KR102660953B1 - Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant - Google Patents

Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant Download PDF

Info

Publication number
KR102660953B1
KR102660953B1 KR1020220080971A KR20220080971A KR102660953B1 KR 102660953 B1 KR102660953 B1 KR 102660953B1 KR 1020220080971 A KR1020220080971 A KR 1020220080971A KR 20220080971 A KR20220080971 A KR 20220080971A KR 102660953 B1 KR102660953 B1 KR 102660953B1
Authority
KR
South Korea
Prior art keywords
zeolite
catalyst
ion exchange
ssz
zsm
Prior art date
Application number
KR1020220080971A
Other languages
Korean (ko)
Other versions
KR20240003417A (en
Inventor
김도희
강태훈
김현섭
양혜숙
조한권
송영완
구범창
서연경
Original Assignee
서울대학교산학협력단
한국서부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 한국서부발전 주식회사 filed Critical 서울대학교산학협력단
Priority to KR1020220080971A priority Critical patent/KR102660953B1/en
Publication of KR20240003417A publication Critical patent/KR20240003417A/en
Application granted granted Critical
Publication of KR102660953B1 publication Critical patent/KR102660953B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매가 제공된다. 상기 이온 교환 제올라이트 촉매는 제올라이트에 하나 또는 둘 이상의 금속이온이 교환되어 제조되는 이온 교환 제올라이트를 포함한다. 상기 금속이온은 구리이온, 코발트이온, 및 철이온 중에서 적어도 하나를 포함하고, 상기 제올라이트는 ZSM-5 제올라이트 및 SSZ-13 제올라이트 중에서 적어도 하나를 포함한다.An ion exchange zeolite catalyst for LNG power plant exhaust gas treatment is provided. The ion exchange zeolite catalyst includes an ion exchange zeolite prepared by exchanging one or two or more metal ions with zeolite. The metal ion includes at least one of copper ions, cobalt ions, and iron ions, and the zeolite includes at least one of ZSM-5 zeolite and SSZ-13 zeolite.

Description

LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매{ION EXCHANGED ZEOLITE CATALYST FOR EXHAUST GAS TREATMENT OF LNG POWER PLANT}Ion exchange zeolite catalyst for LNG power plant exhaust gas treatment {ION EXCHANGED ZEOLITE CATALYST FOR EXHAUST GAS TREATMENT OF LNG POWER PLANT}

본 발명은 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매에 관한 것이다.The present invention relates to an ion exchange zeolite catalyst for treating LNG power plant exhaust gas.

최근 발표된 전력수급기본계획 등 여러 정책적인 방향에 따라 LNG 발전소는 더욱 주목받고 있으며, 앞으로도 수요가 꾸준히 증가할 것으로 전망된다. LNG 발전소에서는 질소산화물 중 일산화질소와 이산화질소가 다양한 비율로 배출되는데, 현재 LNG 발전소에서는 바나?? 기반 촉매를 활용한 일산화질소 제거 설비와 휘발성 유기화합물을 이용한 이산화질소 제거 설비(황연 저감설비)를 통해 질소산화물을 제거한다. 그러나, 기존에 설치된 바나듐 기반 촉매로는 높은 전환율을 얻을 수 없고, 황연 저감설비에서는 에탄올/에틸렌글리콜 혼합물 등 다양한 유기화합물을 환원제로 이용하여 환경에 좋지 않으며, 질소산화물 제거 설비가 복잡하고 비용이 많이 든다.LNG power plants are receiving more attention in accordance with various policy directions, such as the recently announced basic plan for electricity supply and demand, and demand is expected to continue to increase in the future. In LNG power plants, nitrogen monoxide and nitrogen dioxide are emitted at various rates among nitrogen oxides. Currently, LNG power plants produce only 10% of nitrogen oxides. Nitrogen oxides are removed through a nitrogen monoxide removal facility using a base catalyst and a nitrogen dioxide removal facility using volatile organic compounds (yellow smoke reduction facility). However, high conversion rates cannot be achieved with existing vanadium-based catalysts, and sulfur smoke reduction facilities use various organic compounds such as ethanol/ethylene glycol mixtures as reducing agents, which are not good for the environment, and nitrogen oxide removal facilities are complicated and expensive. It takes.

본 발명은 LNG 발전소의 배기가스를 효과적으로 처리할 수 있는 이온 교환 제올라이트 촉매를 제공한다.The present invention provides an ion exchange zeolite catalyst that can effectively treat exhaust gas from LNG power plants.

본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become clear from the following detailed description and accompanying drawings.

본 발명의 실시예들에 따른 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매는 제올라이트에 하나 또는 둘 이상의 금속이온이 교환되어 제조되는 이온 교환 제올라이트를 포함한다. 상기 금속이온은 구리이온, 코발트이온, 및 철이온 중에서 적어도 하나를 포함하고, 상기 제올라이트는 ZSM-5 제올라이트 및 SSZ-13 제올라이트 중에서 적어도 하나를 포함한다.The ion exchange zeolite catalyst for treating LNG power plant exhaust gas according to embodiments of the present invention includes an ion exchange zeolite prepared by exchanging one or two or more metal ions with zeolite. The metal ion includes at least one of copper ions, cobalt ions, and iron ions, and the zeolite includes at least one of ZSM-5 zeolite and SSZ-13 zeolite.

본 발명의 실시예들에 따른 이온 교환 제올라이트는 LNG 발전소의 배기가스를 효과적으로 처리할 수 있다. 상기 이온 교환 제올라이트 촉매는 LNG 발전소에서 배출되는 일산화질소와 이산화질소를 동시에 제거할 수 있다.Ion exchange zeolites according to embodiments of the present invention can effectively treat exhaust gas of LNG power plants. The ion exchange zeolite catalyst can simultaneously remove nitrogen monoxide and nitrogen dioxide emitted from LNG power plants.

도 1은 이온 교환 제올라이트 촉매와 바나듐-텅스텐 티타니아 촉매의 일산화질소 환원 반응 활성을 나타낸다.
도 2는 이온 교환 제올라이트 촉매와 바나듐-텅스텐 티타니아 촉매의 이산화질소 환원 반응 활성을 나타낸다.
도 3은 CuCo-SSZ-13 촉매의 이산화질소 환원 반응 활성을 나타낸다.
도 4는 CuCo-ZSM-5 촉매의 이산화질소 환원 반응 활성을 나타낸다.
도 5는 CuFe-ZSM-5 촉매의 이산화질소 환원 반응 활성을 나타낸다.
도 6은 Cu-ZSM-5/CuCo-SSZ-13 혼합 촉매의 이산화질소 환원 반응 활성을 나타낸다.
Figure 1 shows the nitrogen monoxide reduction reaction activity of an ion exchange zeolite catalyst and a vanadium-tungsten titania catalyst.
Figure 2 shows the nitrogen dioxide reduction reaction activity of an ion exchange zeolite catalyst and a vanadium-tungsten titania catalyst.
Figure 3 shows the nitrogen dioxide reduction reaction activity of the CuCo-SSZ-13 catalyst.
Figure 4 shows the nitrogen dioxide reduction reaction activity of the CuCo-ZSM-5 catalyst.
Figure 5 shows the nitrogen dioxide reduction reaction activity of the CuFe-ZSM-5 catalyst.
Figure 6 shows the nitrogen dioxide reduction reaction activity of the Cu-ZSM-5/CuCo-SSZ-13 mixed catalyst.

이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. The purpose, features, and advantages of the present invention will be easily understood through the following examples. The present invention is not limited to the embodiments described herein and may be embodied in other forms. The embodiments introduced herein are provided to ensure that the disclosed content is thorough and complete and to enable the idea of the present invention to be sufficiently conveyed to those skilled in the art to which the present invention pertains. Accordingly, the present invention should not be limited by the following examples.

본 명세서에서 제1, 제2 등의 용어가 다양한 요소들(elements)을 기술하기 위해서 사용되었지만, 상기 요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이러한 용어들은 단지 상기 요소들을 서로 구별시키기 위해서 사용되었을 뿐이다. Although terms such as first and second are used in this specification to describe various elements, the elements should not be limited by these terms. These terms are merely used to distinguish the elements from one another.

본 발명의 실시예들에 따른 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매는 제올라이트에 하나 또는 둘 이상의 금속이온이 교환되어 제조되는 이온 교환 제올라이트를 포함한다. 상기 금속이온은 구리이온, 코발트이온, 및 철이온 중에서 적어도 하나를 포함하고, 상기 제올라이트는 ZSM-5 제올라이트 및 SSZ-13 제올라이트 중에서 적어도 하나를 포함한다.The ion exchange zeolite catalyst for treating LNG power plant exhaust gas according to embodiments of the present invention includes an ion exchange zeolite prepared by exchanging one or two or more metal ions with zeolite. The metal ion includes at least one of copper ions, cobalt ions, and iron ions, and the zeolite includes at least one of ZSM-5 zeolite and SSZ-13 zeolite.

상기 이온 교환 제올라이트는, 구리이온이 교환된 제1 이온 교환 제올라이트 및 구리이온과 코발트이온이 교환된 제2 이온 교환 제올라이트를 포함할 수 있다.The ion exchange zeolite may include a first ion exchange zeolite in which copper ions are exchanged and a second ion exchange zeolite in which copper ions and cobalt ions are exchanged.

상기 이온 교환 제올라이트는, 구리이온이 교환된 제1 이온 교환 제올라이트 및 구리이온과 철이온이 교환된 제2 이온 교환 제올라이트를 포함할 수 있다.The ion exchange zeolite may include a first ion exchange zeolite in which copper ions are exchanged and a second ion exchange zeolite in which copper ions and iron ions are exchanged.

상기 제1 이온 교환 제올라이트는 ZSM-5 제올라이트를 포함할 수 있고, 상기 제2 이온 교환 제올라이트는 SSZ-13 제올라이트를 포함할 수 있다.The first ion exchange zeolite may include ZSM-5 zeolite, and the second ion exchange zeolite may include SSZ-13 zeolite.

상기 이온 교환 제올라이트는 상기 제1 이온 교환 제올라이트와 상기 제2 이온 교환 제올라이트를 혼합한 후 분쇄하여 제조될 수 있다.The ion exchange zeolite may be produced by mixing the first ion exchange zeolite and the second ion exchange zeolite and then grinding them.

[Cu-ZSM-5 촉매의 제조예][Manufacture example of Cu-ZSM-5 catalyst]

ZSM-5 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기(rotary evaporator)를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 ZSM-5 촉매를 제조하였다.1 g of ZSM-5 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. A ZSM-5 catalyst in which copper ions were exchanged was prepared by calcining at 500°C for 3 hours.

[Cu-SSZ-13 촉매의 제조예][Manufacture example of Cu-SSZ-13 catalyst]

SSZ-13 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기(rotary evaporator)를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 SSZ-13 제올라이트 촉매(Cu-SSZ-13 촉매)를 제조하였다.1 g of SSZ-13 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. SSZ-13 zeolite catalyst (Cu-SSZ-13 catalyst) in which copper ions were exchanged was prepared by calcining at 500°C for 3 hours.

[CuCo-ZSM-5 촉매의 제조예][Manufacture example of CuCo-ZSM-5 catalyst]

ZSM-5 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 ZSM-5 제올라이트를 제조하였다.1 g of ZSM-5 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. ZSM-5 zeolite in which copper ions were exchanged was prepared by calcining at 500°C for 3 hours.

제올라이트 기공 부피에 해당하는 양만큼의 증류수에 코발트이온 전구체(Co(NO3)2·6H2O)를 녹인다. 전체 촉매 무게에 대하여 코발트의 함량이 각각 0.5, 1, 2wt%가 되도록 코발트이온 전구체의 양을 결정하여 사용하였다. 1g 정도의 제올라이트를 사용하는 경우 0.2ml 정도의 증류수를 이용한다. 코발트이온 전구체가 포함된 증류수를 제올라이트에 스포이드로 한 방울씩 떨어뜨리면서 건조 함침법으로 제올라이트에 포화시킨다. 100℃ 오븐에 넣어 24시간 동안 건조하고 500℃에서 3시간 동안 소성하여 구리이온과 코발트이온이 교환된 ZSM-5 제올라이트 촉매(CuCo-ZSM-5 촉매)를 제조하였다.Dissolve the cobalt ion precursor (Co(NO 3 ) 2 ·6H 2 O) in distilled water in an amount corresponding to the zeolite pore volume. The amount of cobalt ion precursor was determined and used so that the cobalt content was 0.5, 1, and 2 wt%, respectively, based on the total weight of the catalyst. When using about 1g of zeolite, use about 0.2ml of distilled water. Distilled water containing cobalt ion precursors is added drop by drop to the zeolite using a dropper to saturate the zeolite using a dry impregnation method. It was dried in an oven at 100°C for 24 hours and calcined at 500°C for 3 hours to prepare a ZSM-5 zeolite catalyst (CuCo-ZSM-5 catalyst) in which copper ions and cobalt ions were exchanged.

[CuCo-SSZ-13 촉매의 제조예][Manufacture example of CuCo-SSZ-13 catalyst]

SSZ-13 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 SSZ-13 제올라이트를 제조하였다.1 g of SSZ-13 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. SSZ-13 zeolite in which copper ions were exchanged was prepared by firing at 500°C for 3 hours.

제올라이트 기공 부피에 해당하는 양만큼의 증류수에 코발트이온 전구체(Co(NO3)2·6H2O)를 녹인다. 전체 촉매 무게에 대하여 코발트의 함량이 각각 0.5, 1, 2wt%가 되도록 코발트이온 전구체의 양을 결정하여 사용하였다. 1g 정도의 제올라이트를 사용하는 경우 0.2ml 정도의 증류수를 이용한다. 코발트이온 전구체가 포함된 증류수를 제올라이트에 스포이드로 한 방울씩 떨어뜨리면서 건조 함침법으로 제올라이트에 포화시킨다. 100℃ 오븐에 넣어 24시간 동안 건조하고 500℃에서 3시간 동안 소성하여 구리이온과 코발트이온이 교환된 SSZ-13 제올라이트 촉매(CuCo-SSZ-13 촉매)를 제조하였다.Dissolve the cobalt ion precursor (Co(NO 3 ) 2 ·6H 2 O) in distilled water in an amount corresponding to the zeolite pore volume. The amount of cobalt ion precursor was determined and used so that the cobalt content was 0.5, 1, and 2 wt%, respectively, based on the total weight of the catalyst. When using about 1g of zeolite, use about 0.2ml of distilled water. Distilled water containing cobalt ion precursors is added drop by drop to the zeolite using a dropper to saturate the zeolite using a dry impregnation method. It was dried in an oven at 100°C for 24 hours and calcined at 500°C for 3 hours to prepare SSZ-13 zeolite catalyst (CuCo-SSZ-13 catalyst) in which copper ions and cobalt ions were exchanged.

[CuFe-ZSM-5 촉매의 제조예][Manufacture example of CuFe-ZSM-5 catalyst]

ZSM-5 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 ZSM-5 제올라이트를 제조하였다.1 g of ZSM-5 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. ZSM-5 zeolite in which copper ions were exchanged was prepared by calcining at 500°C for 3 hours.

제올라이트 기공 부피에 해당하는 양만큼의 증류수에 철이온 전구체(Fe(NO3)3·9H2O)를 녹인다. 전체 촉매 무게에 대하여 철의 함량이 각각 0.5, 1, 2wt%가 되도록 철이온 전구체의 양을 결정하여 사용하였다. 1g 정도의 제올라이트를 사용하는 경우 0.2ml 정도의 증류수를 이용한다. 철이온 전구체가 포함된 증류수를 제올라이트에 스포이드로 한 방울씩 떨어뜨리면서 건조 함침법으로 제올라이트에 포화시킨다. 100℃ 오븐에 넣어 24시간 동안 건조하고 500℃에서 3시간 동안 소성하여 구리이온과 철이온이 교환된 ZSM-5 제올라이트 촉매(CuFe-ZSM-5 촉매)를 제조하였다.Dissolve the iron ion precursor (Fe(NO 3 ) 3 ·9H 2 O) in distilled water in an amount corresponding to the zeolite pore volume. The amount of iron ion precursor was determined and used so that the iron content was 0.5, 1, and 2 wt%, respectively, based on the total weight of the catalyst. When using about 1g of zeolite, use about 0.2ml of distilled water. Distilled water containing iron ion precursors is added drop by drop to the zeolite using a dropper to saturate the zeolite using a dry impregnation method. It was dried in an oven at 100°C for 24 hours and calcined at 500°C for 3 hours to prepare a ZSM-5 zeolite catalyst (CuFe-ZSM-5 catalyst) in which copper ions and iron ions were exchanged.

[CuFe-SSZ-13 촉매의 제조예][Manufacture example of CuFe-SSZ-13 catalyst]

SSZ-13 제올라이트 1g과 0.1몰 농도에 해당하는 구리이온 전구체(Cu(NO3)2·3H2O)를 증류수 50ml에 넣은 후 용액 온도를 60℃로 유지하면서 24시간 동안 교반하였다. 회전 증발기를 이용하여 필터링한 후 100℃ 오븐에 넣어 24시간 동안 건조하였다. 500℃에서 3시간 동안 소성하여 구리이온이 교환된 SSZ-13 제올라이트를 제조하였다.1 g of SSZ-13 zeolite and 0.1 molar concentration of copper ion precursor (Cu(NO 3 ) 2 ·3H 2 O) were added to 50 ml of distilled water and stirred for 24 hours while maintaining the solution temperature at 60°C. After filtering using a rotary evaporator, it was placed in an oven at 100°C and dried for 24 hours. SSZ-13 zeolite in which copper ions were exchanged was prepared by firing at 500°C for 3 hours.

제올라이트 기공 부피에 해당하는 양만큼의 증류수에 철이온 전구체(Fe(NO3)3·9H2O)를 녹인다. 전체 촉매 무게에 대하여 철의 함량이 각각 0.5, 1, 2wt%가 되도록 철이온 전구체의 양을 결정하여 사용하였다. 1g 정도의 제올라이트를 사용하는 경우 0.2ml 정도의 증류수를 이용한다. 철이온 전구체가 포함된 증류수를 제올라이트에 스포이드로 한 방울씩 떨어뜨리면서 건조 함침법으로 제올라이트에 포화시킨다. 100℃ 오븐에 넣어 24시간 동안 건조하고 500℃에서 3시간 동안 소성하여 구리이온과 철이온이 교환된 SSZ-13 제올라이트 촉매(CuFe-SSZ-13 촉매)를 제조하였다.Dissolve the iron ion precursor (Fe(NO 3 ) 3 ·9H 2 O) in distilled water in an amount corresponding to the zeolite pore volume. The amount of iron ion precursor was determined and used so that the iron content was 0.5, 1, and 2 wt%, respectively, based on the total weight of the catalyst. When using about 1g of zeolite, use about 0.2ml of distilled water. Distilled water containing iron ion precursors is added drop by drop to the zeolite using a dropper to saturate the zeolite using a dry impregnation method. SSZ-13 zeolite catalyst (CuFe-SSZ-13 catalyst) in which copper ions and iron ions were exchanged was prepared by drying in an oven at 100°C for 24 hours and calcining at 500°C for 3 hours.

[Cu-ZSM-5/CuCo-SSZ-13 혼합 촉매의 제조예][Manufacture example of Cu-ZSM-5/CuCo-SSZ-13 mixed catalyst]

Cu-ZSM-5/CuCo-SSZ-13 혼합 촉매는 Cu-ZSM-5 촉매와 CuCo-SSZ-13 촉매를 혼합한 후 분쇄하여 제조되었다.Cu-ZSM-5/CuCo-SSZ-13 mixed catalyst was prepared by mixing Cu-ZSM-5 catalyst and CuCo-SSZ-13 catalyst and then pulverizing them.

[Cu-ZSM-5/CuFe-SSZ-13 혼합 촉매의 제조예][Manufacture example of Cu-ZSM-5/CuFe-SSZ-13 mixed catalyst]

Cu-ZSM-5/CuFe-SSZ-13 혼합 촉매는 Cu-ZSM-5 촉매와 CuFe-SSZ-13 촉매를 혼합한 후 분쇄하여 제조되었다.The Cu-ZSM-5/CuFe-SSZ-13 mixed catalyst was prepared by mixing Cu-ZSM-5 catalyst and CuFe-SSZ-13 catalyst and then pulverizing them.

도 1은 이온 교환 제올라이트 촉매와 바나듐-텅스텐 티타니아 촉매의 일산화질소 환원 반응 활성을 나타낸다. 일산화질소 환원 반응은 고정층 반응기를 이용하여 수행되었다. 반응가스는 총 200ml/min의 속도로 주입되었고, 200ppm 일산화질소, 200ppm 암모니아, 5% 물, 15% 산소, 나머지는 질소로 구성되었다. 질소산화물 전환율은 FT-IR 분광계를 이용하여 계산되었다.Figure 1 shows the nitrogen monoxide reduction reaction activity of an ion exchange zeolite catalyst and a vanadium-tungsten titania catalyst. The nitrogen monoxide reduction reaction was performed using a fixed bed reactor. The reaction gas was injected at a total rate of 200 ml/min and consisted of 200 ppm nitrogen monoxide, 200 ppm ammonia, 5% water, 15% oxygen, and the remainder was nitrogen. Nitrogen oxide conversion was calculated using a FT-IR spectrometer.

도 1을 참조하면, 300℃ 이상의 고온에서 촉매들은 비슷한 촉매 활성을 나타내는 반면, 200 ~ 300℃의 저온에서는 이온 교환 제올라이트 촉매가 바나듐 기반 촉매보다 활성이 좋은 것으로 나타났다. LNG 발전소에서의 배기 가스는 200 ~ 300℃ 범위에 있기 때문에 저온 범위에서의 촉매 활성이 중요하다. Referring to Figure 1, the catalysts showed similar catalytic activity at high temperatures above 300°C, while at low temperatures between 200 and 300°C, the ion exchange zeolite catalyst was found to be more active than the vanadium-based catalyst. Since the exhaust gas from LNG power plants is in the range of 200 to 300°C, catalytic activity in the low temperature range is important.

도 2는 이온 교환 제올라이트 촉매와 바나듐-텅스텐 티타니아 촉매의 이산화질소 환원 반응 활성을 나타낸다. 이산화질소 환원 반응은 고정층 반응기를 이용하여 수행되었다. 반응가스는 총 200ml/min의 속도로 주입되었고, 200ppm 이산화질소, 200ppm 암모니아, 5% 물, 15% 산소, 나머지는 질소로 구성되었다. 질소산화물 전환율은 FT-IR 분광계를 이용하여 계산되었다. Figure 2 shows the nitrogen dioxide reduction reaction activity of an ion exchange zeolite catalyst and a vanadium-tungsten titania catalyst. The nitrogen dioxide reduction reaction was performed using a fixed bed reactor. The reaction gas was injected at a total rate of 200 ml/min and consisted of 200 ppm nitrogen dioxide, 200 ppm ammonia, 5% water, 15% oxygen, and the remainder was nitrogen. Nitrogen oxide conversion was calculated using a FT-IR spectrometer.

도 2를 참조하면, 전체 온도 범위에서 이온 교환 제올라이트 촉매가 바나듐 기반 촉매보다 활성이 좋은 것으로 나타났다. 특히, 바나듐 기반 촉매는 300℃ 이하의 저온에서는 이산화질소 전환율이 40%에도 미치지 못하였다. 다중 이온이 교환된 CuFe-ZSM-5 촉매 및 CuCo-SSZ-13 촉매는 각각 300℃에서 83.4%, 71.1%의 높은 전환율로서 우수한 촉매 활성을 나타낸다. 또, CuCo-SSZ-13 촉매가 250℃에서 촉매 활성이 가장 높은 것으로 나타났다.Referring to Figure 2, the ion exchange zeolite catalyst was found to be more active than the vanadium-based catalyst over the entire temperature range. In particular, the vanadium-based catalyst had a nitrogen dioxide conversion rate of less than 40% at low temperatures below 300°C. The multi-ion exchanged CuFe-ZSM-5 catalyst and CuCo-SSZ-13 catalyst show excellent catalytic activity with high conversion rates of 83.4% and 71.1% at 300°C, respectively. In addition, CuCo-SSZ-13 catalyst was found to have the highest catalytic activity at 250°C.

일산화질소 환원 반응과 달리, 이산화질소 환원 반응에서는 반응물로서 활용되는 암모니아와 이산화질소가 모두 촉매에 흡착하여 반응하는 랭뮤어-힌쉘우드 메커니즘을 따른다. 바나듐 기반 촉매와 이온 교환 제올라이트 촉매 모두 암모니아를 흡착하는 능력은 우수하고, 일산화질소 저감 효율이 모두 우수한 것으로 나타났지만 바나듐 기반 촉매는 이산화질소를 흡착하는 능력이 매우 낮은 반면 이온 교환 제올라이트 촉매는 제올라이트 자체 산점과 이온 교환된 양이온에서 이산화질소를 흡착하는 능력이 매우 뛰어나다. 이온 교환 제올라이트는 이산화질소와 암모니아를 모두 흡착하고 반응에 참여할 수 있기 때문에, 이산화질소 환원 반응에서 높은 활성을 나타낼 수 있다.Unlike the nitrogen monoxide reduction reaction, the nitrogen dioxide reduction reaction follows the Langmuir-Hinshelwood mechanism in which both ammonia and nitrogen dioxide used as reactants are adsorbed to the catalyst and react. Both the vanadium-based catalyst and the ion-exchange zeolite catalyst showed excellent ammonia adsorption and nitrogen monoxide reduction efficiency. However, the vanadium-based catalyst had a very low ability to adsorb nitrogen dioxide, while the ion-exchange zeolite catalyst absorbed the zeolite's own acid sites and The ability to adsorb nitrogen dioxide from ion exchanged cations is very excellent. Because ion exchange zeolites can adsorb both nitrogen dioxide and ammonia and participate in the reaction, they can exhibit high activity in the nitrogen dioxide reduction reaction.

도 3은 CuCo-SSZ-13 촉매의 이산화질소 환원 반응 활성을 나타낸다.Figure 3 shows the nitrogen dioxide reduction reaction activity of the CuCo-SSZ-13 catalyst.

도 3을 참조하면, SSZ-13 제올라이트에 코발트를 조촉매로 담지하면 저온에서 이산화질소 전환율이 증가하는 것으로 나타났다. 코발트의 함량이 0.5wt%에서는 활성 변화가 거의 없었으나 1wt%에서 2wt%로 증가할수록 저온에서의 활성이 증가하였다.Referring to Figure 3, it was shown that the nitrogen dioxide conversion rate increased at low temperature when cobalt was supported on SSZ-13 zeolite as a cocatalyst. When the cobalt content was 0.5 wt%, there was little change in activity, but as the cobalt content increased from 1 wt% to 2 wt%, activity at low temperatures increased.

도 4는 CuCo-ZSM-5 촉매의 이산화질소 환원 반응 활성을 나타내고, 도 5는 CuFe-ZSM-5 촉매의 이산화질소 환원 반응 활성을 나타낸다.Figure 4 shows the nitrogen dioxide reduction reaction activity of the CuCo-ZSM-5 catalyst, and Figure 5 shows the nitrogen dioxide reduction reaction activity of the CuFe-ZSM-5 catalyst.

도 4 및 도 5를 참조하면, ZSM-5 제올라이트에 코발트를 조촉매로 담지하면 저온에서 이산화질소 전환율이 증가하는 것으로 나타났다. 코발트의 함량이 약 1wt%일때 저온에서 가장 높은 활성을 보였다. ZSM-5 제올라이트에 코발트를 조촉매로 담지하면 함량이 2wt%에서 저온에서의 활성이 약간 증가하며, 고온에서의 활성도 증가하는 것는 것으로 나타났다.Referring to Figures 4 and 5, it was shown that the nitrogen dioxide conversion rate increased at low temperatures when cobalt was supported on ZSM-5 zeolite as a cocatalyst. The highest activity was shown at low temperatures when the cobalt content was about 1 wt%. It was found that when cobalt was supported on ZSM-5 zeolite as a cocatalyst, the activity at low temperature increased slightly at a content of 2 wt%, and the activity at high temperature also increased.

도 6은 Cu-ZSM-5/CuCo-SSZ-13 혼합 촉매의 이산화질소 환원 반응 활성을 나타낸다. Figure 6 shows the nitrogen dioxide reduction reaction activity of the Cu-ZSM-5/CuCo-SSZ-13 mixed catalyst.

도 6을 참조하면, Cu-ZSM-5/CuCo-SSZ-13 혼합 촉매는 Cu-ZSM-5 촉매 0.025g과 CuCo-SSZ-13 촉매 0.025g 혼합된 경우 Cu-ZSM-5 촉매를 0.5g 사용할 때만큼의 고온 활성(300℃ 이상)을 나타냈고, CuCo-SSZ-13 촉매를 0.05g 사용할 때보다 우수한 저온 활성(200 ~ 300℃)을 나타냈다.Referring to Figure 6, the Cu-ZSM-5/CuCo-SSZ-13 mixed catalyst uses 0.5 g of Cu-ZSM-5 catalyst when 0.025 g of Cu-ZSM-5 catalyst is mixed with 0.025 g of CuCo-SSZ-13 catalyst. It showed high-temperature activity (above 300°C), and showed better low-temperature activity (200 to 300°C) than when using 0.05 g of CuCo-SSZ-13 catalyst.

이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, we have looked at specific embodiments of the present invention. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

Claims (5)

제올라이트에 금속이온이 교환되어 제조되는 이온 교환 제올라이트를 포함하고,
상기 이온 교환 제올라이트는, 구리이온이 교환된 ZSM-5 제올라이트 및 구리이온과 코발트이온이 교환된 SSZ-13 제올라이트를 포함하는 것을 특징으로 하는 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매.
Including ion exchange zeolite produced by exchanging metal ions with zeolite,
The ion exchange zeolite is an ion exchange zeolite catalyst for treating LNG power plant exhaust gas, characterized in that it includes ZSM-5 zeolite in which copper ions are exchanged and SSZ-13 zeolite in which copper ions and cobalt ions are exchanged.
제올라이트에 금속이온이 교환되어 제조되는 이온 교환 제올라이트를 포함하고,
상기 이온 교환 제올라이트는, 구리이온이 교환된 ZSM-5 제올라이트 및 구리이온과 철이온이 교환된 SSZ-13 제올라이트를 포함하는 것을 특징으로 하는 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매.
It includes ion exchange zeolite, which is manufactured by exchanging metal ions with zeolite,
The ion exchange zeolite is an ion exchange zeolite catalyst for treating LNG power plant exhaust gas, characterized in that it includes ZSM-5 zeolite in which copper ions are exchanged and SSZ-13 zeolite in which copper ions and iron ions are exchanged.
삭제delete 제 1 항에 있어서,
상기 이온 교환 제올라이트는 구리이온이 교환된 상기 ZSM-5 제올라이트와 구리이온과 코발트이온이 교환된 상기 SSZ-13 제올라이트를 혼합한 후 분쇄하여 제조되는 것을 특징으로 하는 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매.
According to claim 1,
The ion exchange zeolite is an ion exchange zeolite for LNG power plant exhaust gas treatment, characterized in that it is manufactured by mixing the ZSM-5 zeolite in which copper ions are exchanged and the SSZ-13 zeolite in which copper ions and cobalt ions are exchanged and then pulverizing. catalyst.
제 2 항에 있어서,
상기 이온 교환 제올라이트는 구리이온이 교환된 상기 ZSM-5 제올라이트와 구리이온과 철이온이 교환된 상기 SSZ-13 제올라이트를 혼합한 후 분쇄하여 제조되는 것을 특징으로 하는 LNG 발전소 배기가스 처리용 이온 교환 제올라이트 촉매.
According to claim 2,
The ion exchange zeolite is an ion exchange zeolite for LNG power plant exhaust gas treatment, characterized in that it is manufactured by mixing the ZSM-5 zeolite in which copper ions are exchanged and the SSZ-13 zeolite in which copper ions and iron ions are exchanged and then pulverizing. catalyst.
KR1020220080971A 2022-06-30 2022-06-30 Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant KR102660953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220080971A KR102660953B1 (en) 2022-06-30 2022-06-30 Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220080971A KR102660953B1 (en) 2022-06-30 2022-06-30 Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant

Publications (2)

Publication Number Publication Date
KR20240003417A KR20240003417A (en) 2024-01-09
KR102660953B1 true KR102660953B1 (en) 2024-04-25

Family

ID=89538608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220080971A KR102660953B1 (en) 2022-06-30 2022-06-30 Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant

Country Status (1)

Country Link
KR (1) KR102660953B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076895A (en) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
JP2021130113A (en) * 2014-06-18 2021-09-09 ビーエーエスエフ コーポレーション Molecular sieve catalyst compositions, catalyst composites, systems, and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076895A (en) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
JP2021130113A (en) * 2014-06-18 2021-09-09 ビーエーエスエフ コーポレーション Molecular sieve catalyst compositions, catalyst composites, systems, and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hwangho Lee 외, Catal. Sci. Technol., 2021.11, 4838~4848 (2021.06.18.)
Yijiao Wang 외, Journal of Environmental Sciences, 81, 2019, 195~204 (2019.01.31.)

Also Published As

Publication number Publication date
KR20240003417A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
Long et al. Catalytic performance of Fe–ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia
Yan et al. Alkali and Phosphorus Resistant Zeolite-like Catalysts for NO x Reduction by NH3
Kögel et al. Simultaneous catalytic removal of NO and N2O using Fe–MFI
KR100962082B1 (en) Catalysts for NOx reduction employing H2 and a method of reducing NOx
KR101286006B1 (en) β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
WO2000072965A1 (en) Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making
KR102183166B1 (en) Iron Ions-Exchanged Titanium Dioxide-Supported Vanadia-Tungsta Catalysts and Method of Removing NOx Using the Catalysts
CN111097442B (en) Flue gas synergistic denitration and demercuration catalyst and preparation method thereof
US9539564B2 (en) Method for producing exhaust gas purification catalyst
CA2141734C (en) Selective catalytic reduction of nitrogen oxides
US4473535A (en) Process for reducing nitric oxides
CZ300579B6 (en) Catalyst for conversion of nitrous oxide, process for preparing such catalyst, process for reducing nitrous oxide content in gas and use of such a catalyst
CN114471682B (en) Catalyst applicable to CVOCs catalytic combustion as well as preparation method and application thereof
Panigrahi et al. Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx)–A critical review
Guo et al. Bifunctional catalyst of CuMn-HZSM-5 for selective catalytic reduction of NO and CO oxidation under oxygen atmosphere
Wang et al. Germanium-based polyoxometalates for the adsorption-decomposition of NOx
KR100937594B1 (en) Zeolite catalysts for the Decomposition of N2O and NOx in exhaust pollution gas and method of decomposition with thereof
CN110215923B (en) Catalyst for reducing nitrogen oxide and nitrogen oxide reduction system using same
KR102660953B1 (en) Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant
KR20090104774A (en) Activated carbon catalyst
KR101036104B1 (en) Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx
JP2006136776A (en) Nox selection reduction catalyst
KR100519461B1 (en) Natural zeolite-supported catalyst, method of manufacturing the same, and method of removal of n2o using the same
Kim et al. Selective reduction of nitric oxide by methane on cobalt-ion-exchanged synthetic clinoptilolite zeolite in oxygen-rich atmosphere
KR101799030B1 (en) Catalyst for reducing simultaneously nitrogen monoxide and nitrous oxide from exhausted gas stream containing moisture and manufacturing method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant