WO2008069252A1 - 高耐食性複合体の製造方法 - Google Patents

高耐食性複合体の製造方法 Download PDF

Info

Publication number
WO2008069252A1
WO2008069252A1 PCT/JP2007/073526 JP2007073526W WO2008069252A1 WO 2008069252 A1 WO2008069252 A1 WO 2008069252A1 JP 2007073526 W JP2007073526 W JP 2007073526W WO 2008069252 A1 WO2008069252 A1 WO 2008069252A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
magnesium alloy
shaped part
chemical conversion
Prior art date
Application number
PCT/JP2007/073526
Other languages
English (en)
French (fr)
Inventor
Masanori Naritomi
Naoki Ando
Original Assignee
Taisei Plas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Plas Co., Ltd. filed Critical Taisei Plas Co., Ltd.
Priority to US12/517,578 priority Critical patent/US8322013B2/en
Priority to CN2007800451112A priority patent/CN101547779B/zh
Priority to EP20070850150 priority patent/EP2103406B1/en
Priority to JP2008548323A priority patent/JP4927864B2/ja
Publication of WO2008069252A1 publication Critical patent/WO2008069252A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/57Treatment of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/22Acidic compositions for etching magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a magnesium component used for a housing of an electronic device, a housing of a home appliance, a structural component, a mechanical component, or the like, or a highly corrosion-resistant composite in which a magnesium alloy component and a resin composition are integrated. It relates to the manufacturing method. More specifically, the present invention relates to a method for producing a highly corrosion-resistant composite in which a resin composition is integrated with a magnesium part or a magnesium alloy part produced by various machining processes. For example, various electronic devices for mopile, home appliances, medical Magnesium parts with excellent corrosion resistance, or magnesium alloy parts and resin compositions, used for equipment, structural parts for vehicles, parts for vehicles, parts for building materials, other structural parts and exterior parts, etc. The present invention relates to a method for producing a highly corrosion-resistant composite in which is integrated.
  • PBT polybutylene terephthalate resin
  • PPS polyphenylene sulfide resin
  • a large hole is provided in the anodized film of aluminum material, and a synthetic resin body is formed in this hole.
  • a joining technique for biting in and binding for example, see Patent Document 2.
  • Patent Document 1 The principle of injection joining in Patent Document 1 is considered as follows.
  • the aluminum alloy was immersed in a dilute aqueous solution of a water-soluble amine compound, and the aluminum alloy was finely etched with a weakly basic aqueous solution. At the same time, amine compound molecules were adsorbed on the surface of the aluminum alloy. .
  • the aluminum alloy thus treated is inserted into an injection mold, and the molten thermoplastic resin is injected at a high pressure.
  • the amine compound molecule adsorbed on the surface of the thermoplastic resin and the aluminum alloy encounters heat and tries to rapidly cool and solidify in contact with the aluminum alloy maintained at a low mold temperature.
  • the resin will dive into the recesses on the surface of the ultrafine aluminum alloy due to delay in solidification. Due to such a phenomenon, the composite composed of the aluminum alloy and the thermoplastic resin is firmly bonded without peeling off the thermoplastic resin from the surface of the aluminum alloy. That is, when an exothermic reaction occurs, strong injection joining can be performed.
  • PBT and PPS capable of exothermic reaction with amine compounds can be injection-bonded with this aluminum alloy.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-216425
  • Patent Document 2 WO2004-055248 A1
  • the present inventors have developed a resin composition suitable for injection joining in order to make the above-described invention more effective.
  • a composition in which the properties relating to the crystallinity of PPS are changed is more effective than a simple PPS composition in which the linear expansion coefficient is matched with that of an aluminum alloy. That is, as a result of studying whether the present invention has been developed and the resin composition parts have been improved to limit the pretreatment methods necessary for metal parts, the inventors have determined that specific PPS compositions and PBT compositions have been developed.
  • the present invention relates to a hard resin ejection joining technique relating to a magnesium alloy.
  • Magnesium alloys are the lightest and most important of all practical metals, and are light and useful! /, Even when compared to the aluminum alloy (specific gravity 2.7), which is a lightweight specific gravity 1.7 It is a neighborhood.
  • specific gravity 2.7 which is a lightweight specific gravity 1.7 It is a neighborhood.
  • it is more chemically active and harder to handle than aluminum alloys. That is, in a magnesium alloy, a natural oxide layer is generated by oxygen in the air immediately after the metal surface is exposed by polishing or the like, and the strength and stability of the natural oxide layer are more stable than aluminum alloy. Very inferior.
  • the magnesium alloy is treated by either chemical conversion treatment or electrolytic oxidation.
  • the present inventors have initially confirmed that a certain resin composition can be injection-bonded to a magnesium alloy that has been subjected to chemical conversion treatment S, which is still insufficient to commercialize and commercialize all aspects. was there . That is, the chemical conversion treatment method that obtains the best bonding force by injection bonding has a problem that the corrosion resistance is slightly inferior to the chemical conversion treatment methods currently being carried out.
  • the present invention has been made to increase the injection joining force and solve the above-mentioned problems, and achieves the following object.
  • the present invention takes the following means in order to achieve the above object.
  • the step of chemically etching the shaped part by immersing the shaped part in an acidic aqueous solution and the step of immersing the shaped part that has been chemically etched in an aqueous solution containing permanganate and having a manganese oxide as a component on the surface.
  • a resin composition having a resin composition comprising 70 to 97% by mass of polyphenylene sulfide and 3 to 30% by mass of a polyolefin resin;
  • a resin composition having a resin component composition comprising 70 to 97% by weight of polybutylene terephthalate resin and 3 to 30% by weight of polyethylene terephthalate resin and / or polyolefin resin, and
  • Resin composition having a resin component composed mainly of an aromatic polyamide resin containing both polyamide obtained from hexamethylenediamine and isophthalic acid, and polyamide obtained from hexamethylenediamine and terephthalic acid
  • the method for producing the highly corrosion-resistant composite of the present invention 2 comprises
  • the step of chemically etching the shaped part by immersing the shaped part in an acidic aqueous solution and the step of immersing the shaped part that has been chemically etched in an aqueous solution containing permanganate and having a manganese oxide as a component on the surface.
  • the shaped part formed with the thin layer is inserted into an injection mold, and 70 to 97% by mass of polyphenylene sulfide and 3 to 30% by mass of a polyolefin resin are added.
  • a resin composition having a resin component composition comprising 70 to 97% by weight of polybutylene terephthalate resin and 3 to 30% by weight of polyethylene terephthalate resin and / or polyolefin resin, and
  • Resin composition having a resin component composed mainly of an aromatic polyamide resin containing both polyamide obtained from hexamethylenediamine and isophthalic acid, and polyamide obtained from hexamethylenediamine and terephthalic acid
  • It comprises a step of chemical conversion treatment by immersing the fixed shaped part and the resin composition in a chemical conversion solution for magnesium alloy.
  • a resin composition having a resin composition comprising 70 to 97% by weight of polyphenylene sulfide and 3 to 30% by weight of a polyolefin resin;
  • a resin composition having a resin component composition comprising 70 to 97% by weight of polybutylene terephthalate resin and 3 to 30% by weight of polyethylene terephthalate resin and / or polyolefin resin, and
  • Resin composition having a resin component composed mainly of an aromatic polyamide resin containing both polyamide obtained from hexamethylenediamine and isophthalic acid, and polyamide obtained from hexamethylenediamine and terephthalic acid
  • a step of integrally fixing the shaped part and the resin composition is characterized in that it comprises a step of chemical conversion treatment by immersing the fixed shaped part and the resin composition in a chemical conversion treatment solution for a manganese phosphate-based or silicon-based magnesium alloy.
  • the magnesium or magnesium alloy used in the present invention is all magnesium or magnesium alloy for which a wrought alloy such as AZ31 and a forging alloy such as AZ91 are commercially available.
  • a wrought alloy such as AZ31 and a forging alloy such as AZ91 are commercially available.
  • a part shaped by means such as die casting, thixo mold, injection molding or the like, or a part that is further machined to have a shaped shape can be used.
  • wrought alloys, etc. it is possible to use plate materials that are intermediate materials, and parts that have been shaped by applying mechanical processing such as hot pressing.
  • Magnesium or a magnesium alloy used in the present invention has a thin film containing manganese oxide as a main component on the surface.
  • the surface treatment applied to magnesium alloys to improve corrosion resistance is performed by immersing magnesium or a magnesium alloy, which has a high ionization tendency and is easily corroded in air, in an aqueous solution of a salt or acid of a different metal. In this process, a stable layer of a metal oxide, a metal carbonate or a metal phosphate containing a dissimilar metal is formed, and the presence of the layer prevents corrosion of the internal metal.
  • such immersion type surface treatment is referred to as chemical conversion treatment, but the present invention uses one method included in chemical conversion treatment.
  • chemical conversion treatment including degreasing and chemical etching performed before chemical conversion treatment.
  • “chemical conversion treatment” refers to treatment in a narrow sense for forming a corrosion-resistant layer, and before that, processing such as degreasing and etching that is normally performed is “pretreatment”.
  • pretreatment processing such as degreasing and etching that is normally performed.
  • main treatment The essential process for forming the chemical conversion film including the treatment
  • liquid treatment liquid treatment
  • the chemical conversion treatment applied to magnesium and magnesium alloys has long been known as a corrosion protection layer that is immersed in an aqueous solution containing chromic acid and contains chromium oxide or chromium phosphate as a main component. It is a chemical conversion treatment provided on the surface and is generally called chromate treatment. This chromate treatment is known from US Pat. No. 2,438,877. Recently, it has been immersed in a mixed aqueous solution of manganese salt and phosphoric acid to prevent corrosion. Many processes for providing layers are used.
  • the chromate treatment method has been used for a long time as a treatment method with excellent corrosion resistance, but the use of hexavalent chromium, which is environmentally problematic in the treatment solution, has recently been regarded as a problem and has not been used. Therefore, chemical conversion treatment methods that do not use chromium are required, and methods using the above-described manganese and other metal salts have been developed. Recently, the method using manganese phosphate compounds is often used instead of chromate treatment. However, the present inventors have obtained an experimental result that the chemical conversion treatment method most suitable for injection joining is not based on manganese phosphate.
  • the surface obtained by the chemical conversion treatment has irregularities on the order of m (micrometers), and there are minute irregularities with a height difference of 10 nm (nanometers) or more on the concave surface.
  • the fine irregularities are 50 to; when there is a difference in height of 50 nm in the OOnm cycle, 50 to; when the diameter is 50 nm in the OOnm cycle, and there are recesses or projections of the same depth or height,
  • the injection joining force is strongest and preferable.
  • the surface layer is not a natural oxide layer of a magnesium alloy but a metal oxide, carbonate, hydroxide, and / or phosphorus oxide containing magnesium, that is, a high-hardness layer of ceramic.
  • the thickness of the chemical conversion film is not too thick.
  • the chemical conversion film is as thick as possible. Due to the above circumstances, there is a problem that the chemical conversion treatment method preferable for injection joining is not necessarily appropriate for corrosion resistance. Accordingly, the present inventors have developed a surface treatment method for a metal alloy part that forms a surface with excellent corrosion resistance while exhibiting high bonding strength in injection bonding. Further, the metal / resin integrated product obtained by the resin injection joining to the surface-treated metal alloy part was directly put into a conventional chemical conversion solution.
  • Magnesium alloy parts are preferably first immersed in a degreasing tank to remove oils and finger grease adhered by machining. Specifically, it is preferable to put a commercially available magnesium degreasing material in warm water at a concentration as specified by the pharmaceutical manufacturer to prepare an aqueous solution, immerse in this, and wash with water. For normal commercial products, the concentration is 5 ⁇ ; 10%, and the solution temperature is 50 ⁇ 80 ° C. Next, it is immersed in an acidic aqueous solution and etched to dissolve the surface layer of the magnesium alloy part, and remove any dirt and residual oil or surfactant residues.
  • the liquid used is an organic carboxylic acid having a pH of 2 to 5, such as acetic acid, propionic acid, citrate, malonic acid, benzoic acid, phthalenoic acid, and inorganic acids such as nitric acid, hydrochloric acid, phosphoric acid, and hydrofluoric acid.
  • Aqueous solution can be used
  • aliphatic carboxylic acids such as acetic acid, propionic acid, citrate and malonic acid are preferred!
  • the alloy contains dissimilar metals. It is rare.
  • AZ31 and AZ91 contain about 3 to 9% aluminum and 1% zinc.
  • aluminum and zinc are hardly dissolved and deposited on the surface as insoluble materials. A process is required to melt and remove these deposits. This is so-called smut removal.
  • the aluminum smut is first dissolved in a weakly basic aqueous solution (first smut treatment), and then immersed in a strong basic aqueous solution to dissolve and remove the zinc smut (second smut). Processing) is preferred! /, The method.
  • the aluminum exposed on the surface of the alloy just by removing the rough aluminum smut was also considered to have an effect on the roughness obtained by melting.
  • a degreasing agent for an aluminum alloy is used in the first smut removal step of chemical alloying treatment, but the present inventors have tried many other weakly basic aqueous solutions. As a result, it turned out that various things can be used. Particularly excellent ones are shown in the examples.
  • the first varnish treatment was performed by immersing a 15 to 25% strength aqueous caustic soda solution at a temperature of 60 to 80 ° C. for 5 to 10 minutes.
  • This treatment is preferably a two-stage dipping treatment, that is, a fine etching is performed by dipping in a weakly acidic aqueous solution for a very short time, followed by chemical conversion treatment.
  • a weakly acidic aqueous solution of PH4-6 such as organic carboxylic acids such as acetic acid, propionic acid, citrate, benzoic acid, phthalic acid, phenol, phenol derivatives, etc. can be used, and the immersion time is 15-90 seconds. A very short time is preferred.
  • This fine etching process is not a normal magnesium alloy chemical conversion treatment! /, But the present inventors Judging from the experimental results, it was determined that including the fine etching process produced a stronger injection joining force.
  • the chemical conversion treatment step is the result of trying most of the conventionally known non-chromate type chemical conversion treatments. It is judged that the permanganate potassium chemical conversion treatment is excellent.
  • the permanganate potassium chemical conversion treatment is specifically described.
  • the pre-treated magnesium alloy part was adjusted to a temperature of around 40 ° C, 0.;! ⁇ 0.3% soaked in a 3% hydrated citrate aqueous solution for 15-60 seconds, finely etched, and then ion exchange Wash with water.
  • an aqueous solution containing potassium permanganate 1.5 to 3.0%, acetic acid 0.7 to 1.5%, hydrated sodium acetate 0.3 to 1.0% Is prepared at a temperature of 40 to 50 ° C., and the magnesium alloy part described above is preferably crushed by 0.5 to; and then washed with water.
  • This chemical conversion treatment method is an improvement of the technique disclosed in Japanese Patent Application Laid-Open No. 2001-123274 and the like described above in order to improve the injection joining force through trial and error. This is dried for 5 to 20 minutes in a warm air drier at a temperature of 80 to 90 ° C. By this treatment, a thin layer mainly composed of manganese oxide is formed on the surface of the magnesium alloy part.
  • the magnesium alloy component is finely etched by penetrating into the weakly acidic aqueous solution for a very short time.
  • the surface satisfies the requirements (1) to (3) necessary for the injection joining described above, obtains a strong injection joining force, and has excellent corrosion resistance. It comes to have.
  • the resin composition constituting the present invention consists of a resin component composition containing PPS 70 to 97% by mass and polyolefin resin 3 to 30% by mass. % And a resin composition containing 5 to 20% by mass of a polyolefin resin.
  • PPS polyolefin resin
  • the resin composition constituting the present invention consists of a resin component composition containing PPS 70 to 97% by mass and polyolefin resin 3 to 30% by mass. % And a resin composition containing 5 to 20% by mass of a polyolefin resin.
  • the PPS is less than 70% by mass or exceeds 97% by mass, the resulting composite is inferior in the bondability between the metal part and the resin composition part.
  • Any PPS may be used as long as it belongs to the category called PPS, and among them, because of its excellent molding processability when used as a resin composition part, a high-diameter with a diameter of 1 mm and a length of 2 mm is installed.
  • a chemical flow tester measurement was performed under the conditions of a measurement temperature of 315 ° C and a load of 98 N (10 kgf). It is preferable that the melt viscosity is 100 to 30,000 boise (P).
  • PPS may be substituted with an amino group or a carboxyl group, or may be copolymerized with trichlorobenzene or the like during polymerization.
  • the PPS may be a linear one, a branched structure introduced, a heat treated in an inert gas, or the like. Furthermore, PPS reduced impurities such as ions and oligomers by deionization (acid cleaning, hot water cleaning, etc.) before or after heat curing, or by cleaning with an organic solvent such as acetone. It may be one that has been cured by heat treatment in an oxidizing gas after completion of the polymerization reaction.
  • the polyolefin resin is an ethylene resin, a propylene resin, or the like that is generally known as a polyolefin resin, and may be a commercially available one. Among them, since it becomes possible to obtain a composite having particularly excellent adhesiveness, a maleic anhydride-modified ethylene copolymer, a glycidyl methacrylate-modified ethylene copolymer, a glycidyl ether-modified ethylene copolymer can be obtained.
  • the polymer is an ethylene alkyl acrylate copolymer.
  • maleic anhydride-modified ethylene copolymer examples include maleic anhydride graft-modified ethylene polymer, maleic anhydride ethylene copolymer, ethylene acrylate esteru maleic anhydride terpolymer, and the like.
  • ethylene acrylate, maleic anhydride terpolymer is preferable because a particularly excellent composite can be obtained.
  • Specific examples of the ethylene acrylate ester maleic anhydride terpolymer include “Bondyne (manufactured by Arkema)” and the like.
  • Examples of the glycidyl metatalylate-modified ethylene copolymer include glycidyl metatalylate graft-modified ethylene polymer and glycidyl methacrylate-ethylene copolymer. Among them, a particularly excellent composite can be obtained. Therefore, glycidyl metatalylate ethylene copolymer is preferable.
  • Specific examples of the glycidyl methacrylate-ethylene copolymer include “Bond First” (manufactured by Sumitomo Chemical Co., Ltd.).
  • Examples of the glycidyl ether-modified ethylene copolymer include glycidyl ether graft-modified ethylene copolymer and glycidyl ether ethylene copolymer.
  • Specific examples of the ethylene alkyl acrylate copolymer include: Rotoril (Arkema) Etc.) ”.
  • the resin composition part contains 70 to 97% by mass of PPS and polyolefin series.
  • polyfunctional isocyanate compound commercially available non-block type and block type compounds can be used.
  • multifunctional non-blocked isocyanate compound examples include 4,4′-diphenyl isocyanate, phenol diisocyanate, bis (4 isocyanate phenolinosulfone), and the like.
  • polyfunctional block type isocyanate compound there are two or more isocyanate groups in the molecule, and the isocyanate group is reacted with a volatile active hydrogen compound to be inactive at room temperature.
  • the type of polyfunctional block isocyanate compound is not particularly specified.
  • isocyanate groups are masked by blocking agents such as alcohols, phenols, ⁇ -force prolatatam, oximes, and active methylene compounds. Has a structure.
  • blocking agents such as alcohols, phenols, ⁇ -force prolatatam, oximes, and active methylene compounds.
  • Examples of the multifunctional block type isocyanate include “Takenate (manufactured by Mitsui Takeda Chemical Co., Ltd.)”.
  • an epoxy resin generally known as a bisphenol ⁇ type, a cresol nopolac type or the like can be used.
  • the bisphenol A type epoxy resin for example, “Epicoat (Japan Epoxy Resin Co., Ltd.) )
  • Epiclon manufactured by Dainippon Ink and Chemicals
  • the composite resin composition of the present invention aims to adjust the difference in linear expansion coefficient between a magnesium part or a magnesium alloy part and the resin composition part and to improve the mechanical strength of the resin composition part.
  • the resin component including 70 to 97% by mass of PPS and 3 to 30% by mass of the polyolefin resin
  • it further comprises a filler;! To 200 parts by mass, more preferably 10 to 150 parts by mass. It is preferable.
  • the filler include fillers such as a fibrous filler, a granular filler, and a plate-like filler.
  • fibrous fillers include the ability to mention glass fibers, carbon fibers, aramid fibers, and the like.
  • glass fibers include the ability to mention chopped strands having an average fiber diameter of 6 to 14 m. it can.
  • the plate-like and granular fillers include calcium carbonate, my strength, glass flakes, glass balloons, magnesium carbonate, silica, talc, clay, and pulverized carbon fiber garamide fibers. .
  • the filler is preferably treated with a silane coupling agent or a titanate coupling agent.
  • PBT resin composition As the resin composition, those having a PBT composition of 3 to 30% PET and / or polyolefin resin and 70 to 97% are preferable. The same polyolefin resin as described in the section of the PPS resin composition can be used. When the composition ratio of PET and / or polyolefin resin is small! /, And when the resin composition exceeds 30%, the effect on the injection joining force becomes uncertain.
  • the resin component composition of PET and / or polyolefin resin is 5 to 20% because the bonding force is particularly strong and stable.
  • the ester exchange reaction may occur at a high temperature in the injection cylinder of the injection molding machine, resulting in a decrease in the strength of the resin itself. If it exceeds 30% of the resin composition, gas generation during injection molding will increase, and the possibility of breakage of the runner and the like will worsen, increasing the possibility of breaking the molding cycle.
  • Mixing a large amount of filler in order to make the linear expansion coefficient comparable to that of magnesium or magnesium alloy stabilizes the injection joining force over time. This is the same as the PPS system described above.
  • the aromatic polyamide resin composition will be described. More preferably, more than 80% of the resin composition is phthalic nylon, and nylon 61 (polyamide obtained from hexamethylene diamine and isophthalic acid) and nylon 6T (hexamethylene diamine and terephthalic acid). (Polyamides obtained from acids) are both included!
  • Aromatic nylon is less hygroscopic than aliphatic nylon, meaning that it is suitable for maintaining long-term bonding with metal. Apart from that, similar nylon is mixed as described above. It has been found that the physical properties at the time of quenching are significantly different from those of ordinary thermoplastic resins. That is, when an injection-molded product is obtained for various crystalline thermoplastic resins under predetermined injection molding conditions, most of the resin in the resulting molded product has already crystallized and solidified and is almost in its final stable state. However, it is strange that aromatic nylon, especially aromatic nylon mixed with similar polymers, will remain plastic for several tens of seconds immediately after release!
  • nylon can be pulled out.
  • the literature was researched for the polymer chemistry analysis, unfortunately, the present inventors were unable to find the published literature.
  • the present inventors believe that if there is a crystalline resin with a slow crystallization rate during quenching, this is a resin suitable for injection joining, and PBT or PPS in accordance with that concept. Has improved. From that perspective, it can be judged that “nylon that can be forcibly removed” is a crystalline resin that is clearly slow to crystallize and solidify upon rapid cooling. Aromatic nylon was actually synthesized, mixed, and tested as a resin for injection joining to magnesium alloys.
  • the method for producing a highly corrosion-resistant composite according to the present invention is an injection molding method in which a magnesium part or a magnesium alloy part is inserted into an injection mold, and this injection molding method is performed as follows. Prepare an injection mold, open this mold, and apply the above liquid treatment to one of them. A composite is produced by inserting the magnesium part or magnesium alloy part that has been performed, closing the mold, injecting the thermoplastic resin composition described above, solidifying and then releasing the mold.
  • the temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher, because it is excellent in production efficiency of the composite with little influence on the resin strength after solidification.
  • the injection temperature, injection pressure, and injection speed are not different from those of ordinary injection molding, but speakingly, the injection speed and injection pressure are high.
  • the resulting composite should not be touched by hand as much as possible, especially the magnesium or magnesium alloy parts.
  • injection joining it is strictly prohibited to spray a mold release agent on the mold, and it is important that the mold before the insert is completely wiped off with the volatile oil.
  • the composite obtained by such measures is not soiled, and a clean integrated composite can be obtained if care is taken even in the annealing process.
  • Chemical conversion treatment is performed by immersing the magnesium component obtained in the above step or a composite of the magnesium alloy component and the resin composition in a commercially available chemical conversion solution for magnesium alloy.
  • the integrated composite has already been subjected to potassium permanganate conversion treatment developed by the present inventors for injection joining, and the surface is covered with a thin layer mainly composed of manganese dioxide.
  • the experiment confirmed whether the Nodori force S and the chemical conversion treatment applied to such a surface were effective. This is because, in the light of ordinary chemical knowledge, even if manganese dioxide is immersed in a manganese phosphate aqueous solution, it does not react in particular. However, as a result of the experiment, the chemical conversion treatment of the second layer was actually clearly seen in the corrosion resistance test.
  • the products that appeared to be particularly excellent in corrosion resistance were those treated with a manganese phosphate-based chemical conversion treatment solution containing calcium ions and those treated with a commercially available silicon-based chemical conversion treatment solution.
  • the corrosion resistance is improved as a result of the chemical conversion film becoming thicker (thick) by reacting with the manganese dioxide layer and stacking on the manganese dioxide layer, or the manganese dioxide layer is thin and contains some ions.
  • an improvement effect was recognized in all of the chemical conversion treatment solutions for the commercially available magnesium alloy and the chemical conversion treatment solutions prepared by the inventors from the examples.
  • the technique described in JP-A-11-131255 was employed. This describes calcium nitrate, manganese carbonate, and an aqueous solution in which phosphoric acid and a very small amount of sodium chlorate are dissolved (actually, manganese carbonate cannot be dissolved and becomes a suspension).
  • chemical conversion treatment solutions for ordinary manganese phosphate or silicon-based magnesium alloys are commercially available from a number of companies. In this embodiment, a commercial product of Meltex (Saitama Prefecture Saitama) is used. did. There are also many other technologies that are published in patent gazettes regarding chemical conversion treatment, and some of them have been implemented. According to the judgments of the present inventors, the manganese phosphate-based chemical conversion treatment or the silicon-based chemical conversion treatment containing force calcium described in the examples of the present invention is superior to the others.
  • the composite obtained by integrating the magnesium part or the magnesium alloy part and the resin composition obtained in the above process can be used as it is, but it is applied to form an exterior part.
  • a paint capable of coating a resin composition as well as a magnesium part or a magnesium alloy part a baked paint for metal coating can be preferably used. If the temperature is about 200 ° C on the resin composition side, there is no problem at all! / And it has heat resistance! /, So there is no problem with using such high-temperature baking type paints.
  • magnesium parts or magnesium alloy parts are to be painted, commercially available paints for coating magnesium alloys can be used.
  • paints marketed for magnesium alloys there are urethane paints and acrylic urethane paints, etc., and these have a low baking temperature of 120 ° C or less.
  • a dryer can be used.
  • coating these on the PBT resin composition or PPS resin composition may result in insufficient adhesion to the resin composition.
  • the present invention that is, by improving bondability, improving efficiency, expanding the application range, etc., it is possible to reduce the weight of mopile electronic devices and home appliances, reduce the weight of in-vehicle devices and parts,
  • the power S contributes to the lightening of arms and legs of the robot and the supply of parts and housing, weight reduction, and productivity in many other fields.
  • the high corrosion-resistant composite produced by the production method of the present invention has been integrated into a magnesium part or magnesium alloy part and the resin composition without being easily peeled off. It was possible to make it excellent in corrosion resistance.
  • a resin component composition containing PPS as a main component, a resin component composition containing PBT as a main component, or both nylon 61 and nylon 6T Highly corrosion-resistant composites with excellent corrosion resistance can be easily obtained by injection-bonding using a thermoplastic resin composition having an aromatic polyamide resin composition and containing a chemical conversion treatment. It was possible to manufacture reliably.
  • FIG. 1 is a structural diagram schematically showing a cross section of an injection mold.
  • the injection mold 10 has a magnesium part or a magnesium alloy part 1 processed into a predetermined shape inserted into one mold 2, and a resin composition 4 is injected into the mold 2 through a pin gate 5.
  • the composite 7 is formed.
  • a fine recess is formed on the surface of the magnesium component or magnesium alloy component 1.
  • the fine concave portion forms a joint surface 6 and fixes the resin composition 4 to the joint surface 6.
  • FIG. 2 is an external view showing the composite 7 after bonding. That is, the composite 7 shown in FIG. 2 is obtained by integrating the magnesium part or the magnesium alloy part 1 and the resin composition 4 by the joint surface 6.
  • FIG. 1 and FIG. 2 are used as a common thing of each Example mentioned later.
  • various joint strengths produced in connection with the present invention are shown by measured values of shear fracture strength, and the effectiveness of the present invention is confirmed.
  • XRD X-ray diffraction analyzer
  • This electron microscope was mainly used to observe the surface of the part.
  • This electron microscope includes a scanning (SEM) electron microscope “S-4800 (product name)” (manufactured by Hitachi, Ltd., Tokyo, Japan) and “JSM-6700F (product name)” (Tokyo, Japan). , Manufactured by JEOL Ltd.) and observed at! ⁇ 2KV.
  • a salt spray tester “SPT-90 (product name)” manufactured by Suga Test Instruments Co., Ltd., Tokyo, Japan was used, and 5% salt water was sprayed continuously at a temperature of 35 ° C for 24 hours. Then, it was washed with ion-exchanged water and air-dried to evaluate the corrosion resistance.
  • PPS (1) The system was heated to 225 ° C over 2 hours, polymerized at 225 ° C for 2 hours, then heated to 250 ° C over 30 minutes, and further at 250 ° C. Polymerization was carried out in 3 hours. After completion of the polymerization, the mixture was cooled to room temperature and the polymer was isolated using a centrifuge. The polymer was repeatedly washed with warm water and dried at 100 ° C. for one day to obtain a PPS having a melt viscosity of 280 boise (P) (hereinafter referred to as PPS (1)).
  • PPS (1) a melt viscosity of 280 boise
  • This PPS (1) was further cured under a nitrogen atmosphere at a temperature of 250 ° C for 3 hours to obtain a PPS (hereinafter referred to as PPS (2)).
  • the melt viscosity of the obtained PPS (2) was 400 boise (P).
  • the glass fiber “RES03-TP91 (Nippon Sheet Glass Co., Ltd.)” with an average fiber diameter of 9 mm and a fiber length of 3 mm was removed from the side feeder by a twin screw extruder “TEM-35B (Toshiba Machine Co., Ltd.)”. Addition amount is 20 mass. While supplying so that / 0, and melt-kneaded at a cylinder temperature of 300 ° C, to give pelletized PPS composition (1). The obtained PPS composition (1) was dried at a temperature of 175 ° C for 5 hours.
  • PPS (3) The PPS (l) obtained in Preparation Example 1 was cured for 3 hours under an oxygen atmosphere at a temperature of 250 ° C. to obtain PPS (hereinafter referred to as PPS (3)).
  • Pelletized PPS composition (2) was obtained by melt-kneading at a cylinder temperature of 300 ° C. The obtained PPS composition (2) was dried at a temperature of 175 ° C for 5 hours.
  • PBT resin “Torcon 1100S (manufactured by Toray Industries, Inc.)” and 4.5 kg of PET resin “TR-4550BH (manufactured by Teijin Chemicals)” of 0.5 kg were mixed uniformly with a tumbler. Then, while feeding the glass fiber “RES03-TP91” having an average fiber diameter of 9 m and a fiber length of 3 mm with a twin-screw extruder “TEM-35BJ” so that the addition amount is 30% by mass, PBT resin composition was obtained by melt-kneading at a cylinder temperature of 270 ° C and pelletizing. The PBT composition (1) was dried at 140 ° C for 3 hours.
  • the glass fiber “RES03-TP91 (Nippon Sheet Glass Co., Ltd.)” with an average fiber diameter of 9 mm and a fiber length of 3 mm was removed from the side feeder by a twin screw extruder “TEM-35B (Toshiba Machine Co., Ltd.)”. Addition amount is 30 mass. While supplying so that / 0, and melt-kneaded at a cylinder temperature of 270 ° C, to give pelletized PBT composition (3). The obtained PBT composition (3) was dried at a temperature of 150 ° C for 5 hours.
  • Nylon 61 a polyamide from hexamethylenediamine and isophthalic acid
  • Nylon 6T a polyamide from hexamethylenediamine and terephthalic acid
  • Nylon 66 0.5 kg
  • nylon 61 lKg
  • nylon 6T 2.5 kg
  • the mixture was melt kneaded and pelletized at a cylinder temperature of 280 ° C. Drying was carried out at a temperature of 80 ° C. for 4 hours to obtain an aromatic polyamide composition (1).
  • the final treatment is wet buffing, and an average metal crystal grain size of 7 m and a thickness of 1.5 mm AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) is purchased. . Cut into 8 mm rectangular pieces to form magnesium alloy pieces that are magnesium alloy parts 1. A hole is made at the end of this magnesium alloy piece, and copper wires coated with chlor chloride are passed through dozens, and the copper wire is bent and processed so that the magnesium alloy pieces do not overlap each other, and all can be suspended at the same time. I did it.
  • a commercially available magnesium alloy degreasing agent "Cleaner 160 (manufactured by Meltex)" was poured into water to prepare an aqueous solution having a temperature of 75 ° C and a concentration of 10%.
  • the magnesium alloy piece was immersed in this for 5 minutes and washed with water.
  • a 1% hydrated citrate aqueous solution with a temperature of 40 ° C was prepared in another tank, and a magnesium alloy piece was immersed in this for 4 minutes and washed thoroughly with water. Black smut was attached.
  • an aqueous solution containing 1% sodium carbonate at a temperature of 65 ° C.
  • the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere to it, and inserted into an injection mold at a temperature of 140 ° C.
  • the mold was closed and the PPS composition (1) obtained in Preparation Example 1 was injected at an injection temperature of 310 ° C. and injection-bonded.
  • the mold was released to obtain 20 integrated composites as shown in FIG.
  • the size of the resin part was 10 mm X 45 mm X 5 mm, and the joint surface 6 was 10 mm X 5 mm 0.5 ⁇ 5 «.
  • On the day of molding four pieces were subjected to a tensile fracture test, and the average shear fracture strength was 25. OMPa.
  • 5 pieces that were annealed by putting them in a hot air dryer at 170 ° C for 1 hour were subjected to a tensile test one day later.
  • the average shear breaking force was 24.2 MPa. .
  • Example 1 In exactly the same manner as in Example 1, AZ31B magnesium alloy was used, pretreated, finely etched, and subjected to chemical conversion treatment. Further, in exactly the same manner as in Example 1, it was inserted into an injection mold, PPS composition (1) was injected and released, and the integrated composite shown in FIG. 2 was obtained and annealed on the same day. 10 complexes were obtained. Next, the resin part of the integrated composite is sandwiched by clips so that it can be hung, and the commercially available chemical treatment solution for silicon-based magnesium alloys “Magnet SI-5920 (Meltex)” is diluted according to the manufacturer's instructions. The composite obtained by integrating the aqueous solution at a temperature of 50 ° C. was immersed for 1.5 minutes, washed with ion-exchanged water, and dried at a temperature of 90 ° C. for 15 minutes.
  • the integrated composite was painted with “Omak / Black (manufactured by Ohashi Chemical Co., Ltd.)” at a thickness of 10 in, dried at 100 ° C. for 1 hour, and then “OMAC / "Silver Metallic” was applied at a thickness of 10 inches, and then baked at a temperature of 170 ° C for 30 minutes. That is, in this example, a commercially available silicon-based chemical conversion treatment agent is used for chemical conversion treatment after integration. Four days after painting and baking, scratches exactly the same as in Example 1 were applied to the coating film with a cutter knife and set in a salt spray tester.
  • Example 2 In exactly the same manner as in Example 1, AZ31B magnesium alloy was used, pretreated, finely etched, and subjected to chemical conversion treatment. Further, in exactly the same manner as in Example 1, it was inserted into an injection mold, PPS composition (1) was injected and released from the mold, and an integrated composite as shown in FIG. 2 was obtained. 10 composites were obtained. Next, the resin part of the integrated composite can be hung between clips to form a commercially available manganese phosphate-based magnesium alloy chemical.
  • the treatment solution “Magtreat MG-5901 (Meltex)” was diluted as instructed by the manufacturer, the aqueous solution was set at a temperature of 50 ° C., the composite was immersed for 3 minutes, washed with ion-exchanged water and air-dried.
  • this composite was painted with “Omak / Black (Ohashi Chemical Co., Ltd.)” at a thickness of 10 m, dried at 100 ° C. for 1 hour, and then “Omak / Silver Metallic”. Was applied at a thickness of 10 ⁇ and then baked at a temperature of 170 ° C for 30 minutes. That is, in this example, a commercially available manganese phosphate chemical conversion treatment agent is used for chemical conversion treatment after integration. Four days after painting and baking, scratches were applied to the coating film in the same manner as in Example 1 with a cutter knife and set in a salt spray tester.
  • salt water spray was performed at a temperature of 35 ° C for 24 hours, washed with ion-exchanged water, wiped with a paper napkin, and air-dried.
  • the paint film on the side of the cut scratches was slightly lifted, but the wrinkles spread from the scratches.
  • the shear fracture strength was 16.2 MPa.
  • Example 2 In exactly the same manner as in Example 1, AZ31B magnesium alloy was used, pretreated, finely etched, and subjected to chemical conversion treatment. Further, in exactly the same manner as in Example 1, it was inserted into an injection mold, PPS composition (1) was injected and released, and the integrated composite shown in FIG. 2 was obtained and annealed on the same day. 10 complexes were obtained. Next, the resin part of the integrated composite was sandwiched between clips so that it could be hung. Meanwhile, an aqueous solution containing 1.52% hydrated calcium nitrate, 0.21% manganese carbonate, 1.8% 80% phosphoric acid and 0.04% sodium chlorate at a temperature of 70 ° C, sometimes It was left for 1 hour with stirring!
  • Example 1 In exactly the same manner as in Example 1, AZ31B magnesium alloy was used, pretreated, finely etched, and subjected to chemical conversion treatment. Further, in exactly the same manner as in Example 1, it was inserted into an injection mold, PPS composition (1) was injected and released, and the integrated composite shown in FIG. 2 was obtained and annealed on the same day. 10 complexes were obtained. Next, the resin part of the integrated composite was sandwiched between clips so that it could be hung. An aqueous solution containing 2.5% hydrated manganese phosphate, 2.0% 80% phosphoric acid, and 2.0% triethylamine at a temperature of 45 ° C, soaked the product for 3 minutes, and ion-exchanged for 15 seconds. It was washed with water and dried at a temperature of 90 ° C for 15 minutes.
  • Example 1 In exactly the same manner as in Example 1, AZ31B magnesium alloy was used, pretreated, finely etched, and subjected to chemical conversion treatment. Further, in exactly the same manner as in Example 1, it was inserted into an injection mold, PPS composition (1) was injected and released, and the integrated composite shown in FIG. 2 was obtained and annealed on the same day. 10 complexes were obtained. Next, “Omak / Black (Ohashi Chemical Co., Ltd.)” was applied to these composites at a thickness of 10 ⁇ , dried at 100 ° C. for 1 hour, and then “Omak / Silver Metallic” was thickened. It was painted at a setting of 10 m and then baked at a temperature of 170 ° C for 30 minutes.
  • a magnesium alloy piece was prepared in exactly the same manner as in Example 1, except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. And injection molded to obtain 10 composites. The resulting composite was annealed at a temperature of 170 ° C for 1 hour. In short, this is an experiment using a PPS containing only a small amount of a polyolefin-based polymer and a PPS resin composition containing only a filler. One day later, when this composite was subjected to a tensile test, the shear breaking strength was 13 MPa on an average of 10 pieces. This is only about 50% of the numerical value of Example 1, and the result is the difference in the resin material used.
  • the composite was prepared in the same manner as in Example 2, except that the PPS composition (3) obtained in Preparation Example 3 was used instead of the PPS composition (1) obtained in Preparation Example 1. Obtained, annealed, and further processed the complex. Further, the coating was performed in the same manner as in Example 1. Scratch in the same way as in Example 2, using salt water with 5% concentration, spraying salt water at a temperature of 35 ° C for 24 hours, washing with water and drying force S, the coating film on the side of the cut scratches There was no spread of spears from scratches. When this composite was subjected to a tensile fracture test, the shear fracture strength was 19. OMPa.
  • a composite was produced in the same manner as in Example 1 except that the PPS composition (4) obtained in Preparation Example 4 was used instead of the PPS composition (1).
  • this is an experiment using a PPS resin composition containing a very large amount of polyolefin polymer. However, a large amount of gas was generated during molding, and the molding was interrupted.
  • an aqueous solution containing 2% potassium permanganate at a temperature of 45 ° C, 1% acetic acid and 0.5% hydrated sodium acetate was prepared in another tank, and immersed in this for 1 minute. It was washed with water for 15 seconds and then placed in a hot air dryer at 90 ° C for 10 minutes to dry. After drying, the copper wire was pulled out of the magnesium alloy piece on a clean aluminum foil and placed together, wrapped in a plastic bag, and sealed and stored. At this time, work was done so that the fingers did not touch the surfaces to be joined (the end opposite the hole).
  • the magnesium alloy piece is taken out, and the one with a hole to prevent oil from adhering to it is picked up with gloves, and the cutting surface is in contact with the resin composition so that the temperature is 140 ° C. Inserted into the mold.
  • the mold was closed and the PPS composition (1) obtained in Preparation Example 1 was injected at an injection temperature of 3 10 ° C.
  • the mold was released to obtain 20 integrated composites as shown in FIG.
  • the size of the resin part was 22 mm X 100 mm X 3 mm, and the joint surface 6 was 1.6 cm 2 of 22 mm X 7.5 mm.
  • the average shear fracture strength was 19. OMPa.
  • the remaining composite could be hung by holding the resin portion with a clip in exactly the same way as in Example 1, and the commercially available chemical treatment solution for silicon-based magnesium alloys “Magtreat SI-5920 (Meltex Co., Ltd.) ) ”Was diluted according to the manufacturer's instructions, and the composite with the aqueous solution integrated at 50 ° C was immersed for 1.5 minutes, washed with ion-exchanged water, and dried at 90 ° C for 15 minutes.
  • a liquid-treated AZ31B piece was prepared and stored in exactly the same manner as in Example 1.
  • the magnesium alloy piece was taken out, inserted into an injection mold set at a temperature of 140 ° C, the mold was closed, and the PBT composition (1) obtained in Preparation Example 5 was injected at an injection temperature of 280 ° C. .
  • the mold was released to obtain 20 integrated composites as shown in FIG.
  • the size of the resin part was 10 mm X 45 mm X 5 mm, and the joint surface 6 was 0.5 cm 2 of 10 mm X 5 mm.
  • On the day of molding it was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and one day later, 5 composites were subjected to a tensile test.
  • the average shear breaking strength was 23.2 MPa.
  • Example 8 An experiment was performed in exactly the same manner as in Example 8, except that instead of using the PBT composition (1), the PBT composition (2) shown in Preparation Example 6 was used.
  • a salt spray test in which the coated article was scratched with a cutter knife was also performed in the same manner as in Example 8. As a result, the film on the side of the scratches attached with the cutter knife hardly lifted up, and the spread of the wrinkles from the scratches was not strong.
  • the shear fracture strength was 19.3 MPa.
  • Example 8 instead of using the PBT composition (1), an experiment was performed in the same manner as in Example 8, except that the PBT composition (3) shown in Preparation Example 7 was used.
  • a salt spray test in which the coated article was scratched with a cutter knife was also performed in the same manner as in Example 8. As a result, the film on the side of the scratches attached with the cutter knife hardly lifted up, and the spread of the wrinkles from the scratches was not strong.
  • the shear fracture strength was 19.5 MPa.
  • a liquid-treated AZ31B piece was prepared and stored in exactly the same manner as in Example 1.
  • the magnesium alloy piece was taken out and inserted into an injection mold set at a temperature of 140 ° C.
  • the mold was closed and the aromatic polyamide composition (1) obtained in Preparation Example 8 was injected at an injection temperature of 280 ° C. Ejected.
  • the mold temperature was 110 ° C., and 20 integrated composites as shown in FIG. 2 were obtained.
  • On the day when all the samples were formed they were put into a hot air drier at a temperature of 150 ° C. for 1 hour for annealing, and one day later, 5 composites were subjected to a tensile test.
  • the average shear breaking force is 20. OMPa. It was.
  • Example 10 Thereafter, in the same manner as in Example 10, the integrated composite was subjected to chemical conversion treatment, paint baked, and after 3 days of paint baking, the coating film was scratched and subjected to a salt spray test. As a result, the coating film on the side of the cut scratch was not lifted, and no wrinkles spread from the scratch. When this composite was subjected to a tensile fracture test, the shear fracture strength was 17.5 Pa.
  • FIG. 1 is a mold configuration diagram schematically showing a process of manufacturing a composite body in which a magnesium part or a magnesium alloy part and a resin composition are integrated.
  • FIG. 2 is an external view of a single body schematically showing a composite in which a magnesium part or a magnesium alloy part and a resin composition are integrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

マグネシウム合金部品1を鋳造物や中間材から形状化する工程と、形状化した部品を酸性水溶液に浸漬して化学エッチングする工程と、化学エッチングした部品を過マンガン酸カリを含んだ水溶液に浸漬して表面にマンガン酸化物を主成分とする薄層を付着形成する工程と、薄層を形成した部品を射出成形金型にインサートし、ポリフェニレンサルファイドを主成分とする樹脂組成物、ポリブチレンテレフタレート樹脂を主成分とする樹脂組成物、芳香族ポリアミド樹脂を主成分とする樹脂組成物から選択される1種を射出しマグネシウム合金部品1と樹脂組成物4とを一体に固着する工程、及び、前記一体に固着させた複合体7をマグネシウム合金用化成処理液に再度浸漬して化成処理する工程により、耐食性を向上させた高耐食性のマグネシウム部品又はマグネシウム合金部品と樹脂組成物との複合体を製造する。

Description

明 細 書
高耐食性複合体の製造方法
技術分野
[0001] 本発明は、電子機器の筐体、家電機器の筐体、構造用部品、機械部品等に用いら れるマグネシウム部品、又はマグネシウム合金部品と樹脂組成物が一体化した高耐 食性複合体の製造方法に関する。更に詳しくは、各種機械加工で作られたマグネシ ゥム部品、又はマグネシウム合金部品に、樹脂組成物が一体化した高耐食性複合体 の製造方法に関し、例えばモパイル用の各種電子機器、家電製品、医療機器、車両 用構造部品、車両搭載用品、建築資材の部品、その他の構造用部品や外装用部品 等に用いられるものであって、耐食性に優れたマグネシウム部品、又はマグネシウム 合金部品と樹脂組成物とが一体化した高耐食性複合体の製造方法に関する。
背景技術
[0002] 金属と樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等の部品製造 等の広い分野から求められており、このために多くの接着剤が開発されている。この 中には非常に優れた接着剤が知られている。例えば常温、又は加熱により、機能を 発揮する接着剤は、金属と合成樹脂を一体化する接合に使用され、この接合方法は 現在では、金属と合成樹脂からなる複合材の一般的な一体化方法である。
[0003] しかしながら、接着剤を使用しない、より合理的な接合方法が従来から研究されて いる。マグネシウム、アルミニウムやその合金である軽金属類、又、ステンレス等鉄合 金類に対し、接着剤の介在なしで高強度のエンジニアリング樹脂を一体化する方法 がその一例である。例えば、表面処理をした金属形状物を金型にインサートして、こ れに熱可塑性樹脂を射出して両者を一体にする方法、即ち、射出成形の技術を利 用して樹脂と金属、即ち異種材を接合させる技術 (以下、この技術を「射出接合」とい う。)が提案されている。射出接合としては、アルミニウム合金に対し、ポリブチレンテ レフタレート樹脂(以下「PBT」という。)、又はポリフエ二レンサルファイド樹脂(以下「 PPS」という。)を、射出成形させる方法が知られている(例えば、特許文献 1参照)。 又、他にアルミニウム材の陽極酸化皮膜に大きめの孔を設け、この孔に合成樹脂体 を食い込ませ結着させる接合技術も知られている(例えば、特許文献 2参照)。
[0004] 特許文献 1におけるこの射出接合の原理は、以下のように考えられている。アルミ二 ゥム合金を水溶性アミン系化合物の希薄水溶液に浸漬させ、アルミニウム合金を弱 塩基性水溶液によって微細にエッチングさせるものであり、同時にアルミニウム合金 表面にアミン系化合物分子を吸着させるものであった。この処理のなされたアルミ二 ゥム合金を、射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出さ せる。
[0005] このとき、熱可塑性樹脂とアルミニウム合金表面に吸着していたアミン系化合物分 子が遭遇して発熱し、低温の金型温度に保たれたアルミニウム合金に接して急冷固 化しようとした樹脂は、固化が遅れて超微細なアルミニウム合金面上の凹部にも潜り 込むことになる。このような現象により、アルミニウム合金と熱可塑性樹脂はからなる複 合体は、この熱可塑性樹脂がアルミニウム合金表面から剥がれることなく強固に接合 する。即ち、発熱反応が生じると強固な射出接合ができる。実際、アミン系化合物と 発熱反応できる PBTや PPSが、このアルミニウム合金と射出接合できることを確認し ている。
特許文献 1 :特開 2004— 216425号公報
特許文献 2 :WO2004— 055248 A1
発明の開示
発明が解決しょうとする課題
[0006] 本発明者等は、前記した発明を更に有効にすべく射出接合に適した樹脂組成物の 開発を行っている。即ち、金属表面に微細凹部を無数に設けて接着させる技術を、 更に発展させその改良を行っている。その結果、アルミニウム合金と線膨張率を合わ せただけの単純な PPS系組成物ではなぐ PPSの結晶性に関する性質を変化させ た組成物が特に有効であることが確認できた。即ち、本発明者等は、前述の発明を 発展させ、樹脂組成物部品を改良することで、金属部品に必要な前処理法の制限を 少なくできないか検討した結果、特定の PPS組成、 PBT組成、又はポリアミド組成の 樹脂組成物製部品と、金属部品とからなる複合体が、金属部品と樹脂組成物部品の 間の接合力を更に拡大することを見出した。そしてその改良された樹脂組成物群を 使用すれば、アルミニウム合金以外、例えばマグネシウム合金に対しても、射出接合 現象が得られることを発見した。本発明は、マグネシウム合金に関する硬質樹脂の射 出接合技術に関するものである。
[0007] マグネシウム合金の特徴について若干説明する。マグネシウム合金は、実用金属 中で最も軽量とレ、う特筆すべき特徴があり、軽量で重宝されて!/、るアルミニウム合金( 比重 2. 7)に比較しても、軽量な比重 1. 7付近というものである。しかし一方で、アル ミニゥム合金より一段と化学的に活性であり扱いが難しい。即ち、マグネシウム合金で は、研磨等でむき出しの金属面とした直後に、空気中の酸素により自然酸化層が生 じ、し力、もこの自然酸化層の安定度や丈夫さは、アルミニウム合金より格段に劣る。ァ ノレミニゥム合金の自然酸化層は安定してレ、ることが知られており、この自然酸化層の 上に防鯖剤油膜や塗装塗膜が存在すれば、結露等がない室内放置では十年以上 の安定が保たれる。しかしな力 、同様の環境のマグネシウム合金は、 1年もしない内 に脹れや鯖が生じる。油膜や塗膜を拡散して、侵入する炭酸ガス、水分子が、マグネ シゥム自然酸化層と反応し通過するのである。
[0008] 要するに、マグネシウム合金を実際に使用する場合、自然酸化層膜に代わる丈夫 な皮膜でまず覆うことが必要である。具体的には化成処理、又は電解酸化の何れか の手法で、マグネシウム合金を処理することである。本発明者等は化成処理をしたマ グネシゥム合金に対して、一定の樹脂組成物が射出接合できることを当初確認した 力 S、これだけであらゆる局面に対し実用化商品化するには未だ不十分な点があった 。即ち、射出接合にて最善の接合力を得るような化成処理法は、現在実施されてい る化成処理法に比較して耐食性が少し劣るという課題があった。
[0009] 本発明は、射出接合力を高め、且つ、前記の課題を解決するためになされたもの であり、次の目的を達成する。
本発明の目的は、十分強い接合力で樹脂組成物とマグネシウム部品、又はマグネ シゥム合金部品を一体化した高耐食性複合体の製造方法を提供することにある。 本発明の他の目的は、樹脂組成物とマグネシウム部品、又はマグネシウム合金部 品が一体化された複合体が、既存の化成処理マグネシウム合金と同等の耐食性を有 するようにすることができる高耐食性複合体の製造方法を提供することにある。 課題を解決するための手段
[0010] 本発明は、前記目的を達成するために次の手段をとる。
即ち、本発明 1の高耐食性複合体の製造方法は、
マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、 前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、 ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程とからなることを特徴と する。
[0011] 本発明 2の高耐食性複合体の製造方法は、
マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、 前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、 ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程と、
前記固着した前記形状化部品と前記樹脂組成物を、マグネシウム合金用化成処理 液に浸漬して化成処理する工程とからなることを特徴とする。
本発明 3の高耐食性複合体の製造方法は、
マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、
前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、
ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程と、 前記固着した前記形状化部品と前記樹脂組成物を、リン酸マンガン系又は珪素系 のマグネシウム合金用化成処理液に浸漬して化成処理する工程とからなることを特 徴とする。
[0013] 以下、その手段を詳細に説明する。
〔マグネシウム部品、マグネシウム合金部品〕
本発明に使用するマグネシウム又はマグネシウム合金は、 AZ31等の展伸用合金、 AZ91等の铸造用合金等が市販されている全てのマグネシウム、又はマグネシウム 合金が対象である。形状物としては、铸造用合金等であれば、ダイカスト、チクソモー ルド、射出成形等の手段で形状化した部品、またそれを更に機械加工して形状を整 えた部品が使用できる。又、展伸用合金等では、中間材である板材その他、又それ らを熱プレス加工等の機械加工を加えて形状化した部品が使用できる。
[0014] 本発明に使用するマグネシウム又はマグネシウム合金は、表面にマンガン酸化物 を主成分とする薄膜を有する。通常、耐食性向上の為にマグネシウム合金に施す表 面処理は、イオン化傾向が高く空気中でも腐食酸化し易いマグネシウム、又はマグネ シゥム合金を、異種金属の塩や酸の水溶液に浸漬することで、表面に異種金属を含 む金属酸化物や金属炭酸化物や金属リン酸化物の安定層を形成させ、その層の存 在によって内部金属の防食を行うという処理である。金属業界ではこのような浸漬型 表面処理を化成処理と言うが、本発明は化成処理に含まれる一方法を使用する。
[0015] 一般には、化成処理前に行う脱脂や化学エッチングも含めて「化成処理」と言うこと が多い。本発明内では混同することがないよう、「化成処理」は耐食層を作るための 狭い意味での処理を示すこととし、その前に通常行う脱脂やエッチング等の処理を「 前処理」、化成処理を含む化成皮膜を作成するための本質的な処理を「本処理」、前 処理と本処理の双方含む全体を「液処理」と称することで説明を行う。
[0016] マグネシウムやマグネシウム合金に対して施す化成処理として古くから知られてい るのは、クロム酸を含んだ水溶液に浸漬し、クロム酸化物やクロムのリン酸化物を主 成分とする防蝕層を表面に設ける化成処理であり、一般にクロメート処理と呼ばれて いる。このクロメート処理は、 US2, 438,877号明細書等で知られている。最近では、 マンガン塩とリン酸等の混合水溶液に浸漬して、リン酸マンガンを主成分とする防蝕 層を設ける処理が多く使用されている。
[0017] クロム以外の金属塩を使う化成処理はノンクロメート処理と呼ばれている力、リン酸 マンガン系以外にもリン酸塩系、珪酸塩系、錫酸系、弗化物系等が知られている。金 属種としては、マンガン、アルミニウム、カルシウム、バナジウム、亜鉛、ジルコニウム、 チタン等が試されており、それらの酸化物やリン酸化物、それらの複合物層等を設け る方法も開示されている。その例は特開平 5— 230669、特開平 7— 126858号公報 、特開 2001— 123274号公報、特開 2000— 096255号公報、特開 2000— 1990 77号公報等に開示されている。
[0018] クロメート処理法は耐食性に優れた処理法として長く使用されてきたが、処理液に 環境上で問題ある 6価クロムを多用することが昨今問題とされ使用されていない。そ のため、クロムを使用しない化成処理法が求められ、前記したマンガンやその他の金 属塩を使用した方法が開発されている。最近は、リン酸マンガン系化合物を使った方 法がクロメート処理に代替して多く使用されている。しかし、本発明者等は、射出接合 に最も適した化成処理法はリン酸マンガン系のものではないとの実験結果を得ること ができた。
[0019] 本発明者の仮説による射出接合に必要な合金側での要件は、次の要件(1 )〜(3) が必須要件である。
(1)化成処理で得られた表面に m (マイクロメートル)オーダーの凹凸があり、しか もこの凹部面上に 10nm (ナノメートル)以上の高低差ある微細凹凸があることである こと。特に、その微細凹凸は、 50〜; !OOnm周期で 50nmの高低差がある場合、 50 〜; !OOnm周期で直径 50nmであり、同等深さ又は高さの凹部又は突起部がある場 合、又は、 50〜100nm周期で 50nmの幅で 50nmの高さ又は深さの仕切り状物又 は溝状物がある場合に最も射出接合力が強くなり好ましい。
(2)その表層はマグネシウム合金の自然酸化層でなくマグネシウムも含む金属の酸 化物、炭酸化物、水酸化物、及び/又はリン酸化物、即ち、セラミック質の高硬度の 層であること。
(3)そのセラミック質の硬化層と生地であるマグネシウム合金との接合が十分に強 いこと。 [0020] 現実に行われている前処理含むマグネシウム合金用化成処理では、上記要件(1) 、(2)、及び (3)とも十分には満足させることができない。本発明者等は、射出接合に 使用できる前処理法、化成処理法、及びその連結法等について試行錯誤し、その結 果、適当な前処理法と過マンガン酸カリを使用した化成処理法、及び前処理と化成 処理の間に一工程を付加することで、前述した要件(1)、(2)、及び(3)の要件を満 足させられる処理法を開発した。
[0021] 過マンガン酸カリを処理液とした化成処理法では、化成皮膜と生地との接合力がそ の他の薬液による化成皮膜より強かったの力 射出接合に適していると判断した最初 の理由であ。その後、この過マンガン酸カリ系液による化成皮膜であっても、その皮 膜厚さを厚くすれば樹脂との射出接合力が急激に低下することも見出した。この厚い 化成皮膜を付けたマグネシウム合金に、 PPS系樹脂組成物を射出接合した一体化 品を引っ張り破断試験で破断し、その両破断面を観察したところ、金属側にも樹脂組 成物側にもほぼ同じくらい化成皮膜が残存していた。
[0022] 強レ、破断強度を示した薄レ、化成皮膜による一体化物の破断面を見ると、化成皮膜 の大部分が樹脂組成物側に付着していることが多かったので、明らかに様子が違つ ていた。即ち、この化成皮膜は硬いが脆ぐ厚くした場合には強い力で化成皮膜自 体が樹脂との接合面より先に壊れるのである。結局、射出接合には化成皮膜の厚み は薄!/、方が望ましく、耐食性の為にはそう硬くなくて (迅性があって)厚!/、皮膜である のが望まし!/、ので、双方を満足させる単純な方法はな!/、ことが分かった。
[0023] 又、ここで射出接合に関し、化学エッチングによって mオーダーの粗度を得ること の意味につ!/、て述べる。金属を腐食させ得る酸や塩基の水溶液にその金属を浸漬 すると、表面がエッチングされて何らかの凹凸形状を生む。この凹凸形状は物理的 手段、例えばサンドペーパーで研磨して得られる凹凸面と異なって、得られた凹部の 多くがアンダー構造になる。アンダー構造とは凹部を上から見た時に凹部内に見え ない箇所があるということであり、もし凹部の底からミクロの目で見上げることが出来た とすれば、オーバーハング箇所が見えるという意味である。化学反応に頼っており、 金属の侵食は垂直方向だけでなくあらゆる方向に進むから凹部はアンダー構造にな ることが多い。このことが樹脂部との引つ力、かりが生じるので重要である。 [0024] さて、高い接合力を得るためには化成皮膜の厚さは厚過ぎない方が好ましぐ一方 で高レ、耐食性を得るためには、化成皮膜が極力厚レ、方が好ましレ、と!/、う上記の事情 から、射出接合に関して好ましい化成処理法力 必ずしも耐食性に関して適切である とはいえないという問題が生じる。そこで本発明者等は、射出接合において高い接合 力を発揮しつつ、耐食性に優れた表面を形成すベぐ金属合金部品の表面処理方 法を開発した。更に、その表面処理を施した金属合金部品に対しての樹脂の射出接 合で得た金属'樹脂一体化物を、そのまま従来型の化成処理液に投入した。
[0025] 既にある程度の化成皮膜を有し、且つ別工程を一旦経ている物を再度同じ又は別 の化成処理液に投入して意味があるのか否かは実験で確認する必要があった力 結 果は十分意味があるものであった。追加の化成処理が先の工程で得られた化成皮 膜の更に上に皮膜を作ることで耐食性を向上したの力、、先の工程で得られた化成皮 膜の割れやピンホール箇所を追加の化成処理が埋めることで耐食性を向上したのか は分からない。本発明者等は、塗装した上でキズを付けて塩水噴霧試験を行い、キ ズ箇所から塗膜膨れや鯖がどれくらレ、広がるかとレ、う実証的な評価方法の結果から 判断している。
[0026] 以下、各工程の具体的な実施法について述べる。
〔マグネシウム合金部品の表面処理/前処理〕
マグネシウム合金部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂 を除くのが好ましい。具体的には、市販のマグネシウム用脱脂材を、その薬剤メーカ 一の指定通りの濃度で温水に投入して水溶液を用意し、これに浸漬し水洗するのが 好ましい。通常の市販品では、濃度 5〜; 10%として液温を 50〜80°Cとし 5〜; 10分浸 漬する。次に、酸性水溶液に浸漬してエッチングし、マグネシウム合金部品の表層を 溶かして、汚れと残存した油剤や界面活性剤の残分も除く。使用液は、 PH2〜5の、 有機カルボン酸、例えば酢酸、プロピオン酸、クェン酸、マロン酸、安息香酸、フタノレ 酸等、及び無機酸、例えば硝酸、塩酸、リン酸、弗酸等の弱酸性水溶液が使用でき
[0027] 特に、酢酸、プロピオン酸、クェン酸、マロン酸等の脂肪族カルボン酸が好まし!/、。
マグネシウム純度が 100%に近い高純度マグネシウム以外は、合金に異種金属が含 まれている。例えば、 AZ31、 AZ91ではアルミニウムが 3〜9%、亜鉛が 1 %程度含ま れており、アルミニウムや亜鉛は弱酸性水溶液を使ったこのエッチング工程では、溶 け難く不溶物として表面に沈着するから、これら沈着物を溶力、し去り清浄にする工程 が要る。いわゆるスマット除去である。 AZ31や AZ91では、まず弱塩基性水溶液に 浸漬してアルミニウムのスマットを溶解し(第 1スマット処理)、次に強塩基性水溶液に 浸漬して亜鉛のスマットを溶力、し去る(第 2スマット処理)のが好まし!/、方法である。
[0028] 現在、業界で通常に実施されているマグネシウム合金用化成処理では、前処理で の第 1スマット処理の多くに、市販のアルミニウム合金用脱脂材水溶液が使用されて いる。弱塩基性にて、元々微細アルミニウムを溶解する能力があるからである。しかし 本発明では、マグネシウム合金片の表面を最終的に 100〜10000nm周期の凹凸、 又は直径 100〜10000nmの凹部で覆われ、且つその面上に 10nm以上の高低差 ある超微細凹凸を形成するのが好ましい。このような形状にするために、前記のエツ チング工程が重要な役目を持つが、意外なことに第 1スマット処理工程が更に重要な 工程であることが分かった。
[0029] おそらぐアルミニウムスマットを除去するだけでなぐ合金表面に露出しているアル ミニゥムも溶解して求める粗度に関して影響を与えているものとみられた。通常のマグ ネシゥム合金化成処理の第 1スマット除去工程で用いられるのは、アルミニウム合金 用脱脂剤であるのが普通だが、本発明者等はその他の弱塩基性水溶液を多数試し た。その結果、いろいろなものが使用できることが判明した。特に、優れていたものに ついては実施例に示した。第ニスマット処理は、 15〜25%濃度の苛性ソーダ水溶液 を、温度 60〜80°Cとして、 5〜; 10分間浸漬する方法を取った。
[0030] 〔マグネシウム合金部品の表面処理/本処理〕
次いで液処理の中で本処理と言える処理を行う。本処理は 2段階の浸漬処理、即 ち弱酸性水溶液に極短時間浸漬して微細エッチングを行い、次!、で化成処理を行う のが好ましい。微細エッチング工程には PH4〜6の、有機カルボン酸、例えば酢酸、 プロピオン酸、クェン酸、安息香酸、フタル酸、フエノール、フエノール誘導体等の弱 酸性水溶液が使用でき、浸漬時間も 15〜90秒と極短時間が好ましい。この微細エツ チング工程は通常のマグネシウム合金化成処理にはな!/、工程だが、本発明者等は 実験結果から見て微細エッチング工程を含めた方がより強い射出接合力を生むと判 断した。
[0031] 化成処理工程は従来知られているノンクロメート型化成処理の殆どを試した結果だ 力 過マンガン酸カリ系化成処理が優れていると判断したものである。過マンガン酸 カリ系化成処理について具体的に述べる。前処理を終わったマグネシウム合金部品 を、温度 40°C前後とした 0.;!〜 0. 3%濃度の水和クェン酸水溶液に、 15〜60秒浸 漬し微細エッチングし、この後にイオン交換水で水洗する。
[0032] 次に化成処理液として、過マンガン酸カリ 1. 5〜3. 0%、酢酸 0. 7〜; 1. 5%、水和 酢酸ナトリウム 0. 3〜; 1. 0%を含む水溶液を、温度 40〜50°Cにして用意し、これに 前述したマグネシウム合金部品を、 0. 5〜;!分浸潰し、この後にこれを水洗するのが 好ましい。この化成処理法は、前述した特開 2001— 123274号公報等に示された 技術を、試行錯誤して射出接合力向上の為に改良したものである。これを温度 80〜 90°Cとした温風乾燥機に、 5〜20分入れて乾燥する。この処理によって、マグネシゥ ム合金部品表面には、マンガン酸化物を主成分とする薄層が形成される。
[0033] このように、マグネシウム合金部品に対して、前処理としての第 1スマット処理及び 第 2スマット処理を施した後、弱酸性水溶液に極短時間浸透して微細エッチングを行 い、更に化成処理としての過マンガン性カリ系化成処理を行った結果、前述した射出 接合に必要な要件(1)〜(3)を満たし、強い射出接合力を得た上で、耐食性にも優 れた表面を有するようになるのである。
[0034] 〔樹脂組成物/ PPS組成物〕
本発明を構成する樹脂組成物は、 PPS70〜97質量%及びポリオレフイン系樹脂 3 〜30質量%を含む樹脂分組成物からなり、特に接合性に優れた複合体とするには P PS80〜95質量%、及びポリオレフイン系樹脂 5〜20質量%を含む樹脂分組成とす ることが好ましい。ここで、 PPSが 70質量%未満である場合、又は、 97質量%を越え る場合、得られる複合体は金属部品と樹脂組成物部品との接合性に劣るものとなる。
[0035] PPSとしては、 PPSと称される範疇に属するものであればよぐその中でも樹脂組成 物部品とする際の成形加工性に優れることから直径 lmm、長さ 2mmのダイスを装着 した高化式フローテスターにて、測定温度 315°C、荷重 98N (10kgf)の条件下、測 定した溶融粘度が 100〜30,000ボイズ(P)であるものであることが好ましい。また、 P PSはアミノ基ゃカルボキシル基等で置換したものや、重合時にトリクロ口ベンゼン等 で共重合したものであってもよレ、。
[0036] また、 PPSとしては、直鎖状のもの、分岐構造を導入したもの、不活性ガス中で加 熱処理を施したもの等であってもよい。更に、 PPSは、加熱硬化前、又は後に脱ィォ ン処理 (酸洗浄、熱水洗浄等)、あるいはアセトン等の有機溶媒による洗浄処理を行 うことによってイオン、オリゴマー等の不純物を低減させたものであってもよいし、重合 反応終了後に酸化性ガス中で加熱処理を行って硬化を進めたものであってもよい。
[0037] ポリオレフイン系樹脂としては、通常ポリオレフイン系樹脂として知られているェチレ ン系樹脂、プロピレン系樹脂等であり、市販のものであってもよい。その中でも、特に 接着性に優れた複合体を得ることが可能となることから、無水マレイン酸変性ェチレ ン系共重合体、グリシジルメタタリレート変性エチレン系共重合体、グリシジルエーテ ル変性エチレン共重合体、エチレンアルキルアタリレート共重合体等であることが好 ましい。
[0038] 無水マレイン酸変性エチレン系共重合体としては、例えば無水マレイン酸グラフト 変性エチレン重合体、無水マレイン酸 エチレン共重合体、エチレン アクリル酸ェ ステルー無水マレイン酸三元共重合体等をあげることができ、その中でも特に優れた 複合体が得られることからエチレン アクリル酸エステル 無水マレイン酸三元共重 合体であることが好ましい。エチレン アクリル酸エステル 無水マレイン酸三元共 重合体の具体的例示としては、「ボンダイン (アルケマ社製)」等が挙げられる。
[0039] グリシジルメタタリレート変性エチレン系共重合体としては、グリシジルメタタリレート グラフト変性エチレン重合体、グリシジルメタクリレートーエチレン共重合体を挙げるこ とができ、その中でも特に優れた複合体が得られることからグリシジルメタタリレート一 エチレン共重合体であることが好ましい。グリシジルメタクリレートーエチレン共重合体 の具体例としては、「ボンドファースト (住友化学社製)」等が挙げられる。
[0040] グリシジルエーテル変性エチレン共重合体としては、例えばグリシジルエーテルグ ラフト変性エチレン共重合体、グリシジルエーテル エチレン共重合体を挙げること ができ、エチレンアルキルアタリレート共重合体の具体例としては、「ロトリル(ァルケマ 社製)」等が挙げられる。
[0041] 本発明の複合体においては、マグネシウム部品又はマグネシウム合金部品と樹脂 組成物部品との接合性がより優れたものとなることから、樹脂組成物部品は PPS 70 〜97質量%及びポリオレフイン系樹脂 3〜30質量%を含む樹脂分合計 100質量部 に対し、更に多官能性イソシァネート化合物 0. ;!〜 6質量部及び/又はエポキシ樹 脂;!〜 25質量部を配合してなるものであることが好ましい。
[0042] 多官能性イソシァネート化合物は、市販の非ブロック型、ブロック型のものが使用で きる。多官能性非ブロック型イソシァネート化合物としては、例えば 4, 4 '—ジフエ二 ソシァネート、フエ二レンジイソシァネート、ビス(4 イソシァネートフエ二ノレ)スルホン 等を例示すること力 Sできる。また、多官能性ブロック型イソシァネート化合物としては、 分子内に 2個以上のイソシァネート基を有し、そのイソシァネート基を揮発性の活性 水素化合物と反応させて、常温では不活性としたものであり、多官能性ブロック型イソ シァネート化合物の種類は特に規定したものではなぐ一般的には、アルコール類、 フエノール類、 ε—力プロラタタム、ォキシム類、活性メチレン化合物類等のブロック 剤によりイソシァネート基がマスクされた構造を有する。多官能性ブロック型イソシァ ネートとしては、例えば「タケネート(三井竹田ケミカル社製)」等を挙げることができる
[0043] エポキシ樹脂としては、一般にビスフエノール Α型、クレゾールノポラック型等として 知られているエポキシ樹脂を用いることができ、ビスフエノール A型エポキシ樹脂とし ては、例えば「ェピコート(ジャパンエポキシレジン社製)」等を挙げることができ、タレ ゾールノポラック型エポキシ樹脂としては、「ェピクロン (大日本インキ化学工業社製) 」等を挙げること力 Sでさる。
[0044] また、本発明の複合体の樹脂組成物は、マグネシウム部品又はマグネシウム合金 部品と、樹脂組成物部品の線膨張率差の調整及び樹脂組成物部品の機械的強度 を向上することを目的として、 PPS70〜97質量%及びポリオレフイン系樹脂 3〜30 質量%を含む樹脂分合計 100質量部に対し、更に充填剤;!〜 200質量部、より好ま しくは 10〜150質量部を含んでなるものであることが好ましい。 [0045] 充填剤としては繊維状充填剤、粒状充填剤、板状充填剤等の充填剤を挙げること ができる。繊維状充填剤としては、例えばガラス繊維、炭素繊維、ァラミド繊維等を挙 げること力 Sでき、ガラス繊維としては、例えば平均繊維径が 6〜; 14 mのチョップドス トランド等を挙げること力 Sできる。また、板状、粒状充填剤としては、例えば炭酸カルシ ゥム、マイ力、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ、タルク、粘 土、炭素繊維ゃァラミド繊維の粉砕物等を挙げることができる。なお、充填剤は、シラ ンカップリング剤、チタネート系カップリング剤で処理したものあることが好ましい。
[0046] 〔樹脂組成物/ PBT組成物〕
PBT樹脂組成物につ!/、て述べる。樹脂分組成として PET及び/又はポリオレフィ ン系樹脂を 3〜30%と、 70〜97%の PBTの組成を有するものが好ましい。ポリオレ フィン系樹脂は、 PPS樹脂組成物の項で述べたのと同じものが使用できる。 PET及 び/又はポリオレフイン系樹脂の組成比が少な!/、場合、及び樹脂分組成で 30%を 超える場合には射出接合力への効果が不確実なものとなる。
[0047] 射出接合について言えば PET及び/又はポリオレフイン系樹脂の樹脂分組成が 5 〜20%であることが特に接合力が強く安定しているので好ましい。加えて言えば、 P ET成分が樹脂分組成の 30%を超える場合には射出成形機の射出筒内の高温でェ ステル交換反応が生じて樹脂自体の強度の低下することがあり、ポリオレフイン成分 が樹脂分組成の 30%を超える場合には射出成形時のガス発生が増加し且つランナ 一等の抜けが悪化して成形サイクルを壊す可能性が高くなる。線膨張率をマグネシ ゥム又はマグネシウム合金並みにするためにフィラーを大量に混入させることが射出 接合力を経時的に安定にする。これは前記した PPS系と同じである。
[0048] 〔樹脂組成物/芳香族ポリアミド組成物〕
芳香族ポリアミド樹脂組成物について説明する。より好ましいのは樹脂分組成として 80%以上がフタル酸系ナイロンであり、しかもナイロン 61 (へキサメチレンジァミンとィ ソフタル酸から得られるポリアミド)とナイロン 6T (へキサメチレンジァミンとテレフタル 酸から得られるポリアミド)の双方が含有されて!/、るのが好まし!/、。
[0049] 芳香族ナイロンは脂肪族ナイロンより吸湿性が小さぐその意味で金属との長期的 な接合の維持に適している力 それとは別に前述のように類似したナイロンを混ぜ合 わせることで、急冷時の物性が通常の熱可塑性樹脂と大きく異なるようになることが見 出されている。即ち、各種の結晶性の熱可塑性樹脂に対し所定の射出成形条件で 射出成形品を得た場合、得られる成形品内の樹脂は既に大部分が結晶化固化して 、その最終安定状態にほぼ至っているのだが、芳香族ナイロン、特に類似高分子を 混ぜ合わせた芳香族ナイロンには、離型直後の数十秒間可塑性が残ると!/、う不思議 な物である。
[0050] 日本ではあまり知られておらず生産も主に米国だ力 米国では「無理抜きできるナ ィロン」と言われてレ、る。その高分子化学的な解析につ!/、て文献調査したが残念なが ら本発明者等は明らかにされた文献を見つけられなかった。し力も本発明者等は前 記したように、急冷時の結晶化速度の遅い結晶性樹脂があればこれは射出接合に 適する樹脂であると考えており、その考え方に沿って PBT、又は PPSを改良して来た 。その見方によれば「無理抜きできるナイロン」は明らかに急冷時の結晶化固化の遅 い結晶性樹脂であると判断できる。実際に芳香族ナイロンを合成し、且つ混ぜ合わ せ、マグネシウム合金への射出接合用樹脂として実験し、以下のことが分かった。
[0051] 即ち、急冷時の結晶化固化速度が、やはり前述した改良 PBT、又は PPS系樹脂よ りもずつと遅ぐ余りにも遅レ、ので射出接合時の极レ、も変えなければならな!/、くらレ、で あった。通常の射出成形における金型冷却時間、例えば 15〜25秒では離型時の衝 撃で、インサートしたマグネシウム合金片と樹脂成形物が剥がれて離型するものがあ つた。それ故に、冷却時間を思い切って長い冷却時間(例えば 60〜90秒)にした射 出接合試験をして、射出接合が確実に生じていることをまず確認する必要がある。し 力、もこれだけ冷却時間を長く取ってもまだ結晶化は進行中であり、接合強度は十分 高まっていないので金型を開くこと、及びェジエタターピンで離型することで、接合面 に剥がし応力が強く働くと最終的な接合力は弱くなる。この射出接合で、十分高い接 合力を得るには、商品設計と金型設計の双方に若干の工夫が必要である。
[0052] 〔複合体の製造方法〕
本発明の高耐食性複合体の製造方法は、マグネシウム部品又はマグネシウム合金 部品を射出成形金型にインサートする射出成形法であり、この射出成形法は以下の ように行う。射出成形金型を用意し、この金型を開いてその一方に前述の液処理を 行ったマグネシウム部品、又はマグネシウム合金部品をインサートし、金型を閉じ、前 記した熱可塑性樹脂組成物を射出し、固化した後に金型を開き離型することにより、 複合体の製造を行う。
[0053] 次に、射出条件について説明する。金型温度としては特に固化後樹脂強度への影 響が少なぐ複合体の生産効率に優れることから温度 100°C以上が好ましぐより好 ましくは温度 120°C以上である。一方、射出温度、射出圧、射出速度は特に通常の 射出成形と変わらないが、強いて言えば、射出速度と射出圧は高目にする。得られ た複合体は出来るだけ手で触れず、特にマグネシウム、又はマグネシウム合金部分 は触れないようにする。射出接合では、金型に離型剤等をスプレーすることは厳禁で あり、インサート前の金型は、揮発油等で付着油剤を完全に拭き取っておくことが重 要である。そのような措置をして得た複合体は汚れておらず、ァニール工程でも気を つければ清浄な一体化した複合体が得られる。
[0054] 〔複合体の化成処理法〕
前記工程で得られたマグネシウム部品、又はマグネシウム合金部品と樹脂組成物 が一体化された複合体を、市販のマグネシウム合金用化成処理液に浸漬して化成 処理を行う。一体化された複合体は、本発明者等が射出接合用に開発した過マンガ ン酸カリ系化成処理が既に為されており、表面は二酸化マンガンを主成分とする薄 層で覆われているのだ力 S、そのような表面に対して再度施す化成処理に効果がある のか否かを実験で確かめた。何故なら、通常の化学知識に照らして、二酸化マンガ ンをリン酸マンガン系水溶液に浸漬しても、特に反応しないという結果も予想されうる 力、らである。し力、しながら、実験の結果、実際には 2層目の化成処理は耐食性試験で はっきり効果が認められた。
[0055] 特に耐食性が優れているように見えたのは、カルシウムイオンを含むリン酸マンガン 系化成処理液で処理した物、及び市販の珪素系の化成処理液で処理した物であつ た。これらが二酸化マンガン層と反応し、二酸化マンガン層の上に積み重なるように して、化成皮膜を太ら(厚く)した結果にて耐食性を向上したのか、それとも、二酸化 マンガン層には薄くて何らかのイオンが通過できるような隙間やピンホールが多数あ り、これらが新規の化成処理によって埋められたのかは、未だ解明していない。何れ にせよ、市販のマグネシウム合金用の化成処理液、それと本発明者等が実施例から 選んで作成した化成処理液の全てで向上効果が認められた。
[0056] カルシウムイオンを含むリン酸マンガン系化成処理液の例としては、特開平 11— 1 31255号公報に記載された技術を採用した。ここには硝酸カルシウム、炭酸マンガ ン、及びリン酸とごく少量の塩素酸ナトリウムを溶解した水溶液(実際には炭酸マンガ ンが溶けきれず懸濁液となる)が記載されている。又、通常のリン酸マンガン系、又は 珪素系のマグネシウム合金用の化成処理液は、多数の会社から市販されており、本 実施の形態ではメルテックス社 (埼玉県さいたま巿)の市販品を使用した。その他にも 化成処理について、特許公報等で公開されている技術も多数知られており、それらも 一部実施した。本発明者等の判断では、本発明の実施例にも記述している力 カル シゥムを含んだリン酸マンガン系の化成処理、又は珪素系の化成処理が他と比較し て優れている。
[0057] 〔複合体の塗装〕
前記工程で得られたマグネシウム部品、又はマグネシウム合金部品と樹脂組成物 が一体化した複合体は、そのままでも使用できるが、外装用部品とするにはこれを塗 装する。樹脂組成物も、マグネシウム部品、又はマグネシウム合金部品も塗装できる 塗料として、金属塗装用焼付け塗料が好ましく使用できる。樹脂組成物側も、温度 2 00°C程度なら全く問題な!/、耐熱性を持って!/、るので、このような高温焼付け型塗料 の使用に問題となることはなレ、。
[0058] 又、マグネシウム部品、又はマグネシウム合金部品のみを塗装するのであれば、巿 販されているマグネシウム合金塗装用の塗料が使用できる。マグネシウム合金用とし て市販されている塗料の中には、ウレタン系塗料、アクリルウレタン系塗料等もあり、 これらは焼付け温度が 120°C以下と低いので、多くの塗装企業で保有している熱風 乾燥機を用いることができる。但し、これらを PBT系樹脂組成物、 PPS系樹脂組成物 の上に塗装することは、樹脂組成物との接着性が不十分となるおそれがある。
[0059] 〔作 用〕
本発明を適用することで、即ち、接合性の向上、効率化、適用範囲の拡大等を図る ことで、モパイル電子機器や家電機器の軽量化や、車載機器や部品の軽量化、ロボ ットの腕や足の軽量化、その他多くの分野で部品、筐体の供給、軽量化、生産性に 寄与すること力 Sでさる。
発明の効果
[0060] 以上詳記したように、本発明の製造方法で製造した高耐食性複合体は、マグネシ ゥム部品、又はマグネシウム合金部品と、樹脂組成物とが容易に剥がれることなく一 体化されたものであり、且つ、耐食性に優れたものとすることができた。また、マグネシ ゥム部品、又はマグネシウム合金部品に特定の化成処理をした後、 PPSを主成分と する樹脂分組成、 PBTを主成分とする樹脂分組成、又は、ナイロン 61及びナイロン 6 Tの双方が含有されている芳香族ポリアミド樹脂の樹脂組成を有する熱可塑性樹脂 組成物を使用して射出接合し、その後に通常の化成処理をすることにより、耐食性に 優れた高耐食性複合体を、容易に確実に製造することができた。
発明を実施するための最良の形態
[0061] 以下、本発明の実施の形態を実施例に代えて説明する。図 1は、射出成形金型の 断面を模式的に示した構造図である。射出成形金型 10は、所定形状に加工された マグネシウム部品、又はマグネシウム合金部品 1を、一方の金型 2にインサートし、こ れに樹脂組成物 4を、ピンゲート 5を介して射出して、複合体 7を成形するものである 。このマグネシウム部品、又はマグネシウム合金部品 1の表面には、微細凹部が形成 されている。微細凹部は、接合面 6を形成し、これに樹脂組成物 4を固着するもので ある。図 2は、接合後の複合体 7を示す外観図である。即ち、図 2に示す複合体 7は、 マグネシウム部品、又はマグネシウム合金部品 1と、樹脂組成物 4が接合面 6により一 体化されたものである。なお、図 1、図 2に示すものは、後述する各実施例の共通のも のとして使用したものである。以下に説明する実施例は、本発明に関わり製造される 種々の接合強度を、せん断破断強度の測定値により示し、本発明の有効性を確認し たものである。
実施例
[0062] 以下、本発明の実施例を詳記する。最初に実施例より得られた複合体の評価'測 定方法を示す。
〔PPSの溶融粘度測定〕 直径 lmm、長さ 2mmのダイスを装着した高化式フローテスター「CFT— 500 (島 津製作所社製)」にて、測定温度 315°C、荷重 98N (10kgf)の条件下で溶融粘度の 測定を行う。
[0063] 〔表面観察〕
(a) X線回折分析装置
表面の観察を、試料に X線を照射し、その回折格子のデータから結晶レベルの解 析を行う分析を行う X線回折分析装置 (XRD)により行った。この X線回折分析装置 には、数 m径の表面を深さ数 nmまでの範囲で観察できる「XRD— 6100 (製品名) 」(日本国京都府、島津製作所社製)を使用した。
[0064] (b)電子顕微鏡観察
主に部品の表面の観察のために電子顕微鏡を用いた。この電子顕微鏡には、走査 型(SEM)の電子顕微鏡「S— 4800 (製品名)」(日本国東京都、 日立製作所社製)」 及び「JSM— 6700F (製品名)」(日本国東京都、 日本電子社製)を使用し、;!〜 2K Vにて観察した。
[0065] (c)走査型プローブ顕微鏡観察
表面の粗度(凹凸)の観察のために、走査型プローブ顕微鏡を用いた。この走査型 プローブ顕微鏡観察には、「SPM— 9600 (製品名)」(日本国京都府、島津製作所 社製)を使用した。
[0066] 〔複合体の接合強度の測定〕
接合強度試験は、引っ張り試験機「モデル 1323 (製品名)」(日本国東京都、アイコ 一ェンジニヤリング社製)を使用し、引っ張り速度 10mm/分でせん断破断力を測定 した。
[0067] 〔複合体の耐食性の試験 (塩水噴霧試験)〕
耐食性試験には、塩水噴霧試験機「SPT— 90 (製品名)」 (日本国東京都、スガ試 験機社製)を使用し、温度 35°Cで 5%濃度の塩水を 24時間連続噴霧し、イオン交換 水で洗浄し、風乾等して、耐食性を評価した。
[0068] 〔調整例 1 (PPS組成物の調製例)〕
攪拌機を装備する 50リットルオートクレーブに、 Na S ' 2. 9H Oを、 6,214g、及び N メチル 2 ピロリドンを 17,000gを仕込み、窒素気流下で攪拌しながら、徐々 に温度 205°Cまで昇温して、 l,355gの水を留去した。この系を温度 140°Cまで冷却 した後、 p ジクロ口ベンゼンを 7,160gと、 N メチルー 2 ピロリドンを 5,000gを添 加し、窒素気流下でこの系、即ちオートクレープを封入した。この系を 2時間かけて温 度 225°Cに昇温し、温度 225°Cにて 2時間重合させた後、 30分かけて温度 250°Cに 昇温し、更に温度 250°Cにて 3時間で重合を行った。重合終了後、室温まで冷却し ポリマーを遠心分離機により単離した。該固形分を温水でポリマーを繰り返し洗浄し 、温度 100°Cで一昼夜乾燥することにより、溶融粘度が 280ボイズ (P)の PPS (以下 、PPS (1)と記す。)を得た。
[0069] この PPS (l)を、更に窒素雰囲気下で温度 250°Cで、 3時間硬化を行い PPS (以下 、 PPS (2)と記す。)を得た。得られた PPS (2)の溶融粘度は、 400ボイズ (P)であった 。得られた PPS (2)を 6· 0kg、エチレン アクリル酸エステル 無水マレイン酸三元 共重合体「ボンダイン TX8030 (アルケマ社製)」を 1. 5kg、エポキシ樹脂「ェピコート 1004 (ジャパンエポキシレジン社製)」を 0. 5kgと、をあらかじめタンブラ一にて均一 に混合した。その後、二軸押出機「TEM— 35B (東芝機械社製)」にて、平均繊維径 9〃 m、繊維長 3mmのガラス繊維「RES03—TP91 (日本板硝子社製)」を、サイドフ ィーダ一から添加量が 20質量。 /0となるように供給しながら、シリンダー温度 300°Cで 溶融混練して、ペレット化した PPS組成物(1)を得た。得られた PPS組成物(1)を温 度 175°Cで 5時間乾燥した。
[0070] 〔調整例 2 (PPS組成物の調製)〕
調整例 1で得られた PPS (l)を、酸素雰囲気下で温度 250°Cで、 3時間硬化を行い PPS (以下、 PPS (3)と記す。)を得た。得られた PPS (3)の溶融粘度は、 1,800ボイ ズ(P)であった。得られた PPS (3)を 5· 98kg,ポリエチレン「ニポロンハード 8300A ( 東ソ一社製)」を 0. 02kgをあらかじめタンブラ一にて均一に混合した。その後、二軸 押出機「TEM— 35B」にて、平均繊維径 9 m、繊維長 3mmのガラス繊維「RES03 — TP91」を、サイドフィーダ一から添加量力 0質量%となるように供給しながら、シリ ンダー温度 300°Cで溶融混練して、ペレット化した PPS組成物(2)を得た。得られた PPS組成物(2)を温度 175°Cで 5時間乾燥した。 [0071] 〔調整例 3 (PPS組成物の調製)〕
調整例 1で得られた PPS (2)を 7. 2kgと、グリシジルメタタリレート一エチレン共重合 体「ボンドファースト E (住友化学社製)」を 0. 8kgと、をあらかじめタンブラ一にて均一 に混合した。その後、二軸押出機「TEM— 35B」にて、平均繊維径 9 111、繊維長 3 mmのガラス繊維「RES03— TP91」を、サイドフィーダ一から添加量が 20質量%と なるように供給しながら、シリンダー温度 300°Cで溶融混練して、ペレット化した PPS 組成物(3)を得た。得られた PPS組成物(3)を温度 175°Cで 5時間乾燥した。
[0072] 〔調整例 4 (PPS組成物の調製)〕
調整例 1で得られた PPS (2)を 4. Okgと、エチレン アクリル酸エステル 無水マ レイン酸三元共重合体「ボンダイン TX8030 (アルケマ社製)」を 4· Okgと、をあらかじ めタンブラ一にて均一に混合した。その後、二軸押出機「TEM— 35B」にて、平均繊 維径 9 μ m、繊維長 3mmのガラス繊維「RES03—TP91」を、サイドフィーダ一から 添カロ量が 20質量%となるように供給しながら、シリンダー温度 300°Cで溶融混練して 、ペレット化した PPS組成物(4)を得た。得られた PPS組成物(4)を、温度 175°Cで 5 時間乾燥した。
[0073] 〔調整例 5 (PBT組成物の調製)〕
PBT樹脂「トレコン 1100S (東レ社製)」を 4· 5Kgと、 PET樹脂「TR— 4550BH (帝 人化成社製)」を 0. 5Kgと、をタンブラ一にて均一に混合した。その後、二軸押出機「 TEM- 35BJにて、平均繊維径 9 m、繊維長 3mmのガラス繊維「RES03—TP91 」を、サイドフィーダ一から添加量が 30質量%となるように供給しながら、シリンダー温 度 270°Cで溶融混練し、ペレット化した PBT系樹脂組成物を得た。温度 140°Cで 3 時間乾燥し PBT組成物(1)とした。
[0074] 〔調整例 6 (PBT組成物の調製)〕
PBT樹脂「トレコン 1401X31 (東レ社製)」を 6. Okgと、エチレン アクリル酸エステ ノレ 無水マレイン酸三元共重合体「ボンダイン TX8030 (アルケマ社製)」を 0. 7kgと 、エポキシ樹脂「ェピコート 1004 (ジャパンエポキシレジン社製)」を 0. 15kgと、をあ らかじめタンブラ一にて均一に混合した。その後、二軸押出機「TEM— 35B (東芝機 械社製)」にて、平均繊維径 9 H m、繊維長 3mmのガラス繊維「RES03—TP91 (日 本板硝子社製)」を、サイドフィーダ一から添加量が 30質量%となるように供給しなが ら、シリンダー温度 270°Cで溶融混練して、ペレット化した PBT組成物(2)を得た。得 られた PBT組成物(2)を温度 150°Cで 5時間乾燥した。
[0075] 〔調整例 7 (PBT組成物の調整)〕
PBT樹脂「トレコン 1401X31 (東レ社製)」 6· Okgと PET樹脂「TR— 4550BH (帝 人化成社製)」を 0. 5Kgと、エチレン アクリル酸エステル 無水マレイン酸三元共 重合体「ボンダイン TX8030 (アルケマ社製)」を 0. 5kgと、エポキシ樹脂「ェピコート 1004 (ジャパンエポキシレジン社製)」を 0. 1kgと、をあらかじめタンブラ一にて均一 に混合した。その後、二軸押出機「TEM— 35B (東芝機械社製)」にて、平均繊維径 9〃 m、繊維長 3mmのガラス繊維「RES03—TP91 (日本板硝子社製)」を、サイドフ ィーダ一から添加量が 30質量。 /0となるように供給しながら、シリンダー温度 270°Cで 溶融混練して、ペレット化した PBT組成物(3)を得た。得られた PBT組成物(3)を温 度 150°Cで 5時間乾燥した。
[0076] 〔調整例 8 (芳香族ポリアミド樹脂組成物の調製)〕
へキサメチレンジァミンとイソフタル酸からのポリアミドであるナイロン 61を合成した。 又、へキサメチレンジァミンとテレフタル酸からのポリアミドであるナイロン 6Tを合成し た。ナイロン 66を 0· 5Kg、ナイロン 61を lKg、ナイロン 6Tを 2· 5Kgをタンブラ一にて 均一に混合した。その後、二軸押出機「TEM— 35B」にて、平均繊維径 9 111、繊維 長 3mmのガラス繊維「RES03—TP91」をサイドフィーダ一から添加量が 50質量% となるように供給しながら、シリンダー温度 280°Cで溶融混練しペレット化した。温度 8 0°Cで 4時間乾燥し、芳香族ポリアミド組成物(1)とした。
[0077] 〔実施例 1〕
最終処理が湿式バフ掛けの、平均の金属結晶粒径が 7 mである厚さ 1. 5mmの AZ31Bマグネシウム合金(日本金属社製)を購入し、多数の、大きさ 18mmX 45m m、厚さ 0. 8mmの長方形片に切断し、マグネシウム合金部品 1であるマグネシウム 合金片とした。このマグネシウム合金片の端部に穴を開け、十数個に対し塩化ビュル でコートした銅線を通し、マグネシウム合金片同士が互いに重ならないように銅線を 曲げて加工し、全てを同時にぶら下げられるようにした。 [0078] 槽に市販のマグネシウム合金用脱脂剤「クリーナー 160 (メルテックス社製)」を水に 投入して温度 75°C、濃度 10%の水溶液とした。これにマグネシウム合金片を 5分間 浸漬しょく水洗した。続いて別の槽に温度 40°Cとした 1 %水和クェン酸水溶液を用意 し、これにマグネシウム合金片を 4分浸漬してよく水洗した。黒色のスマットが付着し ていた。次いで別の槽に、温度 65°Cとした炭酸ナトリウムを、 1 %と炭酸水素ナトリウ ムを 1 %含む水溶液を用意し、先ほどのマグネシウム合金片を 5分浸漬してよく水洗 した。続いて、別の槽に温度 65°Cとした 15%苛性ソーダ水溶液を用意し、これにマ グネシゥム合金片を 5分浸漬してよく水洗した。これでスマットの内の亜鉛分を溶解す ること力 Sでさた。
[0079] 続いて別の槽に用意した温度 40°Cの 0. 25%の水和クェン酸水溶液に、 1分浸漬 してよく水洗した。次いで別の槽に温度 45°Cとした過マンガン酸カリ 2%、酢酸 1 %、 水和酢酸ナトリウムを 0. 5%含む水溶液を用意し、これに 1分浸漬し、よく水洗して温 度 90°Cにした温風乾燥機に 10分入れて乾燥した。乾燥後、きれいなアルミ箔の上 で、マグネシウム合金片から銅線を抜いて置き、まとめて包み、更にこれをポリ袋に入 れて封じ保管した。このとき、接合すべき面(穴を開けたのと反対側の端部)に指が触 れないように作業した。
[0080] 2日後、このうち 1個のマグネシウム合金片を電子顕微鏡観察した。直径 20nm程 度で、長さ 20〜50nm程度の円柱状突起力 無数に生えたような複雑面に覆われ、 その表面はこれら突起が作る数百〜千 nm径の広い凹部で構成されている。別の 1 個のマグネシウム合金片を、走査型プローブ顕微鏡で粗度(凹凸具合)を見たところ 、凹凸周期は 0· 3〜2 111で高低差(深さ)は0.;!〜 0· 4 mであった。別の 1個を X PS分析したところ、酸素、マンガンの大きなピーク、炭素の小さなピーク、及びマグネ シゥム、アルミユウム、亜鉛の微細なピークが観察された。
[0081] XPSから表面は酸化マンガンで覆われていることが判明した力 弱酸性下での過 マンガン酸アルカリ金属塩の還元からは、 Mn (IV)の二酸化マンガンが得られると!/、 うことはよく知られていることなので、この酸化マンガンは二酸化マンガンであると判断 した。二酸化マンガンは黒色で通電性がある力 S、化成処理後のマグネシウム合金は 茶褐色に変化し、化成処理での浸漬時間を長くすると黒褐色に変化すること、化成 処理面は通電することからも表面は二酸化マンガンで覆われているのが確実であつ た。更に、別の 1個を XRD分析したが予期されたマンガン酸化物の結晶は観察でき なかった。即ち、二酸化マンガンの結晶もその他の同定されている酸化マンガン結晶 も観察されなかった。従って、二酸化マンガンはアモルファス状態なの力、、又は結晶 を含むがその結晶は小さ過ぎて XRD分析で観察できないかのいずれかであった。
[0082] 更に、 1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のあ る方を手袋で摘まみ温度 140°Cとした射出成形金型にインサートした。金型を閉じ調 製例 1により得られた PPS組成物(1)を、射出温度 310°Cで射出し、射出接合させた 。離型し、図 2で示す一体化した複合体を 20個得た。樹脂部の大きさは 10mm X 45 mm X 5mmであり、接合面 6は 10mm X 5mmの 0· 5«ηώであった。これを成形した 当日に、 4個を引っ張り破断試験したところ、平均のせん断破断力は 25. OMPaであ つた。又、成形した当日に、温度 170°Cの熱風乾燥機に、 1時間投入してァニールし た 5個は、更にその 1日後に引っ張り試験した力 平均のせん断破断力は 24. 2MPa であった。
[0083] 残りの一体化した複合体 10個を、温度 170°Cとした熱風乾燥機内に 1時間入れて ァニールした。次いで一体化品の樹脂部を、クリップで挟んでぶら下げられるようにし た。一方、水和硝酸カルシウムを 1. 77%、炭酸マンガンを 0. 08%、 80%リン酸を 0 . 74%、塩素酸ナトリウムを 0. 015%含む水溶液を、温度 60°Cとして時々攪拌しつ つ 1時間置!/、て不溶分 (炭酸マンガン)を出来るだけ溶力もた。まだ懸濁して!/、る温 度 60°Cのこの懸濁水溶液に、一体化した複合体を 2分浸漬し、水洗し、温度 90°Cで 15分間乾燥した。
[0084] この 2日後、一体化した複合体に塗料「ォーマック/黒 (大橋化学社製)」を厚さ 10 inの設定で塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメ タリック」を厚さ 10 πιの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。塗 装焼付けの 3日後、塗膜上に 2mm間隔で長さ 20mmのキズをカッターナイフで 6本 付け、更にこの 6本線に交差する 1本の線をカッターナイフで切り込んだ。これを 1週 間後に塩水噴霧試験機にセットした。 5%濃度の塩水を使用して、温度 35°Cで 24時 間塩水噴霧を行い、イオン交換水で水洗して、これをペーパーナプキンで拭き取り風 乾した。カッターナイフで切り込んだ切りキズ側面の塗膜は、浮き上がっておらずキズ 力もの鯖の広力 Sりもなかった。この複合体を引っ張り破断試験したところ、せん断破断 力は 17. IMPaであった。
[0085] 〔実施例 2〕
実施例 1と全く同様にして、 AZ31Bマグネシウム合金を使い、前処理し、微細エツ チングし、化成処理をした。更に実施例 1と全く同様にして、射出成形金型にインサ ートし PPS組成物(1)を射出して離型し、図 2で示す一体化した複合体を得て同日に ァニールをし、複合体を 10個得た。次いで一体化した複合体の樹脂部を、クリップで 挟んでぶら下げられるようにし、市販の珪素系マグネシウム合金用化成処理液「マグ トリート SI— 5920 (メルテックス社製)」をこのメーカー指示通り希釈し、水溶液を温度 50°Cとして一体化した複合体を 1. 5分浸漬し、これをイオン交換水で洗浄し、温度 9 0°Cで 15分乾燥した。
[0086] その 3日後、一体化した複合体を「ォーマック/黒 (大橋化学社製)」で厚さ 10 in の設定にて塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメタリ ック」を厚さ 10 inの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。即ち、 一体化後の化成処理に市販の珪素系の化成処理剤を使用した例である。塗装焼付 けの 4日後、塗膜上に実施例 1と全く同様なキズをカッターナイフで付け、塩水噴霧 試験機にセットした。 5%濃度の塩水を使用して温度 35°Cでの 24時間塩水噴霧を行 い、イオン交換水で水洗してペーパーナプキンで拭き取り風乾した。カッターナイフ で付けた切りキズ側面の塗膜は、浮き上がっておらず、キズからの鯖の広がりはなか つた。この複合体を引っ張り破断試験したところ、せん断破断力は 20. 5MPaであつ た。
[0087] 〔実施例 3〕
実施例 1と全く同様にして、 AZ31Bマグネシウム合金を使い、前処理し、微細エツ チングし、化成処理をした。更に実施例 1と全く同様にして、射出成形金型にインサ ートし、 PPS組成物(1)を射出して離型し、図 2で示す一体化した複合体を得て同日 にァニールをし、複合体を 10個得た。次いで一体化した複合体の樹脂部を、クリップ で挟んでぶら下げられるようにし、市販のリン酸マンガン系マグネシウム合金用化成 処理液「マグトリート MG— 5901 (メルテックス社製)」を、メーカー指示通り希釈し、水 溶液を温度 50°Cとして前記複合体を 3分浸漬し、イオン交換水で洗浄し風乾した。
[0088] その 3日後、この複合体を「ォーマック/黒 (大橋化学社製)」で厚さ 10 mの設定 にて塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメタリック」を 厚さ 10 πιの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。即ち、一体化 後の化成処理に市販のリン酸マンガン系化成処理剤を使用した例である。塗装焼付 けの 4日後、塗膜上に実施例 1と全く同様にキズをカッターナイフで付け、塩水噴霧 試験機にセットした。 5%濃度の塩水を使用して、温度 35°Cでの 24時間塩水噴霧を 行い、イオン交換水で水洗してペーパーナプキンで拭き取り風乾した。切りキズ側面 の塗膜はごく僅か浮き上がつていたがキズからの鯖の広がりはな力 た。この複合体 を引っ張り破断試験したところ、せん断破断力は 16. 2MPaであった。
[0089] 〔実施例 4〕
実施例 1と全く同様にして、 AZ31Bマグネシウム合金を使い、前処理し、微細エツ チングし、化成処理をした。更に実施例 1と全く同様にして、射出成形金型にインサ ートし PPS組成物(1)を射出して離型し、図 2で示す一体化した複合体を得て同日に ァニールをし、複合体を 10個得た。次いで一体化した複合体の樹脂部を、クリップで 挟んでぶら下げられるようにした。一方、水和硝酸カルシウムを 1. 52%、炭酸マンガ ンを 0. 21 %、 80%リン酸を 1. 8%、塩素酸ナトリウムを 0. 04%含む水溶液を温度 7 0°Cとして、時々攪拌しつつ 1時間置!/、たがまだ不溶分 (炭酸マンガン)が懸濁して!/ヽ た。かまわず温度 70°Cのこの懸濁水溶液に一体化した複合体を 3分浸漬した。やや 発泡があった。水洗し、温度 90°Cで 15分間乾燥した。
[0090] この 2日後、一体化した複合体に塗料「ォーマック/黒 (大橋化学社製)」を厚さ 10 inの設定で塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメ タリック」を厚さ 10 πιの設定で塗装し、その後、温度 170°Cで 30分間焼き付けた。 塗装焼付けの 3日後、塗膜上に実施例 1と全く同様なキズをカッターナイフで付け、こ れを塩水噴霧試験機にセットした。 5%塩水を使用して温度 35°Cで 24時間塩水噴 霧を行い、イオン交換水で水洗してペーパーナプキンで拭き取り風乾した。カッター ナイフで付けた切りキズ側面の塗膜は、浮き上がっておらずキズからの鯖の広がりも なかった。この複合体を引っ張り破断試験したところ、せん断破断力は 13. 5MPaと 力、なり低下していた。第 2の化成処理で発泡があったことから、第 2の化成処理が当 初の化成処理層を壊し、これが接合力の低下に繋がったものとみられた。
[0091] 〔実施例 5〕
実施例 1と全く同様にして、 AZ31Bマグネシウム合金を使い、前処理し、微細エツ チングし、化成処理をした。更に実施例 1と全く同様にして、射出成形金型にインサ ートし PPS組成物(1)を射出して離型し、図 2で示す一体化した複合体を得て同日に ァニールをし、複合体を 10個得た。次いで一体化した複合体の樹脂部を、クリップで 挟んでぶら下げられるようにした。水和重リン酸マンガンを 2. 5%、 80%リン酸を 2. 0 %、及びトリェチルァミンを 2. 0%含む水溶液を温度 45°Cとし、前記品を 3分浸漬し 、 15秒間イオン交換水で水洗し、温度 90°Cで 15分間乾燥した。
[0092] その 3日後、これら複合体に「ォーマック/黒 (大橋化学社製)」を厚さ ΙΟ πιの設 定で塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメタリック」を 厚さ 10 ΐηの設定で塗装し、その後、温度 170°Cで 30分間焼き付けた。塗装焼付 けの 4日後、塗膜上に実施例 1と全く同様なキズをカッターナイフで付け、これを塩水 噴霧試験機にセットした。 5%塩水を使用して、温度 35°Cでの 24時間塩水噴霧を行 い、イオン交換水でこれを水洗して、ペーパーナプキンで拭き取り風乾した。カッター ナイフで付けた切りキズ側面の塗膜は、浮き上がっておらずキズからの鯖の広がりも なかった。この複合体を引っ張り破断試験したところ、せん断破断力は 17. 5MPaで あった。
[0093] 〔比較例 1〕
実施例 1と全く同様にして、 AZ31Bマグネシウム合金を使い、前処理し、微細エツ チングし、化成処理をした。更に実施例 1と全く同様にして、射出成形金型にインサ ートし PPS組成物(1)を射出して離型し、図 2で示す一体化した複合体を得て同日に ァニールをし、複合体を 10個得た。次いで、これら複合体に、「ォーマック/黒 (大橋 化学社製)」を厚さ 10 πιの設定で塗装し、温度 100°Cで 1時間乾燥し、次いで「ォ 一マック/シルバーメタリック」を厚さ 10 mの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。即ち、一体化後に再度の化成処理をしなかった例である。 [0094] 塗装焼付けの 3日後、塗膜上に 2mm間隔で長さ 20mmのキズをカッターナイフで 付け、塩水噴霧試験機にセットした。 5%塩水を使用して、温度 35°Cでの 24時間塩 水噴霧を行い、イオン交換水で水洗し、その後温度 70°Cで 15分間乾燥した。切りキ ズ側面の塗膜は浮き上がって!/、て塗膜の膨れはキズの線から広!/、箇所で 0. 8mmま であった。鯖自体はキズ線から拡がってはいなかった。この複合体を引っ張り破断試 験したところ、せん断破断力は 21. 5MPaであり、腐食が接合面まで達している様子 はなかった。
[0095] 〔比較例 2〕
調製例 1により得られた PPS組成物(1)の代わりに、調製例 2により得られた PPS組 成物(2)を用いた以外は、実施例 1と全く同様にしてマグネシウム合金片を作成し、 射出成形し、複合体を 10個得た。得られた複合体を、温度 170°Cで 1時間ァニール した。要するに、ポリオレフイン系ポリマーを僅力、しか含まない PPSと、フィラーのみの PPS系樹脂組成物を使用した実験である。 1日後、この複合体を引っ張り試験したと ころ、せん断破断力は 10個の平均で 13MPaであった。実施例 1の数値の約 50%に 過ぎず使用した樹脂材料の差異が結果として出たものである。
[0096] 〔実施例 6〕
調製例 1により得られた PPS組成物(1)の代わりに、調製例 3により得られた PPS組 成物(3)を用いた以外は、実施例 2と全く同様の方法にして複合体を得、ァニールし 、更に複合体を化成処理した。更にその塗装も実施例 1と全く同様に行った。実施例 2と同様にキズを付け、 5%濃度の塩水を使用して温度 35°Cでの 24時間塩水噴霧を 行レ、水洗して乾燥した力 S、切りキズ側面の塗膜は浮き上がっておらずキズからの鯖の 広がりはなかった。この複合体を引っ張り破断試験したところ、せん断破断力は 19. OMPaであった。
[0097] 〔比較例 3〕
PPS組成物(1)の代わりに、調製例 4により得られた PPS組成物(4)とした以外は、 実施例 1と同様の方法により複合体の製造を試みた。要するに、ポリオレフイン系ポリ マーを、ごく大量に含む PPS系樹脂組成物を使用した実験である。し力もながら、成 形時に多量のガスが発生し、成形を中断した。 [0098] 〔実施例 7〕
ダイカスト成形で作られた厚さ 3. 5mm、大きさ 300mm X 150mmの AZ91Dマグ ネシゥム合金板を入手した。この片面を平面切削盤で削り取り厚さ 3mmとし、 100m m X 25mmの大きさの小片に切り分けて、多数のマグネシウム合金片とした。次いで 端部に穴をあけて塩ビカバー銅線でぶら下げられるようにし、このマグネシウム合金 片に以下の液処理を行った。
[0099] 即ち、槽に市販のマグネシウム合金用脱脂剤「クリーナー 160 (メルテックス社製)」 を水に投入して温度 75°C、濃度 7. 5%の水溶液とし、これにマグネシウム合金片を 5 分浸漬しょく水洗した。続いて別の槽に、温度 40°Cとした 1 %マロン酸水溶液を用意 し、これにマグネシウム合金片を 2. 25分浸漬してよく水洗した。黒色のスマットが付 着していた。次いで別の槽に炭酸ナトリウムを 1 %と炭酸水素ナトリウムを 1 %含む水 溶液を温度 65°Cとして、先ほどのマグネシウム合金片を 5分浸漬してよく水洗した。 続!/、て別の槽に温度 65°Cとした 15%苛性ソーダ水溶液を用意し、これにマグネシゥ ム合金片を 5分浸漬してよく水洗した。次いで水和クェン酸 0. 25%を含む温度 40°C の水溶液に 1分浸漬して微細エッチングし水洗した。
[0100] 次いで別の槽に、温度 45°Cとした過マンガン酸カリ 2%、酢酸 1 %、水和酢酸ナトリ ゥムを 0. 5%含む水溶液を用意し、これに 1分浸漬し、 15秒水洗して、温度 90°Cに した温風乾燥機に 10分入れて乾燥した。乾燥後、きれいなアルミ箔の上でマグネシ ゥム合金片から銅線を抜いて置き、まとめて包み、更にこれをポリ袋に入れて封じ保 管した。このとき、接合すべき面(穴を開けたのと反対側の端部)に指が触れないよう に作業した。
[0101] 3日後にマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋 で摘まみ、切削面側が樹脂組成物と接するようにして、温度 140°Cとした射出成形金 型にインサートした。金型を閉じ調製例 1により得られた PPS組成物(1)を射出温度 3 10°Cで射出した。離型し、図 2で示す一体化した複合体を 20個得た。樹脂部の大き さは 22mm X 100mm X 3mmであり、接合面 6は 22mm X 7. 5mmの 1. 6cm2であ つた。成形当日に 4個の複合体を引っ張り破断試験したところ、平均のせん断破断力 は 19. OMPaであった。又、残りの複合体を成形した当日に、温度 170°Cの熱風乾 燥機に 1時間投入してァニールし、その内の 5個の複合体を、更にその 1日後に引つ 張り試験した処、平均のせん断破断力は 19. 2MPaであった。
[0102] 残った複合体は、実施例 1と全く同様に樹脂部をクリップで挟んでぶら下げられるよ うにし、市販の珪素系マグネシウム合金用化成処理液「マグトリート SI— 5920 (メルテ ックス社製)」をメーカー指示通り希釈し、水溶液を温度 50°Cとして一体化した複合体 を 1. 5分浸漬し、イオン交換水で洗浄し、温度 90°Cで 15分間乾燥した。
[0103] この 2日後、一体化した複合体に塗料「ォーマック/黒 (大橋化学社製)」を厚さ 10 inの設定で塗装し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメ タリック」を厚さ 10 πιの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。塗 装焼付けの 3日後、塗膜上に 2mm間隔で長さ 20mmのキズをカッターナイフで 6本 付け、更にこの 6本線に交差する 1本の線をカッターナイフで切り込んだ。これを 1週 間後に塩水噴霧試験機にセットした。 5%濃度の塩水を使用して、温度 35°Cでの 24 時間塩水噴霧を行い、イオン交換水で水洗し、ペーパーナプキンで拭き取り風乾し た。カッターナイフで切り込んだ切りキズ側面の塗膜は、浮き上がっておらずキズから の鯖の広力 Sりもなかった。この複合体を引っ張り破断試験したところ、せん断破断力 は 18. 5MPaであった。
[0104] 〔実施例 8〕
実施例 1と全く同様にして液処理済み AZ31B片を作成し保管した。 1日後、マグネ シゥム合金片を取り出し、温度 140°Cとした射出成形金型にインサートし、金型を閉じ 調製例 5により得られた PBT組成物(1)を射出温度 280°Cで射出した。離型し、図 2 で示す一体化した複合体 20個を得た。樹脂部の大きさは 10mm X 45mmX 5mm であり、接合面 6は 10mm X 5mmの 0. 5cm2であった。成形当日に温度 150°Cの熱 風乾燥機に 1時間投入してァニールし、更に、その 1日後に 5個の複合体を引っ張り 試験した。平均のせん断破断力は 23. 2MPaであった。
[0105] 残りの一体化した複合体は、実施例 1と全く同様にして樹脂部をクリップで挟んでぶ ら下げられるようにし、実施例 7で使用したと同じ「マグトリート SI— 5920 (メルテックス 社製)」をメーカー指示通り希釈し、水溶液を温度 50°Cとして一体化した複合体を 1. 5分浸漬し、イオン交換水で洗浄し、温度 90°Cで 15分間乾燥した。この 2日後、一体 化した複合体に塗料「ォーマック/黒 (大橋化学社製)」を厚さ 10 mの設定で塗装 し、温度 100°Cで 1時間乾燥し、次いで「ォーマック/シルバーメタリック」を厚さ 10〃 mの設定で塗装し、その後、温度 170°Cで 30分焼き付けた。
[0106] 塗装焼付けの 3日後、塗膜上に実施例 1と全く同様にキズをカッターナイフで付け、 塩水噴霧試験機にセットした。 5%濃度の塩水を使用して、温度 35°Cでの 24時間塩 水噴霧を行い、イオン交換水で水洗し、温度 70°Cで 15分間乾燥した。カッターナイ フで付けた切りキズ側面の塗膜は、浮き上がっておらずキズからの鯖の広がりはなか つた。この複合体を引っ張り破断試験したところ、せん断破断力は 21. OMPaであつ た。
[0107] 〔実施例 9〕
PBT組成物(1)を使用する代わりに、調整例 6に示す PBT組成物(2)を使用した 他は実施例 8と全く同様に実験を行った。塗装品にカッターナイフで傷を付けての塩 水噴霧試験も実施例 8と全く同様に行った。その結果、カッターナイフで付けた切りキ ズ側面の塗膜は、殆ど浮き上がっておらずキズからの鯖の広がりはな力 た。この複 合体を引っ張り破断試験したところ、せん断破断力は 19. 3MPaであった。
[0108] 〔実施例 10〕
PBT組成物(1)を使用する代わりに、調整例 7に示す PBT組成物(3)を使用した 他は実施例 8と全く同様に実験を行った。塗装品にカッターナイフで傷を付けての塩 水噴霧試験も実施例 8と全く同様に行った。その結果、カッターナイフで付けた切りキ ズ側面の塗膜は、殆ど浮き上がっておらずキズからの鯖の広がりはな力 た。この複 合体を引っ張り破断試験したところ、せん断破断力は 19. 5MPaであった。
[0109] 〔実施例 11〕
実施例 1と全く同様にして、液処理済み AZ31B片を作製し保管した。 1日後、マグ ネシゥム合金片を取り出し温度 140°Cとした射出成形金型にインサートし、金型を閉 じ調製例 8により得られた芳香族ポリアミド組成物(1)を射出温度 280°Cで射出した。 金型温度は 110°Cであり、図 2で示す一体化した複合体 20個を得た。この全数を成 形した当日に、温度 150°Cの熱風乾燥機に 1時間投入してァニールし、更に、その 1 日後に 5個の複合体を引っ張り試験した。平均のせん断破断力は 20. OMPaであつ た。
[0110] その後は実施例 10と全く同様にして、一体化した複合体を化成処理し、塗装焼付 けし、更に塗装焼付けの 3日後、塗膜上にキズを付け、塩水噴霧試験した。その結果 、切りキズ側面の塗膜は浮き上がっておらずキズからの鯖の広がりはなかった。この 複合体を引っ張り破断試験したところ、せん断破断力は 17. 5Paであった。
図面の簡単な説明
[0111] [図 1]図 1は、マグネシウム部品又はマグネシウム合金部品と樹脂組成物とを一体化 した複合体を製造する過程を模式的に示した金型構成図である。
[図 2]図 2は、マグネシウム部品又はマグネシウム合金部品と樹脂組成物とを一体化 した複合体を模式的に示す単体の外観図である。
符号の説明
[0112] 1:マグネシウム部品又はマグネシウム合金部品
2, 3, 10 :金型
4 :樹脂組成物
5 :ピンポイントゲート
6 :接合面
7 :複合体

Claims

請求の範囲
[1] マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、 前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、 ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程と
からなることを特徴とする高耐食性複合体の製造方法。
[2] マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、 前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、 ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程と、
前記固着した前記形状化部品と前記樹脂組成物を、マグネシウム合金用化成処理 液に浸漬して化成処理する工程と、
からなることを特徴とする高耐食性複合体の製造方法。
マグネシウム部品又はマグネシウム合金部品を铸造物や中間材から加工して形状 化部品とする工程と、
前記形状化部品を酸性水溶液に浸漬して化学エッチングする工程と、
前記化学エッチングした前記形状化部品を、過マンガン酸塩を含んだ水溶液に浸 漬し、表面にマンガン酸化物を成分とする薄層を形成する工程と、
前記薄層を形成した前記形状化部品を射出成形金型にインサートし、
ポリフエ二レンサルファイド 70〜97質量%とポリオレフイン系樹脂 3〜30質量%を 含む樹脂分組成の樹脂組成物、
ポリブチレンテレフタレート樹脂 70〜97質量%とポリエチレンテレフタレート樹脂及 び/又はポリオレフイン系樹脂 3〜30質量%を含む樹脂分組成の樹脂組成物、及 び
へキサメチレンジァミンとイソフタル酸から得られるポリアミドとへキサメチレンジアミ ンとテレフタル酸から得られるポリアミドの双方が含有されている芳香族ポリアミド樹脂 を主成分とする樹脂分組成の樹脂組成物
から選択される 1種を射出し、
前記形状化部品と前記樹脂組成物とを一体に固着する工程と、
前記固着した前記形状化部品と前記樹脂組成物を、リン酸マンガン系又は珪素系 のマグネシウム合金用化成処理液に浸漬して化成処理する工程と
からなることを特徴とする高耐食性複合体の製造方法。
PCT/JP2007/073526 2006-12-06 2007-12-05 高耐食性複合体の製造方法 WO2008069252A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/517,578 US8322013B2 (en) 2006-12-06 2007-12-05 Method for manufacturing composite with high corrosion resistance
CN2007800451112A CN101547779B (zh) 2006-12-06 2007-12-05 高耐蚀性复合体的制造方法
EP20070850150 EP2103406B1 (en) 2006-12-06 2007-12-05 Process for production of highly corrosion-resistant composite
JP2008548323A JP4927864B2 (ja) 2006-12-06 2007-12-05 高耐食性複合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-329410 2006-12-06
JP2006329410 2006-12-06

Publications (1)

Publication Number Publication Date
WO2008069252A1 true WO2008069252A1 (ja) 2008-06-12

Family

ID=39492134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073526 WO2008069252A1 (ja) 2006-12-06 2007-12-05 高耐食性複合体の製造方法

Country Status (6)

Country Link
US (1) US8322013B2 (ja)
EP (1) EP2103406B1 (ja)
JP (1) JP4927864B2 (ja)
KR (1) KR101115786B1 (ja)
CN (1) CN101547779B (ja)
WO (1) WO2008069252A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133296A1 (ja) 2007-04-24 2008-11-06 Taisei Plas Co., Ltd. ステンレス鋼複合体とその製造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP2012000810A (ja) * 2010-06-15 2012-01-05 Kyocera Chemical Corp 電子機器用筐体およびその製造方法
DE112011103922T5 (de) 2010-11-26 2013-09-19 Taisei Plas Co., Ltd. Metall-Harz-Verbund und Verfahren zu dessen Herstellung
US9017569B2 (en) 2007-04-06 2015-04-28 Taisei Plas Co., Ltd. Copper alloy composite and method for manufacturing same
US10350857B2 (en) 2007-04-13 2019-07-16 Taisei Plas Co., Ltd. Titanium alloy composite and bonding method thereof
JP2019116666A (ja) * 2017-12-27 2019-07-18 三井化学株式会社 表面粗化マグネシウム合金部材の製造方法
WO2019217831A1 (en) 2018-05-11 2019-11-14 Memorial Sloan-Kettering Cancer Center Methods for identifying antigen-specific t cell receptors

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396196B1 (ko) * 2011-10-06 2014-05-19 (주)일광폴리머 마그네슘 합금 수지 복합 구조물과 그 제조방법 및 마그네슘 합금의 제조방법
CN103286910B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103287009B (zh) 2012-02-24 2015-03-25 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
CN103286908B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103286909B (zh) 2012-02-24 2015-09-30 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103297565B (zh) 2012-02-24 2015-07-22 比亚迪股份有限公司 一种手机壳体及其制备方法
CN103286995B (zh) 2012-02-24 2015-06-24 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
CN103286996B (zh) 2012-02-24 2015-03-25 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体
EP2855740A4 (en) 2012-05-28 2016-03-09 Byd Co Ltd METAL COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF, METAL RESIN COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
CN103668190A (zh) * 2012-09-13 2014-03-26 汉达精密电子(昆山)有限公司 镁合金表面处理方法及其产品
JP5741561B2 (ja) * 2012-12-04 2015-07-01 日本軽金属株式会社 ペリクル枠及びその製造方法
KR101380916B1 (ko) * 2013-07-16 2014-04-02 (주)일광폴리머 금속 합금과 세라믹 수지 복합체 및 그 제조방법
CN104746066B (zh) 2013-12-31 2017-07-04 比亚迪股份有限公司 一种金属与塑料的结合材料及其制备方法及制备的结合材料
KR101493768B1 (ko) * 2014-09-04 2015-02-17 (주)일광폴리머 알루미늄-수지 복합체의 제조 방법
JP6417612B2 (ja) * 2014-12-01 2018-11-07 メック株式会社 エッチング剤およびその補給液、マグネシウム部品の表面粗化方法、ならびにマグネシウム−樹脂複合体の製造方法
CN105566909A (zh) * 2014-12-26 2016-05-11 比亚迪股份有限公司 一种树脂组合物和一种金属-树脂复合体及制备方法和应用以及一种电子产品外壳
JP6690206B2 (ja) * 2014-12-26 2020-04-28 株式会社デンソー 樹脂成形体およびその製造方法
JP6822766B2 (ja) * 2015-01-22 2021-01-27 旭化成株式会社 ポリアミド樹脂組成物を含む成形体
KR20160093899A (ko) 2015-01-30 2016-08-09 현대자동차주식회사 금속과 플라스틱 복합체 제조방법
US11273011B2 (en) * 2016-12-02 2022-03-15 Align Technology, Inc. Palatal expanders and methods of expanding a palate
CN111801442B (zh) * 2018-03-08 2022-11-01 三井化学株式会社 镁合金/树脂复合结构体及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192854A (ja) * 2000-01-06 2001-07-17 Nippon Light Metal Co Ltd 表面処理マグネシウム材及びその製造方法
JP2003286582A (ja) * 2002-03-29 2003-10-10 Kurimoto Ltd マグネシウム合金の化成処理皮膜の形成方法
JP2005342895A (ja) 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
WO2007040245A1 (ja) 2005-10-04 2007-04-12 Taisei Plas Co., Ltd. 金属と樹脂の複合体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123274A (ja) 1999-10-25 2001-05-08 Mitsui Mining & Smelting Co Ltd 高耐食性表面処理マグネシウム合金製品及びその製造方法
US8367210B2 (en) * 2002-11-08 2013-02-05 Taisei Plas Co., Ltd. Composite article of aluminum alloy with resin and method for production thereof
US20040115448A1 (en) * 2002-12-17 2004-06-17 Bibber John W. Corrosion resistant magnesium and magnesium alloy and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192854A (ja) * 2000-01-06 2001-07-17 Nippon Light Metal Co Ltd 表面処理マグネシウム材及びその製造方法
JP2003286582A (ja) * 2002-03-29 2003-10-10 Kurimoto Ltd マグネシウム合金の化成処理皮膜の形成方法
JP2005342895A (ja) 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
WO2007040245A1 (ja) 2005-10-04 2007-04-12 Taisei Plas Co., Ltd. 金属と樹脂の複合体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2103406A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017569B2 (en) 2007-04-06 2015-04-28 Taisei Plas Co., Ltd. Copper alloy composite and method for manufacturing same
US10350857B2 (en) 2007-04-13 2019-07-16 Taisei Plas Co., Ltd. Titanium alloy composite and bonding method thereof
WO2008133296A1 (ja) 2007-04-24 2008-11-06 Taisei Plas Co., Ltd. ステンレス鋼複合体とその製造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP5302315B2 (ja) * 2008-08-06 2013-10-02 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP2012000810A (ja) * 2010-06-15 2012-01-05 Kyocera Chemical Corp 電子機器用筐体およびその製造方法
DE112011103922T5 (de) 2010-11-26 2013-09-19 Taisei Plas Co., Ltd. Metall-Harz-Verbund und Verfahren zu dessen Herstellung
US9166212B2 (en) 2010-11-26 2015-10-20 Taisei Plas Co., Ltd. Metal-resin complex and process for production thereof
DE112011103922B4 (de) * 2010-11-26 2019-11-14 Taisei Plas Co., Ltd. Verfahren zur Herstellung eines Metall-Harz-Verbundes und Lithium-Ionen-Batterie-Deckel
JP2019116666A (ja) * 2017-12-27 2019-07-18 三井化学株式会社 表面粗化マグネシウム合金部材の製造方法
JP7030510B2 (ja) 2017-12-27 2022-03-07 三井化学株式会社 表面粗化マグネシウム合金部材の製造方法
WO2019217831A1 (en) 2018-05-11 2019-11-14 Memorial Sloan-Kettering Cancer Center Methods for identifying antigen-specific t cell receptors

Also Published As

Publication number Publication date
JPWO2008069252A1 (ja) 2010-03-25
EP2103406A4 (en) 2012-01-04
US20100018025A1 (en) 2010-01-28
CN101547779B (zh) 2013-11-06
US8322013B2 (en) 2012-12-04
CN101547779A (zh) 2009-09-30
KR20090085663A (ko) 2009-08-07
JP4927864B2 (ja) 2012-05-09
KR101115786B1 (ko) 2012-03-09
EP2103406A1 (en) 2009-09-23
EP2103406B1 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2008069252A1 (ja) 高耐食性複合体の製造方法
KR100982357B1 (ko) 금속과 수지의 복합체 및 그 제조 방법
JP4452220B2 (ja) 複合体およびその製造方法
JP4527196B2 (ja) 複合体およびその製造方法
JP5167261B2 (ja) 金属と樹脂の複合体とその製造方法
JP5108891B2 (ja) 金属樹脂複合体の製造方法
JP4927876B2 (ja) 金属と樹脂の複合体とその製造方法
JP4452256B2 (ja) 金属と樹脂の複合体及びその製造方法
JP5960847B2 (ja) アルミニウム合金樹脂複合材及びそれを調製する方法
JP5295741B2 (ja) 金属合金と繊維強化プラスチックの複合体及びその製造方法
JP4927491B2 (ja) 金属と樹脂の複合体及びその製造方法
JP5381687B2 (ja) 樹脂接合性に優れたアルミニウム合金部材及びその製造方法
TW201127992A (en) Aluminum alloy article, aluminum alloy member, and production method therefor
WO2008047811A1 (en) Composite of metal with resin and process for producing the same
JP2009298144A (ja) 複数金属形状物の接合複合体とその製造方法
WO2004041532A1 (ja) アルミニウム合金と樹脂の複合体とその製造方法
JP2012213922A (ja) 複合体及びその製造方法
JP2009292034A (ja) 金属合金と樹脂の複合体の製造方法
EP2993023B1 (en) Method of preparing aluminum-resin complex

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045111.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097011319

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12517578

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008548323

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3917/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007850150

Country of ref document: EP