WO2008075738A1 - カチオン電着塗装用金属表面処理液 - Google Patents

カチオン電着塗装用金属表面処理液 Download PDF

Info

Publication number
WO2008075738A1
WO2008075738A1 PCT/JP2007/074536 JP2007074536W WO2008075738A1 WO 2008075738 A1 WO2008075738 A1 WO 2008075738A1 JP 2007074536 W JP2007074536 W JP 2007074536W WO 2008075738 A1 WO2008075738 A1 WO 2008075738A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
cationic electrodeposition
electrodeposition coating
metal
ions
Prior art date
Application number
PCT/JP2007/074536
Other languages
English (en)
French (fr)
Inventor
Toshio Inbe
Hiroshi Kameda
Thomas Kolberg
Original Assignee
Nippon Paint Co., Ltd.
Chemetall Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd., Chemetall Gmbh filed Critical Nippon Paint Co., Ltd.
Priority to KR1020097015212A priority Critical patent/KR101539708B1/ko
Priority to MX2009006618A priority patent/MX2009006618A/es
Priority to ES07850971.8T priority patent/ES2581988T3/es
Priority to EP07850971.8A priority patent/EP2112251B1/en
Priority to CA2672854A priority patent/CA2672854C/en
Priority to BRPI0721139-2A priority patent/BRPI0721139B1/pt
Priority to AU2007335382A priority patent/AU2007335382B2/en
Priority to US12/077,429 priority patent/US20080230394A1/en
Publication of WO2008075738A1 publication Critical patent/WO2008075738A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material

Definitions

  • the present invention relates to a metal surface treatment liquid, particularly a metal surface treatment liquid suitable for cationic electrodeposition coating, and a metal surface treatment method.
  • a cationic base electrodeposition coating is applied after a surface treatment to a metal base material constituting an automobile, which requires high anticorrosion properties.
  • the reason why cationic electrodeposition coating is applied is that the coating film obtained by force thioion electrodeposition coating has excellent anticorrosion properties and that it is applied to every corner of an automobile body with a complex shape. It has the property of being able to do so-called “climbing performance”!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-218070
  • the present invention is based on zirconium ions, which can exhibit sufficient throwing power and have excellent anticorrosion properties when cationic electrodeposition is applied to a surface-treated metal substrate.
  • the object is to provide a surface treatment.
  • the present invention is as follows.
  • a metal surface treatment solution for cationic electrodeposition coating which is ⁇ !
  • a metal surface treatment solution for cationic electrodeposition coating further comprising a polyamine compound as the metal surface treatment solution for cationic electrodeposition coating (1).
  • a metal surface treatment solution for cationic electrodeposition coating further comprising copper ions as the metal surface treatment solution for cationic electrodeposition coating of (1) to (2) above.
  • the metal surface treatment liquid for cationic electrodeposition coating described in (1) to (3) above further contains fluorine, and the amount of free fluorine ions when the pH is 3.0 is 0. .
  • a metal surface treatment solution for cationic electrodeposition coating further comprising a chelate compound as the metal surface treatment solution for cationic electrodeposition coating of (1) to (4) above.
  • a metal surface treatment solution for cationic electrodeposition coating further comprising an oxidizing agent as the metal surface treatment solution for cationic electrodeposition coating of (1) to (6) above.
  • a metal surface treatment method comprising a step of performing a surface treatment on a metal substrate using the metal surface treatment liquid for cationic electrodeposition coating described in (1) to (8) above.
  • a step of performing a surface treatment on a metal substrate using the metal surface treatment liquid for cationic electrodeposition coating according to (1) to (8) above, and the metal substrate subjected to the surface treatment A cationic electrodeposition coating method including a step of applying cathodic electrodeposition coating to a material.
  • the metal surface treatment solution for cationic electrodeposition coating of the present invention is a chemical conversion treatment solution containing zirconium ions and tin ions and having a pH of 1.5 to 6.5, and the concentration of the zirconium ions is The content of tin ions with respect to the zirconium ions is 0.0005 to 1 in terms of mass.
  • a polyamine compound, copper ion, fluorine ion, chelate compound, oxidizing agent, and antifungal agent may be included.
  • fluorine ions are included, the amount of free fluorine ions when the pH is 3.0 may be 0.;!-50 ppm.
  • the metal surface treatment method of the present invention includes a step of performing a surface treatment on a metal substrate using the above metal surface treatment liquid.
  • the surface-treated metal substrate of the present invention is formed with a film obtained by the previous surface treatment.
  • the element ratio of zirconium / tin in the film may be 1/10 to 10/1 in terms of mass.
  • the cationic electrodeposition coating method of the present invention includes a step of performing a surface treatment on a metal substrate using the above-described metal surface treatment solution, and a cation for the metal substrate subjected to the surface treatment. And a process of performing electrodeposition coating.
  • the metal substrate coated with cationic electrodeposition according to the present invention is obtained by the previous coating method.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention contains tin ions in addition to zirconium ions, so that it can be used when the cationic electrodeposition coating is performed after forming a chemical conversion film with this treatment liquid. This is considered to improve the performance. Although the reason is not clear, it can be considered as follows.
  • tin ions when tin ions are present, it is considered as follows. Tin ions are less susceptible to steel plate effects than zirconium ions, so it is easy to form an oxide film on the substrate. Although tin ions do not specifically form a film on a portion where zirconium ions are difficult to precipitate, tin ions do not form an oxide film on a specific portion. As a result, the tin ion forms a film by compensating for the part where the zirconium ion could not be formed.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention can improve the adhesion to the cationic electrodeposition coating film by containing a polyamine compound, and as a result, the conditions are more severe. The SDT test can also be cleared. Moreover, the metal surface treatment liquid for cationic electrodeposition coating of the present invention can improve corrosion resistance by containing copper ions. The reason is not clear, but it is thought that some interaction is acting between copper and zirconium during film formation. Furthermore, when the metal surface treatment liquid for cationic electrodeposition coating of the present invention contains a large amount of metal other than zirconium, a zirconium oxide film can be stably formed by including a chelate compound. This is presumably because the chelate compound captures metal ions that are more likely to precipitate than zirconium.
  • FIG. 1 is a perspective view showing an example of a box used when evaluating throwing power.
  • FIG. 2 is a drawing schematically showing the evaluation of throwing power.
  • the metal surface treatment solution for cationic electrodeposition coating of the present invention is a chemical conversion treatment solution containing zirconium ions and tin ions and having a pH of 1.5 to 6.5.
  • the concentration of the zirconium ions is 10 to 10,000 ppm. If it is less than lOppm, the precipitation of the dinoleum oxide film is not sufficient, so that sufficient corrosion resistance cannot be obtained, and if it exceeds lOOOOppm, the deposition amount of the zirconium film does not increase, and the adhesion of the film decreases to prevent corrosion such as SDT. The performance may be inferior, and an effect commensurate with it cannot be obtained. Preferred lower and upper limits are lOOppm and 500ppm, respectively.
  • the notation of the concentration of metal ions is the metal element-concentrated concentration in which, when the complex is an oxide, the focus is only on the metal atom in the complex. It shall be expressed as For example, complex ion ZrF 2 (molecular weight 205)
  • the metal element equivalent concentration of ruconium is calculated as 44 ppm by the calculation of 100 X (91/205).
  • a part of the metal compound a zirconium compound, a tin compound, a copper compound or other metal compound
  • the metal ion concentration in this specification is the metal ion concentration when 100% dissociates and exists as a metal ion regardless of whether or not a part of the metal ion exists as non-ion! .
  • the tin ion contained in the metal surface treatment solution for cationic electrodeposition coating of the present invention is preferably a divalent cation. At other valences, the intended effect may not be obtained.
  • the tin ion is not limited to a divalent cation, and any tin ion that can be deposited on a metal substrate can be used in the present invention.
  • a tin ion forms a complex, it may be a tetravalent cation. This can also be used in the present invention.
  • the concentration of the tin ions is 0.005 to 1 in terms of mass with respect to the concentration of the zirconium ions.
  • the content of tin ions in the metal surface treatment solution of the present invention is preferably! ⁇ LOOppm.
  • the content is more preferably 5 to 100 ppm, and further preferably 5 to 50 ppm.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention has a pH of 1.5 to 6.5. If it is less than 1.5, the metal substrate is not sufficiently etched, so that the coating amount is reduced and sufficient corrosion resistance cannot be obtained. In addition, the stability of the processing solution may not be sufficient. On the other hand, if it exceeds 6.5, etching may be excessive and sufficient film formation may not be possible, or the coating amount and film thickness may be uneven, which may adversely affect the appearance of the coating.
  • the lower limit value and the upper limit value are preferably 2.0 and 5.5, respectively, and more preferably 2.5 and 5.0.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain a polyamine compound in order to enhance the adhesion to the cationic electrodeposition coating film formed after the surface treatment.
  • the polyamine compound used in the present invention is considered to have an essential meaning in that it is an organic molecule having an amino group. That is, although the following is speculated, it is considered that amino groups are incorporated into the film by chemical action with zirconium oxide deposited as a film on the metal substrate and the metal substrate. In addition, it is considered that the polyamine compound that is an organic molecule contributes to adhesion with a coating film provided on the metal substrate on which the coating film is formed.
  • the adhesion between the metal substrate and the coating film is remarkably improved, and excellent corrosion resistance can be obtained.
  • the polyamine compound include hydrolyzed condensates of aminosilanes, polyvinylenoamines, polyallylamamines, and water-soluble phenol resins having amino groups.
  • An aminosilane hydrolyzed condensate is preferable because the amount of amine can be adjusted freely.
  • the metal surface treatment solution for cationic electrodeposition coating of the present invention includes, for example, a metal surface treatment solution for cationic electrodeposition coating containing a hydrolytic condensate of zirconium ions, tin ions, and aminosilanes, zirconium ions, tin ions. And including polyallylamine
  • the metal surface treatment solution for cationic electrodeposition coating include a metal surface treatment solution for cationic electrodeposition coating containing a water-soluble phenolic resin having zirconium ions, tin ions, and amino groups.
  • the aminosilane hydrolyzed condensate is obtained by hydrolytic condensation of an aminosilane compound.
  • the aminosilane compound include butyltrichlorosilane, vinyltrimethoxysilane, butyltriethoxysilane, 2- (3,4 epoxy cyclohexylenopropylenolemethinolegoxysilane, and 3-glycidoxypropinoretriethoxysilane.
  • Hydrolysis condensation of the aminosilane can be carried out by methods well known to those skilled in the art. Specifically, it can be carried out by adding water necessary for hydrolyzing an alkoxysilyl group to at least one aminosilane compound, and heating and stirring as necessary. . The degree of condensation can be controlled by the amount of water used.
  • a higher degree of condensation of the aminosilane hydrolyzed condensate is preferred because zirconium tends to be taken into the oxide when it precipitates as an oxide.
  • the proportion of aminosilanes in the dimer or higher is preferably 40% or more, more preferably 50% or more, more preferably 70% or more, in terms of mass. More preferably, it is 80% or more. For this reason, when aminosilane is reacted in a hydrolysis-condensation reaction, the reaction should be performed under conditions where aminosilane is more easily hydrolyzed and condensed, such as using an aqueous solvent containing a catalyst such as alcohol and acetic acid. Is preferred.
  • a hydrolysis condensate having a high degree of condensation can be obtained by reacting under conditions where the aminosilane concentration is relatively high. Specifically, it is preferable to hydrolyze and condense the aminosilane concentration in the range of 5% by mass or more and 50% by mass or less. The degree of condensation can be determined by 29 Si-NMR measurement.
  • polybulamine and polyallylamin it is possible to use commercially available products.
  • examples of polyburamine include “PVAM-0595B” (trade name, manufactured by Mitsubishi Chemical)
  • examples of polyallylamin include “PAA-01”, ⁇ -IOCJ, “PAA—H-10C”, “PAA—D— “41HC1” (all trade names, manufactured by Nitto Boseki Co., Ltd.) etc.
  • the molecular weight of the polyamine compound is preferably 150 to 500,000. If it is less than 150, a chemical conversion film having sufficient adhesion cannot be obtained! If the molecular weight exceeds 500,000, film formation may be hindered. Further preferred lower and upper limits are 5000 and 70000, respectively. If the amount of amino group is too large, the polyamine compound may adversely affect the film. If the amount is too small, the effect of improving adhesion to the film due to the amino group is difficult to obtain. 0.1 to 1 mmol and 17 mmol or less primary and / or secondary amino group preferably 3 to 15 mmol or less primary and / or secondary amino group per lg Is preferred.
  • the number of moles of primary and / or secondary amino groups per lg of the solid content of the polyamine compound can be determined by the following mathematical formula (1). [0043] country
  • Amine group amount (mX-nY) / (m + n) ...
  • the content of the polyamine compound in the metal surface treatment liquid for cationic electrodeposition coating of the present invention is 1 to 200% based on the metal equivalent mass of zirconium contained in the surface treatment liquid. it can. If it is less than 1%, the intended effect cannot be obtained, and if it exceeds 200%, the skin film may not be sufficiently formed. As the upper limit of the content, 120% is more preferable, 100% is more preferable, 80% is more preferable, and 60% is more preferable.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain copper ions in order to further improve the corrosion resistance.
  • the amount of the copper ions is preferably a concentration that is 10 to 100% with respect to the concentration of the tin ions. If it is less than 10%, the intended effect may not be obtained, and if the concentration of tin ions is exceeded, zirconium may be precipitated as in the case of tin ions.
  • Examples of the metal surface treatment solution for cationic electrodeposition coating of the present invention include a metal surface treatment solution for cationic electrodeposition coating containing zirconium ions, tin ions and copper ions. In this case, it is possible to further contain fluorine ions described later, and the polyamine compound can be contained.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention preferably contains fluorine ions. Since the concentration of fluoride ion varies with pH, the amount of free fluoride ion at a specific pH is specified. In the present invention, the amount of free fluorine ions when the pH is 3.0 is 0. !-50 ppm. If it is less than lppm, the metal substrate is not sufficiently etched, so the amount of the coating is reduced and sufficient corrosion resistance cannot be obtained. In addition, the stability of the treatment liquid may not be sufficient. If it exceeds 50 ppm, etching may be excessive and sufficient film formation may not be possible, and the coating amount and film thickness may be uneven, which may adversely affect the appearance of the coating.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention include a metal surface treatment liquid for cationic electrodeposition coating containing zirconium ions, tin ions, and fluorine ions.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain a chelate compound.
  • a chelate compound By including the chelate compound, precipitation of metals other than zirconium in the treatment liquid can be suppressed, and a zirconium oxide film can be stably formed.
  • the chelate compound include amino acids, aminocarboxylic acids, phenol compounds, aromatic carboxylic acids, sulfonic acids, ascorbic acids and the like.
  • carboxylic acids having a hydroxyl group such as citrate and darconic acid, which have been conventionally known as chelating agents, cannot sufficiently exhibit their functions in the present invention.
  • amino acids having at least one amino group and at least one acid group (such as a carboxyl group or a sulfonic acid group) in one molecule should be widely used. Can do.
  • alanine, glycine, dartamic acid, aspartic acid, histidine, phenylalanin, asparagine, arginine, glutamine, cysteine, leucine, lysine, proline, serine, tryptophan, valine, tyrosine, and salts thereof The ability to preferably use at least one selected from the group consisting of:
  • an amino acid has an optical isomer, any of L-form, D-form and racemic form can be suitably used.
  • aminocarboxylic acid compounds other than the above amino acids, which have both an amino group and a strong carboxyl group in one molecule, can be widely used.
  • diethylenetriaminepentaacetic acid (DTP A) hydroxyethylethylenediaminacetic acid (HED TA), triethylenetetraaminehexaacetic acid (TTHA), 1,3-propanediamintetraacetic acid (PDT A), 1,3 —Diamino mono 6-hydroxypropane tetraacetic acid (DPTA—OH), hydroxyethylimino diacetic acid (HIDA), dihydroxyethylglycine (DHEG), glycol ether diamine tetraacetic acid (GEDTA), dicarboxymethyl glutamic acid (CMGA) ), (S 1, S) -ethylenediamine disuccinic acid (EDDS), ethylenediamine 4 acetic acid (EDTA), nitrite 3 acetic acid (NTA) and at least one
  • examples of the phenol compound include compounds having two or more phenolic hydroxyl groups and phenol compounds having these as a basic skeleton.
  • examples of the former include catechol, gallic acid, pyrogallol, tannic acid and the like.
  • examples of the latter include flavonoids such as flavones, isoflavones, flavonols, flavanones, flavanols, anthocyanidins, aurones, force norecons, epigallocatechin gallate, gallocatechin, theaflavin, soybean in, genistin, rutin, myristicin and other flavonoids, tannins, catechins And the like, and polyphenol compounds including polybutanol, water-soluble resols, novolac resins, lignin and the like.
  • tannin, gallic acid, catechin and pyrogallol are particularly preferred.
  • sulfonic acid examples include metasulfonic acid, isethionic acid, taurine, naphthalene disulfonic acid, amaminonaphthalenedisulfonic acid, sulfosalicylic acid, naphthalenesulfonic acid formaldehyde condensate, alkylnaphthalenesulfonic acid, and the like, and salts thereof. At least one selected from the group consisting of can be preferably used.
  • taurine is preferable in that it has both an amino group and a sulfone group.
  • the content of sulphonic acid is preferably from 0.;! To lOOOOppm, more preferably from! To lOOOOppm. If the content is less than 0.1 lppm, it is difficult to obtain the effect. If it exceeds lOOOOppm, precipitation of zirconium may be inhibited.
  • zirconium oxide is formed on the surface of the workpiece by chemical conversion treatment. Further, a metal oxide film such as tin oxide can be formed uniformly, and paintability and corrosion resistance can be improved. Although its mechanism is not clear, the etching action in the chemical conversion treatment is uniformly performed on the workpiece such as a steel plate, and as a result, zirconium oxide and / or tin oxide is present in the etched portion. It is estimated that a uniform metal oxide film is formed as a whole.
  • zirconium oxide is deposited at the deposition site of the tin metal, and the surface coverage on the object to be treated is improved as a whole.
  • the content of ascorbic acid is preferably 5 to 5000 ppm force S, more preferably 20 to 200 ppm force S. If the content is less than S5ppm, it is difficult to obtain the effect. If it exceeds 5000ppm, the deposition of zirconium may be hindered.
  • the content thereof is preferably 0.5 to 10 times the total concentration of other cations such as tin ions other than zirconium and copper ions. If it is less than 5 times, the desired effect cannot be obtained, and if it exceeds 10 times, the film formation may be adversely affected.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain nitrogen, sulfur and / or a phenolic antifungal agent.
  • the antifungal agent can suppress corrosion by forming an anticorrosive film on the metal surface.
  • the nitrogen, sulfur, or phenolic antifungal agent at least one selected from the group consisting of hydroquinone, ethylene urea, quinolinol, thiourea, benzotriazole, and the like and salts thereof can be used.
  • Power of the present invention When nitrogen, sulfur, or a phenolic antifungal agent is used in the metal surface treatment solution for thione electrodeposition coating, metal oxides such as zirconium oxide and tin oxide are formed on the surface of the object by chemical conversion treatment. A film is formed uniformly, and paintability and corrosion resistance can be improved. The mechanism is not clear, but the following is presumed.
  • the etching behavior is different from the portion where the chemical conversion film is etched to form a chemical conversion film.
  • Nitrogen, sulfur, and phenolic antifungal agents improve the primary antifungal property by covering the metal interface by adsorbing to the part where the chemical conversion film is not formed during chemical conversion treatment, and as a result, after chemical conversion treatment Treatment of It is presumed that the paintability and corrosion resistance of physical products can be improved.
  • the content of nitrogen, sulfur and / or phenolic antifungal agent is preferably 0.1 to 10,000 ppm;! To l OOOppm is more preferable. If the content is less than 0.1 lppm, it is difficult to obtain the effect. L If it exceeds OOOOppm, precipitation of zirconium may be hindered.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain aluminum ions and / or indium ions. Since these cations have the same function as tin ions, they are not effective with tin ions alone, and can be used in combination. Among these, aluminum is more preferable. Contains aluminum ions and / or indicium ions! : (Oh, 10 ⁇ ;! OOOppm preferred ⁇ , 50-500ppm force preferred ⁇ , 100-300ppm force S More preferred. The amount of aluminum ions and indium ions is based on the concentration of zirconium ions. For example, the concentration corresponding to 2 to 1000% is reduced by force S.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention is for cationic electrodeposition coating containing zirconium ions, tin ions, and aluminum ions.
  • Examples thereof include metal surface treatment liquids, which can further contain fluorine described later, and can also include a polyamine compound described later.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain various cations.
  • the cation include magnesium, zinc, calcium, gallium, iron, manganese, nickel, cobalt, silver and the like.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention can be produced by putting the above components themselves and / or a compound containing the same into water and mixing them.
  • Examples of the compound supplying the zirconium ion include fluorinated zirconate and fluorine.
  • examples thereof include salts of fluorinated zirconate such as potassium zirconate fluoride and ammonium fluoride zirconate, zirconium fluoride, zirconium oxide, zirconium oxide colloid, zirconyl nitrate, and zirconium carbonate.
  • Examples of compounds that supply tin ions include tin sulfate, tin acetate, tin fluoride, tin chloride, and tin nitrate.
  • examples of the compound that supplies fluoride ions include fluorides such as hydrofluoric acid, ammonium fluoride, boron fluoride, ammonium hydrogen fluoride, sodium fluoride, and sodium hydrogen fluoride. It is also possible to use a complex fluoride as a source, for example, hexafluorosilicate, specifically, key hydrofluoric acid, key zinc hydrofluoride, manganese key hydrofluoride, key hydrofluoric acid.
  • Examples thereof include magnesium, nickel key hydrofluoride, iron key hydrofluoride, and calcium key hydrofluoride. Further, it may be a compound that supplies zirconium ions and is a complex fluoride. Furthermore, copper acetate, copper nitrate, copper sulfate, copper chloride, etc. are used as the compounds that supply copper ions, aluminum nitrate, aluminum fluoride, etc. are used as the compounds that supply aluminum ions, and nitric acid is used as the compound that supplies indium ions. Examples thereof include indium and indium chloride.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention after mixing these, uses an acidic compound such as nitric acid and sulfuric acid, and a basic compound such as sodium hydroxide, potassium hydroxide and ammonia. Thus, it is possible to adjust the power so that a predetermined pH value is obtained.
  • an acidic compound such as nitric acid and sulfuric acid
  • a basic compound such as sodium hydroxide, potassium hydroxide and ammonia.
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain an oxidizing agent.
  • the oxidizing agent is particularly preferably at least one selected from the group consisting of nitric acid, nitrous acid, hydrogen peroxide, bromic acid and the like and salts thereof.
  • the oxidizing agent can uniformly form a metal oxide film on the surface of the object to be processed, and can improve the paintability and corrosion resistance of the object to be processed.
  • the mechanism is not clear, by using a predetermined amount of the oxidizing agent, the etching action in the chemical conversion treatment is uniformly performed on the object to be processed such as a steel plate, and the etched portion has zirconium. It is presumed that oxide and / or tin oxide precipitates to form a uniform metal oxide film as a whole.
  • the predetermined amount of the oxidizer makes it easy for tin to precipitate as tin metal at the metal interface, and the tin metal is deposited at the site of precipitation. It is presumed that zirconium oxide precipitates and the surface coverage on the object to be treated is improved as a whole.
  • the content of each oxidizing agent is as follows. That is, the content of isotonic acid is 100-;! OOOOOOppm is preferred ⁇ , 1000-20,000 ppm is preferred, 2000-; OOOOppm power S is more preferred.
  • the content of nitrous acid and bromic acid is preferably 5 to 5000 ppm force S, more preferably 20 to 200 ppm force S.
  • the content of nitrous acid and bromic acid is preferably 5 to 5000 ppm force S, more preferably 20 to 200 ppm force S.
  • the content of hydrogen peroxide is 1 ⁇ ;! OOppm is preferred 5 ⁇ ;! OOppm power is more preferred. If each content is less than the lower limit, the precipitation of zirconium may be hindered if the upper limit is exceeded where the above effects are difficult to obtain.
  • the metal surface treatment method of the present invention includes a step of performing a surface treatment on a metal substrate using the above metal surface treatment liquid.
  • the metal substrate is not particularly limited as long as it can be cationically electrodeposited. Examples thereof include iron-based metal substrates, aluminum-based metal substrates, and zinc-based metal substrates.
  • the power S can be raised.
  • Examples of the iron-based metal base material include cold-rolled steel sheets, hot-rolled steel sheets, mild steel sheets, and high-tensile steel sheets.
  • examples of the aluminum-based metal base material include a 5000-series aluminum alloy, a 6000-series aluminum alloy, an aluminum-plated steel sheet such as an aluminum-based electroplating, melt-bonding, and vapor-deposition plating.
  • examples of zinc-based metal base materials include zinc-based steel plating, zinc-plated steel plate, zinc-nickel-plated steel plate, zinc-titanium-plated steel plate, zinc-magnesium-plated steel plate, and zinc-manganese-plated steel plate. The ability to list zinc or zinc-based alloy-plated steel sheets, etc.
  • JSC400J JSC440P
  • JSC440W JSC590R
  • JS C590T JSC590Y
  • JSC780T JSC780Y
  • JSC980Y JSCl 180Y Power S
  • a metal substrate made of a combination of a plurality of types of metals such as iron-based, aluminum-based, and zinc-based (including joints and contact portions of different metals) can also be applied simultaneously.
  • the surface treatment step is performed by bringing the metal surface treatment liquid into contact with the metal substrate.
  • Specific examples of the method include a dipping method, a spray method, a roll coating method, and a pouring treatment method.
  • the treatment temperature in the surface treatment step is preferably in the range of 20 to 70 ° C.
  • the treatment time in the surface treatment step is preferably 2 to 1100 seconds. If it is less than 2 seconds, a sufficient amount of film may not be obtained, and even if it exceeds 1100 seconds, no effect can be expected. Further preferred lower and upper limit values are 30 seconds and 120 seconds, respectively. In this way, a film is formed on the metal substrate.
  • the surface-treated metal substrate of the present invention is obtained by the above surface treatment method.
  • a film containing zirconium and tin is formed on the surface of the metal substrate.
  • the element ratio of zirconium / tin in the coating is preferably 1/10 to 10/1 in terms of mass. Outside this range, the desired performance may not be obtained.
  • the content of zirconium in the coating is preferably 10 mg / m 2 or more in the case of an iron-based metal substrate. If it is less than 10 mg / m 2 , sufficient corrosion resistance cannot be obtained. More preferably, it is 20 mg / m 2 or more, and further preferably 30 mg / m 2 or more.
  • the upper limit is not particularly defined, but if the amount of the film is too large, cracks are likely to occur in the fender film, making it difficult to obtain a uniform film.
  • the zirconium content in the coating is preferably lg / m 2 or less, more preferably 800 mg / m 2 or less.
  • the copper content in the film is 0.5 mg / m 2 or more in order to obtain the desired effect. I prefer that.
  • the cationic electrodeposition coating method of the present invention includes a step of performing a surface treatment on a metal substrate using the above-described metal surface treatment liquid, and a cation for the metal substrate subjected to the surface treatment. And a process of performing electrodeposition coating.
  • the surface treatment step in the cationic electrodeposition coating method is the same as the surface treatment step in the previous surface treatment method.
  • the surface-treated metal substrate obtained in the surface treatment step enters the cationic electrodeposition coating step as it is or after washing.
  • cathodic electrodeposition coating is performed on the metal base material that has been surface-treated.
  • a metal substrate subjected to the above surface treatment is immersed in a cationic electrodeposition coating, and a voltage of 50 to 450 V is applied for a predetermined time using this as a cathode.
  • the voltage application time varies depending on the electrodeposition conditions and is generally 2 to 4 minutes.
  • the cationic electrodeposition coating generally well-known ones can be used. Specifically, a binder cationized by adding an amine sulfide to an epoxy group of an epoxy resin or an acrylic resin and adding a neutralizing acid such as acetic acid, a block isocyanate as a curing agent, and an anti-blocking agent.
  • a pigment dispersion paste in which a pigment having inertia is dispersed with a resin is added to form a paint.
  • the cured coating film is obtained by baking at a predetermined temperature as it is or after washing with water. Baking conditions vary depending on the type of cationic electrodeposition paint used, usually 120 to 260 ° C, preferably 140 to 220 ° C. The baking time can be 10-30 minutes.
  • the metal substrate coated with cationic electrodeposition obtained in this way is also one aspect of the present invention.
  • aminosilane KBE603 (3-aminopropyl monotriethoxysilane, effective concentration 100%, manufactured by Shin-Etsu Chemical Co., Ltd.), 5 parts by mass from a dropping funnel, 47.5 parts by mass of deionized water and 47.5 parts by mass of isopropyl alcohol After dropwise addition over 60 minutes uniformly in a mixed solvent (solvent temperature: 25 ° C), the reaction was carried out at 25 ° C for 24 hours under a nitrogen atmosphere. Thereafter, the reaction solution was depressurized to evaporate isopropyl alcohol and further deionized water to obtain a hydrolyzed condensate of aminosilane having an active ingredient of 5%.
  • solvent temperature solvent
  • the reaction solution was depressurized to evaporate isopropyl alcohol and further deionized water to obtain a hydrolyzed condensate of aminosilane having an active ingredient of 5%.
  • Example 1 the aminosilane hydrolysis condensate obtained in Production Example 1 was added to 200 ppm, and tin sulfate was changed to tin acetate to change the tin ion concentration to lO ppm.
  • a metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the pH was 2.75. After adjusting this treatment solution to pH 3.0, the free fluorine ion concentration when measured using a fluorine ion meter was 5 ppm.
  • Example 1 “polyallylamine ⁇ —H-10C” (trade name, manufactured by Nitto Boseki Co., Ltd.) was added to 25 ppm, the zirconium ion concentration was changed to 250 ppm, and the pH was adjusted to 3 A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the value was 0. In addition, this treatment solution had a free fluorine ion concentration of 5 ppm when measured using a fluorine ion meter.
  • Example 1 copper nitrate was further added so that the copper ion concentration became lOppm, the tin ion concentration was changed to lOppm, and the pH was changed to 3.0 in the same manner.
  • a metal surface treatment solution for electrodeposition coating was obtained.
  • the free fluorine ion concentration when measured using a fluorine ion meter was 5 ppm.
  • Example 4 the aminosilane hydrolyzed condensate obtained in Production Example 2 was added to 200 ppm, and the tin ion concentration was changed to 30 ppm. In this manner, a metal surface treatment solution for cationic electrodeposition coating was obtained. This treatment solution had a free fluorine ion concentration of 5 ppm when measured using a fluorine ion meter.
  • Example 2 In the same manner as in Example 2, except that aluminum nitrate was further added to have an aluminum ion concentration of 200 ppm, and tin sulfate was changed to tin acetate to change the tin ion concentration to 30 ppm. A metal surface treatment solution for electrodeposition coating was obtained. After adjusting this treatment solution to pH 3.0, the free fluorine ion concentration when measured using a fluorine ion meter was 5 ppm.
  • a metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 6, except that the pH was 3.5 and 4.0.
  • Table 1 shows the free fluorine ion concentration when this treatment solution was adjusted to pH 3.0 and then measured using a fluorine ion meter.
  • Example 7 except that the addition amount of 40% aqueous zirconate solution, tin sulfate, and aluminum nitrate was changed so that the zirconium ion concentration, tin ion concentration, and aluminum ion concentration were as shown in Table 1. Similarly, a metal surface treatment solution for cationic electrodeposition coating was obtained. Table 1 shows the free fluorine ion concentration when this treatment solution was adjusted to pH 3.0 and then measured using a fluorine ion meter.
  • Example 2 indium nitrate was further added so that the indium ion concentration became 200 ppm, and tin sulfate was changed to tin fluoride so that the tin ion concentration became 30 ppm. Further, the pH was changed to 3.5. A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as described above. After adjusting this treatment solution to ⁇ 3.0, the free fluorine ion concentration when measured using a fluorine ion meter was 5 ppm.
  • Example 2 diethylenetriaminepentaacetic acid (DTPA) was further added as a chelating agent to a concentration of lOOppm, and tin acetate was changed to tin sulfate so that the tin ion concentration was 30pp.
  • the metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the zirconium ion concentration was changed to lOOOppm. After adjusting the treatment solution to pH 3.0, the free fluorine concentration when measured using a fluorine ion meter was 1 Oppm.
  • Example 2 In the same manner as in Example 2, except that sodium nitrate was further added so that the sodium ion concentration was 5000 ppm, and the tin ion concentration was changed to 30 ppm, the metal surface treatment liquid for force thione electrodeposition coating was used. Got. After adjusting this treatment solution to pH 3.0, the free fluorine ion concentration when measured using a fluorine ion meter was 5 ppm.
  • Example 5 glycine and copper nitrate as chelating agents were further added so that the concentration of 50 ppm and the copper ion was 10 ppm, respectively, and the polyamine concentration was changed to ⁇ m in the same manner. Thus, a metal surface treatment solution for cationic electrodeposition coating was obtained. This treatment solution had a free fluorine ion concentration of 5 ppm when measured using a fluorine ion meter.
  • Example 1 a metal surface treatment solution for cationic electrodeposition coating was prepared in the same manner except that a predetermined amount of the polyamine listed in Table 1 was added and the concentrations of other components were changed as described in Table 1. I got each. Table 1 also shows the free fluorine ion concentrations when these treatment solutions were measured using a fluorine ion meter under the condition of ⁇ 3.0.
  • a metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of the sulfonic acid described in Table 2 was added and the polyamine and other components were changed as shown in Table 2.
  • the free fluorine ion concentrations measured using a fluorine ion meter under the condition of ⁇ 3.0 are also shown in Table 2.
  • naphthalene sulfonic acid formaldehyde condensates are Kao's demoles.
  • Kao Perex NBL was used, and for sodium polystyrene sulfonate, Tosoh P-NASS-1 was used.
  • a metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of ascorbic acid described in Table 3 was added and polyamine and other components were changed as shown in Table 3.
  • Table 3 also shows the free fluorine ion concentrations when these treatment solutions were measured using a fluorine ion meter under a pH of 3.0.
  • a metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of the oxidizing agent shown in Table 3 was added and that the polyamine and other components were changed as shown in Table 3.
  • Table 3 also shows the free fluorine ion concentrations when these treatment solutions were measured using a fluorine ion meter under the condition of ⁇ 3.0.
  • Example 1 except that the nitrogen-based antifungal agent, sulfur-based antifungal agent, and phenolic antifungal agent described in Table 3 were added in predetermined amounts, and the polyamine and other components were as shown in Table 3.
  • metal surface treatment solutions for cationic electrodeposition coating were obtained.
  • Table 3 also shows the free fluorine ion concentrations when these treatment solutions were measured using a fluorine ion meter under the condition of ⁇ 3.0.
  • the substrate to be processed was a high-tensile steel plate instead of a cold-rolled steel plate (SPC) and the polyamines and other components listed in Table 3 were as shown in Table 3, the same as in Example 1, Strength Each metal surface treatment solution for thione electrodeposition coating was obtained.
  • Table 3 also shows the free fluorine ion concentrations of these treatment solutions when measured with a fluorine ion meter under the condition of ⁇ 3.0.
  • Examples;! To 74, Examples 78 to; 106, Comparative Examples;! To 5 are commercially available cold-rolled steel sheets (SPC, 70 mm XI 50 mm X O. 8 mm) manufactured by Nippon Test Panel Co., Ltd.
  • SPC cold-rolled steel sheets
  • 70 mm XI 50 mm X O. 8 mm high-tensile steel plate
  • surf cleaner EC92 trade name, Nippon Paint
  • the throwing power was evaluated by the “four-sheet box method” described in Japanese Patent Application Laid-Open No. 2000-038525. That is, as shown in Fig. 1, box 10 was adjusted in which test plates 1 to 4 were erected, placed in parallel at an interval of 20 mm, and sealed at the bottom and bottom of both sides with an insulator such as cloth adhesive tape. .
  • Metal materials 1, 2, and 3 except metal material 4 were provided with through holes 5 having a diameter of 8 mm at the bottom.
  • the box 10 was immersed in an electrodeposition coating container 20 filled with a cationic electrodeposition paint "Power Nitas 110" (trade name, manufactured by Nippon Paint Co., Ltd.).
  • the cationic electrodeposition paint enters the inside of the box 10 only from each through hole 5.
  • each test plate While stirring the cationic electrodeposition paint with a magnetic stirrer, each test plate;! To 4 was electrically connected, and the counter electrode 21 was arranged so that the distance from the test plate 1 was 150 mm.
  • Cationic electrodeposition coating was performed by applying a voltage with each test plate 1 to 4 as a cathode and the counter electrode 21 as an anode. The coating was performed by increasing the voltage to the target voltage (210V and 160V) over 30 seconds from the start of application, and then maintaining that voltage for 150 seconds. Adjust the bath temperature to 30 ° C. did.
  • each test plate 1 to 4 was washed with water, baked at 170 ° C for 25 minutes, then air-cooled, and the coating film formed on side A of test plate 1 closest to counter electrode 21 And the film thickness of the coating film formed on the G surface of the test plate 4 both far from the counter electrode 21 and the ratio of the film thickness (G surface) / film thickness (A surface) By seeking, throwing power was evaluated. The larger this value, the better the messiness! /. The passing level is over 40%.
  • the voltage required to obtain an electrodeposition coating film of 20 m was determined as follows. In other words, as the electrodeposition conditions, the voltage is increased to a predetermined voltage in 30 seconds and then held for 150 seconds, and the resulting film thickness is measured. This is performed for 150V, 200V, and 250V, and the voltage at which a film thickness of 20 am is obtained is obtained from the relational expression between the obtained voltage and the film thickness.
  • the test plate was subjected to cationic electrodeposition coating, and the appearance of the obtained electrodeposition coating film was evaluated according to the following criteria. The results are shown in Tables 5-8.
  • a uniform coating film is obtained.
  • 2mm or more, less than 5mm
  • the edges and back were tape sealed, and a cross-cut punch reaching the metal substrate was inserted. This was continuously sprayed with a 5% sodium chloride aqueous solution maintained at 35 ° C for 840 hours in a salt spray tester maintained at 35 ° C and 95% humidity.
  • the adhesive tape “ELVAC LP-24” (trade name, manufactured by Nichiban Co., Ltd.) was adhered to the cut part, and then the adhesive tape was peeled off rapidly. The maximum width (one side) of the paint adhering to the peeled adhesive tape was measured.
  • 2mm or more, less than 5mm
  • Example 51 OV 1 60V difference (V) Appearance Example 51 91 5.7 19 ⁇ ⁇ 62 55 30 ⁇ Example 52 75 5.1 21 ⁇ ⁇ 57 50 30 ⁇ Example 53 81 5.3 18 ⁇ ⁇ 56 51 30 ⁇ ⁇ Example 54 88 5.7 14 ⁇ ⁇ 59 47 30 ⁇ ⁇ Example 55 72 4.8 17 ⁇ ⁇ 60 50 30 ⁇ ⁇ Example 56 72 18 6 ⁇ ⁇ 59 51 20 ⁇ ⁇ ⁇ ⁇ Example 57 85 21 ⁇ ⁇ 57 48 30 ⁇ ⁇ ⁇ Example 58 91 20 7 ⁇ 59 51 20 ⁇ ⁇ ⁇ Example 59 94 18 ⁇ ⁇ 60 52 30 ⁇ ⁇ ⁇ Example 60 44 3.2 15 ⁇ ⁇ 62 55 30 ⁇ Example 61 46 3.1 19 ⁇ 61 51 30 ⁇ ⁇ ⁇ Example 62 49 3.6 18 ⁇ ⁇ 60 53 30 ⁇ o Example 63 38 3 20 ⁇ ⁇ ⁇ ⁇
  • the metal surface treatment liquid for cationic electrodeposition coating of the present invention can be applied to a metal substrate to be subjected to cationic electrodeposition, such as an automobile body or a part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

 表面処理した金属基材に対して、カチオン電着塗装を行った場合、充分なつきまわり性の発現が可能であり、防食性に優れている、ジルコニウムイオンによる表面処理を提供すること。  ジルコニウムイオンおよび錫イオンを含む、pHが1.5~6.5のカチオン電着塗装用金属表面処理液であって、上記ジルコニウムイオンの濃度が10~10000ppm、かつ、上記ジルコニウムイオンに対する錫イオンの含有量が質量換算で0.005~1であるカチオン電着塗装用金属表面処理液であって、さらに、ポリアミン化合物、銅イオン、フッ素イオン、キレート化合物を含んでいてもよい。

Description

明 細 書
カチオン電着塗装用金属表面処理液
技術分野
[0001] 本発明は、金属表面処理液、特にカチオン電着塗装に適した金属表面処理液、お よび金属表面処理方法に関する。
背景技術
[0002] 種々の金属基材に対して防食性を付与するため、従来から表面処理が行われてい る。特に自動車を構成する金属基材に対しては、リン酸亜鉛処理が一般的に用いら れてきた。しかし、このリン酸亜鉛処理は、副生成物としてスラッジが発生する問題を 有している。このため、リン酸亜鉛を使用しない、次世代の表面処理が求められてお り、ジルコニウムイオンによる表面処理はそのひとつである(例えば、特許文献 1参照
)。
[0003] 一方、高い防食性が必要とされる、自動車を構成する金属基材に対しては、表面 処理後にカチオン電着塗装が施される。カチオン電着塗装が施される理由として、力 チオン電着塗装で得られる塗膜が防食性に優れていることに加え、複雑な形状を有 する自動車ボディに対して、隅々まで塗装することができるという性質、いわゆる「つ きまわり性」を有して!/、ること力 S大きレ、。
[0004] ところ力 最近になって、上記ジルコニウムイオンによる表面処理を行った金属基材 にカチオン電着塗装を行った場合、上記つきまわり性にお!/、て十分な効果が得られ にくい場合があり、例えば冷延鋼板に対するつきまわり性が充分でない場合があるこ とがわかってきた。このように、カチオン電着塗装を行った場合に、つきまわり性が充 分でないと、充分な防食性を得ることはできない。
特許文献 1 :特開 2004— 218070号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、表面処理した金属基材に対して、カチオン電着塗装を行った場合、充 分なつきまわり性の発現が可能であり、防食性に優れている、ジルコニウムイオンによ る表面処理を提供することを目的とする。
課題を解決するための手段
[0006] 本発明は、以下のものである。
(1)ジルコニウムイオン、および、錫イオンを含む、 pHが 1 · 5〜6· 5のカチオン電 着塗装用金属表面処理液であって、前記ジルコニウムイオンの濃度が 10〜; ΙΟΟΟΟρ pm、かつ、前記ジルコニウムイオンに対する錫イオンの濃度比が質量換算で 0. 005
〜;!である、カチオン電着塗装用金属表面処理液。
[0007] (2)上記(1)カチオン電着塗装用金属表面処理液として、さらにポリアミン化合物を 含むカチオン電着塗装用金属表面処理液。
[0008] (3)上記(1)〜(2)のカチオン電着塗装用金属表面処理液として、さらに銅イオン を含むカチオン電着塗装用金属表面処理液。
[0009] (4)上記(1)〜(3)のカチオン電着塗装用金属表面処理液として、さらにフッ素ィォ ンを含み、 pHが 3. 0である場合のフリーなフッ素イオン量が 0.;!〜 50ppmである力 チオン電着塗装用金属表面処理液。
[0010] (5)上記(1)〜(4)のカチオン電着塗装用金属表面処理液として、さらにキレート化 合物を含むカチオン電着塗装用金属表面処理液。
[0011] (6)上記(5)のカチオン電着塗装用金属表面処理液として、キレート化合物が、ス ルホン酸であるカチオン電着塗装用金属表面処理液。
[0012] (7)上記(1)〜(6)のカチオン電着塗装用金属表面処理液として、さらに酸化剤を 含むカチオン電着塗装用金属表面処理液。
[0013] (8)更にアルミニウムイオンおよび/またはインジウムイオンを含む、(1)〜(7)のい ずれかに記載のカチオン電着塗装用金属表面処理液。
[0014] (9)上記(1)〜(8)のカチオン電着塗装用金属表面処理液を用いて、金属基材に 対して表面処理を行う工程を含む金属表面処理方法。
[0015] (10)上記(9)の金属表面処理方法で得られる、表面処理による皮膜が形成された 金属基材。
[0016] (11)上記(10)の金属基材に形成された皮膜におけるジルコニウム/錫の元素比 率が質量換算で 1/10〜; 10/1である金属基材。 [0017] (12)上記(1)〜(8)のカチオン電着塗装用金属表面処理液を用いて、金属基材 に対して表面処理を行う工程と、前記表面処理が行われた金属基材に対してカチォ ン電着塗装を行う工程とを含む、カチオン電着塗装方法。
[0018] (13)上記(12)のカチオン電着塗装方法で得られる、カチオン電着塗装された金 属基材。
[0019] すなわち、本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオン および錫イオンを含む、 pHが 1. 5〜6. 5の化成処理液であって、上記ジルコニウム イオンの濃度が 10〜10000ppm、かつ、上記ジルコニウムイオンに対する錫イオン の含有量が質量換算で 0. 005〜1である。また、さらに、ポリアミン化合物、銅イオン 、フッ素イオン、キレート化合物、酸化剤、防鯖剤を含んでいてもよい。フッ素イオンを 含む場合、 pHが 3. 0のときのフリーなフッ素イオン量が 0. ;!〜 50ppmであってよい。
[0020] 本発明の金属表面処理方法は、先の金属表面処理液を用いて、金属基材に対し て表面処理を行う工程を含むものである。
[0021] 本発明の表面処理された金属基材には、先の表面処理により得られた皮膜が形成 されている。その皮膜におけるジルコニウム/錫の元素比率は質量換算で 1/10〜 10/1であってよい。
[0022] 本発明のカチオン電着塗装方法は、先の金属表面処理液を用いて、金属基材に 対して表面処理を行う工程と、上記表面処理が行われた金属基材に対してカチオン 電着塗装を行う工程とを含んでいる。
[0023] 本発明のカチオン電着塗装された金属基材は、先の塗装方法で得られるものであ 発明の効果
[0024] 本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオンに加えて、 錫イオンを含むことで、この処理液により化成皮膜を形成した後にカチオン電着塗装 を行った場合につきまわり性が向上するものと考えられる。その理由は明確ではない ものの、以下のように考えられる。
[0025] すなわち、ジルコニウムイオンを単独で用いた場合、その酸化物皮膜の形成は、酸 性雰囲気下で金属基材がエッチングされると同時に行われるものと考えられる。とこ ろが、冷延鋼板上には、シリカのほか、ケィ素や炭素を含有する化合物の偏析物など が存在しており、そのような部分にはエッチングが行われにくい。このため、ジルコ二 ゥム酸化物による皮膜形成は均一に行われず、皮膜が形成されなかった部分が存在 する。皮膜が形成された部分と形成されなかった部分とでは電流の流れ方が異なる ことから、電着が均一に行われず、その結果、充分なつきまわり性が得られないと考 X_られる。
[0026] ここに、錫イオンが存在した場合には、さらに以下のように考えられる。錫イオンはジ ルコニゥムイオンに比べて鋼板上の影響を受けにくいため、基材上に酸化物皮膜を 形成しやすい。錫イオンがジルコニウムイオンの析出しにくい部分に特異的に皮膜を 形成するわけではなレ、が、錫イオンは特定の部分に対して酸化物皮膜を形成したり しなかったりということがない。その結果、錫イオンはジルコニウムイオンが皮膜形成 できなかった部分を補って皮膜形成を行っていることとなる。
[0027] 本発明のカチオン電着塗装用金属表面処理液は、ポリアミン化合物を含むことによ つて、カチオン電着塗膜に対する密着性を向上させることができ、その結果、より厳し い条件である SDT試験をもクリアすることが可能となる。また、本発明のカチオン電着 塗装用金属表面処理液は、銅イオンを含むことによって、防食性を向上させることが できる。その理由は明確ではないが、皮膜形成時に銅とジルコニウムとの間に何らか の相互作用が働いているのではないかと考えられる。さらに、本発明のカチオン電着 塗装用金属表面処理液は、ジルコニウム以外の金属を多量に含む場合、キレート化 合物を含むことにより、安定してジルコニウム酸化物皮膜を形成することができる。こ れは、キレート化合物が、ジルコニウムよりも析出しやすい金属イオンを捕捉している ためであると考えられる。
図面の簡単な説明
[0028] [図 1]つきまわり性を評価する際に用いるボックスの一例を示す斜視図である。
[図 2]つきまわり性の評価を模式的に示す図面である。
符号の説明
[0029] 1、 2、 3、 4· · ·試験板、 5· · ·貫通穴、 10· · ·ボックス、 20· · ·電着塗装容器、 21 · · ·対極 発明を実施するための形態 [0030] 本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオンおよび錫ィ オンを含む、 pHが 1. 5〜6. 5の化成処理液である。
[0031] 上記ジルコニウムイオンの濃度は 10〜10000ppmである。 lOppm未満だとジノレコ ユウム皮膜の析出が十分でないため充分な防食性が得られず、 lOOOOppmを超え ても、ジルコニウム被膜の析出量が増加しない上、塗膜密着性が低下して SDT等の 防食性能が劣るおそれがあり、それに見合うだけの効果が得られない。好ましい下限 値および上限値は、それぞれ、 lOOppmおよび 500ppmである。
[0032] なお、本明細書における金属イオンの濃度についての表記は、錯体ゃ酸化物を形 成している場合において、その錯体ゃ酸化物中の金属原子のみに着目した、金属元 素換算濃度で表すものとする。例えば、錯イオン ZrF 2 (分子量 205) 100ppmのジ
6
ルコニゥムの金属元素換算濃度は 100 X (91/205)の計算により 44ppmと算出さ れる。なお、本発明のカチオン電着塗装用金属表面処理液において金属化合物(ジ ルコユウム化合物、錫化合物、銅化合物その他の金属化合物)は、一部が酸化物な ど非イオンの状態で存在しているとしてもその割合はごくわずかであり、ほぼ金属ィォ ンとして存在すると考えられる。従って、本明細書における金属イオン濃度は、一部 が非イオンとして存在してレ、るか否かにかかわらず、 100%解離して金属イオンとして 存在する場合の金属イオン濃度を!/、う。
[0033] 本発明のカチオン電着塗装用金属表面処理液に含まれる錫イオンは、 2価のカチ オンであることが好ましい。これ以外の価数では、 目的とする効果が得られないおそ れがある。ただし、錫イオンは 2価のカチオンに限られず、金属基材上に析出しうるも のであれば本発明に用いることができる。例えば、錫イオンが錯体を形成している場 合は 4価のカチオンである場合がある力 これも本発明に用いることができる。上記錫 イオンの濃度は、上記ジルコニウムイオンの濃度に対して、質量換算で 0. 005〜1で ある。 0. 005未満だと添加の効果が得られず、 1を超えると、ジルコニウムが析出しに くくなるおそれがある。好ましい下限値および上限値は、それぞれ、 0. 02および 0. 2 である。ただし、ジルコニウムイオンおよび錫イオンの合計量が少なすぎると、本発明 の効果が得られないおそれがあるため、本発明の金属表面処理液中の上記ジルコ ニゥムイオンの濃度と錫イオンの濃度との合計が、 15ppm以上であることが好ましレヽ [0034] 本発明の金属表面処理液中の錫イオンの含有量としては、;!〜 lOOppmであること 力 S好ましい。 lppm未満である場合には、ジノレコニゥムが皮膜を形成できな力 た部 分に対する錫の析出が不十分となり、 SDT等の防食性が劣りやすい。 lOOppmを超 えるとジルコニウム皮膜が析出しに《なり、防食性および塗装外観が劣りやすい。上 記含有量は 5〜100ppmがより好ましぐ 5〜50ppmがさらに好ましい。
[0035] 本発明のカチオン電着塗装用金属表面処理液は、その pHが 1. 5〜6. 5である。 1 . 5未満では、金属基材のエッチングが充分に行われないため、皮膜量が少なくなり 、充分な防食性を得ることができない。また、処理液の安定性が充分でないおそれが ある。一方、 6. 5を超えると、エッチングが過剰となり充分な皮膜形成ができなくなる 場合や、皮膜の付着量および膜厚が不均一となって、塗装外観等に悪影響を与え たりするおそれがある。上記下限値および上限値は、それぞれ 2. 0および 5. 5であ ることが好ましく、 2. 5および 5. 0であることがさらに好ましい。
[0036] 本発明のカチオン電着塗装用金属表面処理液は、表面処理後に形成されるカチ オン電着塗膜との密着性を高めるために、さらにポリアミン化合物を含んでいてもよ い。本発明において用いられるポリアミン化合物は、アミノ基を有する有機分子である ことに本質的な意味があると考えられる。すなわち、以下は推測ではあるが、アミノ基 は、金属基板上に皮膜として析出するジルコニウム酸化物や当該金属基板との化学 的作用により、当該皮膜中に取り込まれると考えられる。また、有機分子であるポリア ミン化合物は当該皮膜が形成された金属基板上に設けられる塗膜との密着性に寄 与すると考えられる。従って、アミノ基を有する有機分子であるポリアミン化合物を用 いると、金属基板と当該塗膜との密着性が格段に向上し、優れた耐食性が得られる ようになる。上記ポリアミン化合物としては、アミノシランの加水分解縮合体、ポリビニ ノレアミン、ポリアリルァミン、アミノ基を有する水溶性フエノール樹脂等が挙げられる。 自由にァミンの量が調整可能なことから、アミノシランの加水分解縮合体が好ましい。 従って、本発明のカチオン電着塗装用金属表面処理液としては、例えば、ジルコ二 ゥムイオン、錫イオン、およびアミノシランの加水分解縮合体を含むカチオン電着塗 装用金属表面処理液、ジルコニウムイオン、錫イオン、およびポリアリルアミンを含む カチオン電着塗装用金属表面処理液、ジルコニウムイオン、錫イオン、およびァミノ 基を有する水溶性フエノール樹脂を含むカチオン電着塗装用金属表面処理液が挙 げられる。また、これらのカチオン電着塗装用金属表面処理液に、後述するフッ素を 含有してもよい。
[0037] 上記アミノシランの加水分解縮合体は、アミノシラン化合物を加水分解縮合して得 られるものである。上記アミノシラン化合物として、例えば、ビュルトリクロルシラン、ビ ニルトリメトキシシラン、ビュルトリエトキシシラン、 2—(3, 4 エポキシシクロへキシノレ シプロピノレメチノレジェトキシシラン、 3—グリシドキシプロピノレトリエトキシシラン、 p ス
、 N- 2- (アミノエチル) 3 ァミノプロピルメチルジメトキシシラン、 N— 2 (ァミノ ェチル) 3 ァミノプロピルトリメトキシシラン、 N— 2— (アミノエチル) 3 アミノプ 口ピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエ トキシシラン、 3—トリエトキシシリル N—(l , 3—ジメチループチリデン) プロピル ァミン、 N フエ二ルー 3—ァミノプロビルトリメトキシシラン、 N— (ビュルベンジル) 2 アミノエチル一 3 ァミノプロピルトリメトキシシランの塩酸塩、 3 ウレイドプロピル
ピル)テトラスルフイド、 3—イソシァネートプロピルトリエトキシシラン等のアミノ基を有 するシランカップリング剤を挙げることができる。また、市販されているものとして、「K ΒΜ— 403」、「ΚΒΜ— 602」、「ΚΒΜ— 603」、「ΚΒΕ— 603」、「ΚΒΜ— 903」、「Κ BE— 903」、「ΚΒΕ— 9103」、「ΚΒΜ— 573」、「ΚΒΡ— 90」(いずれも商品名、信 越化学工業社製)、「XS1003」(商品名、チッソ社製)等を使用することができる。
[0038] 上記アミノシランの加水分解縮合は、当業者によく知られた方法により行うことがで きる。具体的には、少なくとも 1種のアミノシラン化合物にアルコキシシリル基が加水 分解するのに必要な水を加え、必要に応じて加熱撹拌することにより行うことができる 。なお、用いる水の量によって縮合度を制御することができる。
[0039] 上記アミノシランの加水分解縮合体の縮合度は高いほうが、ジルコニウムが酸化物 として析出する際に、その中に取り込まれやすい傾向にあるため、好ましい。例えば、 アミノシランの全量中、 2量体以上のアミノシランの割合が質量換算で 40%以上であ ることが好ましぐ 50%以上であることがより好ましぐ 70%以上であることがさらに好 ましぐ 80%以上であることがよりさらに好ましい。このため、アミノシランを加水分解 縮合反応で反応させる際には、溶媒としてアルコールおよび酢酸等の触媒を含む水 性溶媒を用いる等、アミノシランがより加水分解しゃすぐ縮合しやすい条件下で反 応させることが好ましい。また、アミノシラン濃度が比較的高い条件で反応させること によって、縮合度の高い加水分解縮合体が得られる。具体的にはアミノシラン濃度が 5質量%以上 50質量%以下の範囲で加水分解縮合させることが好ましい。なお、縮 合度は、 29Si— NMR測定により求めることができる。
[0040] 上記ポリビュルァミンおよびポリアリルァミンとしては、市販されているものを使用す ること力 Sできる。ポリビュルァミンの例として、 「PVAM— 0595B」(商品名、三菱化学 社製)等を、ポリアリルァミンの例として、「PAA— 01」、 ΓΡΑΑ- IOCJ ,「PAA— H — 10C」、「PAA—D— 41HC1」(いずれも商品名、 日東紡績社製)等をそれぞれ挙 げること力 Sでさる。
[0041] 上記ポリアミン化合物の分子量は、 150〜500000であること力 S好ましい。 150未満 だと充分な密着性を有する化成皮膜が得られな!/、おそれがある。分子量が 500000 を超える場合には皮膜形成を阻害するおそれがある。さらに好ましい下限値および 上限値は、それぞれ 5000および 70000である。なお、上記ポリアミン化合物は、アミ ノ基の量が多すぎると皮膜に悪影響を及ぼすおそれがあり、少なすぎるとァミノ基に よる皮膜との密着性向上の効果が得られにくいため、固形分 lgあたり 0. 1ミリモル以 上 17ミリモル以下の 1級及び/又は 2級アミノ基を有することが好ましぐ固形分 lgあ たり 3ミリモル以上 15ミリモル以下の 1級及び/又は 2級アミノ基を有することが好まし い。
[0042] なお、ポリアミン化合物の固形分 lgあたりの 1級及び/又は 2級ァミノ基のモル数は 、下記数式(1)により求めることができる。 [0043] 國
アミン基量= (mX-nY) / (m+n) …类拭 ( 1)
[0044] (数式中、ポリアミン化合物と、官能基 A及び/又は官能基 Bを有する化合物との固 形分質量比を、 m : nとすると、官能基 A及び/又は官能基 Bを有する化合物 lgあた りの官能基 A及び/又は官能基 Bのミリモル数を Yとし、上記官能基 A及び/又は官 能基 Bを有する化合物が金属表面処理用組成物に含有されていない場合のポリアミ ン化合物 lgあたりに含まれる 1級及び/又は 2級ァミノ基のミリモル数を Xとした。)。
[0045] 本発明のカチオン電着塗装用金属表面処理液における上記ポリアミン化合物の含 有量は、表面処理液中に含まれるジルコニウムの金属換算質量に対して、 1〜200 %とすること力 Sできる。 1 %未満だと目的とする効果が得られず、 200%を超えると皮 膜が充分に形成されないおそれがある。当該含有量の上限値としては、 120%がより 好ましく、 100%がより好ましぐ 80%が更に好ましぐ 60%がより更に好ましい。
[0046] 本発明のカチオン電着塗装用金属表面処理液は、さらに防食性を向上させるため 、銅イオンを含んでいてよい。上記銅イオンの量は、上記錫イオンの濃度に対して、 1 0〜; 100%となる濃度であることが好ましい。 10%未満では目的とする効果が得られ ないおそれがあり、錫イオンの濃度を超えると、錫イオンの場合と同様にジルコニウム が析出しに《なるおそれがある。本発明のカチオン電着塗装用金属表面処理液とし ては、例えば、ジルコニウムイオン、錫イオンおよび銅イオンを含むカチオン電着塗 装用金属表面処理液が挙げられる。この場合、さらに後述するフッ素イオンを含有す ること力 Sでき、上記ポリアミン化合物を含有することができる。
[0047] 本発明のカチオン電着塗装用金属表面処理液には、フッ素イオンが含まれている ことが好ましい。上記フッ素イオンの濃度は pHによって変化するので、特定の pHに おけるフリーなフッ素イオン量を規定することとする。本発明では、 pHが 3. 0である場 合のフリーなフッ素イオン量が 0. ;!〜 50ppmである。 0. lppm未満では、金属基材 のエッチングが充分に行われないため、皮膜量が少なくなり、充分な防食性を得るこ とができない。また、処理液の安定性が充分でないおそれがある。 50ppmを超えると 、エッチングが過剰となり充分な皮膜形成ができなくなる場合や、皮膜の付着量およ び膜厚が不均一となつて、塗装外観等に悪影響を与えたりするおそれがある。好まし い下限値および上限値は、それぞれ、 0. 5ppmおよび l Oppmである。本発明のカチ オン電着塗装用金属表面処理液としては、例えば、ジルコニウムイオン、錫イオン、 およびフッ素イオンを含むカチオン電着塗装用金属表面処理液が挙げられる。
[0048] 本発明のカチオン電着塗装用金属表面処理液は、キレート化合物を含んでいても よい。キレート化合物を含むことで、当該処理液中でジルコニウム以外の金属の析出 を抑制し、ジルコニウム酸化物の皮膜を安定に形成することができる。上記キレート 化合物として、アミノ酸、アミノカルボン酸、フエノール化合物、芳香族カルボン酸、ス ルホン酸、ァスコルビン酸等を挙げることができる。なお、従来からキレート剤として知 られているクェン酸やダルコン酸等の水酸基を有するカルボン酸は、本発明ではそ の機能を充分に発現することができなレ、。
[0049] 上記アミノ酸としては、各種天然アミノ酸および合成アミノ酸の他、 1分子中に少なく とも 1つのアミノ基および少なくとも 1つの酸基(カルボキシル基ゃスルホン酸基等)を 有するアミノ酸を広く利用することができる。この中でも、ァラニン、グリシン、ダルタミ ン酸、ァスパラギン酸、ヒスチジン、フエ二ルァラニン、ァスパラギン、アルギニン、グル タミン、システィン、ロイシン、リジン、プロリン、セリン、トリプトファン、バリン、および、 チロシン、ならびに、これらの塩からなる群から選択される少なくとも一種を好ましく使 用すること力 Sできる。また、アミノ酸に光学異性体が存在する場合、 L体、 D体、ラセミ 体を問わず、いずれも好適に使用することができる。
[0050] また、上記アミノカルボン酸としては、上記アミノ酸以外で、 1分子中にアミノ基と力 ルポキシル基との両方の官能基を有する化合物が広く利用可能である。この中でも、 ジエチレントリアミン 5酢酸(DTP A)、ヒドロキシェチルエチレンジァミン 3酢酸(HED TA)、トリエチレンテトラアミン 6酢酸 (TTHA)、 1 , 3—プロパンジァミン 4酢酸(PDT A)、 1 , 3—ジァミノ一 6—ヒドロキシプロパン 4酢酸(DPTA— OH)、ヒドロキシェチル ィミノ 2酢酸(HIDA)、ジヒドロキシェチルグリシン(DHEG)、グリコールエーテルジァ ミン 4酢酸(GEDTA)、ジカルボキシメチルグルタミン酸(CMGA)、(S , S)—ェチレ ンジアミンジコハク酸(EDDS)、エチレンジァミン 4酢酸(EDTA)、二トリ口 3酢酸(N TA)および、これらの塩からなる群から選択される少なくとも一種を好ましく使用する こと力 Sでさる。 [0051] さらに、上記フエノール化合物としては、 2個以上のフエノール性水酸基を有する化 合物、これらを基本骨格とするフエノール系化合物を挙げることができる。前者の例と して、カテコール、没食子酸、ピロガロール、タンニン酸等が挙げられる。一方、後者 の例として、フラボン、イソフラボン、フラボノール、フラバノン、フラバノール、アントシ ァニジン、オーロン、力ノレコン、ェピガロカテキンガレート、ガロカテキン、テアフラビン 、ダイズイン、ゲニスチン、ルチン、ミリシトリン等のフラボノイド、タンニン、カテキン等 を包含するポリフエノール系化合物、ポリビュルフエノールや水溶性レゾール、ノボラ ック樹脂等、リグニン等を挙げることができる。中でも、タンニン、没食子酸、カテキン およびピロガロールが特に好ましい。
[0052] また、上記スルホン酸としては、メタスルホン酸、イセチオン酸、タウリン、ナフタレン ジスルホン酸、ァミノナフタレンジスルホン酸、スルホサリチル酸、ナフタレンスルホン 酸ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸等および、これらの塩から なる群から選択される少なくとも一種を好ましく使用することができる。
[0053] スルホン酸を用いると、化成処理後の被処理物の塗装性'耐食性が向上しうる。そ のメカニズムは明らかではないが、次の 2つの理由が考えられる。
[0054] まず一つは、鋼板等の被処理物の表面にはシリカ偏析物等があり表面組成が不均 一であるため、化成処理におけるエッチングされにくい部分がある力 スルホン酸を 添加することによりそのようなエッチングされにくい部分を特にエッチングすることがで き、その結果、被処理物表面に均一な金属酸化膜が形成されやすくなるものと推測 される。すなわち、スルホン酸は、エッチング促進剤として作用するものと推測される。
[0055] もう一つは、化成処理時においては化成反応により発生しうる水素ガスが、界面の 反応を妨げている可能性があり、スルホン酸は復極作用として水素ガスを取り除き、 反応を促進してレ、るものと推測される。
[0056] 中でも、タウリンを用いると、ァミノ基とスルホン基を両方もっている点で好ましい。ス ノレホン酸の含有量としては、 0. ;!〜 lOOOOppmカ好ましく、;!〜 lOOOppmカより好ま しい。当該含有量が 0. lppm未満であると、効果が得られにくぐ lOOOOppmを超え るとジルコニウムの析出を阻害する可能性がある。
[0057] ァスコルビン酸を用いると、化成処理によって被処理物表面にジルコニウム酸化物 、錫酸化物等の金属酸化膜が均一に形成され、塗装性、耐食性が向上しうる。そのメ 力二ズムは明らかではないが、化成処理におけるエッチング作用が鋼板等の被処理 物に対して均一に行われ、その結果、当該エッチングされた部分にジルコニウム酸化 物および/または錫酸化物が析出して全体として均一な金属酸化膜が形成されるも のと推測される。また、錫が何らかの影響により金属界面において錫金属として析出 しゃすくなる結果、当該錫金属の析出部位にジルコニウム酸化物が析出し、全体とし て被処理物に対する表面被覆性が向上するものと推測される。ァスコルビン酸の含 有量としては、 5〜5000ppm力 S好ましく、 20〜200ppm力 Sより好ましい。当該含有量 力 S5ppm未満であると、効果が得られにくぐ 5000ppmを超えるとジルコニウムの析 出を阻害する可能性がある。
[0058] 上記キレート剤を含む場合、その含有量は、ジルコニウム以外の錫イオンおよび銅 イオンなどのその他のカチオンの合計濃度に対して、 0. 5〜; 10倍の濃度であること が好ましい。 0. 5倍未満では、 目的とする効果が得られず、 10倍を超えると皮膜形 成に悪影響を及ぼすおそれがある。
[0059] 本発明のカチオン電着塗装用金属表面処理液は、さらに窒素、硫黄および/また はフエノール系防鯖剤を含有させることができる。当該防鯖剤は、金属表面に防食皮 膜を形成し腐食を抑制しうるものである。窒素、硫黄、フエノール系防鯖剤としては、 ヒドロキノン、エチレン尿素、キノリノール、チォ尿素、ベンゾトリアゾール等、およびこ れらの塩からなる群より選択される少なくとも一種を用いることができる。本発明の力 チオン電着塗装用金属表面処理液に窒素、硫黄、フエノール系防鯖剤を用いた場 合は、化成処理によって被処理物表面にジルコニウム酸化物、錫酸化物等の金属酸 化膜が均一に形成され、塗装性、耐食性が向上しうる。そのメカニズムは明らかでは ないが、次のことが推測される。
[0060] すなわち、鋼板表面にはシリカ偏析物などがあり表面組成が不均一であるため、化 成処理におレ、てエッチングされて化成皮膜が形成される部分と、エッチング挙動が 違うために化成皮膜が形成されず鉄酸化物となってしまう部分がある。窒素、硫黄、 フエノール系防鯖剤は、化成処理中に化成皮膜が形成されな力、つた部分に吸着して 金属界面を被覆することで一次防鯖性を向上させ、結果として、化成処理後の被処 理物の塗装性、耐食性を向上させることができるものと推測される。
[0061] また、化成皮膜において銅が過剰に析出した場合には、この銅が力ソード基点とな つて電気的に不均一な化成皮膜となることがあるが、当該過剰な銅の析出部位に防 鯖剤を吸着させることにより、化成処理後の被処理物において均一な電着塗装性が 得られ、耐食性を向上させることができるものと推測される。
[0062] 窒素、硫黄および/またはフエノール系防鯖剤の含有量としては、 0. l ~ 10000p pmが好ましぐ;!〜 l OOOppm力 り好ましい。当該含有量が 0. lppm未満であると、 効果が得られにくぐ l OOOOppmを超えるとジルコニウムの析出を阻害する可能性が ある。
[0063] 本発明のカチオン電着塗装用金属表面処理液は、さらにアルミニウムイオンおよび /またはインジウムイオンを含有していてよい。これらのカチオンは、錫イオンと同様 の機能を有してレ、るので、錫イオンだけでは効果がな!/、場合に併用して用いることが できる。中でも、アルミニウムがより好ましい。アルミニウムイオンおよび/またはインジ クムイオンの含有!: (ま、 10〜; ! OOOppmカ好まし <、 50〜500ppm力 り好まし <、 1 00〜300ppm力 Sさらに好ましい。上記アルミニウムイオンおよびインジウムイオンの量 は、ジルコニウムイオンの濃度に対して、例えば、 2〜; 1000%に相当する濃度とする こと力 Sでさる。本発明のカチオン電着塗装用金属表面処理液としては、ジルコニウム イオン、錫イオン、およびアルミニウムイオンを含むカチオン電着塗装用金属表面処 理液が挙げられ、さらに後述するフッ素を含有することができ、また、後述するポリアミ ン化合物を含有することができる。
[0064] 本発明のカチオン電着塗装用金属表面処理液は、上記成分以外に、種々のカチ オンを含有していてもよい。上記カチオンの例として、マグネシウム、亜鉛、カルシゥ ム、ガリウム、鉄、マンガン、ニッケル、コバルト、銀などが挙げられる。これら以外にも 、 pH調製の目的で加えられる、塩基や酸から由来したり、上記成分のカウンターィォ ンとして含まれたりするカチオンゃァニオンが存在する。
[0065] 本発明のカチオン電着塗装用金属表面処理液は、上記各成分そのもの、および/ または、これを含有する化合物を水に投入して混合することで製造することができる。
[0066] 上記ジルコニウムイオンを供給する化合物として、例えば、フッ化ジルコン酸、フッ 化ジルコン酸カリウムおよびフッ化ジルコン酸アンモニゥム等のフッ化ジルコン酸の塩 、フッ化ジルコニウム、酸化ジルコニウム、酸化ジルコニウムコロイド、硝酸ジルコニル 、ならびに炭酸ジルコニウム等を挙げることができる。
[0067] また、錫イオンを供給する化合物として、例えば、硫酸錫、酢酸錫、フッ化錫、塩化 錫、硝酸錫等を挙げることができる。一方、フッ素イオンを供給する化合物として、例 えば、フッ化水素酸、フッ化アンモニゥム、フッ化ホウ素酸、フッ化水素アンモニゥム、 フッ化ナトリウム、フッ化水素ナトリウム等のフッ化物を挙げることができる。また、錯フ ッ化物を供給源とすることも可能であり、例えば、へキサフルォロケィ酸塩、具体的に は、ケィフッ化水素酸、ケィフッ化水素酸亜鉛、ケィフッ化水素酸マンガン、ケィフッ 化水素酸マグネシウム、ケィフッ化水素酸ニッケル、ケィフッ化水素酸鉄、ケィフッ化 水素酸カルシウム等を挙げることができる。また、ジルコニウムイオンを供給する化合 物で錯フッ化物であるものであってもよい。さらに銅イオンを供給する化合物として、 酢酸銅、硝酸銅、硫酸銅、塩化銅等を、アルミニウムイオンを供給する化合物として、 硝酸アルミニウム、フッ化アルミニウム等を、また、インジウムイオンを供給する化合物 として硝酸インジウム、塩化インジウム等を、それぞれ挙げることができる。
[0068] 本発明のカチオン電着塗装用金属表面処理液は、これらを混合した後、硝酸、硫 酸等の酸性化合物、及び、水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基 性化合物を使用して、所定の pH値になるよう、調整すること力 Sできる。
[0069] 本発明のカチオン電着塗装用金属表面処理液は、酸化剤を含んでいてもよい。酸 化剤としては特に硝酸、亜硝酸、過酸化水素、臭素酸等およびこれらの塩からなる群 より選択される少なくとも一種であることが好ましい。当該酸化剤は、被処理物の表面 に金属酸化膜を均一に形成させ、被処理物の塗装性、耐食性を向上させることがで きる。
[0070] そのメカニズムは明らかではないが、当該酸化剤を所定量用いることにより、化成処 理におけるエッチング作用が鋼板等の被処理物に対して均一に行われ、当該エッチ ングされた部分にジルコニウム酸化物および/または錫酸化物が析出して全体とし て均一な金属酸化膜が形成されるものと推測される。また、当該所定量の酸化剤に より、錫が金属界面において錫金属として析出し易くなり、当該錫金属の析出部位に ジルコニウム酸化物が析出し、全体として被処理物に対する表面被覆性が向上する ものと推測される。
[0071] このような作用を奏させるためには、各酸化剤の含有量は次のとおりである。すなわ ち、石肖酸の含有量としては 100〜; !OOOOOppmカ好まし <、 1000〜20000ppmカょ り好ましく、 2000〜; !OOOOppm力 Sさらに好ましい。亜硝酸、臭素酸の含有量としては 5〜5000ppm力 S好ましく、 20〜200ppm力 Sより好ましい。亜硝酸、臭素酸の含有量 としては 5〜5000ppm力 S好ましく、 20〜200ppm力 Sより好ましい。過酸化水素の含 有量としては 1〜; !OOOppmが好ましぐ 5〜; !OOppm力 り好ましい。各含有量が下 限値未満であると、上記効果が得られにくぐ上限値を超えるとジルコニウムの析出を 阻害する可能性がある。
[0072] 本発明の金属表面処理方法は、先の金属表面処理液を用いて、金属基材に対し て表面処理を行う工程を含むものである。
[0073] 上記金属基材としては、カチオン電着可能なものであれば、特に限定されるもので はないが、例えば、鉄系金属基材、アルミニウム系金属基材、亜鉛系金属基材等を 挙げること力 Sでさる。
[0074] 鉄系金属基材としては、例えば、冷延鋼板、熱延鋼板、軟鋼板、高張力鋼板等を 挙げること力 Sできる。また、アルミニウム系金属基材としては、例えば、 5000番系アル ミニゥム合金、 6000番系ァノレミニゥム合金、アルミニウム系の電気めつき、溶融めつき 、蒸着めつき等のアルミニウムめっき鋼板等を挙げることができる。また、亜鉛系金属 基材としては、例えば、亜鉛めつき鋼板、亜鉛—ニッケルめっき鋼板、亜鉛—チタン めっき鋼板、亜鉛 マグネシウムめっき鋼板、亜鉛 マンガンめっき鋼板等の亜鉛系 の電気めつき、溶融めつき、蒸着めつき鋼板等の亜鉛または亜鉛系合金めつき鋼板 等を挙げること力 Sできる。なお、上記高張力鋼板としては、強度や製法により多種多 様なグレードが存在し、例えば、 JSC400J、 JSC440P、 JSC440W, JSC590R、 JS C590T、 JSC590Y、 JSC780T、 JSC780Y、 JSC980Y、 JSCl 180Y等を挙げるこ と力 Sできる。
[0075] また、上記金属基材として、鉄系、アルミニウム系、亜鉛系等の複数種類の金属の 組み合わせ(異種金属同士の接合部及び接触部を含む)からなる金属基材に対して も、同時に適用することができる。
[0076] 上記表面処理工程は、先の金属表面処理液を上記金属基材に接触させることによ つて行われる。具体的な方法として、浸漬法、スプレー法、ロールコート法、流しかけ 処理法等を挙げることができる。
[0077] 上記表面処理工程における処理温度は、 20〜70°Cの範囲内であることが好ましい
。 20°C未満では、十分な皮膜形成が行われない可能性があり、 70°Cを超えても、そ れに見合う効果が期待できない。さらに好ましい下限値および上限値は、それぞれ 3
0°Cおよび 50°Cである。
[0078] 上記表面処理工程における処理時間は、 2〜; 1100秒であることが好ましい。 2秒未 満では、十分な皮膜量が得られないおそれがあり、 1100秒を超えても、それに見合 う効果が期待できない。さらに好ましい下限値および上限値は、それぞれ 30秒およ び 120秒である。このようにして上記金属基材上に皮膜が形成される。
[0079] 本発明の表面処理された金属基材は先の表面処理方法で得られたものである。上 記金属基材の表面には、ジルコニウムおよび錫を含む皮膜が形成されている。上記 皮膜におけるジルコニウム/錫の元素比率は質量換算で 1/10〜; 10/1であること が好ましい。この範囲外では、 目的とする性能が得られないおそれがある。
[0080] 上記皮膜におけるジルコニウムの含有量は、鉄系金属基材の場合、 10mg/m2以 上であることが好ましい。 10mg/m2未満だと、十分な防食性が得られない。より好ま しくは 20mg/m2以上、さらに好ましくは 30mg/m2以上である。上限は特に規定さ れないが、皮膜量が多すぎると、防鯖皮膜にクラックが発生しやすくなり、均一な皮膜 を得ることが困難となる。この点で、上記皮膜におけるジルコニウムの含有量は、 lg /m2以下であることが好ましぐ 800mg/m2以下であることがさらに好ましい。
[0081] 上記皮膜が、銅イオンを含む金属表面処理液を用いて形成された場合、皮膜中の 銅の含有量は、 目的とする効果を得るために、 0. 5mg/m2以上であることが好まし い。
[0082] 本発明のカチオン電着塗装方法は、先の金属表面処理液を用いて、金属基材に 対して表面処理を行う工程と、上記表面処理が行われた金属基材に対してカチオン 電着塗装を行う工程とを含んでいる。 [0083] 上記カチオン電着塗装方法における表面処理工程は、先の表面処理方法におけ る表面処理工程と同じである。上記表面処理工程で得られた表面処理された金属基 材は、そのまま、あるいは洗浄して、カチオン電着塗装工程に入る。
[0084] 上記カチオン電着塗装工程では、表面処理が行われた金属基材に対して、カチォ ン電着塗装が行われる。上記カチオン電着塗装は、カチオン電着塗料に上記表面 処理が行われた金属基材を浸漬し、これを陰極として 50〜450Vの電圧を所定時間 印加する。電圧の印加時間は、電着条件により異なる力 一般には 2〜4分である。
[0085] 上記カチオン電着塗料としては、一般的によく知られたものが使用できる。具体的 には、エポキシ樹脂やアクリル樹脂が有するエポキシ基に、アミンゃスルフイドを付加 し、酢酸などの中和酸を加えることによってカチオン化したバインダー、硬化剤として のブロックイソシァネート、および、防鯖性を有する顔料を樹脂で分散した顔料分散 ペーストを加えて塗料化したものが一般的である。
[0086] カチオン電着塗装工程終了後、そのまま、または水洗した後、所定温度で焼き付け ることにより硬化塗膜が得られる。焼き付け条件は、用いたカチオン電着塗料の種類 により異なる力 通常 120〜260°Cであり、 140〜220°Cであることが好ましい。焼き 付け時間は 10〜30分とすることができる。
このようにして得られるカチオン電着塗装された金属基材も、本発明の 1つである。 実施例
[0087] 經造例 1 アミノシランの加水分解縮合体の製造 その 1
アミノシランとして KBE603 (3—ァミノプロピル一トリエトキシシラン、有効濃度 100 %、信越化学工業社製)、 5質量部を滴下漏斗から、脱イオン水 47. 5質量部とイソ プロピルアルコール 47. 5質量部の混合溶媒中(溶媒温度: 25°C)に 60分かけて均 一に滴下した後、窒素雰囲気下、 25°Cで 24時間反応を行った。その後、反応溶液 を減圧することにより、イソプロピルアルコールを蒸発させ、さらに脱イオン水をカロえ、 有効成分 5%のアミノシランの加水分解縮合体を得た。
[0088] 告 2 アミノシランの力 本の 告 その 2
製造例 1において、 KBE603の量を 20質量部に、脱イオン水の量を 40質量部に、 イソプロピルアルコールの量を 40質量部に変更すること以外は同様にして、有効成 分 20 %のアミノシランの加水分解縮合体を得た。
[0089] 実施例 1
ジルコニウムイオン供給源としての 40%ジノレコン酸水溶液、錫イオン供給源として の硫酸錫、および、フッ化水素酸を混合した後、これを希釈してジルコニウムイオン濃 度が 500ppm、錫イオン濃度が 30ppmとなるようにするとともに、硝酸と水酸化ナトリ ゥムとを用いて pHが 3. 5となるよう調整を行い、カチオン電着塗装用金属表面処理 液を得た。なお、この処理液を ρΗ3· 0に調製した後、フッ素イオンメーターを用いて 測定した際のフリーフッ素イオン濃度は 5ppmであった。
[0090] 実施例 2
実施例 1において、さらに製造例 1で得られたアミノシランの加水分解縮合体を 200 ppmとなるよう加え、また、硫酸錫を酢酸錫に変えて錫イオン濃度が lOppmとなるよ うに変更し、さらに、 pHを 2. 75としたこと以外は同様にして、カチオン電着塗装用金 属表面処理液を得た。なお、この処理液を pH3. 0に調整した後、フッ素イオンメータ 一を用いて測定した際のフリーフッ素イオン濃度は 5ppmであった。
[0091]
実施例 1において、さらにポリアリルアミン ^— H— 10C」(商品名、 日東紡績社 製)を 25ppmとなるよう加え、また、ジルコニウムイオン濃度が 250ppmとなるように変 更し、さらに、 pHを 3. 0としたこと以外は同様にして、カチオン電着塗装用金属表面 処理液を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した 際のフリーフッ素イオン濃度は 5ppmであった。
[0092] 実施例 4
実施例 1において、さらに硝酸銅を銅イオン濃度が lOppmとなるよう加え、また、錫 イオン濃度が lOppmとなるように変更し、さらに、 pHを 3· 0としたこと以外は同様にし て、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について、フッ素 イオンメーターを用いて測定した際のフリーフッ素イオン濃度は 5ppmであった。
[0093] 実施例 5
実施例 4におレ、て、さらに製造例 2で得られたアミノシランの加水分解縮合体を 200 ppmとなるよう加え、また、錫イオン濃度が 30ppmとなるように変更したこと以外は同 様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について 、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は 5ppmであつ た。
[0094] 実施例 6
実施例 2において、さらに硝酸アルミニウムをアルミニウムイオン濃度が 200ppmと なるよう加え、また、硫酸錫を酢酸錫に変更して、錫イオン濃度が 30ppmとなるように 変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお 、この処理液を pH3. 0に調整した後、フッ素イオンメーターを用いて測定した際のフ リーフッ素イオン濃度は 5ppmであった。
[0095] 実施例 7および 8
実施例 6において、 pHを 3. 5および 4. 0とした点以外は同様にして、カチオン電着 塗装用金属表面処理液を得た。なお、この処理液を pH3. 0に調整した後、フッ素ィ オンメーターを用いて測定した際のフリーフッ素イオン濃度を表 1に示した。
[0096] 実施例 9〜: 16
実施例 7において、ジルコニウムイオン濃度、錫イオン濃度、およびアルミニウムィ オン濃度が表 1に示した濃度となるよう、 40%ジルコン酸水溶液、硫酸錫、硝酸アル ミニゥムの添加量を変更した点以外は同様にして、カチオン電着塗装用金属表面処 理液を得た。なお、この処理液を pH3. 0に調整した後、フッ素イオンメーターを用い て測定した際のフリーフッ素イオン濃度を表 1に示した。
[0097] 実施例 17
実施例 2において、さらに硝酸インジウムをインジウムイオン濃度が 200ppmとなる よう加え、また、硫酸錫をフッ化錫に変えて錫イオン濃度が 30ppmとなるように変更し 、さらに、 pHを 3. 5としたこと以外は同様にして、カチオン電着塗装用金属表面処理 液を得た。なお、この処理液を ρΗ3· 0に調整した後、フッ素イオンメーターを用いて 測定した際のフリーフッ素イオン濃度は 5ppmであった。
[0098] 実施例 18
実施例 2において、さらにキレート剤としてジエチレントリァミン 5酢酸 (DTPA)を濃 度が lOOppmとなるよう加え、また、酢酸錫を硫酸錫に変えて錫イオン濃度が 30pp mとなるように変更し、さらに、ジルコニウムイオン濃度を lOOOppmに変更したこと以 外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液を pH3. 0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素ィォ ン濃度は 1 Oppmであつた。
[0099] 実施例 19
実施例 2において、さらに硝酸ナトリウムをナトリウムイオン濃度が 5000ppmとなるよ う加え、また、錫イオン濃度が 30ppmとなるように変更したこと以外は同様にして、力 チオン電着塗装用金属表面処理液を得た。なお、この処理液を pH3. 0に調整した 後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は 5ppmであ つた。
[0100] 実施例 20
実施例 5において、さらにキレート剤としてのグリシンおよび硝酸銅を、それぞれ 50 ppmおよび銅イオン濃度が lOppmとなるよう加え、また、ポリアミンの濃度が ΙΟΟρρ mとなるように変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液 を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した際のフリ 一フッ素イオン濃度は 5ppmであつた。
[0101] 実施例 21〜31
実施例 1において、表 1に記載されたポリアミンを所定量加えるとともに、その他の 成分の濃度を表 1に記載されたように変更する以外は同様にして、カチオン電着塗 装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、 ρΗ3· 0の 条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せ て表 1に示した。
[0102] 実施例 32〜50
表 2に記載されたスルホン酸を所定量加えるとともに、ポリアミンその他の成分を表 2 のとおりにしたこと以外は実施例 1と同様にして、カチオン電着塗装用金属表面処理 液をそれぞれ得た。なお、これらの処理液について、 ρΗ3· 0の条件下でフッ素ィォ ンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表 2に示した。 なお、表 2中、ナフタレンスルホン酸 ホルムアルデヒド縮合物は、花王製デモール NL、アルキルナフタレンスルホン酸ナトリウムは、花王製ぺレックス NBL、ポリスチレ ンスルホン酸ナトリウムは、東ソー製 P— NASS— 1を用いた。
[0103] 実施例 51
表 3に記載されたァスコルビン酸を所定量加えるとともに、ポリアミンその他の成分を 表 3のとおりにしたこと以外は実施例 1と同様にして、カチオン電着塗装用金属表面 処理液をそれぞれ得た。なお、これらの処理液について、 pH3. 0の条件下でフッ素 イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表 3に示した。
[0104] 実施例 52〜59
表 3に記載された酸化剤を所定量加えるとともに、ポリアミンその他の成分を表 3の とおりにしたこと以外は実施例 1と同様にして、カチオン電着塗装用金属表面処理液 をそれぞれ得た。なお、これらの処理液について、 ρΗ3· 0の条件下でフッ素イオンメ 一ターを用いて測定した際のフリーフッ素イオン濃度を併せて表 3に示した。
[0105] 実施例 60〜74
実施例 1において、表 3に記載された窒素系防鯖剤、硫黄系防鯖剤、フエノール系 防鯖剤を所定量加えるとともに、ポリアミンその他の成分を表 3のとおりにしたこと以外 は実施例 1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。な お、これらの処理液について、 ρΗ3· 0の条件下でフッ素イオンメーターを用いて測 定した際のフリーフッ素イオン濃度を併せて表 3に示した。
[0106] 実施例 75〜 77
被処理物である基板を冷延鋼板(SPC)ではなく高張力鋼板を用い、表 3に記載さ れたポリアミンその他の成分を表 3のとおりにしたこと以外は実施例 1と同様にして、力 チオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について 、 ρΗ3. 0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン 濃度を併せて表 3に示した。
[0107] 実施例 78〜: 106
実施例 2、 3、及び 5〜31について、ポリアミンを添加しな力 た点以外は、各実施 例と同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液を ρ Η3. 0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン 濃度を表 4に示した。
[0108] 比較例:!〜 6 比較用金属表面処理液の調製
表 1、表 3の記載に基づき、上記実施例に基づいて、比較用金属表面処理液をそ れぞれ得た。得られた金属表面処理液について表 1、表 3にまとめた。
[0109] [表 1]
Figure imgf000024_0001
[0110] [表 2]
Figure imgf000025_0001
[0111] [表 3]
Figure imgf000025_0002
[0112] [表 4] 度 錫イオン供給 Sn;辰度 添加成分(ίΐツコ内は濃度(ppm) )
Sn pH フリ-フッ素 (ppm) 化合物 (ppm) オリアミン化合物 その他 イオン濃度 実施' |78 500 硫酸錫 10 0.02 2.75 5 実施 ί ?|J79 250 硫酸錫 30 0.12 3 5 実施 < ?l|80 500 硫酸錫 30 0.06 3 硝酸銅 (10) 5 実施ィ 81 500 硫酸錫 30 0.06 2.75 一 硝酸アルミニウム (200) 5 実施' fi|82 500 酢酸錫 30 0.06 3.5 硝酸アルミニウム (200) 5 実施 3 500 酢酸錫 30 0.06 4 硝酸アルミニウム (200) 5 実施 f ?|J84 1000 酢酸錫 30 0.03 3.5 硝酸アルミニウム (200) 7 実施 |85 500 酢酸錫 30 0.06 3.5 硝酸アルミニウム (500) 5 実施 1 86 500 酢酸錫 30 0.06 3.5 硝酸アルミニウム (1000) 5 実施 500 酢酸錫 10 0.02 3.5 硝酸アルミニウム (500) 5 実施 88 500 酢酸錫 200 0.4 3.5 一 硝酸アルミニウム (500) 5
?1 89 200 酢酸錫 10 0.05 3.5 一 硝酸アルミニウム (200) 7 実施' 90 200 酢酸錫 30 0.15 3.5 硝酸アルミニウム (200) 5 実施ィ ?1 91 200 酢酸錫 70 0.35 3.5 硝酸アルミニウム (200) 5 実施 · ?1 92 500 フッ化錫 30 0.06 3.5 硝酸 In(50) 5 実施' ?! 93 1000 硫酸錫 30 0.03 2.75 DTPA(100) 10 実施' 500 硫酸錫 30 0.06 2.75 一 硝酸ナトリウム (5000) 5 実施ィ ?l 95 500 硫酸錫 30 0.06 3 一 硝酸銅 (10),ゲリシン (50) 5 実施ィ 96 20 硫酸錫 5 0.25 3 一 2 実施 f 500 硫酸錫 20 0.04 2 一 1 実施例 98 500 硫酸錫 30 0.06 5.5 20 実施 i ?lj99 5000 硫酸錫 25 0.005 3 10 実施 100 50 硫酸錫 10 0.2 3 3 実施ィ 101 50 硫酸錫 50 1 3 1 実施' 102 500 硫酸錫 30 0.06 3 0 実施' 3 500 硫酸錫 30 0.06 2.75 一 0.1 実施ィ 104 500 硫酸錫 30 0.06 2.75 一 0.6 実施ィ ?1]105 500 硫酸錫 30 0.06 4 一 20 実施 i ?lj106 500 硫酸錫 30 0.06 4.5 50
[0113] <表面処理〉
金属基材として、実施例;!〜 74、実施例 78〜; 106、比較例;!〜 5では市販の冷延 鋼板(SPC、 日本テストパネル社製、 70mm X I 50mm X O. 8mm)を用意し、実施 例 75〜77、比較例 6では高張力鋼板(70mm X 150mm X l . Omm)を用意し、こ れに対し、アルカリ脱脂処理剤として「サーフクリーナー EC92」(商品名、 日本ペイン ト社製)を使用して、 40°Cで 2分間、脱脂処理を行った。これを水洗槽で浸漬洗浄し た後、水道水で約 30秒間スプレー洗浄を行った。
[0114] 脱脂処理後の金属基材に、実施例および比較例で調製した金属表面処理液に、 4 0°Cで 90秒間浸漬することにより表面処理を行った。ただし、実施例 21および 22に ついては、それぞれ 240秒間および 15秒間の処理時間とした。表面処理終了後、 4 0°Cで 5分以上乾燥を行い、表面処理された金属基材を得た。特に断らない限り、以 下の評価では、この表面処理された金属基材を試験板として用いた。
[0115] <皮膜中の元素含有量の測定〉
皮膜中に含まれる各元素の含有量は、島津製作所製蛍光 X線分析装置「XRF 17 00」を用いて測定した。 [0116] <一次防鯖〉
[0117] 試験板を 25°Cの純水に 5時間浸漬した後の鯖の発生状態を目視観察で観察した
〇:鯖の発生全く認められず
△:ごくわずかに鯖発生
X:鯖の発生がはっきりと確認できる
[0118] <スラッジの観察〉
実施例および比較例の表面処理液 10Lについて、 200枚のテストパネルを表面処 理し、室温で 30日経過した際に、スラッジの発生による濁りが表面処理液中に生じた かどうかを目視により、下記の基準で評価した。
◎:透明液体
〇:わずかにうすく濁る
△:濁る
X:沈殿物 (スラッジ)発生
[0119] <つきまわり性の評価〉
つきまわり性は、特開 2000— 038525号公報に記載された「4枚ボックス法」により 評価した。すなわち、図 1に示すように、試験板 1〜4を立てた状態で、間隔 20mmで 平行に配置し、両側面下部および底面を布粘着テープ等の絶縁体で密閉したボック ス 10を調整した。なお、金属材料 4を除く金属材料 1、 2、 3には下部に直径 8mmの 貫通穴 5を設けた。
[0120] このボックス 10を、カチオン電着塗料「パワー二タス 110」(商品名、 日本ペイント社 製)で満たした電着塗装容器 20内に浸漬した。この場合、各貫通穴 5のみからカチ オン電着塗料がボックス 10の内部に浸入する。
[0121] マグネチックスターラーでカチオン電着塗料を攪拌しながら、各試験板;!〜 4を電気 的に接続し、試験板 1との距離が 150mmとなるように対極 21を配置した。各試験板 1〜4を陰極、対極 21を陽極として電圧を印加し、カチオン電着塗装を行った。塗装 は、印加開始から 30秒かけて目的とする電圧(210Vおよび 160V)まで昇圧し、そ の後 150秒間、その電圧を維持することにより行った。このときの浴温は 30°Cに調製 した。
[0122] 塗装後の各試験板 1〜4は水洗した後、 170°Cで 25分間焼き付けを行った後、空 冷し、対極 21に最も近い試験板 1の A面に形成された塗膜の膜厚と、対極 21からも つとも遠レ、試験板 4の G面に形成された塗膜の膜厚とを測定し、膜厚 (G面) /膜厚( A面)の比を求めることにより、つきまわり性を評価した。この値が大きいほど、つきま わり性がよ!/、と評価できる。合格レベルは 40%以上である。
[0123] <塗装電圧〉
実施例および比較例の表面処理液を用いて、冷延鋼板および亜鉛メツキ鋼板に対 し、表面処理を行い、試験板を得た。これらの試験板に対して、先のカチオン電着塗 料「パワー二タス 110」を用いて、 20 mの電着塗膜を得るために必要な電圧を求め た。金属基材が亜鉛メツキ鋼板の場合と冷延鋼板の場合とにおける、上記 2(^ 111の 電着塗膜を得るために必要な塗装電圧の差を求めた。その差が小さいほど、表面処 理皮膜として優れて!/、ることを示して!/、る。 40V以下が合格である。
[0124] なお、 20 mの電着塗膜を得るために必要な電圧は以下のようにして求めた。す なわち、電着条件として、 30秒で所定電圧に昇圧し、その後、 150秒保持し、得られ た膜厚を測定する。これを 150V、 200V、 250Vについて行い、得られた電圧と膜厚 との関係式から、 20 a mの膜厚が得られる電圧を求める。
[0125] <塗装外観〉
試験板にカチオン電着塗装を行い、得られた電着塗膜の外観を下記基準により評 価した。結果を表 5〜8に示す。
◎:均一な塗膜が得られてレ、る
〇:ほぼ均一な塗膜が得られて!/、る
△:塗膜にややムラがある
X:塗膜にムラが認められる
[0126] <二次密着試験(SDT) >
試験板に対して 20 mの電着塗膜を形成した後に、金属素地まで達する縦平行 のカットを 2本入れ、 55°Cで 240時間、 5%塩化ナトリウム水溶液に浸漬した。次いで 、水洗および風乾を行った後、カット部に密着テープ「エルパック LP— 24」(商品名、 ニチバン社製)を密着させてから、密着テープを急激に剥離した。剥離した密着テー プに付着した塗料の最大幅 (片側)の大きさを測定した。
(O): Omm
〇: 2mm未満
Δ: 2mm以上 5mm未満
X: 5mm以上
[0127] <サイクル腐食試験(CCT) >
試験板に対して 20 mの電着塗膜を形成した後に、エッジおよび裏面をテープシ ールし、金属素地まで達するクロスカット疵を入れた。これを、 35°C、湿度 95%に保 たれた塩水噴霧試験器中で、 35°Cに保温した 5%塩化ナトリウム水溶液を 2時間連 続噴霧した。次いで 60°C、湿度 20〜30%の条件下で 4時間乾燥した。これを 24時 間の間に 3回繰り返したものを 1サイクルとし、 200サイクルの後に塗膜の膨れ幅(両 側)を測定した。
◎: 6mm未満
〇: 6mm以上 8mm未満
△: 8mm以上 10mm未満
X: 10mm以上
[0128] <塩水噴霧試験(SST)〉
試験板に対して 20 mの電着塗膜を形成した後に、エッジおよび裏面をテープシ ールし、金属素地まで達するクロスカット疵を入れた。これを、 35°C、湿度 95%に保 たれた塩水噴霧試験器中で、 35°Cに保温した 5%塩化ナトリウム水溶液を 840時間 連続噴霧した。次いで、水洗および風乾を行った後、カット部に密着テープ「エルバ ック LP— 24」(商品名、ニチバン社製)を密着させてから、密着テープを急激に剥離 した。剥離した密着テープに付着した塗料の最大幅 (片側)の大きさを測定した。
〇: 2mm未満
Δ: 2mm以上 5mm未満
X: 5mm以上
[0129] 評価結果を表 5〜8にまとめた。 [0130] [表 5]
Figure imgf000030_0001
[0131] [表 6]
Figure imgf000030_0002
[0132] [表 7] 元 *舎 *M 一次 スラッン つきまわり性〔%) m SDT CCT SST
Zr Si Sn Cu 防鲭 観察 21 OV 1 60V の差 (V) 外観 実施例 51 91 5.7 19 〇 〇 62 55 30 〇 実施例 52 75 5.1 21 〇 〇 57 50 30 〇 実施例 53 81 5.3 18 〇 〇 56 51 30 ◎ 〇 実施例 54 88 5.7 14 〇 〇 59 47 30 ◎ 〇 実施例 55 72 4.8 17 〇 〇 60 50 30 ◎ 〇 実施例 56 72 18 6 〇 〇 59 51 20 ◎ 〇 〇 〇 実施例 57 85 21 〇 〇 57 48 30 〇 〇 〇 実施例 58 91 20 7 〇 〇 59 51 20 〇 〇 〇 実施例 59 94 18 〇 〇 60 52 30 〇 〇 〇 実施例 60 44 3.2 15 〇 〇 62 55 30 〇 実施例 61 46 3.1 19 〇 〇 61 51 30 ◎ ◎ 〇 実施例 62 49 3.6 18 〇 〇 60 53 30 ◎ o 実施例 63 38 3 20 〇 〇 65 57 20 ◎ 〇 実施例 64 44 3.2 16 〇 〇 66 55 20 ◎ o 実施例 65 41 3.5 17 〇 〇 61 58 20 ◎ 〇 実施例 66 49 3.2 16 〇 〇 62 55 30 ◎ 〇 実施例 67 41 3.2 15 7 〇 〇 68 59 20 ◎ 〇 実施例 68 51 18 7 〇 〇 59 53 30 〇 〇 実施例 69 52 18 5 〇 〇 63 51 30 〇 〇 実施例 70 48 19 9 〇 〇 61 53 30 〇 ◎ 〇 実施例 71 55 17 6 〇 〇 65 55 30 〇 〇 実施例 72 43 16 10 〇 〇 62 58 20 〇 〇 実施例 73 49 20 7 〇 〇 66 54 20 〇 o 実施例 74 52 17 5 〇 〇 62 52 30 〇 ◎ 〇 実施例 75 67 4.7 18 〇 〇 59 52 30 ◎ ◎ o 実施例 76 54 3.2 16 〇 〇 62 58 20 ◎ 〇 実施例 77 48 2.8 17 o 59 50 30 o 比較例 6 58 4.2 Δ 〇 22 10 80 Δ 〇 △
[0133] [表 8]
Figure imgf000031_0001
産業上の利用可能性
[0134] 本発明のカチオン電着塗装用金属表面処理液は、カチオン電着が施される金属 基材、例えば、自動車ボディや部品等に対して適用可能である。

Claims

請求の範囲
[I] ジルコニウムイオン、および、錫イオンを含む、 pHが 1 · 5〜6. 5のカチオン電着塗 装用金属表面処理液であって、
前記ジノレコニゥムイオンの濃度が 10〜10000ppm、かつ、
前記ジルコニウムイオンに対する錫イオンの濃度比が質量換算で 0. 005〜;!であ る、
カチオン電着塗装用金属表面処理液。
[2] さらにポリアミン化合物を含む、請求項 1記載のカチオン電着塗装用金属表面処理 液。
[3] さらに銅イオンを含む、請求項 1または 2いずれかに記載のカチオン電着塗装用金 属表面処理液。
[4] さらにフッ素イオンを含み、 pHが 3. 0である場合のフリーなフッ素イオン量が 0. 1 〜50ppmである、請求項;!〜 3いずれかに記載のカチオン電着塗装用金属表面処 理液。
[5] さらにキレート化合物を含む、請求項;!〜 4いずれかに記載のカチオン電着塗装用 金属表面処理液。
[6] キレート化合物が、スルホン酸である請求項 5記載のカチオン電着塗装用金属表面 処理液。
[7] さらに酸化剤を含む、請求項;!〜 6いずれかに記載のカチオン電着塗装用金属表 面処理液。
[8] 更にアルミニウムイオンおよび/またはインジウムイオンを含む、請求項;!〜 7のい ずれかに記載のカチオン電着塗装用金属表面処理液。
[9] 請求項 1〜8いずれかに記載の金属表面処理液を用いて、金属基材に対して表面 処理を行う工程を含む、金属表面処理方法。
[10] 請求項 9記載の方法で得られる、表面処理による皮膜が形成された金属基材。
[I I] 前記皮膜におけるジルコニウム/錫の元素比率が質量換算で 1/10〜; 10/1であ る請求項 10記載の金属基材。
[12] 請求項 1〜8いずれかに記載の金属表面処理液を用いて、金属基材に対して表面 処理を行う工程と、前記表面処理が行われた金属基材に対してカチオン電着塗装を 行う工程とを含む、カチオン電着塗装方法。
請求項 12記載の方法で得られる、カチオン電着塗装された金属基材。
PCT/JP2007/074536 2006-12-20 2007-12-20 カチオン電着塗装用金属表面処理液 WO2008075738A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020097015212A KR101539708B1 (ko) 2006-12-20 2007-12-20 양이온 전착에 의해 금속을 코팅하기 위한 표면 사전처리액
MX2009006618A MX2009006618A (es) 2006-12-20 2007-12-20 Liquido de tratamiento de superficies metalicas para recubrimiento por electrodeposicion cationica.
ES07850971.8T ES2581988T3 (es) 2006-12-20 2007-12-20 Fluido de pretratamiento superficial para metales que van a ser recubiertos mediante electrodeposición catiónica
EP07850971.8A EP2112251B1 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
CA2672854A CA2672854C (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
BRPI0721139-2A BRPI0721139B1 (pt) 2006-12-20 2007-12-20 Líquido para tratamento de superfície metálica para revestimento de eletrodeposição catiônica, método para tratamento de superfície metálica, e, material de base metálica
AU2007335382A AU2007335382B2 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
US12/077,429 US20080230394A1 (en) 2006-12-20 2008-03-19 Metal surface treatment liquid for cation electrodeposition coating

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-343621 2006-12-20
JP2006343621 2006-12-20
JP2007-119665 2007-04-27
JP2007119665 2007-04-27
JP2007-303746 2007-11-22
JP2007303746A JP4276689B2 (ja) 2006-12-20 2007-11-22 カチオン電着塗装方法、及びカチオン電着塗装された金属基材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/077,429 Continuation US20080230394A1 (en) 2006-12-20 2008-03-19 Metal surface treatment liquid for cation electrodeposition coating

Publications (1)

Publication Number Publication Date
WO2008075738A1 true WO2008075738A1 (ja) 2008-06-26

Family

ID=39536365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074536 WO2008075738A1 (ja) 2006-12-20 2007-12-20 カチオン電着塗装用金属表面処理液

Country Status (10)

Country Link
US (1) US20080230394A1 (ja)
EP (1) EP2112251B1 (ja)
JP (1) JP4276689B2 (ja)
AU (1) AU2007335382B2 (ja)
BR (1) BRPI0721139B1 (ja)
CA (1) CA2672854C (ja)
ES (1) ES2581988T3 (ja)
MX (1) MX2009006618A (ja)
PL (1) PL2112251T3 (ja)
WO (1) WO2008075738A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075739A1 (ja) 2006-12-20 2008-06-26 Nippon Paint Co., Ltd. カチオン電着塗装用金属表面処理液
JP2010163640A (ja) * 2009-01-13 2010-07-29 Nippon Parkerizing Co Ltd 金属表面処理用処理液、金属表面処理方法および金属材料

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975378B2 (ja) * 2006-06-07 2012-07-11 日本パーカライジング株式会社 金属の表面処理液、表面処理方法、表面処理材料
EP2206802B1 (en) * 2007-09-27 2013-02-27 Chemetall GmbH Method for producing surface-treated metal material and method for producing metal coated article
US7833332B2 (en) * 2007-11-02 2010-11-16 Dubois Chemicals, Inc. Coating solution for metal surfaces
JP5671210B2 (ja) * 2009-01-13 2015-02-18 日本パーカライジング株式会社 金属表面処理方法
EP2458031B1 (en) 2009-07-02 2019-08-07 Henkel AG & Co. KGaA Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
DE102009028025A1 (de) 2009-07-27 2011-02-03 Henkel Ag & Co. Kgaa Mehrstufiges Verfahren zur Behandlung von Metalloberflächen vor einer Tauchlackierung
US9127341B2 (en) 2011-01-18 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same
DE102011002836A1 (de) 2011-01-18 2012-07-19 Henkel Ag & Co. Kgaa Vorbehandlung von Weißblech vor einer Lackierung
DE102011002837A1 (de) * 2011-01-18 2012-07-19 Henkel Ag & Co. Kgaa Mehrstufige Vorbehandlung von Weißblech vor einer Lackierung
JP6063701B2 (ja) * 2011-10-14 2017-01-18 日本ペイント・サーフケミカルズ株式会社 化成処理剤
JP6055263B2 (ja) * 2011-10-14 2016-12-27 日本ペイント・サーフケミカルズ株式会社 自動車部品の製造方法
JP6146954B2 (ja) 2012-03-09 2017-06-14 日本ペイント・サーフケミカルズ株式会社 化成処理剤及び化成処理皮膜
DE102012220126A1 (de) * 2012-11-05 2014-05-08 Bruker Biospin Ag Magnetanordnung mit einem supraleitenden Magnetspulensystem und einer magnetischen Feldformvorrichtung für magnetische Resonanzspektroskopie
JP2014194045A (ja) 2013-03-28 2014-10-09 Nippon Paint Co Ltd 金属表面処理剤及び金属表面処理方法
WO2014163165A1 (ja) 2013-04-03 2014-10-09 日本ペイント株式会社 化成処理剤及び金属表面処理方法
JP2015052168A (ja) * 2014-10-20 2015-03-19 日本パーカライジング株式会社 表面処理金属材料
JP2016125130A (ja) * 2015-01-08 2016-07-11 株式会社デンソー 複合材料、複合材料の形成方法、複合材料によってめっきされた電極、および、接続構造
JP6837332B2 (ja) 2016-12-28 2021-03-03 日本パーカライジング株式会社 化成処理剤、化成皮膜の製造方法、化成皮膜付き金属材料、及び塗装金属材料
MX2019014278A (es) * 2017-06-01 2021-02-09 Lumishield Tech Incorporated Métodos y composiciones para deposición electroquímica de capas ricas en metal en soluciones acuosas.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145486A (ja) * 1993-07-30 1995-06-06 Nippon Parkerizing Co Ltd 金属表面処理用組成物および処理方法
JP2000038525A (ja) 1998-07-22 2000-02-08 Nippon Paint Co Ltd カチオン電着塗料用樹脂組成物、その製造方法及びカチオン電着塗料組成物
JP2004218074A (ja) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2004218070A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 塗装前処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601560A1 (de) * 1986-01-21 1987-07-23 Herberts Gmbh Waessriges, hitzehaertbares ueberzugsmittel, dessen verwendung und damit beschichtete gegenstaende
US5143562A (en) * 1991-11-01 1992-09-01 Henkel Corporation Broadly applicable phosphate conversion coating composition and process
JPH05163584A (ja) * 1991-12-12 1993-06-29 Nippon Parkerizing Co Ltd ぶりきdi缶用表面処理液
JPH0748677A (ja) * 1993-07-05 1995-02-21 Nippon Parkerizing Co Ltd アルミdi缶及びぶりきdi缶兼用表面処理液ならびに処理方法
US5449415A (en) * 1993-07-30 1995-09-12 Henkel Corporation Composition and process for treating metals
CA2331382A1 (en) * 1998-06-18 1999-12-23 Curagen Corporation Interaction of p27(kip1) with fkbp-12
US6758916B1 (en) * 1999-10-29 2004-07-06 Henkel Corporation Composition and process for treating metals
US7402214B2 (en) * 2002-04-29 2008-07-22 Ppg Industries Ohio, Inc. Conversion coatings including alkaline earth metal fluoride complexes
KR101276742B1 (ko) * 2004-11-10 2013-06-20 케메탈 게엠베하 코팅된 금속 표면상에 보수용 코팅을 생성하는 방법
JP4242827B2 (ja) * 2004-12-08 2009-03-25 日本パーカライジング株式会社 金属の表面処理用組成物、表面処理用処理液、表面処理方法、及び表面処理金属材料
CA2644802C (en) * 2006-03-01 2015-04-28 Nippon Paint Co., Ltd. Composition for metal surface treatment, metal surface treatment method, and metal material
JP5213308B2 (ja) * 2006-03-08 2013-06-19 日本ペイント株式会社 金属用表面処理剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145486A (ja) * 1993-07-30 1995-06-06 Nippon Parkerizing Co Ltd 金属表面処理用組成物および処理方法
JP2000038525A (ja) 1998-07-22 2000-02-08 Nippon Paint Co Ltd カチオン電着塗料用樹脂組成物、その製造方法及びカチオン電着塗料組成物
JP2004218074A (ja) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd 化成処理剤及び表面処理金属
JP2004218070A (ja) 2002-12-24 2004-08-05 Nippon Paint Co Ltd 塗装前処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2112251A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075739A1 (ja) 2006-12-20 2008-06-26 Nippon Paint Co., Ltd. カチオン電着塗装用金属表面処理液
EP2110461A1 (en) * 2006-12-20 2009-10-21 Nippon Paint Co., Ltd. Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
EP2110461A4 (en) * 2006-12-20 2010-12-29 Nippon Paint Co Ltd SURFACE TREATMENT FLUID FOR METAL CURED BY CATIONIC ELECTROTOUCH LACQUER
JP2010163640A (ja) * 2009-01-13 2010-07-29 Nippon Parkerizing Co Ltd 金属表面処理用処理液、金属表面処理方法および金属材料

Also Published As

Publication number Publication date
CA2672854C (en) 2016-07-12
AU2007335382B2 (en) 2012-01-19
EP2112251A1 (en) 2009-10-28
EP2112251B1 (en) 2016-04-20
ES2581988T3 (es) 2016-09-08
AU2007335382A1 (en) 2008-06-26
CA2672854A1 (en) 2008-06-26
BRPI0721139A2 (pt) 2014-04-01
JP2008291345A (ja) 2008-12-04
JP4276689B2 (ja) 2009-06-10
BRPI0721139B1 (pt) 2018-06-19
MX2009006618A (es) 2009-08-13
PL2112251T3 (pl) 2016-10-31
EP2112251A4 (en) 2010-04-28
US20080230394A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
WO2008075738A1 (ja) カチオン電着塗装用金属表面処理液
KR101539042B1 (ko) 양이온 전착에 의해 금속을 코팅하기 위한 표면 사전처리액
CA2700400C (en) Method of producing surface-treated metal material and method of producing coated metal item
WO2008029925A1 (fr) Procédé de traitement de surface d&#39;une base métallique, matériau métallique traité par ce procédé de traitement de surface et procédé de revêtement de ce matériau métallique
JP4989842B2 (ja) 塗装前処理方法
US20120145282A1 (en) Chromium-and-fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
WO2007100017A1 (ja) 金属表面処理用組成物、金属表面処理方法、及び金属材料
WO2008029926A1 (fr) Procédé de traitement de surface d&#39;une base métallique, matériau métallique traité au moyen de ce procédé de traitement de surface, et procédé de revêtement de matériau métallique
JP2008088552A (ja) 金属基材の表面処理方法、当該表面処理方法により処理されてなる金属材料、及び当該金属材料の塗装方法。
JP2008088553A (ja) 金属基材の表面処理方法、当該表面処理方法により処理されてなる金属材料、及び当該金属材料の塗装方法
US20090065099A1 (en) Chemical conversion treating agent and surface treated metal
JP2009084702A (ja) カチオン電着塗装用金属表面処理液
WO2013054904A1 (ja) 化成処理剤
KR101539708B1 (ko) 양이온 전착에 의해 금속을 코팅하기 위한 표면 사전처리액

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045948.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2672854

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/006618

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3562/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007335382

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007850971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097015212

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007335382

Country of ref document: AU

Date of ref document: 20071220

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0721139

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090622