WO2008097336A2 - Controller for an assistive exoskeleton based on active impedance - Google Patents

Controller for an assistive exoskeleton based on active impedance Download PDF

Info

Publication number
WO2008097336A2
WO2008097336A2 PCT/US2007/073093 US2007073093W WO2008097336A2 WO 2008097336 A2 WO2008097336 A2 WO 2008097336A2 US 2007073093 W US2007073093 W US 2007073093W WO 2008097336 A2 WO2008097336 A2 WO 2008097336A2
Authority
WO
WIPO (PCT)
Prior art keywords
exoskeleton
torque
limb segment
active impedance
impedance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2007/073093
Other languages
English (en)
French (fr)
Other versions
WO2008097336A3 (en
Inventor
Gabriel Aguirre-Ollinger
Ambarish Goswami
Edward J. Colgate
Michael A. Peshkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Northwestern University
Original Assignee
Honda Motor Co Ltd
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Northwestern University filed Critical Honda Motor Co Ltd
Priority to JP2009548236A priority Critical patent/JP4677047B2/ja
Publication of WO2008097336A2 publication Critical patent/WO2008097336A2/en
Publication of WO2008097336A3 publication Critical patent/WO2008097336A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1676Pivoting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5079Velocity sensors

Definitions

  • FIG. 9A illustrates an implementation of a 1-DOF assistive controller based on active admittance, according to one embodiment.
  • the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
  • the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus.
  • Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below.
  • the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the present invention as described herein, and any references below to specific languages are provided for disclosure of enablement and best mode of the present invention.
  • FIG. 2 illustrates a 1-DOF assistive exoskeleton for a knee joint, according to one embodiment.
  • the illustrated exoskeleton includes an actuator and an arm and is coupled to the ankle.
  • a linear model of a 1-DOF exoskeleton with its impedance parameters is illustrated in FIG. 3, according to one embodiment.
  • the exoskeleton's impedance parameters include an inertia moment I e (related to the exoskeleton's arm), a damping b e , and a stiffness k e .
  • the "e” subscript refers to "exoskeleton.” Coordinate ⁇ represents the angular position of the actuator of the exoskeleton.
  • the exoskeleton is designed to reduce this needed muscle torque by a certain factor G greater than 1.
  • G the factor
  • the exoskeleton' s virtual impedance Zf(s) is an active impedance.
  • the virtual impedance Zf(s) can vary over time, for example ifZ h (s) or G varies with time.
  • the human impedance terms can be estimated by an appropriate method such as system identification based on least-squares approximation.
  • the virtual impedance terms of the exoskeleton must be negative in order to achieve a scaling of the muscle torque.
  • the passivity condition Re ⁇ Z e d (j ⁇ ) ⁇ ⁇ 0 does not hold.
  • Z e d (s) is an active impedance.
  • the magnitude of the modified human limb impedance, Z/ is less than that of the natural limb impedance, Zy 1 .
  • the measured interaction torque or interaction force ⁇ p _ m is negated and used as input to an active impedance element containing the virtual impedance parameters of the exoskeleton in the form (also known as virtual admittance).
  • the active impedance element generates a commanded angle velocity ⁇ c .
  • the commanded angle velocity is possibly combined with its integral and/or derivative to form a commanded kinematic trajectory q c (comprising angular position, angular velocity and/or angular acceleration) for the exoskeleton.
  • the "c” subscript refers to "command" because the reference trajectory is commanded to the exoskeleton's motor.
  • an active impedance controller comprises an impedance-based torque command generator and a velocity sensor in a feedback loop with the exoskeleton (including elements to control the actuator's motor) and the user.
  • the structure of this controller is illustrated in FIG. 9B.
  • the measured angular velocity ⁇ m is used as an input to an active impedance element containing the virtual impedance parameters of the exoskeleton in the form Zf(s).
  • the active impedance element generates a commanded actuator torque or force ⁇ c .
  • the active impedance controller can be implemented in hardware, software, or both.
  • the signals in the controller may be digital, analog, or both.
  • the modules illustrated in FIGS. 9A and 9B can be combined or further divided into other modules.
  • the impedance controller can be implemented as a part of the exoskeleton, as a part of the exoskeleton's actuator, or separate from the exoskeleton.
  • the virtual dynamics of the exoskeleton are those of an active system.
  • the virtual dynamics of the exoskeleton will be active if Bf is proven to be negative definite.
  • Equation 25 shown also in block (d) of FIG. 12, represents the basic control law for the exoskeleton.
  • this control law is an impedance controller.
  • the exoskeleton enforces the kinematic trajectory represented by q , q andq .

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)
  • Prostheses (AREA)
PCT/US2007/073093 2007-02-02 2007-07-09 Controller for an assistive exoskeleton based on active impedance Ceased WO2008097336A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548236A JP4677047B2 (ja) 2007-02-02 2007-07-09 外骨格のアクチュエータを制御する方法及び制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88803507P 2007-02-02 2007-02-02
US60/888,035 2007-02-02
US11/696,110 2007-04-03
US11/696,110 US7731670B2 (en) 2007-02-02 2007-04-03 Controller for an assistive exoskeleton based on active impedance

Publications (2)

Publication Number Publication Date
WO2008097336A2 true WO2008097336A2 (en) 2008-08-14
WO2008097336A3 WO2008097336A3 (en) 2008-11-13

Family

ID=39676835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/073093 Ceased WO2008097336A2 (en) 2007-02-02 2007-07-09 Controller for an assistive exoskeleton based on active impedance

Country Status (3)

Country Link
US (1) US7731670B2 (cg-RX-API-DMAC7.html)
JP (1) JP4677047B2 (cg-RX-API-DMAC7.html)
WO (1) WO2008097336A2 (cg-RX-API-DMAC7.html)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108324503A (zh) * 2018-03-16 2018-07-27 燕山大学 基于肌骨模型和阻抗控制的康复机器人自适应控制方法

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645246B2 (en) * 2004-08-11 2010-01-12 Omnitek Partners Llc Method for generating power across a joint of the body during a locomotion cycle
CA2583107C (en) * 2006-03-31 2011-09-13 Universite De Sherbrooke High performance differential actuator for robotic interaction tasks
US8353854B2 (en) 2007-02-14 2013-01-15 Tibion Corporation Method and devices for moving a body joint
WO2009099671A2 (en) 2008-02-08 2009-08-13 Tibion Corporation Multi-fit orthotic and mobility assistance apparatus
US20090306548A1 (en) 2008-06-05 2009-12-10 Bhugra Kern S Therapeutic method and device for rehabilitation
US8058823B2 (en) * 2008-08-14 2011-11-15 Tibion Corporation Actuator system with a multi-motor assembly for extending and flexing a joint
US8274244B2 (en) * 2008-08-14 2012-09-25 Tibion Corporation Actuator system and method for extending a joint
US20100198124A1 (en) * 2009-01-30 2010-08-05 Kern Bhugra System and method for controlling the joint motion of a user based on a measured physiological property
US8639455B2 (en) * 2009-02-09 2014-01-28 Alterg, Inc. Foot pad device and method of obtaining weight data
US8686951B2 (en) 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
IT1393776B1 (it) * 2009-04-03 2012-05-08 Fond Istituto Italiano Di Tecnologia Attuatore rotante elastico, particolarmente per applicazioni robotiche, e metodo per il suo controllo
WO2011055428A1 (ja) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 歩行補助装置
EP2500007B1 (en) 2009-11-13 2018-12-26 Toyota Jidosha Kabushiki Kaisha Walking aid device
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
EP2555716A2 (en) * 2010-04-05 2013-02-13 Iwalk, Inc. Controlling torque in a prosthesis or orthosis
WO2012100250A1 (en) * 2011-01-21 2012-07-26 Iwalk, Inc. Terrain adaptive powered joint orthosis
CN102302404B (zh) * 2011-06-30 2012-12-05 浙江大学 行走式欠驱动型三自由度踝关节运动康复外骨骼
JP5636352B2 (ja) * 2011-10-24 2014-12-03 本田技研工業株式会社 動作補助装置及び歩行補助装置
KR101765952B1 (ko) 2011-11-29 2017-08-08 현대자동차주식회사 착용식 로봇의 제어방법 및 제어장치
US20130145530A1 (en) * 2011-12-09 2013-06-13 Manu Mitra Iron man suit
CN102793619A (zh) * 2012-07-04 2012-11-28 中国人民解放军海军航空工程学院 下肢外骨骼服结构的静定设计方法
US8845566B2 (en) 2012-08-02 2014-09-30 The Regents Of The University Of Michigan Active exoskeletal spinal orthosis and method of orthotic treatment
US9675514B2 (en) 2013-03-15 2017-06-13 Bionik Laboratories, Inc. Transmission assembly for use in an exoskeleton apparatus
US9855181B2 (en) 2013-03-15 2018-01-02 Bionik Laboratories, Inc. Transmission assembly for use in an exoskeleton apparatus
US9421143B2 (en) 2013-03-15 2016-08-23 Bionik Laboratories, Inc. Strap assembly for use in an exoskeleton apparatus
US9808390B2 (en) 2013-03-15 2017-11-07 Bionik Laboratories Inc. Foot plate assembly for use in an exoskeleton apparatus
US9889058B2 (en) 2013-03-15 2018-02-13 Alterg, Inc. Orthotic device drive system and method
US20150025423A1 (en) 2013-07-19 2015-01-22 Bionik Laboratories, Inc. Control system for exoskeleton apparatus
KR102000264B1 (ko) * 2013-10-01 2019-07-15 한국전자통신연구원 교시 데이터 입력 장치와 이를 이용한 로봇의 교시 명령어 생성 장치 및 방법
WO2016007493A1 (en) * 2014-07-08 2016-01-14 Ekso Bionics, Inc. Systems and methods for transferring exoskeleton trajectory sequences
KR102250225B1 (ko) * 2014-07-24 2021-05-10 삼성전자주식회사 운동 보조 장치 및 그 제어 방법
US9757254B2 (en) * 2014-08-15 2017-09-12 Honda Motor Co., Ltd. Integral admittance shaping for an exoskeleton control design framework
KR102284822B1 (ko) * 2014-10-22 2021-08-02 삼성전자주식회사 지지 모듈, 이를 포함하는 운동 보조 장치 및 운동 보조 장치의 제어 방법
US10449105B2 (en) * 2014-10-26 2019-10-22 Springactive, Inc. System and method of bidirectional compliant joint torque actuation
KR101588281B1 (ko) * 2014-11-24 2016-02-01 대한민국 재활 보조기기용 제어 시스템
US10390973B2 (en) 2015-05-11 2019-08-27 The Hong Kong Polytechnic University Interactive exoskeleton robotic knee system
RU2598124C1 (ru) 2015-10-19 2016-09-20 Общество С Ограниченной Ответственностью "Экзоатлет" Способ задания желаемых траекторий движения экзоскелета для передвижения пользователя с нарушением функций опорно-двигательного аппарата, устройство содействия ходьбе этого пользователя и способ управления этим устройством
CN105362036B (zh) * 2015-10-20 2019-01-25 中国电子科技集团公司第二十一研究所 康复助力机械腿
DE102016122282A1 (de) 2016-11-18 2018-05-24 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg System und verfahren zur reduktion von auf eine wirbelsäule wirkenden kräften
DE102016123153A1 (de) 2016-11-30 2018-05-30 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Vorrichtung und verfahren zur muskelkraftunterstützung
FR3061653B1 (fr) * 2017-01-10 2019-05-31 Wandercraft Procede de mise en mouvement d'un exosquelette
FR3068236B1 (fr) * 2017-06-29 2019-07-26 Wandercraft Procede de mise en mouvement d'un exosquelette
WO2019060791A1 (en) * 2017-09-22 2019-03-28 North Carolina State University HIP EXOSQUELET
CN111315544B (zh) * 2017-11-08 2023-04-25 本田技研工业株式会社 步行移动辅助装置
USD888254S1 (en) * 2018-04-04 2020-06-23 MSM Products, LLC Knee extension device
CN111360815B (zh) * 2018-12-26 2022-07-26 沈阳新松机器人自动化股份有限公司 基于肌电信号和关节应力的人机交互运动控制的方法
JP7553899B2 (ja) * 2019-02-07 2024-09-19 慶應義塾 位置・力制御装置、位置・力制御方法及びプログラム
JP7133511B2 (ja) * 2019-06-11 2022-09-08 本田技研工業株式会社 情報処理装置、情報処理方法、およびプログラム
CN110834329B (zh) * 2019-10-16 2021-02-09 深圳市迈步机器人科技有限公司 外骨骼控制方法及装置
US20230263688A1 (en) * 2020-07-01 2023-08-24 Georgia Tech Research Corporation Exoskeleton systems and methods of use
CN111965979B (zh) * 2020-08-28 2021-09-24 南京工业大学 基于外骨骼机器人作动器的有限时间控制方法
USD1005361S1 (en) 2021-08-13 2023-11-21 Festool Gmbh Wearable robotic exoskeleton with belts
ES3022882T3 (en) * 2021-09-16 2025-05-29 Ncte Ag Exoskeleton fitness device for training the human body
CN114089757B (zh) * 2021-11-17 2024-02-02 北京石油化工学院 一种上下肢协调主动康复机器人控制方法及装置
CN114392137B (zh) * 2022-01-13 2023-05-23 上海理工大学 一种穿戴式柔性下肢助力外骨骼控制系统
USD1054567S1 (en) * 2023-03-09 2024-12-17 CellVital International AG Magnetic therapy device
CN117379747A (zh) * 2023-11-22 2024-01-12 深圳市迈步机器人科技有限公司 一种基于参考轨迹和阻抗的肢体训练方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101472A (en) 1990-10-04 1992-03-31 Repperger Daniel W Military robotic controller with majorizing function and nonlinear torque capability
JP2761574B2 (ja) 1994-07-06 1998-06-04 工業技術院長 力補助装置の制御方法及びその装置
JP3638048B2 (ja) * 1995-12-11 2005-04-13 株式会社安川電機 肢体駆動装置の制御装置
JP2000279463A (ja) * 1999-03-31 2000-10-10 Sanyo Electric Co Ltd 上肢機能回復訓練装置
US7390309B2 (en) * 2002-09-23 2008-06-24 Honda Motor Co., Ltd. Human assist system using gravity compensation control system and method using multiple feasibility parameters
JP4133216B2 (ja) * 2001-10-29 2008-08-13 本田技研工業株式会社 人間補助装置のシミュレーション・システム、方法、およびコンピュータ・プログラム
JP2003252600A (ja) * 2002-03-05 2003-09-10 Toyoda Mach Works Ltd パワーアシスト装置
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
US7204814B2 (en) * 2003-05-29 2007-04-17 Muscle Tech Ltd. Orthodynamic rehabilitator
CN1838933B (zh) * 2003-08-21 2010-12-08 国立大学法人筑波大学 穿着式动作辅助装置、穿着式动作辅助装置的控制方法和控制用程序
US8075633B2 (en) * 2003-09-25 2011-12-13 Massachusetts Institute Of Technology Active ankle foot orthosis
CA2581587C (en) * 2004-09-29 2015-02-03 Northwestern University System and methods to overcome gravity-induced dysfunction in extremity paresis
EP1827349A1 (de) * 2004-11-30 2007-09-05 Eidgenössische Technische Hochschule Zürich System und verfahren für die kooperative armtherapie sowie rotationsmodul dafür
JP2006198389A (ja) * 2004-12-22 2006-08-03 Doshisha ロボット、および、そのロボットとともに使用される携帯可能な記憶媒体
US7190141B1 (en) * 2006-01-27 2007-03-13 Villanova University Exoskeletal device for rehabilitation
US20080009771A1 (en) * 2006-03-29 2008-01-10 Joel Perry Exoskeleton
CA2583107C (en) * 2006-03-31 2011-09-13 Universite De Sherbrooke High performance differential actuator for robotic interaction tasks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108324503A (zh) * 2018-03-16 2018-07-27 燕山大学 基于肌骨模型和阻抗控制的康复机器人自适应控制方法

Also Published As

Publication number Publication date
JP4677047B2 (ja) 2011-04-27
US20080188907A1 (en) 2008-08-07
WO2008097336A3 (en) 2008-11-13
US7731670B2 (en) 2010-06-08
JP2010517616A (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
US7731670B2 (en) Controller for an assistive exoskeleton based on active impedance
Long et al. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton
Aguirre-Ollinger et al. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: Initial experiments
Li et al. Human-cooperative control design of a walking exoskeleton for body weight support
Kazerooni et al. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)
Hussain et al. Control of a robotic orthosis for gait rehabilitation
Tran et al. Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton
Ka et al. Minimizing human-exoskeleton interaction force by using global fast sliding mode control
Rose et al. A model-free deep reinforcement learning approach for control of exoskeleton gait patterns
Racine Control of a lower extremity exoskeleton for human performance amplification
Wang et al. Model predictive control-based gait pattern generation for wearable exoskeletons
Bergamasco et al. Human–robot augmentation
EP3117967A1 (en) Transparency control method for robotic devices and a control device therefor
Li et al. Human-in-the-loop cooperative control of a walking exoskeleton for following time-variable human intention
Han et al. An admittance controller based on assistive torque estimation for a rehabilitation leg exoskeleton
Vallery et al. Optimized passive dynamics improve transparency of haptic devices
Taherifar et al. Assistive-compliant control of wearable robots for partially disabled individuals
Han et al. Neural network robust control based on computed torque for lower limb exoskeleton
Wilkening et al. Adaptive assistive control of a soft elbow trainer with self-alignment using pneumatic bending joint
Kapsalyamov et al. Velocity control of a Stephenson III six-bar linkage-based gait rehabilitation robot using deep reinforcement learning
Masia et al. Actuation for robot-aided rehabilitation: Design and control strategies
Wang et al. ZMP theory-based gait planning and model-free trajectory tracking control of lower limb carrying exoskeleton system
Mefoued et al. Knee joint movement assistance through robust control of an actuated orthosis
Huang et al. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)
Liu et al. Control of flexible knee joint exoskeleton robot based on dynamic model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07799430

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2009548236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07799430

Country of ref document: EP

Kind code of ref document: A2