WO2008068912A1 - 電動式パワーステアリング装置 - Google Patents
電動式パワーステアリング装置 Download PDFInfo
- Publication number
- WO2008068912A1 WO2008068912A1 PCT/JP2007/058558 JP2007058558W WO2008068912A1 WO 2008068912 A1 WO2008068912 A1 WO 2008068912A1 JP 2007058558 W JP2007058558 W JP 2007058558W WO 2008068912 A1 WO2008068912 A1 WO 2008068912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- worm
- housing
- guide sleeve
- worm wheel
- peripheral surface
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/12—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
- F16H1/16—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0409—Electric motor acting on the steering column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/04—Ball or roller bearings, e.g. with resilient rolling bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/02—Gearboxes; Mounting gearing therein
- F16H57/021—Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/081—Structural association with bearings specially adapted for worm gear drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2361/00—Apparatus or articles in engineering in general
- F16C2361/61—Toothed gear systems, e.g. support of pinion shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
- F16C2380/27—Motor coupled with a gear, e.g. worm gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/02—Gearboxes; Mounting gearing therein
- F16H57/021—Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
- F16H2057/0213—Support of worm gear shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/22—Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
- F16H55/24—Special devices for taking up backlash
Definitions
- An electric power steering apparatus is used as a steering apparatus for an automobile.
- an electric motor as auxiliary power
- a force required for a driver to operate a steering wheel is used. It is intended to reduce this.
- the present invention suppresses the generation of an unpleasant noise called a rattling noise in the worm-type speed reducer that constitutes such an electric power steering device. It was invented with the intention of realizing a structure that can improve the above.
- Power steering as a device for reducing the force required for the driver to operate the steering wheel when giving a steering angle to a steered wheel (usually the front wheel, excluding special vehicles such as forklifts)
- the device is widely used.
- an electric power steering device using an electric motor as an auxiliary power source has begun to spread in recent years.
- the electric power steering device is smaller than the hydraulic power steering device. * It can be made lighter, the control of the auxiliary power (torque) is easy, and there are advantages such as less power loss and engine power loss. is there.
- the structure of the electric power steering device is a variety of known forces.
- the electric power steering device is rotated by the operation of the steering wheel and is electrically driven by a rotating shaft that imparts a steering angle to the steered wheels as it rotates.
- Auxiliary power of the motor is applied through a reduction gear.
- a worm reducer is used as this reducer.
- a worm wheel rotated by the electric motor and a worm wheel rotating together with the rotating shaft are combined to provide auxiliary power for the electric motor. Is freely transmitted to the rotating shaft.
- FIGS. 11 to 14 show an example of the electric power steering apparatus described in Patent Document 2 among them.
- a front end portion of a steering shaft 2 as a rotating shaft that is rotated in a predetermined direction by the steering wheel 1 is rotatably supported inside the housing 3, and a worm wheel 4 is fixed to this portion.
- the worm shaft 7 meshed with the worm wheel 4 and provided with a worm tooth 6 rotated by an electric motor 5 in the axial intermediate portion is connected to a pair of rolling bearings 8a, 8b such as deep groove ball bearings.
- a pressing piece 9 is externally fitted to a portion protruding from the rolling bearing 8a at the tip of the warm shaft 7, and a coil spring 10 as an elastic member is interposed between the pressing piece 9 and the housing 3. Is provided.
- the worm teeth 6 are pressed against the worm wheel 4 by the coil spring 10 via the pressing piece 9.
- the backlash between the worm teeth 6 and the worm wheel 4 is suppressed, and the occurrence of the rattling noise is suppressed.
- the tip of the worm shaft 7 needs to be displaced in order to eliminate the backlash. Displacement is also possible in the above axial direction. Then, based on this axial displacement, there is a possibility that the state of engagement between the worm tooth 6 and the worm wheel 4 becomes inappropriate.
- the central axial force of the worm shaft 7 is directly applied to the central axis of the worm wheel 4. If the worm wheel 4 and the worm tooth 6 are properly combined when they exist on the intersecting virtual plane (on the surface shown in FIGS. 12 to 13), the leading end of the worm shaft 7 When the portion is displaced in the axial direction of the worm wheel 4 by the amount of elastic deformation of the bush 11, the above-mentioned combined state becomes inappropriate. The displacement of this elastic deformation is slight, and the degree of improper engagement is insignificant, and the force is improper. growing. As the friction loss increases, the magnitude (torque) of the auxiliary power applied from the electric motor 5 to the steering shaft 2 changes (decreases). Further, the degree of change becomes more significant as the degree of incompatibility of the above-mentioned combined state increases.
- the force for displacing the tip of the worm shaft 7 in the axial direction of the worm wheel 4 is applied as a reaction force accompanying the transmission of the auxiliary power from the coupling portion. Therefore, the direction in which the tip of the worm shaft 7 is displaced in the axial direction is reversed if the direction of transmission of auxiliary power, that is, the direction of rotation of the steering shaft 2 is reversed. If the magnitude of the power loss when the steering shaft 2 rotates in a predetermined direction is different from the magnitude of the power loss when the steering shaft 2 rotates in the opposite direction, the force required to operate the steering wheel 1 is different. (Steering force) force Different states may occur depending on the rotation direction of the steering wheel 1. Such a state is not preferable because it gives the driver operating the steering wheel 1 an uncomfortable feeling.
- Patent Document 1 Japanese Published Patent 2000-43739
- Patent Document 2 Japanese Published Patent 2004-306898
- the present invention makes it possible to make the engagement state between the worm teeth and the worm wheel constant regardless of the transmission direction of the power, and the steering that the driver needs to apply to the steering wheel. It was invented to realize an electric power steering device in which the force does not change depending on the rotation direction of the steering wheel.
- the electric power steering device of the present invention is similar to the conventionally known electric power steering device described above, and includes a housing, a rotating shaft, a worm wheel, and a gear. And an electric motor.
- the housing is supported by a fixed part such as a vehicle body and does not rotate during steering.
- the rotating shaft is provided so as to be rotatable with respect to the housing and is rotated by an operation of a steering wheel.
- a rotating shaft for example, the steering shaft 2 or the intermediate shaft 12 having the structure shown in FIG. 11 and the input shaft (pinion shaft) of the steering gear 33 can be employed.
- the worm wheel is located in a part of the rotating shaft inside the housing, concentric with the rotating shaft (a state in which relative rotation is prevented by external fitting fixing by interference fitting, key engagement, spline engagement, etc. Supported) and rotate with this axis of rotation.
- the worm is provided with worm teeth at an intermediate portion in the axial direction of the worm shaft. Then, in a state where the worm teeth are engaged with the worm wheel, both end portions in the axial direction of the worm shaft are rotatably supported with respect to the housing by bearings.
- the electric motor engages the base end portion of the worm shaft and the distal end portion of the output shaft so as to be able to freely transmit the rotational force, so that the worm shaft can be driven to rotate in both directions.
- the worm teeth are pressed against the worm wheel by an elastic member provided between the tip of the worm shaft and the inner surface of the housing.
- the outer peripheral surface of the front end side bearing for rotatably supporting the front end portion of the worm shaft with respect to the housing A guide sleeve is provided between the inner surface of the housing.
- This guide sleeve is provided with a pair of guide planes parallel to each other on its inner peripheral surface. These two guide planes are arranged at a distance substantially matching the outer diameter of the tip bearing, and each guide plane is located on a virtual plane (a pair of mutually parallel) orthogonal to the central axis of the worm wheel. .
- the front end side bearing is sandwiched between the two guide planes so that the front end side bearing can be displaced only on a virtual plane orthogonal to the central axis of the worm wheel.
- the state in which the distance between the two guide planes substantially coincides with the outer diameter of the tip bearing is that two positions on the outer peripheral surface of the tip bearing opposite to each other in the diametrical direction are simultaneously measured.
- a state where there is a gap of about several xm in the above-mentioned portion is also a state where the distance between the two guide planes substantially coincides with the outer diameter of the tip bearing.
- the guide sleeve has the guide sleeve on the side opposite to the warm teeth than the both guide planes.
- a pressing sleeve is externally fitted to a portion of the tip portion of the worm shaft that protrudes to the opposite side of the worm tooth from the tip side bearing.
- the said elastic member for pressing a worm tooth toward a worm wheel between the outer peripheral surface of this press sleeve and the said extension part is provided.
- the elastic member for pressing the worm teeth toward the worm wheel as described in claim 3.
- a coil spring which is made by winding an elastic metal wire, and includes a coil portion and a pair of locking portions protruding radially outward from the opposite side of the coil portion; The Then, the coil portion is externally fitted to the pressing sleeve, and both the locking portions are locked to a pair of locking recesses formed in the extension portion of the guide sleeve.
- a virtual plane orthogonal to the central axis of the worm wheel is used as the guide sleeve as described in claim 4. It is also preferable to use a structure divided into two at the boundary.
- the imaginary plane may be a plane including the central axis of the worm or a plane parallel to this plane.
- the second elastic member As such a second elastic member, a metal spring formed by corrugating a metal wire can be used. However, since there is very little gap between the outer peripheral surface of the guide sleeve and the inner peripheral surface of the housing, which leads to rattling, the procurement cost can be reduced and the electric power steering device can be made inexpensive.
- the second elastic member is preferably an o-ring. In this case, the o-ring is installed in a locking groove provided on the outer peripheral surface of the guide sleeve.
- the outer peripheral surface of the tip side bearing for rotatably supporting the tip portion of the worm shaft with respect to the housing.
- a guide sleeve is provided between the inner surface of the housing.
- This guide sleeve is provided with a pair of guide planes parallel to each other on its inner peripheral surface. These two guide planes are arranged at an interval substantially matching the outer diameter of the tip bearing, and each of them is on a virtual plane (a pair of mutually parallel) perpendicular to the central axis of the worm wheel. To position.
- the front end side bearing can be displaced only on a virtual plane orthogonal to the central axis of the worm wheel.
- a second elastic member made of a metal plate having elasticity is provided between the outer peripheral surface of the guide sleeve and the inner peripheral surface of the housing.
- the second elastic member is formed by bending a metal plate into a cylindrical shape.
- at least one end portion in the circumferential direction of the metal plate is a leaf spring divided into a pair of elastic arm portions by a slit formed in the middle portion in the width direction and reaching the circumferential edge.
- One of these elastic arm portions is elastic, and the outer peripheral surface of the guide sleeve is radially inward by the other elastic arm portion, and the inner peripheral surface of the housing is radially outward by the other elastic arm portion. Press.
- the shaft of the second elastic member is disposed at one end edge in the axial direction.
- At least one axial locking piece that is bent inward in the radial direction is provided. Then, this axial locking piece is connected to one end surface of the guide sleeve in the axial direction and the inner surface of the housing. By sandwiching them, the second elastic member is prevented from moving in the axial direction.
- a guide sleeve having a cut at least in one circumferential direction is used. Then, a circumferential locking piece bent radially inward from the tip edge of any one of the plurality of elastic arms provided on the second elastic member is engaged with the cut. This prevents the second elastic member from rotating around the guide sleeve.
- the worm teeth are arranged on the guide sleeve rather than the two guide planes, as described in claim 11.
- An extension that extends to the opposite side is provided.
- a pressing sleeve is fitted on a portion of the tip portion of the worm shaft that protrudes on the opposite side of the worm tooth from the tip side bearing. Then, the elastic member for pressing the worm teeth toward the worm wheel is provided between the outer peripheral surface of the pressing sleeve and the extension portion.
- the elastic member for pressing the worm teeth toward the worm wheel is made by winding an elastic metal wire, and has a coil portion and a pair of locking portions protruding radially outward from the opposite side of the coil portion. Then, the coil portion is externally fitted to the pressing sleeve, and both the locking portions are locked to a pair of locking recesses formed in the extension portion of the guide sleeve.
- a virtual plane perpendicular to the central axis of the worm wheel is used as a boundary. It is also preferable to use a divided structure.
- the virtual plane may be a plane including the center of the worm or a plane parallel to this plane.
- the worm teeth and the worm wheel are combined to form a worm-type speed reducer for transmitting the rotational force of the electric motor to a rotating shaft such as a steering shaft.
- a rotating shaft such as a steering shaft.
- the steering force that the driver needs to apply to the steering wheel An electric power steering device that does not change depending on the direction can be realized.
- the tip side bearing that supports the tip portion of the worm shaft is guided by the pair of guide planes and is orthogonal to the central axis of the worm wheel. It can be displaced only on the virtual plane. In other words, the tip side of the worm shaft supported by the tip side bearing is not displaced in the axial direction of the worm wheel. For this reason, as described above, it is possible to make the meshing state constant regardless of the transmission direction of power, and to prevent the steering force from changing depending on the rotation direction of the steering wheel.
- the second elastic member is stretched between the outer peripheral surface of the guide sleeve and the inner peripheral surface of the housing, so The guide sleeve is substantially eliminated, and the guide sleeve is prevented from being displaced (rattle) in the radial direction in the housing. For this reason, even if the relationship between the outer diameter of the guide sleeve and the inner diameter of the housing is not strictly regulated, the above-mentioned effect can be obtained.
- the second elastic member is made of an elastic metal plate, the second elastic member can be used even when the electric power steering device is installed in an engine noreme whose temperature rises. The durability of the member can be sufficiently secured.
- FIG. 1 is a cross-sectional view of an essential part showing an example of an embodiment of the present invention.
- FIG. 2 is an enlarged view of part II in FIG.
- FIG. 3 is a cross-sectional view taken along line III in FIG.
- FIG. 4 is an exploded perspective view of a rotation support portion at the tip portion of the worm shaft shown in FIGS.
- FIG. 5 is a cross-sectional view of the main part showing another example of the embodiment of the present invention.
- FIG. 6 An enlarged view of part VI in FIG.
- FIG. 7 is a sectional view taken along line VII-VII in FIG.
- FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 9]
- FIG. 11 is a partially cut side view showing an example of a conventional structure.
- FIG. 12 An enlarged cross-sectional view of FIG.
- FIG. 14 is a sectional view taken along line XIV—XIV in FIG.
- the electric power steering device of this example is characterized by the worm teeth 6a constituting the worm speed reducer 13 for transmitting the rotational force of the electric motor 5 to the rotating shaft such as the steering shaft 2 (see FIG. 11). It has a structure that can eliminate backlash at the joint portion with the worm wheel 4 and a structure that can make the joint state of the joint portion constant regardless of the transmission direction of power in the worm reducer 13 portion.
- the structure and operation of the entire electric power steering apparatus are the same as those of the conventional structure described in Patent Document 2, the illustrations and explanations of the parts equivalent to the conventional structure are omitted or simplified. Hereinafter, the description will focus on the features of this example.
- the worm 14 is formed by providing worm teeth 6a at an intermediate portion in the axial direction of the worm shaft 7a. Then, in a state where the worm teeth 6a are engaged with the worm wheel 4, both axial ends of the worm shaft 7a are formed by a pair of rolling bearings 8a and 8 each of which is a single row deep groove type ball bearing.
- the housing 3a is rotatably supported.
- the rolling bearing 8b for rotatably supporting the base end portion (the right end portion in FIG. 1) of the worm shaft 7a with respect to the housing 3a includes the inner ring 15b and the worm shaft 7a.
- the outer ring 16b is fixed to the housing 3a with an interference fit.
- the rolling bearing 8b which is a single-row deep groove type ball bearing, has a low moment rigidity even if the internal clearance is zero, so that the base end of the worm shaft 7a is connected to the housing 3a by the rolling bearing 8b.
- the rolling bearing 8b in a state where the radial displacement is prevented, it is supported so that a slight swing displacement is possible. Since the amount of rocking displacement of the worm shaft 7a, which is required to eliminate backlash at the joint portion, is very small, an excessive force is hardly applied to the rolling bearing 8b. In this way, the proximal end portion of the worm shaft 7a and the distal end portion of the output shaft 17 of the electric motor 5 that are rotatably supported in the housing 3a can freely transmit torque by the coupling 18. By engaging, the worm shaft 7a can be driven to rotate in both directions.
- the tip of the worm shaft 7a is rotated with respect to the housing 3a through the rolling bearing 8a and the guide sleeve 19, and a little with respect to the worm wheel 4.
- Perspective movement (displacement in the vertical direction in Figs. 1 to 3) is possible, but supported in a state where displacement of the worm wheel 4 in the axial direction (front and back in Figs. 1 and 2 and left and right in Fig. 3) is prevented. is doing.
- the inner ring 15a of the rolling bearing 8a is fitted and fixed to the tip of the worm shaft 7a by an interference fit, and the outer ring 16a is arranged on the inner diameter side of the guide sleeve 19.
- the guide sleeve 19 is made of a slippery synthetic resin having oil resistance and has an annular shape as a whole.
- Both guide planes 20 and 20 are located on virtual planes (planes parallel to the planes shown in FIGS. 1 and 2) that are orthogonal to the central axis of the warm wheel 4.
- the distance D20 between the two guide planes 20 and 20 coincides with the outer diameter D16 of the outer ring 16a of the rolling bearing 8a which is the front end side bearing.
- the guide sleeve 19 is formed as shown in FIG. It is constructed by combining a pair of sleeve elements 21a and 21b that are semicircular arcs. Both the sleeve elements 21a and 21b are mirror-symmetrical with respect to each other, and each outer peripheral surface is a semi-cylindrical surface and each inner peripheral surface is a stepped substantially semi-cylindrical surface. Both the guide planes 20 and 20 are formed in the circumferential intermediate portion of the large-diameter portion 23 of the inner peripheral surface.
- Locking recesses 24 and 24 are formed in the center portion in the circumferential direction of the small diameter portion 32 on the inner peripheral surface.
- a locking groove 22 is formed in each outer peripheral surface at a portion where phases in the axial direction coincide with each other.
- Each of the above-described three sleeve elements 21a and 21b having such a configuration is combined in a state where the circumferential end faces thereof face each other, and the O ring 25 is locked in the locking groove 22 described above.
- the guide sleeve 19 is used. In this state, a part of the O-ring 25 protrudes radially outward from the outer peripheral surface of the guide sleeve 19.
- the distance between the guide planes 20 and 20 is the same as the outer diameter of the outer ring 16a, and is slightly smaller than the outer diameter.
- Such a guide sleeve 19 is assembled around the outer ring 16a while holding the outer ring 16a from the opposite side in the radial direction by the guide planes 20 and 20 of the both guide sleeve elements 21a and 21b. I'll make it.
- a coil spring 28 which is an elastic member, is provided between the extension portion 27 protruding from the outer ring 16a toward the tip side and the tip portion of the worm shaft 7a.
- the coil spring 28 is configured by winding a single metal wire having elasticity such as spring steel, and includes a coil portion 29 and a pair of locking portions 30 and 30.
- Both the locking portions 30, 30 protrude outward in the radial direction substantially in the opposite direction with respect to the radial direction of the coil portion 29. However, in the free state of the coil spring 28, the positions of the both locking portions 30, 30 are slightly biased to one side in the circumferential direction (the side far from the worm wheel 4).
- Such a coil spring 28 is configured such that the distal end portion is directed toward the worm wheel 4 between the extension portion 27 of the guide sleeve 19 and the distal end portion of the worm shaft 7a via the pressing sleeve 31. It is spanned in a state of pressing.
- the pressing sleeve 31 is located on the inner diameter side of the extension portion 27 at the tip of the worm shaft 7a.
- the both locking portions 30, 30 are locked to the locking recesses 24, 24 provided at two positions on the radially opposite side of the extension 27. At this time, as shown by arrows ⁇ and ⁇ in FIG.
- the both locking portions 30 and 30 are locked to the both locking recesses 24 and 24 while being elastically deformed in a direction approaching the worm wheel 4. .
- the distal end portion of the worm shaft 7a is applied with elasticity in the direction approaching the worm wheel 4 on the inner diameter side of the extension portion 27, and the direction in which the worm shaft 7a moves in the direction of the worm wheel 4 Only the displacement in the vertical direction (Figs. 1-3) is supported.
- the tip of the worm shaft 7a is prevented from shifting in the axial direction of the worm wheel 4 (the front and back directions in FIGS. 1 and 2 and the left and right direction in FIG. 3) on the inner diameter side of the extension 27. Supported by
- the members 7a, 31, 28, 19, 25 are combined as described above, the members 7a, 31, 28, 19, 25 are provided in a part of the housing 3a. Then, the outer diameter of the above-mentioned ring 25 is pushed into the holding cylindrical portion 26 having a bottomed cylindrical shape while inertially shrinking. In this state, since the elasticity of the O-ring 25 is greater than the elasticity of the coil spring 28, the guide sleeve 19 is held and fixed to the holding cylindrical portion 26 without rattling. That is, regardless of the elasticity of the coil spring 28, the guide sleeve 19 is not displaced in the radial direction of the guide sleeve 19 and the holding cylindrical portion 26 in the holding cylindrical portion 26.
- the pair of guide planes 20, 20 provided on the inner peripheral surface of the guide sleeve 19 are positioned on a virtual plane orthogonal to the central axis of the foam wheel 4. Then, the outer ring 16a of the rolling bearing 8a that supports the tip of the worm shaft 7a is directed toward the worm wheel 4 along the both guide planes 20 and 20 based on the elasticity of the coil spring 28. And elastically pressed.
- the worm-type speed reducer 13 for configuring the worm-type speed reducer 13 for transmitting the rotational force of the electric motor 5 to the steering shaft 2 is provided.
- the meshing state between the worm teeth 6a and the worm wheel 4 can be made constant regardless of the power transmission direction.
- the steering force that needs to be applied to the driver force S steering wheel 1 (see Fig. 11) when the course is changed can be prevented from changing due to the rotation direction of the steering wheel 1.
- the outer ring 16a of the rolling bearing 8a that supports the front end portion of the worm shaft 7a is guided by the both guide planes 20 and 20,
- the worm wheel 4 can be displaced only on a virtual plane orthogonal to the central axis of the worm wheel 4.
- the tip side of the worm shaft 7a supported by the rolling bearing 8a is not displaced in the axial direction of the worm wheel 4.
- the installation position of the ring 25 for preventing the guide sleeve 19 from being displaced in the radial direction on the inner diameter side of the holding cylindrical portion 26 is not limited to the illustrated portion.
- a second elastic member such as a ring can be provided between the outer peripheral surface of the extension portion 27 and the inner peripheral surface of the holding cylindrical portion 26.
- the entire guide sleeve is formed in a substantially cylindrical shape, and a slit is formed over the entire length in the axial direction at one location in the circumferential direction to adjust the inner diameter of the guide sleeve (the distance between a pair of guide planes). It can also be made. Since this adjustment amount is very small, the parallelism of the two guide planes is not substantially impaired based on this adjustment.
- FIGS. 5 to 10 show another example of the embodiment of the present invention.
- the electric power steering device of this example is characterized by a worm tooth 6a that constitutes a worm speed reducer 13 for transmitting the rotational force of the electric motor 5 to a rotating shaft such as the steering shaft 2 (see FIG. 11).
- the structure that can eliminate backlash at the meshing part between the worm wheel 4 and the force, and the meshing condition of this coupling part can be made constant regardless of the transmission direction of the power in the worm reducer 13 part. It is in.
- the structure and operation of the entire electric power steering apparatus are the same as those of the conventional structure described in Patent Document 2, the illustration and description regarding the same parts as those of the conventional structure are omitted or simplified. In the following, the explanation will focus on the features of this example.
- the worm 14 is formed by providing worm teeth 6a at an intermediate portion in the axial direction of the worm shaft 7a. Then, in a state where the worm teeth 6a are engaged with the worm wheel 4, both axial ends of the worm shaft 7a are formed by a pair of rolling bearings 8a and 8 each of which is a single row deep groove type ball bearing.
- the housing 3a is rotatably supported.
- the rolling bearing 8b for rotatably supporting the base end portion (the right end portion in FIG. 5) of the worm shaft 7a with respect to the housing 3a includes the inner ring 15b and the worm shaft 7a.
- the outer ring 16b is fixed to the housing 3a with an interference fit.
- the rolling bearing 8b which is a single-row deep groove type ball bearing, has a low moment rigidity even if the internal clearance is zero, so that the base end of the worm shaft 7a is connected to the housing 3a by the rolling bearing 8b.
- the rolling bearing 8b in a state where the radial displacement is prevented, it is supported so that a slight swing displacement is possible. Since the amount of rocking displacement of the worm shaft 7a, which is required to eliminate backlash at the joint portion, is very small, an excessive force is hardly applied to the rolling bearing 8b. In this way, the proximal end portion of the worm shaft 7a and the distal end portion of the output shaft 17 of the electric motor 5 that are rotatably supported in the housing 3a can freely transmit torque by the coupling 18. By engaging, the worm shaft 7a can be driven to rotate in both directions.
- the tip of the worm shaft 7a is rotated with respect to the housing 3a through the rolling bearing 8a and the guide sleeve 120, and is slightly moved with respect to the worm wheel 4 (see FIGS. 5 to 8).
- the worm wheel 4 is supported in a state that prevents displacement of the worm wheel 4 in the axial direction (front and back directions in FIGS. 5 to 6 and left and right directions in FIGS. 7 to 8).
- the inner ring 15a of the rolling bearing 8a is fitted and fixed to the tip of the worm shaft 7a by an interference fit, and the outer ring 16a is arranged on the inner diameter side of the guide sleeve 120.
- the guide sleeve 120 is made of a slippery synthetic resin having oil resistance and is formed into a ring shape as a whole.
- a pair of guide planes parallel to each other at two positions on the radially opposite side of the inner peripheral surface. , 121 (see Fig. 7). Both of these guide planes 121 and 121 are located on virtual planes (planes parallel to the planes shown in FIGS. 5 to 6) that are orthogonal to the central axis of the worm wheel 4. Further, the distance D121 between the two guide planes 121, 121 coincides with the outer diameter D16 of the outer ring 16a of the rolling bearing 8a which is the front end side bearing.
- the guide sleeve 120 in order to make the distance D121 between the two guide planes 121, 121 coincide with the outer diameter D16 of the outer ring 16a, the guide sleeve 120, as shown in FIG. Is formed by combining a pair of sleeve elements 122a and 122b having a semicircular arc shape. These sleeve elements 122a and 122b are mirror-symmetrical to each other, each outer peripheral surface is a semi-cylindrical surface, and each inner peripheral surface is a stepped substantially semi-cylindrical surface.
- the two guide planes 121 and 121 are formed in the middle in the circumferential direction of the large diameter portion 123 of the inner peripheral surface.
- Locking recesses 125 and 125 are formed in the center portion in the circumferential direction of the small diameter portion 124 on the inner peripheral surface.
- the sleeve elements 122a and 122b, each having such a configuration, are combined into a state in which their circumferential end faces face each other to form the guide sleeve 120.
- a leaf spring 126 which is a second elastic member, is externally fitted to such a guide sleeve 120 as shown in FIG.
- the plate spring 126 is formed by bending a metal plate having elasticity, such as a stainless steel plate, into a cylindrical shape.
- both ends of the metal plate in the circumferential direction are formed at the intermediate portion in the width direction, and a pair of slits 127a and 127b reaching the edge in the circumferential direction. It is divided into 128a and 128b.
- a pair of elastic arm portions 128a and 128a positioned on one side in the width direction (front side in FIG.
- a pair of elastic arm portions 128b and 128b are provided with elastic force directed radially inward in a free state.
- axial locking pieces 129 bent inward in the radial direction from the one end edge at a plurality of positions (two positions on the opposite side in the radial direction in the illustrated example) at one end edge in the axial direction of the leaf spring 126.
- the tip edge edge of the elastic arm portion 128b is connected to the tip edge portion of one elastic arm portion 128b.
- a circumferential locking piece 130 is formed which is bent inward in the radial direction.
- the guide sleeve 120 and the leaf spring 126 as described above are configured so that the outer ring 16a is clamped by the guide planes 121 and 121 of the both guide sleeve elements 122a and 122b, and the outer ring 16a is held around the outer ring 16a. Assemble with.
- a coil spring 132 which is an elastic member, is provided between the extension 131 protruding from the outer ring 16a toward the tip side and the tip of the worm shaft 7a.
- the coin spring 132 is formed by winding a single metal wire having elasticity such as spring steel, and includes a coil portion 133 and a pair of Y-type stoppers B134 and 134.
- Such a coil spring 132 is formed by means of a pressing sleeve 135 between the extension 131 of the guide sleeve 120 and the tip of the worm shaft 7a. It is spanned in a state of pressing.
- the pressing sleeve 135 is disposed at a portion located on the inner diameter side of the extension portion 131 at the distal end portion of the worm shaft 7a.
- both the locking portions 134, 134 are locked to the locking recesses 125, 125 provided at two positions on the radially opposite side of the extension 131 (see FIG.
- each of the elastic arm portions 128a, 128b a pair of elastic arm portions 128a, 128a located on one side in the width direction is arranged radially inward and a pair of elastic arm portions 128b located on the other side in the width direction,
- the leaf spring 126 is pushed into the holding cylindrical portion 136 together with the guide sleeve 120 while elastically deforming 128b radially outward.
- a pair of elastic arms 128a, 128a located on one side in the width direction described above is a pair of elastic arms located on the inner peripheral surface of the housing in the radial direction outward and in the other side in the width direction.
- the arms 128b and 128b elastically press the outer peripheral surface of the guide sleeve radially inward.
- a tension force is applied between the inner peripheral surface of the holding cylindrical portion 136 and the outer peripheral surface of the guide sleeve 120 in the directions indicated by arrows and ⁇ in FIG.
- the magnitude of this tension force is larger than the elasticity of the coil spring 132.
- the guide sleeve 120 is held and fixed in the holding cylindrical portion 136 without rattling. That is, regardless of the repulsive force of the coil spring 132, the guide sleeve 120 is not displaced in the radial direction of the guide sleeve 120 and the holding cylindrical portion 136 in the holding cylindrical portion 136.
- the pair of guide planes 121, 121 provided on the inner peripheral surface of the guide sleeve 120 is a virtual plane orthogonal to the central axis of the worm wheel 4.
- the outer ring 16a of the rolling bearing 8a that supports the tip of the worm shaft 7a is directed toward the worm wheel 4 along the both guide planes 121 and 121 based on the elasticity of the coil spring 132. And elastically pressed.
- the axial locking pieces 129 and 129 are sandwiched between one axial end surface of the guide sleeve 120 and the inner surface of the holding cylindrical portion 136.
- the leaf spring 126 is displaced in the axial direction. Stop moving.
- the leaf spring 126 is guided by the guide. Prevents rotation around sleeve 120 (see Figure 8).
- the worm-type speed reducer 13 for configuring the worm-type speed reducer 13 for transmitting the rotational force of the electric motor 5 to the steering shaft 2 is provided.
- the meshing state between the worm teeth 6a and the worm wheel 4 can be made constant regardless of the power transmission direction.
- the steering force that needs to be applied to the driver force S steering wheel 1 (see Fig. 11) when the course is changed can be prevented from changing due to the rotation direction of the steering wheel 1.
- the outer ring 16a of the rolling bearing 8a that supports the tip end portion of the worm shaft 7a is arranged in the both guide planes 121 and 121.
- the worm wheel 4 can be displaced only on a virtual plane orthogonal to the central axis of the worm wheel 4. In other words, the tip side of the worm shaft 7a supported by the rolling bearing 8a is not displaced in the axial direction of the worm wheel 4. For this reason, as described above, the above-mentioned meshing state can be made constant regardless of the transmission direction of power, and the steering force can be prevented from changing depending on the rotation direction of the steering wheel 1.
- the guide sleeve does not necessarily have to be made by combining a pair of sleeve elements.
- the entire guide sleeve is formed in a substantially cylindrical shape, and a slit is formed over the entire length in the axial direction at one location in the circumferential direction to adjust the inner diameter of the guide sleeve (the distance between a pair of guide planes). It can also be made. Since this adjustment amount is very small, the parallelism of the two guide planes is not substantially impaired based on this adjustment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Steering Mechanism (AREA)
Abstract
ウォーム歯6aとウォームホイール4との噛合状態を、動力の伝達方向に拘らず一定にする。そして、運転者がステアリングホイールに加える必要がある操舵力が、このステアリングホイールの回転方向により変化する事のない構造を実現する。 ウォーム軸7aの先端部をハウジング3a内に回転自在に支持する為の転がり軸受8aを、上記ウォームホイール4の中心軸に対し直交する仮想平面上でのみ変位可能とする。この為に上記転がり軸受8aを構成する外輪16aを、上記ハウジング3a内に保持されたガイドスリーブ19の内周面に形成した、互いに平行で上記ウォームホイール4の中心軸に対し直交する仮想平面上に位置する1対のガイド平面同士の間に挟持する。この構成により、上記課題を解決する。
Description
明 細 書
電動式パワーステアリング装置
技術分野
[0001] この発明に係る電動式パワーステアリング装置は、自動車の操舵装置として利用す るもので、電動モータを補助動力として利用する事により、運転者がステアリングホイ ールを操作する為に要する力の軽減を図るものである。本発明は、この様な電動式 パワーステアリング装置を構成するウォーム式減速機部分で、歯打ち音と呼ばれる不 快な異音が発生する事を抑えられ、し力、も、ステアリングホイールの操作感を良好に できる構造の実現を意図して発明したものである。
背景技術
[0002] 操舵輪 (フォークリフト等の特殊車両を除き、通常は前輪)に舵角を付与する際に運 転者がステアリングホイールを操作する為に要する力の軽減を図る為の装置として、 パワーステアリング装置が広く使用されている。又、この様なパワーステアリング装置 で、補助動力源として電動モータを使用する電動式パワーステアリング装置も、近年 普及し始めている。電動式パワーステアリング装置は、油圧式のパワーステアリング 装置に比べて小型 *軽量にでき、補助動力の大きさ(トルク)の制御が容易で、し力、も エンジンの動力損失が少ない等の利点がある。
[0003] 電動式パワーステアリング装置の構造は、各種知られている力 何れの構造の場合 でも、ステアリングホイールの操作によって回転させられ、回転に伴って操舵輪に舵 角を付与する回転軸に電動モータの補助動力を、減速機を介して付与する。この減 速機として一般的には、ウォーム減速機が使用されている。ウォーム減速機を使用し た電動式パワーステアリング装置の場合、上記電動モータにより回転駆動されるゥォ ームと、上記回転軸と共に回転するウォームホイールとを嚙合させて、上記電動モー タの補助動力をこの回転軸に伝達自在とする。但し、ウォーム減速機の場合、何らの 対策も施さないと、上記ウォームと上記ウォームホイールとの嚙合部に存在するバック ラッシュに基づき、上記回転軸の回転方向を変える際に、歯打ち音と呼ばれる不快 な異音が発生する場合がある。
[0004] この様な歯打ち音の発生を抑えられる構造として従来から、特許文献:!〜 2に記載 されている様に、ばね等の弾性部材によりウォームをウォームホイールに向け弾性的 に押圧する事が考えられている。図 11〜: 14は、このうちの特許文献 2に記載された 電動式パワーステアリング装置の 1例を示している。ステアリングホイール 1により所定 方向に回転させられる、回転軸であるステアリングシャフト 2の前端部は、ハウジング 3 の内側に回転自在に支持しており、この部分にウォームホイール 4を固定している。こ のウォームホイール 4と嚙合し、電動モータ 5により回転駆動されるウォーム歯 6を軸 方向中間部に設けたウォーム軸 7の両端部は、深溝型玉軸受等の 1対の転がり軸受 8a、 8bにより、上記ハウジング 3内に回転自在に支持されている。更に、上記ウォー ム軸 7の先端部で上記転がり軸受 8aよりも突出した部分に押圧駒 9を外嵌し、この押 圧駒 9と上記ハウジング 3との間に、弾性部材であるコイルばね 10を設けている。そし て、コイルばね 10により、上記押圧駒 9を介して、上記ウォーム歯 6を上記ウォームホ ィール 4に向け押圧している。この様な構成により、これらウォーム歯 6とウォームホイ ール 4との間のバックラッシュを抑え、上記歯打ち音の発生を抑えている。
[0005] 但し、上述した様な、特許文献 2に記載された従来構造の場合、上記ウォーム軸 7 の先端部が上記ハウジング 3の内側に、上記ウォームホイール 4に対して遠近動する 方向(図 12〜14の上下方向)の変位だけでなぐこのウォームホイール 4の軸方向( 図 12〜: 13の表裏方向、図 14の左右方向)の変位も可能に支持している。即ち、上 記従来構造の場合には、図 13の右端部に示す様に、上記ウォーム軸 7の先端部を 上記ウォームホイール 4に対する遠近動を可能に支持する為に、このウォーム軸 7の 先端部に弾性材製のブッシュ 11を外嵌し、このブッシュ 11を、上記転がり軸受 8aに より、上記ハウジング 3に対し回転自在に支持している。上記バックラッシュを抑える 際には、上記ブッシュ 11を弾性変形させる。この様な従来構造の場合、上記ウォーム 軸 7の先端部が、上記バックラッシュを解消する為に変位させる必要がある、上記遠 近動する方向だけでなぐこのバックラッシュ解消の面からは変位させる事が不要で ある、上記軸方向にも変位可能になる。そして、この軸方向の変位に基づいて、上記 ウォーム歯 6と上記ウォームホイール 4との嚙合状態が不適正になる可能性がある。
[0006] 例えば、上記ウォーム軸 7の中心軸力 このウォームホイール 4の中心軸に対し直
交する仮想平面上(図 12〜: 13に表われた面上)に存在する場合に、このウォームホ ィール 4と上記ウォーム歯 6との嚙合状態が適正になる場合、上記ウォーム軸 7の先 端部が上記ブッシュ 11の弾性変形分、上記ウォームホイール 4の軸方向に変位する と、上記嚙合状態が不適正になる。この弾性変形分の変位は僅かであり、この嚙合 状態が不適正になる程度は僅かである力 不適正になる事で、上記ウォームホイ一 ノレ 4と上記ウォーム歯 6との嚙合部の摩擦損失が大きくなる。そして、この摩擦損失が 大きくなる分、前記電動モータ 5から前記ステアリングシャフト 2に付加される補助動 力の大きさ(トルク)が変化 (低減)する。又、変化する程度は、上記嚙合状態が不適 正の程度が大きくなる程著しくなる。
[0007] 一方、上記ウォーム軸 7の先端部を上記ウォームホイール 4の軸方向に変位させる 力は、上記嚙合部から、上記補助動力を伝達する事に伴う反力として加わる。従って 、上記ウォーム軸 7の先端部が上記軸方向に変位する方向は、補助動力の伝達方 向、即ち、上記ステアリングシャフト 2の回転方向が逆転すれば、逆転する。そして、こ のステアリングシャフト 2が所定方向に回転する状態での上記動力損失の大きさと、 同じく逆方向に回転する状態での動力損失の大きさとが異なると、前記ステアリング ホイール 1の操作に要する力(操舵力)力 このステアリングホイール 1の回転方向に より互いに異なる状態が発生する可能性がある。この様な状態は、ステアリングホイ一 ノレ 1を操作する運転者に違和感を与える為、好ましくない。
特許文献 1 :日本公開特許 2000— 43739号公報
特許文献 2 :日本公開特許 2004— 306898号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、上述の様な事情に鑑み、ウォーム歯とウォームホイールとの嚙合状態を 、動力の伝達方向に拘らず一定にできて、運転者がステアリングホイールに加える必 要がある操舵力が、このステアリングホイールの回転方向により変化する事のない、 電動式パワーステアリング装置を実現すべく発明したものである。
[0009] 本発明の電動式パワーステアリング装置は、前述した従来から知られている電動式 パワーステアリング装置と同様に、ハウジングと、回転軸と、ウォームホイールと、ゥォ
ームと、電動モータとを備える。
このうちのハウジングは、車体等の固定の部分に支持されて、操舵時にも回転する 事はない。
又、上記回転軸は、上記ハウジングに対し回転自在に設けられて、ステアリングホイ ールの操作によって回転させられ、回転に伴って操舵輪に舵角を付与する。この様 な回転軸としては、例えば前述の図 11に示した構造でのステアリングシャフト 2、或い は、中間シャフト 12、更には、ステアリングギヤ 33の入力軸(ピニオン軸)が採用可能 である。
又、上記ウォームホイールは、上記ハウジングの内部で上記回転軸の一部に、この 回転軸と同心に(締り嵌めによる外嵌固定、キー係合、スプライン係合等により相対 回転を阻止された状態で)支持されて、この回転軸と共に回転する。
又、上記ウォームは、ウォーム軸の軸方向中間部にウォーム歯を設けて成る。そし て、このウォーム歯を上記ウォームホイールと嚙合させた状態で、上記ウォーム軸の 軸方向両端部をそれぞれ軸受により、上記ハウジングに対し回転自在に支持してい る。
更に、上記電動モータは、上記ウォーム軸の基端部と出力軸の先端部とを回転力 の伝達を自在に係合させて、このウォーム軸を両方向に回転駆動自在としてレ、る。 そして、このウォーム軸の先端部と上記ハウジングの内面との間に設けた弾性部材 により、このウォーム歯を上記ウォームホイールに向け押圧している。
請求項 1に記載した本発明の電動式パワーステアリング装置に於いては、上記ゥォ ーム軸の先端部を上記ハウジングに対し回転自在に支持する為の先端側軸受の外 周面と、このハウジングの内面との間に、ガイドスリーブを設けている。このガイドスリ ーブは、互いに平行な 1対のガイド平面を、その内周面に設けている。これら両ガイド 平面は、上記先端側軸受の外径と実質的に一致する間隔で配置され、それぞれが 上記ウォームホイールの中心軸に対し直交する(互いに平行な 1対の)仮想平面上に 位置する。そして、これら両ガイド平面同士の間に上記先端側軸受を挟持する事で、 この先端側軸受を、上記ウォームホイールの中心軸に対し直交する仮想平面上での み変位可能としている。
[0011] 尚、上記両ガイド平面の間隔が上記先端側軸受の外径と実質的に一致する状態と は、上記先端側軸受の外周面の直径方向反対側 2個所位置を、同時に上記両ガイ ド平面に当接させ、しかも、上記弾性部材の弾力により、上記先端側軸受を上記ゥォ ームホイールに近づく方向に変位させられる状態を言う。但し、上記先端側軸受の外 周面と上記両ガイド平面との間部分に、嚙合状態の変化に結び付かない様な、数 m程度(10 μ m未満)の隙間が存在する事は、本発明の目的上、差し支えない。言 い換えれば、上記間部分に数 x m程度の隙間が存在する状態も、上記両ガイド平面 の間隔が上記先端側軸受の外径と実質的に一致する状態である。
[0012] 上述の様な本発明の電動式パワーステアリング装置を実施する場合に好ましくは、 請求項 2に記載した様に、上記ガイドスリーブに、上記両ガイド平面よりも上記ウォー ム歯と反対側部分に迄延長した延長部を設ける。又、上記ウォーム軸の先端部のう ちで先端側軸受よりもウォーム歯と反対側に突出した部分に、押圧スリーブを外嵌す る。そして、この押圧スリーブの外周面と上記延長部との間に、ウォーム歯をウォーム ホイールに向け押圧する為の、上記弾性部材を設ける。
[0013] この様な請求項 2に記載した発明を実施する場合に、更に好ましくは、請求項 3に 記載した様に、上記ウォーム歯を上記ウォームホイールに向け押圧する為の上記弾 性部材を、弾性を有する金属製線材を卷回する事により造られて、コイル部と、このコ ィル部の反対側から径方向外方に突出した 1対の係止部とを備えたコイルばねとす る。そして、上記コイル部を押圧スリーブに外嵌すると共に、上記両係止部を、上記 ガイドスリーブの延長部に形成した 1対の係止凹部に係止する。
又、上述の様な請求項 2〜3に記載した発明を実施する場合に、請求項 4に記載し た様に、上記ガイドスリーブとして、上記ウォームホイールの中心軸に対し直交する仮 想平面を境に 2分割された構造のものを使用する事も、好ましい。尚、この仮想平面 は、前記ウォームの中心軸を含む平面であっても、或はこの面と平行な面であっても 良い。
[0014] 又、前述の様な本発明の電動式パワーステアリング装置を実施する場合に好ましく は、請求項 5に記載した様に、前記ガイドスリーブの外周面とハウジングの内周面との 間に第二の弾性部材を設けて、このハウジング内でこのガイドスリーブががたつくの
を防止する。
この様な第二の弾性部材としては、金属製の線材を波形に形成した金属ばねを使 用する事もできる。但し、上記ガイドスリーブの外周面とハウジングの内周面との間に 存在する、がたつきに結び付く様な隙間は僅少であるから、調達コストを抑えて電動 式パワーステアリング装置の低廉化を図る面から、上記第二の弾性部材を oリングと する事が好ましい。この場合には、この oリングを、上記ガイドスリーブの外周面に設 けられた係止凹溝内に設置する。
[0015] また、請求項 7に記載した本発明の電動式パワーステアリング装置に於いては、上 記ウォーム軸の先端部を上記ハウジングに対し回転自在に支持する為の先端側軸 受の外周面と、このハウジングの内面との間に、ガイドスリーブを設けている。このガイ ドスリーブは、互いに平行な 1対のガイド平面を、その内周面に設けている。これら両 ガイド平面は、上記先端側軸受の外径と実質的に一致する間隔で配置され、それぞ れが上記ウォームホイールの中心軸に対し直交する(互いに平行な 1対の)仮想平面 上に位置する。そして、これら両ガイド平面同士の間に上記先端側軸受を挟持する 事で、この先端側軸受を、上記ウォームホイールの中心軸に対し直交する仮想平面 上でのみ変位可能としている。更に、上記ガイドスリーブの外周面とハウジングの内 周面との間に、弾性を有する金属板製の第二の弾性部材を設けている。
[0016] 上述の様な本発明の電動式パワーステアリング装置を実施する場合に、例えば請 求項 8に記載した様に、上記第二の弾性部材を、金属板を欠円筒状に曲げ形成する と共に、この金属板の円周方向の少なくとも一端部を、幅方向中間部に形成されて 円周方向端縁に迄達するスリットによって 1対の弾性腕部に分割された板ばねとする 。そして、これら両弾性腕部のうちの一方の弾性腕部によりガイドスリーブの外周面を 径方向内方に、他方の弾性腕部によりハウジングの内周面を径方向外方に、それぞ れ弹性的に押圧する。
[0017] 上述の請求項 8に記載した電動式パワーステアリング装置を実施する場合に好まし くは、請求項 9に記載した様に、上記第二の弾性部材の軸方向一端縁に、この軸方 向一端縁カ 径方向内方に折れ曲がった、少なくとも 1個の軸方向係止片を設ける。 そして、この軸方向係止片を、ガイドスリーブの軸方向一端面とハウジングの内面との
間で挟持する事により、上記第二の弾性部材が軸方向にずれ動く事を阻止する。 或いは、請求項 10に記載した様に、上記ガイドスリーブとして、少なくとも円周方向 の 1個所に切れ目が設けられたものを使用する。そして、上記第二の弾性部材に設 けた複数個の弾性腕部のうちの何れかの弾性腕部の先端縁から径方向内方に折れ 曲がった円周方向係止片を上記切れ目に係合させる事により、上記第二の弾性部 材が上記ガイドスリーブの周囲で回転する事を阻止する。
[0018] 又、前述の様な本発明の電動式パワーステアリング装置を実施する場合に好ましく は、請求項 11に記載した様に、上記ガイドスリーブに、上記両ガイド平面よりも上記ゥ オーム歯と反対側部分に迄延長した延長部を設ける。又、上記ウォーム軸の先端部 のうちで先端側軸受よりもウォーム歯と反対側に突出した部分に、押圧スリーブを外 嵌する。そして、この押圧スリーブの外周面と上記延長部との間に、ウォーム歯をゥォ ームホイールに向け押圧する為の、上記弾性部材を設ける。
[0019] この様な請求項 11に記載した発明を実施する場合に、更に好ましくは、請求項 12 に記載した様に、上記ウォーム歯を上記ウォームホイールに向け押圧する為の上記 弾性部材を、弾性を有する金属製線材を卷回する事により造られて、コイル部と、こ のコイル部の反対側から径方向外方に突出した 1対の係止部とを備えたコイルばね とする。そして、上記コイル部を押圧スリーブに外嵌すると共に、上記両係止部を、上 記ガイドスリーブの延長部に形成した 1対の係止凹部に係止する。
又、前述の様な本発明の電動式パワーステアリング装置を実施する場合に、請求 項 13に記載した様に、上記ガイドスリーブとして、上記ウォームホイールの中心軸に 対し直交する仮想平面を境に 2分割された構造のものを使用する事も、好ましい。尚 、この仮想平面は、上記ウォームの中心を含む面であっても、或いは、この面と平行 な面であっても良い。
発明の効果
[0020] 上述の様な構成を有する本発明によれば、電動モータの回転力をステアリングシャ フト等の回転軸に伝達する為のウォーム式減速機を構成するウォーム歯とウォームホ ィールとの嚙合状態を、動力の伝達方向に拘らず一定にできる。そして、運転者がス テアリングホイールに加える必要がある操舵力が、このステアリングホイールの回転方
向により変化する事のない、電動式パワーステアリング装置を実現できる。
[0021] 即ち、本発明の電動式パワーステアリング装置の場合には、ウォーム軸の先端部を 支持する先端側軸受が、 1対のガイド平面に案内されて、ウォームホイールの中心軸 に対し直交する仮想平面上でのみ変位可能である。言い換えれば、上記先端側軸 受により支持された、上記ウォーム軸の先端側が、上記ウォームホイールの軸方向に 変位する事はない。この為、上述の様に、上記嚙合状態を動力の伝達方向に拘らず 一定にできて、上記ステアリングホイールの回転方向により上記操舵力が変化する事 を防止できる。
[0022] 又、本発明の電動式パワーステアリング装置の場合には、第二の弾性部材がガイド スリーブの外周面とハウジングの内周面との間で突っ張る事で、これら両周面同士の 間の隙間を実質的に解消し、上記ガイドスリーブが上記ハウジング内で径方向に変 位する(がたつく)事を防止する。この為、上記ガイドスリーブの外径と上記ハウジング の内径との関係を厳密に規制しなくても、上記作用'効果を得られる。又、上記第二 の弾性部材として、弾性を有する金属板製のものを使用する為、電動式パワーステ ァリング装置を、温度上昇するエンジンノレーム内に設置した場合にも、上記第二の弾 性部材の耐久性を十分に確保できる。
[0023] 更に、請求項 2〜6および請求項 8〜: 13に記載した発明によれば、組み立て易い 構造で実現できて、上述の様な作用'効果を奏する、操作感の良い電動式パワース テアリング装置を、低コストで実現できる。
図面の簡単な説明
[0024] [図 1]本発明の実施の形態の 1例を示す、要部切断面図。
[図 2]図 1の II部拡大図。
[図 3]図 2の III一 ΠΙ断面図。
[図 4]図 2〜3に示したウォーム軸先端部の回転支持部の分解斜視図。
[図 5]本発明の実施の形態の他の 1例を示す、要部切断面図。
[図 6]図 5の VI部拡大図。
[図 7]図 6の VII— VII断面図。
[図 8]図 6の VIII— VIII断面図。
園 9]図 6〜7に示したウォーム軸先端部の回転支持部の分解斜視図。 園 10]第二の弾性部材である板ばねの斜視図。
[図 11]従来構造の 1例を示す、部分切断側面図。
[図 12]図 11の拡大 ΧΙΙ-ΧΠ断面図。
園 13]図 12の右下部拡大図。
[図 14]図 13の XIV— XIV断面図。
符号の説明
1 ステアリングホイ一ノレ
2 ステアリングシャフト
3、 3a ハウジング
4 ウォームホイ一ノレ
5 電動モータ
6、 6a ウォーム困
7、 7a ウォーム軸
8a、 8b 転がり軸受
9 押圧駒
10 コィノレは'ね
11 ブッシュ
12 中間シャフト
13 ウォーム減速機
14 ウォーム
15a、 15b 内輪
16a、 16b 外輪
17 出力軸
18 カップリング
19 ガイドスリーブ
20 ガイド平面
21a、 21b スリーブ素子
係止凹溝
大径部
係止凹部
〇リング
保持円筒部 延長部
コィノレばね
コイル部
係止部
押圧スリーブ 小径部
ステアリングギ
ガイドスリーブ ガイド平面a, 122b スリーブ素子 大径部
小径部
係止凹部
板ばね
a, 127b スジッ卜a, 128b 弾性腕部 軸方向係止片 円周方向係止片 延長部
コィノレばね コィノレ部
係止部
押圧スリーブ
136 保持円筒部
発明を実施するための最良の形態
[0026] 図 1〜4は、本発明の実施の形態の 1例を示している。尚、本例の電動式パワース テアリング装置の特徴は、電動モータ 5の回転力をステアリングシャフト 2 (図 11参照) 等の回転軸に伝達する為のウォーム減速機 13を構成する、ウォーム歯 6aとウォーム ホイール 4との嚙合部のバックラッシュを解消できる構造で、し力も、この嚙合部の嚙 合状態を、上記ウォーム減速機 13部分での動力の伝達方向に拘らず一定にできる 構造にある。その他、電動式パワーステアリング装置全体の構造及び作用に就いて は、前述の特許文献 2に記載された従来構造と同様であるから、この従来構造と同等 部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を 中心に説明する。
[0027] ウォーム 14は、ウォーム軸 7aの軸方向中間部にウォーム歯 6aを設けて成る。そして 、このウォーム歯 6aを上記ウォームホイール 4と嚙合させた状態で、上記ウォーム軸 7 aの軸方向両端部を、それぞれが単列深溝型の玉軸受である 1対の転がり軸受 8a、 8 により、ハウジング 3aに対し回転自在に支持している。これら両転がり軸受 8a、 8b のうち、上記ウォーム軸 7aの基端部(図 1の右端部)を上記ハウジング 3aに対し回転 自在に支持する為の転がり軸受 8bは、内輪 15bを上記ウォーム軸 7aの基端部に締り 嵌めで外嵌固定し、外輪 16bを上記ハウジング 3aに締り嵌めで内嵌固定している。 単列深溝型の玉軸受である上記転がり軸受 8bは、内部隙間がゼロであってもモーメ ント剛性は低い為、この転がり軸受 8bにより上記ウォーム軸 7aの基端部は、上記ハウ ジング 3aに対し、径方向の変位を阻止した状態で、若干の揺動変位を可能に支持さ れる。上記嚙合部のバックラッシュを解消する為に必要とされる、上記ウォーム軸 7a の揺動変位量は僅少である為、上記転がり軸受 8bに無理な力が加わる事は殆どな レ、。この様にして上記ハウジング 3a内に回転自在に支持した、上記ウォーム軸 7aの 基端部と、電動モータ 5の出力軸 17の先端部とは、カップリング 18により回転力の伝 達を自在に係合させて、上記ウォーム軸 7aを両方向に回転駆動自在としてレ、る。
[0028] 一方、上記ウォーム軸 7aの先端部は、上記転がり軸受 8aと、ガイドスリーブ 19とを 介して、上記ハウジング 3aに対し、回転及び上記ウォームホイール 4に対する若干の
遠近動(図 1〜3の上下方向の変位)を可能に、但し、このウォームホイール 4の軸方 向(図 1〜2の表裏方向、図 3の左右方向)の変位を阻止した状態で支持している。こ の為に、上記転がり軸受 8aの内輪 15aを上記ウォーム軸 7aの先端部に締り嵌めで外 嵌固定し、外輪 16aを上記ガイドスリーブ 19の内径側に配置している。
[0029] このガイドスリーブ 19は、耐油性を有する滑り易い合成樹脂により全体を円環状と したもので、内周面の径方向反対側 2個所位置に、互いに平行な 1対のガイド平面 2 0、 20 (図 3参照)を設けている。これら両ガイド平面 20、 20は、それぞれが上記ゥォ ームホイール 4の中心軸に対し直交する仮想平面(図 1〜2に表された平面と平行な 平面)上に位置する。又、上記両ガイド平面 20、 20同士の間隔 D20は、先端側軸受 である上記転がり軸受 8aの外輪 16aの外径 D16と一致する。これに対して、上記遠 近動方向に関する上記ガイドスリーブ 19の内径 R19は、上記外輪 16aの外径 D16よ りも大きく(D20 = D16く R19)している。
[0030] 上記両ガイド平面 20、 20同士の間隔 D20を上記外輪 16aの外径 D16と一致させる 為に本例の場合には、上記ガイドスリーブ 19を、図 4に示した様に、それぞれが半円 弧形である 1対のスリーブ素子 21a、 21bを組み合わせる事により構成している。これ ら両スリーブ素子 21a、 21bは、互いに鏡面対称形であり、それぞれの外周面を半円 筒面とし、それぞれの内周面を段付略半円筒面としている。上記両ガイド平面 20、 2 0は、この内周面のうちの大径部 23の円周方向中間部に形成している。又、この内 周面のうちの小径部 32の円周方向中央部に、それぞれ係止凹部 24、 24を形成して いる。又、それぞれの外周面で軸方向に関する位相が互いに一致する部分に、それ ぞれ係止凹溝 22を形成している。それぞれがこの様な構成を有する、上記両スリー ブ素子 21a、 21bは、互いの円周方向端面同士を対向させた状態に組み合わせ、上 記係止凹溝 22に〇リング 25を係止して、上記ガイドスリーブ 19としている。この状態 でこの Oリング 25の一部は、このガイドスリーブ 19の外周面よりも径方向外方に突出 している。又、上記両ガイド平面 20、 20同士の間隔は、上記外輪 16aの外径と同じ 、この外径よりも僅かに小さくなつている。
[0031] この様なガイドスリーブ 19は、上記両ガイドスリーブ素子 21a、 21bのガイド平面 20 、 20により上記外輪 16aを径方向反対側から挟持しつつ、この外輪 16aの周囲で組
み立てる。次いで、上記ガイドスリーブ 19のうちで、上記外輪 16aよりも先端側に突出 した延長部 27と上記ウォーム軸 7aの先端部との間に、弾性部材であるコイルばね 28 を設ける。このコイルばね 28は、ばね鋼の如き弾性を有する 1本の金属製線材を卷 回する事により構成したもので、コイル部 29と、 1対の係止部 30、 30とを備える。これ ら両係止部 30、 30は、このコイル部 29の径方向に関してほぼ反対側力、ら径方向外 方に突出している。但し、上記コイルばね 28の自由状態で、上記両係止部 30、 30の 位置は、少し円周方向片側(ウォームホイール 4から遠い側)に偏っている。
[0032] この様なコイルばね 28は、押圧スリーブ 31を介して、ガイドスリーブ 19の延長部 27 と上記ウォーム軸 7aの先端部との間に、この先端部を前記ウォームホイール 4に向け 弹性的に押圧する状態で掛け渡している。この為に、上記コイルばね 28のコイル部 2 9を上記押圧スリーブ 31に外嵌した状態で、この押圧スリーブ 31を上記ウォーム軸 7 aの先端部で上記延長部 27の内径側に位置する部分に外嵌すると共に、上記両係 止部 30、 30を、この延長部 27の径方向反対側 2個所位置に設けた、前記両係止凹 部 24、 24に係止する。この際、上記両係止部 30、 30を、図 4に矢印 α、 αで示す様 に、前記ウォームホイール 4に近づく方向に弾性変形させつつ、上記両係止凹部 24 、 24に係止する。この結果、上記ウォーム軸 7aの先端部が上記延長部 27の内径側 に、上記ウォームホイール 4に近づく方向の弾力を付与された状態で、且つ、このゥ オームホイール 4に対して遠近動する方向(図 1〜3の上下方向)の変位のみを可能 に支持される。言い換えれば、上記ウォーム軸 7aの先端部は上記延長部 27の内径 側に、上記ウォームホイール 4の軸方向(図 1〜2の表裏方向、図 3の左右方向)の変 位を阻止された状態で支持される。
[0033] 上述の様にして、上記各部材 7a、 31、 28、 19、 25を組み合わせたならば、これら 各部材 7a、 31、 28、 19、 25を、前記ハウジング 3aの一部に設けた、有底円筒状の 保持円筒部 26に、上記〇リング 25の外径を弹性的に縮めつつ押し込む。この状態 で、この Oリング 25の弾性は上記コイルばね 28の弾力よりも大きくなる為、上記ガイド スリーブ 19は上記保持円筒部 26に、がたつきなく保持固定される。即ち、上記コイル ばね 28の弾力に拘らず、上記ガイドスリーブ 19が上記保持円筒部 26内で、これらガ イドスリーブ 19及び保持円筒部 26の径方向に変位する事はない。又、この状態で、
上記ガイドスリーブ 19の内周面に設けた、前記 1対のガイド平面 20、 20を、上記ゥォ ームホイール 4の中心軸に対し直交する仮想平面上に位置させる。そして、上記ゥォ ーム軸 7aの先端部を支持する前記転がり軸受 8aの外輪 16aを、上記コイルばね 28 の弾力に基づき、上記両ガイド平面 20、 20に沿って、上記ウォームホイール 4に向け て弾性的に押圧した状態とする。
[0034] 上述の様な構成を有する本例の電動式パワーステアリング装置によれば、前記電 動モータ 5の回転力を前記ステアリングシャフト 2に伝達する為のウォーム式減速機 1 3を構成する上記ウォーム歯 6aと上記ウォームホイール 4との嚙合状態を、動力の伝 達方向に拘らず一定にできる。そして、進路変更時に、運転者力 Sステアリングホイ一 ノレ 1 (図 11参照)に加える必要がある操舵力力 このステアリングホイール 1の回転方 向により変化する事を抑えられる。
[0035] 即ち、本例の電動式パワーステアリング装置の場合には、上記ウォーム軸 7aの先 端部を支持する前記転がり軸受 8aの外輪 16aが、上記両ガイド平面 20、 20に案内 されて、上記ウォームホイール 4の中心軸に対し直交する仮想平面上でのみ変位可 能である。言い換えれば、上記転がり軸受 8aにより支持された、上記ウォーム軸 7aの 先端側が、上記ウォームホイール 4の軸方向に変位する事はなレ、。この為、上述の様 に、上記嚙合状態を動力の伝達方向に拘らず一定にできて、上記ステアリングホイ ール 1の回転方向により上記操舵力が変化する事を防止できる。
[0036] 尚、前記保持円筒部 26の内径側で前記ガイドスリーブ 19が径方向に変位するの を阻止する為の〇リング 25の設置位置は、図示の部分に限定されなレ、。例えば、前 記延長部 27の外周面と上記保持円筒部 26の内周面との間に、〇リング等の第二の 弾性部材を設ける事もできる。
又、 1対のガイド平面同士の間隔を、先端側軸受の外径と厳密に一致させる為には 、必ずしも、ガイドスリーブを 1対のスリーブ素子を組み合わせる事で造る必要はない 。例えば、ガイドスリーブ全体を略円筒状に形成すると共に、円周方向 1個所に軸方 向全長に亙りスリットを形成して、当該ガイドスリーブの内径(1対のガイド平面同士の 間隔)を調節可能にする事もできる。この調節量は極く僅かで済む為、この調節に基 づいて、上記両ガイド平面の平行度が実質的に損なわれる事はない。
[0037] 図 5〜10は、本発明の実施の形態の他の 1例を示している。尚、本例の電動式パヮ 一ステアリング装置の特徴は、電動モータ 5の回転力をステアリングシャフト 2 (図 11 参照)等の回転軸に伝達する為のウォーム減速機 13を構成する、ウォーム歯 6aとゥ オームホイール 4との嚙合部のバックラッシュを解消できる構造で、し力、も、この嚙合 部の嚙合状態を、上記ウォーム減速機 13部分での動力の伝達方向に拘らず一定に できる構造にある。その他、電動式パワーステアリング装置全体の構造及び作用に 就いては、前述の特許文献 2に記載された従来構造と同様であるから、この従来構 造と同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特 徴部分を中心に説明する。
[0038] ウォーム 14は、ウォーム軸 7aの軸方向中間部にウォーム歯 6aを設けて成る。そして 、このウォーム歯 6aを上記ウォームホイール 4と嚙合させた状態で、上記ウォーム軸 7 aの軸方向両端部を、それぞれが単列深溝型の玉軸受である 1対の転がり軸受 8a、 8 により、ハウジング 3aに対し回転自在に支持している。これら両転がり軸受 8a、 8b のうち、上記ウォーム軸 7aの基端部(図 5の右端部)を上記ハウジング 3aに対し回転 自在に支持する為の転がり軸受 8bは、内輪 15bを上記ウォーム軸 7aの基端部に締り 嵌めで外嵌固定し、外輪 16bを上記ハウジング 3aに締り嵌めで内嵌固定している。 単列深溝型の玉軸受である上記転がり軸受 8bは、内部隙間がゼロであってもモーメ ント剛性は低い為、この転がり軸受 8bにより上記ウォーム軸 7aの基端部は、上記ハウ ジング 3aに対し、径方向の変位を阻止した状態で、若干の揺動変位を可能に支持さ れる。上記嚙合部のバックラッシュを解消する為に必要とされる、上記ウォーム軸 7a の揺動変位量は僅少である為、上記転がり軸受 8bに無理な力が加わる事は殆どな レ、。この様にして上記ハウジング 3a内に回転自在に支持した、上記ウォーム軸 7aの 基端部と、電動モータ 5の出力軸 17の先端部とは、カップリング 18により回転力の伝 達を自在に係合させて、上記ウォーム軸 7aを両方向に回転駆動自在としてレ、る。
[0039] 一方、上記ウォーム軸 7aの先端部は、上記転がり軸受 8aと、ガイドスリーブ 120とを 介して、上記ハウジング 3aに対し、回転及び上記ウォームホイール 4に対する若干の 遠近動(図 5〜8の上下方向の変位)を可能に、但し、このウォームホイール 4の軸方 向(図 5〜6の表裏方向、図 7〜8の左右方向)の変位を阻止した状態で支持している
。この為に、上記転がり軸受 8aの内輪 15aを上記ウォーム軸 7aの先端部に締り嵌め で外嵌固定し、外輪 16aを上記ガイドスリーブ 120の内径側に配置している。
[0040] このガイドスリーブ 120は、耐油性を有する滑り易い合成樹脂により全体を円環状と したもので、内周面の径方向反対側 2個所位置に、互いに平行な 1対のガイド平面 1 21、 121 (図 7参照)を設けてレヽる。これら両ガイド平面 121、 121は、それぞれが上 記ウォームホイール 4の中心軸に対し直交する仮想平面(図 5〜6に表された平面と 平行な平面)上に位置する。又、上記両ガイド平面 121、 121同士の間隔 D121は、 先端側軸受である上記転がり軸受 8aの外輪 16aの外径 D16と一致する。これに対し て、上記遠近動方向に関する上記ガイドスリーブ 120の内径 R120は、上記外輪 16a の外径 D16よりも大きく(D121 = D16く R120)している。
[0041] 上記両ガイド平面 121、 121同士の間隔 D121を上記外輪 16aの外径 D16と一致さ せる為に本例の場合には、上記ガイドスリーブ 120を、図 9に示した様に、それぞれ が半円弧形である 1対のスリーブ素子 122a、 122bを組み合わせる事により構成して いる。これら両スリーブ素子 122a、 122bは、互いに鏡面対称形であり、それぞれの 外周面を半円筒面とし、それぞれの内周面を段付略半円筒面としている。上記両ガ イド平面 121、 121は、この内周面のうちの大径部 123の円周方向中間部に形成し ている。又、この内周面のうちの小径部 124の円周方向中央部に、それぞれ係止凹 部 125、 125を形成している。それぞれがこの様な構成を有する、上記両スリーブ素 子 122a、 122bは、互いの円周方向端面同士を対向させた状態に組み合わせて、 上記ガイドスリーブ 120としている。
[0042] この様なガイドスリーブ 120には、図 10に示す様な、第二の弾性部材である板ばね 126を外嵌している。この板ばね 126は、ステンレスのばね鋼板の如き、弾性を有す る金属板を欠円筒状に曲げ形成して成る。又、この金属板の円周方向両端部を、幅 方向中間部に形成されて円周方向端縁に迄達するスリット 127a、 127bによって、そ れぞれ 1対ずつ、合計 4本の弾性腕部 128a、 128bに分割している。そして、これら 各弾性腕部 128a、 128bのうち、円周方向両端の幅方向片側(図 10の手前側)に位 置する 1対の弾性腕部 128a、 128aには、 自由状態で径方向外方に向いた弾力を 付与している。これに対して、円周方向両端の幅方向他側(図 10の奥側)に位置す
る 1対の弾性腕部 128b、 128bには、 自由状態で径方向内方に向いた弾力を付与し ている。
[0043] 又、上記板ばね 126の軸方向一端縁の複数個所(図示の例では直径方向反対側 2個所位置)に、この一端縁から径方向内方に折れ曲がった軸方向係止片 129、 12 9を形成している。更に、 自由状態で径方向内方に向いた弾力を付与された、上記 両弹性腕部 128b、 128bのうち、一方の弾性腕部 128bの先端縁部に、当該弾性腕 部 128bの先端縁カも径方向内方に折れ曲がった、円周方向係止片 130を形成して いる。
[0044] 上述の様なガイドスリーブ 120と板ばね 126とは、上記両ガイドスリーブ素子 122a、 122bのガイド平面 121、 121により前記外輪 16aを径方向反対側力も挟持しつつ、 この外輪 16aの周囲で組み立てる。次いで、上記ガイドスリーブ 120のうちで、この外 輪 16aよりも先端側に突出した延長部 131と上記ウォーム軸 7aの先端部との間に、 弾性部材であるコイルばね 132を設ける。このコィノレばね 132は、ばね鋼の如き弾性 を有する 1本の金属製線材を卷回する事により構成したもので、コイル部 133と、 1対 のィ系止咅 B134、 134とを備える。これら两ィ系止咅 B134、 134は、この イノレ咅 133の径 方向に関してほぼ反対側から径方向外方に突出している。但し、上記コイルばね 13 2の自由状態で、上記両係止部 134、 134の位置は、少し円周方向片側(ウォームホ ィール 4力 遠い側)に偏っている。
[0045] この様なコイルばね 132は、押圧スリーブ 135を介して、ガイドスリーブ 120の延長 部 131と上記ウォーム軸 7aの先端部との間に、この先端部を前記ウォームホイール 4 に向け弹性的に押圧する状態で掛け渡している。この為に、上記コイルばね 132の コイル部 133を上記押圧スリーブ 135に外嵌した状態で、この押圧スリーブ 135を上 記ウォーム軸 7aの先端部で上記延長部 131の内径側に位置する部分に外嵌すると 共に、上記両係止部 134、 134を、この延長部 131の径方向反対側 2個所位置に設 けた、前記両係止凹部 125、 125に係止する(図 8参照)。この際、上記両係止部 13 4、 134を、図 9に矢印ひ、 ひで示す様に、前記ウォームホイール 4に近づく方向に弹 性変形させつつ、上記両係止凹部 125、 125に係止する。この結果、上記ウォーム 軸 7aの先端部が上記延長部 131の内径側に、上記ウォームホイール 4に近づく方向
の弾力を付与された状態で、且つ、このウォームホイール 4に対して遠近動する方向 (図 5〜8の上下方向)の変位のみを可能に支持される。言い換えれば、上記ウォー ム軸 7aの先端部は上記延長部 131の内径側に、上記ウォームホイール 4の軸方向( 図 5〜6の表裏方向、図 7〜8の左右方向)の変位を阻止された状態で支持される。
[0046] 上述の様にして、上記各部材 7a、 135、 132、 120、 126を組み合わせたならば、 これら各き 才 7a、 135、 132、 120、 126を、前記ハウジング 3aの一き Wこ設けた、有 底円筒状の保持円筒部 136に、これら各部材 7a、 135、 132、 120、 126のうちの板 ばね 126を構成する前記各弾性腕部 128a、 128bを弾性変形させつつ押し込む。 即ち、これら各弾性腕部 128a、 128bのうちの幅方向片側に位置する 1対の弾性腕 部 128a、 128aを径方向内方に、幅方向他側に位置する 1対の弾性腕部 128b、 12 8bを径方向外方に、それぞれ弾性変形させつつ、上記板ばね 126を上記保持円筒 部 136に、前記ガイドスリーブ 120と共に押し込む。押し込み完了後の状態では、上 記幅方向片側に位置する 1対の弾性腕部 128a、 128aがハウジングの内周面を径方 向外方に、上記幅方向他側に位置する 1対の弾性腕部 128b、 128bがガイドスリー ブの外周面を径方向内方に、それぞれ弾性的に押圧する。この結果、上記保持円 筒部 136の内周面と上記ガイドスリーブ 120の外周面との間には、図 8の矢印 、 β 方向の、突っ張り力が加わる。この突っ張り力の大きさは、上記コイルばね 132の弾 力よりも大きい。そして、この突っ張り力に基づいて、上記ガイドスリーブ 120が上記 保持円筒部 136内に、がたつきなく保持固定される。即ち、前記コイルばね 132の弹 力に拘らず、上記ガイドスリーブ 120が上記保持円筒部 136内で、これらガイドスリー ブ 120及び保持円筒部 136の径方向に変位する事はない。
[0047] 又、上記押し込み完了後の状態で、上記ガイドスリーブ 120の内周面に設けた、前 記 1対のガイド平面 121、 121を、上記ウォームホイール 4の中心軸に対し直交する 仮想平面上に位置させる。そして、上記ウォーム軸 7aの先端部を支持する前記転が り軸受 8aの外輪 16aを、前記コイルばね 132の弾力に基づき、上記両ガイド平面 12 1、 121に沿って、上記ウォームホイール 4に向けて弾性的に押圧した状態とする。又 、前記各軸方向係止片 129、 129を、上記ガイドスリーブ 120の軸方向一端面と上記 保持円筒部 136の奥面との間で挟持する。そして、上記板ばね 126が軸方向にずれ
動く事を阻止する。更に、前記円周方向係止片 130を、上記ガイドスリーブ 120を構 成する、前記両スリーブ素子 122a、 122b同士の不連続部(切れ目)に係合させる事 で、上記板ばね 126が上記ガイドスリーブ 120の周囲で回転する事を阻止する(図 8 参照)。
[0048] 上述の様な構成を有する本例の電動式パワーステアリング装置によれば、前記電 動モータ 5の回転力を前記ステアリングシャフト 2に伝達する為のウォーム式減速機 1 3を構成する上記ウォーム歯 6aと上記ウォームホイール 4との嚙合状態を、動力の伝 達方向に拘らず一定にできる。そして、進路変更時に、運転者力 Sステアリングホイ一 ノレ 1 (図 11参照)に加える必要がある操舵力力 このステアリングホイール 1の回転方 向により変化する事を抑えられる。
[0049] 即ち、本例の電動式パワーステアリング装置の場合には、上記ウォーム軸 7aの先 端部を支持する前記転がり軸受 8aの外輪 16aが、上記両ガイド平面 121、 121に案 内されて、上記ウォームホイール 4の中心軸に対し直交する仮想平面上でのみ変位 可能である。言い換えれば、上記転がり軸受 8aにより支持された、上記ウォーム軸 7a の先端側が、上記ウォームホイール 4の軸方向に変位する事はない。この為、上述の 様に、上記嚙合状態を動力の伝達方向に拘らず一定にできて、上記ステアリングホ ィール 1の回転方向により上記操舵力が変化する事を防止できる。
[0050] 尚、 1対のガイド平面同士の間隔を、先端側軸受の外径と厳密に一致させる為には 、必ずしも、ガイドスリーブを 1対のスリーブ素子を組み合わせる事で造る必要はない 。例えば、ガイドスリーブ全体を略円筒状に形成すると共に、円周方向 1個所に軸方 向全長に亙りスリットを形成して、当該ガイドスリーブの内径(1対のガイド平面同士の 間隔)を調節可能にする事もできる。この調節量は極く僅かで済む為、この調節に基 づいて、上記両ガイド平面の平行度が実質的に損なわれる事はない。尚、この様な、 円周方向 1個所位置にスリットを設けた略円筒状 (欠円筒状)のガイドスリーブを使用 する場合には、当該ガイドスリーブと組み合わせる板ばねの軸方向端縁の円周方向 等間隔 3個所位置に、軸方向係止片を設ける事もできる。
[0051] 本出願は、 2006年 12月 1日出願の日本特許出願(特願 2006— 326016)、 2006年 12 月 13日出願の日本特許出願(特願 2006-335238)に基づくものであり、その内容はこ
こに参照として取り込まれる。
Claims
[1] 固定の部分に支持されて回転する事のないハウジングと、
このハウジングに対し回転自在に設けられて、ステアリングホイールの操作によって 回転させられ、回転に伴って操舵輪に舵角を付与する回転軸と、
上記ハウジングの内部でこの回転軸の一部に、この回転軸と同心に支持されて、こ の回転軸と共に回転するウォームホイールと、
ウォーム軸の軸方向中間部にウォーム歯を設けて成り、このウォーム歯を上記ゥォ ームホイールと嚙合させた状態で、上記ウォーム軸の軸方向両端部をそれぞれ軸受 により上記ハウジングに対し回転自在に支持されたウォームと、
上記ウォーム軸の基端部と出力軸の先端部とを回転力の伝達を自在に係合させた 電動モータと
を備え、
このウォーム軸の先端部と上記ハウジングの内面との間に設けた弾性部材により、 このウォーム歯を上記ウォームホイールに向け押圧し、
上記ウォーム軸の先端部を上記ハウジングに対し回転自在に支持する為の先端側 軸受の外周面とこのハウジングの内面との間に、互いに平行でこの先端側軸受の外 径と実質的に一致する間隔で配置され、それぞれが上記ウォームホイールの中心軸 に対し直交する仮想平面上に位置する 1対のガイド平面を内周面に設けたガイドスリ ーブを設け、
これら両ガイド平面同士の間に上記先端側軸受を挟持する事で、この先端側軸受 を、上記ウォームホイールの中心軸に対し直交する仮想平面上でのみ変位可能とし た事を特徴とする電動式パワーステアリング装置。
[2] ガイドスリーブに、 1対のガイド平面よりもウォーム歯と反対側部分に迄延長した延 長部が設けられており、
ウォーム軸の先端部のうちで先端側軸受よりもウォーム歯と反対側に突出した部分 に押圧スリーブが外嵌されており、この押圧スリーブの外周面と上記延長部との間に 、ウォーム歯をウォームホイールに向け押圧する為の弾性部材を設けている、請求項 1に記載した電動式パワーステアリング装置。
[3] ウォーム歯をウォームホイールに向け押圧する為の弾性部材カ 弾性を有する金 属製線材を卷回する事により造られて、コイル部と、このコイル部の反対側から径方 向外方に突出した 1対の係止部とを備えたコイルばねであり、
上記コイル部を押圧スリーブに外嵌すると共に、これら両係止部を、ガイドスリーブ の延長部に形成した 1対の係止凹部に係止している、請求項 2に記載した電動式パ ワーステアリング装置。
[4] ガイドスリーブが、ウォームホイールの中心軸に対し直交する仮想平面を境に 2分 割されている、請求項 2に記載した電動式パワーステアリング装置。
[5] ガイドスリーブの外周面とハウジングの内周面との間に第二の弾性部材を設けてい る、請求項 1に記載した電動式パワーステアリング装置。
[6] 第二の弾性部材が Oリングであり、この〇リングが、ガイドスリーブの外周面に設けら れた係止凹溝内に設置されている、請求項 5に記載した電動式パワーステアリング装 置。
[7] 固定の部分に支持されて回転する事のないハウジングと、
このハウジングに対し回転自在に設けられて、ステアリングホイールの操作によって 回転させられ、回転に伴って操舵輪に舵角を付与する回転軸と、
上記ハウジングの内部でこの回転軸の一部に、この回転軸と同心に支持されて、こ の回転軸と共に回転するウォームホイールと、
ウォーム軸の軸方向中間部にウォーム歯を設けて成り、このウォーム歯を上記ゥォ ームホイールと嚙合させた状態で、上記ウォーム軸の軸方向両端部をそれぞれ軸受 により上記ハウジングに対し回転自在に支持されたウォームと、
上記ウォーム軸の基端部と出力軸の先端部とを回転力の伝達を自在に係合させた 電動モータと
を備え、
このウォーム軸の先端部と上記ハウジングの内面との間に設けた弾性部材により、 このウォーム歯を上記ウォームホイールに向け押圧し、
上記ウォーム軸の先端部を上記ハウジングに対し回転自在に支持する為の先端側 軸受の外周面とこのハウジングの内面との間に、互いに平行でこの先端側軸受の外
径と実質的に一致する間隔で配置され、それぞれが上記ウォームホイールの中心軸 に対し直交する仮想平面上に位置する 1対のガイド平面を内周面に設けたガイドスリ ーブを設け、
これら両ガイド平面同士の間に上記先端側軸受を挟持する事で、この先端側軸受 を、上記ウォームホイールの中心軸に対し直交する仮想平面上でのみ変位可能とす ると共に、上記ガイドスリーブの外周面とハウジングの内周面との間に、弾性を有する 金属板製の第二の弾性部材を設けた事を特徴とする電動式パワーステアリング装置
[8] 第二の弾性部材が、金属板を欠円筒状に曲げ形成すると共に、この金属板の円周 方向の少なくとも一端部が、幅方向中間部に形成されて円周方向端縁に迄達するス リットによって 1対の弾性腕部に分割された板ばねであり、
これら両弹性腕部のうちの一方の弾性腕部がガイドスリーブの外周面を径方向内 方に、他方の弾性腕部がハウジングの内周面を径方向外方に、それぞれ弾性的に 押圧している、請求項 7に記載した電動式パワーステアリング装置。
[9] 第二の弾性部材の軸方向一端縁力 径方向内方に折れ曲がった少なくとも 1個の 軸方向係止片を、ガイドスリーブの軸方向一端面とハウジングの内面との間で挟持す る事により、上記第二の弾性部材が軸方向にずれ動く事を阻止している、請求項 8に 記載した電動式パワーステアリング装置。
[10] ガイドスリーブのうちで少なくとも円周方向の 1個所に切れ目が設けられており、 第二の弾性部材に設けた複数個の弾性腕部のうちの何れかの弾性腕部の先端縁 力 径方向内方に折れ曲がった円周方向係止片を上記切れ目に係合させる事によ り、上記第二の弾性部材が上記ガイドスリーブの周囲で回転する事を阻止している、 請求項 8に記載した電動式パワーステアリング装置。
[11] ガイドスリーブに、 1対のガイド平面よりもウォーム歯と反対側部分に迄延長した延 長部が設けられており、
ウォーム軸の先端部のうちで先端側軸受よりもウォーム歯と反対側に突出した部分 に押圧スリーブが外嵌されており、
この押圧スリーブの外周面と上記延長部との間に、ウォーム歯をウォームホイール
に向け押圧する為の弾性部材を設けている、請求項 7に記載した電動式パワーステ ァリング装置。
[12] ウォーム歯をウォームホイールに向け押圧する為の弾性部材カ 弾性を有する金 属製線材を卷回する事により造られて、コイル部と、このコイル部の反対側から径方 向外方に突出した 1対の係止部とを備えたコイルばねであり、
上記コイル部を押圧スリーブに外嵌すると共に、これら両係止部を、ガイドスリーブ の延長部に形成した 1対の係止凹部に係止している、請求項 11に記載した電動式 パワーステアリング装置。
[13] ガイドスリーブが、ウォームホイールの中心軸に対し直交する仮想平面を境に 2分 割されている、請求項 7に記載した電動式パワーステアリング装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-326016 | 2006-12-01 | ||
JP2006326016A JP2008137508A (ja) | 2006-12-01 | 2006-12-01 | 電動式パワーステアリング装置 |
JP2006335238A JP2008143434A (ja) | 2006-12-13 | 2006-12-13 | 電動式パワーステアリング装置 |
JP2006-335238 | 2006-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008068912A1 true WO2008068912A1 (ja) | 2008-06-12 |
Family
ID=39491827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/058558 WO2008068912A1 (ja) | 2006-12-01 | 2007-04-19 | 電動式パワーステアリング装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008068912A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113825690A (zh) * | 2019-05-15 | 2021-12-21 | 株式会社万都 | 线控转向型转向设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001108025A (ja) * | 1999-10-08 | 2001-04-20 | Koyo Seiko Co Ltd | 電動式舵取装置 |
JP2002067992A (ja) * | 2000-09-04 | 2002-03-08 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
WO2003047948A1 (fr) * | 2001-12-03 | 2003-06-12 | Nsk Ltd. | Dispositif de direction electrique |
JP2004338450A (ja) * | 2003-05-13 | 2004-12-02 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2005042913A (ja) * | 2003-06-25 | 2005-02-17 | Nsk Ltd | ウォーム減速機及び電動式パワーステアリング装置 |
JP2005104366A (ja) * | 2003-09-30 | 2005-04-21 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2006111133A (ja) * | 2004-10-14 | 2006-04-27 | Favess Co Ltd | 電動パワーステアリング装置 |
-
2007
- 2007-04-19 WO PCT/JP2007/058558 patent/WO2008068912A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001108025A (ja) * | 1999-10-08 | 2001-04-20 | Koyo Seiko Co Ltd | 電動式舵取装置 |
JP2002067992A (ja) * | 2000-09-04 | 2002-03-08 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
WO2003047948A1 (fr) * | 2001-12-03 | 2003-06-12 | Nsk Ltd. | Dispositif de direction electrique |
JP2004338450A (ja) * | 2003-05-13 | 2004-12-02 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2005042913A (ja) * | 2003-06-25 | 2005-02-17 | Nsk Ltd | ウォーム減速機及び電動式パワーステアリング装置 |
JP2005104366A (ja) * | 2003-09-30 | 2005-04-21 | Koyo Seiko Co Ltd | 電動パワーステアリング装置 |
JP2006111133A (ja) * | 2004-10-14 | 2006-04-27 | Favess Co Ltd | 電動パワーステアリング装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113825690A (zh) * | 2019-05-15 | 2021-12-21 | 株式会社万都 | 线控转向型转向设备 |
CN113825690B (zh) * | 2019-05-15 | 2024-05-14 | 汉拿万都株式会社 | 线控转向型转向设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7188700B2 (en) | Electric power steering apparatus | |
EP1468897A2 (en) | Worm gear mechanism and electric power steering apparatus equipped with the worm gear mechanism | |
WO2016038927A1 (ja) | 電動式パワーステアリング装置 | |
JP2010095006A (ja) | 電動式パワーステアリング装置 | |
JP2008143434A (ja) | 電動式パワーステアリング装置 | |
JP4888281B2 (ja) | 電動式パワーステアリング装置 | |
JP2002067992A (ja) | 電動パワーステアリング装置 | |
JP5136286B2 (ja) | 電動式パワーステアリング装置 | |
JP2008173993A (ja) | 電動式パワーステアリング装置 | |
JP3658683B2 (ja) | 電動式舵取装置 | |
CN112789212A (zh) | 转向传动机构和用于机动车的转向系统 | |
JP7404688B2 (ja) | ウォーム減速機および電動アシスト装置 | |
WO2021241135A1 (ja) | ウォーム減速機および電動アシスト装置 | |
JP2008174024A (ja) | 電動式パワーステアリング装置 | |
JP7225877B2 (ja) | ウォーム減速機および電動アシスト装置 | |
EP3926190B1 (en) | Worm reducer and electric assist device | |
JP3765276B2 (ja) | 電動式パワーステアリング装置 | |
WO2020009074A1 (ja) | ステアリングホイールの反力付与装置 | |
WO2008068912A1 (ja) | 電動式パワーステアリング装置 | |
JP5509795B2 (ja) | 電動式パワーステアリング装置 | |
JP7322417B2 (ja) | ウォーム減速機 | |
JP5309670B2 (ja) | 電動式パワーステアリング装置 | |
JP2008149956A (ja) | 電動パワーステアリング装置 | |
JP5018361B2 (ja) | 電動式パワーステアリング装置 | |
JP2008137508A (ja) | 電動式パワーステアリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07741994 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07741994 Country of ref document: EP Kind code of ref document: A1 |