WO2008078457A1 - 衝撃吸収特性に優れた構造部材用ステンレス鋼板 - Google Patents

衝撃吸収特性に優れた構造部材用ステンレス鋼板 Download PDF

Info

Publication number
WO2008078457A1
WO2008078457A1 PCT/JP2007/071445 JP2007071445W WO2008078457A1 WO 2008078457 A1 WO2008078457 A1 WO 2008078457A1 JP 2007071445 W JP2007071445 W JP 2007071445W WO 2008078457 A1 WO2008078457 A1 WO 2008078457A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
structural members
strength
static
impact
Prior art date
Application number
PCT/JP2007/071445
Other languages
English (en)
French (fr)
Inventor
Junichi Hamada
Haruhiko Kajimura
Fumio Fudanoki
Toshio Tanoue
Ken Kimura
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39562251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008078457(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to CN2007800111498A priority Critical patent/CN101410543B/zh
Priority to US12/225,327 priority patent/US20100233015A1/en
Priority to EP07831178.4A priority patent/EP2060646B1/en
Publication of WO2008078457A1 publication Critical patent/WO2008078457A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a stainless steel plate that is mainly used as a structural member that requires strength and shock absorption performance.
  • the present invention relates to shock absorbing members such as automobiles, bus front side members, pillars, and bumpers, as well as suspensions. This is related to steel sheets for structural members such as members, railway car bodies, and bicycle rims. Background art
  • the Austenitic stainless steel has an excellent balance between strength and ductility, and high strength and high ductility are expected by adjusting the chemical composition. Furthermore, with regard to improving collision safety, for example, in the case of vehicle collision, if a material having a high shock absorption capacity is applied to the vehicle frame, the member will be deformed by pressure and the shock will be absorbed. The impact on internal personnel can be mitigated. In other words, benefits such as improved fuel economy, simplified painting, and improved safety due to weight reduction of the vehicle body will increase.
  • austenitic stainless steel plates with excellent ductility and formability such as SUS 301L and SUS 304, which have excellent corrosion resistance
  • Japanese Laid-Open Patent Publication No. 2002-20843 describes an austenitic stainless steel with excellent shock absorption capability at a high strain rate, mainly for use as a structural material for railway vehicles and general vehicles. Is disclosed. This is because a material containing 6 to 8% Ni and having a one-stenite structure increases the strength during high-speed deformation by forming a work-induced martensite phase during deformation. Deformation strength, maximum strength, work hardening index, etc. during tensile deformation and static tensile deformation are specified.
  • the collision performance may be inferior.
  • the ratio of the maximum dynamic strength and the maximum static strength is specified as the static ratio, but the strength in a relatively low strain region, for example, the yield strength greatly affects the shock absorption characteristics at the time of collision.
  • the intensity ratio can be a problem.
  • when subjected to large deformation at the time of collision not only the strength but also the material ductility is compromised. Therefore, it was necessary to design a design that takes into account the shape of the absorbed energy that would lead to destruction.
  • martensitic stainless steel sheets for example, SUS420
  • SUS420 martensitic stainless steel sheets
  • ferritic stainless steel plates for example, SUS430
  • the present invention solves the above-described problems and provides a stainless steel sheet having high strength and excellent shock absorption characteristics during high-speed deformation.
  • the present inventors have improved the impact absorption energy at the time of high-speed deformation while ensuring the excellent additivity of austenitic stainless steel.
  • the technology Specifically, in order to increase the deformation resistance during ultra-high-speed deformation with a strain rate of 10 3 Z sec, the processing-induced transformation is actively used to increase the heat hardening ability, and the strength when the member collides. Dramatically improved ductility It is to increase the shock absorption energy by making it up. This absorbs the impact of a vehicle collision and minimizes vehicle body collapse to significantly improve the safety of passengers.
  • the gist of the present invention is as follows.
  • the static ratio of proof stress is 1.4 or more.
  • the total absorbed energy in the dynamic tensile test is the shock absorption energy up to the break when the high-speed tensile test is performed at 10 3 sec corresponding to the strain rate at the time of vehicle collision. Energy is the impact absorption energy up to 10% strain in the high-speed tensile test.
  • the static tensile test normal tension rate (strain rate 10_ 3 - 2 / sec -) is a tensile test carried out at.
  • Figure 1 shows Md 3 . It is a figure which shows the relationship between a value and the total impact absorption energy in a high-speed tension test.
  • Figure 2 shows the relationship between the Md 3 Q value and the impact absorption energy up to 10% strain in the high-speed tensile test.
  • the impact absorption energy when receiving an impact at a high speed is a point. Since the impact at the time of a vehicle collision is applied to the structural member, the impact absorbing ability of the material forming the member is important. Until now, there has been no attempt to provide stainless steel considering shock absorption energy at high strain rates, and there has been no vehicle design. vehicle Most of the structural members for use have a square cross-section typified by a hat-shaped molded product. Although the strain area that absorbs impact varies depending on the component, the impact absorption energy until the material breaks down is important at the site where the collapse phenomenon occurs due to a collision, so the total impact absorption energy is used as an index. . The total impact absorption energy should be high in both strength and ductility during high-speed deformation, but the conventional high-strength steel sheet has high strength but low fracture ductility, so the total absorbed energy has a limit.
  • the ductility is high, and the high work hardening characteristics during deformation are utilized to drastically improve the total absorbed energy and improve the collision safety performance to the limit from the viewpoint of the material. Also, it is a relatively low distortion range
  • the material has high ductility, and the elongation at break in a static tensile test was used as a general material index.
  • an austenitic stainless steel utilizing work hardening by work-induced transformation is optimal as a stainless steel having excellent shock absorption characteristics.
  • austenite stability by controlling the austenite stability by adjusting various components, it is possible to ensure the impact-absorbing energy at high-speed deformation by appropriately generating machining-induced martensite transformation at high-speed deformation.
  • Austenite as an index of machining-induced martensite transformation The accuracy is calculated based on the following Md 3 fl value (described in the Stainless Steel Handbook edited by the Stainless Steel Association). This means the temperature at which 50% of martensite is generated when a tensile strain of true strain 0.3 is applied. When this value was used to evaluate the impact absorption energy, the excellent impact absorption energy defined in the present invention was found. It turned out to be obtained.
  • C needs to be added in an amount of 0.005% or more in order to increase the strength. On the other hand, if added in a large amount, formability and weldability deteriorate, so 0.05% or less. In consideration of fine cost and intergranular corrosion, it is more preferably 0.01 to 0.02%.
  • N like C
  • N is effective in increasing strength, has a beneficial effect on improving shock absorption energy, and needs to be added in an amount of 0.01% or more.
  • excessive addition degrades formability and weldability, so it should be 0.30% or less.
  • the content be 0.015 to 0.25%.
  • Si is a deoxidizing element and is a solid solution strengthening element that is effective for increasing the strength, and needs to be added in an amount of 0.1% or more. On the other hand, if a large amount is added, the moldability deteriorates and the static / dynamic ratio is remarkably lowered. In view of manufacturability, it is more preferable to set the content to 0.2 to 1%.
  • Mn is a deoxidizing element, a solid solution strengthening element and an element effective for increasing strength. At the same time, addition of 0.1% or more is necessary to promote work hardening of the austenite phase during high-speed deformation. On the other hand, if a large amount is added, processing-induced martensite is not generated, or Mn S, which is a water-soluble inclusion, is generated and the corrosion resistance is deteriorated. In view of pickling properties in the manufacturing process, it is more preferably 1 to 10%.
  • Ni is an element that improves corrosion resistance, and at least 0.5% is necessary for the formation of the austenite phase. On the other hand, if a large amount is added, the cost of raw material increases remarkably and processing-induced martensite is not generated. In view of manufacturability, stress corrosion cracking, aging cracking, etc., it is more desirable to set the content to 1.5 to 7.5%.
  • Cu improves the formability and contributes to the improvement of static ratio, so add 0.1% or more. This is also effective when mixing from scrap in the component adjustment process. However, if more than 5% is added, processing-induced martensite will not be generated, so it should be 5% or less. Considering pickling properties during production, it is more preferably 0.1 to 4%.
  • Cr is a major element and needs to be added in an amount of 11% or more from the viewpoint of corrosion resistance. On the other hand, excessive addition requires the addition of a large amount of other elements to adjust the structure, so the upper limit was made 20%. Furthermore, it is preferably 14 to 18%.
  • A1 detoxifies sulfides and contributes to improved workability such as hole expansibility in parts processing. Since these appear from 0.01% or more, the lower limit was set to 0.01%. Addition exceeding 0.5% causes surface defects and deteriorates manufacturability, so the upper limit was made 0.5%. In consideration of cost and the like, it is more preferable to set the content to 0.1 to 0.5%.
  • the material When the material is impacted, it develops a work-induced transformation that transforms the monostenite phase into the martensite phase, and work hardening occurs efficiently during deformation. When the martensite phase is efficiently generated during deformation, the strength is increased, and necking is prevented to improve ductility.
  • martensite transformation is affected by strain and temperature, the generation of martensite is suppressed by heat generation during machining at high speed deformation, but in the present invention, dynamic deformation is at the initial stage of deformation compared to static deformation. We found that martensite generation might be promoted. This is due to the strain rate dependence of the transformation depending on the component, and this effect dramatically improves the impact absorption energy during high-speed deformation.
  • both the total shock absorption energy and the shock absorption energy up to 10% strain are excellent values. If the Md 3 G value is too high, too much martensite phase is generated during deformation, and cracks are generated at the interface between the austenite phase and the martensite phase, reducing ductility. According to previous findings (eg CAMP-ISIJ, Vol9 (199 6), pllOl, Fig.4, “Automobile's Material Symposium” Japan Steel Association, 1997, p. 71.) All impact absorption energy during deformation is approximately less than 400MJZm 3.
  • the total shock absorption energy is set to 500 MJ / m 3 or more, and Md 3 from FIGS. The range of 0 to 100 ° C. Within the range of the Md 3 Q value of the present invention, the impact absorption energy up to 10% strain is 50 MJ / m 3 or more. As a result of various studies, shock absorption energy of 50 MJ / m 3 If it can be obtained, it is sufficient as shock absorption characteristics in a relatively low strain region. Therefore, the shock absorption energy up to 10% strain is set to 50 MJ / m 3 or more.
  • the upper limit of the impact absorption energy is not particularly defined, and the effect of the present invention can be obtained.
  • the upper limit is not determined.
  • the static ratio is an index indicating the deformation rate dependence of work hardening, and is dynamic. the ratio of the yield strength in the static tensile test as proof stress tensile testing, i.e. in this case (10 3 Bruno ⁇ Ka at the time of the dynamic tensile testing at a strain rate of sec) / (1 0 at a strain rate of one 2 Z sec Resistance to static tensile test).
  • the static ratio indicates how hard it is to be hardened when it is deformed at a high speed, such as a car crash. Therefore, a larger value is preferable for a member for impact absorbing structure.
  • the “Statistics Report on High-Speed Deformation of Automotive Materials” (edited by the Japan Iron and Steel Institute, 2001, pl 2, Fig. 6) describes the static ratio of conventional steel. When it has a tensile strength of 1, the static to dynamic ratio is 1.3 or less. According to the present invention, the static dynamic ratio is defined as 1.4 or more, and a steel having a high strength-high static dynamic ratio that cannot be achieved by conventional steel is provided. It should be noted that the upper limit is not particularly defined, and the effect of the present invention can be obtained.
  • the stainless steel of the present invention is processed as a structural member, its formability is important. As mentioned earlier, most of the member shapes are square cross-sections typified by hat-shaped molded products, and the materials must be ductile because they are bent or drawn. As a result of various investigations on the processing mode of impact absorbing members, it was found that if the tensile strength when the material was subjected to a static tension test was 600 MPa or more, the material could be molded sufficiently if the elongation at break was 40% or more. The elongation at break in the tensile test was 40% or more. Some parts require a high strength of 700MPa or more, but for these high strength materials, temper rolling is applied after cold rolling and annealing to strengthen them.
  • Adjust the degree There is no particular upper limit on the material, but the upper limit is 1 600 MPa for manufacturing and practical use.
  • the rolling reduction in the case of temper rolling may be set according to the required strength level, but considering the manufacturability and the like, it is preferably about 1 to 70%.
  • the steel sheet manufactured in this way has a reduced elongation at break in the static tensile test, but 5% or more is necessary for the steel sheet of the tensile strength level described above, so it was set to 5% or more. More desirably, it is 10% or more.
  • the manufacturing method of the steel plate in this invention is not prescribed
  • the hot-rolling conditions, hot-rolled sheet thickness, hot-rolled sheet and cold-rolled sheet annealing temperature, atmosphere, etc. may be appropriately selected.
  • the pass schedule for cold rolling does not require any special equipment for the cold rolling rate and the diameter of the nozzle, and the existing equipment can be used efficiently. There are no specific requirements for lubrication and the number of passes during temper rolling. Further, the shape may be corrected by applying a tension leveler after cold rolling-annealing or after temper rolling.
  • the product organization is mainly the austenite phase, but it is also possible to have a second phase such as a ferrite phase or a martensite phase.
  • Table 1 shows examples corresponding to claims 1 to 6.
  • the steel having the component composition defined in the present invention has a total impact absorption energy up to fracture as compared with the comparative steel, and the impact absorption energy in the low strain range up to 10% strain. The deviation is high and the shock absorbing property is excellent. This is suitable for shock absorbing members that are subject to relatively large deformations. In addition, it has a high breaking elongation in a static tensile test and is excellent in ductility, so it is preferable for molding into a complex structure.
  • Table 2 shows an embodiment corresponding to claim 7. Temper rolling by adjustment of the reduction ratio Tensile strength 700MP a above, the present invention example of the breaking elongation 5% or higher, the impact absorption energy up to 10% strain in a dynamic tensile testing as high as 50 MJ m 3 or more, static
  • the dynamic ratio is 1.4 or more, and it is suitable for high-strength members that need to absorb impact in the low strain range.
  • Each component amount represents mass%.
  • a stainless steel plate having high strength and excellent shock absorption performance can be provided without adding a large amount of particularly expensive alloying elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、衝撃吸収特性に優れた構造部材用ステンレス鋼板を提供するもので、質量%にて、C:0.005~0.05%、N:0.01~0.30%、Si:0.1~2%、Mn:0.1~15%、Ni:0.5~8%、Cu:0.1~5%、Cr:11~20%、Al:0.01~0.5%、残部がFeおよび不可避的不純物からなり、(A)式で与えられるMd30値が0~100℃、動的引張試験における全衝撃吸収エネルギーが500MJ/m3以上であることを特徴とする衝撃吸収特性に優れた構造部材用ステンレス鋼板。 Md30=551−462(C+N)−9.2Si−8.1Mn     −13.7Cr−29(Ni+Cu) ・・・(A)

Description

衝撃吸収特性に優れた構造部材用ステンレス鋼板 技術分野
本発明は、 主として強度や衝撃吸収性能が必要な構造用部材とし て使用されるステンレス鋼板に関するもので、 特に自動車、 バスの フロントサイ ドメンバ一、 ピラー、 バンバ一などの衝撃吸収部材並 びに足回り部材、 鉄道車両の車体、 自転車のリムなどの構造部材用 鋼板に関わるものである。 背景技術
近年、 環境問題の観点から、 自動車、 二輪車、 バス、 鉄道車両な どの輸送機器の燃費向上が最重要課題となってきている。 その解決 手段の一つとして、 車体の軽量化が積極的に推進されている。 車体 の軽量化は、 部材を形成する素材の軽量化、 具体的には素材板厚の 薄手化に依るものが大きいが、 素材板厚を薄くすると剛性や衝突安 全性能が低下してしまう。 衝突安全性向上の対策としては、 部材を 構成する材料の高強度化が有効であり、 普通鋼高強度鋼板が自動車 の衝撃吸収部材に適用されている。 しかしながら、 普通鋼は耐食性 能が低いため、 重ね塗装することが前提となっており、 塗装しない 、 もしくは軽塗装部材には適用出来なかったり、 重ね塗装によりコ ス トアップとなる。 また、 普通鋼においては、 固溶強化、 析出強化 、 複相組織化、 加工誘起変態など種々の方法で高強度化が達成され ているが、 いずれも高強度化に伴い延性が著しく低下する欠点があ る。 延性が低下すると、 構造部材への加工が困難になり、 構造の自 由度が大きく低下することになる。 一方、 C rを含有するステンレス鋼は、 普通鋼に比べて大幅に耐食 性が優位であるため、 鲭代 (鲭による厚み低下を見込んだ厚み分) 低減による軽量化、 塗装省略化が期待される。 また、 オーステナイ ト系ステンレス鋼は、 強度—延性バランスに優れており、 化学成分 の調整によって高強度一高延性が期待される。 更に、 衝突安全性向 上に対しては、 例えば車両の衝突を考えた場合、 車両フレームに高 い衝撃吸収能を有する材料を適用すれば、 部材が圧壌変形すること で衝撃を吸収し、 車両内の人員に与える衝撃を緩和することが出来 る。 即ち、 車体軽量化による燃費向上、 塗装簡略化、 安全性の向上 などのメリ ッ 卜が大きくなる。
例えば、 鉄道車両の構造部材としては、 耐食性に優れた SUS 301L や SUS 304などの延性が高く成型性に優れたオーステナイ ト系ステン レス鋼板が使用されている。 特開 2002— 20843号公報には、 主とし て鉄道車両および一般車両の構造部材ゃ補強材に使用することを目 的として、 高歪み速度での衝撃吸収能に優れたオーステナイ ト系ス テンレス鋼が開示されている。 これは、 N iを 6〜 8 %含有し、 ォ一 ステナイ ト組織を有する素材において、 変形時に加工誘起マルテン サイ ト相が生成することで高速変形において高強度化するものであ り、 動的引張変形時と静的引張変形時の変形強度、 最大強度、 加工 硬化指数などが規定されている。 しかしながら、 高速で衝撃を受け る際に安全面で最も重要となる衝撃吸収エネルギーに関する点で不 十分である他、 動的変形強度と静的変形強度の差が高くてもが、 静 的変形強度が低い場合には、 衝突性能に劣る場合がある。 また、 静 動比として、 最大動的強度と最大静的強度の比率を規定しているが 、 比較的低歪み域の強度、 例えば耐力が衝突時の衝撃吸収特性に大 きく影響するため、 最大強度の比率では問題になる場合がある。 更 に、 衝突時の大変形を受ける場合は、 強度のみならず素材延性が寄 与する場合があり、 吸収エネルギー特性として破壊に至る様な大変 形を考慮した設計が必要であった。 即ち、 特開 2002— 20843号公報 では、 車両衝突時の安全性能すなわち衝撃吸収特性に関しては十分 なものでは無かった。 また、 比較的 N iを多量に含有するためコス ト 高となり、 自動車、 二輪車およびバスなどの一般輸送車両への適用 は困難であった。
また、 焼き入れにより高強度化するマルテンサイ ト系ステンレス 鋼板 (例えば SUS420) は、 延性が著しく低く、 溶接部靭性が著しく 低いという問題がある。 自動車、 バス、 鉄道車両は溶接構造が多い ため、 溶接部靭性が低い場合、 構造物としての信頼性が大きく低下 してしまう。 更に、 フェライ ト系ステンレス鋼板 (例えば SUS430) は、 強度が低いために強度が要求される部材には不適であり、 部材 高速で変形する際の衝撃吸収エネルギーが低い問題から、 衝突安全 性能を向上させることは不可能である。 発明の開示
このように、 ステンレス鋼板の成形性を確保しつつ、 車両構造部 材としての衝突安全性能を確保するための高速変形時の衝撃吸収ェ ネルギ一を向上させる技術は皆無であった。 本発明は上述した課題 を解決し、 高強度でかつ高速変形時の衝撃吸収特性に優れたステン レス鋼板を提供するものである。
本発明者らは、 高速変形を受けた際の変形機構に関する金属組織 的研究を実施した結果、 オーステナイ ト系ステンレス鋼の優れた加 ェ性を確保しつつ高速変形時の衝撃吸収エネルギーを向上させる技 術を見出した。 具体的には、 歪み速度 103 Z s e cという超高速変形時 の変形抵抗を上昇させるために加工誘起変態を積極的に活用して加 ェ硬化能を増大させ、 部材が衝突した際の強度と延性を飛躍的に向 上させることで衝撃吸収エネルギーを増大させることである。 これ により、 車体衝突時の衝撃を吸収し、 かつ車体崩壊を最小限にして 乗員の安全性を格段に向上させるものである。 本発明の要旨は次の とおりである。
( 1 ) 質量%にて、 C : 0.005〜0.05%、 N : 0.01〜0.30%、 Si : 0 .1〜 2 %、 Mn: 0.1〜 15%、 Ni : 0.5〜 8 %、 Cu: 0.1〜 5 %、 Cr: 1 1〜20%、 A1 : 0.01〜0.5%を含有し、 残部が Feおよび不可避的不純 物からなり、 (A) 式で与えられる Md3 Q値が 0〜100°C、 動的引張 試験における全衝撃吸収エネルギーが 50 OMJZm3以上であることを 特徴とする衝撃吸収特性に優れた構造部材用ステンレス鋼板。
Md30 = 551 - 462 ( C + N) -9.2Si-8. ΙΜη
一 13.7Cr-29 (Ni + Cu) · · · (A)
( 2 ) 耐力の静動比が 1.4以上であることを特徴とする ( 1 ) 記載 の衝撃吸収特性に優れた構造部材甩ステンレス鋼板。
( 3 ) 静的引張試験における引張強度が 600MPa以上、 破断伸びが 40 %以上であることを特徴とする ( 1 ) または ( 2 ) に記載の衝撃吸 収特性に優れた構造部材用ステンレス鋼板。
( 4 ) 質量%にて、 C : 0· 005〜0· 05%、 Ν : 0.01〜0.30%、 Si : 0 .1〜 2 %、 Mn: 0.1〜15%、 Ni : 0.5〜 8 %、 Cu: 0.1〜 5 %、 Cr: 1 1〜20%、 A1 : 0.01〜0.5%を含有し、 残部が Feおよび不可避的不純 物からなり、 (A) 式で与えられる Md3 Q値が 0〜100°C、 動的引張 試験における 10%歪みまでの衝撃吸収エネルギーが 50MJ/m3以上 であることを特徴とする衝撃吸収特性に優れた構造部材用ステンレ ス鋼板。
Md3。 = 551— 462 ( C + N) -9.2Si-8. ΙΜη
一 13.7Cr-29 (Ni + Cu) · · · (A)
( 5 ) 耐力の静動比が 1.4以上であることを特徴とする (4 ) に記 載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
( 6 ) 静的引張試験における引張強度が 600MPa以上、 破断伸びが 40 %以上であることを特徴とする ( 4 ) または ( 5 ) に記載の衝撃吸 収特性に優れた構造部材用ステンレス鋼板。
( 7 ) 静的引張試験における引張強度が 700MPa以上、 破断伸びが 5 %以上であることを特徴とする (4 ) または ( 5 ) に記載の衝撃吸 収特性に優れた構造部材用ステンレス鋼板。
尚、 動的引張試験における全吸収エネルギーとは、 車両衝突時の 歪み速度に対応する 103ノ secで高速引張試験を行った際の破断まで の衝撃吸収エネルギーとし、 10%歪みまでの衝撃吸収エネルギーと は、 前記高速引張試験において 10%歪み域までの衝撃吸収エネルギ 一である。 また、 静的引張試験は、 通常の引張速度 (歪み速度 10_3 - -2 /sec) で行う引張試験である。 図面の簡単な説明
図 1 は、 Md3。値と高速引張試験における全衝撃吸収エネルギーの 関係を示す図である。
図 2は、 Md3 Q値と高速引張試験における 10%歪みまでの衝撃吸収 エネルギーの関係を示す図である。 発明を実施するための最良の形態
以下に本発明の限定理由について説明する。
本発明においては、 高速で衝撃を受ける際の衝撃吸収エネルギー がポイントである。 車両衝突時の衝撃は、 構造部材に加えられるた め、 部材を形成する材料の衝撃吸収能が重要である。 これまで、 高 歪み速度での衝撃吸収エネルギーを考慮したステンレス鋼の提供は 試みが無く、 更に車両設計までなされていない状態であった。 車両 用の構造部材は、 ハツ 卜型成形品に代表される角形断面が大半であ る。 衝撃を吸収する歪み域は、 構成部材によって異なっているが、 衝突により崩壌現象が起きる部位では、 材料が破壌するまでの衝撃 吸収エネルギーが重要となるため、 全衝撃吸収エネルギーを指標と する。 全衝撃吸収エネルギーは、 高速変形時の強度と延性の両者が 高い方が良いが、 従来の高強度鋼板は強度が高いものの破断延性が 低いため、 全吸収エネルギーには限界があった。
本発明では、 延性が高く、 変形中の高加工硬化特性を活用して、 全吸収エネルギーを飛躍的に向上させて衝突安全性能を素材の観点 から極限まで向上させるものである。 また、 比較的低歪み域である
10 %歪み域までで衝撃を吸収する必要がある部位もあり、 10 %歪み 域までの衝撃吸収エネルギーも指標とする。 これは部材形状に依存 するが、 「自動車材料の高速変形に関する研究会成果報告書」 (日 本鉄鋼協会編、 P l 2) に記載されている様に、 自動車のフロントサ ィ ドメンバ一等の部位で適用されるものである。
静的引張試験における耐力と動的引張試験における耐力の比は大 きいほど衝突吸収構造体として好ましい。 また、 車両構造部材に成 型するためには、 材料の延性が高いことが好ましく、 一般的な材質 指標として、 静的引張試験における破断伸びを指標とした。
上記の材料指標に基づき検討を重ねた結果、 優れた衝撃吸収特性 を有するステンレス鋼として、 加工誘起変態による加工硬化を活用 したオーステナイ ト系ステンレス鋼が最適であることを見出した。 そして、 種々の成分調整によりオーステナイ ト安定度を制御するこ とにより、 高速変形時の加工誘起マルテンサイ ト変態を適度に生じ る様にすることで、 高速変形時の衝撃吸収エネルギーが確保できる 尚、 加工誘起マルテンサイ ト変態の指標となるオーステナイ 卜安 定度は下記の Md3 fl値 (ステンレス協会編ステンレス鋼便覧記載) に 基づき算出される。 これは、 真歪み 0.3の引張歪みを付与した時に 、 マルテンサイ トが 50%生成する温度を意味するが、 この値を用い て衝撃吸収エネルギーを評価したところ、 本発明規定の優れた衝撃 吸収エネルギーが得られることが判明した。
Md3。 = 551— 462 (C +N) -9.2Si-8. ΙΜη
- 13.7Cr-29 (Ni + Cu) - 18.5Mo- 68Nb
なお、 上記 Md3 Qは、 Mo, Nbを含まない場合に下記 (A) 式となる
Md3。 = 551— 462 (C +N) -9.2Si-8. ΙΜη
一 13.7Cr- 29 (Ni + Cu) · · · (A)
まず、 鋼成分について説明する。
Cは、 高強度化のために 0.005 %以上の添加が必要である。 一方 、 多量に添加すると成形性や溶接性が劣化するため、 0.05%以下と する。 精鍊コス トおよび粒界腐食性を考慮すると、 更に望ましくは 、 0.01〜0.02%とすることが好ましい。
Nも Cと同様、 高強度化に有効であり衝撃吸収エネルギーの向上 に有益に作用し、 0.01%以上の添加が必要である。 一方過度な添加 は成形性や溶接性が劣化するため、 0.30%以下とする。 精練コス ト 、 製造性および粒界腐食性を考慮すると、 更に望ましく は、 0.015 〜0.25%とすることが好ましい。
Siは、 脱酸元素であるとともに、 固溶強化元素で高強度化に有効 な元素であり、 0.1%以上の添加が必要である。 一方、 多量の添加 は成形性が劣化し、 静動比を著しく低下させるため 2 %以下とした 。 製造性を考慮すると、 更に望ましくは、 0.2〜 1 %とすることが 好ましい。
Mnは、 脱酸元素であり、 固溶強化元素で高強度化に有効な元素で あるとともに、 高速変形時にオーステナイ ト相の加工硬化を促進す るため、 0.1%以上の添加が必要である。 一方、 多量の添加は加工 誘起マルテンサイ 卜が生成しなくなったり、 水溶性介在物である Mn Sを生成して耐食性を劣化させるために、 15%以下とする。 製造ェ 程における酸洗性などを考慮すると、 更に望ましくは 1〜10%とす ることが好ましい。
Niは、 耐食性を向上させる元素であるとともに、 オーステナイ ト 相生成のために 0.5%以上必要である。 一方、 多量の添加は、 原料 コス 卜が著しく増加する他、 加工誘起マルテンサイ トが生成しなく なるため、 8 %以下とする。 製造性、 応力腐食割れ、 時効割れなど を考慮すると更に望ましくは、 1.5〜 7.5%とすることが好ましい。
Cuは、 成形性を向上させ、 静動比向上に寄与するため、 0.1%以 上添加する。 これは、 成分調整工程においてスクラップ等から混入 する場合も有効である。 しかしながら、 5 %超の添加により、 加工 誘起マルテンサイ トが生成しなくなるため、 5 %以下とする。 製造 時の酸洗性等を考慮すると、 更に望ましくは 0.1〜 4 %とすること が好ましい。
Crは、 主要元素であり、 耐食性の観点から 11%以上添加が必要で ある。 一方、 過度な添加は組織調整のために他元素を多量に添加す る必要が生じるため、 上限を 20%とした。 更に、 望ましくは 14〜18 %とすることが好ましい。
A1は、 脱酸元素として添加されることがある他、 硫化物を無害化 し、 部品加工における穴広げ性などの加工性の向上に寄与する。 こ れらは、 0.01%以上から発現するため、 下限を 0.01%とした。 0.5 %超の添加は、 表面疵の発生や製造性の劣化が生じるため、 上限を 0.5%とした。 コス ト等を考慮すると、 更に望ましくは 0.1〜0.5% とすることが好ましい。 材料が衝撃を受けた時に、 ォ一ステナイ ト相がマルテンサイ ト相 に変態す'る加工誘起変態を発現させ、 変形中に加工硬化が効率的に 生じる。 変形時にマルテンサイ ト相が効率的に生じると高強度化す るとともに、 ネッキングを防止し延性向上に寄与する。 マルテンサ ィ ト変態は歪みと温度が影響するため、 高速変形時には加工発熱に よりマルテンサイ ト生成は抑制されるが、 本発明では静的変形に比 ベて動的変形時の方が変形初期段階にマルテンサイ ト生成が促進さ れる場合があることを見出した。 これは、 成分に依存した変態の歪 み速度依存性からであり、 この効果によって高速変形時の衝撃吸収 エネルギーが飛躍的に向上する。
種々のステンレス鋼板 (板厚 1.5mm) について、 li Zsecの歪み 速度で動的引張試験をした際の全衝撃吸収エネルギーおよび 10%歪 みまでの衝撃吸収エネルギーに及ぼす Md3 ()値の影響について、 それ ぞれ図 1 と図 2に示す。
これより、 本発明範囲において、 全衝撃吸収エネルギー、 10%歪 みまでの衝撃吸収エネルギーともに優れた値を示す。 Md3 G値が過度 に高すぎると、 変形中に生じるマルテンサイ ト相が多すぎてオース テナイ ト相とマルテンサイ ト相の界面で割れが発生し延性を低下さ せるためと考えられる。 従来知見 (例えば、 CAMP- ISIJ, Vol9 (199 6), pllOl, Fig.4、 「自動車'材料シンポジウム」 (社) 日本鉄鋼協 会、 平成 9年、 p 71. ) では、 高強度鋼の高速変形時の全衝撃吸収 エネルギーは 400MJZm3未満程度とされている。
本発明では、 従来の高強度鋼に比べて極めて高い衝撃吸収特性を 有する鋼として、 全衝撃吸収エネルギーを 500MJ/m3以上とし、 図 1 と 2より Md3。の範囲を 0〜 100°Cとした。 本発明の Md3 Q値の範囲 で、 10%歪みまでの衝撃吸収エネルギーについては、 50MJ/m3以 上が得られている。 種々の検討の結果、 50MJ/m3の衝撃吸収エネ ルギ一が得られれば、 比較的低歪み域での衝撃吸収特性として十分 であるため、 10 %歪みまでの衝撃吸収エネルギーについては、 50MJ / m 3以上とした。 尚、 衝撃吸収エネルギーの上限は特に定めるこ となく、 本発明の効果を得ることが出来るので、 上限値は定めない 静動比は、 加工硬化の変形速度依存性を示す指標であり、 動的引 張試験における耐力と静的引張試験における耐力の比率、 即ちここ では (103ノ secの歪み速度で動的引張試験をした際の耐カ) / ( 1 0一 2 Z secの歪み速度で静的引張試験をした際の耐カ) とした。 静動 比は、 自動車の衝突の様な高速で変形した際にどれ位硬化するかを 示すため、 この値は大きい値ほど衝撃吸収構造用部材として好まし い。 例えば、 「自動車材料の高速変形に関する研究会成果報告書」 (日本鉄鋼協会編、 平成 13年、 p l 2, F i g. 6) に従来鋼の静動比が 記載されているが、 600MPa以上の引張強度を有する場合、 静動比は 1. 3以下となっている。 本発明では静動比について 1. 4以上と規定し 、 従来鋼では到達出来なかった高強度一高静動比を有する鋼を提供 する。 尚、 上限は特に定めることなく、 本発明の効果を得ることが 出来るので、 上限値は定めない。
本発明のステンレス鋼は、 構造部材として加工されるため、 その 成形性が重要となる。 先述した様に、 部材形状としてはハッ ト型成 形品に代表される角形断面が大半であり、 曲げや絞り成型されるた め、 材料の延性が必要である。 衝撃吸収部材の加工様式について種 々検討した結果、 材料を静的 張試験した際の引張強度が 600MPa以 上について、 破断伸びが 40 %以上あれば十分成型可能であることが 判明したため、 静的引張試験における破断伸びを 40 %以上とした。 部品によっては 700MPa以上の高強度が要求されるものもあるが、 この様な高強度材については、 冷延 · 焼鈍後に調質圧延を施して強 度調整を行う。 尚、 材質上の上限は特に必要無いが、 製造上および 実用上、 上限は 1 600MP aとなる。 調質圧延を施す場合の圧下率につ いては必要強度レベルに応じて設定すれば良いが、 製造性等を考慮 すると、 1〜70 %程度が望ましい。 この様にして製造した鋼板は、 静的引張試験における破断伸びが低減するが、 上述した引張強度レ ベルの鋼板において 5 %以上は必要になるため、 5 %以上とした。 更に望ましく は、 10 %以上である。
なお、 本発明における鋼板の製造方法については特に規定せず、 製品板厚は要求に応じて選択すれば良い。 熱延条件や熱延板厚、 熱 延板および冷延板焼鈍温度、 雰囲気などは適宜選択すれば良い。 冷 延におけるパススケジュールゃ冷延率、 口一ル径についても特別な 設備を必要とせず、 既設設備を効率的に使用すれば良い。 調質圧延 時の潤滑有無やパス数等についても特に規定しない。 また、 冷延 - 焼鈍後または調質圧延後にテンショ ンレべラーを付与して形状矯正 しても構わない。 更に、 製品組織は基本的にはオーステナイ ト相が 主体となるが、 フェライ ト相やマルテンサイ ト相などの第 2相が生 成していても構わない。 実施例
以下に、 本発明を実施例により具体的に説明する。 表 1 に示す化 学組成の鋼を溶製してスラブに铸造し、 スラブを熱間圧延した後、 焼鈍 · 酸洗を施し、 1. 5mm厚まで冷間圧延し、 焼鈍 · 酸洗を施した 後、 調質圧延を施して製品板とした。 このようにして得られた製品 板に対して、 上記の静的引張試験と動的引張試験を行った。
表 1 に請求項 1〜 6に対応する実施例を示す。 本発明で規定する 成分組成を有する鋼は、 比較鋼に比べて破壊までの全衝撃吸収エネ ルギ一、 10 %歪みまでの低歪み域における衝撃吸収エネルギーのい ずれも高く、 衝撃吸収特性に優れている。 これは、 比較的大変形を 受ける衝撃吸収部材に適している。 また、 静的引張試験における破 断伸びが高く、 延性に優れているため、 複雑な構造体への成形にも 好ましい。
表 2 に請求項 7 に対応する実施例を示す。 調質圧延の圧下率の調 整により引張強度 700MP a以上、 破断伸び 5 %以上とした本発明例は 、 動的引張試験における 10 %歪みまでの衝撃吸収エネルギーが 50MJ m 3以上と高く、 静動比も 1. 4以上であり、 低歪み域で衝撃を吸収 する必要のある高強度部材に適している。
表 1
Figure imgf000015_0001
各成分量は mass%を示す。
: 本発明の範囲から外れるものを示す。
表 2
Figure imgf000016_0001
注) : 本発明の範囲から外れるものを示す。 産業上の利用可能性
以上の説明から明らかなように、 本発明によれば特に高価な合金 元素を多量に添加せずとも、 高強度で衝撃吸収性能に優れたステン レス鋼板を提供することができ、 特に自動車、 バス、 鉄道等の運輸 に関わる構造部材に適用することにより、 軽量化による環境対策、 衝突安全性向上など産業上有用な著しい効果を奏する。

Claims

請 求 の 範 囲
1. 質量%にて、
C : 0.005〜0.05%、
N : 0.0卜 0.30%、
Si : 0.ト 2 %、
Mn: 0. 1〜 15%、
Ni : 0.5〜 8 %、
Cu: 0. 1〜 5 %、
Cr: 11〜20%、
A1 : 0.01〜0.5%を含有し、 残部が Feおよび不可避的不純物から なり、 (A) 式で与えられる Md3 Q値が 0〜100°C、 動的引張試験に おける全衝撃吸収エネルギーが 500MJZm3以上であることを特徴と する衝撃吸収特性に優れた構造部材用ステンレス鋼板。
Md3。 = 551— 462 ( C + N) -9.2Si-8. ΙΜη
- 13.7Cr- 29 (Ni + Cu) · · · (A)
2. 耐力の静動比が 1.4以上であることを特徴とする請求項 1 に 記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
3. 静的引張試験における引張強度が 600MPa以上、 破断伸びが 40 %以上であることを特徴とする請求項 1 または請求項 2に記載の衝 撃吸収特性に優れた構造部材用ステンレス鋼板。
4. 質量%にて、
C 0.005〜0.05%、
N : 0.0卜 0.30%、
Si : 0.卜 2 %、
Mn: 0. 1〜 15%、
Ni : 0.5〜 8 %、 Cu: 0.1〜 5 %、
Cr : 11〜20%、
Al : 0.01〜0.5%を含有し、 残部が Feおよび不可避的不純物から なり、 (A) 式で与えられる Md3 Q値が 0〜100°C、 動的引張試験に おける 10%歪みまでの衝撃吸収エネルギーが δΟΜΙΖιη3以上である ことを特徴とする衝撃吸収特性に優れた構造部材用ステンレス鋼板
Md30 = 551 - 462 (C + N) - 9.2Si- 8. ΙΜη
一 13.7Cr- 29 (Ni + Cu) · · · (A)
5. 耐力の静動比が 1.4以上であることを特徴とする請求項 4に 記載の衝撃吸収特性に優れた構造部材用ステンレス鋼板。
6. 静的引張試験における引張強度が 600MPa以上、 破断伸びが 40 %以上であることを特徴とする請求項 4または請求項 5 に記載の衝 撃吸収特性に優れた構造部材用ステンレス鋼板。
7. 静的引張試験における引張強度が 700MPa以上、 破断伸びが 5 %以上であることを特徴とする請求項 4または請求項 5 に記載の衝 撃吸収特性に優れた構造部材用ステンレス鋼板。
PCT/JP2007/071445 2006-12-27 2007-10-30 衝撃吸収特性に優れた構造部材用ステンレス鋼板 WO2008078457A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800111498A CN101410543B (zh) 2006-12-27 2007-10-30 冲击吸收特性优异的结构构件用不锈钢板
US12/225,327 US20100233015A1 (en) 2006-12-27 2007-10-30 Stainless Steel Sheet for Structural Components Excellent in Impact Absorption Property
EP07831178.4A EP2060646B1 (en) 2006-12-27 2007-10-30 Stainless steel sheet for structural members excellent in impact -absorbing characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-350722 2006-12-27
JP2006350722A JP5165236B2 (ja) 2006-12-27 2006-12-27 衝撃吸収特性に優れた構造部材用ステンレス鋼板

Publications (1)

Publication Number Publication Date
WO2008078457A1 true WO2008078457A1 (ja) 2008-07-03

Family

ID=39562251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071445 WO2008078457A1 (ja) 2006-12-27 2007-10-30 衝撃吸収特性に優れた構造部材用ステンレス鋼板

Country Status (6)

Country Link
US (1) US20100233015A1 (ja)
EP (1) EP2060646B1 (ja)
JP (1) JP5165236B2 (ja)
KR (1) KR20080106200A (ja)
CN (1) CN101410543B (ja)
WO (1) WO2008078457A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289518B1 (ko) * 2009-11-18 2013-07-24 신닛테츠스미킨 카부시키카이샤 오스테나이트계 스테인리스 강판 및 그 제조 방법
KR20120132691A (ko) * 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 높은 성형성을 구비하는 페라이트-오스테나이트계 스테인리스 강의 제조 및 사용 방법
FI125442B (fi) * 2010-05-06 2015-10-15 Outokumpu Oy Matalanikkelinen austeniittinen ruostumaton teräs ja teräksen käyttö
KR101656977B1 (ko) * 2012-04-10 2016-09-12 신닛테츠스미킨 카부시키카이샤 충격 흡수 부재에 적합한 강판과 그 제조 방법
ITRM20120647A1 (it) * 2012-12-19 2014-06-20 Ct Sviluppo Materiali Spa ACCIAIO INOSSIDABILE AUSTENITICO AD ELEVATA PLASTICITÀ INDOTTA DA GEMINAZIONE, PROCEDIMENTO PER LA SUA PRODUZIONE, E SUO USO NELLÂeuro¿INDUSTRIA MECCANICA.
JP6029662B2 (ja) * 2013-12-09 2016-11-24 新日鐵住金株式会社 オーステナイト系ステンレス鋼板およびその製造方法
KR101659186B1 (ko) * 2014-12-26 2016-09-23 주식회사 포스코 가요성이 우수한 오스테나이트계 스테인리스강
JP6477181B2 (ja) * 2015-04-07 2019-03-06 新日鐵住金株式会社 オーステナイト系ステンレス鋼
KR101952818B1 (ko) * 2017-09-25 2019-02-28 주식회사포스코 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
CN107747025B (zh) * 2017-11-02 2019-08-16 浙江双森金属科技股份有限公司 一种不锈钢管及其加工工艺
KR102326262B1 (ko) * 2019-12-18 2021-11-15 주식회사 포스코 고항복비 고강도 오스테나이트계 스테인리스강
KR102385472B1 (ko) * 2020-04-22 2022-04-13 주식회사 포스코 고강도, 고성형의 저원가 오스테나이트계 스테인리스강 및 그 제조방법
KR102403849B1 (ko) * 2020-06-23 2022-05-30 주식회사 포스코 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081535A (ja) * 1999-09-16 2001-03-27 Nisshin Steel Co Ltd 成形性および熱間加工性に優れたプレス成形用オーステナイト系ステンレス鋼および鋼板
JP2002020843A (ja) 2000-07-05 2002-01-23 Nippon Steel Corp 衝突吸収性能に優れたオーステナイト系ステンレス鋼
JP2006052457A (ja) * 2004-08-16 2006-02-23 Nisshin Steel Co Ltd 深絞り後の二次加工性に優れたオーステナイト系ステンレス鋼板
JP2006169622A (ja) * 2004-01-29 2006-06-29 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282684A (en) * 1963-07-31 1966-11-01 Armco Steel Corp Stainless steel and articles
US3806337A (en) * 1972-01-03 1974-04-23 Int Nickel Co Austenitic stainless steel resistant to stress corrosion cracking
JPS5129854B2 (ja) * 1973-04-21 1976-08-27
JPS60255960A (ja) * 1984-05-31 1985-12-17 Aichi Steel Works Ltd 冷間鍛造用ステンレス鋼
JP3530355B2 (ja) * 1997-09-24 2004-05-24 新日本製鐵株式会社 高い動的変形抵抗を有する衝突時衝撃吸収用高強度熱延鋼板とその製造方法
EP2314730B1 (en) * 1996-11-28 2012-03-21 Nippon Steel Corporation High-strength steels having high impact energy absorption properties.
JPH10158735A (ja) * 1996-11-28 1998-06-16 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用熱延高強度薄鋼板とその製造方法
JPH10273752A (ja) * 1997-01-29 1998-10-13 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
TW426742B (en) * 1997-03-17 2001-03-21 Nippon Steel Corp Dual-phase type high strength steel sheets having high impact energy absorption properties and a method of producing the same
KR100554753B1 (ko) * 2001-12-27 2006-02-24 주식회사 포스코 성형성 및 용접성이 우수한 고강도 냉연강판과 그 제조방법
JP4327030B2 (ja) 2004-07-07 2009-09-09 新日鐵住金ステンレス株式会社 張出し性と耐発銹性に優れた低Niオ−ステナイト系ステンレス鋼
KR100641577B1 (ko) 2005-04-19 2006-10-31 주식회사 포스코 고망간 및 고질소 오스테나이트계 스테인레스강

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081535A (ja) * 1999-09-16 2001-03-27 Nisshin Steel Co Ltd 成形性および熱間加工性に優れたプレス成形用オーステナイト系ステンレス鋼および鋼板
JP2002020843A (ja) 2000-07-05 2002-01-23 Nippon Steel Corp 衝突吸収性能に優れたオーステナイト系ステンレス鋼
JP2006169622A (ja) * 2004-01-29 2006-06-29 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
JP2006052457A (ja) * 2004-08-16 2006-02-23 Nisshin Steel Co Ltd 深絞り後の二次加工性に優れたオーステナイト系ステンレス鋼板

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Report on Research Group Results Regarding High-Speed Deformation of Automotive Materials", 2001, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 12
"Report on Research Group Results Regarding High-Speed Deformation of Automotive Materials", THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 12
"Stainless Steel Handbook", JAPAN STAINLESS STEEL ASSOCIATION
"Symposium on Automobile Materials", 1997, JAPAN STAINLESS STEEL ASSOCIATION, pages: 71
CAMP-ISIJ, vol. 9, 1996, pages 1101
See also references of EP2060646A4 *

Also Published As

Publication number Publication date
JP5165236B2 (ja) 2013-03-21
EP2060646B1 (en) 2015-06-17
CN101410543B (zh) 2011-04-06
JP2008163358A (ja) 2008-07-17
KR20080106200A (ko) 2008-12-04
US20100233015A1 (en) 2010-09-16
EP2060646A4 (en) 2014-01-01
CN101410543A (zh) 2009-04-15
EP2060646A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP5165236B2 (ja) 衝撃吸収特性に優れた構造部材用ステンレス鋼板
JP5388589B2 (ja) 加工性と衝撃吸収特性に優れた構造部材用フェライト・オーステナイト系ステンレス鋼板およびその製造方法
JP5597006B2 (ja) 構造部材用高強度および高延性オーステナイト系ステンレス鋼板およびその製造方法
JP5544633B2 (ja) 衝撃吸収特性に優れた構造部材用オーステナイト系ステンレス鋼板
US8129035B2 (en) Structural component for automobile, two-wheeled vehicle or railcar excellent in impact-absorption property, shape fixability and flange cuttability, and method for producing the same
KR100334949B1 (ko) 동적변형 특성이 우수한 듀얼 페이즈형 고강도 강판 및 그 제조방법
JP4949124B2 (ja) 形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法
KR20210003236A (ko) 열간 스탬핑용 강, 열간 스탬핑 방법, 및 열간 스탬핑된 구성요소
JP3793350B2 (ja) 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
JP6628561B2 (ja) 加工性に優れた構造部材用ステンレス鋼板及びその製造方法
JPWO2014077294A1 (ja) 自動車用衝突エネルギー吸収部材およびその製造方法
JP2010236560A (ja) 衝撃吸収特性に優れた構造部材の製造方法
JP5220311B2 (ja) 衝撃吸収特性に優れた構造部材用ステンレス鋼板
US20200224295A1 (en) Hot-working material, component and use
JPH1161327A (ja) 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法
JP3247907B2 (ja) 延性と耐遅れ破壊特性に優れた高強度冷延鋼板およびその製造方法
JP5091733B2 (ja) 加工性および衝撃吸収性能に優れた低Ni車体部材用ステンレス鋼
JP5421615B2 (ja) Ni節減型ステンレス鋼製自動車用部材
JP5228963B2 (ja) 冷延鋼板およびその製造方法
JP2011017039A (ja) 構造部材用オーステナイト系ステンレス鋼
JPH10317096A (ja) 耐衝突安全性に優れた自動車用高強度鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007831178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780011149.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087020686

Country of ref document: KR