WO2008075561A1 - 電力増幅装置 - Google Patents

電力増幅装置 Download PDF

Info

Publication number
WO2008075561A1
WO2008075561A1 PCT/JP2007/073504 JP2007073504W WO2008075561A1 WO 2008075561 A1 WO2008075561 A1 WO 2008075561A1 JP 2007073504 W JP2007073504 W JP 2007073504W WO 2008075561 A1 WO2008075561 A1 WO 2008075561A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
power
drain
amplifier
Prior art date
Application number
PCT/JP2007/073504
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Yamauchi
Yuji Sakai
Koichi Fujisaki
Akira Inoue
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to KR1020097013879A priority Critical patent/KR101107888B1/ko
Priority to EP07850128.5A priority patent/EP2101409B1/en
Priority to US12/518,664 priority patent/US7893770B2/en
Priority to JP2008550089A priority patent/JPWO2008075561A1/ja
Priority to CN2007800473304A priority patent/CN101563840B/zh
Publication of WO2008075561A1 publication Critical patent/WO2008075561A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • H03F1/0238Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages

Definitions

  • the present invention relates to a power amplifying device that is used in a wireless communication device such as a mobile phone in terrestrial cellular communication and a communication terminal device in satellite communication and requires high efficiency.
  • a conventional high-efficiency power amplifying apparatus is configured by a Doherty amplifier that combines a carrier amplifier and a peak amplifier (see, for example, Non-Patent Document 1).
  • the carrier amplifier ensures linearity when the input signal is small (hereinafter referred to as “small signal”), and the peak amplifier is used when the input signal is large (hereinafter referred to as “large signal”). Used to secure saturation power.
  • the input signal input to the Doherty amplifier is divided into two, one input to the carrier amplifier and the other input to the peak amplifier. Since the carrier amplifier is normally biased from class A to class AB or class B, it amplifies and outputs regardless of the level of the input signal.
  • the peak amplifier Since the peak amplifier is normally biased to class C, it is inactive when there is a small signal, and is active when there is a large signal, and amplifies and outputs the signal. In other words, since only the carrier amplifier operates when the signal is small, the operation is highly efficient. When the signal is large, the outputs of the carrier amplifier and the peak amplifier are combined to ensure high saturation power.
  • Non-Patent Document 1 Masatoshi Nakayama, Nao Takagi, “A method for improving distortion and efficiency of power amplifiers”, MW E2004 Microwave Workshops Digest. P575— 584
  • the present invention has been made to solve the above-described problems, and its object is to be used in a wireless communication device such as a mobile phone in a ground cellular communication and a communication terminal device in a satellite communication.
  • a wireless communication device such as a mobile phone in a ground cellular communication and a communication terminal device in a satellite communication.
  • This is a power amplifying device that has a high power efficiency even in the case of a small signal.
  • a power amplifying device includes a DC power source that outputs a first drain voltage, a carrier amplifier and a peak amplifier connected in parallel, a Doherty amplifier that amplifies an RF signal, and an output power If the output power is less than the predetermined value, the first command is output to output a low voltage, and if the output power is greater than the predetermined value, the second command is output to output a high voltage.
  • the second drain voltage obtained by converting the first drain voltage or the first drain voltage is applied to the drain terminals of the carrier amplifier and the peak amplifier. Voltage applied to the drain terminals of the carrier amplifier and the peak amplifier, based on the second command, the first drain voltage or the second drain voltage obtained by converting the first drain voltage.
  • a conversion circuit is provided.
  • the power amplifying device applies a low voltage to the drain terminal when the output power is less than or equal to a predetermined value, and applies a high voltage to the drain terminal when the output power is greater than the predetermined value.
  • a predetermined value When small signals are used, it is possible to improve power efficiency by operating at a low voltage.
  • FIG. 1 is a diagram showing a configuration of a power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of a carrier amplifier of the Doherty amplifier of the power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 3 A diagram showing the setting of the operating point of the FET of the power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 4 Low voltage operation and high voltage operation of the power amplifying device according to Embodiment 1 of the present invention. Place It is a graph which shows the relationship between the input electric power and output electric power in case.
  • FIG. 5 is a graph showing a relationship between output power and drain efficiency in the case of low voltage operation and high voltage operation of the power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a configuration of a power amplifying device according to Embodiment 2 of the present invention.
  • FIG. 8 is a diagram showing a configuration of a power amplifying device according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram showing a configuration of a power amplifying device according to Embodiment 4 of the present invention.
  • FIG. 12 is a diagram showing a configuration of a power amplifying device according to Embodiment 5 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a power amplifying device according to Embodiment 1 of the present invention.
  • the same reference numerals indicate the same or corresponding parts.
  • a power amplifying device includes a DC power supply 10 that outputs a drain voltage Vd, a voltage conversion circuit 30 that variably outputs a voltage from the DC power supply 10, and output power.
  • a voltage control circuit 50 that controls the voltage conversion circuit 30 based on the information, and a Doherty amplifier 60 that amplifies the RF input signal from the RF input terminal 1 and outputs the amplified signal from the RF output terminal 2 are provided.
  • a voltage conversion circuit 30 includes a switch 31 that switches an output destination of the DC power supply 10, and a voltage converter 32 that converts the voltage of the input DC power supply 10 to a lower voltage. Is provided.
  • This switch 31 converts the output voltage of the DC power supply 10 by the voltage converter 32 and outputs it to the Doherty amplifier 60, and the output voltage of the DC power supply 10. The output path to the Doherty amplifier 60 is switched as it is.
  • the voltage conversion circuit 30 is controlled by the voltage control circuit 50 to output a high voltage when the output power based on the output power information is high and a low voltage when the output power is low.
  • a Dono / tee amplifier 60 includes a carrier amplifier 61, a 1/4 wavelength line 62 provided on the output side of the carrier amplifier 61, and an input side of a peak amplifier described later. It consists of a quarter-wave line 63 and a peak amplifier 64.
  • the output voltage of the DC power supply 10 is supplied to the carrier amplifier 61 and the peak amplifier 64 in the Doherty amplifier 60 via the voltage conversion circuit 30.
  • FIG. 2 is a diagram showing a circuit configuration of the carrier amplifier of the Doherty amplifier of the power amplifying device according to Embodiment 1 of the present invention.
  • a FET Field Effect Transistor
  • a bipolar transistor is used for the carrier amplifier 61.
  • a circuit configuration in the case of the FET is shown in FIG.
  • the circuit configuration of the peak amplifier 64 is the same.
  • the FET source terminal S is grounded, the RF input terminal 1 is connected to the FET gate terminal G, and this gate terminal G is biased by the gate voltage Vg.
  • Drain terminal D is connected to RF output terminal 2 and applies drain voltage Vd.
  • emitter terminal E is grounded
  • base terminal B is connected to RF input terminal 1
  • collector terminal C is connected to RF output terminal 2.
  • the carrier amplifier 61 can be operated in class A (or class AB or class B), and the peak amplifier 64 can be operated in class C.
  • the collector terminal C of the bipolar transistor corresponds to the drain terminal D of the FET.
  • the force S described for the FET case the voltage application to the collector terminal C of the bipolar transistor can be performed in the same manner as the voltage application to the drain terminal D of FET.
  • the carrier amplifier 61 and the peak amplifier 64 are bipolar transistors
  • the source terminal S, the gate terminal G, and the drain terminal D of the FET are respectively connected to the emitter terminals of the bipolar transistor.
  • FIG. 3 is a diagram illustrating setting of the operating point of the FET of the power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the relationship between input power and output power in the case of low voltage operation and high voltage operation of the power amplifying apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a graph showing the relationship between the output power and the drain efficiency in the low voltage operation and the high voltage operation of the power amplifying device according to Embodiment 1 of the present invention.
  • FIG. 6 is a graph showing the relationship between the output power and the drain efficiency when the voltage applied to the drain terminals of the carrier amplifier and the peak amplifier is switched to three or more levels.
  • the RF signal input from the RF input terminal 1 is distributed into two, one input to the carrier amplifier 61 and the other input to the peak amplifier 64. Since the carrier amplifier 61 is normally biased to class A power class AB or class B, it amplifies and outputs regardless of the level of the input RF signal. Since the peak amplifier 64 is normally biased to class C, it is inactive when a small signal is active, and is active when a large signal is applied, and amplifies and outputs the signal.
  • the drain voltage Vd of the carrier amplifier 61 and the peak amplifier 64 is set by the DC power supply 10 and the voltage conversion circuit 30.
  • Fig. 3 is a schematic diagram showing the setting of the FET operating point.
  • the gate amplifier 61 sets the gate voltage Vg so that the operating point is at point A in the figure and the peak amplifier 64 is at point C in the figure.
  • the class A operating point is at a position where the drain current Id is about Ids s / 2
  • the class C operating point is at a position where Id is almost zero.
  • Idss represents the drain current value when the gate voltage is zero.
  • the operating point that is called! /, With class AB and class B, is located between operating points A and C.
  • the carrier amplifier 61 is set to point A by setting the gate voltage Vg for class A operation
  • the peak amplifier 64 is set to point C by setting the gate voltage Vg for class C operation.
  • output power information is input to the voltage control circuit 50, and the voltage control circuit 50 controls the voltage conversion circuit 30 based on this output power information.
  • the output power information is information representing the output power of the RF signal output from the power amplification device.
  • the voltage control circuit 50 instructs the switch 31 to be connected to the a side (outputs the first command).
  • the voltage converter 32 is the voltage of the input DC power supply 10. Is converted to a lower voltage, and the lower voltage is applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64 to operate at a low voltage (hereinafter referred to as “low voltage operation”).
  • the voltage control circuit 50 commands to connect the switch 31 to the b side (outputs a second command).
  • the voltage conversion circuit 30 applies the voltage of the DC power supply 10 to the drain terminals D of the carrier amplifier 61 and the peak amplifier 64 and operates with a high voltage (hereinafter referred to as “high voltage operation”).
  • Fig. 4 shows the relationship between input power and output power in low voltage operation and high voltage operation
  • Fig. 5 shows the relationship between output power and drain efficiency.
  • the output power is lower in low voltage operation than in high voltage operation, but in Fig. 5, drain efficiency is higher in low voltage operation.
  • the output power is less than the predetermined value, it is operated at a low voltage, and when the output power is larger than the predetermined value, it is operated at a high voltage.
  • the maximum output power specification of the power amplifying apparatus is set to 34 dBm
  • operation is performed with 28 dBm, which is a 16 dB value of the maximum output power, as a predetermined value.
  • the output power is equal to or lower than 28 dBm, which is a predetermined value, it is operated at a low voltage by being applied to the drain terminal D of the low voltage force carrier amplifier 61 and the peak amplifier 64 obtained by conversion by the voltage converter 32.
  • high drain efficiency can be obtained in a low output state.
  • the voltage of the DC power supply 10 is applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64 to operate at a high voltage, and the high output state. Therefore, high power and saturation power can be secured.
  • FIGS. 4 and 5 represent the transition of the operating point from the low output state to the high output state with the output power of 28 dBm as the boundary, and conversely the high output state to the low output state.
  • the movement of the operating point to is in the opposite direction of the arrow.
  • the input power during high-voltage operation is shown by the arrow in the figure (D ⁇ E ) Is offset.
  • the applied voltage to the drain terminal D is changed depending on whether the output power is set to a predetermined value or less and greater than the predetermined value.
  • the setting of the predetermined value is a minus of the maximum output power.
  • Arbitrary dB value It is determined mainly based on the specifications of the transmission power range (minimum value and maximum value) of the power amplifier.
  • the power voltage converter 32 described the configuration in which the voltage converter 32 converts the output voltage of the DC power supply 10 into a low voltage.
  • the power voltage converter 32 converts the output voltage of the DC power supply 10 into a high voltage.
  • the configuration may be a boost type. In this case, the voltage output from the DC power supply 10 becomes a low voltage, and the voltage control circuit 50 commands the switch 31 to be connected to the b side during low voltage operation and to be connected to the a side during high voltage operation.
  • the efficiency can be further improved by switching the voltage applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64 to three or more stages (at least three drain voltages having different voltage values). For example, as shown in FIG. 6, when the output power is greater than 28 dBm and the drain application voltage is further increased, the power efficiency is further improved. In this way, the drain applied voltage can be set to three or more stages, and the power efficiency can be further increased.
  • a method is adopted in which the voltage converter 32 is set to a variable output voltage type and controlled by the voltage control circuit 50, or two or more voltage converters 32 are provided and switched by the voltage control circuit 50. Can be considered.
  • the voltage control circuit 50 commands the voltage to be variably output by the voltage conversion circuit 30 based on the magnitude relationship between two or more predetermined values (at least two predetermined values having different values) and the output power (at least three). Command).
  • the voltage conversion circuit 30 outputs at least three drain voltages having different voltage values based on at least three commands.
  • Embodiment 1 of the present invention when the output power is less than or equal to a predetermined value, the drain terminal D or the collector terminal C has a low voltage, and when the output power is greater than the predetermined value, the drain terminal D Alternatively, since a high voltage is applied to the collector terminal C, power efficiency can be improved by operating at a low voltage when the signal is small.
  • FIG. 7 is a diagram showing a configuration of a power amplifying device according to Embodiment 2 of the present invention.
  • the configuration of the power amplifying device according to Embodiment 2 of the present invention is a carrier amplifier.
  • the drain terminal D of 61 can be applied directly from the DC power source 10 and via the voltage converter 32.
  • the point power is configured so that the output voltage of the DC power supply 10 is directly applied to the drain terminal D of the peak amplifier 64.
  • the other configurations and operations are the same as in the first embodiment. It is the same.
  • the voltage control circuit 50 Based on the output power information, the voltage control circuit 50 connects the switch 31 to the a side and converts the output voltage of the DC power supply 10 to a low voltage by the voltage converter 32 when the output power is equal to or less than a predetermined value. And applied to the drain terminal D of the carrier amplifier 61. On the other hand, when the output power is larger than the predetermined value, the voltage control circuit 50 connects the switch 32 to the b side and applies the output voltage of the DC power supply 210 to the drain terminal D of the carrier amplifier 61.
  • the output voltage of the DC power supply 10 is directly applied to the drain terminal D of the peak amplifier 64.
  • the carrier amplifier 61 is operated at a low voltage, so that the current capacity required for the voltage converter 32 is smaller than the maximum consumption current of the Doherty amplifier 60. (For example, about half) can be set. As a result, the power consumption and the amount of heat generated in the voltage converter 32 can be reduced, and there is an effect that it is possible to use small and inexpensive parts.
  • the carrier amplifier 61 By operating the carrier amplifier 61 at a low voltage and a high voltage, the power efficiency of the carrier amplifier 61 during low voltage operation is improved.
  • the carrier amplifier 61 and the peak amplifier 64 provide a high saturation power. Can be obtained.
  • the power efficiency can be further improved by switching the applied voltage to the drain terminal D of the carrier amplifier 61 in three or more steps (at least three drain voltages having different voltage values). For example, as shown in FIG. 6 in Example 1 above, when the output power is larger than 28 dBm and the drain application voltage is further increased, the power efficiency is further improved. In this way, the drain applied voltage can be set to three or more stages, and the efficiency can be further increased.
  • a method in which the voltage converter 32 is set to a variable output voltage type and is controlled by the voltage control circuit 50, or a method in which two or more voltage converters 32 are provided and switching control is performed by the voltage control circuit 50 is employed. It is possible.
  • the voltage control circuit 50 has two or more predetermined values (at least two predetermined values having different values) and
  • the voltage conversion circuit 30 commands the voltage to be variably output based on the magnitude relationship of the output power (at least three commands).
  • the voltage conversion circuit 30 outputs at least three drain voltages having different voltage values based on at least three commands.
  • Embodiment 2 of the present invention when the output power is less than or equal to a predetermined value, the drain terminal D or the collector terminal C has a low voltage, and when the output power is greater than the predetermined value, the drain terminal D Alternatively, since a high voltage is applied to the collector terminal C, power efficiency can be improved by operating at a low voltage when the signal is small.
  • FIG. 8 is a diagram showing the configuration of the power amplifying apparatus according to Embodiment 3 of the present invention.
  • a power amplifying device includes a DC power supply 20 that outputs a gate voltage Vg, a voltage conversion circuit 40 that variably outputs a voltage from the DC power supply 20, and output power.
  • a voltage control circuit 50 that controls the voltage conversion circuit 40 based on the information, and a Doherty amplifier 60 that amplifies the RF input signal from the RF input terminal 1 and outputs the amplified signal from the RF output terminal 2 are provided.
  • the voltage conversion circuit 40 includes a switch 41 that switches the output destination of the DC power supply 20, and a voltage converter 42 that converts the voltage of the input DC power supply 20 to a lower voltage. Is provided.
  • This switch 41 converts the output voltage of the DC power source 20 by the voltage converter 42 and outputs it to the gate terminal G of the peak amplifier 64, and the output voltage of the DC power source 20 to the gate terminal G of the peak amplifier 64 as it is. Switch the output route.
  • the output voltage of the DC power supply 20 is applied to the gate terminal G of the carrier amplifier 61 and the peak amplifier 64 in the Doherty amplifier 60 via the voltage conversion circuit 40.
  • the voltage conversion circuit 40 is configured so that the peak amplifier 64 is turned off when the output power based on the output power information is low, and the carrier amplifier 61 and the peak amplifier 64 are operated when the output power is high. Controlled by 50.
  • Other configurations and basic operations of the Doherty amplifier 60 are the same as those in the first embodiment.
  • FIG. 9 is a graph showing the gate voltage / drain current characteristics near the bias point of the peak amplifier of the power amplifying device according to Embodiment 3 of the present invention.
  • output power information is input to the voltage control circuit 50, and the voltage control circuit 50 controls the voltage conversion circuit 40 based on this output power information.
  • the output power information is information representing the output power of the RF signal output from the power amplification device.
  • the output voltage of the DC power supply 20 is directly applied to the gate terminal G of the carrier amplifier 61.
  • the voltage control circuit 50 commands the switch 42 to be connected to the c side (outputs the first command).
  • the voltage converter 42 converts the input voltage of the DC power source 20 to a lower voltage and applies the voltage to the gate terminal G of the peak amplifier 64 to completely turn off the peak amplifier 64 (hereinafter referred to as “off state”). ").
  • the voltage control circuit 50 commands to connect the switch 41 to the d side (outputs the first command).
  • the voltage conversion circuit 40 applies the voltage of the DC power supply 20 to the gate terminal G of the peak amplifier 64, and puts the peak amplifier 64 into a normal class C bias operation state (hereinafter referred to as “class C bias operation”).
  • FIG. 9 shows the relationship of the drain current to the FET gate voltage.
  • the peak amplifier 64 of the Doherty amplifier 60 is biased to class C, the peak amplifier 64 is inactive in the region below the pinch-off voltage, which is a small signal.
  • the class C bias has a characteristic that it begins to flow little by little near the pinch-off voltage and the drain current gradually increases as the gate voltage increases, so the peak amplifier 64 is theoretically turned off.
  • the drain current is also consumed in the region. Since this current hardly contributes to output power, power is wasted.
  • the peak amplifier 64 is turned off.
  • the peak amplifier 64 is operated with the class C bias.
  • the power consumed by the peak amplifier 64 can be reduced in the region where the peak amplifier 64 should be turned off, and the power efficiency can be improved.
  • the peak amplifier 6 4 when the output power is equal to or lower than the predetermined value, the peak amplifier 6 4 is applied with a gate voltage or base voltage that is completely turned off, so that theoretically, in a region where the peak amplifier 64 should be turned off, the peak amplifier 64 is not turned off completely. The power consumed by the peak amplifier 64 can be reduced, and the power efficiency can be improved.
  • FIG. 10 is a diagram showing the configuration of the power amplifying device according to Embodiment 4 of the present invention.
  • a power amplifying device includes a DC power source (first DC power source) 10 that outputs a drain voltage Vd and a DC power source (second power source) that outputs a gate voltage Vg. DC power supply) 20, voltage conversion circuit (first voltage conversion circuit) 30 that variably outputs the voltage from DC power supply 10, and voltage conversion circuit (second voltage conversion) that variably outputs the voltage from DC power supply 20 Circuit) 40, voltage control circuit 50 that controls voltage conversion circuit 30 and voltage conversion circuit 40 based on output power information, and Doherty amplifier that amplifies the RF input signal from RF input terminal 1 and outputs it from RF output terminal 2 60 and are provided.
  • the switch 31 converts the output voltage of the DC power supply 10 into a voltage by the voltage converter 23 and outputs the carrier amplifier 61 and the peak amplifier 64, and the output voltage of the DC power supply 10 is converted into a voltage.
  • the output path of the carrier amplifier 61 and peak amplifier 64 is switched without conversion.
  • the output voltage of the DC power supply 10 is applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64 in the Doherty amplifier 60 via the voltage conversion circuit 30.
  • the voltage conversion circuit 30 is controlled by the voltage control circuit 50 so as to output a low voltage when the output power based on the output power information is low and to output a high voltage when the output power is high.
  • the switch 41 converts the output voltage of the DC power supply 20 by the voltage converter 42 and outputs the voltage to the gate terminal G of the peak amplifier 64, and the output voltage of the DC power supply 20
  • the output path to the gate terminal G of the peak amplifier 64 is switched without voltage conversion.
  • the output voltage of the DC power supply 20 is applied to the carrier amplifier 61 in the Doherty amplifier 60 and the gate terminal G of the peak amplifier 64 through the voltage conversion circuit 40. Is done.
  • the voltage conversion circuit 40 controls the voltage so that the peak amplifier 64 is turned off when the output power based on the output power information is low, and the carrier amplifier 61 and the peak amplifier 64 operate when the output power is high. Controlled by circuit 50.
  • Other configurations and basic operations of the Doherty amplifier 60 are the same as those in the first and third embodiments.
  • FIG. 11 shows the relationship between the output power and the drain efficiency of the power amplifying device according to Embodiment 4 of the present invention.
  • output power information is input to the voltage control circuit 50, and the voltage conversion circuit 30 and the voltage conversion circuit 40 are controlled based on this output power information.
  • the output power information is information representing the output power of the RF signal output from the power amplification device.
  • the voltage control circuit 50 commands the switch 31 to be connected to the a side (outputs the first command).
  • the voltage converter 32 converts the input voltage of the DC power supply 10 into a lower voltage, applies it to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64, and operates with a low voltage.
  • the voltage control circuit 50 instructs the switch 41 to be connected to the c side (outputs the third command). ).
  • the voltage converter 42 converts the input voltage of the DC power supply 20 to a lower voltage and applies it to the gate terminal G of the peak amplifier 64 to completely turn off the peak amplifier 64.
  • the voltage control circuit 50 commands the switch 31 to be connected to the b side (outputs a second command).
  • the voltage conversion circuit 30 applies the voltage of the DC power supply 10 to the drain terminals D of the carrier amplifier 61 and the peak amplifier 64 and operates with a high voltage.
  • the voltage control circuit 50 commands the switch 41 to be connected to the d side (outputs a fourth command).
  • the voltage conversion circuit 40 applies the voltage of the DC power source 20 to the gate terminal G of the peak amplifier 64, and puts the peak amplifier 64 into a normal class C bias operation state. Note that a DC power source is connected to the gate terminal G of the carrier amplifier 61. Twenty output voltages are applied directly.
  • the predetermined value A 28 dBm, which is the maximum output power of 6 dBm
  • the predetermined value B is -6 dB of the saturated power during low-voltage operation.
  • Figure 11 shows an example when the value (25 dBm) is set.
  • the output power is 28 dBm or less, which is the predetermined value A
  • the low voltage obtained by conversion by the voltage converter 32 is applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64, thereby reducing the voltage. It operates and can obtain high drain efficiency in a low output state.
  • the power consumed by the peak amplifier 64 is reduced, so that the drain efficiency can be improved in a low output state.
  • the voltage of the DC power supply 10 is applied to the drain terminals D of the carrier amplifier 61 and the peak amplifier 64, so that it operates at a high voltage and is high. High saturation power can be secured in the output state.
  • the efficiency can be further improved by switching the voltage applied to the drain terminal D of the carrier amplifier 61 and the peak amplifier 64 to three or more stages (at least three drain voltages having different voltage values).
  • the drain applied voltage can be set to three or more stages, further improving power efficiency.
  • a method is adopted in which the voltage converter 32 is set to an output voltage variable type and controlled by the voltage control circuit 50, or two or more voltage converters 32 are provided and switching control is performed by the voltage control circuit 50. It is possible.
  • the voltage control circuit 50 commands the voltage to be variably output by the voltage conversion circuit 30 based on the magnitude relationship between two or more predetermined values (at least two predetermined values having different values) and the output power. (At least three directives).
  • the voltage conversion circuit 30 outputs at least three drain voltages having different voltage values based on at least three commands.
  • a power amplifying device according to Embodiment 5 of the present invention will be described with reference to FIG.
  • FIG. 12 is a diagram showing the configuration of the power amplifying device according to Embodiment 5 of the present invention.
  • the configuration of the power amplifying device according to Embodiment 5 of the present invention is such that the drain terminal D of the carrier amplifier 61 is directly applied from the DC power supply 10 and variably applied via the voltage converter 32.
  • the point power is that the output voltage of the DC power supply 10 is directly applied to the drain terminal D of the peak amplifier 64.
  • other configurations and operations are the same as in Example 4 above. It is.
  • the voltage control circuit 50 Based on the output power information, when the output power is equal to or less than the predetermined value A, the voltage control circuit 50 connects the switch 31 to the a side.
  • the voltage conversion circuit 30 converts the output voltage of the DC power supply 10 into a low voltage by the voltage converter 32 and applies it to the drain terminal D of the carrier amplifier 61.
  • the voltage control circuit 50 connects the switch 31 to the b side.
  • the voltage conversion circuit 30 applies the output voltage of the DC power supply 10 to the drain terminal D of the carrier amplifier 61.
  • the output voltage of the DC power supply 10 is directly applied to the drain terminal D of the peak amplifier 64.
  • the carrier amplifier 61 is operated at a low voltage, so that the current capacity required for the voltage converter 32 is smaller than the maximum current consumption of the Doherty amplifier 60 ( (For example, about half). As a result, the power consumption and the amount of heat generated by the voltage converter 32 can be reduced, and there is an effect that it is possible to use small and inexpensive parts.
  • the carrier amplifier 61 By operating the carrier amplifier 61 at a low voltage and a high voltage, the power efficiency of the carrier amplifier 61 during the low voltage operation is improved.
  • the carrier amplifier 61 and the peak amplifier 64 provide a higher saturation power. The power S to obtain
  • the efficiency can be further improved by switching the voltage applied to the drain terminal D of the carrier amplifier 61 to at least three stages (at least three drain voltages having different voltage values).
  • the drain applied voltage can be set to 3 or more stages to further increase power efficiency.
  • the ability to turn S For this purpose, the voltage converter 32 is set to a variable output voltage type and controlled by the voltage control circuit 50, or two or more voltage converters 32 are provided and the voltage control circuit 50 performs switching control. It is possible. That is, the voltage control circuit 50 commands the voltage to be variably output by the voltage conversion circuit 30 based on the magnitude relationship between two or more predetermined values (at least two predetermined values having different values) and the output power (at least three predetermined values). Command).
  • the voltage conversion circuit 30 outputs at least three drain voltages having different voltage values based on at least three commands.
  • the peak amplifier 64 when the output power is a predetermined value A or less, a low voltage is applied to the drain terminal D or the collector terminal C, and when the output power is a predetermined value B or less, the peak amplifier 64 is applied. Applies a gate voltage or base voltage to the Doherty amplifier 60 so that the peak amplifier 64 is completely turned off. In theory, in a region where the peak amplifier 64 should be turned off, the peak amplifier 64 is completely turned off. Therefore, the power consumed by the peak amplifier 64 can be reduced, and the power efficiency at the time of a small signal can be further improved by operating at a low voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 ドレイン電圧を出力する直流電源と、並列接続されたキャリア増幅器及びピーク増幅器を有し、RF信号を増幅するドハティ増幅器と、出力電力が所定値以下の場合には低電圧を出力するように第1の指令を出力し、前記出力電力が前記所定値より大きい場合には高電圧を出力するように第2の指令を出力する電圧制御回路と、前記第1の指令に基づき、前記ドレイン電圧をそれより低い電圧に変換して前記キャリア増幅器及びピーク増幅器のドレイン端子に印加し、前記第2の指令に基づき、前記ドレイン電圧をそのまま前記キャリア増幅器及びピーク増幅器のドレイン端子に印加する電圧変換回路とを設けた。

Description

明 細 書
電力増幅装置
技術分野
[0001] この発明は、地上系セルラー通信における携帯電話や、衛星通信における通信端 末装置等の無線通信装置に使用され、高効率化が要求される電力増幅装置に関す るものである。
背景技術
[0002] 従来の高効率の電力増幅装置は、キャリア増幅器とピーク増幅器を組み合せたド ハティ増幅器により構成されている(例えば、非特許文献 1参照)。キャリア増幅器は、 入力信号が小さいとき(以下、「小信号時」という。)に線形性を確保するために、ピー ク増幅器は、入力信号が大きいとき(以下、「大信号時」という。)に飽和電力を確保 するために使用される。ドハティ増幅器に入力された入力信号は 2つに分配され、一 方はキャリア増幅器に入力され、もう一方はピーク増幅器に入力される。キャリア増幅 器は、通常、 A級から AB級ないしは B級にバイアスされるため、入力信号のレベルに 関わらず増幅を行ない出力する。ピーク増幅器は、通常、 C級にバイアスされるため 、小信号時は非動作状態となり、大信号時には動作状態となって信号を増幅し出力 する。即ち、小信号時はキャリア増幅器のみの動作となるので、高効率動作となり、大 信号時はキャリア増幅器とピーク増幅器の出力が合成されるので高い飽和電力が確 保される。
[0003] 非特許文献 1:中山正敏、高木直著"電力増幅器の低歪み,高効率化の手法"、 MW E2004 Microwave Workshops Digest. P575— 584
発明の開示
発明が解決しょうとする課題
[0004] しかし、効率が良いとされるドハティ増幅器による電力増幅装置であっても、大信号 時の効率に比較して、小信号時の電力効率は大きく低下しているという問題点があ つた。とくに、近年では、携帯電話等の移動体通信端末装置は、広い出力電力範囲 で使用する通信方式を採用する例が多ぐ小信号時の電力効率の改善は 1つの課 題となっている。
[0005] この発明は、上述のような課題を解決するためになされたもので、その目的は、地 上系セルラー通信における携帯電話や、衛星通信における通信端末装置等の無線 通信装置に使用される電力増幅装置であって、小信号時にも電力効率の良い電力 増幅装置を得るものである。
課題を解決するための手段
[0006] この発明に係る電力増幅装置は、第 1のドレイン電圧を出力する直流電源と、並列 接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハティ増 幅器と、出力電力が所定値以下の場合には低電圧を出力するように第 1の指令を出 力し、前記出力電力が前記所定値より大きい場合には高電圧を出力するように第 2 の指令を出力する電圧制御回路と、前記第 1の指令に基づき、前記第 1のドレイン電 圧を電圧変換した第 2のドレイン電圧、又は前記第 1のドレイン電圧を前記キャリア増 幅器及びピーク増幅器のドレイン端子に印加し、前記第 2の指令に基づき、前記第 1 のドレイン電圧、又は前記第 1のドレイン電圧を電圧変換した第 2のドレイン電圧を前 記キャリア増幅器及びピーク増幅器のドレイン端子に印加する電圧変換回路とを設 けたものである。
発明の効果
[0007] この発明に係る電力増幅装置は、出力電力が所定値以下の場合にはドレイン端子 に低電圧を、出力電力が所定値より大きい場合にはドレイン端子に高電圧を印加す るので、小信号時には低電圧で動作することで電力効率を向上することができるとい う効果を奏する。
図面の簡単な説明
[0008] [図 1]この発明の実施例 1に係る電力増幅装置の構成を示す図である。
[図 2]この発明の実施例 1に係る電力増幅装置のドハティ増幅器のキャリア増幅器の 回路構成を示す図である。
[図 3]この発明の実施例 1に係る電力増幅装置の FETの動作点の設定を示す図であ [図 4]この発明の実施例 1に係る電力増幅装置の低電圧動作及び高電圧動作の場 合の入力電力と出力電力の関係を示すグラフである。
[図 5]この発明の実施例 1に係る電力増幅装置の低電圧動作及び高電圧動作の場 合の出力電力とドレイン効率の関係を示すグラフである。
園 6]キャリア増幅器及びピーク増幅器のドレイン端子への印加電圧を 3段階以上に 切り替えた場合の出力電力とドレイン効率の関係を示すグラフである。
園 7]この発明の実施例 2に係る電力増幅装置の構成を示す図である。
園 8]この発明の実施例 3に係る電力増幅装置の構成を示す図である。
園 9]この発明の実施例 3に係る電力増幅装置のピーク増幅器のバイアス点近傍の ゲート電圧 ドレイン電流特性を示すグラフである。
園 10]この発明の実施例 4に係る電力増幅装置の構成を示す図である。
園 11]この発明の実施例 4に係る電力増幅装置の出力電力とドレイン効率の関係を
[図 12]この発明の実施例 5に係る電力増幅装置の構成を示す図である。
発明を実施するための最良の形態
[0009] この発明の実施例 1から実施例 5までについて以下説明する。
実施例 1
[0010] この発明の実施例 1に係る電力増幅装置について図 1から図 6までを参照しながら 説明する。図 1は、この発明の実施例 1に係る電力増幅装置の構成を示す図である。 なお、以降では、各図中、同一符号は同一又は相当部分を示す。
[0011] 図 1において、この発明の実施例 1に係る電力増幅装置は、ドレイン電圧 Vdを出力 する直流電源 10と、この直流電源 10からの電圧を可変出力する電圧変換回路 30と 、出力電力情報に基づき電圧変換回路 30を制御する電圧制御回路 50と、 RF入力 端子 1からの RF入力信号を増幅して RF出力端子 2から出力するドハティ増幅器 60と が設けられている。
[0012] また、図 1において、電圧変換回路 30は、直流電源 10の出力先を切替えるスイツ チ 31と、入力される直流電源 10の電圧をそれより低い電圧に変換する電圧変換器 3 2とが設けられている。このスィッチ 31は、直流電源 10の出力電圧を電圧変換器 32 により電圧変換してドハティ増幅器 60へ出力する経路と、直流電源 10の出力電圧を そのままドハティ増幅器 60へ出力する経路の切り替えを行う。
[0013] 電圧変換回路 30は、出力電力情報による出力電力が高いときには高電圧を、出力 電力が低いときには低電圧を出力するように電圧制御回路 50により制御される。
[0014] さらに、図 1において、ドノ、ティ増幅器 60は、キャリア増幅器 61と、このキャリア増幅 器 61の出力側に設けた 1/4波長線路 62と、後述するピーク増幅器の入力側に設 けた 1/4波長線路 63と、ピーク増幅器 64とから構成されている。直流電源 10の出 力電圧は、電圧変換回路 30を介して、ドハティ増幅器 60内のキャリア増幅器 61及び ピーク増幅器 64に給電される。
[0015] 図 2は、この発明の実施例 1に係る電力増幅装置のドハティ増幅器のキャリア増幅 器の回路構成を示す図である。
[0016] キャリア増幅器 61には、 FET (Field Effect Transistor)又はバイポーラ 'トランジスタ が用いられ、 FETの場合の回路構成を図 2に示す。なお、ピーク増幅器 64の回路構 成も同様である。 FETのソース端子 Sを接地し、 RF入力端子 1を FETのゲート端子 G に接続し、このゲート端子 Gをゲート電圧 Vgによりバイアスする。ドレイン端子 Dは RF 出力端子 2に接続されており、ドレイン電圧 Vdを印加する。
[0017] ここでは、 FETに対するバイアス設定等について説明する力 バイポーラ 'トランジ スタを用いた場合も同様である。つまり、ェミッタ端子 Eを接地し、ベース端子 Bを RF 入力端子 1に接続し、コレクタ端子 Cを RF出力端子 2に接続する。そして、ベース端 子 Bのバイアス設定により、キャリア増幅器 61を A級動作(又は AB級ないし B級動作 )させ、ピーク増幅器 64を C級動作させることができる。このとき、バイポーラ 'トランジ スタのコレクタ端子 Cは、 FETのドレイン端子 Dに対応する。以下では、 FETの場合 について説明する力 S、バイポーラ 'トランジスタのコレクタ端子 Cへの電圧印加は、 FE Tのドレイン端子 Dへの電圧印加と同様に行うことができる。すなわち、明細書全体を 通じて、キャリア増幅器 61及びピーク増幅器 64が、ノ ィポーラ'トランジスタの場合に は、 FETのソース端子 S、ゲート端子 G、及びドレイン端子 Dを、それぞれバイポーラ' トランジスタのェミッタ端子 E、ベース端子 B、及びコレクタ端子 Cと読み替えればよい
[0018] つぎに、この発明の実施例 1に係る電力増幅装置の動作について図面を参照しな 力 ¾説明する。
[0019] 図 3は、この発明の実施例 1に係る電力増幅装置の FETの動作点の設定を示す図 である。また、図 4は、この発明の実施例 1に係る電力増幅装置の低電圧動作及び高 電圧動作の場合の入力電力と出力電力の関係を示すグラフである。図 5は、この発 明の実施例 1に係る電力増幅装置の低電圧動作及び高電圧動作の場合の出力電 力とドレイン効率の関係を示すグラフである。さらに、図 6は、キャリア増幅器及びピー ク増幅器のドレイン端子への印加電圧を 3段階以上に切り替えた場合の出力電力と ドレイン効率の関係を示すグラフである。
[0020] まず、ドハティ増幅器 60の動作について説明する。 RF入力端子 1から入力された RF信号は 2つに分配され、一方はキャリア増幅器 61に、もう一方はピーク増幅器 64 に入力される。キャリア増幅器 61は、通常 A級力 AB級ないし B級にバイアスされる ため、入力された RF信号のレベルに関わらず増幅を行い出力する。ピーク増幅器 6 4は、通常 C級にバイアスされるため、小信号時には非動作状態となり、また大信号 時には動作状態となり信号を増幅し出力する。
[0021] キャリア増幅器 61及びピーク増幅器 64のドレイン電圧 Vdは、直流電源 10及び電 圧変換回路 30により設定される。図 3は FETの動作点設定を表す模式図であり、キ ャリア増幅器 61は図中の A点に、ピーク増幅器 64は図中の C点に動作点が来るよう にゲート電圧 Vgを設定する。図 3に示すように、 A級動作点はドレイン電流 Idが約 Ids s/2となる位置にあり、 C級動作点は Idがほぼ 0となる位置にある。ここで、 Idssは、 ゲート電圧を 0としたときのドレイン電流値を表す。 AB級及び B級と!/、われる動作点 は動作点 Aと Cとの間に位置する。キャリア増幅器 61はゲート電圧 Vgの設定により A 点に設定して A級動作とし、ピーク増幅器 64はゲート電圧 Vgの設定により C点に設 定して C級動作とする。
[0022] 図 1において、電圧制御回路 50には出力電力情報が入力されており、この出力電 力情報に基づき電圧制御回路 50は電圧変換回路 30を制御する。出力電力情報は 、この電力増幅装置が出力する RF信号の出力電力を表す情報である。出力電力が 所定値以下の場合には、電圧制御回路 50は、スィッチ 31を a側に接続するように指 令する(第 1の指令を出力する)。電圧変換器 32は、入力される直流電源 10の電圧 をそれより低い電圧に変換し、その低い電圧をキャリア増幅器 61及びピーク増幅器 6 4のドレイン端子 Dに印加し、低電圧により動作させる(以下、「低電圧動作」と呼ぶ)。
[0023] 一方、出力電力が所定値より大きい場合には、電圧制御回路 50は、スィッチ 31を b 側に接続するよう指令する(第 2の指令を出力する)。電圧変換回路 30は、直流電源 10の電圧をキャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加し、高電 圧により動作させる(以下、「高電圧動作」と呼ぶ)。
[0024] 低電圧動作及び高電圧動作の場合の入力電力と出力電力の関係を図 4に、出力 電力とドレイン効率の関係を図 5に示す。ここで、ドレイン効率 Edは、出力電力を Pou t、直流電源 10の消費電力を Pdcとして、 Ed= 100 X (Pout/Pdc) [%]により表さ れる。図 4により、低電圧動作の場合には、高電圧動作の場合に比べて出力電力が 低くなるものの、図 5により、低電圧動作の方がドレイン効率は高くなる。この特性を用 いて、出力電力が所定値以下の場合には低電圧で動作させ、出力電力が所定値よ り大き!/、場合には高電圧で動作させる。
[0025] 例えば、電力増幅装置の最大出力電力仕様を 34dBmとした場合に、最大出力電 力の一 6dB値である 28dBmを所定値として動作させる。このとき、出力電力が所定 値である 28dBm以下では、電圧変換器 32によって変換して得られた低電圧力 キヤ リア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加されることにより低電圧で 動作し、低出力状態において高いドレイン効率を得ることができる。
[0026] 出力電力が所定値である 28dBmより大きい場合では、直流電源 10の電圧が、キヤ リア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加されることにより高電圧で 動作し、高出力状態にぉレ、て高レ、飽和電力を確保することができる。
[0027] 図 4及び図 5中に示した矢印は、出力電力 28dBmを境とする低出力状態から高出 力状態への動作点の移行を表しており、逆に高出力状態から低出力状態への動作 点の移行は矢印と逆向きになる。図 4に示すように、出力電力 28dBmでの出力電力 を連続とするために、低電圧動作時の入力電力に対して、高電圧動作時の入力電 力を図中の矢印分 (D→E)だけオフセットさせる。このように設定した出力電力の所 定値に対して、所定値以下の場合と所定値より大きい場合でドレイン端子 Dへの印 加電圧を変化させるが、所定値の設定は、最大出力電力のマイナス数 dB値を任意 に設定することができ、主として電力増幅装置の送信電力範囲(最小値と最大値)仕 様に基づき定める。
[0028] 以上の説明においては、電圧変換器 32が直流電源 10の出力電圧を低電圧に変 換する構成について説明した力 電圧変換器 32が直流電源 10の出力電圧を高電 圧に変換する昇圧タイプとする構成でもよい。この場合、直流電源 10が出力する電 圧が低電圧となり、電圧制御回路 50は、低電圧動作時にはスィッチ 31を b側に接続 し、高電圧動作時には a側に接続するように指令する。
[0029] また、キャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dへの印加電圧を 3段 階以上(電圧値が異なる少なくとも 3つのドレイン電圧)に切り替えることにより、さらに 効率改善を図ることもできる。例えば、図 6のように、出力電力が 28dBmより大きい場 合で、さらにドレイン印加電圧を多段にした場合、さらに電力効率が向上する。このよ うにドレイン印加電圧を 3段以上に設定できるようにして、さらに電力効率を高めること ができる。このためには、電圧変換器 32を出力電圧可変タイプにして電圧制御回路 50によって制御する方法、又は 2個以上の電圧変換器 32を設けて電圧制御回路 50 により切替制御する方法等をとることが考えられる。すなわち、電圧制御回路 50は、 2 つ以上の所定値 (値が異なる少なくとも 2つの所定値)と出力電力の大小関係に基づ いて電圧変換回路 30が可変出力する電圧を指令する(少なくとも 3つの指令)。電圧 変換回路 30は、少なくとも 3つの指令に基づいて電圧値が異なる少なくとも 3つのド レイン電圧を出力する。
[0030] この発明の実施例 1によれば、出力電力が所定値以下の場合にはドレイン端子 D 又はコレクタ端子 Cには低電圧を、出力電力が所定値より大きい場合にはドレイン端 子 D又はコレクタ端子 Cには高電圧を印加するので、小信号時に低電圧で動作する ことで電力効率を向上することができる。
実施例 2
[0031] この発明の実施例 2に係る電力増幅装置について図 7を参照しながら説明する。図
7は、この発明の実施例 2に係る電力増幅装置の構成を示す図である。
[0032] 図 7において、この発明の実施例 2に係る電力増幅装置の構成は、キャリア増幅器
61のドレイン端子 Dには直流電源 10からの直接印加と電圧変換器 32を介しての可 変印加とを切り替え、ピーク増幅器 64のドレイン端子 Dには直流電源 10の出力電圧 を直接印加する構成としている点力 上記の実施例 1と異なり、その他の構成及び動 作は上記の実施例 1と同様である。
[0033] つぎに、この発明の実施例 2に係る電力増幅装置の動作について図面を参照しな 力 ¾説明する。
[0034] 出力電力情報に基づき、電圧制御回路 50は、出力電力が所定値以下の場合には 、スィッチ 31を a側に接続し、直流電源 10の出力電圧を電圧変換器 32により低電圧 変換してキャリア増幅器 61のドレイン端子 Dへ印加する。一方、出力電力が所定値よ り大きい場合には、電圧制御回路 50は、スィッチ 32を b側に接続し、直流電源 210 出力電圧をキャリア増幅器 61のドレイン端子 Dへ印加する。
[0035] ピーク増幅器 64のドレイン端子 Dには、直流電源 10の出力電圧を直接印加する。
[0036] 図 7に示す電力増幅装置においては、キャリア増幅器 61にのみ低電圧で動作させ ることにより、電圧変換器 32に要求される電流容量が、ドハティ増幅器 60の最大消 費電流よりも小さく(例えば、約半分に)設定することができる。これにより、電圧変換 器 32での消費電力及び発熱量を小さくすることができ、小型で安価な部品を使用す ること力 Sできる効果がある。なお、キャリア増幅器 61に対して、低電圧及び高電圧で 動作させることにより、低電圧動作時のキャリア増幅器 61の電力効率が改善され、高 電圧動作時にはキャリア増幅器 61とピーク増幅器 64により高い飽和電力を得ること ができる。
[0037] また、キャリア増幅器 61のドレイン端子 Dへの印加電圧を 3段階以上(電圧値が異 なる少なくとも 3つのドレイン電圧)に切り替えることにより、さらに電力効率の改善を 図ることもできる。例えば、上記の実施例 1における図 6に図示したのと同様に、出力 電力が 28dBmより大きい場合で、さらにドレイン印加電圧を多段にした場合、さらに 電力効率が向上する。このように、ドレイン印加電圧を 3段以上に設定できるようにし て、さらに効率を高めることができる。このためには、電圧変換器 32を出力電圧可変 タイプにして電圧制御回路 50によって制御する方法、又は 2個以上の電圧変換器 3 2を設けて電圧制御回路 50により切替制御する方法等をとることが考えられる。すな わち、電圧制御回路 50は、 2つ以上の所定値 (値が異なる少なくとも 2つの所定値)と 出力電力の大小関係に基づいて電圧変換回路 30が可変出力する電圧を指令する( 少なくとも 3つの指令)。電圧変換回路 30は、少なくとも 3つの指令に基づいて電圧 値が異なる少なくとも 3つのドレイン電圧を出力する。
[0038] この発明の実施例 2によれば、出力電力が所定値以下の場合にはドレイン端子 D 又はコレクタ端子 Cには低電圧を、出力電力が所定値より大きい場合にはドレイン端 子 D又はコレクタ端子 Cには高電圧を印加するので、小信号時に低電圧で動作する ことで電力効率を向上することができる。
実施例 3
[0039] この発明の実施例 3に係る電力増幅装置について図 8及び図 9を参照しながら説 明する。図 8は、この発明の実施例 3に係る電力増幅装置の構成を示す図である。
[0040] 図 8において、この発明の実施例 3に係る電力増幅装置は、ゲート電圧 Vgを出力 する直流電源 20と、この直流電源 20からの電圧を可変出力する電圧変換回路 40と 、出力電力情報に基づき電圧変換回路 40を制御する電圧制御回路 50と、 RF入力 端子 1からの RF入力信号を増幅して RF出力端子 2から出力するドハティ増幅器 60と が設けられている。
[0041] また、図 8において、電圧変換回路 40は、直流電源 20の出力先を切替えるスイツ チ 41と、入力される直流電源 20の電圧をそれより低い電圧に変換する電圧変換器 4 2とが設けられている。このスィッチ 41は、直流電源 20の出力電圧を電圧変換器 42 により電圧変換してピーク増幅器 64のゲート端子 Gへ出力する経路と、直流電源 20 の出力電圧をそのままピーク増幅器 64のゲート端子 Gへ出力する経路の切り替えを 行う。
[0042] 直流電源 20の出力電圧は、電圧変換回路 40を介して、ドハティ増幅器 60内のキ ャリア増幅器 61及びピーク増幅器 64のゲート端子 Gに印加される。電圧変換回路 4 0は、出力電力情報による出力電力が低いときにはピーク増幅器 64がオフ状態にな るように、出力電力が高いときにはキャリア増幅器 61及びピーク増幅器 64が動作す るように、電圧制御回路 50により制御される。その他の構成及びドハティ増幅器 60の 基本的動作は、上記の実施例 1と同様である。
[0043] つぎに、この発明の実施例 3に係る電力増幅装置の動作について図面を参照しな 力 ¾説明する。
[0044] 図 9は、この発明の実施例 3に係る電力増幅装置のピーク増幅器のバイアス点近傍 のゲート電圧 ドレイン電流特性を示すグラフである。
[0045] 図 8において、電圧制御回路 50には、出力電力情報が入力されており、この出力 電力情報に基づき電圧制御回路 50は電圧変換回路 40を制御する。出力電力情報 は、この電力増幅装置が出力する RF信号の出力電力を表す情報である。
[0046] キャリア増幅器 61のゲート端子 Gには、直流電源 20の出力電圧が直接印加される
[0047] 出力電力が所定値以下の場合には、電圧制御回路 50は、スィッチ 42を c側に接続 するように指令する(第 1の指令を出力する)。電圧変換器 42は、入力される直流電 源 20の電圧をそれより低い電圧に変換し、ピーク増幅器 64のゲート端子 Gに印加し 、ピーク増幅器 64を完全にオフ状態にする(以下、「オフ状態」と呼ぶ)。
[0048] 一方、出力電力が所定値より大きい場合には、電圧制御回路 50は、スィッチ 41を d 側に接続するよう指令する(第 1の指令を出力する)。電圧変換回路 40は、直流電源 20の電圧をピーク増幅器 64のゲート端子 Gに印加し、ピーク増幅器 64を通常の C級 バイアス動作状態にする(以下、「C級バイアス動作」と呼ぶ)。
[0049] FETのゲート電圧に対するドレイン電流の関係を図 9に示す。理論的には、ドハテ ィ増幅器 60のピーク増幅器 64は C級にバイアスされているため、小信号時であるピ ンチオフ電圧以下の領域ではピーク増幅器 64は非動作状態となる。しかしながら、 実際には、 C級バイアスではピンチオフ電圧近傍で少しずつ流れ始め、ゲート電圧の 増加に応じて徐々にドレイン電流が増加する特性を有するため、ピーク増幅器 64が 理論的にはオフ状態になる領域においてもドレイン電流が消費される。この電流は出 力電力にほとんど寄与しないため、無駄に電力が消費されることになる。出力電力が 所定値以下の場合にはピーク増幅器 64をオフ動作にし、出力電力が所定値より大き い場合には C級バイアスで動作させる。これにより、理論的には、ピーク増幅器 64が オフ状態となるべき領域において、ピーク増幅器 64が消費する電力を低減でき、電 力効率を向上することができる。
[0050] この発明の実施例 3によれば、出力電力が所定値以下の場合にはピーク増幅器 6 4に完全にオフ状態となるようなゲート電圧またはベース電圧を印加するので、理論 的にはピーク増幅器 64がオフ状態となるべき領域において、ピーク増幅器 64が完全 にはオフ状態にならないために、ピーク増幅器 64が消費してしまう電力を低減でき、 電力効率を向上することができる。
実施例 4
[0051] この発明の実施例 4に係る電力増幅装置について図 10及び図 11を参照しながら 説明する。図 10は、この発明の実施例 4に係る電力増幅装置の構成を示す図である
[0052] 図 10において、この発明の実施例 4に係る電力増幅装置は、ドレイン電圧 Vdを出 力する直流電源(第 1の直流電源) 10と、ゲート電圧 Vgを出力する直流電源(第 2の 直流電源) 20と、直流電源 10からの電圧を可変出力する電圧変換回路(第 1の電圧 変換回路) 30と、直流電源 20からの電圧を可変出力する電圧変換回路(第 2の電圧 変換回路) 40と、出力電力情報に基づき電圧変換回路 30及び電圧変換回路 40を 制御する電圧制御回路 50と、 RF入力端子 1からの RF入力信号を増幅して RF出力 端子 2から出力するドハティ増幅器 60とが設けられている。
[0053] 電圧変換回路 30において、スィッチ 31によって、直流電源 10の出力電圧を電圧 変換器 23により電圧変換してキャリア増幅器 61及びピーク増幅器 64 出力する経 路と、直流電源 10の出力電圧を電圧変換せずにキャリア増幅器 61及びピーク増幅 器 64 出力する経路の切り替えを行う。直流電源 10の出力電圧は、電圧変換回路 30を介して、ドハティ増幅器 60内のキャリア増幅器 61及びピーク増幅器 64のドレイ ン端子 Dに印加される。電圧変換回路 30は、出力電力情報による出力電力が低いと きには低電圧を出力するように、出力電力が高いときには高電圧を出力するように、 電圧制御回路 50により制御される。
[0054] また、電圧変換回路 40において、スィッチ 41によって、直流電源 20の出力電圧を 電圧変換器 42により電圧変換してピーク増幅器 64のゲート端子 Gへ出力する経路と 、直流電源 20の出力電圧を電圧変換せずにピーク増幅器 64のゲート端子 Gへ出力 する経路の切り替えを行う。直流電源 20の出力電圧は、電圧変換回路 40を介して、 ドハティ増幅器 60内のキャリア増幅器 61及びピーク増幅器 64のゲート端子 Gに印加 される。電圧変換回路 40は、出力電力情報による出力電力が低いときにはピーク増 幅器 64がオフ状態になるように、出力電力が高いときにはキャリア増幅器 61及びピ ーク増幅器 64が動作するように、電圧制御回路 50により制御される。その他の構成 及びドハティ増幅器 60の基本的動作は、上記の実施例 1及び実施例 3と同様である
[0055] つぎに、この発明の実施例 4に係る電力増幅装置の動作について図面を参照しな 力 ¾説明する。
[0056] 図 11は、この発明の実施例 4に係る電力増幅装置の出力電力とドレイン効率の関
[0057] 図 10において、電圧制御回路 50には、出力電力情報が入力されており、この出力 電力情報に基づき電圧変換回路 30及び電圧変換回路 40を制御する。出力電力情 報は、この電力増幅装置が出力する RF信号の出力電力を表す情報である。出力電 力が所定値 A (第 1の所定値)以下の場合には、電圧制御回路 50は、スィッチ 31を a 側に接続するように指令する(第 1の指令を出力する)。電圧変換器 32は、入力され る直流電源 10の電圧をそれより低い電圧に変換し、キャリア増幅器 61及びピーク増 幅器 64のドレイン端子 Dに印加し、低電圧により動作させる。
[0058] また、出力電力が所定値 B (第 2の所定値)以下の場合には、電圧制御回路 50は、 スィッチ 41を c側に接続するように指令する(第 3の指令を出力する)。電圧変換器 42 は、入力される直流電源 20の電圧をそれより低い電圧に変換し、ピーク増幅器 64の ゲート端子 Gに印加し、ピーク増幅器 64を完全にオフ状態にする。
[0059] 一方、出力電力が所定値 Aより大きい場合には、電圧制御回路 50は、スィッチ 31 を b側に接続するよう指令する(第 2の指令を出力する)。電圧変換回路 30は、直流 電源 10の電圧をキャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加し、 高電圧により動作させる。
[0060] また、出力電力が所定値 Bより大きい場合には、電圧制御回路 50は、スィッチ 41を d側に接続するよう指令する(第 4の指令を出力する)。電圧変換回路 40は、直流電 源 20の電圧をピーク増幅器 64のゲート端子 Gに印加し、ピーク増幅器 64を通常の C 級バイアス動作状態にする。なお、キャリア増幅器 61のゲート端子 Gには、直流電源 20の出力電圧が直接印加される。
[0061] 電力増幅装置の最大出力電力仕様を 34dBmとした場合に、最大出力電力の— 6 dB値である 28dBmを所定値 Aとして定め、所定値 Bを低電圧動作時の飽和電力の — 6dB値(25dBm)に設定した場合の例を図 11に示す。このとき、出力電力が所定 値 Aである 28dBm以下では、電圧変換器 32によって変換して得られた低電圧がキ ャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加されることにより低電圧 で動作し、低出力状態において高いドレイン効率を得ることができる。また、出力電力 が所定値 Bである 25dBm近傍では、ピーク増幅器 64で消費される電力が低減され るため、低出力状態においてドレイン効率を向上させることができる。
[0062] 一方、出力電力が所定値 Aである 28dBmより大きい場合では、直流電源 10の電 圧がキャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dに印加されることにより 高電圧で動作し、高出力状態において高い飽和電力を確保することができる。
[0063] 以上より、出力電力が所定値 A以下の場合にはキャリア増幅器 61及びピーク増幅 器 64のドレイン端子 D又はコレクタ端子 Cには低電圧を、出力電力が所定値 B以下 の場合にはピーク増幅器 64に完全にオフ状態となるようなゲート電圧又はベース電 圧をドハティ増幅器 60に印加するので、理論的にはピーク増幅器 64がオフ状態とな るべき領域において、ピーク増幅器 64が消費する電力を低減できるとともに、低電圧 で動作することで小信号時の電力効率を一層向上することができる。
[0064] また、キャリア増幅器 61及びピーク増幅器 64のドレイン端子 Dへの印加電圧を 3段 階以上(電圧値が異なる少なくとも 3つのドレイン電圧)に切り替えることにより、さらに 効率改善を図ることもできる。ドレイン印加電圧を 3段以上に設定できるようにして、さ らに電力効率を高めることができる。このためには、電圧変換器 32を出力電圧可変タ イブにして電圧制御回路 50によって制御する方法、又は 2個以上の電圧変換器 32 を設けて電圧制御回路 50により切替制御する方法等をとることが考えられる。すなわ ち、電圧制御回路 50は、 2つ以上の所定値 (値が異なる少なくとも 2つの所定値)と出 力電力の大小関係に基づいて電圧変換回路 30が可変出力する電圧を指令する(少 なくとも 3つの指令)。電圧変換回路 30は、少なくとも 3つの指令に基づいて電圧値が 異なる少なくとも 3つのドレイン電圧を出力する。 実施例 5
[0065] この発明の実施例 5に係る電力増幅装置について図 12を参照しながら説明する。
図 12は、この発明の実施例 5に係る電力増幅装置の構成を示す図である。
[0066] 図 12において、この発明の実施例 5に係る電力増幅装置の構成は、キャリア増幅 器 61のドレイン端子 Dには直流電源 10からの直接印加と電圧変換器 32を介しての 可変印加とを切り替え、ピーク増幅器 64のドレイン端子 Dには直流電源 10の出力電 圧を直接印加する構成としている点力 上記の実施例 4と異なり、その他の構成及び 動作は上記の実施例 4と同様である。
[0067] つぎに、この実施例 5に係る電力増幅装置の動作について図面を参照しながら説 明する。
[0068] 出力電力情報に基づき、出力電力が所定値 A以下の場合には、電圧制御回路 50 は、スィッチ 31を a側に接続する。電圧変換回路 30は、直流電源 10の出力電圧を電 圧変換器 32により低電圧変換してキャリア増幅器 61のドレイン端子 Dへ印加する。 一方、出力電力が所定値 Aより大きい場合には、電圧制御回路 50は、スィッチ 31を b側に接続する。電圧変換回路 30は、直流電源 10の出力電圧をキャリア増幅器 61 のドレイン端子 Dへ印加する。ピーク増幅器 64のドレイン端子 Dには、直流電源 10の 出力電圧が直接印加されてレ、る。
[0069] 図 12に示す電力増幅装置においては、キャリア増幅器 61にのみ低電圧で動作さ せることにより、電圧変換器 32に要求される電流容量が、ドハティ増幅器 60の最大 消費電流よりも小さく(例えば、約半分に)設定することができる。これにより、電圧変 換器 32での消費電力及び発熱量を小さくすることができ、小型で安価な部品を使用 すること力 Sできる効果がある。なお、キャリア増幅器 61に対して、低電圧及び高電圧 で動作させることにより、低電圧動作時のキャリア増幅器 61の電力効率が改善され、 高電圧動作時にはキャリア増幅器 61及びピーク増幅器 64により高い飽和電力を得 ること力 Sでさる。
[0070] また、キャリア増幅器 61のドレイン端子 Dへの印加電圧を 3段階以上(電圧値が異 なる少なくとも 3つのドレイン電圧)に切り替えることにより、さらに効率改善を図ること もできる。ドレイン印加電圧を 3段以上に設定できるようにして、さらに電力効率を高 めること力 Sできる。このためには、電圧変換器 32を出力電圧可変タイプにして電圧制 御回路 50によって制御する方法、又は 2個以上の電圧変換器 32を設けて電圧制御 回路 50により切替制御する方法等をとることが考えられる。すなわち、電圧制御回路 50は、 2つ以上の所定値 (値が異なる少なくとも 2つの所定値)と出力電力の大小関 係に基づいて電圧変換回路 30が可変出力する電圧を指令する(少なくとも 3つの指 令)。電圧変換回路 30は、少なくとも 3つの指令に基づいて電圧値が異なる少なくと も 3つのドレイン電圧を出力する。
この発明の実施例 5によれば、出力電力が所定値 A以下の場合にはドレイン端子 D 又はコレクタ端子 Cには低電圧を、出力電力が所定値 B以下の場合にはピーク増幅 器 64には完全にオフ状態となるようなゲート電圧又はベース電圧をドハティ増幅器 6 0に印加するので、理論的にはピーク増幅器 64がオフ状態となるべき領域において ,ピーク増幅器 64が完全にはオフ状態にならないために、ピーク増幅器 64が消費し てしまう電力を低減できるとともに,低電圧で動作することで小信号時の電力効率を 一層向上することができる。

Claims

請求の範囲
[1] 第 1のドレイン電圧を出力する直流電源と、
並列接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハ ティ増幅器と、
出力電力が所定値以下の場合には低電圧を出力するように第 1の指令を出力し、 前記出力電力が前記所定値より大きい場合には高電圧を出力するように第 2の指令 を出力する電圧制御回路と、
前記第 1の指令に基づき、前記第 1のドレイン電圧を電圧変換した第 2のドレイン電 圧、又は前記第 1のドレイン電圧を前記キヤリァ増幅器及びピーク増幅器のドレイン 端子に印加し、前記第 2の指令に基づき、前記第 1のドレイン電圧、又は前記第 1の ドレイン電圧を電圧変換した第 2のドレイン電圧を前記キャリア増幅器及びピーク増 幅器のドレイン端子に印加する電圧変換回路と
を備えた電力増幅装置。
[2] 第 1のドレイン電圧を出力する直流電源と、
並列接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハ ティ増幅器と、
出力電力が所定値以下の場合には低電圧を出力するように第 1の指令を出力し、 前記出力電力が前記所定値より大きい場合には高電圧を出力するように第 2の指令 を出力する電圧制御回路と、
前記第 1のドレイン電圧を前記ピーク増幅器のドレイン端子に印加するとともに、前 記第 1の指令に基づき、前記第 1のドレイン電圧を電圧変換した第 2のドレイン電圧を 前記キャリア増幅器のドレイン端子に印加し、前記第 2の指令に基づき、前記第 1のド レイン電圧を前記キャリア増幅器のドレイン端子に印加する電圧変換回路と
を備えた電力増幅装置。
[3] 第 1のゲート電圧を出力する直流電源と、
並列接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハ ティ増幅器と、
出力電力が所定値以下の場合には低電圧を出力するように第 1の指令を出力し、 前記出力電力が前記所定値より大きい場合には高電圧を出力するように第 2の指令 を出力する電圧制御回路と、
前記第 1のゲート電圧を前記キャリア増幅器のゲート端子に印加するとともに、前記 第 1の指令に基づき、前記第 1のゲート電圧を電圧変換した第 2のゲート電圧を前記 ピーク増幅器のゲート端子に印加してオフ状態とし、前記第 2の指令に基づき、前記 第 1のゲート電圧を前記ピーク増幅器のゲート端子に印加する電圧変換回路と を備えた電力増幅装置。
第 1のドレイン電圧を出力する第 1の直流電源と、
第 1のゲート電圧を出力する第 2の直流電源と、
並列接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハ ティ増幅器と、
出力電力が第 1の所定値以下の場合には低電圧を出力するように第 1の指令を出 力するとともに、前記出力電力が前記第 1の所定値より大きい場合には高電圧を出 力するように第 2の指令を出力し、前記出力電力が前記第 1の所定値より小さい第 2 の所定値以下の場合には低電圧を出力するように第 3の指令を出力するとともに、前 記出力電力が前記第 2の所定値より大きい場合には高電圧を出力するように第 4の 指令を出力する電圧制御回路と、
前記第 1の指令に基づき、前記第 1のドレイン電圧を電圧変換した第 2のドレイン電 圧、又は前記第 1のドレイン電圧を前記キヤリァ増幅器及びピーク増幅器のドレイン 端子に印加し、前記第 2の指令に基づき、前記第 1のドレイン電圧、又は前記第 1の ドレイン電圧を電圧変換した第 2のドレイン電圧を前記キャリア増幅器及びピーク増 幅器のドレイン端子に印加する第 1の電圧変換回路と、
前記第 1のゲート電圧を前記キャリア増幅器のゲート端子に印加するとともに、前記 第 3の指令に基づき、前記第 1のゲート電圧を電圧変換した第 2のゲート電圧を前記 ピーク増幅器のゲート端子に印加してオフ状態とし、前記第 4の指令に基づき、前記 第 1のゲート電圧を前記ピーク増幅器のゲート端子に印加する第 2の電圧変換回路 と
を備えた電力増幅装置。 [5] 第 1のドレイン電圧を出力する第 1の直流電源と、
第 1のゲート電圧を出力する第 2の直流電源と、
並列接続されたキャリア増幅器及びピーク増幅器を有し、 RF信号を増幅するドハ ティ増幅器と、
出力電力が第 1の所定値以下の場合には低電圧を出力するように第 1の指令を出 力するとともに、前記出力電力が前記第 1の所定値より大きい場合には高電圧を出 力するように第 2の指令を出力し、前記出力電力が前記第 1の所定値より小さい第 2 の所定値以下の場合には低電圧を出力するように第 3の指令を出力するとともに、前 記出力電力が前記第 2の所定値より大きい場合には高電圧を出力するように第 4の 指令を出力する電圧制御回路と、
前記第 1のドレイン電圧を前記ピーク増幅器のドレイン端子に印加するとともに、前 記第 1の指令に基づき、前記第 1のドレイン電圧を電圧変換した第 2のドレイン電圧を 前記キャリア増幅器のドレイン端子に印加し、前記第 2の指令に基づき、前記第 1のド レイン電圧を前記キャリア増幅器のドレイン端子に印加する第 1の電圧変換回路と、 前記第 1のゲート電圧を前記キャリア増幅器のゲート端子に印加するとともに、前記 第 3の指令に基づき、前記第 1のゲート電圧を電圧変換した第 2のゲート電圧を前記 ピーク増幅器のゲート端子に印加してオフ状態とし、前記第 4の指令に基づき、前記 第 1のゲート電圧を前記ピーク増幅器のゲート端子に印加する第 2の電圧変換回路 と
を備えた電力増幅装置。
[6] 前記電圧制御回路は、少なくとも 2つの所定値と出力電力の大小関係に基づいて 少なくとも 3つの指令を出力し、
前記電圧変換回路は、少なくとも 3つの指令に基づいて少なくとも 3つのドレイン電 圧を出力する
請求項 1又は 2記載の電力増幅装置。
[7] 前記電圧制御回路は、少なくとも 2つの所定値と出力電力の大小関係に基づいて 少なくとも 3つの指令を出力し、
前記第 1の電圧変換回路は、少なくとも 3つの指令に基づいて少なくとも 3つのドレ イン電圧を出力する
請求項 4又は 5記載の電力増幅装置。
PCT/JP2007/073504 2006-12-19 2007-12-05 電力増幅装置 WO2008075561A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097013879A KR101107888B1 (ko) 2006-12-19 2007-12-05 전력 증폭 장치
EP07850128.5A EP2101409B1 (en) 2006-12-19 2007-12-05 Power amplification device
US12/518,664 US7893770B2 (en) 2006-12-19 2007-12-05 Power amplification device
JP2008550089A JPWO2008075561A1 (ja) 2006-12-19 2007-12-05 電力増幅装置
CN2007800473304A CN101563840B (zh) 2006-12-19 2007-12-05 电力放大装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006341476 2006-12-19
JP2006-341476 2006-12-19

Publications (1)

Publication Number Publication Date
WO2008075561A1 true WO2008075561A1 (ja) 2008-06-26

Family

ID=39536194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073504 WO2008075561A1 (ja) 2006-12-19 2007-12-05 電力増幅装置

Country Status (6)

Country Link
US (1) US7893770B2 (ja)
EP (1) EP2101409B1 (ja)
JP (1) JPWO2008075561A1 (ja)
KR (1) KR101107888B1 (ja)
CN (1) CN101563840B (ja)
WO (1) WO2008075561A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027686A1 (en) * 2012-08-13 2014-02-20 Kabushiki Kaisha Toshiba Power amplifier and transmitter
WO2015029462A1 (ja) 2013-08-28 2015-03-05 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
JPWO2018235261A1 (ja) * 2017-06-23 2019-11-07 三菱電機株式会社 高周波増幅器
CN112383951A (zh) * 2020-11-16 2021-02-19 深圳国人无线通信有限公司 基站发射设备及其供电管理方法
WO2023199883A1 (ja) * 2022-04-12 2023-10-19 株式会社村田製作所 電力増幅モジュール
WO2024070736A1 (ja) * 2022-09-28 2024-04-04 株式会社村田製作所 増幅回路および通信装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760026B2 (en) 2008-03-05 2010-07-20 Skyworks Solutions, Inc. Switched capacitor voltage converter for a power amplifier
KR100905948B1 (ko) * 2008-08-28 2009-07-06 (주)카이로넷 도허티 증폭기 및 이를 포함하는 신호 증폭 시스템, 신호 증폭 방법
KR101094050B1 (ko) * 2009-07-23 2011-12-19 성균관대학교산학협력단 다중 스위치를 갖는 동적 바이어스 공급장치
EP2806557B1 (en) * 2013-05-23 2017-03-08 Ampleon Netherlands B.V. Doherty amplifier
US9136804B2 (en) * 2013-07-29 2015-09-15 Freescale Semiconductor, Inc. Switch-mode amplifier
US9231527B2 (en) * 2013-11-22 2016-01-05 Qualcomm Incorporated Circuits and methods for power amplification with extended high efficiency
US9473081B2 (en) * 2014-10-20 2016-10-18 Qualcomm Incorporated Circuits and methods for reducing supply sensitivity in a power amplifier
WO2016131028A1 (en) * 2015-02-15 2016-08-18 Skyworks Solutions, Inc. Doherty power amplifier having reduced size
US10496115B2 (en) 2017-07-03 2019-12-03 Macronix International Co., Ltd. Fast transient response voltage regulator with predictive loading
US10860043B2 (en) 2017-07-24 2020-12-08 Macronix International Co., Ltd. Fast transient response voltage regulator with pre-boosting
US20190050012A1 (en) * 2017-08-10 2019-02-14 Macronix International Co., Ltd. Voltage regulator with improved slew rate
JP2019041277A (ja) * 2017-08-25 2019-03-14 株式会社村田製作所 電力増幅回路
CN110048677B (zh) * 2018-01-16 2023-08-08 中兴通讯股份有限公司 一种功放供电控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518731A (ja) * 1997-09-30 2001-10-16 モトローラ・インコーポレイテッド 信号を増幅する装置および方法
JP2004096729A (ja) * 2002-08-29 2004-03-25 Hoko Koka Daigakko ドハーティ増幅器
JP2004173249A (ja) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 送信機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183078B2 (ja) * 1994-02-28 2001-07-03 三菱電機株式会社 制御信号生成回路、これを用いた自動利得制御回路、これを用いた受信機及びこれを用いた通信システム
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
EP0846421A1 (en) * 1996-11-06 1998-06-10 Unilever N.V. Triglyceride fat crystallization
US6097252A (en) * 1997-06-02 2000-08-01 Motorola, Inc. Method and apparatus for high efficiency power amplification
KR100553252B1 (ko) * 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
JP2006500884A (ja) * 2002-09-20 2006-01-05 トライクウィント セミコンダクター,インコーポレーテッド 切換可能な可変出力電力レベルを有する飽和電力増幅器
EP1557955A1 (en) * 2002-10-28 2005-07-27 Matsushita Electric Industrial Co., Ltd. Transmitter
KR100480496B1 (ko) 2002-11-18 2005-04-07 학교법인 포항공과대학교 도허티 증폭기를 이용한 신호 증폭 장치
KR20040079597A (ko) * 2003-03-08 2004-09-16 학교법인 포항공과대학교 적응 바이어스 제어 기술을 이용한 초고주파 도허티증폭장치
US6922102B2 (en) * 2003-03-28 2005-07-26 Andrew Corporation High efficiency amplifier
US7385445B2 (en) * 2005-07-21 2008-06-10 Triquint Semiconductor, Inc. High efficiency amplifier circuits having bypass paths
TWI346449B (en) * 2007-08-16 2011-08-01 Ind Tech Res Inst Power amplifier circuit for multi-frequencies and multi-modes and method for operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518731A (ja) * 1997-09-30 2001-10-16 モトローラ・インコーポレイテッド 信号を増幅する装置および方法
JP2004096729A (ja) * 2002-08-29 2004-03-25 Hoko Koka Daigakko ドハーティ増幅器
JP2004173249A (ja) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 送信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2101409A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027686A1 (en) * 2012-08-13 2014-02-20 Kabushiki Kaisha Toshiba Power amplifier and transmitter
JP2014039109A (ja) * 2012-08-13 2014-02-27 Toshiba Corp 電力増幅器および送信器
US9124216B2 (en) 2012-08-13 2015-09-01 Kabushiki Kaisha Toshiba Power amplifier and transmitter
WO2015029462A1 (ja) 2013-08-28 2015-03-05 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
JPWO2018235261A1 (ja) * 2017-06-23 2019-11-07 三菱電機株式会社 高周波増幅器
CN112383951A (zh) * 2020-11-16 2021-02-19 深圳国人无线通信有限公司 基站发射设备及其供电管理方法
WO2023199883A1 (ja) * 2022-04-12 2023-10-19 株式会社村田製作所 電力増幅モジュール
WO2024070736A1 (ja) * 2022-09-28 2024-04-04 株式会社村田製作所 増幅回路および通信装置

Also Published As

Publication number Publication date
EP2101409A4 (en) 2012-11-28
CN101563840A (zh) 2009-10-21
EP2101409B1 (en) 2021-01-20
KR20090086626A (ko) 2009-08-13
US7893770B2 (en) 2011-02-22
JPWO2008075561A1 (ja) 2010-04-08
CN101563840B (zh) 2012-06-06
EP2101409A1 (en) 2009-09-16
US20100079210A1 (en) 2010-04-01
KR101107888B1 (ko) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2008075561A1 (ja) 電力増幅装置
CN100456632C (zh) 多赫蒂放大器
US8604881B2 (en) Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
JP3841416B2 (ja) 送信装置、送信出力制御方法、および無線通信装置
JP4836253B2 (ja) 電力増幅装置および携帯電話端末
US20080122542A1 (en) Enhanced amplifier with auxiliary path bias modulation
CN101179257B (zh) 改进了尺寸和成本的高频功率放大器
KR100880448B1 (ko) 저소비전력 혼합모드 전력증폭장치
JP2010021719A (ja) ドハティ増幅器
KR20130055843A (ko) 전력 증폭기 및 그 증폭 방법
WO2018023215A1 (zh) 包络调制器、包络跟踪功率放大器及通信设备
EP2704317A1 (en) Power amplifier device and power amplifier circuit
US8773206B2 (en) Power amplifier apparatus and power amplifier circuit
WO2013153894A1 (ja) カスコード増幅器及び増幅回路
Hiura et al. High-efficiency 400 W power amplifier with dynamic drain voltage control for 6 MHz OFDM signal
US7554392B2 (en) Multiple output power mode amplifier
TWI572134B (zh) 放大模組的功率控制方法
JP3827130B2 (ja) フィードフォワード増幅器
Wood et al. A high power, high efficiency UMTS amplifier using a novel Doherty configuration
US8031028B2 (en) Polar signal processor to drive a segmented power amplifier and method therefore
JP2004289492A (ja) ドハーティ増幅器
JP7292529B1 (ja) ドハティ増幅器
CN214281334U (zh) 一种功率放大器的控制装置
JPH06177681A (ja) 高周波増幅装置
KR20160027888A (ko) 병렬 출력단 선형 증폭기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047330.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550089

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12518664

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007850128

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097013879

Country of ref document: KR