WO2008110539A1 - Matériau composite renforcé par fibres - Google Patents

Matériau composite renforcé par fibres Download PDF

Info

Publication number
WO2008110539A1
WO2008110539A1 PCT/EP2008/052836 EP2008052836W WO2008110539A1 WO 2008110539 A1 WO2008110539 A1 WO 2008110539A1 EP 2008052836 W EP2008052836 W EP 2008052836W WO 2008110539 A1 WO2008110539 A1 WO 2008110539A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
component
thermoplastic matrix
fiber composite
styrene
Prior art date
Application number
PCT/EP2008/052836
Other languages
German (de)
English (en)
Inventor
Martin Weber
H. Schuermann
Martin Fleischhauer
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2008110539A1 publication Critical patent/WO2008110539A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers

Definitions

  • the present invention relates to fiber composites containing
  • thermoplastic matrix M comprising
  • thermoplastic matrix M 0 to 99% by weight, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile copolymer and / or of an ⁇ -methylstyrene-acrylonitrile copolymer as component A,
  • thermoplastic matrix M 1 to 100% by weight, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile-maleic anhydride copolymer and / or of an ⁇ -
  • thermoplastic matrix M 0 to 50% by weight, based on the weight of the thermoplastic matrix M, of plastics-compatible additives as component D,
  • thermoplastic matrix M and the glass fibers G gives 100% by weight
  • Fibrous composites with a thermoplastic matrix for example in the automotive sector, already find numerous applications.
  • thermoplastic matrix system in terms of quantity is polypropylene. Due to the thermomechanical properties of polypropylene which are not sufficiently good in all fields of application, however, such composites are only of limited suitability for thermally and mechanically highly loaded structural components.
  • Fiber-reinforced plastic matrices based on other polymers are also known and described in the literature, for example thermoplastic mixtures with short glass fibers (see, for example, RN Rothon, Particulate Fillers for Polymers, Vol. 12, 2002, Rapra Reports).
  • reinforced molding compositions which in addition styrene copolymers, in particular styrene-acrylonitrile copolymers, a terpolymer having functional groups.
  • the fiber length in the reinforced molding compositions can vary widely, from less than 1 mm to continuous fibers; preferred fiber lengths are 6 cm or less.
  • such matrices often have too high a melt viscosity.
  • the object of the present invention is to provide fiber composites which are based on a comparatively temperature-resistant and cost-effective styrene-acrylonitrile copolymer matrix and are compared with the prior art.
  • known fiber composites under elevated temperatures for example 80 0 C, an improved shear strength, in particular an improved transverse longitudinal shear strength, have.
  • thermoplastic matrix M comprises a copolymer containing maleic anhydride as a monomer component
  • the viscosity number VZ of the mixture of components A and B is equal to or less than 85 ml / g and the length of the glass fibers G is equal to or greater than 50 mm.
  • the fiber composites according to the invention are based on a comparatively temperature-resistant and inexpensive styrene-acrylonitrile copolymer matrix and sen ggü. known fiber composites under elevated temperatures, for example 80 0 C, an improved shear strength, in particular an improved transverse longitudinal shear strength on.
  • the fiber composites of the invention contain 15 to 95 wt .-%, preferably 20 to 90 wt .-%, particularly preferably 25 to 70 wt .-%, of the thermoplastic matrix M and 5 to 85 wt .-%, preferably 10 to 80 wt. -%, particularly preferably 30 to 75 wt .-%, glass fibers G, wherein the wt .-% of the matrix M and the glass fibers G respectively based on the weight of the fiber composite material and together 100 wt .-% result.
  • thermoplastic matrix M of the fiber composite materials according to the invention comprises
  • component B 1 to 100% by weight, preferably 7.5 to 55% by weight, particularly preferably 10 to 50% by weight, of component B,
  • wt .-% 0 to 50 wt .-%, preferably 0 to 47.5 wt .-%, particularly preferably 0 to 40 wt .-% component D, wherein the wt .-% are each based on the weight of the thermoplastic matrix M and together 100% by weight.
  • thermoplastic matrix M may contain other, different from the glass fibers G, components.
  • thermoplastic matrix M As component A of the thermoplastic matrix M are in principle all known in the art and described in the literature styrene-acrylonitrile copolymers, ⁇ -methylstyrene-acrylonitrile copolymers or mixtures thereof used, if their mixture with component B a viscosity number VZ (measured according to DIN 53727 at 25 ° C. as 0.5% strength by weight solution in dimethylformamide, this method of measurement also applies to all viscosity numbers VZ mentioned below which are equal to or less than 85 ml / g.
  • Preferred components A are composed of 50 to 90 wt .-%, preferably 60 to 80 wt .-%, in particular 65 to 78 wt .-%, styrene and 10 to 50 wt .-%, preferably 20 to 40 wt .-% , in particular 22 to 35 wt .-%, acrylonitrile and 0 to 5 wt .-%, preferably 0 to 4 wt .-%, in particular 0 to 3 wt .-%, further monomers, wherein the weight% in each case are based on the weight of component A and together give 100% by weight.
  • Further preferred components A are composed of 50 to 90 wt .-%, preferably 60 to 80 wt .-%, in particular 65 to 78 wt .-%, ⁇ -methylstyrene and 10 to 50 wt .-%, preferably 20 to 40 wt %, in particular 22 to 35% by weight, acrylonitrile and 0 to 5% by weight, preferably 0 to 4% by weight, in particular 0 to 3% by weight, further monomers, where the% by weight each based on the weight of component A and together give 100 wt .-%.
  • Also preferred components A are mixtures of these styrene-acrylonitrile copolymers and these ⁇ -styrene-acrylonitrile copolymers.
  • all monomers which are copolymerizable and other than maleic anhydride can be used, for example p-methylstyrene, t-butylstyrene, vinylnaphthalene, alkylacrylates and / or alkylmethacrylates, for example those with C 1 to C 5 alkyl radicals, N-phenylmaleimide or mixtures thereof.
  • the copolymers of component A can be prepared by methods known per se. You can z. B. by radical polymerization, in particular by emulsion, suspension, solution or bulk polymers.
  • thermoplastic matrix M in principle all styrene-acrylonitrile-maleic anhydride copolymers known to those skilled in the art and described in the literature, ⁇ -methylstyrene-acrylonitrile-maleic anhydride copolymers or mixtures thereof can be used, provided that their mixture with component A is equal to a viscosity number VZ or less than 85 ml / g.
  • Preferred components B are composed of 60 to 90% by weight, preferably 70 to 84% by weight, in particular 72 to 77% by weight, of styrene and / or ⁇ -methylstyrene and 9.8 to 39.8% by weight. %, preferably 15.5 to 29.5 wt .-%, in particular 22 to 27 wt .-%, acrylonitrile and 0.2 to 5 wt .-%, preferably 0.5 to 4 wt .-%, in particular 1 to 3 wt .-%, maleic anhydride, wherein the wt .-% each based on the weight of component B and together give 100 wt .-%.
  • Component B is particularly preferably a styrene-acrylonitrile-maleic anhydride copolymer of the abovementioned compositions.
  • component B may contain further copolymerizable monomers, for example in amounts of up to 5% by weight, based on the weight of component B.
  • Component B can be prepared in a manner known per se.
  • a suitable method is to dissolve the monomer components of the copolymer, e.g. As the styrene, maleic anhydride or acrylonitrile in a suitable solvent, for example methyl ethyl ketone (MEK).
  • MEK methyl ethyl ketone
  • One or more chemical initiators may be added to this solution. Suitable initiators are the Expert in principle known. Suitable examples are peroxides. In another embodiment, the initiation takes place not chemically but thermally. Subsequently, the mixture is polymerized for several hours at elevated temperature. Subsequently, the solvent and the unreacted monomers are removed in a conventional manner.
  • components B and, if present, A usually have viscosity numbers VZ equal to or less than 85 ml / g, in particular those in the range from 40 to 85 ml / g, preferably in the range from 50 to 80 ml / g, particularly preferably in Range from 60 to 75 ml / g.
  • the viscosity number VZ of the mixture of components A and B is equal to or less than 85 ml / g, in particular in the range from 40 to 85 ml / g, preferably in the range from 50 to 80 ml / g, particularly preferably in the range from 60 to 75 ml / g is (if the thermoplastic matrix M contains no component A, these viscosity numbers VZ mentioned are of course essential to the invention features of component B).
  • the thermoplastic matrix M may contain one or more rubber-elastic polymers as component C.
  • rubber-elastic polymers all rubber-elastic polymers or elastomers known to the person skilled in the art are suitable.
  • graft rubbers based on butadiene, butadiene / styrene, EPDM (ethylene-propylene-diene rubbers) or acrylates are suitable.
  • These rubber-elastic polymers generally have a glass transition temperature Tg ⁇ 0 0 C.
  • elastomeric polymer C in the context of the present invention, in particular those are suitable which contain a diene rubber based on dienes such. Butadiene or isoprene, an alkyl acrylate rubber based on alkyl esters of acrylic acid, such as
  • the rubber-elastic polymer C is particularly preferably a graft polymer comprising a graft base, in particular a crosslinked diene or acrylate graft base, and one or more graft shells, in particular one or more styrene, acrylonitrile or methyl methacrylate graft shells.
  • thermoplastic matrix M may contain one or more plastic-compatible additives as component D.
  • plastic additives for the purposes of the present invention are, for example, stabilizers and antioxidants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, dyes and pigments and plasticizers.
  • Oxidation inhibitors and heat stabilizers that can be added to the thermoplastic matrix M according to the invention are, for. B. halides of metals of Group I of the Periodic Table, z. For example, sodium, potassium, lithium halides. Furthermore, zinc fluoride and zinc chloride can be used. Further, sterically hindered phenols, hydroquinones, substituted members of this group, secondary aromatic amines, optionally in conjunction with phosphorus-containing acids or their salts, and mixtures of these compounds, preferably in concentrations up to 1 wt .-%, based on the weight of the thermoplastic Matrix M, usable.
  • UV stabilizers are various substituted resorcinols, salicylates, benzotriazoles and benzophenones, which are generally used in amounts of up to 2% by weight, based on the weight of the thermoplastic matrix M.
  • Lubricants and mold release agents which can generally be added in amounts of up to 1% by weight, based on the weight of the thermoplastic matrix M, of stearic acid, stearyl alcohol, stearic acid alkyl esters and amides and esters of pentaerythritol with long-chain fatty acids ,
  • stearic acid stearyl alcohol
  • stearic acid alkyl esters and amides and esters of pentaerythritol with long-chain fatty acids
  • salts of calcium, zinc or aluminum of stearic acid and dialkyl ketones eg. B. distearyl ketone used.
  • Particularly suitable according to the invention is calcium stearate.
  • glass fibers G all fiber fibers known to the person skilled in the art and described in the literature can be used in the fiber composites according to the invention (see, for example, Milewski, JV, Katz, HS "Handbook of Reinforcements for Plastics", p.
  • the length of these glass fibers is equal to or greater than 50 mm; preferred lengths of the glass fibers G, if these are not continuous fibers, are in the range from 50 mm to 100 m, in particular 60 mm to 90 m preferably 70 mm to 50 m; very particularly preferred glass fibers G are rovings, ie a plurality of glass fibers combined in parallel to one strand, the abovementioned lengths and endless fibers, ie glass fibers having a length which is practically unlimited.
  • the diameters of the glass fibers G are usually in the range from 0.1 to 300 .mu.m, preferably from 1 to 100 .mu.m, more preferably from 3 to 50 .mu.m, very particularly preferably from 5 to 30 .mu.m.
  • the glass fibers G can not only be used as single fibers, strands or bundles, in the form of, for example, mats, fabrics or nonwovens their use is basically possible.
  • the glass fibers G may consist, for example, of A, E, C, E-CR, D, R, M or S glass (see DIN 1259: 2001-09 [glass, part 1]).
  • the glass fibers G can be provided with a size, for example a polyurethane shale, a titanate size, or in particular a size of silane compounds, which improves the compatibility of the fiber with the thermoplastic matrix M.
  • Silane compounds suitable as size are e.g. those of the formula I.
  • X is NH 2 -, CH 2 -CH-, HO- n is an integer from 2 to 10, preferably 3 or 4 m, integer from 1 to 5, preferably 1 or 2 k, integer from 1 to 3, preferably 1.
  • Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X instead of NH 2 .
  • the proportion of sizing is generally 0.05 to 5% by weight, based on the weight of the glass fibers G.
  • Preferred fiber composites contain
  • thermoplastic matrix M comprising A) 45 to 92.5% by weight, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile copolymer and / or of an ⁇ -methylstyrene-acrylonitrile copolymer as component A,
  • component B 7.5 to 55 wt .-%, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile-maleic anhydride copolymer and / or an ⁇ -methylstyrene-acrylonitrile-maleic anhydride copolymer, containing 0.5 to 4 wt .-% maleic anhydride, based on the weight of component B, as component B,
  • thermoplastic matrix M 0 to 47.5% by weight, based on the weight of the thermoplastic matrix M, of plastics-compatible additives as component D,
  • glass fibers G having a fiber length in the range of 60 mm to 90 m,
  • thermoplastic matrix M wherein the sum of the thermoplastic matrix M and the glass fibers G gives 100 wt .-%
  • Particularly preferred fiber composites contain
  • thermoplastic matrix M comprising
  • thermoplastic matrix M 50 to 90% by weight, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile copolymer as component A,
  • component B 10 to 50% by weight, based on the weight of the thermoplastic matrix M, of a styrene-acrylonitrile-maleic anhydride copolymer containing 1 to 3% by weight of maleic anhydride, based on the weight of component B, as component B, C) 0 to 40 wt .-%, based on the weight of the thermoplastic matrix M, of a rubber-elastic polymer based on butadiene and / or acrylates as component C, and
  • thermoplastic matrix M 0 to 40% by weight, based on the weight of the thermoplastic matrix M, of plastics-compatible additives as component D,
  • thermoplastic matrix M wherein the sum of the thermoplastic matrix M and the glass fibers G gives 100 wt .-%
  • thermoplastic matrix M is carried out by methods known to those skilled in the art, for example by mixing a melt of component B with optionally further components A, C and / or D, with devices known to those skilled in the art, for example screw extruders, kneaders or mixers , preferably at temperatures in the range of 160 to 320 ° C, in particular at 180 to 310 ° C.
  • the components can be supplied in each case pure form the mixing devices. However, individual components can also be premixed first and then mixed with the other components.
  • thermoplastic matrix M can be prepared and in a separate second step, the impregnation of the glass fibers G with the melt of the matrix M done.
  • melt blending of component B with possibly further components A, C and / or D and also impregnation of glass fibers G with the formed matrix M can take place simultaneously in a single process step.
  • the impregnation of the glass fibers G with the thermoplastic matrix M is carried out by methods known to the person skilled in the art, for example the manual lamination, fiber spraying, conical continuous impregnation, winding or spinning process.
  • the impregnation is preferably carried out by the pultrusion method, the so-called pultrusion (for example described in "M. Fleischhauer, H. Schürmann, Qualification and Testing of a Thermoplastic Matrix System for Structural Components in Traffic Engineering, Volume 11, National Symposium SAMPE GmbH eV 2005 ").
  • the fiber composite materials produced in this way can be further processed in a subsequent work step, e.g. by pressing, joining, sawing, turning, milling, grinding, gluing, welding, punching or drilling, preferably by pressing.
  • the components B and optionally A, C and D are melt-mixed to form the thermoplastic matrix M, then the glass fibers G with the thermoplastic matrix M in the pultrusion process, the so-called pultrusion soaked, and optionalally, the fiber composite material thus formed subjected to a subsequent pressing step.
  • fiber composite materials for example, by the processing methods mentioned above, pressing, joining, sawing, turning, milling, grinding, gluing, welding, stamping or drilling fiber composite components available.
  • fiber composite components are available for use in the automotive sector and in mechanical and plant engineering.
  • the fiber composites according to the invention are based on a comparatively temperature-resistant and cost-effective styrene-acrylonitrile copolymer matrix and have a comparison.
  • known fiber composites under elevated temperatures for example 80 0 C, an improved shear strength, in particular an improved transverse longitudinal shear strength on.
  • Viscosity number VZ [ml / g] The viscosity number VZ of components A and B or of the mixture of components A and B was measured in accordance with DIN 53727 at 25 ° C. as a 0.5% strength by weight solution in dimethylformamide.
  • the transverse longitudinal shear strength R ⁇ ⁇ ⁇ at 80 0 C was determined in a bending test according to DIN 53398-2.
  • thermoplastic matrix M Preparation of the thermoplastic matrix M
  • Table 1 parts by weight of components A and B, VZ of the mixtures of A and B.
  • thermoplastic matrices M of the compositions mentioned in Table 1 were melted in a single-screw extruder and fed to the drinking unit of a pultrusion plant. At the same time, the glass fiber rovings G-1 were pulled in. The take-off speed was 2 m / min. The proportion by weight of the glass fibers G, based on the total weight of the matrix M and the glass fibers G, was 69% by weight in each case.
  • Fiber composite components were produced from the fiber composite materials obtained by melting and pressing in an electrically heated hydraulic press at a maximum pressing force of 120 kN (dimensions of the fiber composite components: length 380 mm, width 40 mm, height 6 mm).
  • the proportion by weight of the glass fibers G based on the total weight of the matrix M and the glass fibers G, increased to 71% by weight in each case. Samples of a length of 60 mm, a width of 20 mm and a height of 6 mm were milled out of these fiber composite components.
  • Table 2 shows the transverse longitudinal shear strength R ⁇ ⁇ ⁇ and the longitudinal compressive strength R LD of the specimens thus obtained.
  • the examples demonstrate the improved shear strength at elevated temperatures, in particular the improved transverse longitudinal shear strength, of the fiber composite materials or fiber composite components according to the invention.

Abstract

L'invention concerne des matériaux composites renforcés par fibres contenant 15 à 95 % en poids par rapport au poids du matériau composite, d'une matrice thermoplastique M contenant A) 0 à 99 % en poids par rapport au poids de la matrice thermoplastique M, d'un copolymère de styrène-acrylnitrile et/ou d'un copolymère d'α-méthylstyrène-acrylnitrile en tant que composant A; B) 1 à 100 % en poids par rapport au poids de la matrice thermoplastique M, d'un copolymère de styrène-acrylnitrile-anhydride d'acide maléique et/ou d'un copolymère d'α-méthylstyrène-acrylnitrile-anhydride d'acide maléique en tant que composant B; C) 0 à 50 % en poids par rapport au poids de la matrice thermoplastique M, d'un polymère à élasticité entropique en tant que composant C; et D) 0 à 50 % en poids par rapport au poids de la matrice thermoplastique M, d'additifs habituels du plastique en tant que composant D, la somme des composants A, B, C et D étant de 100 % en poids. Les matériaux composites contiennent également 5 à 85 % en poids par rapport au poids du matériau composite, de fibres de verre G, la somme de la matrice thermoplastique M et des fibres de verre G étant de 100 % en poids. L'indice de viscosité VZ du mélange des composants A et B (mesuré selon DIN 53727 à 25 °C en tant que solution à 0,5 % en poids dans du diméthylformamide) est inférieur ou égal à 85 ml/g et la longueur des fibres de verre G est supérieure ou égale à 50 mm. L'invention concerne également des procédés de fabrication de matériaux composites renforcés par fibres et des éléments composites composés de ces matériaux composites renforcés par fibres.
PCT/EP2008/052836 2007-03-13 2008-03-11 Matériau composite renforcé par fibres WO2008110539A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07104018.2 2007-03-13
EP07104018 2007-03-13

Publications (1)

Publication Number Publication Date
WO2008110539A1 true WO2008110539A1 (fr) 2008-09-18

Family

ID=39469445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052836 WO2008110539A1 (fr) 2007-03-13 2008-03-11 Matériau composite renforcé par fibres

Country Status (1)

Country Link
WO (1) WO2008110539A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251377A1 (fr) 2009-05-11 2010-11-17 Basf Se Styrocopolymères renforcés
WO2011023541A1 (fr) * 2009-08-31 2011-03-03 Basf Se Procédé de fabrication de copolymères san renforcés par des fibres de verre présentant une résistance aux impacts améliorée et une usinabilité simplifiée
WO2013139769A1 (fr) 2012-03-21 2013-09-26 Styrolution GmbH Procédé de préparation de matières à mouler thermoplastiques ayant une forte teneur en fibres de verre
CN103554703A (zh) * 2013-09-18 2014-02-05 安徽科聚新材料有限公司 一种高表面效果玻纤增强san材料及其制备方法
WO2016131899A1 (fr) 2015-02-19 2016-08-25 Ineos Styrolution Group Gmbh Composant à base de matériau composite thermoplastique à meilleure résistance au choc après entaille
WO2016170103A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Matériau composite translucide à base de fibres en polymères modifiés chimiquement
WO2016170104A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh "organosheets" (plaques de composite thermoplastique renforcé de fibres) à base de polymère de styrène pour produits blancs
WO2016170148A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Procédé pour la fabrication d'un matériau composite fibreux constitué de polymères amorphes chimiquement modifiés avec des fibres de renforcement
WO2016170129A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Utilisation de matériaux composites renforcés de fibres dans la fabrication de textiles techniques
WO2016170145A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Procédé de fabrication de matériaux composites renforcés par des fibres à partir de polymères amorphes modifiés chimiquement
WO2016170131A1 (fr) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Utilisation d'un matériau composite fibreux ayant une structure en sandwich et un composant en matière alvéolaire
WO2022180018A1 (fr) 2021-02-23 2022-09-01 Ensinger Gmbh Matériau composite renforcé par des fibres comprenant un (co)polymère de styrène et des fibres naturelles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2160778A1 (de) * 1971-12-08 1973-06-14 Basf Ag Glasfaserverstaerkte styrolpolymerisate
EP0200184A1 (fr) * 1985-05-03 1986-11-05 BASF Aktiengesellschaft Masse de moulage thermoplastique renforcée
WO2006134096A1 (fr) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Matieres a mouler thermoplastiques renforcees

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2160778A1 (de) * 1971-12-08 1973-06-14 Basf Ag Glasfaserverstaerkte styrolpolymerisate
EP0200184A1 (fr) * 1985-05-03 1986-11-05 BASF Aktiengesellschaft Masse de moulage thermoplastique renforcée
WO2006134096A1 (fr) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Matieres a mouler thermoplastiques renforcees

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010130621A1 (fr) * 2009-05-11 2010-11-18 Basf Se Copolymères de styrène renforcés
US8853319B2 (en) 2009-05-11 2014-10-07 Styrolution GmbH Reinforced styrene copolymers
EP2251377A1 (fr) 2009-05-11 2010-11-17 Basf Se Styrocopolymères renforcés
WO2011023541A1 (fr) * 2009-08-31 2011-03-03 Basf Se Procédé de fabrication de copolymères san renforcés par des fibres de verre présentant une résistance aux impacts améliorée et une usinabilité simplifiée
US9732210B2 (en) 2012-03-21 2017-08-15 Ineos Styrolution Europe Gmbh Method for producing thermoplastic molding compounds with a high glass fiber content
WO2013139769A1 (fr) 2012-03-21 2013-09-26 Styrolution GmbH Procédé de préparation de matières à mouler thermoplastiques ayant une forte teneur en fibres de verre
CN103554703A (zh) * 2013-09-18 2014-02-05 安徽科聚新材料有限公司 一种高表面效果玻纤增强san材料及其制备方法
WO2016131899A1 (fr) 2015-02-19 2016-08-25 Ineos Styrolution Group Gmbh Composant à base de matériau composite thermoplastique à meilleure résistance au choc après entaille
KR20170139132A (ko) * 2015-04-22 2017-12-18 이네오스 스티롤루션 그룹 게엠베하 비정질의 화학적으로 개질된 중합체로부터 섬유 복합체를 생산하는 방법
CN107771198A (zh) * 2015-04-22 2018-03-06 英力士苯领集团股份公司 利用带有增强纤维的无定形化学改性聚合物生产纤维复合材料的方法
WO2016170129A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Utilisation de matériaux composites renforcés de fibres dans la fabrication de textiles techniques
WO2016170145A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Procédé de fabrication de matériaux composites renforcés par des fibres à partir de polymères amorphes modifiés chimiquement
WO2016170131A1 (fr) 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Utilisation d'un matériau composite fibreux ayant une structure en sandwich et un composant en matière alvéolaire
WO2016170104A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh "organosheets" (plaques de composite thermoplastique renforcé de fibres) à base de polymère de styrène pour produits blancs
WO2016170103A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Matériau composite translucide à base de fibres en polymères modifiés chimiquement
KR20170139139A (ko) * 2015-04-22 2017-12-18 이네오스 스티롤루션 그룹 게엠베하 비정질의 화학적으로 개질된 중합체와 보강 섬유로부터 제조되는 섬유 복합체를 생산하는 방법
KR20170140299A (ko) * 2015-04-22 2017-12-20 이네오스 스티롤루션 그룹 게엠베하 화학적으로 개질된 중합체를 포함하는 반투명 섬유 복합 재료
CN107531969A (zh) * 2015-04-22 2018-01-02 英力士苯领集团股份公司 包含化学改性聚合物的半透明纤维复合材料
CN107709416A (zh) * 2015-04-22 2018-02-16 英力士苯领集团股份公司 利用无定形化学改性聚合物生产纤维复合材料
WO2016170148A1 (fr) * 2015-04-22 2016-10-27 Ineos Styrolution Group Gmbh Procédé pour la fabrication d'un matériau composite fibreux constitué de polymères amorphes chimiquement modifiés avec des fibres de renforcement
US20180105656A1 (en) * 2015-04-22 2018-04-19 Ineos Styrolution Group Gmbh Method for producing fibre composites from amorphous, chemically modified polymers
US10508180B2 (en) 2015-04-22 2019-12-17 Ineos Styrolution Group Gmbh Method for producing fibre composites from amorphous, chemically modified polymers
US10563046B2 (en) 2015-04-22 2020-02-18 Ineos Styrolution Group Gmbh Translucent fibre composite materials comprising chemically modified polymers
US10711110B2 (en) 2015-04-22 2020-07-14 Ineos Styrolution Group Gmbh Method for producing a fibre-composite made from amorphous, chemically modified polymers with reinforcement fibres
CN107709416B (zh) * 2015-04-22 2021-08-24 英力士苯领集团股份公司 利用无定形化学改性聚合物生产纤维复合材料
CN107771198B (zh) * 2015-04-22 2021-08-24 英力士苯领集团股份公司 利用带有增强纤维的无定形化学改性聚合物生产纤维复合材料的方法
KR102513504B1 (ko) 2015-04-22 2023-03-23 엔진거 게엠베하 비정질의 화학적으로 개질된 중합체와 보강 섬유로부터 제조되는 섬유 복합체를 생산하는 방법
US11441014B2 (en) 2015-04-22 2022-09-13 Ensinger Gmbh Translucent fibre composite materials comprising chemically modified polymers
KR102513502B1 (ko) * 2015-04-22 2023-03-23 엔진거 게엠베하 화학적으로 개질된 중합체를 포함하는 반투명 섬유 복합 재료
KR102513503B1 (ko) 2015-04-22 2023-03-23 엔진거 게엠베하 비정질의 화학적으로 개질된 중합체로부터 섬유 복합체를 생산하는 방법
WO2022180018A1 (fr) 2021-02-23 2022-09-01 Ensinger Gmbh Matériau composite renforcé par des fibres comprenant un (co)polymère de styrène et des fibres naturelles

Similar Documents

Publication Publication Date Title
WO2008110539A1 (fr) Matériau composite renforcé par fibres
DE2242324C3 (de) Verfahren zur Herstellung von glasverstärkten Polyolefinmassen
EP2150582B1 (fr) Composition présentant une meilleure résistance à la fissuration sous contrainte
DE3037520C2 (fr)
EP2393877B1 (fr) Matières à mouler thermoplastiques contenant des copolymères de styrène et des polyamides
WO2011023541A1 (fr) Procédé de fabrication de copolymères san renforcés par des fibres de verre présentant une résistance aux impacts améliorée et une usinabilité simplifiée
EP2121833B1 (fr) Masses moulables dont la résilience a une anisotropie réduite
EP1844102A1 (fr) Matiere moulable poly(meth)acrylate resistante aux chocs a thermostabilite elevee
DE102004022540A1 (de) Formmasse für Formkörper mit hoher Witterungsbeständigkeit
EP0429957B1 (fr) Masse à mouler thermoplastique ayant une résistance élevée aux chocs à froid
EP2150581A1 (fr) Composition teintée présentant une meilleure résistance à la fissuration sous contrainte
DE3436602A1 (de) Glasfaserverstaerkte hitzefeste harzmasse
EP0027198B1 (fr) Matières à mouler résistant au choc à base de polyamides
DE102004004809A1 (de) Faser-Polypropylenharzkomposit und sein Pellet und daraus hergestellte faserverstärkte Harzgegenstände
EP0519248A1 (fr) Masses à mouler thermoplastiques à base de copolyamides semi-aromatiques et de polyoléfines
DE3741670A1 (de) Verstaerkte thermoplastische formmassen auf basis von polyphenylenether
EP3286257B1 (fr) Procédé de fabrication de matériaux composites renforcés par des fibres à partir de polymères amorphes modifiés chimiquement
DE10155612B4 (de) Pellets aus langfaserverstärkter Polypropylen-Harzzusammensetzung, Harzmischzusammensetzung und Formlinge aus diesen
EP0643104A2 (fr) Masses à mouler thermoplastiques
DE10318663A1 (de) Faserverstärkter Polyolefinharz-Verbundstoff und hieraus erhaltenes Formteil
DE3248709A1 (de) Thermoplastische formmasse
EP0725094A2 (fr) Polymères greffés sous forme de particules et masse à mouler thermoplastique les contenants ayant une affinité améliorée pour les colorants
EP0303031B1 (fr) Masses à mouler thermoplastiques ignifugées à base de polyamides renforcés
EP0725091A2 (fr) Masses à mouler à ténacité à basse température améliorée
EP0303919B1 (fr) Matières à mouler thermoplastiques renforcées, procédé de leur préparation et leur utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08717583

Country of ref document: EP

Kind code of ref document: A1