or a layered structure, and its related substance, crystalline aluminum silicate phosphate (SAPO). ), ALPO
The crystalline aluminum metal phosphate (MAPO) in which a part of phosphorus or phosphorus-aluminum of (1) is substituted with a metal such as titanium, iron, magnesium, zinc, manganese, or cobalt.

【0015】ALPO型のリン酸塩は、上記のリン酸源
及び金属源と、シリカ、シリカゾル、ケイ酸ナトリウム
等のなかから選ばれた所望の組合せに、アミン、第四級
アンモニウム等の所謂テンプレートを混合した原料か
ら、ゼオライトを合成する場合と類似した条件下で、水
熱合成法によつて調製することができる。ゼオライトを
合成する場合との主な相違点は、一般に、より高温(概
ね150℃以上)でpH酸性領域で合成されることであ
る。
The ALPO type phosphate is a so-called template such as amine and quaternary ammonium in a desired combination selected from the above-mentioned phosphoric acid source and metal source and silica, silica sol, sodium silicate and the like. It can be prepared by a hydrothermal synthesis method from a mixed raw material under conditions similar to those for synthesizing zeolite. The main difference from the case of synthesizing zeolite is that it is generally synthesized at a higher temperature (approximately 150 ° C. or higher) in a pH acidic region.

【0016】ALPOタイプのリン酸塩の組成は、一般
に、Al2 3 ・(0.8〜1.2)・P2 5 ・nH2
で表わされる。また、SAPO又はMAPOの場合にお
いては、置換するシリカ及び金属の最大量は、アルミニ
ウム及びリンの総量の約1/10程度であるが、本発明
においては、必ずしもこの組成範囲に入つていないも
の、即ち、非晶質を含んでいるものを使用してもよい。
The composition of the ALPO type phosphate is generally Al 2 O 3. (0.8 to 1.2) .P 2 O 5 .nH 2 O
It is represented by. Further, in the case of SAPO or MAPO, the maximum amount of silica and metal to be replaced is about 1/10 of the total amount of aluminum and phosphorus, but in the present invention, it does not necessarily fall within this composition range. That is, a material containing an amorphous material may be used.

【0017】水熱合成法により得られるALPO型のリ
ン酸塩を担体として使用する場合は、一般に、水洗、乾
燥した後、空気中で焼成して、残存しているテンプレー
トを焼却除去したものが用いられる。本発明における酸
化セリウムは、水酸化セリウム(Ce(OH)3 、硝酸
セリウム(Ce(NO3 3 )、酢酸セリウム(Ce
(CH3 COO)3 )等を空気中又は酸素雰囲気下で焼
成することによつて得ることができる。
When an ALPO type phosphate obtained by the hydrothermal synthesis method is used as a carrier, it is generally one that is washed with water, dried and then calcined in air to remove the remaining template by incineration. Used. The cerium oxide in the present invention includes cerium hydroxide (Ce (OH) 3 , cerium nitrate (Ce (NO 3 ) 3 ), cerium acetate (Ce).
It can be obtained by firing (CH 3 COO) 3 ) or the like in air or in an oxygen atmosphere.

【0018】本発明による触媒は、例えば、次に示す
(1)、(2)又は(3)の方法によつて調製すること
ができる。 (1)固体酸担体を分散させたスリラー中にセリウムの
硝酸塩等の水溶性塩や、これらのアルコキシドのアルコ
ール溶液を投入し、これらを中和或いは加水分解させる
か、又はスプレードライ法やフリーズドドライ法等によ
つて、固体酸担体にセリウムの水酸化物等の酸化セリウ
ムの前駆体を担持させ、次いで、濾過、水洗、リパルプ
を繰り返し行なつた後、乾燥し、焼成する。 (2)固体酸担体と別途調製した酸化セリウムとを遊星
ミル等によつて十分に湿式粉砕混合する。 (3)固体酸担体の水溶性塩又は水酸化物等の前駆体と
セリウムの硝酸塩等の水溶性塩やアルコキシドのアルコ
ール溶液とを均質に混合した溶液を中和又は加水分解さ
せる方法等によつて沈殿物を生成させ、次いで、この沈
澱物を濾過、水洗、リパルプを繰り返し行なつた後、乾
燥し、焼成する。
The catalyst according to the present invention can be prepared, for example, by the method (1), (2) or (3) shown below. (1) A water-soluble salt such as a cerium nitrate salt or an alcohol solution of these alkoxides is put into a thriller in which a solid acid carrier is dispersed to neutralize or hydrolyze them, or a spray drying method or a frozen method. A precursor of cerium oxide such as cerium hydroxide is supported on a solid acid carrier by a dry method or the like, and then filtration, washing with water and repulping are repeated, followed by drying and firing. (2) The solid acid carrier and separately prepared cerium oxide are thoroughly wet-milled and mixed by a planetary mill or the like. (3) A method of neutralizing or hydrolyzing a solution in which a precursor such as a water-soluble salt or hydroxide of a solid acid carrier and a water-soluble salt such as cerium nitrate or an alcohol solution of alkoxide are homogeneously mixed. Then, a precipitate is formed, and the precipitate is filtered, washed with water and repulped repeatedly, dried, and calcined.

【0019】酸化セリウムの好適な担持量は、酸化セリ
ウムと固体酸担体との総重量の5〜80重量%の範囲で
ある。酸化セリウムの担持量が80重量%を越えても、
そのような増量に応じた添加効果が得られないばかりで
なく、酸素が共存する反応系においては、酸素による炭
化水素や含酸素有機化合物の消耗が多くなる。一方、担
持量が5重量%よりも少ないときは、触媒の還元活性を
十分に向上させることができない。特に、本発明におい
ては、担持量が20〜50重量%であることが好まし
い。担持量がこの範囲にあるときは、窒素酸化物の接触
還元反応のSV依存性が極めて小さいというすぐれた特
性を得ることができる。
The preferred loading of cerium oxide is in the range of 5-80% by weight of the total weight of cerium oxide and solid acid support. Even if the supported amount of cerium oxide exceeds 80% by weight,
Not only the effect of addition corresponding to such increase in amount cannot be obtained, but also in the reaction system in which oxygen coexists, the consumption of hydrocarbons and oxygen-containing organic compounds by oxygen increases. On the other hand, when the supported amount is less than 5% by weight, the reducing activity of the catalyst cannot be sufficiently improved. Particularly, in the present invention, it is preferable that the supported amount is 20 to 50% by weight. When the supported amount is within this range, it is possible to obtain the excellent property that the SV dependence of the catalytic reduction reaction of nitrogen oxide is extremely small.

【0020】本発明による触媒は、従来、知られている
成形方法によつて、それ自体にて、ハニカム状、球状等
の種々の形状に成形することができる。この成形の際
に、成形助剤、成形体補強体、無機繊維、有機バインダ
ー等を適宜配合してもよい。また、本発明による触媒
は、予め成形された不活性な基材上にウオツシユコート
法等によつて被覆担持させることもできる。上記基材と
しては、例えば、コージエライトのような粘土からなる
ハニカム構造体に担持させることができる。更に、必要
に応じて、従来、知られているその他の触媒の任意の調
製法によることもできる。
The catalyst according to the present invention can be formed into various shapes such as a honeycomb shape and a spherical shape by itself by a conventionally known forming method. At the time of this molding, a molding aid, a molded body reinforcing material, an inorganic fiber, an organic binder and the like may be appropriately mixed. Further, the catalyst according to the present invention can be coated and supported on a preformed inert substrate by a wash coat method or the like. As the base material, for example, a honeycomb structure made of clay such as cordierite can be supported. Further, if necessary, any conventionally known method for preparing other catalysts can be used.

【0021】本発明による触媒を用いる窒素酸化物の接
触還元において、炭化水素からなる還元剤としては、例
えば、気体状のものとして、メタン、エタン、プロパ
ン、プロピレン、ブチレン等の炭化水素ガス、液体状の
ものとして、ペンタン、ヘキサン、オクタン、ヘプタ
ン、ベンゼン、トルエン、キシレン等の単一成分系の炭
化水素、ガソリン、灯油、軽油、重油等の鉱油系炭化水
素等を用いることができる。特に、本発明によれば、上
記したなかでも、アセチレン、メチルアセチレン、1−
ブチン等の低級アルキン、エチレン、プロピレン、イソ
ブチレン、1−ブテン、2−ブテン等の低級アルケン、
ブタジエン、イソプレン等の低級ジエン、プロパン、ブ
タン等の低級アルカン等が還元剤として好ましく用いら
れる。これら炭化水素は、単独で用いてもよく、又は必
要に応じて二種以上併用してもよい。
In the catalytic reduction of nitrogen oxides using the catalyst according to the present invention, examples of the reducing agent composed of a hydrocarbon include a gaseous hydrocarbon gas such as methane, ethane, propane, propylene, butylene, and a liquid. As the material, a single-component hydrocarbon such as pentane, hexane, octane, heptane, benzene, toluene, xylene, and a mineral oil hydrocarbon such as gasoline, kerosene, light oil, and heavy oil can be used. Particularly, according to the present invention, among the above, acetylene, methylacetylene, 1-
Lower alkyne such as butyne, lower alkene such as ethylene, propylene, isobutylene, 1-butene and 2-butene,
Lower dienes such as butadiene and isoprene, and lower alkanes such as propane and butane are preferably used as the reducing agent. These hydrocarbons may be used alone or in combination of two or more as required.

【0022】また、含酸素有機化合物からなる還元剤と
しては、例えば、メタノール、エタノール、プロパノー
ル、オクタノール等のアルコール類、ジメチルエーテ
ル、ジエチルエーテル、ジプロピルエーテル等のエーテ
ル類、酢酸メチル、酢酸エチル、油脂等のカルボン酸エ
ステル類、アセトン、メチルエチルケトン等のケトン類
等を好ましい例として挙げることができるが、しかし、
これらに限定されるものではない。このような含酸素有
機化合物も、単独で用いてもよく、又は必要に応じて二
種以上併用してもよい。また、前述した炭化水素と含酸
素有機化合物とを併用してもよい。
Examples of the reducing agent composed of an oxygen-containing organic compound include alcohols such as methanol, ethanol, propanol and octanol, ethers such as dimethyl ether, diethyl ether and dipropyl ether, methyl acetate, ethyl acetate and oils and fats. Carboxylic acid esters such as, acetone, ketones such as acetone, methyl ethyl ketone and the like can be mentioned as preferred examples, but
It is not limited to these. Such oxygen-containing organic compounds may be used alone or in combination of two or more as required. Further, the above-mentioned hydrocarbon and oxygen-containing organic compound may be used in combination.

【0023】上記還元剤としての炭化水素又は含酸素有
機化合物は、用いる具体的な炭化水素又は含酸素有機化
合物によつて異なるが、通常、窒素酸化物に対するモル
比にて、0.1〜2程度の範囲にて用いられる。本発明に
おいて、還元剤の使用量が窒素酸化物に対するモル比に
て、0.1未満であるときは、触媒が窒素酸化物に対して
十分な還元活性を得ることができず、他方、モル比が2
を越えるときは、未反応の炭化水素又は含酸素有機化合
物の排出量が多くなるために、窒素酸化物の接触還元処
理の後に、これを回収するための後処理が必要となる。
The hydrocarbon or oxygen-containing organic compound used as the reducing agent varies depending on the specific hydrocarbon or oxygen-containing organic compound used, but it is usually 0.1 to 2 in molar ratio to nitrogen oxide. Used in a range of degrees. In the present invention, when the amount of the reducing agent used is less than 0.1 in terms of molar ratio with respect to nitrogen oxides, the catalyst cannot obtain sufficient reducing activity with respect to nitrogen oxides. Ratio is 2
When it exceeds, the amount of unreacted hydrocarbon or oxygen-containing organic compound is increased, so that after the catalytic reduction treatment of nitrogen oxides, a post-treatment for recovering this is required.

【0024】尚、排ガス中に存在する燃料等の未燃焼物
乃至不完全燃焼生成物、即ち、炭化水素類やパテイキユ
レート類等も還元剤として有効であり、これらも本発明
における炭化水素に含まれる。このことから、見方を変
えれば、本発明による触媒は、排ガス中の炭化水素類や
パテイキユレート類等の減少或いは除去触媒としても有
用であるということができる。
Unburned or incompletely burned products such as fuel existing in the exhaust gas, that is, hydrocarbons and patty chelates are also effective as reducing agents, and these are also included in the hydrocarbons of the present invention. . From this point of view, it can be said that the catalyst according to the present invention is also useful as a catalyst for reducing or removing hydrocarbons, patty chelates and the like in exhaust gas.

【0025】上記還元剤が窒素酸化物に対して選択的還
元反応を示す温度は、含酸素有機化合物<アルキン<ア
ルケン<芳香族系炭化水素<アルカンの順に高くなる。
また、同系の炭化水素においては、炭素数が大きくなる
に従つて、その温度は低くなる。本発明による触媒が窒
素酸化物に対して還元活性を示す最適な温度は、使用す
る還元剤や触媒種により異なるが、通常、100〜80
0℃である。この温度領域においては、空間速度(S
V)500〜100000程度で排ガスを流通させるこ
とが好ましい。本発明において特に好適な温度領域は2
00〜500℃である。
The temperature at which the reducing agent shows a selective reduction reaction with respect to nitrogen oxides increases in the order of oxygen-containing organic compound <alkyne <alkene <aromatic hydrocarbon <alkane.
Further, in the hydrocarbons of the same system, the temperature becomes lower as the carbon number becomes larger. The optimum temperature at which the catalyst according to the present invention exhibits reducing activity for nitrogen oxides varies depending on the reducing agent and the catalyst species used, but is usually 100-80.
It is 0 ° C. In this temperature range, the space velocity (S
V) It is preferable to circulate the exhaust gas at about 500 to 100,000. In the present invention, the particularly suitable temperature range is 2
It is 00-500 degreeC.

【0026】[0026]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。 (1)触媒の調製
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. (1) Preparation of catalyst

【0027】実施例1 硝酸セリウム(Ce(NO3)3 ・ 6H2 O)8.0gをイ
オン交換水100mlに溶解させた。これに予め120℃
にて24時間乾燥させたH型モルデナイト粉末(日本化
学製HM−23)60gを投入し、攪拌下、pH8に設定
したpHコントローラにてpHを調節しながら、1/10規
定のアンモニア水を滴下した。滴下終了後、1時間熟成
して、水酸化セリウムを上記H型モルデナイト上に沈着
担持させた。
Example 1 8.0 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O) was dissolved in 100 ml of deionized water. 120 ℃ in advance
60 g of H-type mordenite powder (HM-23 manufactured by Nippon Kagaku Co., Ltd.) that had been dried for 24 hours was charged, and 1/10 normal ammonia water was added dropwise while stirring and adjusting the pH with a pH controller set to pH 8. did. After completion of dropping, the mixture was aged for 1 hour to deposit and support cerium hydroxide on the H-type mordenite.

【0028】このようにして得られたスラリーを濾過し
て、水酸化セリウムを担持させたH型モルデナイト粉末
を集め、これをイオン交換水にて十分に洗浄した後、5
00℃で3時間焼成し、酸化セリウムを担持率5重量%
にて担持させたH型モルデナイト粉末を得た。この触媒
をA−1という。
The slurry thus obtained was filtered to collect H-type mordenite powder carrying cerium hydroxide, which was thoroughly washed with ion-exchanged water and then
Baking for 3 hours at 00 ° C, loading 5% by weight of cerium oxide
The H-type mordenite powder supported by was obtained. This catalyst is called A-1.

【0029】実施例2 実施例1において、硝酸セリウム37.8gを用いた以外
は、実施例1と同様にして、酸化セリウムを担持率20
重量%にて担持させたH型モルデナイト粉末を得た。こ
の触媒をA−2という。
Example 2 In the same manner as in Example 1 except that 37.8 g of cerium nitrate was used, the loading ratio of cerium oxide was 20.
An H-type mordenite powder supported by weight% was obtained. This catalyst is called A-2.

【0030】実施例3 実施例1において、硝酸セリウム64.9gを用いた以外
は、実施例1と同様にして、酸化セリウムを担持率30
重量%にて担持させたH型モルデナイト粉末を得た。こ
の触媒をA−3という。
Example 3 In the same manner as in Example 1 except that 64.9 g of cerium nitrate was used, a cerium oxide loading rate of 30 was obtained.
An H-type mordenite powder supported by weight% was obtained. This catalyst is called A-3.

【0031】実施例4 実施例1において、硝酸セリウム100.9gを用いた以
外は、実施例1と同様にして、酸化セリウムを担持率4
0重量%にて担持させたH型モルデナイト粉末を得た。
この触媒をA−4という。
Example 4 In the same manner as in Example 1 except that 100.9 g of cerium nitrate was used, a cerium oxide loading rate of 4 was obtained.
An H-type mordenite powder supported at 0% by weight was obtained.
This catalyst is called A-4.

【0032】実施例5 実施例1において、硝酸セリウム151.4gを用いた以
外は、実施例1と同様にして、酸化セリウムを担持率5
0重量%にて担持させたH型モルデナイト粉末を得た。
この触媒をA−5という。
Example 5 In the same manner as in Example 1 except that 151.4 g of cerium nitrate was used, a cerium oxide loading rate of 5 was obtained.
An H-type mordenite powder supported at 0% by weight was obtained.
This catalyst is called A-5.

【0033】実施例6 実施例1において、硝酸セリウム353.2gを用いた以
外は、実施例1と同様にして、酸化セリウムを担持率7
0重量%にて担持させたH型モルデナイト粉末を得た。
この触媒をA−5という。
Example 6 In the same manner as in Example 1 except that 353.2 g of cerium nitrate was used, a cerium oxide loading rate of 7 was obtained.
An H-type mordenite powder supported at 0% by weight was obtained.
This catalyst is called A-5.

【0034】実施例7 実施例3において、H型モルデナイトに代えて、H−Z
SM−5(SiO2 /Al2 3 モル比40)粉末を用
いた以外は、実施例3と同様にして、酸化セリウムを担
持率30重量%にて担持させたH−ZSM−5粉末を得
た。この触媒をA−7という。
Example 7 Instead of the H-type mordenite in Example 3, HZ
H-ZSM-5 powder carrying cerium oxide at a loading rate of 30% by weight was prepared in the same manner as in Example 3 except that SM-5 (SiO 2 / Al 2 O 3 molar ratio 40) powder was used. Obtained. This catalyst is called A-7.

【0035】実施例8 実施例3において、H型モルデナイトに代えて、γ−ア
ルミナ粉末(住友化学製A−11)を用いた以外は、実
施例3と同様にして、酸化セリウムを担持率30重量%
にて担持させたγ−アルミナ粉末を得た。この触媒をA
−8という。
Example 8 In the same manner as in Example 3 except that γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was used in place of the H-type mordenite, the loading rate of cerium oxide was 30. weight%
To obtain γ-alumina powder. This catalyst is A
-8.

【0036】実施例9 (H−Feシリケートの調製)攪拌しながら、50%シ
リカゾル162gと水500gとの混合物に、先ず、硝
酸第二鉄9.23g(Si/Fe原子比60)を水200
gに溶解させた水溶液を、次いで、水酸化カリウム22.
26gを水200gに溶解させた水溶液を、それぞれ約
30分かけて滴下混合した。
Example 9 (Preparation of H-Fe silicate) While stirring, a mixture of 162 g of 50% silica sol and 500 g of water was prepared by first adding 9.23 g of ferric nitrate (Si / Fe atomic ratio 60) to water 200.
An aqueous solution dissolved in g, then potassium hydroxide 22.
An aqueous solution prepared by dissolving 26 g in 200 g of water was dropwise added and mixed for about 30 minutes.

【0037】これに臭化テトラプロピルアンモニウム3
5.19gを溶解混合させた。この混合物をオートクレー
ブに仕込み、160℃で16時間攪拌混合した。反応生
成物を濾過分離後、水洗、乾燥し、更に、500℃で3
時間、空気中にて焼成して、ZSM−5型のFeシリケ
ート(K交換体)を得た。このFeシリケート30gを
濃度0.5モル/リットルの硝酸アンモニウム水溶液50
0mlに加え、60℃の油浴上で3時間攪拌した後、濾過
分離した。この操作を3回繰り返した後、濾過分離物を
水洗乾燥し、更に、500℃で3時間、空気中にて焼成
して、プロトン型Feシリケート(H−Feシリケー
ト)粉末を得た。
Tetrapropylammonium bromide 3
5.19 g was dissolved and mixed. This mixture was placed in an autoclave and mixed by stirring at 160 ° C. for 16 hours. The reaction product is separated by filtration, washed with water and dried, and further at 500 ° C. for 3 minutes.
By firing in air for a period of time, a ZSM-5 type Fe silicate (K exchanger) was obtained. 30 g of this Fe silicate was added to an aqueous solution of ammonium nitrate having a concentration of 0.5 mol / liter.
The mixture was added to 0 ml, stirred on an oil bath at 60 ° C. for 3 hours, and then separated by filtration. After repeating this operation 3 times, the filtered and separated product was washed with water, dried, and further calcined in air at 500 ° C. for 3 hours to obtain a proton-type Fe silicate (H—Fe silicate) powder.

【0038】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記H−Feシリケート粉末を用
いた以外は、実施例3と同様にして、酸化セリウムを担
持率30重量%にて担持させたH−Feシリケート粉末
を得た。この触媒をA−9という。
(Preparation of catalyst) In the same manner as in Example 3 except that the H-Fe silicate powder was used in place of the H-type mordenite in Example 3, cerium oxide was carried at a loading rate of 30% by weight. A supported H-Fe silicate powder was obtained. This catalyst is called A-9.

【0039】実施例10 (MAPO−5の調製)酢酸第一マンガン4.9gと酢酸
第二銅4.1gとを水129gに溶解した液に、攪拌しな
がら細かく砕いたアルミニウムイソプロポキシド56.3
gを少量ずつ加え、均一になるまで攪拌混合した。
Example 10 (Preparation of MAPO-5) Aluminum isopropoxide 56. finely crushed with stirring in a liquid prepared by dissolving 4.9 g of manganese acetate and 4.1 g of cupric acetate in 129 g of water. Three
g was added little by little and mixed with stirring until uniform.

【0040】この液に、85%リン酸55.4g、ジエチ
ルエタノールアミン56.3g及び水55.5gからなる混
合物を攪拌しながら少量ずつ加え、均一になるまで攪拌
混合した。この液をオートクレープに仕込み、200℃
で25時間反応させた後、生成物を濾過分離し、水洗、
乾燥した。この後、500℃で3時間空気で焼成してM
APO−5粉末を得た。このMAPO−5粉末は、A
l、P、Mn及びCuをそれぞれ19.0重量%、19.0
重量%、2.8重量%及び4.4重量%含有する組成のもの
であつた。
To this solution, a mixture of 85% phosphoric acid (55.4 g), diethylethanolamine (56.3 g) and water (55.5 g) was added little by little with stirring, and the mixture was stirred and mixed until uniform. This solution was charged into an autoclave and heated to 200 ° C.
After reacting for 25 hours, the product is separated by filtration, washed with water,
Dried. After this, calcination with air for 3 hours at 500 ° C
APO-5 powder was obtained. This MAPO-5 powder is A
l, P, Mn and Cu are 19.0 wt% and 19.0 respectively.
The composition had a composition containing 1% by weight, 2.8% by weight and 4.4% by weight.

【0041】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記MAPO−5粉末を用いた以
外は、実施例3と同様にして、酸化セリウムを担持率3
0重量%にて担持させたMAPO−5粉末を得た。この
触媒をA−10という。
(Preparation of catalyst) In the same manner as in Example 3, except that the above-mentioned MAPO-5 powder was used instead of the H-type mordenite, the cerium oxide loading rate was set to 3.
MAPO-5 powder supported at 0% by weight was obtained. This catalyst is called A-10.

【0042】実施例11 (Zr−モルデナイトの調製)Naモルデナイト(日本
化学社製NM−100P)100gを硝酸ジルコニル水
溶液(ZrO2 として100g/1濃度の水溶液)に浸
漬し、攪拌しながら70℃に1時間保持し、NaをZr
とイオン交換させた。濾過、水洗して得たゼオライトケ
ーキを乾燥させた後、650℃で4時間焼成した。この
ゼオライト(Zr−モルデナイト)のZr含有量は3.3
重量%であり、また、比表面積は391m2/gであつ
た。
Example 11 (Preparation of Zr-mordenite) 100 g of Na mordenite (NM-100P manufactured by Nippon Kagaku Co., Ltd.) was immersed in an aqueous zirconyl nitrate solution (100 g / 1 concentration aqueous solution as ZrO 2 ) and stirred at 70 ° C. Hold for 1 hour and add Na to Zr
I was exchanged with. The zeolite cake obtained by filtration and washing with water was dried and then calcined at 650 ° C. for 4 hours. The Zr content of this zeolite (Zr-mordenite) is 3.3.
The specific surface area was 391 m 2 / g.

【0043】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記Zr−モルデナイト粉末を用
いた以外は、実施例3と同様にして、酸化セリウムを担
持率30重量%にて担持させたZr−モルデナイト粉末
を得た。この触媒をA−11という。
(Preparation of catalyst) In the same manner as in Example 3 except that the above Zr-mordenite powder was used instead of the H-type mordenite, cerium oxide was loaded at a loading rate of 30% by weight. The Zr-mordenite powder thus obtained was obtained. This catalyst is called A-11.

【0044】実施例12 (シリカ−ジルコニアの調製)シリカゾルO型(日産化
学社製、SiO2 として20重量%濃度)100.0gと
塩化ジルコニウム(ZrCl4 )97.20gを攪拌しな
がら、十分に混合し、水にて総量を500mlとした。こ
の液に121g/1濃度の水酸化ナトリウム水溶液を滴
下し、pHを10とした。沈殿反応終了後、18時間攪拌
を続け、その後、濾過、水洗、リパルプを繰り返して、
濾過ケーキを得た。この濾過ケーキを120℃で18時
間乾燥し、3時間焼成した。得られたシリカ−ジルコニ
アの比表面積は297m2/gであつた。
Example 12 (Preparation of Silica-Zirconia) 100.0 g of silica sol O type (manufactured by Nissan Kagaku Co., 20 wt% concentration as SiO 2 ) and 97.20 g of zirconium chloride (ZrCl 4 ) were sufficiently stirred. Mixed and made up to 500 ml with water. A 121 g / 1 concentration aqueous sodium hydroxide solution was added dropwise to this solution to adjust the pH to 10. After completion of the precipitation reaction, stirring was continued for 18 hours, and then filtration, washing with water and repulping were repeated,
A filter cake was obtained. The filter cake was dried at 120 ° C. for 18 hours and calcined for 3 hours. The specific surface area of the obtained silica-zirconia was 297 m 2 / g.

【0045】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記シリカ−ジルコニア粉末を用
いた以外は、実施例3と同様にして、酸化セリウムを担
持率30重量%にて担持させたシリカ−ジルコニア粉末
を得た。この触媒をA−12という。
(Preparation of catalyst) In the same manner as in Example 3 except that the silica-zirconia powder was used instead of the H-type mordenite in Example 3, cerium oxide was loaded at a loading rate of 30% by weight. The allowed silica-zirconia powder was obtained. This catalyst is called A-12.

【0046】実施例13 (La−モルデナイトの調製)H型モルデナイト(日本
化学製HM−23)100gをイオン交換水250ml中
に投入し、これに(1+5)塩酸を加えて、pHを6.0と
した。十分な攪拌下に、上記H型モルデナイトのスラリ
ーに、硝酸ランタン(La(NO3 3 ・6H2 O)3.
12gをイオン交換水50mlに溶解させてなるランタン
イオン(La3+)水溶液を加え、ランタンイオン交換を
行なつた。この間、pHの低下に伴つて、2重量%のアン
モニア水を加えて、pHを6.0に維持した。このようにし
て、所定量のランタンイオン水溶液を上記H型モルデナ
イトのスラリーに加えた後、2時間攪拌を続けた。
Example 13 (Preparation of La-mordenite) 100 g of H-type mordenite (HM-23 manufactured by Nippon Kagaku Co., Ltd.) was put into 250 ml of ion-exchanged water, and (1 + 5) hydrochloric acid was added thereto to adjust the pH to 6.0. And Under sufficient stirring, to a slurry of the H-type mordenite, lanthanum nitrate (La (NO 3) 3 · 6H 2 O) 3.
A lanthanum ion (La 3+ ) aqueous solution prepared by dissolving 12 g of the ion-exchanged water in 50 ml was added for lanthanum ion exchange. During this period, as the pH decreased, 2% by weight of aqueous ammonia was added to maintain the pH at 6.0. In this way, a predetermined amount of the lanthanum ion aqueous solution was added to the H-type mordenite slurry, and stirring was continued for 2 hours.

【0047】この後、得られたスラリーから固形分を濾
取して、ランタンイオン担持率1重量%のランタンイオ
ン交換モルデナイト粉末を得た。
Thereafter, the solid content was filtered from the obtained slurry to obtain a lanthanum ion-exchanged mordenite powder having a lanthanum ion carrying rate of 1% by weight.

【0048】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記ランタンイオン交換モルデナ
イト粉末を用いた以外は、実施例3と同様にして、酸化
セリウムを担持率30重量%にて担持させたランタンイ
オン交換モルデナイト粉末を得た。この触媒をA−13
という。
(Preparation of catalyst) In the same manner as in Example 3 except that the lanthanum ion-exchanged mordenite powder was used in place of the H-type mordenite, the cerium oxide was carried at a loading of 30% by weight. A supported lanthanum ion-exchanged mordenite powder was obtained. This catalyst is A-13
Say.

【0049】実施例14 (SAPO−34の調製)水129.6gに攪拌しながら
細かく砕いたアルミニウムイソプロポキシド90.7gを
少量ずつ加え、均一になるまで攪拌混合した。この混合
液に85%リン酸水溶液51.3gを滴下し、均一になる
まで攪拌混合した後、更に50%シリカゾル16.0gを
加え、均一になるまで十分に攪拌混合した。
Example 14 (Preparation of SAPO-34) 90.7 g of finely crushed aluminum isopropoxide was added little by little to 129.6 g of water with stirring, and the mixture was stirred and mixed until uniform. To this mixed solution, 51.3 g of an 85% phosphoric acid aqueous solution was added dropwise, and the mixture was stirred and mixed until it became uniform. Then, 16.0 g of 50% silica sol was further added, and the mixture was sufficiently stirred and mixed until it became uniform.

【0050】次いで、水酸化テトラエチルアンモニウム
81.6gを加え、十分に攪拌混合した。この混合物をオ
ートクレーブに仕込み、200℃で24時間反応させた
後、生成物を濾過分離し、更に水洗、乾燥した後、50
0℃で3時間、空気中で焼成して、SAPO−34を得
た。このSAPO−34は、Si、Al及びPをそれぞ
れ9.5重量%、18.0重量%及び19.0重量%含有する
ものであつた。
Next, 81.6 g of tetraethylammonium hydroxide was added, and the mixture was sufficiently stirred and mixed. This mixture was charged into an autoclave and reacted at 200 ° C. for 24 hours, then the product was separated by filtration, further washed with water and dried, and then 50
It was baked in air at 0 ° C. for 3 hours to obtain SAPO-34. The SAPO-34 contained 9.5% by weight, 18.0% by weight and 19.0% by weight of Si, Al and P, respectively.

【0051】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記SAPO−34粉末を用いた
以外は、実施例3と同様にして、酸化セリウムを担持率
30重量%にて担持させたSAPO−34粉末を得た。
この触媒をA−14という。
(Preparation of catalyst) In the same manner as in Example 3, except that the above SAPO-34 powder was used in place of the H-type mordenite, cerium oxide was loaded at a loading rate of 30% by weight. The resulting SAPO-34 powder was obtained.
This catalyst is called A-14.

【0052】実施例15 実施例1において、硝酸セリウム3.0g用いた以外は、
実施例1と同様にして、酸化セリウムを担持率20重量
%にて担持させたH型モルデナイト粉末を得た。この触
媒をA−15という。
Example 15 The procedure of Example 1 was repeated except that 3.0 g of cerium nitrate was used.
In the same manner as in Example 1, an H-type mordenite powder supporting cerium oxide at a supporting rate of 20% by weight was obtained. This catalyst is called A-15.

【0053】実施例16 実施例1において、硝酸セリウム605.5gをイオン交
換水300mlに溶解させた以外は、実施例1と同様にし
て、酸化セリウムを担持率80重量%にて担持させたH
型モルデナイト粉末を得た。この触媒をA−16とい
う。
Example 16 In the same manner as in Example 1 except that 605.5 g of cerium nitrate was dissolved in 300 ml of ion-exchanged water, H prepared by loading cerium oxide at a loading rate of 80% by weight was used.
A type mordenite powder was obtained. This catalyst is called A-16.

【0054】実施例17 (Ce−モルデナイトの調製)H型モルデナイト(日本
化学製HM−23)100gをイオン交換水250ml中
に投入し、これに(1+5)塩酸を加えて、pHを6.0と
した。十分な攪拌下に、上記H型モルデナイトのスラリ
ーに、硝酸セリウム(Ce(NO3 3 ・6H2 O)3.
1gをイオン交換水50mlに溶解させてなるセリウムイ
オン(Ce3+)水溶液を加え、セリウムイオン交換を行
なつた。この間、pHの低下に伴つて、2重量%のアンモ
ニア水を加えて、pHを6.0に維持した。このようにし
て、所定量のセリウムイオン水溶液を上記H型モルデナ
イトのスラリーに加えた後、2時間攪拌を続けた。
Example 17 (Preparation of Ce-mordenite) 100 g of H-type mordenite (HM-23 manufactured by Nippon Kagaku Co., Ltd.) was put into 250 ml of ion-exchanged water, and (1 + 5) hydrochloric acid was added thereto to adjust the pH to 6.0. And Under sufficient stirring, to a slurry of the H-type mordenite, cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 3.
A cerium ion (Ce 3+ ) aqueous solution prepared by dissolving 1 g of the ion-exchanged water in 50 ml was added to carry out cerium ion exchange. During this period, as the pH decreased, 2% by weight of aqueous ammonia was added to maintain the pH at 6.0. In this way, a predetermined amount of the cerium ion aqueous solution was added to the H-type mordenite slurry, and stirring was continued for 2 hours.

【0055】この後、得られたスラリーから固形分を濾
取して、セリウムイオン担持率1重量%のセリウムイオ
ン交換モルデナイト粉末を得た。
After that, the solid content was filtered from the obtained slurry to obtain a cerium ion-exchanged mordenite powder having a cerium ion supporting rate of 1% by weight.

【0056】(触媒の調製)実施例3において、H型モ
ルデナイトに代えて、上記セリウムイオン交換モルデナ
イト粉末を用いた以外は、実施例3と同様にして、酸化
セリウムを担持率30重量%にて担持させたセリウムイ
オン交換モルデナイト粉末を得た。この触媒をA−17
という。
(Preparation of catalyst) In the same manner as in Example 3 except that the above cerium ion-exchanged mordenite powder was used in place of the H-type mordenite, the cerium oxide was carried at a loading rate of 30% by weight. A supported cerium ion exchange mordenite powder was obtained. This catalyst is A-17
Say.

【0057】比較例1 硝酸セリウム(Ce(NO3)3 ・ 6H2 O)151.4g
をイオン交換水200mlに溶解させた。この水溶液に、
攪拌下、pH8に設定したpHコントローラにてpHを調節し
ながら、1/10規定のアンモニア水を滴下し、滴下終
了後、1時間熟成して、水酸化セリウムを生成させた。
[0057] Comparative Example 1 cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 151.4g
Was dissolved in 200 ml of deionized water. In this aqueous solution,
While stirring and adjusting the pH with a pH controller set to pH 8, 1/10 normal ammonia water was added dropwise, and after completion of the addition, aging was carried out for 1 hour to produce cerium hydroxide.

【0058】このようにして得られたスラリーを濾過し
て、水酸化セリウムを濾取し、これをイオン交換水にて
十分に洗浄した後、500℃で3時間焼成して、比表面
積47m2/gを有する酸化セリウム粉末を得た。この触
媒をB−1という。
The slurry thus obtained was filtered to collect cerium hydroxide, which was thoroughly washed with ion-exchanged water and then calcined at 500 ° C. for 3 hours to give a specific surface area of 47 m 2 A cerium oxide powder having a / g was obtained. This catalyst is called B-1.

【0059】比較例2 H型モルデナイト(日本化学製HM−23)自体を触媒
B−2とする。
Comparative Example 2 H-type mordenite (HM-23 manufactured by Nippon Kagaku) itself was used as a catalyst B-2.

【0060】(2)触媒構造体の製作 上記実施例1〜17の触媒粉末、比較例B−1、2の触
媒粉末のそれぞれ60gにシリカゾル60mlを加え、遊
星ミルにて30分間粉砕混合した後、イオン交換水にて
粘度を調整して、ウオツシユコート用スラリーとした。
このスラリーをピツチ1.25mmのコージエライト製ハニ
カムにハニカム1ml当たりに0.9〜1.0gの割合にて塗
布し、乾燥させて、ハニカム触媒構造体を製作した。
(2) Preparation of catalyst structure 60 ml of silica sol was added to 60 g of each of the catalyst powders of Examples 1 to 17 and the catalyst powders of Comparative Examples B-1 and B-2, and the mixture was pulverized and mixed in a planetary mill for 30 minutes. The viscosity was adjusted with ion-exchanged water to give a slurry for washcoat.
This slurry was applied to a cordierite honeycomb having a pitch of 1.25 mm at a rate of 0.9 to 1.0 g per 1 ml of the honeycomb and dried to manufacture a honeycomb catalyst structure.

【0061】(3)評価試験 上記した本発明による触媒(A−1〜17)及び比較例
の触媒(B−1及び2)を担持させたハニカム触媒構造
体を用いて、下記の試験条件にて、窒素酸化物含有ガス
の窒素酸化物接触還元を行ない、窒素酸化物の除去率を
ケミカルルミネツセンス法にて求めた。 (試験条件) (1)ガス組成 NO 500 ppm O2 10容量% 還元剤 500 ppm 水 6容量% 窒素 残部 (2)空間速度 10000、20000又は30
000(Hr-1) (3)反応温度 250℃、300℃、350℃、
400℃又は450℃ 結果を表1及び表2に示す。
(3) Evaluation Test Using the above-mentioned catalysts (A-1 to 17) according to the present invention and the catalysts (B-1 and 2) of the comparative examples, a honeycomb catalyst structure was carried out under the following test conditions. Then, the nitrogen oxide-containing gas was subjected to nitrogen oxide catalytic reduction, and the nitrogen oxide removal rate was determined by the chemiluminescence method. (Test conditions) (1) Gas composition NO 500 ppm O 2 10% by volume Reducing agent 500 ppm Water 6% by volume Nitrogen balance (2) Space velocity 10,000, 20000 or 30
000 (Hr -1 ) (3) Reaction temperature 250 ° C, 300 ° C, 350 ° C,
The results at 400 ° C. or 450 ° C. are shown in Tables 1 and 2.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】表1に示す結果から明らかなように、本発
明による触媒は、いずれも窒素酸化物の窒素の除去率が
高いのに対して、比較例による触媒は、総じて、除去率
が低い。
As is clear from the results shown in Table 1, all the catalysts according to the present invention have a high removal rate of nitrogen in the nitrogen oxides, whereas the catalysts according to the comparative examples generally have a low removal rate.

【0065】[0065]

【発明の効果】以上のように、本発明による窒素酸化物
接触還元用触媒は、炭化水素又は含酸素有機化合物を還
元剤として用いて、酸素及び水分の共存下においても、
排ガス中の窒素酸化物を効率よく接触還元することがで
き、更に、耐久性にすぐれる。
INDUSTRIAL APPLICABILITY As described above, the catalyst for catalytic reduction of nitrogen oxides according to the present invention uses a hydrocarbon or an oxygen-containing organic compound as a reducing agent, and even in the presence of oxygen and water,
The nitrogen oxides in the exhaust gas can be efficiently catalytically reduced, and the durability is also excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 安川 律 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 宮本 勝見 埼玉県北葛飾郡鷲宮町鷲宮1−11−7 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromitsu Shimizu 5-1, Ebisu-cho, Sakai City, Osaka Prefecture Central Research Institute, Sakai Chemical Industry Co., Ltd. (72) Ritsu Yasukawa 5-1-1, Ebisu-cho, Sakai City, Osaka Prefecture Central Research Laboratory, Sakai Chemical Industry Co., Ltd. (72) Inventor Katsumi Miyamoto 1-11-7 Washimiya, Washimiya Town, Kitakatsushika-gun, Saitama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固体酸担体に酸化セリウムを担持させてな
ることを特徴とする炭化水素又は含酸素有機化合物を還
元剤として用いる窒素酸化物接触還元用触媒。
1. A catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing organic compound as a reducing agent, which is obtained by supporting cerium oxide on a solid acid carrier.
【請求項2】酸化セリウムが5〜80重量%の範囲で含
まれていることを特徴とする請求項1記載の窒素酸化物
接触還元用触媒。
2. The catalyst for catalytic reduction of nitrogen oxides according to claim 1, which contains cerium oxide in the range of 5 to 80% by weight.
JP5108118A 1993-05-10 1993-05-10 Catalyst for catalytic reduction of nox Pending JPH06320006A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5108118A JPH06320006A (en) 1993-05-10 1993-05-10 Catalyst for catalytic reduction of nox
DE69427932T DE69427932T2 (en) 1993-05-10 1994-05-10 Catalyst for the catalytic reduction of nitrogen oxides
EP94107281A EP0624393B1 (en) 1993-05-10 1994-05-10 Catalyst for catalytic reduction of nitrogen oxides
US08/628,855 US5733837A (en) 1993-05-10 1996-04-05 Catalyst for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108118A JPH06320006A (en) 1993-05-10 1993-05-10 Catalyst for catalytic reduction of nox

Publications (1)

Publication Number Publication Date
JPH06320006A true JPH06320006A (en) 1994-11-22

Family

ID=14476380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108118A Pending JPH06320006A (en) 1993-05-10 1993-05-10 Catalyst for catalytic reduction of nox

Country Status (1)

Country Link
JP (1) JPH06320006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063527A2 (en) * 1999-06-22 2000-12-27 Hitachi, Ltd. Automated analyser and automated analysis
JP2008104928A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Catalyst carrier, its manufacturing method and exhaust gas purifying catalyst
JP2010522688A (en) * 2007-03-26 2010-07-08 ピーキュー コーポレイション Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-membered ring pore opening structure, a process for its production and its use
JP2014069164A (en) * 2012-10-01 2014-04-21 Cataler Corp Zeolite-containing catalyst composition for exhaust gas purification
WO2019069859A1 (en) * 2017-10-03 2019-04-11 エヌ・イーケムキャット株式会社 Rare earth element framework substituted zeolite, method for producing same, and nox adsorbent, selective reduction catalyst and automobile exhaust gas catalyst, each using same
JP2019076895A (en) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalysts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063527A2 (en) * 1999-06-22 2000-12-27 Hitachi, Ltd. Automated analyser and automated analysis
JP2008104928A (en) * 2006-10-24 2008-05-08 Toyota Motor Corp Catalyst carrier, its manufacturing method and exhaust gas purifying catalyst
JP2010522688A (en) * 2007-03-26 2010-07-08 ピーキュー コーポレイション Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-membered ring pore opening structure, a process for its production and its use
JP2011167690A (en) * 2007-03-26 2011-09-01 Pq Corp Novel microporous crystalline material comprising molecular sieve or zeolite having 8-ring pore opening structure and method of making and using the same
JP4889807B2 (en) * 2007-03-26 2012-03-07 ピーキュー コーポレイション Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-membered ring pore opening structure, a process for its production and its use
JP2019076895A (en) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
JP2014069164A (en) * 2012-10-01 2014-04-21 Cataler Corp Zeolite-containing catalyst composition for exhaust gas purification
WO2019069859A1 (en) * 2017-10-03 2019-04-11 エヌ・イーケムキャット株式会社 Rare earth element framework substituted zeolite, method for producing same, and nox adsorbent, selective reduction catalyst and automobile exhaust gas catalyst, each using same
CN111108067A (en) * 2017-10-03 2020-05-05 N.E.化学株式会社 Rare earth element framework-substituted zeolite, method for producing same, NOx adsorbent, selective reduction catalyst, and automobile exhaust gas catalyst using same
US11351524B2 (en) 2017-10-03 2022-06-07 N.E. Chemcat Corporation Zeolite with rare earth element-substituted framework and method for producing same, and NOx adsorber, selective catalytic reduction catalyst and automobile exhaust gas catalyst comprising same

Similar Documents

Publication Publication Date Title
US5733837A (en) Catalyst for catalytic reduction of nitrogen oxides
EP0532024B1 (en) Catalyst for catalytic reduction of nitrogen oxide
JP2010527877A (en) Metal-doped zeolite and process for producing the same
CN110300624B (en) Copper-containing MOZ zeolites for selective NOx reduction catalysis
JP2018154528A (en) Method for producing zeolite having 8-membered oxygen ring
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2516516B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2838336B2 (en) Catalyst for catalytic reduction of nitrogen oxides
US6969692B2 (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
JPH07213911A (en) Catalyst for catalytic reduction of nitrogen oxide
JPH06320006A (en) Catalyst for catalytic reduction of nox
JP3453239B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2558566B2 (en) Catalyst for catalytic reduction of nitrogen oxides
CA2496898C (en) Process for the preparation of doped pentasil-type zeolites using a doped reactant
JPH0531328A (en) Decontamination of exhaust gas containing nitrogen oxide
JPH06320008A (en) Catalyst for catalytic reduction of nox
JP3930607B2 (en) Nitrogen oxide catalytic reduction catalyst
JPH0768180A (en) Catalyst for catalytic reduction of nox
WO2022199573A1 (en) Scr catalyst comprising zeolitic material having aft framework structure and synthesis of the same
WO2023036238A1 (en) Synthesis of cha zeolitic materials, cha zeolitic materials obtainable therefrom and scr catalysts comprising the same
JPH0952047A (en) Catalyst for contact reducing nitrogen oxide
JPH0515782A (en) Catalyst for catalytic reduction of nitrogen oxide
WO2022199574A1 (en) Synthesis of zeolitic materials having aft framework structure and scr catalysts comprising the same
JPH0261518B2 (en)
JP3872848B2 (en) Nitrogen oxide catalytic reduction catalyst