WO2008097336A2 - Controller for an assistive exoskeleton based on active impedance - Google Patents
Controller for an assistive exoskeleton based on active impedance Download PDFInfo
- Publication number
- WO2008097336A2 WO2008097336A2 PCT/US2007/073093 US2007073093W WO2008097336A2 WO 2008097336 A2 WO2008097336 A2 WO 2008097336A2 US 2007073093 W US2007073093 W US 2007073093W WO 2008097336 A2 WO2008097336 A2 WO 2008097336A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exoskeleton
- torque
- limb segment
- active impedance
- impedance element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1207—Driving means with electric or magnetic drive
- A61H2201/1215—Rotary drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1657—Movement of interface, i.e. force application means
- A61H2201/1676—Pivoting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5061—Force sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5079—Velocity sensors
Definitions
- FIG. 9A illustrates an implementation of a 1-DOF assistive controller based on active admittance, according to one embodiment.
- the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
- the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus.
- Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below.
- the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the present invention as described herein, and any references below to specific languages are provided for disclosure of enablement and best mode of the present invention.
- FIG. 2 illustrates a 1-DOF assistive exoskeleton for a knee joint, according to one embodiment.
- the illustrated exoskeleton includes an actuator and an arm and is coupled to the ankle.
- a linear model of a 1-DOF exoskeleton with its impedance parameters is illustrated in FIG. 3, according to one embodiment.
- the exoskeleton's impedance parameters include an inertia moment I e (related to the exoskeleton's arm), a damping b e , and a stiffness k e .
- the "e” subscript refers to "exoskeleton.” Coordinate ⁇ represents the angular position of the actuator of the exoskeleton.
- the exoskeleton is designed to reduce this needed muscle torque by a certain factor G greater than 1.
- G the factor
- the exoskeleton' s virtual impedance Zf(s) is an active impedance.
- the virtual impedance Zf(s) can vary over time, for example ifZ h (s) or G varies with time.
- the human impedance terms can be estimated by an appropriate method such as system identification based on least-squares approximation.
- the virtual impedance terms of the exoskeleton must be negative in order to achieve a scaling of the muscle torque.
- the passivity condition Re ⁇ Z e d (j ⁇ ) ⁇ ⁇ 0 does not hold.
- Z e d (s) is an active impedance.
- the magnitude of the modified human limb impedance, Z/ is less than that of the natural limb impedance, Zy 1 .
- the measured interaction torque or interaction force ⁇ p _ m is negated and used as input to an active impedance element containing the virtual impedance parameters of the exoskeleton in the form (also known as virtual admittance).
- the active impedance element generates a commanded angle velocity ⁇ c .
- the commanded angle velocity is possibly combined with its integral and/or derivative to form a commanded kinematic trajectory q c (comprising angular position, angular velocity and/or angular acceleration) for the exoskeleton.
- the "c” subscript refers to "command" because the reference trajectory is commanded to the exoskeleton's motor.
- an active impedance controller comprises an impedance-based torque command generator and a velocity sensor in a feedback loop with the exoskeleton (including elements to control the actuator's motor) and the user.
- the structure of this controller is illustrated in FIG. 9B.
- the measured angular velocity ⁇ m is used as an input to an active impedance element containing the virtual impedance parameters of the exoskeleton in the form Zf(s).
- the active impedance element generates a commanded actuator torque or force ⁇ c .
- the active impedance controller can be implemented in hardware, software, or both.
- the signals in the controller may be digital, analog, or both.
- the modules illustrated in FIGS. 9A and 9B can be combined or further divided into other modules.
- the impedance controller can be implemented as a part of the exoskeleton, as a part of the exoskeleton's actuator, or separate from the exoskeleton.
- the virtual dynamics of the exoskeleton are those of an active system.
- the virtual dynamics of the exoskeleton will be active if Bf is proven to be negative definite.
- Equation 25 shown also in block (d) of FIG. 12, represents the basic control law for the exoskeleton.
- this control law is an impedance controller.
- the exoskeleton enforces the kinematic trajectory represented by q , q andq .
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manipulator (AREA)
- Rehabilitation Tools (AREA)
- Prostheses (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009548236A JP4677047B2 (ja) | 2007-02-02 | 2007-07-09 | 外骨格のアクチュエータを制御する方法及び制御装置 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US88803507P | 2007-02-02 | 2007-02-02 | |
| US60/888,035 | 2007-02-02 | ||
| US11/696,110 | 2007-04-03 | ||
| US11/696,110 US7731670B2 (en) | 2007-02-02 | 2007-04-03 | Controller for an assistive exoskeleton based on active impedance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2008097336A2 true WO2008097336A2 (en) | 2008-08-14 |
| WO2008097336A3 WO2008097336A3 (en) | 2008-11-13 |
Family
ID=39676835
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/073093 Ceased WO2008097336A2 (en) | 2007-02-02 | 2007-07-09 | Controller for an assistive exoskeleton based on active impedance |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US7731670B2 (cg-RX-API-DMAC7.html) |
| JP (1) | JP4677047B2 (cg-RX-API-DMAC7.html) |
| WO (1) | WO2008097336A2 (cg-RX-API-DMAC7.html) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108324503A (zh) * | 2018-03-16 | 2018-07-27 | 燕山大学 | 基于肌骨模型和阻抗控制的康复机器人自适应控制方法 |
Families Citing this family (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7645246B2 (en) * | 2004-08-11 | 2010-01-12 | Omnitek Partners Llc | Method for generating power across a joint of the body during a locomotion cycle |
| CA2583107C (en) * | 2006-03-31 | 2011-09-13 | Universite De Sherbrooke | High performance differential actuator for robotic interaction tasks |
| US8353854B2 (en) | 2007-02-14 | 2013-01-15 | Tibion Corporation | Method and devices for moving a body joint |
| WO2009099671A2 (en) | 2008-02-08 | 2009-08-13 | Tibion Corporation | Multi-fit orthotic and mobility assistance apparatus |
| US20090306548A1 (en) | 2008-06-05 | 2009-12-10 | Bhugra Kern S | Therapeutic method and device for rehabilitation |
| US8058823B2 (en) * | 2008-08-14 | 2011-11-15 | Tibion Corporation | Actuator system with a multi-motor assembly for extending and flexing a joint |
| US8274244B2 (en) * | 2008-08-14 | 2012-09-25 | Tibion Corporation | Actuator system and method for extending a joint |
| US20100198124A1 (en) * | 2009-01-30 | 2010-08-05 | Kern Bhugra | System and method for controlling the joint motion of a user based on a measured physiological property |
| US8639455B2 (en) * | 2009-02-09 | 2014-01-28 | Alterg, Inc. | Foot pad device and method of obtaining weight data |
| US8686951B2 (en) | 2009-03-18 | 2014-04-01 | HJ Laboratories, LLC | Providing an elevated and texturized display in an electronic device |
| IT1393776B1 (it) * | 2009-04-03 | 2012-05-08 | Fond Istituto Italiano Di Tecnologia | Attuatore rotante elastico, particolarmente per applicazioni robotiche, e metodo per il suo controllo |
| WO2011055428A1 (ja) * | 2009-11-04 | 2011-05-12 | トヨタ自動車株式会社 | 歩行補助装置 |
| EP2500007B1 (en) | 2009-11-13 | 2018-12-26 | Toyota Jidosha Kabushiki Kaisha | Walking aid device |
| US20110199342A1 (en) | 2010-02-16 | 2011-08-18 | Harry Vartanian | Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound |
| EP2555716A2 (en) * | 2010-04-05 | 2013-02-13 | Iwalk, Inc. | Controlling torque in a prosthesis or orthosis |
| WO2012100250A1 (en) * | 2011-01-21 | 2012-07-26 | Iwalk, Inc. | Terrain adaptive powered joint orthosis |
| CN102302404B (zh) * | 2011-06-30 | 2012-12-05 | 浙江大学 | 行走式欠驱动型三自由度踝关节运动康复外骨骼 |
| JP5636352B2 (ja) * | 2011-10-24 | 2014-12-03 | 本田技研工業株式会社 | 動作補助装置及び歩行補助装置 |
| KR101765952B1 (ko) | 2011-11-29 | 2017-08-08 | 현대자동차주식회사 | 착용식 로봇의 제어방법 및 제어장치 |
| US20130145530A1 (en) * | 2011-12-09 | 2013-06-13 | Manu Mitra | Iron man suit |
| CN102793619A (zh) * | 2012-07-04 | 2012-11-28 | 中国人民解放军海军航空工程学院 | 下肢外骨骼服结构的静定设计方法 |
| US8845566B2 (en) | 2012-08-02 | 2014-09-30 | The Regents Of The University Of Michigan | Active exoskeletal spinal orthosis and method of orthotic treatment |
| US9675514B2 (en) | 2013-03-15 | 2017-06-13 | Bionik Laboratories, Inc. | Transmission assembly for use in an exoskeleton apparatus |
| US9855181B2 (en) | 2013-03-15 | 2018-01-02 | Bionik Laboratories, Inc. | Transmission assembly for use in an exoskeleton apparatus |
| US9421143B2 (en) | 2013-03-15 | 2016-08-23 | Bionik Laboratories, Inc. | Strap assembly for use in an exoskeleton apparatus |
| US9808390B2 (en) | 2013-03-15 | 2017-11-07 | Bionik Laboratories Inc. | Foot plate assembly for use in an exoskeleton apparatus |
| US9889058B2 (en) | 2013-03-15 | 2018-02-13 | Alterg, Inc. | Orthotic device drive system and method |
| US20150025423A1 (en) | 2013-07-19 | 2015-01-22 | Bionik Laboratories, Inc. | Control system for exoskeleton apparatus |
| KR102000264B1 (ko) * | 2013-10-01 | 2019-07-15 | 한국전자통신연구원 | 교시 데이터 입력 장치와 이를 이용한 로봇의 교시 명령어 생성 장치 및 방법 |
| WO2016007493A1 (en) * | 2014-07-08 | 2016-01-14 | Ekso Bionics, Inc. | Systems and methods for transferring exoskeleton trajectory sequences |
| KR102250225B1 (ko) * | 2014-07-24 | 2021-05-10 | 삼성전자주식회사 | 운동 보조 장치 및 그 제어 방법 |
| US9757254B2 (en) * | 2014-08-15 | 2017-09-12 | Honda Motor Co., Ltd. | Integral admittance shaping for an exoskeleton control design framework |
| KR102284822B1 (ko) * | 2014-10-22 | 2021-08-02 | 삼성전자주식회사 | 지지 모듈, 이를 포함하는 운동 보조 장치 및 운동 보조 장치의 제어 방법 |
| US10449105B2 (en) * | 2014-10-26 | 2019-10-22 | Springactive, Inc. | System and method of bidirectional compliant joint torque actuation |
| KR101588281B1 (ko) * | 2014-11-24 | 2016-02-01 | 대한민국 | 재활 보조기기용 제어 시스템 |
| US10390973B2 (en) | 2015-05-11 | 2019-08-27 | The Hong Kong Polytechnic University | Interactive exoskeleton robotic knee system |
| RU2598124C1 (ru) | 2015-10-19 | 2016-09-20 | Общество С Ограниченной Ответственностью "Экзоатлет" | Способ задания желаемых траекторий движения экзоскелета для передвижения пользователя с нарушением функций опорно-двигательного аппарата, устройство содействия ходьбе этого пользователя и способ управления этим устройством |
| CN105362036B (zh) * | 2015-10-20 | 2019-01-25 | 中国电子科技集团公司第二十一研究所 | 康复助力机械腿 |
| DE102016122282A1 (de) | 2016-11-18 | 2018-05-24 | Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg | System und verfahren zur reduktion von auf eine wirbelsäule wirkenden kräften |
| DE102016123153A1 (de) | 2016-11-30 | 2018-05-30 | Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg | Vorrichtung und verfahren zur muskelkraftunterstützung |
| FR3061653B1 (fr) * | 2017-01-10 | 2019-05-31 | Wandercraft | Procede de mise en mouvement d'un exosquelette |
| FR3068236B1 (fr) * | 2017-06-29 | 2019-07-26 | Wandercraft | Procede de mise en mouvement d'un exosquelette |
| WO2019060791A1 (en) * | 2017-09-22 | 2019-03-28 | North Carolina State University | HIP EXOSQUELET |
| CN111315544B (zh) * | 2017-11-08 | 2023-04-25 | 本田技研工业株式会社 | 步行移动辅助装置 |
| USD888254S1 (en) * | 2018-04-04 | 2020-06-23 | MSM Products, LLC | Knee extension device |
| CN111360815B (zh) * | 2018-12-26 | 2022-07-26 | 沈阳新松机器人自动化股份有限公司 | 基于肌电信号和关节应力的人机交互运动控制的方法 |
| JP7553899B2 (ja) * | 2019-02-07 | 2024-09-19 | 慶應義塾 | 位置・力制御装置、位置・力制御方法及びプログラム |
| JP7133511B2 (ja) * | 2019-06-11 | 2022-09-08 | 本田技研工業株式会社 | 情報処理装置、情報処理方法、およびプログラム |
| CN110834329B (zh) * | 2019-10-16 | 2021-02-09 | 深圳市迈步机器人科技有限公司 | 外骨骼控制方法及装置 |
| US20230263688A1 (en) * | 2020-07-01 | 2023-08-24 | Georgia Tech Research Corporation | Exoskeleton systems and methods of use |
| CN111965979B (zh) * | 2020-08-28 | 2021-09-24 | 南京工业大学 | 基于外骨骼机器人作动器的有限时间控制方法 |
| USD1005361S1 (en) | 2021-08-13 | 2023-11-21 | Festool Gmbh | Wearable robotic exoskeleton with belts |
| ES3022882T3 (en) * | 2021-09-16 | 2025-05-29 | Ncte Ag | Exoskeleton fitness device for training the human body |
| CN114089757B (zh) * | 2021-11-17 | 2024-02-02 | 北京石油化工学院 | 一种上下肢协调主动康复机器人控制方法及装置 |
| CN114392137B (zh) * | 2022-01-13 | 2023-05-23 | 上海理工大学 | 一种穿戴式柔性下肢助力外骨骼控制系统 |
| USD1054567S1 (en) * | 2023-03-09 | 2024-12-17 | CellVital International AG | Magnetic therapy device |
| CN117379747A (zh) * | 2023-11-22 | 2024-01-12 | 深圳市迈步机器人科技有限公司 | 一种基于参考轨迹和阻抗的肢体训练方法及装置 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5101472A (en) | 1990-10-04 | 1992-03-31 | Repperger Daniel W | Military robotic controller with majorizing function and nonlinear torque capability |
| JP2761574B2 (ja) | 1994-07-06 | 1998-06-04 | 工業技術院長 | 力補助装置の制御方法及びその装置 |
| JP3638048B2 (ja) * | 1995-12-11 | 2005-04-13 | 株式会社安川電機 | 肢体駆動装置の制御装置 |
| JP2000279463A (ja) * | 1999-03-31 | 2000-10-10 | Sanyo Electric Co Ltd | 上肢機能回復訓練装置 |
| US7390309B2 (en) * | 2002-09-23 | 2008-06-24 | Honda Motor Co., Ltd. | Human assist system using gravity compensation control system and method using multiple feasibility parameters |
| JP4133216B2 (ja) * | 2001-10-29 | 2008-08-13 | 本田技研工業株式会社 | 人間補助装置のシミュレーション・システム、方法、およびコンピュータ・プログラム |
| JP2003252600A (ja) * | 2002-03-05 | 2003-09-10 | Toyoda Mach Works Ltd | パワーアシスト装置 |
| US6966882B2 (en) * | 2002-11-25 | 2005-11-22 | Tibion Corporation | Active muscle assistance device and method |
| US7204814B2 (en) * | 2003-05-29 | 2007-04-17 | Muscle Tech Ltd. | Orthodynamic rehabilitator |
| CN1838933B (zh) * | 2003-08-21 | 2010-12-08 | 国立大学法人筑波大学 | 穿着式动作辅助装置、穿着式动作辅助装置的控制方法和控制用程序 |
| US8075633B2 (en) * | 2003-09-25 | 2011-12-13 | Massachusetts Institute Of Technology | Active ankle foot orthosis |
| CA2581587C (en) * | 2004-09-29 | 2015-02-03 | Northwestern University | System and methods to overcome gravity-induced dysfunction in extremity paresis |
| EP1827349A1 (de) * | 2004-11-30 | 2007-09-05 | Eidgenössische Technische Hochschule Zürich | System und verfahren für die kooperative armtherapie sowie rotationsmodul dafür |
| JP2006198389A (ja) * | 2004-12-22 | 2006-08-03 | Doshisha | ロボット、および、そのロボットとともに使用される携帯可能な記憶媒体 |
| US7190141B1 (en) * | 2006-01-27 | 2007-03-13 | Villanova University | Exoskeletal device for rehabilitation |
| US20080009771A1 (en) * | 2006-03-29 | 2008-01-10 | Joel Perry | Exoskeleton |
| CA2583107C (en) * | 2006-03-31 | 2011-09-13 | Universite De Sherbrooke | High performance differential actuator for robotic interaction tasks |
-
2007
- 2007-04-03 US US11/696,110 patent/US7731670B2/en active Active
- 2007-07-09 JP JP2009548236A patent/JP4677047B2/ja not_active Expired - Fee Related
- 2007-07-09 WO PCT/US2007/073093 patent/WO2008097336A2/en not_active Ceased
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108324503A (zh) * | 2018-03-16 | 2018-07-27 | 燕山大学 | 基于肌骨模型和阻抗控制的康复机器人自适应控制方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4677047B2 (ja) | 2011-04-27 |
| US20080188907A1 (en) | 2008-08-07 |
| WO2008097336A3 (en) | 2008-11-13 |
| US7731670B2 (en) | 2010-06-08 |
| JP2010517616A (ja) | 2010-05-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7731670B2 (en) | Controller for an assistive exoskeleton based on active impedance | |
| Long et al. | Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton | |
| Aguirre-Ollinger et al. | Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments | |
| Li et al. | Human-cooperative control design of a walking exoskeleton for body weight support | |
| Kazerooni et al. | Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) | |
| Hussain et al. | Control of a robotic orthosis for gait rehabilitation | |
| Tran et al. | Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton | |
| Ka et al. | Minimizing human-exoskeleton interaction force by using global fast sliding mode control | |
| Rose et al. | A model-free deep reinforcement learning approach for control of exoskeleton gait patterns | |
| Racine | Control of a lower extremity exoskeleton for human performance amplification | |
| Wang et al. | Model predictive control-based gait pattern generation for wearable exoskeletons | |
| Bergamasco et al. | Human–robot augmentation | |
| EP3117967A1 (en) | Transparency control method for robotic devices and a control device therefor | |
| Li et al. | Human-in-the-loop cooperative control of a walking exoskeleton for following time-variable human intention | |
| Han et al. | An admittance controller based on assistive torque estimation for a rehabilitation leg exoskeleton | |
| Vallery et al. | Optimized passive dynamics improve transparency of haptic devices | |
| Taherifar et al. | Assistive-compliant control of wearable robots for partially disabled individuals | |
| Han et al. | Neural network robust control based on computed torque for lower limb exoskeleton | |
| Wilkening et al. | Adaptive assistive control of a soft elbow trainer with self-alignment using pneumatic bending joint | |
| Kapsalyamov et al. | Velocity control of a Stephenson III six-bar linkage-based gait rehabilitation robot using deep reinforcement learning | |
| Masia et al. | Actuation for robot-aided rehabilitation: Design and control strategies | |
| Wang et al. | ZMP theory-based gait planning and model-free trajectory tracking control of lower limb carrying exoskeleton system | |
| Mefoued et al. | Knee joint movement assistance through robust control of an actuated orthosis | |
| Huang et al. | Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX) | |
| Liu et al. | Control of flexible knee joint exoskeleton robot based on dynamic model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07799430 Country of ref document: EP Kind code of ref document: A2 |
|
| ENP | Entry into the national phase |
Ref document number: 2009548236 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 07799430 Country of ref document: EP Kind code of ref document: A2 |