WO2008075632A1 - 複眼測距装置の検査方法および検査装置並びにそれに用いるチャート - Google Patents

複眼測距装置の検査方法および検査装置並びにそれに用いるチャート Download PDF

Info

Publication number
WO2008075632A1
WO2008075632A1 PCT/JP2007/074173 JP2007074173W WO2008075632A1 WO 2008075632 A1 WO2008075632 A1 WO 2008075632A1 JP 2007074173 W JP2007074173 W JP 2007074173W WO 2008075632 A1 WO2008075632 A1 WO 2008075632A1
Authority
WO
WIPO (PCT)
Prior art keywords
chart
compound
distance
distance measuring
measuring device
Prior art date
Application number
PCT/JP2007/074173
Other languages
English (en)
French (fr)
Inventor
Norihiro Imamura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008075632A1 publication Critical patent/WO2008075632A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix

Definitions

  • the present invention relates to an inspection method and an inspection apparatus for evaluating the distance measurement accuracy of a compound eye distance measurement apparatus that measures the distance to a measurement object by parallax between a plurality of imaging optical systems, and a chart used therefor.
  • a compound-eye distance measuring device that captures a measurement object with an imaging device having a pair of imaging optical systems and acquires two images, a left-right image and a top-bottom image, is measured using the principle of triangulation. Calculate the distance.
  • Such compound-eye rangefinders are used in vehicle distance measurement, camera autofocus systems, and 3D shape measurement systems.
  • FIG. 1 is a diagram for explaining triangulation of a compound-eye distance measuring apparatus.
  • G1 is the imaging lens of the first imaging optical system
  • N1 is the imaging surface of the first imaging optical system
  • G2 is the imaging lens of the second imaging optical system
  • N2 is the imaging surface of the second imaging optical system is there.
  • a point P on the measurement object O is a measurement point and this point is located on the optical axis of the first imaging optical system
  • the point P is imaged on the optical axis al in the first imaging optical system.
  • the second imaging optical system an image is formed on an imaging surface that is separated from the optical axis a2 by ⁇ in the baseline direction.
  • Z is the distance from the imaging lens to point P
  • D is the baseline length, which is the distance between the optical axes of the two imaging optical systems Gl and G2, and f (Gl and G2 are the same focal length). If the amount of parallax is ⁇ , the following approximate expression is established.
  • can be extracted by pattern matching the image obtained from the first imaging optical system and the image obtained from the second imaging optical system. It is possible to extract the distance ⁇ .
  • the correlation degree of pattern matching is a small area of the reference image obtained from the first imaging optical system and the reference image obtained from the second imaging optical system. It is obtained by an evaluation function SAD (Sum of Absolute Difference), which is the sum of luminance differences (absolute values) of each pixel from the area.
  • SAD Sud of Absolute Difference
  • Charts for inspecting the ranging accuracy of the compound-eye distance measuring device include chart C2 in which a two-level lattice pattern as shown in FIG. 3 is drawn, and a plurality of gradations as in Patent Document 1. It is known that the brightness pattern is drawn at random.
  • Patent Document 1 JP 2001-091247 A
  • the SAD search range is from the longest distance to the shortest distance of the measurement object range. It is necessary to set so as to cover the range of parallax obtained when the image is taken. On the other hand, to increase the surface resolution of ranging, it is necessary to strengthen the chart pattern. However, in the grid pattern chart as shown in Fig. 3, if the pitch of the grid pattern is set finely, an image is formed on the imaging surface.
  • the pitch of the grid pattern If it is wide, there will be a plurality of lattice patterns in the search range, and therefore multiple matching locations will appear in the SAD search range, and the parallax cannot be detected correctly. Therefore, in order to detect parallax correctly, the grid pattern pitch must be set large so that there is only one matching point within the search range. However, if the pitch of the force grid pattern is set larger, if the computation block size is set smaller than the grid pattern, there will be locations where no contrast exists in the computation block and pattern matching will not be possible. Then, there is a problem that distance measurement cannot be performed. On the other hand, in order to make sure that there is contrast in the computation block, the computation block size must be increased, so that there is a problem in that the surface resolution of ranging is lowered.
  • An object of the present invention is to solve such a problem and provide a chart, an inspection method, and an inspection apparatus capable of inspecting the entire region in the imaging field of view with high accuracy.
  • an inspection method for a compound-eye distance measuring apparatus is a compound-eye distance measuring apparatus that acquires distance information to a measurement object by parallax between at least two imaging optical systems.
  • An inspection method for evaluating ranging accuracy wherein a chart is arranged at a predetermined distance from the imaging optical system on an optical axis of the imaging optical system, and a distance to the chart is measured by the compound eye ranging device.
  • the distance to the chart is measured from the shift of each imaging position in the baseline direction of the same geometric pattern imaged on the imaging surfaces of the at least two imaging optical systems.
  • the predetermined angle is on the image imaged by the imaging optical system, and the pitch of the geometric pattern in the base line direction is the predetermined distance at the predetermined distance. It is preferable to arrange the chart at an angle that is larger than the parallax
  • the arranging step it is preferable to arrange a chart in which the gradation of the geometric pattern is periodically changed in the base line direction.
  • the chart S in which the shape of the geometric pattern is periodically changed in the baseline direction is a force S.
  • the process is repeated for each block obtained by dividing the imaging surface so that a contrast exists in the geometric pattern imaged on the imaging surface, and the inspection method includes Furthermore, when the number of the blocks evaluated that the difference is within the range of the predetermined value in the evaluation step is equal to or more than the predetermined number, the compound-eye distance measuring device is determined to pass the inspection. It is preferable to have a discrimination process for discrimination.
  • the entire area within the imaging field of view with an arbitrary block size that is, an arbitrary surface resolution. It becomes possible to evaluate the distance measurement accuracy. In addition, it is possible to inspect with high accuracy by inspecting the distance measuring accuracy of the compound eye distance measuring device based on the evaluation result of each block.
  • the chart of the present invention is a chart used in the inspection method of the compound eye distance measuring device, in which geometric patterns are two-dimensionally arranged in two arrangement directions.
  • the present invention is an inspection apparatus that evaluates the distance measurement accuracy of a compound-eye distance measuring apparatus that acquires distance information to a measurement object by parallax between at least two image pickup optical systems, and the image pickup optical system Measurement for obtaining a measurement distance to the chart measured by the compound eye distance measuring device, a chart disposed at a predetermined distance from the imaging optical system on the optical axis, a storage means for storing the predetermined distance A distance acquisition means; and an evaluation means for evaluating whether or not a difference between the predetermined distance and the measurement distance is within a predetermined value range.
  • the chart has a predetermined geometric pattern 2
  • a compound-eye distance measuring device that is two-dimensionally arranged in one arrangement direction, and is arranged such that the two arrangement directions form a predetermined angle with respect to the baseline direction between the two imaging optical systems. Realized as an inspection device It's good.
  • the present invention can also be realized as a program that causes a computer to execute the evaluation process and the discrimination process included in the inspection method of the compound-eye distance measuring apparatus.
  • a program can be distributed via a communication network such as a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or the Internet.
  • FIG. 1 is a diagram for explaining triangulation of a compound eye distance measuring device.
  • FIG. 2 is a diagram for explaining SAD calculation.
  • FIG. 3 is a diagram showing a conventional lattice pattern chart.
  • FIG. 4A is an explanatory diagram of a distance measurement chart according to the present invention.
  • FIG. 4B is an explanatory diagram of the inspection method according to the present invention.
  • FIG. 5A is a diagram showing an imaging pattern of the distance measurement chart according to the present invention.
  • FIG. 5B is a diagram showing an imaging pattern of the distance measurement chart according to the present invention.
  • FIG. 6 is a diagram for explaining the SAD calculation when the distance measurement chart according to the present invention is used.
  • FIG. 7A is a diagram for explaining a slope setting method based on a repetition period according to the present invention.
  • FIG. 7B is a diagram for explaining a tilt setting method based on the repetition period according to the present invention.
  • FIG. 8 is a block diagram showing a functional configuration of the inspection apparatus according to the present invention.
  • FIG. 9 is a flowchart showing a processing procedure for evaluating the distance measuring accuracy of the compound eye distance measuring apparatus by the inspection apparatus.
  • FIG. 10 is a diagram showing an imaging pattern of the distance measurement chart according to the present invention.
  • FIG. 11 is a diagram showing an imaging pattern of a distance measurement chart according to the present invention.
  • FIG. 12 is a diagram showing an imaging pattern of the distance measurement chart according to the present invention.
  • 13 is a diagram showing an imaging pattern of the distance measurement chart according to the present invention.
  • 14A is a diagram for explaining the SAD calculation when the distance measurement chart according to the present invention is used.
  • FIG. 14B is a diagram for explaining the SAD calculation when the distance measurement chart according to the present invention is used.
  • FIG. 4A is a diagram showing a configuration example of a distance measurement evaluation chart C1 according to the embodiment of the present invention.
  • the chart C1 is, for example, a pattern printed on a sheet-like medium, a pattern displayed by an image display monitor, or a pattern projected on a screen by a projector.
  • a circular pattern AO is arranged as a geometric pattern in two arrays in two arrangement directions x and y.
  • the geometric pattern is not limited to a circle, and may be a geometric pattern such as a triangle, rectangle, or polygon.
  • the array direction X is tilted by ⁇ 1 with respect to the bottom of the chart, and the other array direction y is #
  • FIG. 4B is a top view showing the inspection method of the compound eye distance measuring apparatus according to the present embodiment.
  • C1 is a chart and 1 is a compound eye imaging device.
  • 2a and 2b are the first imaging optical system and the second imaging optical system, respectively.3a and 3b are the first imaging optical systems corresponding to the first imaging optical system and the second imaging optical system, respectively.
  • Chart C 1 is located on the optical axis of the imaging optical system and is separated from each imaging optical system by a distance Z. The bottom of the chart is placed so that it is parallel to the baseline direction between the optical axes of the two imaging optical systems of the compound-eye distance measuring device.
  • B1 is a pitch in the base direction (baseline direction) of the circular pattern, that is, a repetition period in which the positions of the circular pattern coincide with each other when viewed in the baseline direction, and changes ⁇ 1. By doing this, you can change the power of B1.
  • FIG. 5A shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system and the second imaging optical system when the chart of FIG. 4A is imaged by the compound-eye distance measuring device.
  • a part of the imaging pattern formed on the imaging surface is shown.
  • A1 is a circular pattern imaged on the imaging surface
  • bl is the position of the circular pattern in the orthogonal axis direction orthogonal to the baseline direction on the imaging surface. It is the repetition period in the baseline direction when they match. Note that since the imaging pattern is imaged upside down horizontally with respect to the chart pattern, ⁇ 1 shown in FIG. 5A is equal to ⁇ 1 in FIG. 4A.
  • FIG. 5A shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system and the second imaging optical system when the chart of FIG. 4A is imaged by the compound-eye distance measuring device.
  • A1 is a circular pattern imaged on the imaging surface
  • bl is the position of the circular pattern in the orthogonal axis direction
  • one of the squares formed by a broken line is a calculation block composed of a plurality of pixels.
  • FIG. 5A is a reference image
  • FIG. 5B is a reference image
  • the calculation block L ′ of the reference image in FIG. 5B is calculated in the search range of the SAD calculation indicated by S1. Therefore, if the period B1 in the chart of FIG. 4A is set so that the value of the period bl is larger than the search range S1 of the SAD calculation, the search block pattern is used as the reference block of the reference image within the search range of the SAD calculation.
  • the pattern can always be different, and there is only one place where the pattern matches.
  • Fig. 6 is a graph showing changes in the SAD calculation value, where the horizontal axis represents the search position and the vertical axis represents the SAD calculation value.
  • bl, Sl, and ⁇ 1 correspond to the codes shown in FIG. 5B
  • the search position where the SAD calculation value becomes the smallest in the search range SI is the parallax amount ⁇ 1.
  • the circular pattern in FIG. 5A is imaged little by little in the orthogonal axis direction orthogonal to the base line direction, multiple minimum values of the SAD calculation value appear in the search range as shown in FIG.
  • the search is performed by setting the force search range S 1 in which the smallest minimum value repeatedly appears in the period bl, such as the SAD calculation value shown by the broken line in FIG. 6, to be smaller than the period bl.
  • the force search range S 1 in which the smallest minimum value repeatedly appears in the period bl such as the SAD calculation value shown by the broken line in FIG. 6, to be smaller than the period bl.
  • the inspection method of the present embodiment it is possible to inspect the ranging accuracy of the compound eye imaging apparatus with high accuracy.
  • FIG. 7A and FIG. 7B are diagrams for explaining a method of setting the gradient ⁇ 1 based on the repetition period bl.
  • FIG. 7A is a chart in which one of the arrangement directions of the circular pattern is parallel to the baseline direction.
  • FIG. 5 is an example of a part of an imaging pattern formed on an imaging surface of an imaging optical system when an image is picked up by a compound eye distance measuring device.
  • FIG. The pattern arrangement direction refers to a direction in which patterns are arranged so that the distance between adjacent patterns is minimized.
  • the length of the repetition period bl that is larger than the search range S 1 of the SAD operation is determined.
  • the search range S1 is determined in advance according to the specifications of the distance measuring apparatus.
  • select one circular pattern (the leftmost circular pattern in the second row in the figure).
  • the circular pattern in the adjacent row (the sixth from the left in the first row in the figure) whose distance from the center of the selected circular pattern is equal to the length of the repetition period M.
  • the angular force between the connected line segment and the baseline direction is the pattern inclination ⁇ 1 to be set. That is, a chart obtained by rotating the chart pattern imaged in FIG. 7A counterclockwise by ⁇ 1 is such that there is only one place where the pattern matches within the search range S 1 of the SAD calculation. It becomes a chart.
  • FIG. 7B is formed on the imaging surface of the imaging optical system when the chart pattern imaged in FIG. 7A is imaged with a compound eye range finder that is obtained by rotating a chart pattern rotated in the counterclockwise direction by ⁇ 1. It is an example of a part of image formation pattern. As shown in the figure, the angle between one of the pattern arrangement directions and the baseline direction is ⁇ 1. As a result, the pitch in the base line direction of the circular pattern, that is, the repetition period at which the position of the circular pattern coincides when viewed in the base line direction is bl. Therefore, as long as the search is performed in the baseline direction in the search range S1 shorter than the repetition period bl, there is only one place where the pattern matches.
  • FIG. 8 is a block diagram showing a functional configuration of inspection apparatus 100 according to the present embodiment.
  • the inspection apparatus 100 includes a chart Cl, an input unit 101, a display unit 102, and a control unit 110 (measurement distance acquisition unit 103, storage unit 104, and evaluation unit 105).
  • Chart C1 is characterized by a pattern as described above. For example, a pattern printed on a sheet-like medium, a pattern displayed on an image display monitor, and a pattern on a screen by a projector. It is a projection.
  • the input unit 101 includes, for example, a keyboard and a mouse, receives an operation from the operator, and notifies the control unit 110 and the like of the operation result.
  • the display unit 102 includes, for example, a liquid crystal display and is stored in the storage unit 104 or the like. And / or display data.
  • the measurement distance acquisition unit 103 is a processing unit realized by, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and the like. Get the distance to the chart.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • the storage unit 104 includes, for example, a readable / writable memory and the like, and is an example of a storage unit that stores the arrangement distance data 104a.
  • the arrangement distance data 104a is information indicating the distance Z between the imaging optical system included in the compound-eye distance measuring device 200 and the chart C1.
  • the distance information held by the arrangement distance data 104a is information obtained by the operator inputting the actually measured distance via the input unit 101 or acquiring the position of the chart C1 from a position sensor or the like. Indicates the exact distance from which the evaluation is based.
  • the evaluation unit 105 is a processing unit realized by, for example, a CPU or a RAM, and the distance acquired by the measurement distance acquisition unit 103 and the distance held by the arrangement distance data 104a stored in the storage unit 104. Evaluate the difference.
  • FIG. 9 is a flowchart showing a processing procedure for evaluating the distance measurement accuracy of the compound eye distance measuring apparatus 200 by the inspection apparatus 100.
  • the measurement distance acquisition unit 103 selects the calculation block after the pass / fail judgment performed below is performed (S101). Next, the measurement distance acquisition unit 103 acquires the measurement distance of the calculation block selected from the compound-eye distance measuring device 200 (S102). Subsequently, the evaluation unit 105 acquires the arrangement distance from the compound eye distance measuring device 200 corresponding to the selected calculation block to the chart C1 from the arrangement distance data 104a stored in the storage unit 104 (S103).
  • the evaluation unit 105 calculates a difference between the measurement distance acquired in step S102 and the arrangement distance acquired in step S103 (S104). Subsequently, it is determined whether or not the calculated difference is within a predetermined value range, for example, within a range of ⁇ 5% with respect to the distance Z (S105).
  • a predetermined value range for example, within a range of ⁇ 5% with respect to the distance Z.
  • the evaluation unit 105 determines that the selected calculation block is good (S106). On the other hand, if the calculated difference is not within the predetermined value range (No in S105), The evaluation unit 105 determines that the selected calculation block is defective (S107).
  • the evaluation unit 105 determines whether the determination has been completed for all of the calculation blocks to be determined (S108). Here, if it is determined that the determination has not been completed for all the calculation blocks (No in S108), the process returns to step S101 again, and the process is repeated from the selection of the calculation block. On the other hand, if it is determined that the determination has been completed for all the calculation blocks (Yes in S108), the evaluation unit 105 calculates the number of calculation blocks determined to be good (the number of good determination blocks) P in Step S106. (S109).
  • the evaluation unit 105 determines that the compound-eye distance measuring apparatus 200 that is the object of inspection passes the inspection (S111), and ends the process.
  • the evaluation unit 105 does not inspect the compound eye ranging device 200 that is the subject of the examination. If it passes (S 112), the process is terminated.
  • distance information can be acquired for each computation block in the entire area within the imaging field of view. Then, by evaluating the difference between the acquired distance information and the actual distance information, the distance measuring accuracy of the compound eye distance measuring device can be inspected with high accuracy.
  • the base of the chart is used as the base line of the compound eye imaging device.
  • the orientation direction of the geometric pattern and the baseline direction of the compound eye distance measuring device may be inclined by ⁇ 1.
  • FIG. 10 shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system when the gradation of the geometric pattern of the chart is periodically changed in the baseline direction.
  • A1 and A2 are circular patterns with different gradations, and one of the arrangement directions is inclined by ⁇ 3 with respect to the baseline direction.
  • the gradation of the circular pattern of the chart may be changed periodically according to three or more types of force, with two types of gradations arranged alternately in the baseline direction.
  • FIG. 14A and FIG. 14B are diagrams showing SAD calculation when the angle formed with the base line direction of the geometric pattern arrangement direction is small, ⁇ 2 is the amount of parallax, S 2 is the search range of SAD calculation, b2 is the repetition period in the baseline direction when the positions of the circular patterns in the orthogonal axis direction orthogonal to the baseline direction coincide on the imaging surface.
  • FIG. 14A is a diagram showing the SAD calculation when the patterns are arranged with the same gradation
  • FIG. 14B is a diagram showing the SAD calculation when the pattern gradations are arranged alternately as in the present embodiment. is there.
  • the SAD calculation value can increase the difference between adjacent local minimum values as shown in Fig. 14B. Therefore, the difference between the smallest minimum value and the adjacent minimum values before and after that can also be increased compared to FIG. 14A, and the possibility of erroneous detection of the amount of parallax can be reduced.
  • FIG. 11 shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system when the geometric pattern of the chart is periodically changed in the baseline direction.
  • A1 and A3 are patterns with different shapes, and one of the arrangement directions is inclined by ⁇ 3 with respect to the baseline direction.
  • the force may be changed periodically according to three or more shapes of force that are configured by alternately repeating the circular pattern and square pattern in the baseline direction.
  • this embodiment can also increase the difference between the smallest minimum value in the SAD calculation and the adjacent minimum values before and after the angle when the angle formed with the base line direction of the pattern arrangement direction is small. Therefore, it is possible to reduce the possibility of erroneous detection of the amount of parallax.
  • FIG. 12 shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system when the size of the geometric pattern of the chart is periodically changed in the baseline direction.
  • A1 and A4 are patterns with different sizes, and one of the arrangement directions is It is inclined by ⁇ 3 with respect to the baseline direction.
  • the circular pattern of the chart may be cyclically changed according to the magnitude of three or more types of force that are configured to be alternately repeated in the baseline direction with two types.
  • the angle formed with the base line direction in the pattern arrangement direction is small, the difference between the smallest minimum value in the SAD calculation and the neighboring minimum values before and after that can be increased. Possible to erroneously detect the amount of parallax.
  • FIG. 13 shows a part of the imaging pattern formed on the imaging surface of the first imaging optical system when the orientation of the geometric pattern of the chart is periodically changed in the baseline direction.
  • A5 and A6 are patterns with different orientations, and one of the arrangement directions is inclined by ⁇ 3 with respect to the baseline direction.
  • the direction of the square pattern of the chart may be changed periodically depending on the direction of three or more types of force, which are configured by alternately repeating two directions in the baseline direction. Similar to the second embodiment, this embodiment can also increase the difference between the smallest minimum value in the SAD calculation and the adjacent minimum values before and after the SAD calculation when the angle formed with the base line direction of the pattern arrangement direction is small. Reduce the possibility of misdetecting the amount of parallax with force S.
  • the inspection method for a compound eye distance measuring device according to the present invention is useful for inspection of the distance measuring accuracy of a compound eye distance measuring device for in-vehicle use, for a surveillance camera, for a three-dimensional shape measurement system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 複眼測距装置の距離情報を精度良く取得できる検査方法を実現する。  複数の撮像光学系間の視差によって撮像視野内の距離分布情報を取得する測距装置用のチャート(C1)において、所定の幾何学的パターン、例えば円形パターン(A0)を2次元的にアレイ状に配列し、いずれの配列方向も該撮像光学系の基線方向に対して所定の角度(θ1、θ2)を成すように設定することで、該撮像光学系の撮像面に結像される該幾何学的パターンにおいて、幾何学的パターンの基線方向のピッチが測距範囲の最短距離から求められる視差よりも大きくなるように設定する。

Description

明 細 書
複眼測距装置の検查方法および検查装置並びにそれに用いるチャート 技術分野
[0001] 本発明は、複数の撮像光学系間の視差によって測定対象物までの距離を測る複 眼測距装置の測距精度を評価するための検査方法および検査装置並びにそれに 用いるチャートに関する。
背景技術
[0002] 一対の撮像光学系を有する撮像装置により測定対象物を撮像し、左右画像または 上下画像の 2つの画像を取得する複眼測距装置は、三角測量の原理を用いて測定 対象物までの距離を算出する。このような複眼測距装置は、 自動車の車間距離測定 や、カメラの自動焦点システム、 3次元形状測定システムに用いられている。
[0003] 図 1は複眼測距装置の三角測量について説明する図である。図 1において、 G1は 第 1の撮像光学系の撮像レンズ、 N1は第 1撮像光学系の撮像面、 G2は第 2の撮像 光学系の撮像レンズ、 N2は第 2撮像光学系の撮像面である。ここで、測定対象物 O 上の点 Pを測定点とし、この点が第 1の撮像光学系の光軸上に位置する場合、点 Pは 第 1の撮像光学系では光軸 al上の撮像面に結像され、第 2の撮像光学系では、光 軸 a2から基線方向に Δだけ離れた撮像面に結像される。ここで、撮像レンズから点 P までの距離を Zとし、 2つの撮像光学系 Gl、 G2の光軸間距離である基線長を Dとし、 撮像レンズの焦点距離を f (Gl、 G2とも同一とする)とし、視差量を Δとすると、次の 様な近似式が成立する。
[0004] 國
Ζ
[0005] Δは第 1の撮像光学系から得られた画像と第 2の撮像光学系から得られた画像を パターンマッチングすることで抽出できるので、(数 1)を変形する事により点 までの 距離 Ζを抽出することが可能である。パターンマッチングの相関度は第 1の撮像光学 系から得られる基準画像の小領域と第 2の撮像光学系から得られる参照画像の小領 域との間の各画素の輝度の差分(絶対値)の総和である評価関数 SAD (Sum of Absolute Difference)によって求められる。ここで、小領域の演算ブロックサイズを m X n画素とすると、 SADは(数 2)によって求めることができる。
[0006] [数 2]
〉 〉 |/0(χ + ζ·, + 7 )- I\\x -{- dx -{- i,y + j
;"=0ゾ =0
[0007] (数 2)において、 x、 yは撮像面の座標であり、 10、 IIはそれぞれ括弧内で示した座 標における基準画像の輝度値と参照画像の輝度値である。図 2は SAD演算につい て説明する図である。 SAD演算では、基準画像の基準ブロック領域に対して参照画 像の探索ブロック領域の位置を図 2のように基線方向に dxだけずらしながら演算し、 SADが極小値となる が(数 1)の視差量 Δとなる。 SADは任意の座標で演算でき るので、撮像視野内の全領域の距離情報を取得することができる。
[0008] 複眼測距装置では、撮像光学系や撮像素子等の持つ性能ばらつきや組立誤差、 校正誤差等に起因して取得した距離情報がばらついてしまうため、測距精度が定め られた規格内に入っているかどうかを検査する工程が必要となる。
[0009] 複眼測距装置の測距精度を検査するためのチャートとしては、図 3に示すような 2階 調の格子パターンが描かれたチャート C2や、特許文献 1のように複数の階調の輝度 パターンをランダムに配列して描かれたものが知られている。
特許文献 1 :特開 2001— 091247号公報
発明の開示
発明が解決しょうとする課題
[0010] 複眼測距装置で測定対象物を撮像したときに得られる視差量は、測定対象物まで の距離によって変化するため、 SADの探索範囲は測距対象範囲の最長距離から最 短距離まで撮像したとき得られる視差の範囲をカバーするように設定する必要がある 。一方、測距の面分解能を上げるにはチャートのパターンを細力べする必要があるが 、図 3のような格子パターンのチャートにおいて、格子パターンのピッチを細かく設定 すると、撮像面で結像される格子パターンのピッチも細力べなり、 SADの探索範囲が 広ければ、探索範囲内に格子パターンが複数存在することになるため、 SADの探索 範囲内にマッチング箇所が複数出現し、正しく視差を検出することができない。よつ て、視差を正しく検出するためには、探索範囲内におけるマッチング箇所が 1つにな るように格子パターンのピッチを大きく設定しなければならない。ところ力 格子バタ ーンのピッチを大きく設定すると、演算ブロックサイズが格子パターンよりも小さく設定 された場合では、演算ブロック内にコントラストが存在しない箇所が発生しパターンマ ツチングができなくなるため、その箇所では測距ができないという問題が生じる。逆に 演算ブロック内に必ずコントラストが存在するようにするには、演算ブロックサイズを大 きくしなければならないため、測距の面分解能が下がってしまうという問題がある。
[0011] また、 SAD演算において測距対象物のコントラストが高い場合は極小値が鮮鋭に 現れるが、対象物のコントラストが低い場合は極小値が鮮鋭に現れないため検出しに くくなる。従って、輝度パターンがランダムに配列されたチャートでは、隣接する輝度 パターンのコントラストが場所によって異なるため、 SAD演算によるパターンマツチン グの精度がコントラストに応じてばらつく場合や、ランダム配列によって探索範囲内に 周期性のある輝度パターンが偶然存在してしまうと、ほぼ等しい極小値が探索範囲 内に複数存在してしまい、正しく測距できなレ、箇所が発生すると!/、う問題が生じる。
[0012] 本発明の目的はこのような問題を解決し、撮像視野内の全領域を精度良く検査で きるチャートと検査方法及び検査装置を提供することである。
課題を解決するための手段
[0013] 前記課題を解決するために、本発明の複眼測距装置の検査方法は、少なくとも 2つ の撮像光学系間の視差によって測定対象物までの距離情報を取得する複眼測距装 置の測距精度を評価する検査方法であって、前記撮像光学系の光軸上で前記撮像 光学系から所定距離にチャートを配置する配置工程と、前記複眼測距装置によって 前記チャートまでの距離を測定する測定工程と前記所定距離と前記測定された距離 との差分を算出し、算出した差分が予め定められた値の範囲内にあるか否かを評価 する評価工程とを有し、前記配置工程では、所定の幾何学的パターンが 2つの配列 方向に 2次元的に配列された、かつ、前記 2つの配列方向が前記 2つの撮像光学系 間の基線方向に対して所定の角度傾いたチャートを前記所定距離に配置し、前記 測定工程では、前記少なくとも 2つの撮像光学系の撮像面に結像された同一の前記 幾何学的パターンの基線方向における各結像位置のずれから、前記チャートまでの 距離を測定する。
[0014] また、前記配置工程では、前記所定の角度が、前記撮像光学系により撮像された 画像上にお!/、て、前記幾何学的パターンの前記基線方向のピッチが前記所定距離 における前記視差よりも大きくなるような角度であるチャートを配置することが好ましい
[0015] 上記検査方法により、前記幾何学的パターンとその配列ピッチを適正に設定するこ とで、全ての演算ブロックに必ずコントラストが存在するように調節することができ、 SA Dの探索範囲内では探索ブロックのパターンを基準画像の基準ブロックのパターン に対して常に異ならせることができるため、撮像視野内の全ての領域の距離情報を 精度良く取得することが可能となる。
[0016] また、前記配置工程では、前記幾何学的パターンの階調が前記基線方向に周期 的に変化しているチャートを配置することが好ましい。また、前記配置工程では、前記 幾何学的パターンの形状が前記基線方向に周期的に変化しているチャートを配置 すること力 S好ましい。また、前記配置工程では、前記幾何学的パターンの大きさが前 記基線方向に周期的に変化しているチャートを配置することが好ましい。また、前記 配置工程では、前記幾何学的パターンの向きが前記基線方向に周期的に変化して V、るチャートを配置することが好ましレ、。
[0017] これらにより、 SAD演算値において最も小さい極小値とその前後に存在する極小 値との差を大きくすることができ、視差を誤検出する確率を減少させることができる。
[0018] また、前記測定工程及び前記評価工程では、前記撮像面に結像した前記幾何学 的パターンにおいてコントラストが存在するように前記撮像面を分割したブロックごと に処理を繰り返し、前記検査方法は、さらに、前記評価工程において前記差分が予 め定められた値の範囲内にあると評価された前記ブロックの数が予め定められた数 以上である場合に、前記複眼測距装置を検査合格と判別する判別工程を有すことが 好ましい。
[0019] これにより、任意のブロックサイズ、つまり、任意の面分解能で、撮像視野内の全域 において測距精度を評価することが可能となる。また、各ブロックの評価結果に基づ いて、複眼測距装置の測距精度を検査することで、高精度に検査することが可能とな
[0020] また、本発明のチャートは、上記複眼測距装置の検査方法に用いるチャートであつ て、幾何学的パターンが 2つの配列方向に 2次元的に配列されたチャートである。
[0021] また、本発明は、少なくとも 2つの撮像光学系間の視差によって測定対象物までの 距離情報を取得する複眼測距装置の測距精度を評価する検査装置であって、前記 撮像光学系の光軸上で前記撮像光学系から所定距離に配置されたチャートと、前記 所定距離を記憶する記憶手段と、前記複眼測距装置によって測定された前記チヤ一 トまでの測定距離を取得する測定距離取得手段と、前記所定距離と前記測定距離と の差分が、予め定められた値の範囲内にあるか否かを評価する評価手段とを備え、 前記チャートは所定の幾何学的パターンが 2つの配列方向に 2次元的に配列された ものであり、前記 2つの配列方向が前記 2つの撮像光学系間の基線方向に対して所 定の角度を成すように配置されている複眼測距装置の検査装置として実現してもよ い。
[0022] さらに、上記複眼測距装置の検査方法に含まれる評価工程及び判別工程をコンビ ユータに実行させるプログラムとして実現することもできる。そして、そのようなプロダラ ムは、 CD— ROM (Compact Disc-Read Only Memory)等の記録媒体ゃィ ンターネット等の通信ネットワークを介して流通させることができる。
発明の効果
[0023] 本発明により、撮像視野内の全域において任意の面分解能で距離情報を取得す ることが可能となり、高精度に複眼測距装置の測距精度を検査することが可能となる
図面の簡単な説明
[0024] [図 1]図 1は、複眼測距装置の三角測量について説明する図である。
[図 2]図 2は、 SAD演算について説明する図である。
[図 3]図 3は、従来の格子パターンチャートを示す図である。
[図 4A]図 4Aは、本発明に係る測距用チャートの説明図である。 園 4B]図 4Bは、本発明に係る検査方法の説明図である。
園 5A]図 5Aは、本発明に係る測距用チャートの撮像パターンを示す図である。 園 5B]図 5Bは、本発明に係る測距用チャートの撮像パターンを示す図である。 園 6]図 6は、本発明に係る測距用チャートを用いた時の SAD演算について説明す る図である。
園 7A]図 7Aは、本発明に係る繰返し周期に基づいた傾きの設定方法について説明 する図である。
園 7B]図 7Bは、本発明に係る繰返し周期に基づいた傾きの設定方法について説明 する図である。
園 8]図 8は、本発明に係る検査装置の機能構成を示すブロック図である。
園 9]図 9は、検査装置による複眼測距装置の測距精度を評価する処理手順を示し たフローチャートである。
園 10]図 10は、本発明に係る測距用チャートの撮像パターンを示す図である。
[図 11]図 1 1は、本発明に係る測距用チャートの撮像パターンを示す図である。 園 12]図 12は、本発明に係る測距用チャートの撮像パターンを示す図である。 園 13]図 13は、本発明に係る測距用チャートの撮像パターンを示す図である。 園 14A]図 14Aは、本発明に係る測距用チャートを用いた時の SAD演算について説 明する図である。
園 14B]図 14Bは、本発明に係る測距用チャートを用いた時の SAD演算について説 明する図である。
符号の説明
C I , C2 チヤ一卜
AO 測距チャート上の円形パターン
A1 撮像面上に結像された円形パターン
A2〜A6 撮像面上に結像された幾何学的パターン
θ 1 , Θ 2, Θ 3 円形パターン配列方向の基線方向と成す角
L 基準画像の演算ブロック
V 参照画像の演算ブロック SI , S2 SAD演算の探索範囲
bl , b2 幾何学的パターンの基線方向の繰り返し同期
Δ 1 , Δ 2 視差量
発明を実施するための最良の形態
[0026] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0027] (実施の形態 1)
図 4Aは本発明の実施形態に係る測距評価用のチャート C1の構成例を示す図で ある。チャート C1は、例えばシート状の媒体にパターンを印刷したもの、画像表示モ 二ターによってパターンを表示したもの、投影機によってスクリーン上にパターンを投 影したもの等である。図 4Aでは、幾何学的パターンとして円形パターン AOを、 2つの 配列方向 x、 yに 2次元的にアレイ状に配列している。幾何学的パターンとしては円形 に限らず、三角形、矩形、多角形等の幾何学的パターンとしてもよい。図 4Aにおい て、配列方向 Xはチャートの底辺に対して θ 1だけ傾けてあり、もう 1つの配列方向 y は底辺に対して Θ 2だけ #|けてある。
[0028] 図 4Bは、本実施の形態に係る複眼測距装置の検査方法を示す上面図である。 C1 はチャートであり、 1は複眼撮像装置である。 2a、 2bは、それぞれ第 1の撮像光学系 および第 2の撮像光学系であり、 3a、 3bは、第 1の撮像光学系および第 2の撮像光 学系のそれぞれに対応する第 1の撮像素子および第 2の撮像素子である。チャート C 1は、撮像光学系の光軸上であって、各撮像光学系から距離 Zだけ離して配置して いる。また、チャートの底辺が複眼測距装置の 2つの撮像光学系の光軸間の基線方 向と平行になるように配置する。
[0029] 図 4Aにおいて、 B1は、円形パターンの底辺方向(基線方向)のピッチ、即ち、基線 方向にみた時の円形パターンの位置が一致する繰り返し周期であり、前記 Θ 1を変 ィ匕させることで B1を変ィ匕させること力 Sできる。
[0030] 図 5Aは、図 4Aのチャートを複眼測距装置で撮像したときに第 1の撮像光学系の撮 像面で形成される結像パターンの一部と、第 2の撮像光学系の撮像面で形成される 結像パターンの一部を示している。 A1は撮像面上に結像された円形パターンであり 、blは撮像面上において基線方向と直交する直交軸方向の円形パターンの位置が 一致するときの基線方向の繰り返し周期である。なお、撮像パターンはチャートのパ ターンに対して上下左右反転して結像されるため、図 5Aに示している θ 1は図 4Aの θ 1と等しくなる。また、図 5Aにおいて破線によって形成されたマス目の一つは複数 の画素で構成された演算ブロックである。図 4Aのチャートのパターンの大きさと配列 ピッチを適正に設定することで、全ての演算ブロックに必ずコントラストが存在するよう に設定することができる。
[0031] ここで、図 5Aを基準画像とし、図 5Bを参照画像とする。図 5Aの基準画像の演算ブ ロック Lに着目すると、図 5Bの参照画像の演算ブロック L'は S1で示した SAD演算の 探索範囲で演算される。従って、周期 blの値が SAD演算の探索範囲 S 1よりも大きく なるように図 4Aのチャートの周期 B1を設定すれば、 SAD演算の探索範囲内では探 索ブロックのパターンを基準画像の基準ブロックのパターンに対して常に異ならせる ことができ、パターンが一致する箇所は一箇所のみとなる。
[0032] 次に前記 SAD演算について説明する。図 6は前記 SAD演算値の変化を示したグ ラフであり、横軸は探索位置、縦軸は SAD演算値である。図 6における bl、 Sl、 Δ 1 は図 5Bで示した符号に対応しており、探索範囲 S Iで SAD演算値が最も小さくなる 探索位置が視差量 Δ 1である。また、図 5Aの円形パターンは基線方向と直交する直 交軸方向に少しずつずれて結像されているため、 SAD演算値の極小値は図 6のよう に探索範囲内に複数出現する。また、探索範囲に制限がなければ、図 6の破線で示 した SAD演算値のように最も小さい極小値も周期 blで繰り返し出現する力 探索範 囲 S 1を周期 blより小さく設定することにより探索囲内に最も小さい極小値は 1つしか 存在しなくなり、視差量を誤検出することはない。したがって、本実施の形態の検査 方法によれば、複眼撮像装置の測距精度を高精度に検査することが可能となる。
[0033] ここで、 SAD演算の探索範囲 S1の範囲内でパターンの一致する箇所が一箇所の みとなるように、基線方向からのパターンの傾き Θ 1を設定する方法について説明す
[0034] 図 7A及び図 7Bは繰返し周期 blに基づいた傾き θ 1の設定方法について説明す る図である。
[0035] 図 7Aは、円形パターンの配列方向の一つが基線方向と平行となるようなチャートを 複眼測距装置で撮像した場合に、撮像光学系の撮像面で形成される結像パターン の一部の一例である。なお、パターンの配列方向とは、隣り合うパターンの距離が最 小となるように、パターンが並ぶ方向のことをいう。始めに、 SAD演算の探索範囲 S 1 よりも大きくなるような繰返し周期 blの長さを決定する。ここで探索範囲 S1は、測距 装置の仕様によって予め決まっている。次に、一つの円形パターン(図では 2列目の 一番左の円形パターン)を選択する。そして、図に示されるように、選択された円形パ ターンの中心からの距離が繰返し周期 Mの長さと等しくなる隣接する列の円形バタ ーン(図では 1列目の左から 6番目)の中心と、選択された円形パターンの中心とを線 で結ぶ。このようにして結ばれた線分と基線方向とのなす角力 設定すべきパターン の傾き θ 1となる。即ち、図 7Aにおいて撮像されたチャートのパターンを、 θ 1だけ半 時計方向に回転させたチャートが、 SAD演算の探索範囲 S 1の範囲内でパターンの 一致する箇所が一箇所のみとなるようなチャートとなる。
[0036] 図 7Bは、図 7Aにおいて撮像されたチャートのパターンを、 θ 1だけ半時計方向に 回転させたチャートを複眼測距装置で撮像した場合に、撮像光学系の撮像面で形 成される結像パターンの一部の一例である。図に示されるように、パターンの配列方 向の一つと基線方向とのなす角は Θ 1となっている。その結果、円形パターンの基線 方向のピッチ、即ち、基線方向にみた時の円形パターンの位置が一致する繰り返し 周期は、 blとなっている。従って、繰り返し周期 blより短い探索範囲 S1で、基線方向 に探索する限りは、パターンが一致する箇所は 1箇所のみとなる。
[0037] 図 8は、本実施の形態に係る検査装置 100の機能構成を示すブロック図である。こ の検査装置 100は、チャート Cl、入力部 101、表示部 102、制御部 110 (測定距離 取得部 103、記憶部 104、評価部 105)を備えている。
[0038] チャート C1は、前述の通りパターンに特徴を有しており、例えばシート状の媒体に ノ ターンを印刷したもの、画像表示モニターによってパターンを表示したもの、投影 機によってスクリーン上にパターンを投影したもの等である。
[0039] 入力部 101は、例えばキーボードやマウスなどで構成されており、オペレータから の操作を受け付けて、その操作結果を制御部 110などに通知する。
[0040] 表示部 102は、例えば液晶ディスプレイ等で構成されており、記憶部 104等に格納 されて!/、るデータを表示したりする。
[0041] 測定距離取得部 103は、例えば CPU (Central Processing Unit)や RAM (Ra ndom Access Memory)等で実現される処理部であり、複眼測距装置 200が測 定した演算ブロック又は画素ごとのチャートまでの距離を取得する。
[0042] 記憶部 104は、例えば読み書き可能なメモリ等からなり、配置距離データ 104aを記 憶する記憶手段の一例である。ここで、配置距離データ 104aとは、複眼測距装置 20 0の備える撮像光学系とチャート C1との距離 Zを示す情報である。この配置距離デー タ 104aが保持する距離情報は、実測した距離をオペレータが入力部 101を介して 入力することや、チャート C1の位置を位置センサ等から取得すること等により得られ る情報であり、評価の元となる正確な距離を示す。
[0043] 評価部 105は、例えば CPUや RAM等で実現される処理部であり、測定距離取得 部 103が取得した距離と、記憶部 104に格納された配置距離データ 104aが保持す る距離との差分を評価する。
[0044] 次に、以上のように構成された本実施の形態における検査装置 100の基本的な動 作について説明する。
[0045] 図 9は、検査装置 100による複眼測距装置 200の測距精度を評価する処理手順を 示したフローチャートである。
[0046] まず、測定距離取得部 103は、以下で行う良否判定がまだ行われて!/、な!/、演算ブ ロックを選択する(S101)。次に、測定距離取得部 103は、複眼測距装置 200から選 択した演算ブロックの測定距離を取得する(S102)。続いて、評価部 105は、選択し た演算ブロックに対応する複眼測距装置 200からチャート C1までの配置距離を、記 憶部 104に格納された配置距離データ 104aから取得する(S 103)。
[0047] そして、評価部 105は、ステップ S102で取得した測定距離とステップ S 103で取得 した配置距離との差分を算出する(S104)。続いて、算出された差分が、予め定めら れた値の範囲以内、例えば距離 Zに対して ± 5%の範囲以内であるか否かを判定す る(S105)。ここで、算出された差分が、予め定められた値の範囲以内である場合(S 105で Yes)、評価部 105は、選択した演算ブロックは良であると判定する(S 106)。 一方、算出された差分が、予め定められた値の範囲以内でない場合(S105で No)、 評価部 105は、選択した演算ブロックは不良であると判定する(S107)。
[0048] 続いて、評価部 105は、判定すべき演算ブロックの全てについて、判定が終了した かを判別する(S108)。ここで、全ての演算ブロックについて判定が終了していないと 判別された場合は(S108で No)、再びステップ S 101に戻り、演算ブロックの選択か ら処理を繰り返す。一方、全ての演算ブロックについて判定が終了したと判別された 場合(S 108で Yes)、評価部 105は、ステップ S 106で良と判定された演算ブロックの 数(良判定ブロック数) Pを算出する(S109)。ここで、算出された良判定ブロック数 p が予め定められた値である良否判定値以上、例えば、評価の対象となる全ての演算 ブロックの 95%のブロック数以上の場合(S110で Yes)、評価部 105は、検査の対象 となった複眼測距装置 200を検査合格として(S111)、処理を終了する。一方、算出 された良判定ブロック数 pが予め定められた値である良否判定値未満の場合(S 110 で No)、評価部 105は、検査の対象となった複眼測距装置 200を検査不合格として( S 112)、処理を終了する。
[0049] 以上の処理によって、撮像視野内の全域において演算ブロックごとに距離情報を 取得することができる。そして、取得した距離情報と実際の距離情報との差分を評価 することで、高精度に複眼測距装置の測距精度を検査することが可能となる。
[0050] なお、本実施の形態では、チャートの底辺を基線方向に平行に配置した力 底辺 に平行に幾何学的パターンを配置したチャートを用いても、チャートの底辺を複眼撮 像装置の基線方向に対して Θ 1だけ傾けて配置すれば同様の効果が得られる。即ち 、幾何学的パターンの配列方向と複眼測距装置の基線方向とを Θ 1だけ傾けさせれ ば良い。
[0051] (実施の形態 2)
図 10はチャートの幾何学的パターンの階調を基線方向に周期的に変化させた場 合の第 1の撮像光学系の撮像面で形成される結像パターンの一部を示している。図 10において、 A1と A2はそれぞれ階調の異なる円形パターンであり、配列方向の 1 つが基線方向に対して Θ 3だけ傾いている。図 10ではチャートの円形パターンの階 調を 2種類として基線方向に交互に配列した構成としている力 3種類以上の階調に よって周期的に変化させてもよい。測距範囲の最短距離で得られる視差量が大きく ノ ターンの配列方向と基線方向とが成す角を小さくしなければならない場合には、前 記の実施の形態 1のようにアレイ状に配列されたパターンが全て同じ階調であると、 S AD演算値の最も小さレ、極小値と隣接する極小値との差が小さくなつてしまい、視差 量を誤検出してしまう可能性がある。
[0052] 図 14A及び図 14Bは、幾何学的パターンの配列方向の基線方向と成す角が小さ い場合の SAD演算を示す図であり、 Δ 2は視差量、 S2は SAD演算の探索範囲、 b2 は撮像面上において基線方向と直交する直交軸方向の円形パターンの位置が一致 するときの基線方向の繰り返し周期である。図 14Aは、同じ階調でパターンを配列し た場合の SAD演算を示す図であり、図 14Bは本実施例のようにパターンの階調を交 互に配列した場合の SAD演算を示す図である。パターンの階調を基線方向に交互 に繰り返すことにより、 SAD演算値は図 14Bのように隣接する極小値の差を大きくす ること力 Sできる。従って、最も小さい極小値とその前後に隣接する極小値との差も図 1 4Aと比べて大きくすることができ、視差量を誤検出する可能性を低減することができ
[0053] (実施の形態 3)
図 11はチャートの幾何学的パターンの形状を基線方向に周期的に変化させた場 合の第 1の撮像光学系の撮像面で形成される結像パターンの一部を示している。図 11において、 A1と A3はそれぞれ形状の異なるパターンであり、配列方向の 1つが 基線方向に対して Θ 3だけ傾いている。図 11ではチャートの円形パターンと正方形 ノ ターンを基線方向に交互に繰り返した構成としている力 3種類以上の形状によつ て周期的に変化させてもよい。本実施形態も実施の形態 2と同様にパターンの配列 方向の基線方向と成す角が小さい場合に SAD演算における最も小さい極小値とそ の前後に隣接する極小値との差を大きくすることができ、視差量を誤検出する可能性 を低減すること力 Sできる。
[0054] (実施の形態 4)
図 12はチャートの幾何学的パターンの大きさを基線方向に周期的に変化させた場 合の第 1の撮像光学系の撮像面で形成される結像パターンの一部を示している。図 12において、 A1と A4はそれぞれ大きさの異なるパターンであり、配列方向の 1つが 基線方向に対して θ 3だけ傾いている。図 12ではチャートの円形パターンの大きさを 2種類として基線方向に交互に繰り返した構成としている力 3種類以上の大きさによ つて周期的に変化させてもよい。本実施形態も実施の形態 2と同様にパターンの配 列方向の基線方向と成す角が小さい場合に SAD演算における最も小さい極小値と その前後に隣接する極小値との差を大きくすることができ、視差量を誤検出する可能 十生を低減すること力 Sできる。
[0055] (実施の形態 5)
図 13はチャートの幾何学的パターンの向きを基線方向に周期的に変化させた場合 の第 1の撮像光学系の撮像面で形成される結像パターンの一部を示している。図 13 において、 A5と A6はそれぞれ向きの異なるパターンであり、配列方向の 1つが基線 方向に対して Θ 3だけ傾いている。図 13ではチャートの正方形パターンの向きを 2種 類として基線方向に交互に繰り返した構成としている力 3種類以上の向きによって 周期的に変化させてもよい。本実施形態も実施の形態 2と同様にパターンの配列方 向の基線方向と成す角が小さい場合に SAD演算における最も小さい極小値とその 前後に隣接する極小値との差を大きくすることができ、視差量を誤検出する可能性を 低減すること力 Sでさる。
[0056] 以上のように、実施の形態 1〜5の検査方法を用いることにより、任意の演算ブロッ クサイズで撮像視野内全域の距離情報を取得できる。したがって、領域毎に良否規 格を設定した検査や、取得データの分布状態に良否規格を設定した検査などが可 能となる。
産業上の利用可能性
[0057] 本発明に係る複眼測距装置の検査方法は、車載用、監視カメラ用、 3次元形状測 定システム用等の複眼測距装置の測距精度の検査に有用である。

Claims

請求の範囲
[1] 少なくとも 2つの撮像光学系間の視差によって測定対象物までの距離情報を取得 する複眼測距装置の測距精度を評価する検査方法であって、
前記撮像光学系の光軸上で前記撮像光学系から所定距離にチャートを配置する 配置工程と、
前記複眼測距装置によって前記チャートまでの距離を測定する測定工程と、 前記所定距離と前記測定された距離との差分を算出し、算出した差分が予め定め られた値の範囲内にあるか否かを評価する評価工程とを有し、
前記配置工程では、所定の幾何学的パターンが 2つの配列方向に 2次元的に配列 された、かつ、前記 2つの配列方向が前記 2つの撮像光学系間の基線方向に対して 所定の角度傾いたチャートを前記所定距離に配置し、
前記測定工程では、前記少なくとも 2つの撮像光学系の撮像面に結像された同一 の前記幾何学的パターンの基線方向における各結像位置のずれから、前記チャート までの距離を測定する
複眼測距装置の検査方法。
[2] 前記配置工程では、前記所定の角度が、前記撮像光学系により撮像された画像上 において、前記幾何学的パターンの前記基線方向のピッチが前記所定距離におけ る前記視差よりも大きくなるような角度であるチャートを配置する
請求項 1に記載の複眼測距装置の検査方法。
[3] 前記配置工程では、前記幾何学的パターンの階調が前記基線方向に周期的に変 化して!/、るチャートを配置する
請求項 1に記載の複眼測距装置の検査方法。
[4] 前記配置工程では、前記幾何学的パターンの形状が前記基線方向に周期的に変 化して!/、るチャートを配置する
請求項 1に記載の複眼測距装置の検査方法。
[5] 前記配置工程では、前記幾何学的パターンの大きさが前記基線方向に周期的に 変化してレ、るチャートを配置する
請求項 1に記載の複眼測距装置の検査方法。
[6] 前記配置工程では、前記幾何学的パターンの向きが前記基線方向に周期的に変 化して!/、るチャートを配置する
請求項 1に記載の複眼測距装置の検査方法。
[7] 前記測定工程及び前記評価工程では、前記撮像面に結像した前記幾何学的バタ ーンにおいてコントラストが存在するように前記撮像面を分割したブロックごとに処理 を繰り返し、
前記検査方法は、さらに、前記評価工程において前記差分が予め定められた値の 範囲内にあると評価された前記ブロックの数が予め定められた数以上である場合に、 前記複眼測距装置を検査合格と判別する判別工程を有す
請求項 1に記載の複眼測距装置の検査方法。
[8] 少なくとも 2つの撮像光学系間の視差によって測定対象物までの距離情報を取得 する複眼測距装置の測距精度を評価する検査で用いるチャートであって、
前記チャートは所定の幾何学的パターンが 2つの配列方向に 2次元的に配列され たものであり、前記 2つの配列方向が前記 2つの撮像光学系間の基線方向に対して 所定の角度傾くように配置されている
複眼測距装置の検査に用いるチャート。
[9] 前記所定の角度は、前記撮像光学系により撮像された画像上において、前記幾何 学的パターンの前記基線方向のピッチが前記所定距離における前記視差よりも大き くなるような角度である
請求項 8に記載の複眼測距装置の検査に用いるチャート。
[10] 前記幾何学的パターンの階調が前記基線方向に周期的に変化している
請求項 8に記載の複眼測距装置の検査に用いるチャート。
[11] 前記幾何学的パターンの形状が前記基線方向に周期的に変化している
請求項 8に記載の複眼測距装置の検査に用いるチャート。
[12] 前記幾何学的パターンの大きさが前記基線方向に周期的に変化している
請求項 8に記載の複眼測距装置の検査に用いるチャート。
[13] 前記幾何学的パターンの向きが前記基線方向に周期的に変化している
請求項 8に記載の複眼測距装置の検査に用いるチャート。 少なくとも 2つの撮像光学系間の視差によって測定対象物までの距離情報を取得 する複眼測距装置の測距精度を評価する検査装置であって、
前記撮像光学系の光軸上で前記撮像光学系から所定距離に配置されたチャートと 前記所定距離を記憶する記憶手段と、
前記複眼測距装置によって測定された前記チャートまでの測定距離を取得する測 定距離取得手段と、
前記所定距離と前記測定距離との差分が、予め定められた値の範囲内にあるか否 かを評価する評価手段とを備え、
前記チャートは所定の幾何学的パターンが 2つの配列方向に 2次元的に配列され たものであり、前記 2つの配列方向が前記 2つの撮像光学系間の基線方向に対して 所定の角度を成すように配置されている
複眼測距装置の検査装置。
PCT/JP2007/074173 2006-12-19 2007-12-14 複眼測距装置の検査方法および検査装置並びにそれに用いるチャート WO2008075632A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-340812 2006-12-19
JP2006340812A JP2010048553A (ja) 2006-12-19 2006-12-19 複眼測距装置の検査方法およびそれに用いるチャート

Publications (1)

Publication Number Publication Date
WO2008075632A1 true WO2008075632A1 (ja) 2008-06-26

Family

ID=39536263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074173 WO2008075632A1 (ja) 2006-12-19 2007-12-14 複眼測距装置の検査方法および検査装置並びにそれに用いるチャート

Country Status (2)

Country Link
JP (1) JP2010048553A (ja)
WO (1) WO2008075632A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107365A1 (ja) * 2008-02-26 2009-09-03 パナソニック株式会社 複眼測距装置の検査方法及び検査装置並びにそれに用いるチャート

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177219B1 (ko) * 2012-12-27 2020-11-10 미래나노텍(주) 백라이트 유닛을 위한 광학 시트의 구조
WO2015034049A1 (ja) * 2013-09-05 2015-03-12 アルプス電気株式会社 3次元形状計測方法及び3次元形状計測装置
KR101865126B1 (ko) * 2016-08-04 2018-06-08 광주과학기술원 촬상장치, 촬상방법, 거리측정장치, 및 거리측정방법
JP2020501156A (ja) * 2016-12-07 2020-01-16 マジック アイ インコーポレイテッド 平行パターンを投射する距離センサ
JP2018205325A (ja) * 2018-08-27 2018-12-27 株式会社リコー 視差演算システム、情報処理装置、情報処理方法及びプログラム
JP7243671B2 (ja) * 2020-04-21 2023-03-22 株式会社リコー 視差演算システム、情報処理装置、情報処理方法及びプログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217214A (ja) * 1987-03-05 1988-09-09 Mitsubishi Heavy Ind Ltd 3次元位置計測装置
JPH04181106A (ja) * 1990-11-15 1992-06-29 Komatsu Ltd 位置寸法計測装置のキャリブレーション装置
JPH06221832A (ja) * 1993-01-22 1994-08-12 Nec Corp カメラの焦点距離較正方法及び装置
JPH07229736A (ja) * 1994-02-18 1995-08-29 Mitsubishi Heavy Ind Ltd 三次元計測器校正装置
JPH1047920A (ja) * 1996-08-07 1998-02-20 Komatsu Ltd キャリブレーション方法
JP2001091247A (ja) * 1999-09-22 2001-04-06 Fuji Heavy Ind Ltd 距離データの検査方法およびその検査装置
JP2002122417A (ja) * 2000-10-16 2002-04-26 Sumitomo Osaka Cement Co Ltd 三次元形状測定装置
JP2002286415A (ja) * 2001-03-23 2002-10-03 Olympus Optical Co Ltd 距離情報取得装置又はシステム、パターン投影装置、及び、距離情報取得方法
JP2004069437A (ja) * 2002-08-05 2004-03-04 Fuji Heavy Ind Ltd テストチャート、ステレオカメラの位置ずれ検査装置および位置ずれ検査方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217214A (ja) * 1987-03-05 1988-09-09 Mitsubishi Heavy Ind Ltd 3次元位置計測装置
JPH04181106A (ja) * 1990-11-15 1992-06-29 Komatsu Ltd 位置寸法計測装置のキャリブレーション装置
JPH06221832A (ja) * 1993-01-22 1994-08-12 Nec Corp カメラの焦点距離較正方法及び装置
JPH07229736A (ja) * 1994-02-18 1995-08-29 Mitsubishi Heavy Ind Ltd 三次元計測器校正装置
JPH1047920A (ja) * 1996-08-07 1998-02-20 Komatsu Ltd キャリブレーション方法
JP2001091247A (ja) * 1999-09-22 2001-04-06 Fuji Heavy Ind Ltd 距離データの検査方法およびその検査装置
JP2002122417A (ja) * 2000-10-16 2002-04-26 Sumitomo Osaka Cement Co Ltd 三次元形状測定装置
JP2002286415A (ja) * 2001-03-23 2002-10-03 Olympus Optical Co Ltd 距離情報取得装置又はシステム、パターン投影装置、及び、距離情報取得方法
JP2004069437A (ja) * 2002-08-05 2004-03-04 Fuji Heavy Ind Ltd テストチャート、ステレオカメラの位置ずれ検査装置および位置ずれ検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107365A1 (ja) * 2008-02-26 2009-09-03 パナソニック株式会社 複眼測距装置の検査方法及び検査装置並びにそれに用いるチャート
US8102516B2 (en) 2008-02-26 2012-01-24 Panasonic Corporation Test method for compound-eye distance measuring apparatus, test apparatus, and chart used for the same

Also Published As

Publication number Publication date
JP2010048553A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
CN102954770B (zh) 三维测量设备和三维测量方法
JP5623347B2 (ja) 反射面の形状測定方法及びシステム
US8718326B2 (en) System and method for extracting three-dimensional coordinates
JP3937024B2 (ja) モアレ縞を用いたずれ、パタ−ンの回転、ゆがみ、位置ずれ検出方法
JP4885584B2 (ja) レンジファインダ校正方法及び装置
JP5715735B2 (ja) 3次元測定方法、装置、及びシステム、並びに画像処理装置
JP5447963B2 (ja) 立体マーカを利用した位置計測システム
JP2012058076A (ja) 3次元計測装置及び3次元計測方法
JP6566768B2 (ja) 情報処理装置、情報処理方法、プログラム
WO2008075632A1 (ja) 複眼測距装置の検査方法および検査装置並びにそれに用いるチャート
JP5385703B2 (ja) 検査装置、検査方法および検査プログラム
US11222433B2 (en) 3 dimensional coordinates calculating apparatus and 3 dimensional coordinates calculating method using photo images
JP5093653B2 (ja) 測距装置およびその測距方法
JP4193342B2 (ja) 3次元データ生成装置
JP4837538B2 (ja) 端部位置測定方法および寸法測定方法
JP4423347B2 (ja) 複眼測距装置の検査方法及び検査装置並びにそれに用いるチャート
JP3842988B2 (ja) 両眼立体視によって物体の3次元情報を計測する画像処理装置およびその方法又は計測のプログラムを記録した記録媒体
JP6425406B2 (ja) 情報処理装置、情報処理方法、プログラム
JP4962852B2 (ja) 形状測定方法および形状測定装置
JP6550102B2 (ja) 光源方向推定装置
WO2020075213A1 (ja) 計測装置、計測方法および顕微鏡システム
JP2016008837A (ja) 形状測定方法、形状測定装置、構造物製造システム、構造物製造方法、及び形状測定プログラム
JP3446020B2 (ja) 形状計測方法
JPH11223516A (ja) 3次元画像撮像装置
CN109916341A (zh) 一种产品表面水平倾斜角度的测量方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850665

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07850665

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)