WO2008105110A1 - 溶接部靭性に優れたラインパイプ向け電縫鋼管 - Google Patents

溶接部靭性に優れたラインパイプ向け電縫鋼管 Download PDF

Info

Publication number
WO2008105110A1
WO2008105110A1 PCT/JP2007/060656 JP2007060656W WO2008105110A1 WO 2008105110 A1 WO2008105110 A1 WO 2008105110A1 JP 2007060656 W JP2007060656 W JP 2007060656W WO 2008105110 A1 WO2008105110 A1 WO 2008105110A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
toughness
weld
line
Prior art date
Application number
PCT/JP2007/060656
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Yokoyama
Kazuhito Kenmochi
Takatoshi Okabe
Yukinori Iizuka
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US12/449,749 priority Critical patent/US8328957B2/en
Priority to CA2679060A priority patent/CA2679060C/en
Priority to EP07744090.7A priority patent/EP2116625B1/en
Priority to CN2007800518729A priority patent/CN101617062B/zh
Publication of WO2008105110A1 publication Critical patent/WO2008105110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to an electric steel pipe for a line pipe having excellent weldability, and in particular, paying attention to minute defects (fine oxides.inclusions) that control weld toughness, and
  • the present invention relates to an ERW steel pipe for line pipes, which has improved weld zone toughness by defining the area fraction of defects and has excellent weld zone toughness.
  • Non-Patent Document 1 In the case of carbide, Non-Patent Document 2 describes the effect of primary carbide in tool steel. The relationship between such nonmetallic inclusions and impact absorption energy is generalized by regarding nonmetallic inclusions as vacancy defects in steel, and is examined as the relationship between the defect size in steel and impact characteristics. It is said that the impact characteristics will be reduced with the increase of.
  • Non-Patent Document 3 Due to the presence of such penetrators, it has been generally said that the impact characteristics of ERW welds are inferior. For this reason, technological development to reduce penetrators has progressed with the aim of improving the impact characteristics of electric welds. For example, heat input control based on experience has been made.
  • Non-Patent Literature 1 Japan Society for the Promotion of Science, Steelmaking 19th Committee, “Steel and Alloy Elements (Lower)”: p. 165-274 (especially p. 191-208), March 25, 1966, No. 1 Published by Seibundo Shinkosha Co., Ltd.
  • Non-Patent Document 2 Japan Iron and Steel Institute 'Metal Society of Japan', “Toughness of Steel”: ⁇ ⁇ 207, 1971, CL IMAX MOLYBDENUM DEVELOPMENT C OMPANY (JAPAN) LDT.
  • Non-Patent Document 3 Edited by the Japan Iron and Steel Institute, “Ultrasonic flaw detection series I I Ultrasonic flaw detection of welded steel pipes”: p. 28-31, 1988, Disclosure of Invention
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an electric steel pipe for a line pipe in which the welded portion has a high toughness up to a level where the electric welded portion is not brittle fractured.
  • the present invention for achieving the above object is as follows.
  • the area fraction of micro defects with a maximum length of 50; less than zm in the projection plane of ERW welds is 0.035 or less and 0.000006 or more, and is specified in ISO / DIS 148-1 (JISZ 2202).
  • the V-notch of the metal material impact test piece (V-notch Charpy test piece) is applied to the ERW weld and measured at 40 ° C according to the metal material impact test method specified in I S0148 (JISZ 2242).
  • composition further contains one or more selected from the group consisting of Nb: 0.1% or less, V: 0.1% or less, and T i: 0.1% or less. 5.
  • Nb 0.1% or less
  • V 0.1% or less
  • T i 0.1% or less. 5.
  • Fig. 1 is a schematic explanatory diagram of the C-scan method.
  • Figure 2 is a graph showing an example of the relationship between signal intensity and defect diameter.
  • Fig. 3 is a graph showing an example of the relationship between the signal intensity and the absorbed energy at 140 ° C.
  • Fig. 4 is a graph showing an example of the relationship between the fractional area of micro-defects in the weld zone and the 40 ° C CP and energy harvested.
  • FIG. 5 is a diagram for explaining the outline of an ultrasonic flaw detection (array UT) method for a welded portion using an array probe.
  • the symbols in the figure are as follows.
  • the required toughness of the welded part has a high toughness where the absorbed energy at 140 ° C measured by a Charpy impact test with a V-notch in the welded part is 10 J or more.
  • the projection surface of the electric welding part means a surface obtained by observing the seam 2 region in FIG. 1 from a direction perpendicular to the seam surface.
  • the inventors have found that the amount of minute defects remaining in the welded portion of the ERW steel pipe is related to the toughness of the welded portion.
  • the penetrator at the contact portion has been described as having an oval shape with a size of 0.2 to 0.5 mm in which oxide remains on the joint surface.
  • the micro defect in the present invention is not a defect of such a size, but refers to an oxide, nitride or carbide having a maximum length of less than 50 ⁇ m.
  • the inventors have investigated the relationship between the morphology and toughness of the micro defects, and the seam slice material c-scan method.
  • welding conditions for ERW steel pipes as experimental materials include normal electric welding conditions and conditions for adjusting the welding heat input and the amount of abset so as to minimize the amount of minute defects.
  • I was ecstatic.
  • Figure 2 shows the relationship between the signal intensity (echo height) and the defect diameter in this sensitivity setting.
  • the defect diameter refers to the defect diameter (equivalent defect diameter) corresponding to the total area of minute defects with a maximum length of less than 50 m within the beam.
  • the absorbed energy of 1 40 ° C is 1 0 0 J or higher is obtained.
  • the lower limit of the area fraction of micro-defects is determined from the minimum density of oxides contained in industrially produced cleanliness steels as 0.0 0 0 0 0 0 6 (1 mm 2 per 2 was set to 0.0 0 0 0 0 6 mm 2 ).
  • the butt end face shape immediately before the electric resistance welding is not only the heat input control during the electric welding but also the central portion in the thickness direction.
  • the plate width end is appropriately cut or rolled so as to have a groove shape having a parallel opposed part and inclined opposed parts on both sides. It is effective to perform molding by (preferably fin pass molding and rolling) or the like.
  • preferred chemical components (composition) of the ERW steel pipe of the present invention will be described.
  • the composition of ERW steel pipes considers the overall cost reduction at the time of laying. 0656 is receiving customer requests. Therefore, the preferred composition range was defined on the premise of high strength of API X60 grade or higher.
  • the unit of the component content in the composition is mass% and is abbreviated as%.
  • C Set to 0.01 to 0.15%.
  • C is an element that contributes to precipitation strengthening as a charcoal carbide, but if the C content is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.15%, pearlite, bainite, martens The fraction of the second phase of the site, etc. will increase, making it difficult to secure the required material toughness for the line pipe. Therefore, 0.15% or less. More preferably, it is 0.07% or less. In addition, if it is less than 0.01%, it is difficult to secure sufficient strength as a line pipe. Therefore, the C content is preferably 0.01% or more.
  • Mn 0.2 to 2.0%.
  • Mn is a force added to ensure strength and toughness. If it is less than 0.2%, its effect is not sufficient. On the other hand, if it exceeds 2.0%, the second phase fraction increases, and it is an excellent linepipe required. Since it is difficult to ensure the material inertia, the Mn content should be 0.2 to 2.0%.
  • P 0.01% or less. Since P is an unavoidable impurity that deteriorates the weldability, the upper limit of the P content is set to 0.01%.
  • S Set to 0.01% or less. S is generally better because it becomes Mn S inclusion in steel and the origin of hydrogen induced cracking (HI C). However, there is no problem if it is less than 0.01%, so the upper limit of S content is set to 0.01%.
  • a 1 0.1% or less.
  • a 1 is added as a deoxidizer, but if it exceeds 0.1%, the cleanliness of the steel decreases and the toughness deteriorates, so the A1 content should be 0.1% or less. This effort will further improve the strength, yield ratio, and toughness of pipes for line pipes.
  • Cu 0.5. / 0 or less.
  • Cu is an effective element for improving toughness and increasing strength, but if added too much, weldability deteriorates, so the upper limit is 0.5%.
  • Ni is an element effective for improving toughness and increasing strength, but adding a large amount facilitates purification of the cured second phase, leading to a decrease in material toughness. .
  • C r 3.0% or less.
  • Cr is an effective element for obtaining sufficient strength even at low C.
  • the upper limit is%.
  • Mo 2.0% or less. Mo, like Mn and Cr, is an effective element for obtaining sufficient strength even at low C. However, when added in a large amount, the second phase tends to form and lowers the toughness of the material. The upper limit is 0%.
  • N b 0.1% or less.
  • Nb improves strength and toughness by fine precipitation of carbonitride and fine graining of the structure. However, if it exceeds 0.1%, the hardened second phase tends to increase, and conversely, the material 13 properties deteriorate significantly, so the Nb content should be 0.1% or less.
  • V 0.1% or less.
  • V like Nb, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the cured second phase fraction increases in the same way as Nb, and the material toughness deteriorates significantly, so the V content should be 0.1% or less.
  • T i 0.1% or less.
  • Ti like Nb and V, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the cured second phase fraction increases in the same way as Nb and the toughness of the material deteriorates remarkably, so the Ti content should be 0.1% or less.
  • C a Set to 0.005% or less.
  • Ca is an element necessary to control the morphology of elongated Mn S, which tends to be the starting point of hydrogen-induced cracking. However, if it is added in excess of 0.005%, excess Ca oxides and sulfides are generated, leading to toughness deterioration. JP2007 / 060656
  • the remainder other than the above consists essentially of Fe.
  • Fe iron
  • an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
  • Table 3 shows the base metal toughness, the weld morning, and the weld defect micro-defect area fraction.
  • the base metal toughness is 1800 degrees away from the seam of the ERW weld in the pipe circumferential direction
  • the weld toughness is JIS No. 2 mm V notch Charpy in the pipe circumferential direction from the electroweld weld.
  • Ten impact test specimens were sampled, and the absorbed energy at 140 ° C. was measured.
  • the absorbed energy of 1400 ° C or more at the welded part is sufficiently satisfying the target characteristics ( ⁇ ), and that it is sufficient that it is more than 100 J and less than 1 25 J. Although it cannot be said, it was evaluated as satisfying the target characteristics ( ⁇ ).
  • the fraction of weld defects was measured by the array UT method shown in Fig. 5.
  • Steel type 1 whose C and S contents greatly deviate from the preferred range has a microstructure of ferritic baitite, the base metal itself has low toughness, and the toughness of the welded part is low when both ERW welding conditions are A and B. Low. Steel grades 2 and 3 whose Mn or Nb content greatly falls outside the preferred range have sufficient base metal toughness and low weld toughness in all welding conditions. Not satisfied.
  • the fractional area of welded micro-defects exceeds 0.035, and the absorbed energy at 40 ° C is 10
  • the weld fraction microdefect area fraction was less than 0.035, stable.
  • Steel type 10 has a C content slightly outside the preferred range.
  • the weld defect micro-defect area fraction became Q. 0 3 5 or less, and
  • the absorbed energy at 40 ° C is in the range of 10 0 J or more and less than 1 2 5 J.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

溶接部靭性に優れたラインパイプ向け電縫鋼管は、電縫溶接部の投影面内における最大長さ50μm未満の微小欠陥の面積分率が0.035以下0.000006以上であり、金属材料衝撃試験方法に則り測定される−40℃における吸収エネルギーが100J以上である。

Description

明細書 発明の名称
溶接部靭性に優れたラインパイプ向け電鏠鋼管 技術分野
本発明は、 溶接部勒性に優れたラインパイプ向け電鏠鋼管に関し、 詳しくは、 溶 接部靭性を支配する微小欠陥 (微小酸化物.介在物) に注目し、 溶接部中の前記微 小欠陥の面積分率を規定することにより前記溶接部靭性を向上させた、溶接部靭性 に優れたラインパイプ向け電縫鋼管に関する。 背景技術
鋼材の靭性、 特に衝撃吸収エネルギーが、 鋼中の非金属介在物の増加に伴レヽ減少 することは、 過去から多く検討されており、 例えば IVtn Sについては非特許文献 1 に記載されている。 また、 炭化物の場合には非特許文献.2で工具鋼中の一次炭化物 の影響が述べられている。 このような非金属介在物と衝撃吸収エネルギーの関係は、 非金属介在物を鋼中の空孔欠陥とみなして一般化され、 鋼中の欠陥寸法と衝撃特性 の関係として検討され、 介在物寸法の増加に伴い衝撃特性が低下するとされている。 —方、 電縫溶接部に関しては、 ベネトレータと称される酸化物、 具体的には電縫 溶接の接合面に存在する微小な介在物 (長径 0 . 2〜0 . 5 mmの長円形) が報告 されている (非特許文献 3 ) 。 このようなぺネトレータの存在により、 一般的に電 縫溶接部の衝撃特性は劣るといわれてきた。 そのため、 電鏠溶接部の衝撃特性を向 上させることを目的に、 ぺネトレータを減少させる技術開発が進み、例えば経験に 頼つた入熱制御等がなされてきた。
しかし、 前記の従来報告されてきているぺネトレータを低減しただけでは、 必ず しも衝撃特性が向上 Lなレ、という課題があった。 非特許文献 1:日本学術振興会製鋼第 19委員会編、 「鉄鋼と合金元素(下)」 : p. 165〜 274 (特に p. 191〜208) 、 昭和 41年 3月 25日、 第 1版 (株) 誠文堂新光社発行
非特許文献 2 :日本鉄鋼協会'日本金属学会編、 「鋼の強靭性」 : ρ· 207、 1971年、 CL IMAX MOLYBDENUM DEVELOPMENT C OMPANY (JAPAN) LDT. 発行 '
非特許文献 3 : 日本鉄鋼協会編、 「超音波探傷シリーズ I I 溶接鋼管の超音 波探傷」 : p. 28〜31、 1988年、 日本鉄鋼協会発行 発明の開示
本発明は、 上述の状況に鑑み、 電鏠溶接部が脆性破壊しなレ、レベルにまで溶接部 を高靭性としたラインパイプ向けの電鏠鋼管を提供することを目的とする。
上記目的を達成するための本発明は以下のとおりである。
1. 電縫溶接部の投影面内における最大長さ 50 ;z m未満の微小欠陥の面積分率が 0. 035以下0. 000006以上であり、 I S O/D I S 148— 1 (J I S Z 2202)に規定される金属材料衝撃試験片(Vノツチシャルピー試験片) の Vノツチを電縫溶接部に付与し、 I S0148 (J I S Z 2242) に規定 される金属材料衝撃試験方法に則り測定される一 40 °Cにおける吸収エネルギ が 100 J以上であることを特徴とする溶接部靭性に優れたラインパイプ向け電 縫鋼管。
2. 質量0 /0で、 C: 0. 01〜 0. 15%、 S i : 0. 005〜 0. 9 %、 Mn: 0. 2〜2. 0%, P: 0. 01%以下、 S: 0. 01%以下、 A1 : 0. 1 %以 下を含有し、残部が実質的に F eからなる組成を有することを特徴とする前項 1に 記載の溶接部靱性に優れたラインパイプ向け電縫鋼管。
3. 前記組成に加えてさらに、 質量0 /0で、 Cu: 0. 5%以下、 N i : 0. 5%以 下の中から選ばれる 1種または 2種を含有することを特徴とする前項 2に記載の溶 接部靭性に優れたラィンパイプ向け電縫鋼管。
4. 嫌己組成に加えてさらに、 質量%で、 Cr : 3. 0%以下、 Mo : 0. 5 %以 下の中から選ばれる 1種または 2種を含有することを特徴とする前項 2または 3に 記載の溶接部靭性に優れたラインパイプ向け電縫鋼管。
5. 前記組成に加えてさらに、質量%で、 Nb : 0. 1%以下、 V: 0. 1%以下、 T i : 0. 1%以下の中から選ばれる 1種または 2種以上を含有することを特徴と する前項 2〜 4のいずれかに記載の溶接部革 ϋ性に優れたラインパイプ向け電縫鋼 管。
6. 前記組成に加えてさらに、 質量0 /0で、 Ca : 0. 005%以下を含有すること を特徴とする前項 2〜 5のいずれかに記載の溶接部 ¾1性に優れたラインパイプ向 け電鏠鋼管。
7. 前記微小欠陥が、 電縫溶接時に溶接面に残存した酸化物、 窒化物、 炭化物の中 の 1種または 2種以上からなることを特徴とする前項 1 ~ 6のいずれかに記載の 溶接部靭性に優れたラインパイプ向け電縫鋼管。 発明の効果
本発明によれば、 溶接部の微小欠陥の面積分率を規定することにより、 溶接部靱 性に優れたラインパイプ向け電鏠鋼管が得られる。 図面の簡単な説明
図 1は、 Cスキャン法の概要説明図である。
図 2は、 信号強度と欠陥径の関係の 1例を示すグラフである。 図 3は、 信号強度と一 4 0 °C吸収エネルギーの関係の 1例を示すグラフである。 図 4は、溶接部の微小欠陥面積分率と一 4 0 °CP及収エネルギーの関係の 1例を示 すグラフである。
図 5は、 アレイ探触子を用いた溶接部の超音波探傷 (アレイ U T)方法の概要説明' 図である。 図中の符号は、 以下のとおりである。
1 電鏠鋼管、 2 シーム、 3 サンプル、 4 点集束型超音波探触子 5 走查方向、 6 アレイ探触子 発明を実施するための最良の形態
発明者らは、 強度が A P I規格 X 6 0グレード以上のラインパイプ向け電鏠鋼管 の脆性破壌を抑制する観点から、 必要な溶接部靭性とそれを満たす溶接部の微小欠 陥の分布形態、 成分系の検討を行った。 その結果、 必要な溶接部靭性としては、 溶 接部に Vノツチを付与したシャルピー衝撃試験で測定される一 4 0 °Cにおける吸 収エネルギーが 1 0 0 J以上になる高靭性を有することが相応しいこと、 そして、 かかる高靭性は、 電鏠溶接部の投影面内における最大長さ 5 0 // m未満の微小欠陥 の面積分率適正化、 さらには化学成分 (組成) の最適化により実現することを見出 した。 なお、 電鏠溶接部の投影面とは、 図 1のシーム 2の領域を、 シーム面に対し て垂直方向から観察した面を意味する。
以下、 本発明における電縫溶接部の微小欠陥の面積分率、 およぴ電鏠鋼管の化学 成分について説明する。
発明者らは、 鋭意研究の結果、 電縫鋼管の溶接部に残留する微小欠陥の量が溶接 部の靭性に関与していることを突き止めた。 前述のように、 これまで電 接部の ぺネトレータとは、 接合面に酸化物が残存し、 その大きさは 0 . 2〜0 . 5 mmの 長円形であるとされている。 本発明における微小欠陥とは、 そのような大きさの欠 陥ではなく、最大長さ 5 0 μ m未満の酸化物もしくは窒化物、炭化物のことを指す。 発明者らは前記微小欠陥の形態と靭性の関係を、 シームスライス材 cスキャン法-
(略して Cスキャン法) による調查実験により求めた。
この実験では、 まず、 図 1に示すように、 電縫鋼管 1のシーム 2から所定の距離 (この場合、 8 mm)だけ離れた位置でスライスした溶接部のサンプル 3について、 シーム部を、 点集束型超音波採触子 4で Cスキャン (走査方向 5に沿って走查) し て採傷し、 信号強度を測定した。
ここで、 実験材としての電縫鋼管の溶接条件は、 通常の電鏠溶接条件と、 微小欠 陥量が極力少なくなるように溶接入熱とアブセット量を調整する条件とを含み、 種々変ィ匕させた。 また、 点集束型超音波探触子には 2 OMH zビーム径 440 / m のものを使用し、 φ 1 2 5 xmの平底穴からのエコー高さが 1 00%となるように 感度を調整して探傷を行った。 この感度設定における信号強度 (エコー高さ) と欠 陥径の関係は図 2に示すとおりである。 ここで欠陥径は、 ビーム内の最大長さ 5 0 m未満の微小欠陥の合計面積に対応する欠陥径 (等価欠陥径) を指す。
そして、 前記 Cスキャンを行った箇所からシャルピー試験片を採取し、 シヤノレビ 一試験を行なって一 40°Cにおける吸収エネルギー (略して一 40°C吸収エネルギ 一) を測定し、 該吸収エネルギーと前記信号強度の関係を求めた。 その結果を図 3 に示す。
図 3から分かるように、 Cスキャンによるエコー高さと一 40°C吸収エネルギー には相関があり、 エコー高さが 2 7%以下、 40%以下、 5 1%以下であれば、 一 40°C吸収エネルギーはそれぞれ 400 J以上、 200 J以上、 20 J以上であつ た。 一方、 図 2から、 エコー高さ 27%、 40%、 5 1%は、 それぞれ直径が 6 3 //m、 73 m、 9 0 μ mの欠陥の存在に対応する。 ビーム径が 440 // mである ことを考慮すると、 それぞれの一 40 °CP及収エネルギーにおける微小欠陥密度は表 1に示すとおりとなる。 表 1
Figure imgf000008_0001
以上の実験結果を図 4に整理して示した。 この結果から、 微小欠陥密度を 1 mm 2あたり 0 . 0 3 5 irmi2以下 (すなわち微小欠陥の面積分率を 0 . 0 3 5以下) と すれば、 一 4 0 °C吸収エネルギー 1 0 0 J以上が得られる。
なお、 微小欠陥の面積分率の下限値については、 工業的に生産される清浄度鋼の 中に含まれる最小限の酸ィ匕物の密度から、 0 . 0 0 0 0 0 6 ( 1 mm2あたり 0 . 0 0 0 0 0 6 mm2) とした。
以上、 シーム部をスライスしたサンプルの Cスキャンによる調査結果につレ、て説 明したが、 同様の測定は鋼管のままで適度な面積に集束したビームを用いたタンデ ム探傷によっても可能である。 ビームの集束には、 Cスキャンと同様な点集束型超 音波探触子を用いてもよいし、 例えば図 5に示すように、 周方向に配列したアレイ 探触子 6を用いてもよい。 その場合、 ビームのサイズは、 小さすぎると微小欠陥面 積分率を評価するのが困難であり、 一方、 大きすぎると管の内外面などからのノィ ズを受け易くなるため、 0 . 5〜2 . 5 mmの範囲が好適である。 なお、 図 5では 送信と受信の振動子の位置を電子的に切替えて溶接部を厚み方向に容易に走査可 能である。
また、 溶接部の微小欠陥面積分率を 0 . 0 3 5以下にするためには、 電鏠溶接時 の入熱制御もさることながら、 電縫溶接直前の突合せ端面形状が、 厚み方向中央部 に平行対向部、 その両側に傾斜対向部を有する開先形状となるように、 ロール成形 による幅曲げ加工の前あるいは該幅曲げ加工の途中で、板幅端部を適宜の切削ある いは圧延(好ましくはフィンパス成形圧延)等により成形加工するのが有効である。 次に、 本発明の電縫鋼管の好ましい化学成分 (組成) について述べる。 電縫鋼管 の組成は、 敷設時の総合的な低コスト化を考慮し、 特に鋼管の輸送費低下を重要視 0656 している顧客の要求を受けている。 したがって、 AP Iの X60グレード以上の高 強度を前提として、 好適組成範囲を規定した。 なお、 組成における成分含有量の単 位は質量%であり、 %と略記される。
C: 0. 01〜0. 15%とする。 Cは炭ィ匕物として析出強化に寄与する元素で あるが、 C含有量が 0. 02%未満では十分な強度が確保できず、一方、 0. 15% を超えるとパーライト、 べィナイト、 マルテンサイト等の第二相の組織分率が増加 し、ラインパイプとして必要な素材靭性を確保しにくくなる。このため、 0. 15% 以下とする。 より好ましくは 0. 07%以下である。 なお、 0. 01%未満ではラ インパイプとして十分な強度確保が困難となるので、 C含有量は 0. 01%以上と するのが好ましい。
S i : 0. 005〜0. 9%とする。 S iは脱酸のため添加するが、 0. 005% 未満では脱酸効果が十分でなく、 一方、 0. 9%を超えると電鏠溶接部の酸化物を 増加させ、 溶接部特 1·生を劣化させるため、 ≤ 1含有量は0. 005〜0. 9%とす る。 '
Mn : 0. 2〜2. 0%とする。 Mnは強度、 靭性を確保するため添加する力 0. 2%未満ではその効果が十分でなく、 一方、 2. 0%を超えると第二相分率が 増加し、 ラインパイプとして必要な優れた素材勒性を確保しにくいため、 Mn含有 量は 0. 2〜2. 0%とする。
P: 0. 01%以下とする。 Pは電鏠溶接性を劣化させる不可避的不純物である ため、 P含有量の上限を 0. 01%とする。
S: 0. 01%以下とする。 Sは一般的には鋼中においては Mn S介在物となり、 水素誘起割れ (HI C) の起点となるため少ないほどよい。 しかし、 0. 01%以 下であれば問題ないため、 S含有量の上限を 0. 01%とする。
A 1 : 0. 1%以下とする。 A 1は脱酸剤として添加されるが、 0. 1%を超え ると鋼の清浄度が低下し、 靭性を劣化させるため、 A1含有量は 0. 1%以下とす る。 本努明では、 ラインパイプ向け電 管の強度や降伏比、 靭性をさらに改善する P T/JP2007/060656 目的で、 前記成分に加えてさらに、 Cu : 0. 5%以下、 N i : 0. 5%以下の中 から選ばれる 1種または 2種、 C r : 3. 0%以下、 Mo : 2. 0%以下の中から 選ばれる 1種または 2種、 Nb : 0. 1%以下、 V: 0. 1%以下、 T i : 0. 1% 以下の中から選ばれる 1種または 2種以上、 Ca : 0. 005%以下、 を選択して 含有できる。
Cu: 0. 5。/0以下とする。 Cuは靭性の改善と強度の上昇に有効な元素である が、多く添加すると溶接性が劣化するため、添加する は 0. 5 %を上限とする。
N i : 0. 5%以下とする。 N iは靭性の改善と強度の上昇に有効な元素である が、 多く添加すると硬化第二相が精製し易くなり素材靭性の低下につながるため、 添加する場合は 0· 5%を上限とする。
C r : 3. 0%以下とする。 Crは Mnと同様に低 Cでも十分な強度を得るため に有効な元素であるが、 多く添加すると第二相が生成しゃすくなり素材靭十生を低下 させるため、 添加する場合は 3. 0%を上限とする。
Mo : 2. 0%以下とする。 Moは Mn, C rと同様に低 Cでも十分な強度を得 るために有効な元素であるが、 多く添加すると第二相が生成しやすくなり素材靭性 を低下させるため、 添加する場合は 2. 0%を上限とする。
N b : 0. 1 %以下とする。 N bは炭窒化物の微細析出と組織の微細粒化により 強度と靭性を向上させる。 しかし、 0. 1%を超えると硬ィ匕した第二相が増加しや すくなり、逆に素材 13性が著しく劣化するため、 N b含有量は 0 · 1 %以下とする。
V: 0. 1%以下とする。 Vも Nbと同様に炭窒ィヒ物の微細析出により強度上昇 に寄与する。 し力し、 0. 1%を超えると Nbと同様に硬化した第二相分率が増加 し、 素材靭性が著しく劣化するため、 V含有量は 0. 1%以下とする。
T i : 0. 1%以下とする。 T iも Nb, Vと同様に炭窒化物の微細析出により 強度上昇に寄与する。 しかし、 0. 1%を超えると Nbと同様に硬化した第二相分 率が増加し、 素材靭性が著しく劣化するため、 T i含有量は 0. 1%以下とする。
C a : 0. 005%以下とする。 Caは、 水素誘起割れの起点となりやすい伸長 した Mn Sの形態制御に必要な元素である。 し力 し 0. 005%を超えて添加する と過剰な C a酸化物、硫化物が生成し、靭性劣化につながるため、 C a含有量は 0. JP2007/060656
0 0 5 %以下とする。 ■
上記以外の残部は実質的に F eからなる。 残部が実質的に F eからなるとは、 本 発明の作用効果を無くさない限り、 不可避的不純物をはじめ、 他の微量元素を含有 するものが本発明の範囲に含まれうることを意味する。
実施例
表 2に示す板厚、 化学成分の供試鋼 (鋼種 1〜1 0 ) を用い、 従来の電鏠溶接条 件 (条件 A) と、 電鏠溶接前のフィンパス圧延にて端部内外面側に開先形状を付与 して溶接部に微小欠陥を残存しにくくした電鏠溶接条件 (条件 との二通りの条 件で電縫溶接を行い、 外径 2 0インチの X 6 5級電鏠鋼管を製造した。
/ Os80sAV 0ns/:/dTl£ 9s9090/-0s
Figure imgf000012_0001
いずれの供試鋼も熱間圧延にて所定の板厚に圧延した後、卷き取ってホットコィ ルとした。 表 3に母材靭性、 および溶接部朝性と溶接部微小欠陥面積分率を示す。 ここで、母材靭性は、電縫溶接部のシームから管周方向に 1 8 0度離れた位置から、 溶接部靭性は電鏠溶接部から、 管周方向に J I S 5号の 2 mmVノッチシャルピー 衝撃試験片を各々 1 0本ずつ採取し、 一 4 0 °C吸収エネルギーを測定した。 製造上 のばらつきを考慮して、溶接部の一 4 0 °C吸収エネルギー 1 2 5 J以上が目標特性 を十分満足するもの (〇) とし、 1 0 0 J以上 1 2 5 J未満は十分とはいえないが 目標特性を一応満足するもの (△) として評価した。 溶接部微小欠陥面積分率は、 図 5に示すァレイ U T方法で測定した。
表 3 to
Figure imgf000014_0001
C, Sの含有量が好適範囲を大きく外れる鋼種 1は、 組織がフェライトーべイナ イト系で、 母材の靭性自体も低く、 電縫溶接条件が A, Bのいずれの場合も溶接部 靭性が低い。 Mnあるいは N bの含有量が好適範囲を大きく外れる鋼種 2, 3は、 母材靭性は十分である力 溶接部靱性がいずれの溶接条件でも低く、 一 4 0 °C吸収 エネノレギー 1 0 0 J以上を満足しない。 組成が好適範囲内である鋼種 4〜 9の場合、 従来の電鏠溶接 (条件 A) では、 溶接部微小欠陥面積分率が 0 . 0 3 5を超え、 一 4 0 °C吸収エネルギー 1 0 0 Jを下回る試験片が存在するのに対し、微小欠陥を残 存しにくくした電縫溶接 (条件 B ) では、 いずれも溶接部微小欠陥面積分率が 0 . 0 3 5以下であり、 安定して高い一 4 0 °CP及収エネルギーを示している。 また、 鋼 種 1 0は、 Cの含有量が好適範囲を少し外れるが、 条件 Bでの電鏠溶接により、 溶 接部微小欠陥面積分率が Q . 0 3 5以下となり、 溶接部の— 4 0 °C吸収エネルギー が 1 0 0 J以上 1 2 5 J未満の範囲に収まっている。

Claims

請求の範囲
1. 電縫溶接部の投影面内における最大長さ 5 0 μ m未満の微小欠陥の面積分率が 0. 03 5以下0. 00 000 6以上であり、 I SO/D I S 1 48— 1 ( J I S Z 2202)に規定される金属材難撃試験片(Vノツチシャルピー試験片) の Vノッチを電縫溶接部に付与し、 I S0148 (J I S Z 2 24 2) に規定 される金属材料衝撃試験方法に則り測定される一 40 °Cにおける吸収エネルギー が 1 00 J以上であることを特徴とする溶接部靭性に優れたラインパイプ向け電 縫鋼管。
2. 質量。/。で、 C: 0 · 0 1〜 0 · 1 5%、 S i : 0 · 0 0 5〜 0. 9 %、 Mn: 0. 2〜2. 0%, P: 0. 0 1%以下、 S : 0. 0 1%以下、 1 : 0. 1 %以 下を含有し、残部が実質的に F eからなる組成を有することを特徴とする請求項 1 に記載の溶接部靭性に優れたラィンパイプ向け電,管。
3. 前記組成に加えてさらに、 質量%で、 Cu : 0. 5%以下、 N i : 0. 5%以 下の中から選ばれる 1種または 2種を含有することを特徵とする請求項 2に記載の 溶接部靭性に優れたラインパイプ向け電縫鋼管。
4. 前記組成に加えてさらに、 質量%で、 C r : 3. 0%以下、 Mo : 2. 0%以 下の中から選ばれる 1種または 2種を含有することを特徴とする請求項 2または 3 に記載の溶接部靭性に優れたラインパイプ向け電鏠鋼管。
5. '前記組成に加えてさらに、質量0 /0で、 Nb : 0. 1 %以下、 V: 0. 1%以下、 T i : 0. 1%以下の中から選ばれる 1種または 2種以上を含有することを特徴と する請求項 2〜 4のいずれかに記載の溶接部靭性に優れたラインパイプ向け電縫 鋼管。
6. 前記組成に加えてさらに、 質量0 /0で、 Ca : 0. 005%以下を含有すること を特徴とする請求項 2〜 5のいずれかに記載の溶接部靭性に優れたラインパイプ 向け電鏠鋼管。
7. 前記微小欠陥が、 電鏠溶接時に溶接面に残存した酸化物、 窒化物、 炭化物の中 の 1種または 2種以上からなることを特徴とする請求項 1〜 6の!、ずれかに記载 の溶接部靭性に優れたラィンパイプ向け電縫鋼管。
PCT/JP2007/060656 2007-02-28 2007-05-18 溶接部靭性に優れたラインパイプ向け電縫鋼管 WO2008105110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/449,749 US8328957B2 (en) 2007-02-28 2007-05-18 Electric resistance welded steel pipe with excellent weld toughness for line pipe
CA2679060A CA2679060C (en) 2007-02-28 2007-05-18 Electric resistance welded steel pipe with excellent weld toughness for line pipe
EP07744090.7A EP2116625B1 (en) 2007-02-28 2007-05-18 Electric resistance welded steel pipe for line pipe excelling in weld part toughness
CN2007800518729A CN101617062B (zh) 2007-02-28 2007-05-18 焊接部韧性优良的用于管道钢管的电阻焊钢管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-048224 2007-02-28
JP2007048224 2007-02-28

Publications (1)

Publication Number Publication Date
WO2008105110A1 true WO2008105110A1 (ja) 2008-09-04

Family

ID=39720954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060656 WO2008105110A1 (ja) 2007-02-28 2007-05-18 溶接部靭性に優れたラインパイプ向け電縫鋼管

Country Status (7)

Country Link
US (1) US8328957B2 (ja)
EP (1) EP2116625B1 (ja)
JP (1) JP5292830B2 (ja)
CN (1) CN101617062B (ja)
CA (1) CA2679060C (ja)
TW (1) TW200835570A (ja)
WO (1) WO2008105110A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699695B2 (ja) * 2010-03-29 2015-04-15 Jfeスチール株式会社 電縫管のシーム検出方法及びその装置
JP5845623B2 (ja) * 2010-05-27 2016-01-20 Jfeスチール株式会社 耐ねじり疲労特性に優れた電縫鋼管及びその製造方法
JP5703678B2 (ja) * 2010-05-31 2015-04-22 Jfeスチール株式会社 拡管性に優れる油井用電縫鋼管及びその製造方法
JP5799610B2 (ja) * 2011-06-27 2015-10-28 Jfeスチール株式会社 電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法
KR101946426B1 (ko) * 2014-11-27 2019-02-11 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법
US11053564B2 (en) * 2014-12-25 2021-07-06 Jfe Steel Corporation High strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
JP6015879B1 (ja) * 2014-12-25 2016-10-26 Jfeスチール株式会社 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング
US10295508B2 (en) * 2016-01-06 2019-05-21 Saudi Arabian Oil Company Integrated system for quantitative real-time monitoring of hydrogen-induced cracking in simulated sour environment
JP6662505B1 (ja) 2018-09-28 2020-03-11 Jfeスチール株式会社 リール工法用長尺鋼管及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003233A (ja) * 2001-06-20 2003-01-08 Sumitomo Metal Ind Ltd 高強度鋼とその製造方法
JP2005281838A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 材質均質性の優れた高強度高靭性熱延鋼帯及びその製造方法
JP2007000874A (ja) * 2005-06-21 2007-01-11 Jfe Steel Kk 溶接部靭性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152951A (en) * 1974-11-05 1976-05-11 Nippon Steel Corp Paipukozobutsuno zeiseihakaiboshiho
JPH0674487B2 (ja) * 1986-11-28 1994-09-21 新日本製鐵株式会社 耐サワ−性の優れた高靱性電縫鋼管
JPH08300172A (ja) * 1995-04-28 1996-11-19 Nkk Corp 溶接鋼管の製造方法
JP3745567B2 (ja) * 1998-12-14 2006-02-15 新日本製鐵株式会社 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
EP1325967A4 (en) * 2001-07-13 2005-02-23 Jfe Steel Corp STEEL TUBE WITH HIGH RESISTANCE, HIGHER THAN THAT OF API X6 STANDARD
JP2008530366A (ja) * 2005-02-21 2008-08-07 ブルースコープ・スティール・リミテッド ラインパイプ用スチール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003233A (ja) * 2001-06-20 2003-01-08 Sumitomo Metal Ind Ltd 高強度鋼とその製造方法
JP2005281838A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 材質均質性の優れた高強度高靭性熱延鋼帯及びその製造方法
JP2007000874A (ja) * 2005-06-21 2007-01-11 Jfe Steel Kk 溶接部靭性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Chouonpa Tanshou Series II, Yousetsu Koukan no Chouonpa Tanshou", 1988, IRON AND STEEL INSTITUTE OF JAPAN, pages: 28 - 31
"Hagane no Kyoujinsei", 1971, CLIMAX MOLYBDENUM DEVELOPMENT COMPANY (JAPAN) LTD., pages: 207
"Tekkou to Goukin Genso", 25 March 1966, SEIBUNDO SHINKOSHA INC., pages: 165 - 274
See also references of EP2116625A4 *

Also Published As

Publication number Publication date
US20100032048A1 (en) 2010-02-11
EP2116625A4 (en) 2011-07-27
CA2679060C (en) 2013-09-24
CN101617062B (zh) 2012-07-04
JP2008240145A (ja) 2008-10-09
CA2679060A1 (en) 2008-09-04
CN101617062A (zh) 2009-12-30
JP5292830B2 (ja) 2013-09-18
TW200835570A (en) 2008-09-01
EP2116625B1 (en) 2015-10-14
US8328957B2 (en) 2012-12-11
TWI317670B (ja) 2009-12-01
EP2116625A1 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP5068645B2 (ja) 延性破壊特性に優れた高強度鋼板及び高強度溶接鋼管並びにそれらの製造方法
WO2008105110A1 (ja) 溶接部靭性に優れたラインパイプ向け電縫鋼管
JP5353156B2 (ja) ラインパイプ用鋼管及びその製造方法
JP5048167B2 (ja) 低温靭性に優れた厚肉溶接鋼管および低温靭性に優れた厚肉溶接鋼管の製造方法、厚肉溶接鋼管製造用鋼板
KR101946426B1 (ko) 전봉 강관 및 그의 제조 방법
JP3960341B2 (ja) 熱加工制御型590MPa級H形鋼及びその製造方法
JP5748032B1 (ja) ラインパイプ用鋼板及びラインパイプ
JP5096087B2 (ja) 母材低温靭性に優れた大入熱溶接用高張力鋼板
JP5660285B2 (ja) 拡管性と低温靭性に優れた油井用溶接鋼管の製造方法および溶接鋼管
CN102906293B (zh) 耐扭转疲劳特性优异的电阻焊钢管及其制造方法
JP2005146407A (ja) 高速延性破壊特性に優れた超高強度鋼板及び超高強度鋼管並びにそれらの製造方法
JP4719313B2 (ja) 耐サワー性に優れた鋼板及びラインパイプ用鋼管
JP2011025311A (ja) 電縫溶接部の耐サワー特性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法
JP5703678B2 (ja) 拡管性に優れる油井用電縫鋼管及びその製造方法
JP6720825B2 (ja) 熱加工制御型590MPa級H形鋼
JP2016108648A (ja) ラインパイプ用鋼板、ラインパイプ用鋼管、およびその製造方法
RU2463375C2 (ru) Высокопрочная стальная труба типа uoe с великолепной деформируемостью и ударной вязкостью при низких температурах в зоне термического воздействия при сварке
JP2011026695A (ja) 電縫溶接部の耐サワー特性に優れた高強度厚肉ラインパイプ向け電縫鋼管
JP2001140040A (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780051872.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007744090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2679060

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12449749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE