WO2008119358A2 - Polypeptides de streptococcus pneumoniae situés en surface pour une utilisation dans des compositions de vaccin - Google Patents

Polypeptides de streptococcus pneumoniae situés en surface pour une utilisation dans des compositions de vaccin Download PDF

Info

Publication number
WO2008119358A2
WO2008119358A2 PCT/DK2008/050077 DK2008050077W WO2008119358A2 WO 2008119358 A2 WO2008119358 A2 WO 2008119358A2 DK 2008050077 W DK2008050077 W DK 2008050077W WO 2008119358 A2 WO2008119358 A2 WO 2008119358A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
polypeptide
group
polynucleotide
antibody
Prior art date
Application number
PCT/DK2008/050077
Other languages
English (en)
Other versions
WO2008119358A3 (fr
Inventor
Henriette Skovgaard Andersen
Petra Schrotz-King
Ulf Sommer
Original Assignee
Ace Biosciences A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ace Biosciences A/S filed Critical Ace Biosciences A/S
Publication of WO2008119358A2 publication Critical patent/WO2008119358A2/fr
Publication of WO2008119358A3 publication Critical patent/WO2008119358A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention relates to cell-surface-located polypeptides of Streptococcus pneumoniae and their use in immunisation against Streptococcal infection, in diagno- sis of Streptococcus and in identification of compounds with anti-Streptococcus activity.
  • the invention further relates to compositions comprising a mixture of different antibodies capable of binding the polypeptides of the SEQ I D NOs. as set out in table 5 herein below.
  • Streptococcus pneumoniae is a Gram-positive encapsulated coccus. Based on differences in the composition of the polysaccharide capsule, about 90 serotypes are identified. This capsule is an essential virulence factor. The majority of pneumococcal disease in infants is associated with a small number of these serotypes, which may vary by region. Current data suggest that the 1 1 most common serotypes cause at least 75% of invasive dis- ease in all regions.
  • Streptococcus pneumoniae is a human pathogen. The reservoir for pneumococci is presumably the nasopharynx of asymptomatic human carriers. There is no animal or insect vector. Streptococcus pneumoniae is the most common cause of bacteraemia, pneumonia, meningitis and otitis media in young children. Pneumococcal disease is a very serious illness in young children. In the United States it is estimated that Streptococcus pneumoniae cause 200 deaths, 700 cases of meningitis, 17,000 cases of bacteraemia, 4.9 million cases of otitis media (ear infections) annually in children under 5 years of age.
  • pneumococcal pneumonia is the most common community-acquired bacterial pneumonia, estimated to affect approximately 100 per 100 000 adults each year.
  • the corresponding figures for febrile bacteraemia and meningitis are 15-19 per 100,000 and 1 -2 per 100,000, respectively. The risk for one or more of these manifestations is much higher in infants and elderly people.
  • Meningitis is the most severe type of pneumococcal disease. Of children under 5 years with pneumococcal meningitis, about 5% will die of their infection and others may have long-term problems such as hearing loss. Many children with pneumococcal pneumonia or blood stream infections will be ill enough to be hospitalized; about 1 % of children with blood stream infections or pneumonia with a blood stream infection will die of their illness. Nearly all children with ear infections recover, although children with recurrent infections can suffer hearing loss.
  • Table.1 The major disease indications and the number of hospitalised patients as well as case fatality rates in children and the elderly, which occur per annum in the US:
  • Pneumococcal pneumonia is the most common clinical presentation of pneumococcal disease among adults.
  • the incubation period of pneumococcal pneumonia is short, about 1 to 3 days.
  • Symptoms generally include an abrupt onset of fever and chills or rigors. Typically there is a single rigor, and repeated shaking chills are uncommon.
  • Other common symptoms include pleuritic chest pain, cough productive of mucopurulent, rusty sputum, dyspnea (shortness of breath), tachypnea (rapid breathing), hypoxia (poor oxygenation), tachycardia (rapid heart rate), malaise, and weakness.
  • Prevnar ® (Wyeth), a 7-valent pneumococcal conjugate vaccine, containing polysaccharides of serotype 4, 6B, 9V, 14, 18C, 19F and 23F.
  • Pneumovax ® Merck Research Laboratories
  • 23-valent polysaccharide vaccine containing 23 purified capsular polysaccharide antigens (serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 1 OA, 1 1A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F).
  • Streptococcus pneumoniae polypeptides that can function as targets, i.e. targets for the immune system and/or for antibodies, targets for cytotoxic inhibitors, or targets for indicator moieties in diagnosis.
  • a 'surface-located' polypeptide is defined as a polypeptide which is at least partially (i.e. part of the polypeptide chain and/or part of the population of polypeptide molecules) localised outside the membrane of a Streptococcus pneumoniae cell.
  • a surface-located polypeptide is a polypeptide which is fully or partially exposed to the space outside the membrane.
  • Surface-located polypeptides furthermore include all polypeptides or polypeptide fragments that can be identified in fractions obtained by high-pH surface-protein extraction or mutanolysin digestion as described herein.
  • polypeptides are attractive targets for antibacterial therapy and/or diagnosis of bacterial infection, since the exposure of such polypeptides to the extracellular space means that compounds that interact with these polypeptides (e.g. compounds used to prevent, treat or diagnose bacterial infections) often do not need to enter or pass the membrane to be effective.
  • the inventors have identified 91 different polypeptides in cell-surface frac- tions of Streptococcus pneumoniae.
  • the method that was employed identifies polypeptides that are expressed at a relatively high level.
  • the combination of being surface-exposed and being present in relatively high amounts makes these polypeptides highly suitable as targets for antibodies and thus for use in passive or active immunisation/vaccination.
  • the invention relates to a composition
  • a composition comprising a polypeptide which comprises a sequence selected from the group consisting of surface-located Streptococcus polypeptides of SEQ I D NO: 1 -91 , or comprises an antigenic fragment or variant of said sequence, or a polynucleotide comprising a sequence encoding said polypeptide, or an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, or an antibody capable of binding said polypeptide, for use as a medicament.
  • said composition comprises a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, or a polynucleotide comprising a sequence encoding said polypeptide, or an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • said composition comprises - a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:
  • SEQ ID NO:6 SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10, or comprises an antigenic fragment or variant of said sequence, or - a polynucleotide comprising a sequence encoding said polypeptide, or an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • said composition comprises a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17 and SEQ ID NO:18, or comprises an antigenic fragment or variant of said sequence, or a polynucleotide comprising a sequence encoding said polypeptide, or an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • said composition comprises a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14,
  • SEQ ID NO:15 SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50,
  • SEQ ID NO:51 and SEQ ID NO:52 or comprises an antigenic fragment or variant of said sequence, or a polynucleotide comprising a sequence encoding said polypeptide, or an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • composition comprises a polypeptide which comprises a sequence selected from the group consisting of
  • said composition comprises an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3 and SEQ I D NO:4.
  • said composition comprises an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7,
  • said composition comprises an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16,
  • said composition comprises an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16,
  • said composition comprises an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13, preferably SEQ ID NO:12.
  • the invention relates to the use of a composition
  • a composition comprising a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against bacteria, preferably Streptococcus, more preferably Streptococcus pneumoniae, infections.
  • Preferred sequences are SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4.
  • SEQ I D NO:1 SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10 .
  • Still further preferred sequences are SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • SEQ ID NO:1 SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ I D NO:49, SEQ ID NO:50, SEQ I D NO:51 and SEQ ID NO:52.
  • SEQ ID NO:1 1 SEQ ID NO:12 and SEQ I D NO:13, most preferably SEQ I D NO:12.
  • the invention relates to an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 -91 .
  • the invention relates, in another main aspect, to the use of an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 - 91 for the manufacture of a medicament for the treatment or prevention of Streptococcus, preferably Streptococcus pneumoniae, infections in an animal or human being.
  • antibodies capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4 is preferred in one embodiment.
  • the use of antibodies capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10 is preferred in another embodiment.
  • antibodies capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ I D NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17 and SEQ ID NO:18 is preferred in a still further embodiment.
  • antibodies capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13 is preferred.
  • SEQ ID NO:12 is most preferred in this respect.
  • the composition of the invention comprises a mixture of antibodies capable of binding the polypeptides of the SEQ ID NOs. as specified in table 5 herein below.
  • the composition may comprise a mixture of antibodies capable of binding at least two, such as exactly two, for example at least three, such as exactly three different polypeptide sequences as specified in Table 5.
  • the composition is a composition selected from the group consisting of the compositions no. 1 -35990 as set out in table 5 herein below.
  • the composition according to the invention may optionally comprise more than one, such as for example 2, 3, 4, or 5, of the compositions no. 1 -35990 as set out in table 5 herein below.
  • compositions no. 1 -35990 as set out in table 5 herein above are provided.
  • the composition of the invention comprises a composition selected from the group consisting of the compositions no. 1 -35990 as set out in table 5 herein above, wherein said composition comprises antibodies capable of binding the polypeptides of the SEQ ID NOs. as specified in table 5 herein above or an antigenic fragment or variant of said sequences.
  • the composition may be a mixture of antibodies, wherein each antibody is capable of binding a polypeptide as indicated in table 5 or an antigenic fragment or variant of said sequences.
  • the invention relates to methods for detecting Streptococcus pneumoniae or parts thereof, using indicator moieties capable of recognising the cell-surface located polypeptides described herein.
  • the surface-localisation of the polypeptides makes them suitable as targets for inhibitors.
  • Such inhibitors may be bactericidal or bacteriostatic or prevent interaction of Streptococcus pneumoniae with the host organism (virulence).
  • the invention relates to methods for identifying inhibitors of the cell-surface located polypeptides described herein.
  • Vaccine - is used to indicate a composition capable of inducing a protective im- mune response against a microorganism in a human being or animal.
  • Protective immune response - is used to indicate an immune response (humoral/antibody and/or cellular) inducing memory in an organism, resulting in the infectious agent, herein Streptococcus pneumoniae, being met by a secondary rather than a primary response, thus reducing its impact on the host organism.
  • Polypeptide - unless specified otherwise, the term 'polypeptide' when used herein can also refer to a variant or fragment of a polypeptide.
  • Preferred polypeptides are antigenic polypeptides.
  • Fragment - is used to indicate a non-full length part of a polypeptide.
  • a fragment is itself also a polypeptide.
  • Variant - a 'variant' of a given reference polypeptide refers to a polypeptide that displays a certain degree of sequence identity to said reference polypeptide, but is not identical to said reference polypeptide.
  • Immunogenic carrier - refers to a compound which directly or indirectly assists or strengthens an immune response.
  • Expression vector - refers to a, preferably recombinant, plasmid or phage or virus to be used in production of a polypeptide from a polynucleotide sequence.
  • An ex- pression vector comprises an expression construct, comprising an assembly of (1 ) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and which is operably linked to the elements of (1 ); and (3) appropriate transcription initiation and termination se- quences.
  • Binding partner - of a polypeptide refers to a molecule that can bind to said polypeptide. Such binding can be indirect, through another molecule, but is preferably direct.
  • a binding partner can be any type of molecule, such as e.g. small hydrophobic molecules or e.g. a cellular or extracellular macromolecule, such as a pro- tein, a carbohydrate or a nucleic acid.
  • Preferred types of binding partners include antibodies, ligands or inhibitors.
  • Indicator moiety covers a molecule or a complex of molecules that is capable of specifically binding a given polypeptide and/or cell, and is capable of generating a detectable signal.
  • the indicator moiety is an antibody or comprises an antibody molecule.
  • a preferred indicator moiety is an antibody coupled to or in complex with a detectable substance.
  • Host-derived molecule or host molecule - refers to a molecule which is normally found in a host organism that can be infected with Streptococcus pneumoniae.
  • a host-derived molecule is preferably a host polypeptide, preferably a human polypeptide.
  • Antibody - the term 'antibodies' when used herein is intended to cover antibodies as well as functional equivalents thereof.
  • this includes polyclonal antibodies, monoclonal antibodies (mAbs), humanised, human or chimeric antibodies, single- chain antibodies, and also binding fragments of antibodies, such as, but not limited to, Fab fragments, F(ab') 2 fragments, fragments produced by a Fab expression library, anti-idiotypic antibodies, hybrids comprising antibody fragments, and epitope-binding fragments of any of the these.
  • the term also includes multivalent, multispecific, such as bispecific antibodies and mixtures of monoclonal antibodies.
  • Kd Dissociation constant
  • Isolated - used in connection with polypeptides, polynucleotides and antibodies disclosed herein 'isolated' refers to these having been identified and separated and/or recovered from a component of their natural, typically cellular, environment. Contaminant components of the natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non- proteinaceous solutes.
  • Polypeptides, polynucleotides and antibodies of the invention are preferably isolated, and vaccines and other compositions of the invention preferably comprise isolated polypeptides or isolated polynucleotides or isolated antibodies.
  • Figure 1 is a sequence listing of amino acid sequences of surface-located Streptococcus pneumoniae polypeptides pertaining to the present invention.
  • compositions for use as a medicament for use as a medicament
  • the invention in a first main aspect, relates to a composition
  • a composition comprising a polypeptide which comprises a sequence selected from the group consisting of surface-located Streptococcus pneumoniae polypeptides of SEQ I D NO:1 - 91 , or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, or an antibody capable of binding said polypeptide, for use as a medicament.
  • the composition comprises a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • Said composition can be used as a vaccine for active immunisation of an individual in need thereof. This is described in the section 'vaccine compositions and methods of vaccination of the invention'.
  • the composition comprises a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 or comprises antigenic fragment or variant of said sequence.
  • composition comprises an antibody capable of binding a polypeptide selected from the group consisting of surface-located
  • Streptococcus pneumoniae polypeptides of SEQ ID NO:1 -91 can e.g. be used in passive immunisation of an individual in need thereof. This is described in the section 'antibodies and methods for raising antibodies of the invention'.
  • Vaccine compositions and methods of vaccination of the invention The goal of vaccination or active immunisation is to provide protective immunity by inducing a memory response to an infectious microorganism using an antigenic or immunogenic composition.
  • a vaccine is a composition capable of inducing a protective immune response against a microorganism in a human being or animal.
  • Such an immune response can be a cellular response and/or a humoral response, e.g. a specific T cell response or an antibody response.
  • the composition is a vaccine composition.
  • the invention relates to the use of a composition comprising a polypeptide which comprises a sequence selected from the group consisting of surface-located Streptococcus pneumoniae polypeptides of SEQ I D NO:1 - 91 , or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, as a vaccine.
  • the variant herein preferably has at least 90% sequence identity, for example at least 95% sequence identity, such as at least 96%, e.g. at least 97%, such as at least 98%, e.g. at least 99% sequence identity to said sequence.
  • the polypeptide comprises SEQ ID NO:1 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:2, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:3, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:4, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:5, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:6, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:7, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:8, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:9, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:10, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:11 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:12, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:13, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:14, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:15, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:16, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:17, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:18, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:19, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:20, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:21 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:22, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:23, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:24, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:25, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:26, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:27, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:28, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:29, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:30, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:31 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:32, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:33, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:34, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:35, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:36, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:37, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:38, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:39, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:40, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:41 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:42, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:43, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:44, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:45, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:46, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:47, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:48, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:49, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:50, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:51 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:52, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:53, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:54, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:55, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:56, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:57, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:58, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:59, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:60, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:61 , or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:62, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:63, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:64, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:65, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:66, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:67, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:68, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:69, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:70, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:71 , or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:72, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:73, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:74, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:75, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:76, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:77, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:78, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:79, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:80, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:81 , or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:82, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:83, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:84, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:85, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:86, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:87, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:88, or an antigenic fragment or variant thereof. In another preferred embodiment of the above composition, the polypeptide comprises SEQ ID NO:89, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:90, or an antigenic fragment or variant thereof.
  • the polypeptide comprises SEQ ID NO:91 , or an antigenic fragment or variant thereof.
  • a composition comprising one or more of the polypeptides of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8; SEQ ID NO:9 and SEQ ID NO:10, or an antigenic fragment or variant thereof for use as a medicament is at present the most preferred embodiment.
  • composition comprising one or more of the polypeptides of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16,
  • SEQ ID NO:17 and SEQ ID NO:18, or an antigenic fragment or variant thereof for use as a medicament is also a preferred embodiment.
  • composition comprising one or more of the polypeptides of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16,
  • SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ I D NO:52 or an antigenic fragment or variant thereof for use as a medicament is also a preferred embodiment.
  • a composition comprising one or more of the polypeptides of SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12, or an antigenic fragment or variant thereof for use as a medicament is also a preferred embodiment.
  • the polypeptide consists of a sequence selected from the group of SEQ ID NO:1 -91 .
  • the polypeptide comprises a sequence selected from the group of SEQ ID NO:1 -91 or an antigenic fragment or variant of said sequence, as well as a tag, such as a his-tag, i.e. a polyhistidine tag.
  • the polypeptide in the composition of the invention may be combined with or fused to a toxin, e.g. an enterotoxigenic Escherichia coli Stable or Labile toxin.
  • a toxin e.g. an enterotoxigenic Escherichia coli Stable or Labile toxin.
  • STII heat stable toxin Il
  • the combination comprises the polypeptide of the invention and a non-covalently linked toxin, wherein the toxin may be a single toxin polypeptide, or a multimeric, e.g. dimeric, form comprising multiple copies of the toxin.
  • the polypeptide of the invention and the toxin are covalently linked, e.g. by post-translational linkage or transcription and translation from a single fused open reading frame.
  • the two constituents may be linked directly or via a spacer or linker domain, which e.g. may be a peptide linker, preferably a protease- resistant and/or non-immunogenic peptide linker.
  • Such peptide linker may be of any length, e.g. it may be between 2 and 200, such as between 5 and 50 amino acids in length. Multiple copies of the toxin may be fused to the polypeptide of the invention.
  • a composition comprising a polypeptide of the invention, e.g. the polypeptide of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4; , as well as an enterotoxigenic Escherichia coli may be used to manufacture a vaccine for prevention of infec- tion with Streptococcus pneumoniae and/or enterotoxigenic Escherichia.
  • the polypeptide is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8; SEQ ID NO:9, or SEQ ID NO:10, as well as an enterotoxigenic Es- cherichia coli may be used to manufacture a vaccine for prevention of infection with Streptococcus pneumoniae and/or enterotoxigenic Escherichia.
  • the polypeptide is selected from the group consisting of f SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ I D NO:15, SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ I D NO:15, SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ I D NO:15, SEQ ID
  • enterotoxigenic Escherichia coli may also be used to manufacture a vaccine for prevention of infection with Streptococcus pneumoniae and/or enterotoxigenic Escherichia.
  • the polypeptide is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ I D NO:4, SEQ I D NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ I D NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ I D NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, as well as an enterotoxigenic Escherichia coli may be used to manufacture a vaccine for prevention of infection with Streptococcus pneumoniae and/or enterotoxigenic Escherichia.
  • the polypeptide is selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12, as well as an enterotoxigenic Escherichia coli may be used to manufacture a vaccine for prevention of infection with Streptococcus pneumoniae and/or enterotoxigenic Escherichia.
  • the composition of the invention may comprise dimers of any of the polypeptides of SEQ ID NO:1 -91 , such as dimers of any of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3 and SEQ ID NO:4.
  • Dimers may e.g. be formed by post- translational linkage or be generated from a single fused open reading frame.
  • the two monomer units of the dimer may be linked directly or via a spacer or linker domain, which e.g. may be a peptide linker, preferably a protease-resistant and/or non-immunogenic peptide linker.
  • a peptide linker may be of any length, e.g. it may be between 2 and 200, such as between 5 and 50 amino acids in length.
  • composition of the invention may comprise dimers of any of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ
  • composition of the invention may comprise dimers of any of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ I D NO:17 and SEQ ID NO:18.
  • composition of the invention may comprise dimers of any of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D
  • composition of the invention may comprise dimers of any of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13.
  • composition may only comprise one polypeptide selected from the group of SEQ ID NO:1 -91 or a antigenic fragment or variant thereof. However, in other embodiments, the composition comprises more than one polypeptide of the group of SEQ ID NO:1 -91 and/or more than one antigenic fragment of a polypeptide selected from the group of SEQ ID NO:1 -91 .
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as 10, such as a number of polypeptides and/or fragments in the range of from 5 to 10, or more than 10, such as for example in the range of from 10 to 20, different polypeptides selected from the group of SEQ ID NO:1 -91 or antigenic fragments or variants thereof.
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as all of the below cited polypeptides and/or fragments thereof in the range of from 2 to 5, or from 5 to 10 fragments, wherein said polypeptides are selected from the group of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4.
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as all of the below cited polypeptides and/or fragments thereof in the range of from 2 to 5, or from 5 to 10 fragments, wherein said polypeptides are selected from the group of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8; SEQ I D NO:9 and SEQ ID NO:10.
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as all of the below cited polypeptides and/or fragments thereof in the range of from 2 to 5, or from 5 to 10 fragments, wherein said polypeptides are selected from the group of S SEQ I D NO:1 , SEQ I D NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • polypeptides are selected from the group of S SEQ I D NO:1 , SEQ I D NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as all of the below cited polypeptides and/or fragments thereof in the range of from 2 to 5, or from 5 to 10 fragments, wherein said polypeptides are selected from the group of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ I D NO:50, SEQ ID NO:51 and SEQ ID NO:52
  • composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as all of the below cited polypeptides and/or fragments thereof in the range of from 2 to 5, or from 5 to 10 fragments, wherein said polypeptides are selected from the group of SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13.
  • the composition may only comprise one polynucleotide, one expression vector or one recombinant virus or recombinant cell of the invention.
  • the composition comprises more than one polynucleotide, one expression vector or one recombinant virus or recombinant cell of the invention.
  • the composition according to the invention may comprise more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as 10, or more than 10, such as for example in the range of from 10 to 20, different polynucleotides, expression vectors or recombinant viruses or recombinant cells of the invention as described herein.
  • a recombinant cell of the invention may express more than one polypeptide of the group of SEQ ID NO:1 -91 and/or more than one antigenic fragment or variant of a polypeptide selected from the group of SEQ ID NO:1 -91 .
  • composition according to the invention may comprise a recombinant cell comprising more than one, such as 2, for example 3, such as 4, for example 5, such as 6, for example 7, such as 8, for example 9, such as 10, such as a number of polypeptides and/or antigenic fragments or variants in the range of from 5 to 10, or more than 10, such as for example in the range of from 10 to 20, different polypeptides selected from the group of SEQ ID NO:1 -91 or antigenic fragments or variants thereof.
  • the composition for use in the invention comprises multiple of the recombinant viruses or recombinant cells described herein.
  • composition comprising: - the polypeptide of any of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3 and SEQ ID NO:4, or an antigenic fragment or variant thereof, and/or
  • the polypeptides are not covalently linked.
  • the polypeptides may form a fusion polypeptide, which is formed by post-translational linkage or generated from a single fused open reading frame.
  • the two or more polypeptides may be linked directly or via a spacer or linker domain, which e.g. may be a peptide linker, preferably a protease-resistant and/or non-immunogenic peptide linker.
  • a peptide linker may be of any length, e.g. it may be between 2 and 200, such as between 5 and 50 amino acids in length.
  • Vaccines comprising polypeptides
  • the invention relates to a composition
  • a composition comprising a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , or an antigenic fragment or variant of said sequence, for use as a vaccine.
  • Preferred fragments and variants are those described in the sections herein that relate to fragments and variants.
  • the antigenicity or immunogenicity is provided by direct administration of a polypeptide normally located on the surface of a Streptococ- cus pneumoniae cell.
  • the polypeptides are selected so that the vaccine composition comprises multiple polypeptides capable of associating with different MHC molecules, such as different MHC class I molecules.
  • the composition for use as a vaccine comprises polypeptides and/or fragments capable of associating with the most frequently occurring MHC class I molecules.
  • the composition comprises one or more poly- peptides and/or fragments capable of associating to an MHC class I molecule and one or more polypeptides and/or fragments capable of associating with an MHC class Il molecule.
  • the vaccine composition is in some embodiments capable of raising a specific cytotoxic T-cells response and/or a specific helper T-cell response.
  • As- sociation to MHC molecules can e.g. be determined as described by Andersen et al. (1999) Tissue Antigens 54:185; or by Tan et al. (1997) J. Immunol. Methods 209:25.
  • the composition for use as vaccine i.e. the vaccine composition
  • the composition for use as vaccine comprises a pharmaceutically-acceptable carrier as described herein in the section 'Compositions for use in the invention'.
  • the composition can further comprise an adjuvant.
  • adjuvants are substances whose admixture into the vaccine composition increases or otherwise modifies the immune response to a polypeptide or other antigen.
  • Adjuvants could for ex- ample be any of: AIK(SO 4 ) 2 , AINa(SO 4 ) 2 , AINH 4 (SO 4 ), silica, alum, AI(OH) 3 , Ca 3
  • lipid A lipid A
  • FCA Freund's Complete Adjuvant
  • FCA Freund 's Incomplete Adjuvants
  • Merck Adjuvant 65 polynucleotides (for example, poly IC and poly AU acids), polynucleotides containing phosphorothioate bonds (such as CpG 7909, aka Vaxlmmune ® ), wax D from Mycobacterium, tuberculosis, substances found in Corynebacterium par- vum, Bordetella pertussis, and members of the genus Brucella, liposomes or other lipid emulsions, Titermax, ISCOMS, Quil A, ALUN (see US 58767 and 5,554,372), Lipid A derivatives, choleratoxin derivatives, HSP derivatives, LPS derivatives, synthetic peptide matrixes or GMDP, lnterleukin 1 , lnterleukin 2,
  • Preferred adjuvants to be used with the invention include alum, Montanide ISA-51 and QS-21 .
  • Montanide ISA-51 (Seppic, Inc.) is a mineral oil-based adjuvant analogous to incomplete Freund's adjuvant, which is normally administered as an emulsion.
  • QS-21 Antigenics; Aquila Biopharmaceuticals, Framingham, MA
  • IMSAVAC-L from the Netherlands Vaccine Institute.
  • the polypeptide or polypeptides are included in virosomes.
  • a vaccine composition according to the present invention may comprise more than one different adjuvant. It is also contemplated that the Streptococcus pneumoniae polypeptide of the invention, or one or more antigenic fragments thereof, and the adjuvant can be administered separately in any appropriate sequence.
  • the adjuvant of choice may e.g. Freund's complete or incomplete adjuvant, or killed B. pertussis organisms, used e.g. in combination with alum precipitated anti- gen.
  • adjuvants A general discussion of adjuvants is provided in Goding, Monoclonal Antibodies: Principles & Practice (2nd edition, 1986) at pages 61 -63. Goding notes, however, that when the antigen of interest is of low molecular weight, or is poorly immunogenic, coupling to an immunogenic carrier is recommended (see below).
  • Various saponin extracts and cytokines have also been suggested to be useful as adjuvants in immu- nogenic compositions. Recently, it has been proposed to use granulocyte- macrophage colony stimulating factor (GM-CSF), a well known cytokine, as an adjuvant (WO 97/28816).
  • GM-CSF granulocyte- macrophage colony stimulating factor
  • a vaccine composition of the invention can comprise an immunogenic carrier such as a scaffold structure, for example a protein or a polysaccharide, to which the Streptococcus pneumoniae polypeptide or the fragment thereof is capable of being associated.
  • an immunogenic carrier such as e.g. a protein.
  • the binding or association of the polypeptide to a carrier protein may be covalent or non-covalent.
  • An immunogenic carrier protein may be present independently of an adjuvant.
  • a carrier protein can for example be to increase the molecular weight of in particular fragments in order to increase their activity or immunogenicity, to confer stability, to increase the biological activity, or to increase serum half-life.
  • an immunogenic carrier protein may aid presenting the Streptococcus pneumoniae polypeptide or the fragments thereof to T cells.
  • a carrier protein could be, but is not limited to, keyhole limpet hemocyanin, serum proteins such as transferrin, bovine serum albumin, human se- rum albumin, thyroglobulin or ovalbumin, immunoglobulins, or hormones, such as insulin. Tetanus toxoid and/or diptheria toxoid are also suitable carriers in one embodiment of the invention.
  • dextrans for example sepha- rose
  • dextrans for example sepha- rose
  • an antigen-presenting cell such as e.g. a dendritic cell capable of presenting the polypeptide or a fragment thereof to a T cell may be added to obtain the same effect as a carrier protein.
  • the vaccine composition of the invention may comprise Streptococcus pneumoniae carbohydrates in addition to a polypeptide of the invention.
  • the added carbohydrates are carbohydrates derived from or characteristic of one or more serotypes of Streptococcus pneumoniae.
  • the polypeptide of the invention is combined with polysaccharides derived from or characteristic of any one or more of the serotypes given in Table 4.
  • the polypeptide is combined with one or more, preferably two, three, four, five, six or seven polysaccharides derived from or characteristic of serotype 4, 6B, 9V, 14, 18C, 19F and 23F.
  • the polypeptide is combined with eight or more, preferably ten or more, 15 or more, or 20 or more of the polysaccharide antigens of serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 10A, 1 1 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F.
  • These carbohydrates may added in free form to the vaccine composition of the invention, or, alternatively, they may be fused to a polypeptide of the invention to be used in the vaccine composition.
  • An effective amount of a polypeptide of the invention may be an amount capable of eliciting a detectable humoral immune response in the absence of an immunomodula- tor.
  • the appropriate amount of immunogen to be used is dependent on the immunological response it is desired to elicit. Furthermore, the exact effective amount necessary may vary from subject to subject, depending on the species, age and general condition of the subject, the severity of the condition being treated, the mode of ad- ministration, etc.
  • the polypeptide vaccines of the present invention may be administered in various dosages, including dosages that are lower than those normally used for other vaccines. This possible because the polypeptides of the present invention are abundant on the surface of a Streptococcus pneumoniae cell and thus even a fairly low level of response can provide immunity.
  • dosage of a polypeptide of the invention when used for immunisation, may e.g. be from 0.1 to 500 micrograms per kilogram body weight, such as from 0.1 to 100 micrograms, e.g. from 0.1 to 50 micrograms, such as from 0.1 to 25 micrograms, such as in the range of from 8 to 25 micrograms per kilogram body weight, or less than that, such as from 0.1 to 5 micrograms or from 0.1 to 2 micrograms per kilograms body weight.
  • DNA vaccine compositions and vaccine compositions comprising recombinant viruses or recombinant cells
  • DNA or RNA vaccines pertain to the introduction of e.g. an antigenic polypeptide determinant into a patient by overexpressing in the cells of the patient, a polynucleotide construct which includes expression control sequences operably linked to a sequence encoding the polypeptide of interest, herein a polypeptide of any of SEQ ID NO:1 -91 or an antigenic fragment or variant thereof, preferably the polypeptide of SEQ I D NO:16 or an antigenic fragment or variant thereof.
  • fragments may not contain a methionine start codon, such a codon is optionally included as part of the expres- sion control sequences.
  • the polynucleotide construct may be a non-replicating and linear polynucleotide, a circular expression vector, or an autonomously replicating plasmid or viral expression vector.
  • the construct may become integrated into the host genome.
  • Any expression vector that can transfect a mammalian cell may be used in the methods of immunising an individual according to the present invention. Methods for constructing expression vectors are well known in the art (see, e.g., Molecular
  • compositions comprising a plurality of genes expressing multiple polypeptides selected from SEQ ID NO:1 -91 and/or multiple antigenic fragments of the invention, thereby permitting simultaneous vaccination using a variety of preselected targets.
  • Vaccines can also be prepared by incorporating a polynucleotide encoding a specific antigenic polypeptide of interest into a living but harmless vector, such as a virus or a cell, such as an attenuated or reduced-virulence E. coli or Salmonella cell.
  • the harmless recombinant virus or recombinant cell is injected into the intended re- cipient.
  • a recombinant cell may be dead or alive. If alive, the recombinant organism may replicate in the host while producing and presenting the antigenic polypeptide to the host's immune system. It is contemplated that this type of vaccine may be more effective than the non-replicative type of vaccine.
  • the vector organism must be viable, and either be naturally non-virulent or have an attenuated or reduced-virulence phenotype.
  • vectors comprising e.g., retroviruses, as disclosed in WO 90/07936, WO 91/02805, WO 93/25234, WO 93/25698, and WO 94/03622, adenovirus, as disclosed by Berkner, Biotechniques 6:616-627, 1988; Li et al. Hum. Gene Ther. 4:403-409, 1993; Vincent et al, Nat. Genet. 5:130-134, 1993; and KoIIs et al, Proc. Natl. Acad. Sci. USA 91 :215-219, 1994), pox virus, as disclosed by U.S. 4,769,330; U.S. Pat. No. 5,017,487; and WO
  • the DNA may be linked to killed or inacti- vated adenovirus as disclosed by Curiel et al. Hum. Gene Ther. 3:147-154, 1992;
  • Vaccine vectors preferably comprise a suitable promoter which is operably linked to the polynucleotide sequence encoding the immunogenic polypeptide.
  • Any promoter that can direct a high level of transcription initiation in the target cells may be used in the invention.
  • Non-tissue specific promoters such as the cytomegalovirus (DeBernardi et al., Proc Natl Acad Sci USA 88:9257-9261 [1991 ], and references therein), mouse metallothionine I (Hammer et al., J MoI Appl Gen 1 :273-288 [1982]), HSV thymidine kinase (McKnight, Cell 31 :355-365 [1982]), and SV40 early (Benoist et al., Nature 290:304-310 [1981]) promoters may thus also be used.
  • the present invention relates to the use of a composition comprising any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO: 1 -91 , or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against bacterial infections.
  • the immunisation preferably induces a protective immune response.
  • the medicament is only given once.
  • the medicament is for the immunisation against
  • the medicament is for immunisation against Streptococcus pneumoniae.
  • Immunisation with a Streptococcus pneumoniae polypeptide can, however, also give cross-protection to other bacterial species. This normally requires significant homology to at least a portion of a polypeptide of the other species.
  • the polypeptide used for the preparation of the medicament is a variant of any of SEQ ID NO:1 -91 , preferably a variant of SEQ ID NO:1 and/or a variant of SEQ ID NO:2 and/or a variant of SEQ ID NO:3 and/or a variant of SEQ ID NO:4.
  • polypeptide used for the preparation of the above medicament is a variant of a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10.
  • polypeptide used for the preparation of the above medicament is a variant of a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • a medicament comprising SEQ ID NO:1 and/or any of these, is used to immunise against Streptococcus pyogenes and/or Streptococcus pneumoniae and/or other bacteria.
  • a medicament comprising one of the polypeptides selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:
  • SEQ ID NO:10 or a fragment or a variant of any of these, is used to immunise against
  • Streptococcus pyogenes and/or Streptococcus pneumoniae and/or other bacteria are examples of Streptococcus pyogenes and/or Streptococcus pneumoniae and/or other bacteria.
  • a medicament comprising one of the polypeptides selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:
  • a medicament comprising one of the polypeptides selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ I D NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID
  • SEQ ID NO:49, SEQ ID NO:50, SEQ I D NO:51 and SEQ ID NO:52 or a fragment or a variant of any of these, is used to immunise against Streptococcus pyogenes and/or Streptococcus pneumoniae and/or other bacteria.
  • a medicament comprising one of the polypeptides selected from the group consisting of SEQ I D NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12, or a fragment or a variant of any of these, is used to immunise against Streptococcus pyogenes and/or Streptococcus pneumoniae and/or other bacteria.
  • the composition herein comprises or further comprises a polypeptide which comprises SEQ I D NO:1 , or comprises an antigenic fragment or variant of SEQ ID NO:1 , - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • the composition herein comprises or further comprises a polypeptide which comprises SEQ I D NO:2, or comprises an antigenic fragment or variant of SEQ ID NO:2, a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • the composition herein comprises or further comprises a polypeptide which comprises SEQ I D NO:3, or comprises an antigenic fragment or variant of SEQ ID NO:3, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • the composition herein comprises or further comprises - a polypeptide which comprises SEQ I D NO:4, or comprises an antigenic fragment or variant of SEQ ID NO:4, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • the invention relates to a method for the immunisation of an animal or human being against a Streptococcus pneumoniae infections comprising the step of administering any one or more of - a polypeptide which comprises any of the sequences of SEQ ID NO:1 -91 , or comprises a fragment or variant of any of said sequences, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, thereby immunising said animal or human being against Streptococcus pneumoniae infections.
  • said polypeptide which comprises any of the sequences of SEQ ID NO:1 -91 , comprises preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4, or comprises a fragment or variant of any of said sequences, polynucleotide comprising a sequence encoding said polypeptide, expression vector comprising a sequence encoding said polypeptide, or recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, is only given once, thereby immunising said animal or human being against
  • Streptococcus pneumoniae infections through a single administration.
  • said polypeptide which comprises any of the sequences of SEQ ID NO:1 -91 , comprises preferably SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO: 10, or comprises a fragment or variant of any of said sequences, polynucleotide comprising a sequence encoding said polypeptide, expression vector comprising a sequence encoding said polypeptide, or recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, is only given once, thereby immunising said animal or human being against
  • Streptococcus pneumoniae infections through a single administration.
  • said polypeptide which comprises any of the sequences of SEQ ID NO:1 -91 , comprises preferably SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:
  • polynucleotide comprising a sequence encoding said polypeptide
  • expression vector comprising a sequence encoding said polypeptide, or - recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, is only given once, thereby immunising said animal or human being against
  • Streptococcus pneumoniae infections through a single administration.
  • said polypeptide which comprises any of the sequences of SEQ ID NO:1 -91 , comprises preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ I D NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ I D NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, or comprises a fragment or variant of any of said sequences, polynucleotide comprising a sequence encoding said polypeptide, expression vector comprising a sequence encoding said polypeptide, or - recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, is only given once, thereby immunising said animal or human
  • the animal may be any bird or mammal, e.g. a chicken, duck, turkey, cow or pig.
  • Particular target populations of human beings may be individuals from at-risk populations, such as the population of children up to 4 years old, the population of elderly persons or the population of naive or semi-immune travellers to the developing world.
  • the polypeptides of the present invention are immunogenic and because they are abundant on the Streptococcus pneumoniae cell, a protective immune response can be induced even patients with a reduced ability to respond to antigenic stimuli, such as juveniles, elderly patients or immunocompromised patients.
  • the vaccines of the invention can also be used to prevent otitis media, to prevent nasopharyngal carriage of Streptococcus pneumoniae, to prevent sepsis caused by Streptococcus pneumoniae, or to prevent meningitis caused by Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 or SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is a child of less than 4 yours of age, such as less than 2 years of age, e.g. less than 1 year of age, and/or a child having maternal immunity (i.e. having maternal antibodies in circulation).
  • a polypeptide which comprises a
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence preferably selected from the group consisting of SEQ I D NO:1 , SEQ I D NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ I D NO:8, SEQ I D NO:9 and SEQ ID NO:10 or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is a child of less than 4 yours of age, such as less than 2 years of age, e.g. less than 1
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence preferably selected from the group consisting of SEQ I D NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is a child of less than 4 yours of age, such as less than 2 years of age, e
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence preferably selected from the group consisting of SEQ I D NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:
  • SEQ ID NO:3 SEQ ID NO:4, SEQ ID NO:14, SEQ I D NO:15, SEQ I D NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is a child of less than 4 yours of age, such as less than 2 years of age, e.g. less than 1
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 or SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is an immunocompromised patient.
  • Immunocompromised patients could e.g. patients taking immunosuppressive chemotherapy or patients with congenital or acquired immune deficiency. For the immunisation to be effective in these patients, it is required that the patient still to some extent is capable of producing an immune response.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D
  • a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is an immunocompromised patient.
  • Immunocompromised patients could e.g. patients taking immunosuppressive chemotherapy or patients with congenital or acquired immune deficiency. For the immunisation to be effective in these patients, it is required that the patient still to some extent is capable of producing an immune response.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO: 18, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is an immunocompromised patient.
  • a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO
  • Immunocompromised patients could e.g. patients taking immunosuppressive chemotherapy or patients with congenital or acquired immune deficiency. For the immunisation to be effective in these patients, it is required that the patient still to some extent is capable of producing an immune response.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ I D NO:48, SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ I D NO:48, SEQ ID NO:1 -91 , preferably
  • a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against Streptococcus pneumoniae infections, wherein said human being is an immunocompromised patient.
  • Immunocompromised patients could e.g. patients taking immunosuppressive chemotherapy or patients with congenital or acquired immune deficiency. For the immunisation to be effective in these patients, it is required that the patient still to some extent is capable of producing an immune response.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 or SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of otitis media, in particular otitis media due to Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 -91 preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ I D NO:7, SEQ I D NO:8, SEQ ID NO:9 and SEQ ID NO: 10, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of otitis media, in particular otitis media due to Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO: 18, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of otitis media, in particular otitis media due to Streptococcus pneumoniae.
  • a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably S
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D
  • SEQ ID NO:4 SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ I D NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ I D NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52, or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of otitis media, in particular otitis media due to Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 or SEQ
  • ID NO:4 comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the treatment and/or prevention of nasopharyngal carriage of Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of - a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ I D NO:7, SEQ I D NO:8, SEQ ID NO:9 and SEQ ID NO: 10 or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the treatment and/or prevention of nasopharyngal carriage of Streptococcus pneumoniae.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO: 18, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the treatment and/or prevention of nasopharyngal carriage of Streptococcus pneumoniae.
  • a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 -91 preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 or SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of Streptococcal meningitis.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of
  • SEQ ID NO:1 -91 preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ I D NO:7, SEQ I D NO:8, SEQ ID NO:9 and SEQ ID NO: 10, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of Streptococcal meningitis.
  • the present invention relates to the use of any one or more of - a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO: 18, or comprises an antigenic fragment or variant of said sequence, - a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of Streptococcal meningitis.
  • the present invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ I D NO:17, SEQ ID NO:
  • polynucleotide comprising a sequence encoding said polypeptide, - an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the prevention of Streptococcal meningitis.
  • the vaccines may be administered in the dosages described herein by any suitable mode of administration, including modes of administration that result in a less than complete (e.g. less than 50% or less than 90%) uptake of all administered antigen.
  • any suitable mode of administration including modes of administration that result in a less than complete (e.g. less than 50% or less than 90%) uptake of all administered antigen.
  • modes of administration of the composition according to the invention include, but are not limited to systemic administration, such as intravenous or subcutaneous administration, transdermal administration, intradermal administration, intramuscular administration, intranasal administration, oral administration, and generally any form of mucosal administration.
  • systemic administration such as intravenous or subcutaneous administration, transdermal administration, intradermal administration, intramuscular administration, intranasal administration, oral administration, and generally any form of mucosal administration.
  • the invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 - 10, most preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against more than one serotype of Streptococcus pneumoniae
  • the invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ I D NO:10, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against more than one serotype of Streptococcus pneumoniae, such as 5 or more different serotypes, e.g. 8 or
  • the invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18, or comprises an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against more than one serotype of Streptococcus pneumoniae, such as 5 or more different serotypes, e.g.
  • the invention relates to the use of any one or more of a polypeptide which comprises a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ I D NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ
  • a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, for the preparation of a medicament for the immunisation of an animal or human being against more than one serotype of Streptococcus pneumoniae, such as 5 or more different serotypes, e.g. 8 or more different serotypes, such as 15 or more different serotypes, e.g. 24 or more different serotypes.
  • said more than one serotype includes a serotype selected from the group of 6A, 7C, 9A, 1 OB, 13, 15C, 16F, 18B, 21 , 23A, 24F, 28F, 31 , 34, 35F, 35B, 38.
  • the medicament is used for the immunisation against at least the serotypes 4, 6B, 9V, 14, 18C, 19F and 23F, and, preferably, furthermore at least one further serotype, said further serotype preferably being selected from the group of 6A, 7C, 9A, 1 OB, 13, 15C, 16F, 18B, 21 , 23A, 24F, 28F, 31 , 34, 35F, 35B, 38.
  • the medicament is used for the immunization against at least the serotypes 1 , 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 1 1 A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F, and preferably at least one further serotype, preferably selected from the group of 6A, 7C, 9A, 10B, 13, 15C, 16F, 18B, 21 , 23A, 24F, 28F, 31 , 34, 35F, 35B, 38.
  • the immunogenic effect according to the present invention can e.g. be measured by assay of antibodies in serum samples e.g. by a RIA. Furthermore, the effect can be determined in vivo, by measuring e.g. an increased T-cell responsiveness to T-cell dependent antigenic polypeptides, wherein said increased responsiveness is charac- teristic of an enhancement of a normal immune response to such antigenic polypeptides.
  • An immunostimulating effect may also be measured as an enhanced T cell production of, in particular, IL-2, IL-3, IFN- ⁇ and/or GM-CSF.
  • Polypeptides or fragments thereof having a potential for eliciting an enhanced immune response may thus be readily identified by screening for enhanced I L-2, IL-3, IFN- ⁇ or GM-CSF production by T cells, as described e.g. in US 07/779,499, incorporated herein by reference.
  • polynucleotides and expression vectors can be introduced into target cells in vivo or in vitro by any standard method: e.g., as naked DNA (Donnelly et al., Annu Rev Immunol 15:617-648 [1997]), incorporated into ISCOMS, liposomes, or erythrocyte ghosts, or by biolistic transfer, calcium precipitation, or elec- troporation.
  • a viral-based vector as a means for introducing the polynucleotide encoding the polypeptide of interest into the cells of the animal or human being.
  • Preferred viral vectors include those derived from replication- defective hepatitis viruses (e.g., HBV and HCV), retroviruses (see, e.g., WO89/07136; and Rosenberg et al., N Eng J Med 323 (9):570-578 [1990]), adenovirus (see, e.g., Morsey et al., J Cell Biochem, Supp.
  • replication- defective hepatitis viruses e.g., HBV and HCV
  • retroviruses see, e.g., WO89/07136; and Rosenberg et al., N Eng J Med 323 (9):570-578 [1990]
  • adenovirus see, e.g., Morsey et al., J Cell Biochem, Supp.
  • ex vivo procedures may be used in which cells are removed from an animal, modified, and placed into the same or another animal. It will be evident that one can utilise any of the compositions noted above for introduction of an antigenic polypeptides or polynucleotides encoding such according to the invention into tissue cells in an ex vivo context. Protocols for viral, physical and chemical methods of uptake are well known in the art.
  • a polypeptide of the invention or a vector capable of expressing such a polypeptide directly to the patient one can remove helper T cells from the patient; stimulate those T cells ex vivo using the same antigenic polypeptide or vector; and introduce the stimulated helper T cells into the same patient.
  • Antibodies and methods for raising antibodies of the invention are well known in the art.
  • the composition for use as a medicament comprises an antibody capable of binding a polypeptide selected from the group consisting of surface-located Streptococcus pneumoniae polypeptides of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 -10, more preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4.
  • a medicament can be used for antibody therapy, such as passive immunisation of an individual in need thereof.
  • composition for use as a medicament comprises an antibody capable of binding a polypeptide selected from the group consisting of surface-located Streptococcus pneumoniae polypeptides more preferably selected from the group consisting of: SEQ ID NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and
  • composition for use as a medicament comprises an antibody capable of binding a polypeptide selected from the group consisting of surface- located Streptococcus pneumoniae polypeptides more preferably selected from the group consisting ofSEQ ID NO:1 , SEQ ID NO:2, SEQ I D NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • composition for use as a medicament comprises an anti- body capable of binding a polypeptide selected from the group consisting of surface- located Streptococcus pneumoniae polypeptides more preferably selected from the group consisting of: SEQ ID NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ I D NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52.
  • a polypeptide selected from the group consisting of surface- located Streptococcus pneumoniae polypeptides more preferably selected from the group consisting of: SEQ ID NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:
  • composition for use as a medicament comprises an antibody capable of binding a polypeptide selected from the group consisting of surface-located Streptococcus pneumoniae polypeptides more preferably selected from the group consisting of: SEQ I D NO:1 1 , SEQ I D NO:12 and SEQ ID NO:13, preferably SEQ I D NO:12.
  • the invention relates to antibodies capable of binding, preferably specifically binding, a polypeptide selected from the group consisting of SEQ ID NO: 1 -91 and/or a fragment and/or a variant thereof 'Specifically binding' is, in this context, not intended to mean absolute specificity.
  • the antibody may in some embodiments also specifically bind polypeptides, e.g. from other Streptococcus species, with a high degree of sequence identity to the polypeptide from Streptococ- cus pneumoniae, e.g. polypeptides with more than 90%, such as more than 95% or more than 98% sequence identity to the polypeptide from Streptococcus pneumoniae.
  • the antibody is capable of binding, preferably specifically binding, a polypeptide selected from the group consisting of SEQ ID NO:1 -91 , such as the polypeptide of SEQ ID NO:1 , for example the polypeptide of SEQ ID NO:2, such as the polypeptide of SEQ ID NO:3, for example the polypeptide of SEQ ID NO:4, such as the polypeptide of SEQ ID NO:5, for example the polypeptide of SEQ ID NO:6, such as the polypeptide of SEQ ID NO:7, for example the polypeptide of SEQ ID NO:8, such as the polypeptide of SEQ ID NO:9, for example the polypeptide of SEQ ID NO:10, such as the polypeptide of SEQ ID NO:1 1 , for example the polypeptide of SEQ ID NO:12, such as the polypeptide of SEQ ID NO:13, for example the polypeptide of SEQ ID NO:14, such as the polypeptide of SEQ ID NO:15, for example the polypeptide of SEQ ID NO:
  • SEQ ID NO:58 such as the polypeptide of SEQ ID NO:59, for example the polypeptide of SEQ ID NO:60, such as the polypeptide of SEQ ID NO:61 , for example the polypeptide of SEQ ID NO:62, such as the polypeptide of SEQ ID NO:63, for example the polypeptide of SEQ ID NO:64, such as the polypeptide of SEQ ID NO:65, for ex- ample the polypeptide of SEQ I D NO:66, such as the polypeptide of SEQ ID NO:67, for example the polypeptide of SEQ ID NO:68, such as the polypeptide of SEQ I D NO:69, for example the polypeptide of SEQ ID NO:70, such as the polypeptide of SEQ ID NO:71 , for example the polypeptide of SEQ ID NO:72, such as the polypeptide of SEQ ID NO:73, for example the polypeptide of SEQ ID NO:74, such as the polypeptide of SEQ ID NO:75, for example the poly
  • the antibodies of the invention are furthermore capable of binding an intact Streptococcus pneumoniae cell, i.e. capable of binding a living or a dead Streptococcus cell which has maintained its structural integrity, preferably a cell that has maintained the integrity of the membrane (i.e. wherein the membrane has not been permeabilised). Binding of antibodies to intact cells can e.g. be determined by flow cytometry as described in Rioux et al.(2001 ) Infect. Immun. 69:5162-5165 or as described in Singh et al. (2003) Infect. Immun. 71 :3937-3946.
  • Preferred antibodies are ones that bind with a dissociation constant or Kd of less than 5 X 10 "6 M, such as less than 10 "6 M, e.g. less than 5 X 10 "7 M, such as less than 10 "7 M, e.g. less than 5 X 10 8 M, such as less than 10 8 M, e.g. less than 5 X 10 9 M, such as less than 10 "9 M, e.g. less than 5 X 10 "10 M, such as less than 10 "10 M, e.g. less than 5 X 10 "11 M, such as less than 10 "11 M, e.g. less than 5 X 10 "12 M, such as less than 10 " 12 M, e.g.
  • Binding constants can be determined using methods well-known in the art, such as ELISA (e.g. as described in Orosz and Ovadi (2002) J. Immunol. Methods 270:155-162) or surface plasmon resonance analysis.
  • Antibodies can be used for passive immunisation of mammals, preferably human beings, more preferably immunocompromised patients.
  • a treatment with antibodies can be done to cure or to prevent Streptococcus pneumoniae infections, including pneumococcal diseases, such as pneumonia or meningitis or pneumococcal sepsis.
  • Preferred patient groups include children under the age of 4 years, elderly patients or immunocompromised patients.
  • Antibodies of the invention include the following preferred mechanistic groups:
  • Function-inhibiting antibodies that work as an antibacterial (affect the viability of the bacterium). Such antibodies should be effective regardless of the immune status of the patient. Preferably, such antibodies are capable of reducing
  • Streptococcus pneumoniae growth in vitro to less than 50%, such as less than 25%, for example less than 10%, such as less than 5% of a control without antibody added.
  • Opsonising antibodies that are designed to enhance phagocytic killing. Effectiveness of such antibodies may depend on the immune status of the patient, but it is very well possible that they will enhance phagocytic killing even in compromised patients.
  • Antibodies conjugated to a therapeutic moiety such as a toxin or bactericidal agent, e g. ricin or radioisotopes. Techniques for conjugating a therapeutic moiety to antibodies are well known, see, e.g. Thorpe et al.(1982) Immunol. Rev. 62, 1 19-158. These antibodies should also be effective regardless of the immune status of the patient.
  • An antibody with or without a therapeutic moiety conjugated to it can be used as a therapeutic that is administered alone or in combination with chemotherapeutics or other therapeutic agents.
  • the antibodies of the invention are opsonising as well as function- inhibiting. In another embodiment, the antibodies of the invention are opsonising, but not function-inhibiting.
  • the latter group of antibodies can e.g. be antibodies directed against a target polypeptide which is not essential for the viability of Streptococcus pneumoniae.
  • the invention relates to a method for raising antibodies to a polypeptide selected from the group consisting of SEQ ID NO:1 -91 , in a non-human animal comprising the steps of a. providing a polypeptide comprising a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4, or comprising an antigenic fragment or variant of said sequence, a polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector, b. introducing a composition comprising said polypeptide, polynucleotide, vector, recombinant virus or recombinant cell into said animal, c. raising antibodies in said animal,
  • the polypeptide provided in a) comprises a sequence preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ I D NO:6, SEQ I D NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10 or comprising an antigenic fragment or variant of said sequence.
  • the polypeptide provided in a) comprises a sequence preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18, or comprising an antigenic fragment or variant of said sequence.
  • the polypeptide provided in a) comprises a sequence preferably selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13, preferably SEQ ID NO:12, or comprising an antigenic fragment or variant of said sequence.
  • antibodies capable of binding an intact Streptococcus pneumoniae cell are identified by comprising performing the above steps and the further step of selecting antibodies capable of binding an intact Streptococcus pneumoniae cell.
  • the above methods are preferably done in a transgenic animal which is capable of producing human antibodies. In a further preferred embodiment, the above methods are non-therapeutic.
  • Antibodies of the invention may be polyclonal antibodies or monoclonal antibodies or mixtures of monoclonal antibodies.
  • the antibody is a monoclonal antibody or a fragment thereof.
  • Monoclonal antibodies are antibodies wherein every antibody molecule is similar and thus recognises the same epitope.
  • the antibody may be any kind of antibody, however, it is preferably an IgG or IgA antibody.
  • Preferred antibodies, more preferably monoclonal antibodies are antibodies capable of specifically binding surface-exposed regions of the polypeptides of the invention.
  • Monoclonal antibodies are in general produced by a hybridoma cell line. Methods of making monoclonal antibodies and antibody-synthesising hybridoma cells are well known to those skilled in the art.
  • Antibody-producing hybridomas may for example be prepared by fusion of an antibody-producing B lymphocyte with an immortalised cell line.
  • a monoclonal antibody can be produced by the following steps. An animal is immunised with an antigen such as a full-length polypeptide or a frag- ment thereof. The immunisation is typically accomplished by administering the antigen to an immunologically competent mammal in an immunologically effective amount, i.e., an amount sufficient to produce an immune response.
  • the mammal is a rodent such as a rabbit, rat or mouse.
  • the mammal is then maintained on a booster schedule for a time period sufficient for the mammal to generate high affinity antibody molecules.
  • a suspension of antibody-producing cells is removed from each immunised mammal secreting the desired antibody.
  • the animal e.g. mouse
  • antibody-producing lymphocytes are obtained from one or more of the lymph nodes, spleens and peripheral blood.
  • Spleen cells are preferred, and can be mechanically separated into individual cells in a physiological medium using methods well known to one of skill in the art.
  • the antibody-producing cells are immortalised by fusion to cells of a mouse myeloma line.
  • Mouse lymphocytes give a high percentage of stable fusions with mouse homologous myelomas, however, rat, rabbit and frog somatic cells can also be used.
  • Spleen cells of the desired antibody-producing animals are immortal- ised by fusing with myeloma cells, generally in the presence of a fusing agent such as polyethylene glycol.
  • a fusing agent such as polyethylene glycol.
  • Any of a number of myeloma cell lines suitable as a fusion partner can be, for example, the P3-NS1/1 -Ag4-1 , P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines, available from the American Type Culture Collection (ATCC), Rockville, Md.
  • Monoclonal antibodies can also be generated by other methods well known to those skilled in the art of recombinant DNA technology.
  • An alternative method referred to as the "combinatorial antibody display” method, has been developed to identify and isolate antibody fragments having a particular specificity, and can be utilised to produce monoclonal antibodies.
  • a polyclonal antibody is a mixture of antibody molecules recognising a specific given antigen, hence polyclonal antibodies may recognise different epitopes within e.g. a polypeptide.
  • polyclonal antibodies are purified from serum of a mammal, which previously has been immunised with the antigen.
  • Polyclonal antibod- ies may for example be prepared by any of the methods described in Antibodies: A Laboratory Manual, By Ed Harlow and David Lane, Cold Spring Harbor Laboratory Press, 1988.
  • Polyclonal antibodies may be derived from any suitable mammalian species, for example from mice, rats, rabbits, donkeys, goats, and sheep.
  • the antibodies of the invention may be monospecific towards any of the polypeptides of SEQ ID NO:1 -91 .
  • the antibody is bispecific or multispecific having at least one portion being specific towards any of the polypeptides of SEQ ID NO:1 -91 .
  • Monospecific antibodies may be monovalent, i.e. having only one binding domain.
  • the immunoglobulin constant domain amino-acid sequences preferably comprise the structural portions of an antibody molecule known in the art as CH1 , CH2, CH3 and CH4. Preferred are those which are known in the art as C ⁇ _.
  • the constant domain can be either a heavy or light chain constant domain (C H or C L , respectively), a variety of monovalent antibody compositions are contemplated by the present invention.
  • light chain constant domains are capable of disulphide bridging to either another light chain constant domain, or to a heavy chain constant domain.
  • a heavy chain constant domain can form two independent disulphide bridges, allowing for the possibility of bridging to both another heavy chain and to a light chain, or to form polymers of heavy chains.
  • the invention contemplates a composition comprising a monovalent polypeptide wherein the constant chain domain C has a cysteine residue capable of forming at least one disulphide bridge, and where the composition comprises at least two monovalent polypeptides covalently linked by said disulphide bridge.
  • the antibody is a multivalent antibody having at least two binding domains.
  • the binding domains may have specificity for the same ligand or for different ligands. Multisp ⁇ cificity, including bisp ⁇ cificity
  • the invention relates to multispecific antibodies, which have affinity for and are capable of specifically binding at least two different entities.
  • the multispecific antibody is a bispecific antibody, which carries at least two different binding domains, at least one of which is of antibody origin.
  • a bispecific molecule of the invention can also be a single chain bispecific molecule.
  • Multispecific molecules can also be single-chain molecules or may comprise at least two single-chain molecules.
  • the multispecific, including bispecific antibodies may be produced by any suitable manner known to the person skilled in the art. A number of approaches have been developed such as the ones described in WO 94/09131 ; WO 94/13804; WO 94/13806 or U.S. Pat. Nos.
  • a bispecific/multispecific antibody has a first binding domain capable of specifically recognising and binding any of the Streptococcus pneumoniae polypeptides of SEQ ID NO:1 -91 , whereas the other binding domain(s) may be used for other purposes.
  • At least one other binding domain is used for binding to a Streptococcus pneumoniae polypeptide, such as binding to another epitope on the same Streptococcus pneumoniae polypeptide as the first binding domain. Thereby specificity for Streptococcus pneumoniae may be increased as well as increase of avidity of the antibody.
  • the at least one other binding domain may be used for specifically binding a mammalian cell, such as a human cell. It is preferred that the at least other binding domain is capable of binding an immunoactive cell, such as a leukocyte, a macrophage, a lymphocyte, a basophilic cell, and/or an eosinophilic cell, in order to increase the effect of the antibody in a therapeutic method.
  • the at least one other binding domain is capable of specifically binding a mammalian protein, such as a human protein, such as a protein selected from any of the cluster differentiation proteins (CD), in par- ticular CD64 and/or CD89.
  • a mammalian protein such as a human protein, such as a protein selected from any of the cluster differentiation proteins (CD), in par- ticular CD64 and/or CD89.
  • CD cluster differentiation proteins
  • non-human antibodies for human therapy, since the non-human "foreign" epitopes may elicit an immune response in the individual to be treated.
  • chimeric antibody derivatives i.e., "humanised” antibody molecules that combine the non-human Fab variable region binding determinants with a human constant region (Fc).
  • Such antibodies are characterised by equivalent antigen specificity and affinity of the monoclonal and polyclonal antibodies described above, and are less immunogenic when administered to humans, and therefore more likely to be tolerated by the individual to be treated.
  • the antibody of the invention is a humanised antibody.
  • Humanised antibodies are in general chimeric antibodies comprising regions derived from a human antibody and regions derived from a non-human anti- body, such as a rodent antibody.
  • Humanisation also called Reshaping or CDR- grafting
  • Humanisation is a well-established technique for reducing the immunogenicity of monoclonal antibodies (mAbs) from xenogeneic sources (commonly rodent), increasing the homology to a human immunoglobulin, and for improving their activation of the human immune system.
  • humanised antibodies are typically human antibodies in which some CDR residues and possibly some framework residues are substituted by residues from analogous sites in rodent antibodies.
  • humanised antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanised products using three- dimensional models of the parental and humanised sequences.
  • Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art.
  • Computer programs are available which illustrate and display probable three- dimensional conformational structures of selected candidate immunoglobulin se- quences. Inspection of these displays permits analysis of the likely role of certain residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.
  • FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is maximised, although it is the CDR residues that directly and most substantially influence antigen binding.
  • One method for humanising MAbs relates to production of chimeric antibodies in which an antigen binding site comprising the complete variable domains of one antibody is fused to constant domains derived from a second antibody, preferably a human antibody.
  • Methods for carrying out such chimerisation procedures are for ex- ample described in EP-A-O 120 694 (Celltech Limited), EP-A-O 125 023 (Genentech Inc.), EP-A-O 171 496 (Res. Dev. Corp. Japan), EP-A-0173494 (Stanford University) and EP-A-O 194 276 (Celltech Limited).
  • the humanised antibody of the present invention may be made by any method capable of replacing at least a portion of a CDR of a human antibody with a CDR derived from a non-human antibody. Winter describes a method which may be used to prepare the humanised antibodies of the present invention (UK Patent Application GB 2188638A), the contents of which are incorporated by reference.
  • humanised antibodies of the present invention may be produced by the following process:
  • the host cell may be co-transfected with the two vectors of the invention, the first vector containing an operon encoding a light chain derived polypeptide and the second vector containing an operon encoding a heavy chain derived polypeptide.
  • the two vectors contain different selectable markers, but otherwise, apart from the antibody heavy and light chain coding sequences, are preferably identical, to ensure, as far as possible, equal expression of the heavy and light chain polypeptides.
  • a single vector may be used, the vector including the sequences encoding both the light and the heavy chain polypeptides.
  • the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both.
  • the host cell used to express the altered antibody of the invention may be either a bacterial cell such as Escherichia coli, or a eukaryotic cell.
  • a mammalian cell of a well defined type for this purpose such as a myeloma cell or a Chinese hamster ovary cell may be used.
  • transfection methods required to produce the host cell of the invention and culture methods required to produce the antibody of the invention from such host cells are all conventional techniques.
  • the humanised antibodies of the invention may be purified according to standard procedures.
  • the invention relates to an antibody, wherein the binding domain is carried by a human antibody, i.e. wherein the antibodies have a greater degree of human peptide sequences than do humanised antibodies.
  • Human mAb antibodies directed against human proteins can be generated using transgenic mice carrying the human immune system rather than the mouse system. Splenocytes from these transgenic mice immunised with the antigen of inter- est are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al. International Application WO 91/00906, Kucherlapati et al. PCT publication WO 91/10741 ; Lonberg et al. International Application WO 92/03918; Kay et al. International Application 92/03917; Lonberg, N. et al. 1994 Nature 368:856-859; Green, L. L. et al.
  • transgenic mice are available from Abgenix, Inc., Fremont, Calif., and Medarex, Inc., Annandale, N.J. It has been described that the homozygous deletion of the antibody heavy-chain joining region (I H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
  • I H antibody heavy-chain joining region
  • Human antibodies can also be derived from phage-display libraries (Hoogenboom et al ., J. MoI. Biol. 227: 381 (1992); Marks et al., J. MoI. Biol. 222:581 -597 (1991 ); Vaughan, et al. Nature Biotech 14:309 (1996)).
  • a preferred method for the isolation of high affinity antibodies is a subtractive procedure
  • human antibodies or antibody fragments against the targets in particular against the antigens 029 (SEQ ID N0:16) and 607 (SEQ ID NO:20), in their native configuration can be rapidly obtained from a phage antibody library (see, e.g. De Kruif et al, Proc. Natl. Acad. Sci. USA 92:3938-3942 (1995); US patent 6265150;and US patent applications 2002132228 and 2005043521 ).
  • the phage antibody libraries can e.g. be constructed using antibody producing cells from patients with the disease of interest, here patients infected with Streptococcus pneumoniae.
  • the genes coding for the antibodies produced by these cells may be cloned into a semi-synthetic phage antibody library using degenerated oligonucleotides rearranging the CDR3 Region of the cloned genes. Afterwards the library is incubated with the target antigen or target-expressing cells, here Streptococcus pneumoniae, and the phage antibodies bound to the target are isolated by using standard methods.
  • the present invention is also directed to antibodies identified by the above procedure, in particular antibodies capable of binding a polypeptide selected from group consisting of SEQ ID NO:16, SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:20, SEQ ID NO:26,
  • SEQ ID NO:28 and SEQ ID NO:33 preferably antibodies having a dissociation constant or Kd of less than 10 "7 M, e.g. less than 10 "8 M, such as less than 10 "9 M, e.g. less than than 10 "10 M, such as less than 10 "11 M and/or antibodies binding a surface- exposed epitope of any of these targets.
  • Suitable methods for producing human monoclonal antibodies have furthermore been described in WO 03/017935, WO 02/100348, US 2003 091561 , and US 2003 194403.
  • the antibody is a fragment of an antibody, preferably an antigen binding fragment or a variable region.
  • antibody fragments useful with the present invention include Fab, Fab', F(ab') 2 and Fv fragments.
  • Papain digestion of antibodies produces two identical antigen binding fragments, called the Fab fragment, each with a single antigen binding site, and a residual "Fc" fragment, so-called for its ability to crystallise readily.
  • Pepsin treatment yields an F(ab') 2 fragment that has two antigen binding fragments which are capable of cross- linking antigen, and a residual other fragment (which is termed pFc').
  • Additional fragments can include diabodies, linear antibodies, single-chain antibody molecules, and multispecific antibodies formed from antibody fragments.
  • the antibody fragments Fab, Fv and scFv differ from whole antibodies in that the antibody fragments carry only a single antigen-binding site.
  • Recombinant fragments with two binding sites have been made in several ways, for example, by chemical cross-linking of cysteine residues introduced at the C-terminus of the VH of an Fv (Cumber et al., 1992), or at the C-terminus of the VL of an scFv (Pack and Pluckthun, 1992), or through the hinge cysteine residues of Fab's (Carter et al., 1992).
  • Preferred antibody fragments retain some or essentially all of the ability of an antibody to selectively binding with its antigen. Some preferred fragments are defined as follows:
  • Fab is the fragment that contains a monovalent antigen-binding fragment of an antibody molecule.
  • a Fab fragment can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain.
  • (2) Fab' is the fragment of an antibody molecule and can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain. Two Fab' fragments are obtained per antibody molecule.
  • Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
  • (Fab') 2 is the fragment of an antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction.
  • F(ab') 2 is a dimer of two Fab' fragments held together by two disulfide bonds.
  • Fv is the minimum antibody fragment that contains a complete antigen recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in a tight, non-covalent association (V H -V L dimer). It is in this configuration that the three CDRs of each variable domain interact to define an antigen binding site on the surface of the V H -V L dimer. Collectively, the six CDRs confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognise and bind antigen, although at a lower affinity than the entire binding site.
  • the antibody is a single-chain antibody, defined as a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule.
  • single-chain antibodies are also referred to as "single-chain Fv” or “sFv” antibody fragments.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains that enables the sFv to form the desired structure for antigen binding.
  • the antibody fragments according to the invention may be produced in any suitable manner known to the person skilled in the art.
  • Several microbial expression systems have already been developed for producing active antibody fragments, e.g. the production of Fab in various hosts, such as E. coli or yeast has been described.
  • the fragments can be produced as Fab's or as Fv's, but additionally it has been shown that a V H and a V L can be genetically linked in either order by a flexible polypeptide linker, which combination is known as an scFv.
  • compositions for use in the invention comprises, in addition to the active component, a pharmaceutically- acceptable carrier.
  • the term "pharmaceutically acceptable” used in connection with com- positions or carriers represents that the materials are capable of being administered to or upon a human or animal without the production of undesirable physiological effects such as nausea, dizziness, gastric upset and the like.
  • compositions that contains active ingredients dissolved or dis- persed therein are well understood in the art. Often such compositions are prepared as sterile injectables either as liquid solutions or suspensions, aqueous or non-aqueous, however, solid forms suitable for solution, or suspension, in liquid prior to use can also be prepared. The preparation can also be emulsified.
  • the active ingredient can be mixed with carriers which are pharmaceutically acceptable and compatible with the active ingredient and in amounts suitable for use in the methods described herein. Suitable carriers are, for example, water, saline, dextrose, glycerol, ethanol or the like and combinations thereof.
  • the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH-buffering agents and the like which enhance the effectiveness of the active ingredient.
  • compositions of the present invention can include pharmaceutically-acceptable salts of the active components therein.
  • Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide) that are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, tartaric, mandelic and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like. Pharmaceutically-acceptable carriers are well known in the art.
  • liquid carriers are sterile aqueous solutions that contain no materials in addition to the active ingredients and water, or contain a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline. Still further, aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, propylene glycol, polyethylene glycol and other solutes. Liquid compositions can also contain liquid phases in addition to and to the exclusion of water. Exemplary of such additional liquid phases are glycerin, vegetable oils such as cottonseed oil, organic esters such as ethyl oleate, and water- oil emulsions.
  • a buffer such as sodium phosphate at physiological pH value, physiological saline or both, such as phosphate-buffered saline.
  • aqueous carriers can contain more than one buffer salt, as well as salts such as sodium and potassium chlorides, dextrose, propy
  • the composition may also be a kit-in-part further including an antibiotic agent, such as antibiotics selected from vancomycin, ⁇ -lactams, cephalosporins, penicilins, aminoglycosides, macrolide antibiotics (erythromycin, clarithromycin, or azithromycin) and fluoroquinolone antibiotics (ciprofloxacin, levofloxacin, gatifloxacin, or moxiflox- acin) and/or including an immunostimulating agent, such as cytokines, interferons, growth factors, for example GCSF or GM-CSF.
  • an antibiotic agent such as antibiotics selected from vancomycin, ⁇ -lactams, cephalosporins, penicilins, aminoglycosides, macrolide antibiotics (erythromycin, clarithromycin, or azithromycin) and fluoroquinolone antibiotics (ciprofloxacin, levofloxacin, gatifloxacin, or moxiflox
  • the invention furthermore relates to pharmaceutical compositions useful for practising the methods described herein.
  • the invention relates to a pharmaceutical composition comprising a pharmaceutically-acceptable carrier and an isolated polypeptide which comprises any of the sequences of SEQ ID NO:1 -
  • 91 preferably selected from the group consisting of preferably SEQ ID NO:1 or
  • compositions comprises a pharmaceutically-acceptable carrier and an isolated polypeptide which comprises any of the sequences preferably selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ I D NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:
  • nucleic acid sequence NO:9 and SEQ ID NO: 10 comprises a fragment or variant of any of said sequences, an isolated polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • a further embodiment of the pharmaceutical composition comprises a pharmaceutically-acceptable carrier and an isolated polypeptide which comprises any of the sequences preferably selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17 and SEQ ID NO:18, or comprises a fragment or variant of any of said sequences, an isolated polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • Another embodiment of the pharmaceutical composition comprises a pharmaceutically-acceptable carrier and an isolated polypeptide which comprises any of the sequences preferably selected from the group consisting of SEQ I D NO:1 , SEQ I D NO:2, SEQ ID NO:3,
  • SEQ ID NO:4 SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17,
  • SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52 or comprises a fragment or variant of any of said sequences, - an isolated polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • compositions comprises a pharmaceutically-acceptable carrier and an isolated polypeptide which comprises any of the sequences preferably selected from the group consisting of SEQ I D NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12, or comprises a fragment or variant of any of said sequences, an isolated polynucleotide comprising a sequence encoding said polypeptide, an expression vector comprising a sequence encoding said polypeptide, or - a recombinant virus or recombinant cell comprising said polynucleotide or said expression vector.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an antibody of the invention, preferably an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4, as defined herein and a pharmaceutically-acceptable carrier.
  • Another embodiment of the above pharmaceutical composition comprising an antibody of the invention, is preferably an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ I D NO:8, SEQ I D NO:9 and SEQ ID NO:10, as defined herein and a pharmaceutically-acceptable carrier.
  • a further embodiment of the above pharmaceutical composition comprising an antibody of the invention, is preferably an antibody capable of binding a polypeptide selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18 as defined herein and a pharmaceutically-acceptable carrier.
  • Another embodiment of the above pharmaceutical composition comprising an antibody of the invention, is preferably an antibody capable of binding a polypeptide selected from the group consisting of S SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ I D
  • the above pharmaceutical composition comprising an antibody of the invention, is preferably an antibody capable of binding a polypeptide selected from the group consisting of S SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12, as defined herein and a pharmaceutically- acceptable carrier.
  • the invention relates to a fragment, preferably an antigenic fragment, of a polypeptide set forth in any of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ I D NO:4.,
  • inventions comprise an antigenic fragment of a polypeptide selected from the group SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ I D NO:10.
  • embodiments comprise an antigenic fragment of a polypeptide selected from the group SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ I D NO:18.
  • inventions comprise an antigenic fragment of a polypeptide selected from the group SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ I D NO:51 and SEQ ID NO:52.
  • inventions comprise an antigenic fragment of a polypeptide selected from the group SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12.
  • Antigenicity can be predicted by various methods known in the art.
  • the length of such fragments may vary from 2 consecutive amino-acid residues of a polypeptide to the full-length polypeptide minus one amino-acid residue.
  • fragments are less than 100 consecutive amino acids, such as less than 70 or 50 consecutive amino acids, e.g. less than consecutive 40 amino acids, such as less than 30 consecutive amino acids, e.g. less than 25 consecutive amino acids, such as less than consecu- tive 20 amino acids in length.
  • fragments can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 consecutive amino acids in length.
  • a fragment comprises 6 or more, such as 7 or more, e.g.
  • a fragment consists of a part of an amino-acid sequence which is less than 100% in length as compared to the full-length polypeptide.
  • the length of the fragment is less than 99%, such as less than 75%, e.g. less than 50%, such as less than 25%, e.g. less than 20%, such as less than 15%, e.g. less than 10% of the length of the full-length polypeptide.
  • the fragment consists of a part of an amino-acid sequence which is less than 100%, but more than 1 % in length as compared to the full-length polypeptide, such as less than 100% but more than 5%, e.g. less than 100% but more than 10%, such as less than 100% but more than 20%, e.g. less than 100% but more than 25%, such as less than 100% but more than 50% of the length of the full-length polypeptide.
  • fragments of the invention are surface-exposed in an intact Streptococcus pneumoniae cell or other cell when expressed recombinantly therein.
  • Sur- face-exposure can be e.g. be determined using a monoclonal antibody specific for said fragment, e.g. as described in Singh et al. (2003) Infect. Immun. 71 :3973-3946.
  • fragments which are capable of inducing antibodies that can specifically bind an intact Streptococcus pneumoniae cell This can be determined by generating monoclonal antibodies using said fragment and subsequent characterisa- tion of the binding of individual antibodies to intact cells, e.g. as described in Singh et al. (2003) Infect. Immun. 71 :3973-3946.
  • the full-length polypeptides of SEQ ID NO:1 -91 as well as the fragments of the invention can be produced recombinantly by conventional techniques known in the art.
  • Suitable host cells can be mammalian cells, e.g. CHO, COS or HEK293 cells.
  • insect cells, bacterial cells or fungal cells can be used.
  • Methods for heterologous expression of polynucleotide sequences in the cell types listed above and subsequent purification of the produced polypeptides, e.g. using a tag sequence such as a histidine tag, which may be removed after purification, are well-known to those skilled in the art.
  • fragments of the invention can be produced synthetically.
  • the invention relates to the use of variants of any of the polypeptides set forth in SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ ID NO:2,
  • One further embodiment of the invention relates to the use of variants, or variants of fragments, of any of the polypeptides selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ
  • Another embodiment of the invention relates to the use of variants, or variants of fragments, of any of the polypeptides selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ I D NO:15, SEQ ID NO:16, SEQ I D NO:17 and SEQ ID NO:18 in a composition for use as a medicament.
  • a further embodiment of the invention relates to the use of variants, or variants of fragments, of any of the polypeptides selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52 in a composition for use as a medicament.
  • a still further embodiment of the invention relates to the use of variants, or variants of fragments, of any of the polypeptides selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13, preferably SEQ ID NO:12, in a composition for use as a medicament.
  • phrases such as 'a polypeptide having at least 95% sequence identity to SEQ ID NO:X' are used interchangeably with, and are intended to be directed to the same subject-matter as, phrases such as 'the polypeptide of SEQ ID NO:X and variants thereof, wherein the variant has at least 95% sequence identity to said sequence.
  • Variants preferably have at least 75% sequence identity, for example at least 80% sequence identity, such as at least 85% sequence identity, for example at least 90% sequence identity, such as at least 91 % sequence identity, such as at least 92% sequence identity, for example at least 93% sequence identity, such as at least 94% sequence identity, for example at least 95% sequence identity, such as at least 96% sequence identity, for example at least 97% sequence identity, such as at least 98% sequence identity, for example 99% sequence identity with the given polypeptide or fragment. Sequence identity is determined with any of the algorithms GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.
  • variants of a given polypeptide or fragment are variants in which all amino- acid substitutions between the variant and the given reference polypeptide or frag- ment are conservative substitutions.
  • Conservative amino-acid substitutions refer to the interchangeability of residues having similar side chains.
  • a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and iso- leucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine, a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine.
  • Preferred conservative amino-acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine- valine, and asparagine-glutamine.
  • Variants of a polypeptide or of a fragment thereof also include forms of the polypeptide or fragment wherein one or more amino acids have been deleted or inserted. Preferably, less than 5, such as less than 4, e.g. less than 3, such as less than 2, e.g. only one amino acid has been inserted or deleted.
  • 'Variants' of a polypeptide or of a fragment thereof also include forms of these polypeptides or fragments modified by post-translational modifications of the amino-acid sequence.
  • Recombinant cells of the invention in a further main aspect, relates to the use of a recombinant cell transformed or transfected with a polynucleotide comprising a sequence encoding a polypeptide, said polypeptide comprising a sequence selected from the group consisting of SEQ ID NO:1 -91 , preferably SEQ ID NO:1 or SEQ I D NO:2, SEQ ID NO:3 or SEQ I D NO:4, or comprising an antigenic fragment or variant of said sequence.
  • said recombinant cell is an Escherichia coli or Salmonella cell, more preferably an attenuated or reduced-virulence Escherichia or Salmonella cell.
  • the above said recombinant cell is transformed or transfected with a polypeptide, said polypeptide comprising a sequence selected from the group consisiting of SEQ I D NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ
  • the above said recombinant cell is transformed or transfected with a polypeptide, said polypeptide comprising a sequence selected from the group consisiting of SEQ ID NO:1 , SEQ I D NO:2, SEQ I D NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • the above said recombinant cell is transformed or transfected with a polypeptide, said polypeptide comprising a se- quence selected from the group consisiting of SEQ I D NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52.
  • a polypeptide comprising a se- quence selected from the group consisiting of SEQ I D NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID
  • the above said recombinant cell is transformed or transfected with a polypeptide, said polypeptide comprising a sequence selected from the group consisiting of SEQ I D NO:1 1 , SEQ I D NO:12, SEQ ID NO:13, preferably SEQ ID NO:12.
  • Suitable bacterial strains for use herein have been described in e.g. Makino et al. (2001 ) Microb. Pathog. 31 :1 -8; Gentschev et al. (2002) Int. J. Med. Microbiol. 291 :577-582; Turner et al. (2001 ) Infect. Immun. 69:4969-4979; WO99/49026; and
  • Salmonella strains are CvD908-T7pol (Santiago-Machuca et al. (2002) Plasmid 47:108-1 19), ATCC 39183, ATCC 53647 and ATCC 53648.
  • suitable E. coli strains are YT106 and E 1392/75-2 A.
  • compositions and other products defined above can be used to treat or prevent Streptococcus pneumoniae infections, and/or disease resulting from such infections, in animals or human beings in need thereof.
  • Treatment and prevention herein include all types of therapeutic treatment and preventive treatment and other treatments to combat Streptococcus pneumoniae, including but not limited to vaccination, prophylaxis, active immunisation, passive immunisation, administration of antibodies, curative treatment, ameliorating treatment.
  • passive immunisation using antibodies of the invention is a suitable treatment for immunocompromised individuals.
  • the invention relates to a method for detecting Streptococcus pneumoniae or parts thereof in a sample comprising the steps of a. contacting said sample with an indicator moiety capable of specifically binding a polypeptide selected from the group consisting of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ I D NO:1 or SEQ I D NO:2, SEQ ID NO:3 and SEQ ID NO:4, and b. determining whether a signal has been generated by the indicator moiety, thereby detecting whether said sample contains Streptococcus pneumoniae or parts thereof.
  • sequences in step a) of the above method may be selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ I D NO:9 and SEQ ID NO:10.
  • sequences in step a) of the above method may be selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • sequences in step a) of the above method may be selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ I D
  • sequences in step a) of the above method may be selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13, preferably SEQ ID NO:12.
  • said indicator moiety is capable of binding, preferably specifically binding, intact Streptococcus pneumoniae cells.
  • a washing step is performed between the contacting step and the determination step, in order to improve the specificity of detection.
  • the sample can e.g. be faeces, urine, a tissue, tissue extract, fluid sample or body fluid sample, such as blood, plasma, serum, sputum, or a sample taken from nose or lung.
  • a sample is a food sample, such as a meat sample.
  • the invention relates to a method for detecting Streptococcus pneumoniae or parts thereof in a sample comprising the step of analysing a sample by mass spectrometry to evaluate the presence and/or quantity of one or more of the polypeptides of SEQ ID NO:1 -91 , in particular SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ I D NO:4.
  • the polypeptides are selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10.
  • the poypeptides are selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ I D NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • the poypeptides are selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ
  • the poypeptides are selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ I D NO:12.
  • the sample e.g. a blood sample
  • Such a pre-treatment may include a size-fractionation of proteins present in the sample.
  • the above methods can e.g. be used to diagnose Streptococcus pneumoniae infections in an individual.
  • said indicator moiety does not pass through the membrane of a Streptococcus pneumoniae cell.
  • a preferred type of said indicator moiety consists of or comprises an antibody, such as an antibody of the invention as defined herein.
  • an indicator moiety can be used to form an binding reaction product whose amount relates to the amount of the ligand, herein Streptococcus pneumoniae or parts thereof, in a sample.
  • an indicator moiety can be used to form an binding reaction product whose amount relates to the amount of the ligand, herein Streptococcus pneumoniae or parts thereof, in a sample.
  • exemplary assay methods are described herein, the invention is not so limited.
  • the present invention also relates to a diagnostic system, preferably in kit form, for assaying for the presence, and preferably also the amount, of Streptococcus pneu- moniae in a biological sample.
  • a diagnostic system preferably in kit form, for assaying for the presence, and preferably also the amount, of Streptococcus pneu- moniae in a biological sample.
  • the diagnostic system includes, in an amount sufficient to perform at least one assay, an indicator moiety according to the present invention, preferably as a separately packaged reagent, and more preferably also instructions for use.
  • Pack- aged refers to the use of a solid matrix or material such as glass, plastic (e.g., polyethylene, polypropylene or polycarbonate), paper, foil and the like capable of holding within fixed limits an indicator moiety of the present invention.
  • a package can be a glass vial used to contain milligram quantities of a contemplated labelled indicator moiety preparation, or it can be a microtiter plate well to which mi- crogram quantities of a contemplated indicator moiety has been operatively affixed, i.e., linked so as to be capable of binding a ligand.
  • Instructions for use typically include a tangible expression describing the reagent concentration or at least one assay method parameter such as the relative amounts of reagent and sample to be admixed, maintenance time periods for re- agent/sample admixtures, temperature, buffer conditions and the like.
  • the diagnostic method and system of the present invention include as a part of the indicator moiety, a label or indicating means capable of signalling the formation of a binding reaction complex containing an indicator moiety com- plexed with the preselected ligand (i.e. a polypeptide comprising any of the se- quences of SEQ I D N0:1 -91 and/or a fragment thereof).
  • a label or indicating means capable of signalling the formation of a binding reaction complex containing an indicator moiety com- plexed with the preselected ligand (i.e. a polypeptide comprising any of the se- quences of SEQ I D N0:1 -91 and/or a fragment thereof).
  • the preselected ligand i.e. a polypeptide comprising any of the se- quences of SEQ I D N0:1 -91 and/or a fragment thereof.
  • the labelling means can be a fluorescent labelling agent that chemically binds to antibodies or antigens without denaturing them to form a fluorochrome (dye) that is a useful immunofluorescent tracer.
  • Suitable fluorescent labelling agents are fluorochromes such as fluorescein isocyanate (FIC), fluorescein isothiocyante (FITC), 5-dimethylamine-1 -naphthalenesulfonyl chloride (DANSC), tetramethylrhodamine isothiocyanate (TRITC), lissamine, rhodamine 8200 sulphonyl chloride (RB 200 SC).
  • fluorochromes such as fluorescein isocyanate (FIC), fluorescein isothiocyante (FITC), 5-dimethylamine-1 -naphthalenesulfonyl chloride (DANSC), tetramethylrhodamine isothiocyanate (TRITC), l
  • fluorescent materials include umbelliferone, dichlorotriaz- inylamine fluorescein, dansyl chloride or phycoerythrin and the like.
  • a description of immunofluorescence analysis techniques is found in DeLuca, "Immunofluorescence Analysis", in Antibody As a Tool, Marchalonis, et al., eds., John Wiley & Sons, Ltd., pp. 189-231 (1982).
  • Radioactive elements can be useful as labelling agents.
  • An exemplary radio- labeling agent is a radioactive element that produces gamma ray emissions. Elements which themselves emit gamma rays, such as 124 I, 125 I, 128 I, 132 I and 51 Cr represent one class of gamma ray emission-producing radioactive element indicating groups. Particularly preferred is 125 I.
  • Another group of useful labelling means are those elements such as 11 C, 18 F, 15 O and 13 N which themselves emit positrons, or beta emitters, such as 111 lndium of 3 H.
  • Other suitable radioactive materials include 131 I and 35 S.
  • Detection using antibodies can, in other embodiments, be facilitated by coupling the antibody to another detectable substance, such as an enzyme, a prosthetic group, a luminescent materials, or a bioluminescent material.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase
  • suitable prosthetic group complexes include Streptavidin/biotin and avidin/biotin
  • an example of a luminescent material includes luminol
  • examples of bioluminescent materials include luciferase, luciferin, and ae- quorin.
  • the indicating group is an enzyme, such as horseradish peroxidase (HRP) or glucose oxidase.
  • HRP horseradish peroxidase
  • glucose oxidase glucose oxidase
  • additional reagents are required to visualise the fact that a indicator-moiety/ligand complex (immunoreactant) has formed.
  • additional reagents for HRP include hydrogen peroxide and an oxi- dation dye precursor such as diaminobenzidine.
  • An additional reagent useful with glucose oxidase is 2,2'-amino-di-(3-ethyl-benzthiazoline-G-sulfonic acid).
  • proteins can be labelled by metabolic incorporation of radioisotope-containing amino acids provided as a component in the culture medium. See, for example, Galfre et al., Meth. Enzymol., 73:3-46 (1981 ).
  • the techniques of protein conjugation or coupling through activated functional groups are particularly applicable. See, for example, Aurameas, et al., Scand. J. Immunol., Vol. 8 Suppl. 7:7- 23 (1978), Rodwell et al. (1984) Biotech. 3:889-894, and U.S. Pat. No. 4,493,795.
  • assays include: countercurrent immuno-electrophoresis (CIEP), radioimmunoassays, radioimmuno- precipitations, enzyme-linked immuno-sorbent assays (ELISA), Western blot assays, dot blot assays, inhibition or competition assays, and sandwich assays, immunostick (dipstick) assays, simultaneous immunoassays, immunochromatographic assays, immunofiltration assays, latex bead agglutination assays, immunofluorescent assays, biosensor assays, and low-light detection assays (see e.g. also U.S. 4,376,110 and 4,486,530).
  • CIEP countercurrent immuno-electrophoresis
  • ELISA enzyme-linked immuno-sorbent assays
  • Western blot assays include Western blot assays, dot blot assays, inhibition or competition assays, and sandwich assays, immunostick (dipstick) assays, simultaneous immunoassay
  • An example of a suitable assay is an assay wherein a sample, e.g. a serum sample, is separated by electrophoresis and the polypeptide of interest, e.g. SEQ I D NO:16, is subsequently detected by Western blotting.
  • a sample e.g. a serum sample
  • the polypeptide of interest e.g. SEQ I D NO:16
  • the diagnostic kits of the present invention can be used in an "ELISA" format to detect the quantity of a preselected ligand in a fluid sample.
  • ELISA refers to an enzyme-linked immunosorbent assay that employs an antibody or antigen bound to a solid phase and an enzyme-antigen or enzyme-antibody conjugate to detect and quantify the amount of an antigen present in a sample and is readily applicable to the present methods.
  • an indicator moiety of the present invention can be affixed to a solid matrix to form a solid support that comprises a package in the subject diagnostic systems.
  • a reagent is typically affixed to a solid matrix by adsorption from an aqueous medium although other modes of affixation applicable to polypeptides, such as antibodies, can be used that are well known to those skilled in the art.
  • Useful solid matrices are also well known in the art.
  • Such materials are water insoluble and include the cross-linked dextran available un- der the trademark SEPHADEX from Pharmacia Fine Chemicals (Piscataway, N.J.); agarose; beads of polystyrene beads about 1 micron to about 5 millimetres in diameter available from Abbott Laboratories of North Chicago, III.; polyvinyl chloride, polystyrene, cross-linked polyacrylamide, nitrocellulose- or nylon-based webs such as sheets, strips or paddles; or tubes, plates or the wells of a microtiter plate such as those made from polystyrene or polyvinylchloride.
  • a further diagnostic method may utilise the multivalency of an antibody composition of one embodiment of this invention to cross-link ligands, thereby forming an aggregation of multiple ligands and polypeptides, producing a precipitable aggregate.
  • This embodiment is comparable to the well known methods of immune precipitation.
  • This embodiment comprises the steps of admixing a sample with a composition comprising an antibody of this invention to form a binding admixture under binding conditions, followed by a separation step to isolate the formed binding complexes. Typically, isolation is accomplished by centrifugation or filtration to remove the aggregate from the admixture. The presence of binding complexes indicates the presence of the preselected ligand to be detected.
  • the surface-localisation of the polypeptides to which this invention relates makes them highly suitable as targets for binding partners, such as inhibitors.
  • binding partners such as inhibitors.
  • Surface- located polypeptides of a pathogenic microorganism often interact with the host organism.
  • any type of binding partner of a surface-located polypeptide may interfere with host-pathogen interaction. Binding partners thus often antagonise the pathogenicity (virulence) of a microorganism.
  • a binding partner may also be an inhibitor of the polypeptide it binds.
  • the invention relates to methods for the identification of binding partners of the surface-located polypeptides set forth in SEQ ID NO: 1 -91 .
  • Such methods may be biochemical or cell-based.
  • the invention relates to a method for identifying a binding partner of a polypeptide selected from the group consisting of SEQ I D NO:1 -91 , or a fragment thereof, comprising the steps of a. providing a polypeptide selected from the group consisting of SEQ ID NO:1 -91 preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4, or a fragment thereof, b. contacting said polypeptide or fragment with a putative binding partner, and c. determining whether said putative binding partner is capable of binding to said polypeptide or fragment.
  • sequences in step a) of the above method areselected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10.
  • sequences in step a) of the above method are selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • sequences in step a) of the above method are selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ I D NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ I D NO:51 and SEQ ID NO:52.
  • sequences in step a) of the above method are selected from the group consisting of SEQ I D NO:1 1 , SEQ ID NO:12, SEQ ID NO:13, preferably SEQ ID NO:12.
  • said putative binding partner is a host-derived molecule.
  • the polypeptide or fragment thereof is provided immobilised on a solid support, such as e.g. a column or microtiter plate, and, after the contacting step, it is determined whether or not the putative binding partner has bound to the solid support.
  • Immobilisation of the polypeptide or fragment thereof may be through direct binding to the solid support, or through indirect binding e.g. using a specific antibody.
  • a washing step is performed between the contacting step and the determination step, in order to improve the specificity of detection.
  • the putative binding partner is complexed with a detectable label. The putative partner may be labelled before the contacting takes place. Alternatively, labelling may also be performed after the contacting step.
  • immobilisation may be performed after the polypeptide or fragment thereof has been bound to the binding partner.
  • the method is a screening method wherein the method is repeated for a plurality of putative binding partners. Suitable methods to determine binding are well-known in the art, and several of them have been referred to elsewhere herein.
  • a host-derived binding partner of a polypeptide selected from the group of SEQ ID NO:1 -91 such as preferably SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 or SEQ I D NO:4, or for example preferably selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10; or from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18, or from the group consisiting of SEQ I D NO:1 , SEQ I D NO:2, SEQ I D NO:3, SEQ ID NO:4, SEQ ID NO:14
  • Binding can then be detected using antibodies specific for the polypeptide of interest or fragment thereof.
  • the host binding partner to which the polypeptide or fragment thereof has bound can subsequently be identified by elution from the blot and subsequent analysis by mass spectrometry, or by any other technique known in the art.
  • the binding partner of a surface-located polypeptide of a pathogenic organism is a host-derived molecule, then such an interaction between the surface- located polypeptide and the host may be important for the virulence of the bacterium.
  • Compounds that interfere with the interaction of the surface-located polypeptide and the host-derived binding partner may thus be suitable for prevention or treatment of Streptococcus pneumoniae infections.
  • another method of the invention relates to a method of identifying an inhibitor of the interaction of any of the surface-located Streptococcus pneumoniae polypeptides of SEQ ID NO:1 -91 with a host-derived binding partner comprising the steps of: a. providing any of the polypeptides of SEQ I D NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 and SEQ I D
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:10.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ I D NO:45, SEQ ID NO:46, SEQ I D NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51 and SEQ ID NO:52.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 1 , SEQ ID NO:12, SEQ ID NO:13.
  • step c. and d. may be performed in two different sample compartments.
  • step d. may be performed by adding the putative inhibitor to the mixture of step c.
  • the method is repeated for a plurality of putative inhibitors.
  • binding partners that inhibit an activity of a surface-located polypeptide.
  • Such activity may be enzymatic activity, transport activity, or any type of other biochemical or cellular activity, preferably enzymatic activity.
  • Preferred host-derived binding partners are host polypeptides and host lipids. Binding may e.g. be determined as described by Szymanski and Armstrong (1996) Infect. Immun. 64:3467-3474.
  • the binding between the binding partner and the surface-located polypeptide or fragment thereof has a dissociation constant or Kd of less than 5 X 10 "6 M, such as less than 10 " 6 M, e.g. less than 5 X 10 "7 M, such as less than 10 "7 M, e.g. less than 5 X 10 "8 M, such as less than 10 "8 M, e.g. less than 5 X 10 "9 M, such as less than 10 "9 M, e.g. less than 5 X 10 "10 M, such as less than 10 "10 M, e.g. less than 5 X 10 "11 M, such as less than 10 " 11 M, e.g. less than 5 X 10 "12 M, such as less than 10 "12 M.
  • Dissociation constants can e.g. be determined by surface plasmon resonance analysis.
  • an aspect of the present invention relates to a method for identifying a compound with antibacterial activity against Streptococcus pneumoniae comprising the steps of a.
  • a sensitised cell which has a reduced level of any of the polypeptides of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 and SEQ ID NO:4, and b. determining the sensitivity of said cell to a putative antibacterial compound, for instance by a growth assay.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ I D NO:10.
  • the sequence in step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • the sequence in step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ I D
  • step a) is selected from the group consisting of SEQ I D NO:1 1 , SEQ ID NO:12, SEQ ID NO:13.
  • the method is a screening method wherein the procedure is repeated for a plurality of putative antibacterial compounds.
  • Preferred putative antibacterial compounds are ones that do not pass through the membrane of a wild-type Streptococcus pneumoniae cell.
  • the rationale behind this approach is that a cell with a lower level of the surface- located polypeptide will exhibit increased sensitivity to cytotoxic compounds, allowing identification of antibacterial compounds with low potency that are missed when using wild-type cells for the assay.
  • Compounds identified by this method will be often need to be modified in order to improve potency. This can be done by chemical modification.
  • Inhibition of the activity of a surface-located polypeptide may affect the viability (i.e. survival, growth and/or proliferation) of the bacterium.
  • viability i.e. survival, growth and/or proliferation
  • Streptococcus pneumoniae Methods for testing essentiality of a Streptococcus pneumoniae gene have been described in the prior art, e.g. in Chan et al. (2002) J.
  • Inhibitors of essential surface-located polypeptides may not need to enter the bacterial cell to be able to affect its viability. Thus, generally fewer requirements are posed on the structure of an inhibitor of an essential surface-located target polypeptide than on an inhibitor of an intracellular target, to be effective as an antibacterial agent.
  • the invention relates to a method for identifying an inhibitor of a polypeptide selected from the group consisting of SEQ ID NO:1 -91 , comprising the steps of a. providing two cells which differ in the level of any of the polypeptides of SEQ ID NO:1 -91 , preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ I D NO:3 and SEQ I D NO:4, b. determining the sensitivity of said cells to a putative inhibitor, for instance by a growth assay, and c. determining whether said two cells are differently affected by the presence of said putative inhibitor.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ I D NO:10.
  • the sequence in step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • the sequence in step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ I D NO:50, SEQ ID NO:51 and SEQ ID NO:52.
  • step a) is selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13.
  • the method is repeated for a plurality of putative inhibitors.
  • Preferred inhibitors are ones that do not pass through the membrane of a Streptococcus pneumoniae cell.
  • the two cells with different activity of the polypeptide of interest are a wild-type cell (or other cell with wild-type activity of the gene of interest) and a sensitised cell with a reduced activity of the polypeptide of interest.
  • the different or reduced level in the sensitised cell can be a different or reduced expression level of the gene of interest (resulting in a different or reduced copy number of the polypeptide). This can be accomplished by putting the gene under control of a regulatable promoter or by regulatable expression of an antisense RNA which inhibits translation of an mRNA encoding the essential polypeptide.
  • the different or reduced activity can be a different or reduced activity of the polypeptide of interest, e.g.
  • Sensitised cells may be obtained by growing a conditional-expression Streptococcus pneumoniae mutant strain in the presence of a concentration of inducer or repressor or other conditions which provide a level of a gene product required for bacterial viability such that the presence or absence of its function becomes a rate-determining step for viability.
  • the sub-lethal expression of the target gene may be such that growth inhibition is at least about 10%, such as at least about 25%, e.g. at least about 50%, such as at least about 75%, e.g. at least 90%, such as at least 95%.
  • sensitised cells are obtained by reduction of the level activity of a polypeptide required for bacterial viability using a mutation, such as a temperature-sensitive mutation, in the polypeptide.
  • a mutation such as a temperature-sensitive mutation
  • Growing such cells at an intermediate temperature between the permissive and restrictive temperatures produces cells with reduced activity of the gene product.
  • This approach may also be combined with the conditional-expression approach. In this combined approach, cells are created in which there is a temperature-sensitive mutation in the gene of interest and in which this gene is also conditionally-expressed.
  • growth inhibition can be measured by directly comparing the amount of growth, measured by the optical density of the culture relative to uninoculated growth medium, in an experimental sample with that of a control sample.
  • Alternative methods for assaying cell proliferation include measuring green fluorescent protein (GFP) reporter construct emissions, various enzymatic activity assays, and other methods well known in the art.
  • GFP green fluorescent protein
  • Other parameters used to measure viability include e.g. colony forming units.
  • the above method may be performed in solid phase, liquid phase, a combination of the two preceding media, or in vivo. Multiple compounds may be transferred to agar plates and simultaneously tested using automated and semi-automated equipment.
  • Cell-based assays of the present invention are capable of detecting compounds exhibiting low or moderate potency against the target molecule of interest because such compounds are substantially more potent on sensitised cells than on non- sensitised cells.
  • the effect may be such that a test compound may be two to several times more potent, e.g. at least 10 times more potent, such as at least 20 times more potent, e.g. at least 50 times more potent, such as at least 100 times more potent, e.g. at least 1000 times more potent, or even more than 1000 times more potent when tested on the sensitised cells as compared to non-sensitised cells.
  • a mutant Streptococcus pneumoniae strain that overexpresses a surface-located polypeptide can also be used to identify a compound that inhibits such a polypeptide. If the compound is cytotoxic, overexpression of the target polypeptide can make cells more resistant.
  • the invention also relates to a method for finding an inhibitor of any of the surface-located Streptococcus pneumoniae polypeptides of SEQ ID NO:1 - 91 comprising the steps of a.
  • SEQ ID NO: 1 -91 preferably selected from the group consisting of SEQ ID NO:1 or SEQ ID NO:2, SEQ ID NO:3 and SEQ ID NO:4, wherein one cell contains a substantially wild-type copy number of said polypeptide and the other cell contains higher than wild-type copy number of said polypeptide, b. determining the sensitivity of said cells to a putative inhibitor, for instance by a growth assay, and c. determining whether or not said two cells are differently affected by the presence of said putative inhibitor.
  • the sequence in step a) is selected from the group consisting of SEQ I D NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ I D NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 and SEQ I D
  • the sequence in step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 and SEQ ID NO:18.
  • step a) is selected from the group consisting of SEQ ID NO:1 , SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4,
  • SEQ ID NO:14 SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ I D NO:50, SEQ ID NO:51 and SEQ ID NO:52.
  • step a) is selected from the group consisting of SEQ ID NO:1 1 , SEQ ID NO:12 and SEQ ID NO:13.
  • Overexpression may be achieved using strong promoters or by introducing multiple copies of the structural gene for a surface-located polypeptide.
  • overexpression of polypeptides that are not the cellular target of an inhibitor can make cells resistance to an inhibitor, inhibition of the target polypeptide of interest by a putative inhibitor will need to be verified by other means, such as e.g. a biochemical assay.
  • the cellular methods described above can be used to identify compounds that reduce the expression level of a target, and thereby its copy number, e.g. by interfering with gene regulation.
  • the method is repeated for a plurality of candidate compounds.
  • the invention relates to the mutant Streptococcus pneumoniae strains used in the cell-based methods described herein, such as strains in which the gene encoding the surface-located polypeptide is placed under the control of a heterologous regulatable promoter, strains carrying temperature-sensitive alleles of the surface-located polypeptides, and strains overexpressing the surface-located polypeptides.
  • Other methods of interfering with bacterial growth by targeting surface-located polypeptides, such as any of the polypeptides of SEQ ID NO:1 -91 include suppression of gene expression using specific antisense molecules, such antisense RNA or DNA, and using ribozyme molecules specific for mRNA encoding the essential surface-located polypeptides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La présente invention porte sur des polypeptides situés à la surface des cellules de Streptococcus pneumoniae et sur leur utilisation dans l'immunisation contre une infection par les streptocoques, dans le diagnostic de Streptococcus et dans l'identification de composés ayant une activité anti-Streptococcus. Sous un autre aspect, l'invention porte sur des anticorps capables de reconnaître des polypeptides situés à la surface des cellules de Streptoccus pneumoniae et sur leurs utilisations.
PCT/DK2008/050077 2007-03-30 2008-03-28 Polypeptides de streptococcus pneumoniae situés en surface pour une utilisation dans des compositions de vaccin WO2008119358A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US90939807P 2007-03-30 2007-03-30
DKPA200700507 2007-03-30
DKPA200700507 2007-03-30
US60/909,398 2007-03-30

Publications (2)

Publication Number Publication Date
WO2008119358A2 true WO2008119358A2 (fr) 2008-10-09
WO2008119358A3 WO2008119358A3 (fr) 2008-12-24

Family

ID=39643765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2008/050077 WO2008119358A2 (fr) 2007-03-30 2008-03-28 Polypeptides de streptococcus pneumoniae situés en surface pour une utilisation dans des compositions de vaccin

Country Status (1)

Country Link
WO (1) WO2008119358A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039947A1 (en) * 2010-03-12 2013-02-14 Children's Medical Center Corporation Novel immunogens and methods for discovery and screening thereof
US9393294B2 (en) 2011-01-20 2016-07-19 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US9714283B2 (en) 2014-10-28 2017-07-25 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US10105412B2 (en) 2009-06-29 2018-10-23 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US11013793B2 (en) 2018-09-12 2021-05-25 Affinivax, Inc. Multivalent pneumococcal vaccines
US11576958B2 (en) 2013-02-07 2023-02-14 Children's Medical Center Corporation Protein antigens that provide protection against pneumococcal colonization and/or disease
US12036276B2 (en) 2021-09-09 2024-07-16 Affinivax, Inc. Multivalent pneumococcal vaccines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077021A2 (fr) * 2001-03-27 2002-10-03 Chiron Srl. Proteines et acides nucleiques de streptococcus pneumoniae
WO2006084467A1 (fr) * 2005-02-11 2006-08-17 Ace Biosciences A/S Polypeptides de streptococcus pneumoniae situes en surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077021A2 (fr) * 2001-03-27 2002-10-03 Chiron Srl. Proteines et acides nucleiques de streptococcus pneumoniae
WO2006084467A1 (fr) * 2005-02-11 2006-08-17 Ace Biosciences A/S Polypeptides de streptococcus pneumoniae situes en surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProt [Online] 1 March 2003 (2003-03-01), "RecName: Full=UPF0371 protein spr0309;" XP002490560 retrieved from EBI accession no. UNIPROT:Q8CZ70 Database accession no. Q8CZ70 & HOSKINS J ET AL: "Genome of the Bacterium Streptococcus pneumoniae Strain R6" JOURNAL OF BACTERIOLOGY, WASHINGTON, DC, US, vol. 183, no. 19, 1 October 2001 (2001-10-01), pages 5709-5717, XP002231307 ISSN: 0021-9193 *
DATABASE UniProt [Online] 1 October 2001 (2001-10-01), "RecName: Full=UPF0371 protein SP_0341;" XP002490561 retrieved from EBI accession no. UNIPROT:Q97SJ8 Database accession no. Q97SJ8 & TETTELIN HERVE ET AL: "Complete genome sequence of a virulent isolate of Streptococcus pneumoniae" SCIENCE (WASHINGTON D C), vol. 293, no. 5529, 20 July 2001 (2001-07-20), pages 498-506, ISSN: 0036-8075 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207375B2 (en) 2009-06-29 2021-12-28 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US10105412B2 (en) 2009-06-29 2018-10-23 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US20130039947A1 (en) * 2010-03-12 2013-02-14 Children's Medical Center Corporation Novel immunogens and methods for discovery and screening thereof
US11235047B2 (en) 2010-03-12 2022-02-01 Children's Medical Center Corporation Immunogens and methods for discovery and screening thereof
US9393294B2 (en) 2011-01-20 2016-07-19 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US10188717B2 (en) 2011-01-20 2019-01-29 Genocea Biosciences, Inc. Vaccines and compositions against Streptococcus pneumoniae
US11576958B2 (en) 2013-02-07 2023-02-14 Children's Medical Center Corporation Protein antigens that provide protection against pneumococcal colonization and/or disease
US12083173B2 (en) 2013-02-07 2024-09-10 Children's Medical Center Corporation Protein antigens that provide protection against pneumococcal colonization and/or disease
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US11780906B2 (en) 2014-10-28 2023-10-10 Adma Biomanufacturing, Llc Compositions and methods for the treatment of immunodeficiency
US10683343B2 (en) 2014-10-28 2020-06-16 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US9969793B2 (en) 2014-10-28 2018-05-15 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US9714283B2 (en) 2014-10-28 2017-07-25 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
US11339206B2 (en) 2014-10-28 2022-05-24 Adma Biomanufacturing, Llc Compositions and methods for the treatment of immunodeficiency
US11084870B2 (en) 2017-03-15 2021-08-10 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US11897943B2 (en) 2017-03-15 2024-02-13 Adma Biomanufacturing, Llc Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
US11701416B2 (en) 2018-09-12 2023-07-18 Affinivax, Inc. Multivalent pneumococcal vaccines
US11013793B2 (en) 2018-09-12 2021-05-25 Affinivax, Inc. Multivalent pneumococcal vaccines
US12036276B2 (en) 2021-09-09 2024-07-16 Affinivax, Inc. Multivalent pneumococcal vaccines

Also Published As

Publication number Publication date
WO2008119358A3 (fr) 2008-12-24

Similar Documents

Publication Publication Date Title
US20090202528A1 (en) Surface-Located Streptococcus Pneumoniae Polypeptides
KR101741426B1 (ko) 변형된 스트렙토코커스 뉴모니아 뉴몰리신(ply) 폴리펩타이드
WO2008119358A2 (fr) Polypeptides de streptococcus pneumoniae situés en surface pour une utilisation dans des compositions de vaccin
KR101595234B1 (ko) 면역원성 폴리펩타이드 및 단일클론 항체
KR100943302B1 (ko) 메치실린-내성 황색포도상구균 특이적 항체, 상기 항체를 이용하는 메치실린 내성 황색포도상구균 탐지방법, 및 탐지키트
US8906635B2 (en) Methods of diagnosing Clostridium difficile infection
JP2008515388A (ja) マイコバクテリウム・ツベルクローシス感染症の診断方法と治療方法およびそのための試薬
KR101528169B1 (ko) 아비박테리움 파라갈리나룸 항체의 검출방법 및 키트
EP1694697B1 (fr) Polypeptides de campylobacter jejuni localises en surface
CN101163499A (zh) 表面定位的肺炎链球菌多肽
KR20100139096A (ko) 조성물, 방법 및 키트
KR20070085236A (ko) 뉴몰리신에 대한 결합원
KR101080071B1 (ko) 재조합 n 단백질에 대한 단클론 항체를 이용한 리프트계곡열 경합적 효소결합면역측정법
CA2571673A1 (fr) Nouvelles methodes de diagnostic pour le traitement des infections par p. aeruginosa et reactifs pour ces methodes
KR101258611B1 (ko) 북미형 및 유럽형 prrsv 항원을 포함하는 분리된 단백질 및 그의 용도
Wiens et al. Mapping of neutralizing epitopes on Renibacterium salmoninarum p57 by use of transposon mutagenesis and synthetic peptides
KR20120133150A (ko) 신장형 및 호흡기형 감염성 기관지염 바이러스를 인식하는 항체 및 그의 용도
AU2005256177A1 (en) Novel methods of diagnosis of treatment of P. aeruginosa infection and reagents therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734541

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08734541

Country of ref document: EP

Kind code of ref document: A2