WO2008101782A1 - Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen Download PDF

Info

Publication number
WO2008101782A1
WO2008101782A1 PCT/EP2008/051235 EP2008051235W WO2008101782A1 WO 2008101782 A1 WO2008101782 A1 WO 2008101782A1 EP 2008051235 W EP2008051235 W EP 2008051235W WO 2008101782 A1 WO2008101782 A1 WO 2008101782A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
sealing ring
injection valve
peek
valve according
Prior art date
Application number
PCT/EP2008/051235
Other languages
English (en)
French (fr)
Inventor
Rupert Langebner
Martin Stenitzer
Michael-Jun Liu
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP08708545.2A priority Critical patent/EP2126331B1/de
Publication of WO2008101782A1 publication Critical patent/WO2008101782A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to a fuel injection valve, as is the case for the injection of
  • Fuel is used in combustion chambers of internal combustion engines, preferably of self-igniting internal combustion engines.
  • a fuel injection valve of the generic type is known for example from the published patent application DE 198 27 267 A1.
  • Such a fuel injection valve has a housing in which a control chamber is formed, wherein the fuel injection takes place depending on the pressure in the control chamber. In this case, this is done by a piston rod defining the control space and the piston rod acting directly on a valve needle, which in turn closes or releases injection ports through which the fuel supplied to the fuel injection valve under high pressure is ejected.
  • the control chamber is located in a valve piece, which in turn is arranged in a cavity of the housing and which limits the control chamber radially outward.
  • the high-pressure fuel is supplied to the control chamber via a high-pressure passage, which opens into an annular space which is formed between the valve piece and the wall of the cavity.
  • a high-pressure passage which opens into an annular space which is formed between the valve piece and the wall of the cavity.
  • One or more throttle bores lead from this annular space into the control chamber and connect the control chamber with the high fuel pressure in the annular space.
  • a sealing ring is provided between the valve piece and the wall of the cavity on the side facing the valve needle, so that the high fuel pressure in the annulus of Niederbuchbe- rich of the fuel injector remains disconnected.
  • the sealing ring is exposed to high mechanical stresses due to the high fuel pressure in the annulus.
  • a sealing ring which is made for example of rubber or a similar sealing material, through the gap, which remains the valve needle facing between the wall of the cavity and the valve piece, as it is extruded and can no longer fulfill its sealing function , As a result, this leads to an excessive amount of leakage of the fuel injection valve and thus eventually to a failure of the engine.
  • the fuel injection valve according to the invention for fuel injection has the advantage that sealing of the annular space against the low-pressure region of the fuel injection valve on the side of the annular space facing the valve needle always takes place reliably.
  • a sealing ring is provided, which consists of polyetheretherketone (PEEK), a thermoplastic polymer.
  • PEEK has all the properties required for good high-pressure fuel sealing: PEEK has high chemical resistance and is not attacked by the fuel.
  • PEEK has the property of being stiffened by the high pressure of up to 2000 bar prevailing in the fuel injector so that extrusion into the gap between the valve member and the wall of the cavity is precluded , Since the sealing ring is made only in one piece, no pressure cushion can build up below the sealing ring, which shifts the sealing ring in the direction of the control chamber, as is the case with the two-part solution.
  • the sealing ring may have different cross-sectional shapes depending on the given requirements. As a particularly advantageous form has proven that provides a substantially rectangular cross section of the sealing ring, wherein the outer edges are chamfered. However, other shapes may also be advantageous depending on the given geometries, for example a circular or elliptical cross-sectional shape or a rectangular one.
  • the PEEK is reinforced with glass fibers or carbon fibers. This is a gain either with long fibers that run, for example, in the circumferential direction around the entire sealing ring, or by short fibers in question, the short fibers have only a short length compared to the diameter of the sealing ring and are arranged irregularly within the plastic.
  • the production is particularly advantageous with a method according to the invention, in which the sealing ring of a solid PEEK block or of PEEK semi-finished is made by turning. This turning process produces an exact rotational symmetry and correspondingly smooth surfaces, which are essential for the function of the sealing ring.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention, only the essential part being shown
  • FIG. 2 shows an enlargement of FIG. 1 in the region of the sealing ring
  • FIG. 3a shows a perspective view of the sealing ring, the cross section of which is shown in FIG. 3b
  • FIGS. 3c, 3d and 3e each show different embodiments of the sealing ring with different cross sections. Description of the embodiment
  • FIG. 1 shows a fuel injection valve according to the invention is shown in longitudinal section, wherein only the combustion chamber remote from the fuel injection valve is shown. The remaining part, which is well known, for example from DE 198 27 267 Al, has been omitted for clarity.
  • the fuel injection valve has a housing 1, which includes a
  • Valve body 4 includes.
  • the valve body 4 is connected via a connecting piece 9 with a high-pressure source, for example a so-called rail, which in turn is always filled via a high-pressure pump with fuel under high pressure.
  • the fuel is introduced at the connecting piece 9 through the connection opening 3 and passes through a filter 42, wherein the sealing of the connecting piece 9, which is screwed into the valve body 4, is achieved by a seal 41.
  • Within the valve body 4 extends a high pressure passage 8, through which the fuel, which is filled via the connecting piece 9, is directed to the injection nozzle and from there ultimately injected into the combustion chamber of the internal combustion engine.
  • a cavity 5 is formed, which extends over the entire length of the valve body 4.
  • a valve member 12 is arranged, which is formed metric tessssssym metric, wherein between the wall of the cavity 5 and the valve member 12 an annular space 20 remains, into which a branch of the high-pressure channel 8 opens , which is formed in direct extension of the connecting piece 9. From the annular space 20, one or more throttle bores go into a control chamber 14, which is bounded by the valve member 12 radially outward.
  • a piston rod 6 is guided radially, which is arranged longitudinally displaceable in the cavity 5 and which faces away from the control chamber with its end on a valve needle, not shown in the drawing, which opens and closes the injection openings of the fuel injection valve.
  • a drain hole 17 is formed, which is formed centrally in the longitudinal direction and which merges at its controlraumabgewandten end into an outlet throttle 18, so that a hydraulic connection from the control room
  • leakage oil chamber 19 is connected via the leak oil passage 10 with a return system and always at low
  • a control valve 30 which comprises a magnet armature 27, which can be moved by an electromagnet 21 against a closing spring 31 in the longitudinal direction.
  • a sealing ball 25 is arranged on the armature 27 which, in the closed position of the control valve 30, is seated on a sealing seat 24 on the valve piece 12 and thus closes the outlet throttle 18. If the outlet throttle 18 is to be opened, the electromagnet 21 is energized and pulls the armature 27 away from the sealing seat 24, so that the outlet throttle 18 clears the connection between the control chamber 14 and the leakage oil chamber 19.
  • FIG. 2 the area of the sealing ring 40 is shown enlarged again.
  • the annular space 20 is the control chamber 14 facing away from sealed by a sealing ring 40 against the gap 15 which is formed between the valve member 12 and the wall of the cavity 5.
  • the gap 15 is in this case via a drainage channel
  • Sealing ring 40 is exposed to high mechanical loads.
  • the sealing ring 40 must on the one hand be sufficiently mechanically stable so as not to enter the gap
  • the sealing ring 40 is made of polyetheretherketone (PEEK), care being taken that the sealing ring 40 on the one hand does not sit too tightly on the valve piece 12 and, on the other hand, does not leave too large a gap between the sealing ring 40 and the valve piece 12 on the one hand and the sealing ring 40 and the wall of the cavity 5 on the other hand occurs.
  • PEEK polyetheretherketone
  • FIG 3a the sealing ring 40 is shown again in perspective and Figure 3b shows the corresponding cross section through the sealing ring 40.
  • the cross section of the sealing ring 40 is substantially rectangular, wherein the outer edges are bevelled. This form has proved to be particularly advantageous for sealing in the fuel injection valve according to the invention.
  • other cross sections are conceivable, for example, an octagonal
  • Cross section as shown in Figure 3c, a substantially semicircular cross section, as shown in Figure 3d, or a round or elliptical cross section, as shown in Figure 3e.
  • the PEEK used of the sealing ring 40 may also be reinforced by fibers, in particular by glass or carbon fibers. This is a gain either by long fibers in question, which preferably extend in the circumferential direction of the sealing ring 40, or by short fibers whose length is small compared to the diameter of the sealing ring 40.
  • the short fibers are arranged undirected in the PEEK and ensure a higher stability of the sealing ring 40.
  • Another way to strengthen the PEEK of the sealing ring 40 is the addition of PTFE powder (polytetrafluoroethylene) or graphite powder into the PEEK material.
  • PTFE powder polytetrafluoroethylene
  • graphite powder into the PEEK material.
  • the sealing ring 40 must have exact dimensions in order to fulfill the desired properties. This makes the production by the cost-effective
  • the sealing ring 40 is produced in an advantageous method by turning either from a solid PEEK block or from PEEK semifinished product, for example a tube. This can be done accordingly achieve exact dimensions with a good surface quality of the sealing ring 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil zur Kraftstoffeinspritzung in Brennkraftmaschinen mit einem Gehäuse (1), in dem ein Steuerraum (14) ausgebildet ist, wobei die Kraftstoffeinspritzung abhängig vom Druck im Steuerraum (14) stattfindet. Das Kraftstoffeinspritzventil weist ein Ventilstück (12) auf, das in einem Hohlraum (5) des Gehäuses (1) angeordnet ist und das den Steuerraum (14) radial nach außen begrenzt, wobei zwischen dem Ventilstück (12) und der Wand des Hohlraums (14) ein Ringraum (20) ausgebildet ist, der mit Kraftstoff unter hohem Druck befüllbar ist. Der Ringraum (20) ist durch einen zwischen dem Ventilstück (12) und der Wand des Hohlraums (14) angeordneten Dichtring (40) gegen einen im Gehäuse (1) ausgebildeten Niederdruckraum (5) abgedichtet, wobei der Dichtring (40) aus Polyetheretherketon (PEEK) besteht.

Description

Beschreibung
Titel
Kraftstoffeinspritzventil zur Kraftstoffeinspritzung in Brennkraftmaschinen
Die Erfindung betrifft ein Kraftstoffeinspritzventil, wie es für die Einspritzung von
Kraftstoff in Brennräume von Brennkraftmaschinen, vorzugsweise von selbstzündenden Brennkraftmaschinen verwendet wird.
Stand der Technik
Ein Kraftstoffeinspritzventil der gattungsbildenden Art ist beispielsweise aus der Offenlegungsschrift DE 198 27 267 Al bekannt. Ein solches Kraftstoffeinspritzventil weist ein Gehäuse auf, in dem ein Steuerraum ausgebildet ist, wobei die Kraftstoffeinspritzung abhängig vom Druck im Steuerraum stattfindet. In diesem Fall geschieht dies dadurch, dass eine Kolbenstange den Steuerraum begrenzt und die Kolbenstange direkt auf eine Ventilnadel wirkt, die wiederum Einspritzöffnungen verschließt oder freigibt, durch die der Kraftstoff, der dem Kraftstoffeinspritzventil unter hohem Druck zugeführt wird, ausgespritzt wird. Der Steuerraum befindet sich in einem Ventilstück, das wiederum in einem Hohlraum des Gehäuses angeordnet ist und das den Steuerraum radial nach außen begrenzt.
Der unter hohem Druck stehende Kraftstoff wird dem Steuerraum über einen Hochdruckkanal zugeführt, der in einen Ringraum mündet, welcher zwischen dem Ventilstück und der Wand des Hohlraums ausgebildet ist. Von diesem Ringraum führen eine oder mehrere Drosselbohrungen in den Steuerraum und ver- binden den Steuerraum mit dem hohen Kraftstoffdruck im Ringraum.
Um den im Ringraum anstehenden hohen Kraftstoffdruck gegen das übrige Kraftstoffeinspritzventil abzudichten, ist auf der Seite, die der Ventilnadel zugewandt ist, ein Dichtring zwischen dem Ventilstück und der Wand des Hohlraums vorgesehen, so dass der hohe Kraftstoffdruck im Ringraum vom Niederdruckbe- reich des Kraftstoffeinspritzventils getrennt bleibt. Der Dichtring ist dabei hohen mechanischen Belastungen durch den hohen Kraftstoff druck im Ringraum ausgesetzt. Dies hat zur Folge, dass ein Dichtring, der beispielsweise aus Kautschuk oder einem ähnlichen Dichtmaterial gefertigt ist, durch den Spalt, der der Ventil- nadel zugewandt zwischen der Wand des Hohlraums und dem Ventilstück verbleibt, gleichsam extrudiert wird und seine Dichtfunktion nicht mehr erfüllen kann. Als Folge führt dies zu einer übergroßen Leckagemenge des Kraftstoffeinspritzventils und damit schließlich zu einem Ausfall des Motors.
Zur Vermeidung dieses Problems ist es aus der Offenlegungsschrift DE 100 20
870 Al bekannt, einen Stützring aus Metall zu verwenden, der den eigentlichen Dichtring stützt und dadurch ein Extrudieren in den Spalt verhindert. Dies kann jedoch zu weiteren Problemen dadurch führen, dass der Kraftstoffdruck, der im Ringraum ansteht, in den Raum zwischen dem Stützring und dem Dichtring ge- langt. Durch die auftretenden Druckoszillationen im Ringraum kann der Dichtring in Richtung des Steuerraums verschoben werden und schließlich die Drosselbohrungen verschließen, die den Steuerraum mit dem Ringraum verbinden. Dies führt ebenfalls zu einem Ausfall des Kraftstoffeinspritzventils.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil zur Kraftstoffeinspritzung weist demgegenüber den Vorteil auf, dass eine Abdichtung des Ringraums gegen den Niederdruckbereich des Kraftstoffeinspritzventils auf der der Ventilnadel zuge- wanden Seite des Ringraums stets zuverlässig erfolgt. Hierzu ist ein Dichtring vorgesehen, der aus Polyetheretherketon (PEEK) besteht, einem thermoplastischen Polymer. PEEK weist alle für eine gute Hochdruckabdichtung von Kraftstoff erforderlichen Eigenschaften auf: PEEK weist eine hohe chemische Beständigkeit auf und wird durch den Kraftstoff nicht angegriffen. Darüber hinaus besitzt PEEK, obwohl bei Normalbedingungen elastisch, die Eigenschaft, durch den hohen Druck von bis zu 2000 bar, wie er im Kraftstoffeinspritzventil herrscht, versteift zu werden, so dass das Extrudieren in den Spalt zwischen dem Ventilstück und der Wand des Hohlraums ausgeschlossen ist. Da der Dichtring nur einteilig ausgeführt ist, kann sich unterhalb des Dichtrings kein Druckpolster aufbauen, das den Dichtring in Richtung des Steuerraums verschiebt, wie dies bei der zweiteiligen Lösung der Fall ist.
Der Dichtring kann je nach den gegebenen Erfordernissen unterschiedliche Querschnittsformen aufweisen. Als besonders vorteilhaft hat sich eine Form erwiesen, die einen im wesentlichen rechteckförmigen Querschnitt des Dichtrings vorsieht, wobei die außen liegenden Kanten abgeschrägt sind. Andere Formen können jedoch abhängig von den gegebenen Geometrien ebenfalls von Vorteil sein, beispielsweise eine kreisrunde oder elliptische Querschnittsform oder eine rechteckige.
In einer weiteren vorteilhaften Ausgestaltung ist das PEEK mit Glasfasern oder Kohlenstofffasern verstärkt. Hierbei kommt eine Verstärkung entweder mit Langfasern, die beispielsweise in Umfangsrichtung um den gesamten Dichtring ver- laufen, oder auch durch Kurzfasern in Frage, wobei die Kurzfasern nur eine kurze Länge im Vergleich zum Durchmesser des Dichtrings aufweisen und unregelmäßig innerhalb des Kunststoffs angeordnet sind.
Da der Dichtring sehr exakte Abmessungen aufweisen muss, die einen genau definierten Spalt sowohl zur Wand des Hohlraums als auch zum Ventilstück aufweist, ist die Herstellung mit einem erfindungsgemäßen Verfahren besonders vorteilhaft, bei dem der Dichtring aus einem massiven PEEK-Block oder aus PEEK-Halbzeug durch Drehen hergestellt wird. Durch diesen Drehprozess wird eine exakte Rotationssymmetrie erzeugt und entsprechend glatte Oberflächen, die für die Funktion des Dichtrings unerlässlich sind.
Zeichnung
In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Es zeigt die Figur 1 einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil, wobei nur der wesentliche Teil gezeigt ist, Figur 2 zeigt eine Vergrößerung von Figur 1 im Bereich des Dichtrings, Figur 3a zeigt eine perspektivische Darstellung des Dichtrings, wobei dessen Querschnitt in Figur 3b dargestellt ist. Die Figuren 3c, 3d und 3e zeigen jeweils verschiedene Ausführungs- beispiele des Dichtrings mit unterschiedlichen Querschnitten. Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt, wobei nur der brennraumabgewandte Teil des Kraftstoffeinspritzventils dargestellt ist. Der übrige Teil, der beispielsweise aus der DE 198 27 267 Al hinlänglich bekannt ist, wurde der Übersichtlichkeit halber weggelassen.
Das Kraftstoffeinspritzventil weist ein Gehäuse 1 auf, das unter anderem einen
Ventilkörper 4 umfasst. Der Ventilkörper 4 ist über einen Anschlussstutzen 9 mit einer Hochdruckquelle verbunden, beispielsweise einem sogenannten Rail, das wiederum über eine Hochdruckpumpe stets mit Kraftstoff unter hohem Druck befüllt wird. Der Kraftstoff wird am Anschlussstutzen 9 durch die Anschlussöffnung 3 eingefüllt und passiert einen Filter 42, wobei die Abdichtung des Anschlussstutzens 9, der in den Ventilkörper 4 eingeschraubt ist, durch eine Dichtung 41 erreicht wird. Innerhalb des Ventilkörpers 4 verläuft ein Hochdruckkanal 8, durch den der Kraftstoff, der über den Anschlussstutzen 9 eingefüllt wird, zur Einspritzdüse geleitet wird und von dort letztendlich in den Brennraum der Brennkraftma- schine eingespritzt wird.
Innerhalb des Ventilkörpers 4 ist ein Hohlraum 5 ausgebildet, der sich über die gesamte Länge des Ventilkörpers 4 erstreckt. In dem in der Abbildung oberen Teil des Hohlraums 5 ist ein Ventilstück 12 angeordnet, das im Wesentlichen ro- tationssym metrisch ausgebildet ist, wobei zwischen der Wand des Hohlraums 5 und dem Ventilstück 12 ein Ringraum 20 verbleibt, in den eine Abzweigung des Hochdruckkanals 8 mündet, die in direkter Verlängerung des Anschlussstutzens 9 ausgebildet ist. Vom Ringraum 20 gehen eine oder mehrere Drosselbohrungen in einen Steuerraum 14 ab, welcher durch das Ventilstück 12 radial nach außen begrenzt wird. Innerhalb des Ventilstücks 12 wird eine Kolbenstange 6 radial geführt, die längsverschiebbar im Hohlraum 5 angeordnet ist und die mit ihrem dem Steuerraum abgewandten Ende auf einer in der Zeichnung nicht dargestellten Ventilnadel aufliegt, die die Einspritzöffnungen des Kraftstoffeinspritzventils öffnet und schließt. Im Ventilstück 12 ist eine Ablaufbohrung 17 ausgebildet, die zentral in Längsrichtung ausgebildet ist und die an ihrem steuerraumabgewandten Ende in eine Ablaufdrossel 18 übergeht, so dass eine hydraulische Verbindung vom Steuerraum
14 zu einem Leckölraum 19 hergestellt wird, wobei der Leckölraum 19 über den Leckölkanal 10 mit einem Rücklaufsystem verbunden ist und stets auf niedrigem
Druck, d.h. im Wesentlichen auf Umgebungsdruck, gehalten wird. Zum Öffnen und Schließen der Ablaufdrossel 18 ist ein Steuerventil 30 vorgesehen, das einen Magnetanker 27 umfasst, der durch einen Elektromagneten 21 entgegen einer Schließfeder 31 in Längsrichtung bewegt werden kann. Am steuerraumzu- gewandten Ende ist am Anker 27 eine Dichtkugel 25 angeordnet, die in Schließstellung des Steuerventils 30 auf einen Dichtsitz 24 am Ventilstück 12 aufsitzt und so die Ablaufdrossel 18 verschließt. Soll die Ablaufdrossel 18 geöffnet werden, wird der Elektromagnet 21 bestromt und zieht den Magnetanker 27 vom Dichtsitz 24 weg, so dass die Ablaufdrossel 18 die Verbindung zwischen dem Steuerraum 14 und dem Leckölraum 19 freigibt.
In Figur 2 ist der Bereich des Dichtrings 40 nochmals vergrößert dargestellt. Der Ringraum 20 wird dem Steuerraum 14 abgewandt durch einen Dichtring 40 gegen den Spalt 15 abgedichtet, der zwischen dem Ventilstück 12 und der Wand des Hohlraums 5 ausgebildet ist. Der Spalt 15 ist hierbei über einen Ablaufkanal
16, der innerhalb des Ventilkörpers 3 verläuft und in Figur 1 dargestellt ist, mit dem Leckölraum 19 verbunden und damit im Wesentlichen auf Umgebungsdruck. Im Ringraum 20 herrscht hingegen der Kraftstoffhochdruck, der über den Anschlussstutzen 9 in das Kraftstoffeinspritzventil eingeleitet wird. Dieser Druck kann je nach Anwendung momentan bis zu 2000 bar betragen, so dass der
Dichtring 40 hohen mechanischen Belastungen ausgesetzt ist. Hierbei muss der Dichtring 40 einerseits mechanisch ausreichend stabil sein, um nicht in den Spalt
15 extrudiert zu werden und andererseits genug Flexibilität aufweisen, um den Ringraum 20 ausreichend gegen den Spalt 15 abzudichten. Um dies zu errei- chen ist der Dichtring 40 aus Polyetheretherketon (PEEK) ausgebildet, wobei darauf geachtet werden muss, dass der Dichtring 40 einerseits nicht zu eng auf dem Ventilstück 12 aufsitzt und andererseits kein zu großer Spalt zwischen dem Dichtring 40 und dem Ventilstück 12 einerseits und dem Dichtring 40 und der Wand des Hohlraums 5 andererseits auftritt. Durch die Verwendung eines richtig dimensionierten Dichtrings aus PEEK ist dies sichergestellt: PEEK ist einerseits flexibel genug um eine Dichtung zu erreichen, andererseits wird PEEK unter hohem Druck verfestigt, so dass ein Extrudieren in den Spalt 15 ausgeschlossen ist.
In Figur 3a ist der Dichtring 40 nochmal perspektivisch dargestellt und Figur 3b zeigt den dazugehörigen Querschnitt durch den Dichtring 40. Der Querschnitt des Dichtrings 40 ist im Wesentlichen rechteckförmig, wobei die außen liegenden Kanten angeschrägt sind. Diese Form hat sich als besonders vorteilhaft zur Abdichtung in dem erfindungsgemäßen Kraftstoffeinspritzventil erwiesen. Es sind jedoch auch andere Querschnitte denkbar, beispielsweise ein Achteckförmiger
Querschnitt, wie in Figur 3c dargestellt, ein im Wesentlichen halbkreisförmiger Querschnitt, wie in Figur 3d gezeigt, oder ein runder bzw. elliptischer Querschnitt, wie in Figur 3e dargestellt.
Das verwendete PEEK des Dichtrings 40 kann auch durch Fasern verstärkt sein, insbesondere durch Glas- oder Kohlenstofffasern. Hierbei kommt eine Verstärkung entweder durch Langfasern in Frage, die vorzugsweise in Umfangsrichtung des Dichtrings 40 verlaufen, oder auch durch Kurzfasern, deren Länge klein im Vergleich zum Durchmesser des Dichtrings 40 ist. Die Kurzfasern sind hierbei ungerichtet im PEEK angeordnet und sorgen für eine höhere Stabilität des Dichtrings 40.
Eine weitere Möglichkeit, das PEEK des Dichtrings 40 zu verstärken, ist die Zugabe von PTFE-Pulver (Polytetrafluorethylen) oder Graphit-Pulver in das PEEK- Material. Hierdurch kann eine weitere Verfestigung des PEEK erreicht werden, wobei sich auch die Oberflächeneigenschaften und die Bearbeitbarkeit positiv beeinflussen lassen.
Der Dichtring 40 muss exakte Abmessungen aufweisen, um die gewünschten Ei- genschaften zu erfüllen. Dies macht das Herstellen durch das kostengünstige
Spritzgießen technisch schwer beherrschbar. Um entsprechend präzise Dichtringe erzeugen zu können, wird der Dichtring 40 in einem vorteilhaften Verfahren durch Drehen entweder aus einem massiven PEEK-Block oder aus PEEK- Halbzeug, etwa einem Rohr, hergestellt. Dadurch lassen sich die entsprechend exakten Abmessungen bei einer guten Oberflächengüte des Dichtrings 40 erreichen.

Claims

Ansprüche
1. Kraftstoffeinspritzventil zur Kraftstoffeinspritzung in Brennkraftmaschinen mit einem Gehäuse (1), in dem ein Steuerraum (14) ausgebildet ist, wobei die Kraftstoffeinspritzung abhängig vom Druck im Steuerraum (14) stattfindet, und mit einem Ventilstück (12), das in einem Hohlraum (5) des Gehäuses (1) angeordnet ist und das den Steuerraum (14) radial nach außen begrenzt, wobei zwischen dem Ventilstück (12) und der Wand des Hohlraums (14) ein Ringraum (20) ausgebildet ist, der mit Kraftstoff unter hohem Druck befüllbar ist und der durch einen zwischen dem Ventilstück (12) und der Wand des
Hohlraums (14) angeordneten Dichtring (40) gegen einen im Gehäuse (1) ausgebildeten Niederdruckraum (5) abgedichtet ist, dadurch gekennzeichnet, dass der Dichtring (40) aus Polyetheretherketon (PEEK) besteht.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Dichtring (40) rotationssymmetrisch ausgebildet ist.
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Querschnitt des Dichtrings (40) als Rechteck ausgebildet ist, wobei die äußeren Kanten abgeschrägt sind.
4. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Querschnitt des Dichtrings (40) kreisförmig ausgebildet ist.
5. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Querschnitt des Dichtrings (40) achteckförmig ausgebildet ist.
6. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Querschnitt des Dichtrings (40) rechteckförmig ausgebildet ist.
7. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das PEEK des Dichtrings (40) mit Glasfasern oder Kohlenstofffasern verstärkt ist.
8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Verstärkung durch Kurzglasfasern oder Kurzkohlenstofffasern erreicht wird, die in die PEEK-Matrix eingebettet sind.
9. Verfahren zur Herstellung eines Kraftstoffeinspritzventils nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Dichtring (40) durch Spritzgießen oder durch Drehen aus einem massiven PEEK-Block oder aus PEEK-Halbzeug hergestellt wird.
PCT/EP2008/051235 2007-02-20 2008-02-01 Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen WO2008101782A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08708545.2A EP2126331B1 (de) 2007-02-20 2008-02-01 Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007008262.4 2007-02-20
DE200710008262 DE102007008262A1 (de) 2007-02-20 2007-02-20 Kraftstoffeinspritzventil zur Kraftstoffeinspritzung in Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO2008101782A1 true WO2008101782A1 (de) 2008-08-28

Family

ID=39281870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051235 WO2008101782A1 (de) 2007-02-20 2008-02-01 Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP2126331B1 (de)
DE (1) DE102007008262A1 (de)
WO (1) WO2008101782A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212249A1 (de) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102019220061A1 (de) 2019-12-18 2021-06-24 Robert Bosch Gmbh Kraftstoffinjektor zur Einspritzung von Kraftstoff

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334552A (en) * 1998-02-24 1999-08-25 Hoerbiger Ventilwerke Gmbh Electromagnetically actuated gas valve
DE19827267A1 (de) 1998-06-18 1999-12-23 Bosch Gmbh Robert Kraftstoff-Einspritzventil für Hochdruck-Einspritzung mit verbesserter Steuerung der Kraftstoffzufuhr
EP0995901A1 (de) * 1998-10-22 2000-04-26 Lucas Industries Limited Kraftstoffeinspritzventil
DE19951144A1 (de) * 1999-10-23 2001-04-26 Bosch Gmbh Robert Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit hydraulischer Vorspannung des Druckübersetzers
WO2006131411A1 (de) * 2005-06-09 2006-12-14 Robert Bosch Gmbh Ventil zur steuerung eines einspritzventils einer brennkraftmaschine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020870A1 (de) 2000-04-28 2001-10-31 Bosch Gmbh Robert Common-Rail-Injektor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334552A (en) * 1998-02-24 1999-08-25 Hoerbiger Ventilwerke Gmbh Electromagnetically actuated gas valve
DE19827267A1 (de) 1998-06-18 1999-12-23 Bosch Gmbh Robert Kraftstoff-Einspritzventil für Hochdruck-Einspritzung mit verbesserter Steuerung der Kraftstoffzufuhr
EP0995901A1 (de) * 1998-10-22 2000-04-26 Lucas Industries Limited Kraftstoffeinspritzventil
DE19951144A1 (de) * 1999-10-23 2001-04-26 Bosch Gmbh Robert Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit hydraulischer Vorspannung des Druckübersetzers
WO2006131411A1 (de) * 2005-06-09 2006-12-14 Robert Bosch Gmbh Ventil zur steuerung eines einspritzventils einer brennkraftmaschine

Also Published As

Publication number Publication date
DE102007008262A1 (de) 2008-08-21
EP2126331A1 (de) 2009-12-02
EP2126331B1 (de) 2013-07-31

Similar Documents

Publication Publication Date Title
DE2827878C2 (de)
WO2007017305A1 (de) Brennstoffeinspritzventil und verfahren zur ausformung von abspritzöffnungen
EP3108136B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
DE102005052252A1 (de) Brennstoffeinspritzventil
EP1332285A1 (de) Brennstoffeinspritzanlage
EP2126331B1 (de) Kraftstoffeinspritzventil zur kraftstoffeinspritzung in brennkraftmaschinen
DE102010030344A1 (de) Injektor, insbesondere Common-Rail-Injektor, sowie Kraftstoffeinspritzsystem mit einem Injektor
DE102012211169A1 (de) Kraftstoffinjektor
DE10031580A1 (de) Druckgesteuertes Steuerteil für Common-Rail-Injektoren
DE102018208361A1 (de) Verfahren zum Betreiben eines Kraftstoffinjektors, Kraftstoffinjektor
DE102014201065A1 (de) Ventil zum Zumessen von Fluid
DE10333697A1 (de) Kraftstoffeinspritzvorrichtung
DE10357454A1 (de) Brennstoffeinspritzventil
DE102016209249A1 (de) Gasventil zum Dosieren von gasförmigen Kraftstoffen
DE10260349B4 (de) Brennstoffeinspritzventil
DE102018200447A1 (de) Direkteinspritzende Brennkraftmaschine mit Wassereinspritzung
DE102010030934A1 (de) Injektor, insbesondere Common-Rail-Injektor, und Kraftstoffeinspritzsystem mit einem Injektor
DE102018208859A1 (de) Verfahren zum Betreiben eines Kraftstoffinjektors, Kraftstoffinjektor
WO2005010341A1 (de) Kraftstoffeinspritzvorrichtung
EP1915527B1 (de) Teilentdrosseltes einspritzventilglied für kraftstoffinjektoren
DE102004055265A1 (de) Kraftstoffeinspritzvorrichtung
DE102008000596A1 (de) Injektor
EP1322866A2 (de) Ventil zum steuern von flüssigkeiten
DE102005025522A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10333692B3 (de) Kraftstoffeinspritzvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008708545

Country of ref document: EP