WO2008066018A1 - Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them - Google Patents

Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them Download PDF

Info

Publication number
WO2008066018A1
WO2008066018A1 PCT/JP2007/072813 JP2007072813W WO2008066018A1 WO 2008066018 A1 WO2008066018 A1 WO 2008066018A1 JP 2007072813 W JP2007072813 W JP 2007072813W WO 2008066018 A1 WO2008066018 A1 WO 2008066018A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
alcohol
activity
dna
seq
Prior art date
Application number
PCT/JP2007/072813
Other languages
English (en)
French (fr)
Inventor
Shigeru Kawano
Takeru Ishige
Keita Iguchi
Tozo Nishiyama
Yoshihiko Yasohara
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP07832538.8A priority Critical patent/EP2096165B1/en
Priority to JP2008546989A priority patent/JP5308163B2/ja
Priority to US12/516,388 priority patent/US8129163B2/en
Publication of WO2008066018A1 publication Critical patent/WO2008066018A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • Novel alcohol dehydrogenase its gene, vector, transformant, and method for producing optically active alcohol using them
  • the present invention relates to a novel alcohol dehydrogenase, its gene, and a vector containing the gene
  • the present invention also relates to a transformant transformed with the vector, and a method for producing an optically active alcohol using them.
  • Alcohol dehydrogenase that acts on secondary alcohol compounds such as 2-butanol is used to synthesize optically active alcohol compounds by steric reduction of carbonyl compounds or to stereoselectively select racemic secondary alcohol compounds. This enzyme is useful for the synthesis of optically active secondary alcohol compounds by oxidation.
  • NAD + nicotinamide adenine dinucleotide
  • Enzymes derived from 5 strains, Candida iparai3silosis IF01396 strain are known.
  • ADH1 an enzyme derived from Gordonia sp. TY5 strain
  • ADH3 an enzyme derived from the same strain
  • the optimal temperature during oxidation of 2-propanol is 60 ° C
  • the optimal pH is pH 10, (Patent Document 1).
  • an enzyme derived from Candid n_ar3 ⁇ 4psilosis IF01396 strain Is an enzyme with a molecular weight of 40,000 in SDS polyacrylamide electrophoresis.
  • the stable pH range of the enzyme is ⁇ 8 ⁇ 0 to ⁇ 10 ⁇ 0, and the temperature range for action during (S) -2-butanol oxidation is 25 ° C. ⁇ 55 ° C.
  • this enzyme is not inhibited by 2-mercaptoethanol and dithiothreitol, which inhibits enzyme activity S, and ethylenediamine 4 acetic acid! /, Has a characteristic (Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-102511
  • Patent Document 2 Japanese Patent No. 3574682
  • the present invention provides a novel alcohol dehydrogenase, its gene, a vector containing the gene, a transformant transformed with the vector, and a method for producing optically active alcohols using them. Is an issue. Means for solving the problem
  • the present invention has one or more of the following features.
  • One feature of the present invention is a polypeptide having the physicochemical properties shown in the following (1) to (6). .
  • NAD + is used as a coenzyme to oxidize alcohol to produce ketone or aldehyde. In addition, it reduces ketones or aldehydes using NADH as a coenzyme to produce alcohol.
  • An aliphatic alcohol containing an aromatic substitution is used as a substrate for the oxidation reaction. It preferentially oxidizes S form compared to R form of 2-butanol. Use ketones and aldehydes as substrates for the reduction reaction. The Acts on acetophenone and reduces it to S form 1 phenylethanol.
  • Reduced SDS polyacrylamide electrophoresis shows a molecular weight of about 39,000.
  • the stable pH range is in the range of ⁇ 5 ⁇ 5 to 7.5 ⁇ 5.
  • Enzyme activity is inhibited by ethylenediamine, acetic acid, o phenanthrin, mercury chloride, copper sulfate and zinc sulfate, but not by 2-mercaptoethanol or dithiothreitol.
  • polypeptide according to any one of the following (a) to (c).
  • amino acid sequence shown in SEQ ID NO: 1 in the sequence listing consists of amino acid sequences in which one or more amino acids are deleted, inserted, substituted and / or added, and acts on the acetophenone.
  • Another feature of the present invention is DNA encoding the polypeptide.
  • Another feature of the present invention is the following DNA (A) or (B), a vector containing the DNA, and a transformant obtained by transforming a host cell with the vector:
  • (D) In the base sequence shown in SEQ ID NO: 2 in the sequence listing, it consists of a base sequence in which one or more bases are missing, inserted, substituted, and / or added, and acts on acetophenone, so DNA encoding a polypeptide having an activity of reducing to phenylethanol.
  • Another feature of the present invention is that the transformant into which the polypeptide of the present invention or the DNA of the present invention is introduced and the processed product thereof are allowed to act on a compound having a carbonyl group.
  • This is a method for producing an alcohol, particularly an optically active alcohol.
  • the present invention provides a novel alcohol dehydrogenase, its gene, a vector containing the gene, a transformant transformed with the vector, and a method for producing optically active alcohols using them.
  • FIG. 1 shows the construction method and structure of the recombination vectors pNCM, pNCMG and pNCMFT.
  • polypeptide isolated by the method described later in the present invention is a polypeptide having the following physicochemical properties (1) to (6).
  • NAD + is used as a coenzyme to oxidize alcohol to produce ketone or aldehyde. In addition, it reduces ketones or aldehydes using NADH as a coenzyme to produce alcohol.
  • Reduced SDS polyacrylamide electrophoresis shows a molecular weight of about 39,000.
  • the stable pH range is in the range of ⁇ 5 ⁇ 5 to 7.5 ⁇ 5.
  • the optimum operating temperature is 45 ° C to 70 ° C.
  • Enzyme activity is inhibited by ethylenediamine tetraacetic acid, o-phenanthrin, mercury chloride, copper sulfate, and zinc sulfate.
  • the polypeptide of the present invention has the ability to oxidize a secondary alcohol compound and convert it to a ketone compound in the presence of NAD + .
  • the polypeptide of the present invention has the ability to oxidize primary alcohol compounds and convert them into aldehyde compounds.
  • the ability to oxidize alcohol compounds can be evaluated, for example, by the following method.
  • the NADH content by reacting 50 mM Tris-HCl buffer ( ⁇ 9.0) with NAD + 2.5 mM, a reaction solution containing 50 mM alcohol compound to be evaluated for oxidation activity and the polypeptide of the present invention at 30 ° C.
  • the absorbance increases, it can be determined that the peptide of the present invention has the ability to oxidize the alcohol compound to be evaluated. It can be said that the faster the rate of increase in absorbance, the higher the ability to oxidize the alcohol compound to be evaluated.
  • the oxidation ability of the polypeptide can be quantified, and the oxidation activity 1U was defined as the amount of enzyme that catalyzes the production of 1 mol NADH per minute.
  • the polypeptide of the present invention has an ability to reduce a ketone compound or an aldehyde compound and convert it into an alcohol compound in the presence of NADH.
  • Reaction solution containing NADHO. 25 mM, ketone compound or aldehyde compound 50 mM to be evaluated for reducing activity in lOOmM potassium phosphate buffer (pH 6.5) containing 0.3% (v / v) dimethyl sulfoxide and the polypeptide of the present invention It is possible to easily evaluate the progress of the reduction reaction by measuring the decrease in absorbance at a wavelength of 340 nm accompanying the decrease in the amount of NADH. When the absorbance decreases, it can be determined that the peptide of the present invention has the ability to reduce the ketone compound or aldehyde compound to be evaluated.
  • the reducing ability of the polypeptide can also be quantified, and the reducing activity 1U is defined as the amount of enzyme that catalyzes the consumption of lrnol NADH per minute.
  • the polypeptide of the present invention can use an aliphatic alcohol containing an aromatic substitution as a substrate for an oxidation reaction. This can be evaluated by the method described in [Method for evaluating the ability to oxidize an alcohol compound] described in the above (1) action.
  • the polypeptide of the present invention preferentially oxidizes the S form compared to the R form of 2-butanol, which is more than the oxidation ability of (R) -2-butanol. It means that it has higher oxidation capacity for 2-butanol. This is because the oxidation ability for (R) -2-butanol and (S) -2-butanol is different for each of the methods described in [Method for evaluating oxidation ability for alcohol compounds] described in (1) above. It can be easily judged by evaluating the above.
  • the polypeptide of the present invention can use ketones and aldehydes as substrates for the reduction reaction. This can be evaluated by the method described in [Method of evaluating reducing ability for ketone compound or aldehyde compound] described in the above (1) action.
  • polypeptide of the present invention has the ability to act on acetophenone and reduce it to S-form 1-phenylethanol. This can be confirmed, for example, by the following method.
  • lOOmM phosphate buffer (pH 7) containing acetophenone, NADH and the polypeptide of the present invention Add tide and stir at 30 ° C for reaction. After the reaction, extraction with an organic solvent such as ethyl acetate and analysis under the following gas chromatography conditions can confirm the production of 1-phenylethanol, its configuration and optical purity.
  • Carrier gas He, 130kPa
  • the molecular weight in SDS polyacrylamide electrophoresis is about 39,000.
  • the molecular weight measurement using this reduced SDS polyacrylamide electrophoresis can be carried out by a known method, for example, the method described in “Sebiki 2 Protein Separation Analysis Method of Biochemical Experiments” (published by Kagaku Dojinsha).
  • the molecular weight can be calculated from the difference in mobility from the molecular weight standard protein.
  • the stable range of pH of the polypeptide of the present invention is in the range of pH 5.5 to 7.5.
  • This stable pH range can be measured as follows, for example. After treating the polypeptide for 30 minutes at 30 ° C in Britton-Robinson buffer with different pH, the oxidation activity against (S) -2-butanol was measured by the method described in [Method for evaluating oxidation ability for alcohol compounds]. taking measurement. The pH range where the residual activity value after the treatment was 80% or more of the activity value before the treatment was defined as the stable pH range.
  • the optimum temperature for the action of the enzyme activity of the polypeptide of the present invention is 45 ° C to 70 ° C.
  • the measurement of the optimum temperature for use can be performed, for example, as follows.
  • the oxidizing temperature for (S) 2-butanol is measured by changing the measurement temperature.
  • the activity value at each temperature is expressed as relative activity, assuming that the activity value at the temperature with the highest activity is 100%, the temperature range where the relative activity value force S is 60% or more is the optimum temperature. It was.
  • the enzyme activity of the polypeptide of the present invention is inhibited by ethylenediamine tetraacetic acid, ophenantorin, mercury chloride, copper sulfate and zinc sulfate, but not inhibited by 2-mercaptoethanol or dithiothreitol.
  • Whether a compound inhibits the enzyme activity of a polypeptide can be evaluated by the following method, for example. After treating the polypeptide in various compounds at ImM concentration for 30 minutes at 30 ° C, the oxidation activity against (S) -2-butanol is measured by the method described in [Method for evaluating oxidation ability against alcohol compound] above. .
  • the compound used for the treatment inhibits the enzyme activity of the polypeptide. Further, when the residual activity value after the treatment shows a value of 90% or more of the activity value before the treatment, it can be evaluated that the compound used for the treatment does not inhibit the enzyme activity of the polypeptide.
  • the polypeptide of the present invention can be selected from polypeptides having the ability to preferentially oxidize the S form compared to the R form of 2-butanol.
  • a polypeptide having an activity of reducing a compound having a carbonyl group to produce an alcohol preferably a polypeptide having an activity of asymmetrically reducing an asymmetric ketone to produce an optically active alcohol is also preferred.
  • Such a polypeptide can be isolated from a living organism such as a microorganism having the activity.
  • the enzyme can be found from microorganisms by the following method, for example. Microorganisms are cultured in an appropriate medium, and after harvesting, reaction is performed with acetophenone in a buffer solution in the presence of nutrients such as glucose. After the reaction, extraction with a solvent or the like is performed, and analysis is performed under the conditions described in [Analysis Conditions by Gas Chromatography (1)] to produce 1 phenylethanol. You can confirm.
  • a medium for culturing a microorganism a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like can be used as long as the microorganism grows. Culturing can be performed, for example, by shaking or aeration at a temperature of 25 ° C. to 37 ° C. and pH 4-8.
  • Isolation of the polypeptide from the microorganism that is the source of the polypeptide of the present invention can be carried out by appropriately combining known protein purification methods. For example, it can be implemented as follows. First, the microorganism is cultured in an appropriate medium, and the cells are collected from the culture solution by centrifugation or filtration. The obtained cells are crushed by an ultrasonic crusher or a physical method using glass beads and the like, and the cell residue is removed by centrifugation to obtain a cell-free extract.
  • the polypeptide of the present invention is isolated from the cell-free extract by using a technique such as ultrafiltration alone or in combination.
  • origin of the polypeptide of the present invention is not limited.
  • Candida maltosa (Candida maltosa), more preferably Candida nmlm ⁇ a IF01977 strain.
  • the microorganism can be obtained from Biological Genetic Resource Department (NBRC: T 292-0818 Kisarazu Kazusa Kamasa 2_5-8, Chiba Prefecture), National Institute of Advanced Industrial Science and Technology Biotechnology Headquarters.
  • polypeptide of the present invention examples include the following polypeptides (a) to (c).
  • the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing consists of amino acid sequences in which one or more amino acids are deleted, inserted, substituted and / or added, and acts on the acetophenone.
  • a polypeptide having an activity to reduce S form 1 phenylethanol (c) an amino acid sequence having an amino acid sequence of 85% or more of the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing, and having an activity of reducing to S-form 1 phenylethanol by acting on acetophenone. Having a polypeptide.
  • amino acid sequence of the polypeptide of the present invention examples include the amino acid sequence IJ shown in SEQ ID NO: 1 in the sequence listing encoded by the base sequence shown in SEQ ID NO: 2 in the sequence listing.
  • a polypeptide consisting of an amino acid sequence in which one or more amino acids have been deleted, inserted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing is Curent Protocols in Molecular Biology (John Wiley and Sons, Inc., 1989), etc., as long as it has an activity to act on acetophenone and reduce it to 1-phenyl ethanol in the S form. Is included.
  • the place where amino acids are substituted, inserted, deleted and / or added is not particularly limited! /, But it is preferable to avoid highly conserved regions. Good.
  • the highly conserved region represents a position where amino acids are matched between the plurality of sequences when the amino acid sequences are optimally aligned and compared for a plurality of enzymes having different origins. The highly conserved region can be confirmed by comparing the amino acid sequence shown in SEQ ID NO: 1 with the amino acid sequence of a known microorganism-derived alcohol dehydrogenase using a tool such as GENETYX. .
  • amino acid sequence modified by substitution, insertion, deletion and / or addition may include only one type (for example, substitution) of modification, or two or more modifications ( For example, it may include substitution and insertion).
  • amino acid to be substituted is an amino acid (homologous amino acid) having similar properties to the amino acid before substitution.
  • amino acids in the same group of the following groups are regarded as homologous amino acids.
  • the "plural amino acids" described above are, for example, 50, preferably 30, more preferably 15, more preferably 10, 5, 4, 3 or Means 2 or fewer amino acids.
  • polypeptide having a sequence identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing has the activity of acting on acetophenone to reduce it to S-form 1-phenylethanol, this is also the case.
  • a polypeptide having 85% or more sequence identity with the amino acid sequence of SEQ ID NO: 1 in the sequence listing is a force contained in the polypeptide of the present invention.
  • the sequence identity is preferably 90% or more, more preferably 95% or more. More preferably 98% or more is more preferable and 99% or more is more preferable.
  • sequence identity of the amino acid sequences is determined by comparing the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing with the evaluated amino acid sequence and the number of positions where the amino acid matches in both sequences. Divided by the number of mino acids and then multiplied by 100.
  • An additional amino acid sequence can be bound to the amino acid sequence set forth in SEQ ID NO: 1 as long as it has an activity of acting on acetophenone to reduce it to S-phenylethanol.
  • tag sequences such as histidine tags and HA tags can be added.
  • it can be a fusion protein with another protein.
  • it may be a peptide fragment as long as it has an activity to act on acetophenone and reduce it to S-phenylethanol.
  • polypeptide having a sequence identity of 85% or more with the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing has an activity of acting on acetophenone and reducing it to S-form 1-phenylethanol, This is also included in the polypeptide of the present invention.
  • the DNA encoding the polypeptide of the present invention may be any non-translated region as long as it can express the enzyme in host cells introduced according to the method described below. May contain areas. If the enzyme can be obtained, such DNA can be obtained by a person skilled in the art from the organism that is the source of the enzyme by a known method. For example, it can be obtained by the method shown below.
  • polypeptide of the present invention isolated by the method described in "I. Isolation of the polypeptide of the present invention I" was digested with an appropriate endopeptidase, and the resulting peptide fragment was Sort by reverse-phase HPLC, and determine part or all of the amino acid sequence of these peptide fragments by, for example, ABI492 protein sequencer (Applied Biosystems).
  • a PCR (Polymerase Chain Reaction) primer for amplifying a part of DNA encoding the polypeptide is synthesized.
  • chromosomal DNA of the microorganism that is the origin of the polypeptide is prepared by a conventional DNA isolation method, for example, the method of Visser et al. (Appl. Microbiol. Biotechnol., 53, 415 (2000)).
  • PCR is performed using the PCR primers described above, a part of the DNA encoding the polypeptide is amplified, and the base sequence is determined.
  • the nucleotide sequence can be determined using, for example, Applied Biosystems 3130x1 Genetic Analyzer (Applied Systems).
  • the entire sequence can be determined by, for example, the inverse PCR method (Nucl. Acids Res., 16, 8186 (1988)). I can decide IJ.
  • Examples of the DNA encoding the polypeptide of the present invention thus obtained include DNA containing the base sequence shown in SEQ ID NO: 2 in the self-sequence table.
  • DNA sequence encoding the polypeptide of the present invention examples include, for example,
  • nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing it consists of a nucleotide sequence in which one or more bases are deleted, inserted, substituted and / or added, and acts on the acetophenone to give one S-phenyl.
  • DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the sequence listing is hybridized under stringent conditions and acts on the acetophenone to form one S-phenyl.
  • ⁇ DNA encoding a polypeptide having the activity of reducing to ethanol '' refers to a colony under stringent conditions using a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the Sequence Listing as a probe.
  • DNA obtained by using the 'nobly hybridization method, plaque' hybridization method, or Southern hybridization method, etc., and acting on the acetophenone, 1 Refers to DNA encoding a polypeptide having the activity of reducing to phenylethanol.
  • noisy Pre-Daisyong is Molecular Cloning, A laboratory manual, second edition
  • DNA that hybridizes under stringent conditions means, for example, hybridization at 65 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which colony or plaque-derived DNA is immobilized. After dialysis, filter at 65 ° C using 2x SSC solution (1x SSC solution consists of 150mM sodium chloride, 15mM sodium citrate). DNA obtained by washing You can increase your power S. Preferably washed with 0.5 times SSC solution at 65 ° C, more preferably washed with 0.2 times SSC solution at 65 ° C, more preferably 0.1 times SSC at 65 ° C This DNA can be obtained by washing with a solution.
  • the force describing the hybridization conditions is not particularly limited to these conditions.
  • factors that influence the stringency of the hybridization such as temperature and salt concentration, and those skilled in the art will realize the optimal stringency by selecting these factors as appropriate. It is possible.
  • the DNA that can be hybridized under the above conditions is 70% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95%, with the DNA represented by SEQ ID NO: 2. %, More preferably 98% or more of the DNA. As long as it has the activity of acting on the encoded polypeptide force-phenone and reducing it to S-phenylethanol, it is included in the DNA.
  • sequence identity means that the two DNAs to be compared are optimally aligned and both nucleic acid bases (eg, A, T, C, G, U, or I) are both aligned. The number of matching positions in this sequence is divided by the total number of comparison bases, and this result is expressed by multiplying by 100.
  • Sequence identity can be calculated, for example, using the following sequence analysis tool: GCG Wise onsin Package (Program Manual ror he Wisconsin Package, Version 8, September 1994, enetics Computer Group, 575 Science Drive Medison , Wisconsin, USA 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 IRQ, England), and the ExPASy World Wide Web Geneva University Hospital and University or ueneva, en eva, Switzerland.
  • GCG Wise onsin Package Program Manual ror he Wisconsin Package, Version 8, September 1994, enetics Computer Group, 575 Science Drive Medison , Wisconsin, USA 53711
  • Rice P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 IRQ, England), and the ExPASy World Wide Web Geneva University Hospital and University or ueneva, en eva, Switzerland.
  • base sequence shown in SEQ ID NO: 2 in the sequence listing consists of a base sequence in which one or more bases are deleted, inserted, substituted and / or added, and acts on the acetophenone.
  • ⁇ DNA that encodes a polypeptide having the activity of reducing S-form to 1-phenylethanol '' refers to a known method described in Current Protocols in Molecular Biology (Jonn vViley and sons, Inc., 1989), etc. As long as it encodes a polypeptide having an activity of acting on acetophenone and reducing it to S-phenylethanol.
  • the place where the base is substituted, inserted, deleted and / or added is not particularly limited, but avoids highly conserved regions and does not cause frame shift. Is preferable.
  • the highly conserved region represents a position where the bases match among the plurality of sequences when the base sequences of the plurality of differently derived enzymes are optimally aligned and compared. The highly conserved region can be confirmed by comparing the nucleotide sequence shown in SEQ ID NO: 2 with the nucleotide sequence of a known microorganism-derived alcohol dehydrogenase gene using a tool such as GENETYX.
  • the base sequence modified by substitution, insertion, deletion and / or addition may include only one type of modification (for example, substitution), or two or more types of modification. (For example, substitution and insertion) may be included.
  • the "plurality of bases” described above is, for example, 150, preferably 100, more preferably 50, more preferably 20, 10, 5, 4, 3 Means 2 or less bases.
  • a polypeptide expression vector can be prepared by inserting a DNA encoding the polypeptide of the present invention into an expression vector.
  • the polypeptide of the present invention can be expressed by culturing a transformant obtained by transforming a host organism with this polypeptide expression vector.
  • a polynucleotide encoding the polypeptide of the present invention This method can be used for various purposes, such as introducing the dye into the dyed and colored body. .
  • the expression vector vector used in the above description is that the DDNNAA code within the appropriate host host organism. Yes, it is possible to express popolylipepeptide by expression, so if you can say it, there is no particular limitation. .
  • Examples of such vector vectors include, for example, Puplas Sumid Vector Vector, Fuzzy Vector Vector, Cocos Sum Vector Vector, etc. It is possible to exchange genes with other main host strains, and it is feasible. You can also use the Shachatol Lurubbekkutauta. .
  • the bebacter is like this, for example, in the case of enterococci, for example, usually llaaccUUVV55 ttrr pp plop motor motor, ttrrcc pp promoter motor, ttaacc pp promoter motor, llpppp pp promoter motor, ttuuffBB pp promoter motor, rreeccAA Including control factors such as a promo motor motor and ppLL motor controller, etc., to enable operation with the DDNNAA of the present invention. It can be suitably and suitably used as an onset expression vector vector containing the onset expression unit units linked and linked. .
  • ppUUCCNN1188 (see practical example 55)
  • ppSSTTVV2288 (manufactured by Tatakarakarabaioio)
  • ppUUCCNNTT (WW009944 // 0033661133 publication)) Nano etc. are listed. .
  • control factor used in the specification of the present specification is a functional functional promoter, and Any relevant transfer-related transcription elements (for example, Jen Hahan Sangsa, CCCCAAAATT Bobokuxus, TTAATTAA Bobokuxus, SSPPII part site position, etc.)) It refers to the sequence of salt base groups that you have. .
  • the host protists that are used for the expression of each polypolypeptide are the codecs for each polypolypeptide. Soot
  • Poppoly lipopeptides containing DDNNAA are transformed into polymorphic transformants by the present vector, and the introduced DDNNAAs are coded. If it is a living organism that can express the dodo, it will not be restricted in particular. .
  • Examples of possible micro-organisms that can be used include, for example, the genus (Esscchheeriricchhiiaa), the genus (BBaacciilllluuss) ,, Genus Shishiyu Eudo Domonanas ((££ sseeuuddoommoonnaass)),
  • Bacteria that have developed host vector systems such as the genus Streptococcus and the genus Rhodococcus, such as the genus Rhodococcus. Actinomycetes that have been developed in the field, Saccharomvces genus, Kluweromvces genus, Schizosaccharomyces genus, Zvgosaccharomvces ⁇ , Yarro wi a J ⁇ , Tricospor (Trichospor genus, RhodosiDoridium genus, Pichia genus, and Candida (Can ⁇ genus) host vector systems such as yeast, NeurosDora genus, Aspergillus genus, Examples include molds that have been developed in the genus Cephalosporium and Trichoderma, etc.
  • a polypeptide expression vector containing a DNA encoding the polypeptide of the present invention can be introduced into a host microorganism by a known method.
  • a plasmid pNCM which is a vector of the present invention in which the DNA shown in SEQ ID NO: 2 is introduced into the above-described expression vector pUCNl8 as a polypeptide expression vector, and Escherichia coli is used as a host microorganism
  • E. mli HB101 pNCM
  • Example 8 a transformant in which the vector was introduced into a host cell by operating according to the protocol using E. coH HB101 combi- tive cell (manufactured by Takara Bio Inc.). 8).
  • a transformant in which both the polypeptide of the present invention and the polypeptide having the ability to regenerate reduced coenzyme described below are expressed in the same cell can also be bred. That is, the DNA encoding the polypeptide of the present invention and the DNA encoding the polypeptide having the ability to regenerate reduced coenzyme are incorporated into the same vector and introduced into the host cell. It can also be obtained by incorporating different types of DNA into two different vectors of different incompatibility groups and introducing them into the same host cell.
  • both the DNA shown in SEQ ID NO: 2 and the DNA encoding glucose dehydrase, which is a polypeptide having the ability to regenerate reduced coenzyme, are expressed as described above.
  • Vector introduced into pUCNl 8 Examples include E. coli HB101 (pNCMG) (see Example 8), which is a transformant obtained by introducing pNCMG (see Example 6), which is a replacement vector, into a S. coli HB101 combi- ent cell (Takara Bio). It is done.
  • An appropriate solvent such as lOOmM phosphate buffer ( ⁇ 6 ⁇ 5)
  • a substrate that is a carbonyl compound, such as acetophenone, and a coenzyme such as NADH or NAD + , and the transformant.
  • a substrate that is a carbonyl compound, such as acetophenone, and a coenzyme such as NADH or NAD + , and the transformant.
  • the treated product is, for example, a crude extract, cultured cells, freeze-dried organisms, acetone-dried organisms, disrupted cells, or immobilized products thereof, and the enzyme catalyst for the polypeptide. It means that the activity remains!
  • This reaction is carried out at a temperature of 5 to 80 ° C, preferably 10 to 60 ° C, more preferably 20 to 40 ° C, and the pH of the reaction solution during the reaction is 3 to; 10, preferably 4 to 9, more preferably 5-8.
  • the reaction can be carried out batchwise or continuously. In the case of the batch method, the reaction based on quality (or 0. 01 ⁇ ; 100 0/0 ( w / v), preferably (or 0.5;! ⁇ 70 0/0, more preferably (or 0.5 to 50 0 / It can be added at a charge concentration of 0. In addition, a new substrate may be added in the middle of the reaction.
  • an aqueous solvent may be used, or an aqueous solvent and an organic solvent may be mixed and used.
  • the organic solvent include toluene, ethyl acetate, n-butyl acetate, hexane, isopropanol, diisopropyl ether, methanol, acetone, dimethyl ester.
  • examples include til sulfoxide.
  • the treated product of the transformant means, for example, a crude enzyme solution, cultured cells, freeze-dried cells, acetone-dried cells, or a ground product thereof, or a mixture thereof.
  • they are polypeptides themselves! /, And can be used by immobilizing them by known means as they are.
  • a transformant that produces both the polypeptide of the present invention and a polypeptide having the ability to regenerate reduced coenzyme such as E. coli HB101 (pNCM G) (see Example 8).
  • E. coli HB101 pNCMFT
  • NADH is required as a coenzyme. As described above, it can be carried out even if NADH is added to the reaction system in a necessary amount.
  • an enzyme having the ability to convert the oxidized coenzyme (NAD + ) to reduced NADH (hereinafter referred to as reduced coenzyme regeneration ability) together with its substrate, that is, the coenzyme regeneration system is used as a polypeptide of the present invention.
  • Examples of the enzyme having the ability to regenerate reduced coenzyme include hydrogenase, formate dehydrogenase, alcohol dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose dehydrogenase. Glucose dehydrogenase and formate dehydrogenase are preferably used.
  • Such a reaction can also be carried out by adding a coenzyme regeneration system to the asymmetric reduction reaction system, but has the ability to regenerate the DNA encoding the enzyme of the present invention and the reduced coenzyme.
  • a transformant transformed with both of the DNAs encoding the polypeptide is used as a catalyst, the reaction can be carried out efficiently without preparing a separate enzyme having the ability to regenerate reduced coenzyme and adding it to the reaction system. It can be performed.
  • Such a transformant can be obtained by the method described in the above-mentioned “Regarding Host-Vector Vector and Transformant”.
  • Examples include E. coli HB101 (pNCMG) (see Example 8), which is a transformant obtained by introducing pNCMG (see Example 6), which is a replacement vector, into a S. coli HB101 combi- ent cell (Takara Bio). It is done.
  • the carbonyl compound serving as a substrate thereof there is no limit.
  • the compound having a carbonyl group is an asymmetric ketone, the product becomes a useful optically active alcohol, which is a very useful reaction.
  • the optionally substituted group includes a halogen atom, a hydroxyl group, and an amino group. Or a nitro group etc. are mentioned.
  • R 3 represents a hydrogen atom, a halogen atom, a hydroxyl group, or an optionally substituted alkyl group, preferably a hydrogen atom.
  • the halogen atom mentioned above includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • R 4 represents an optionally substituted alkyl group, an optionally substituted alkenyl group or a substituted! /, Or an alkynyl group
  • the product is the following formula (4):
  • R 4 represents an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group.
  • An alkyl group having 1 to 7 carbon atoms which may be substituted with a halogen atom, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, an amino group, or a nitro group is preferable.
  • a substituent is an alkoxy group
  • a C1-C5 alkoxy group is preferable.
  • an alkoxycarbonyl group an alkoxycarbonyl group having 1 to 5 carbon atoms is preferable, for example, a methoxycarbonino group or an ethoxycarbonyl group.
  • R 4 is a bur group.
  • the method for collecting the alcohol or aldehyde compound from the reaction solution after the reaction is not particularly limited, but it can be used directly from the reaction solution or after separating the cells, etc., and then such as ethyl acetate, toluene, t-butyl methyl ether, hexane, methylene chloride, etc. Extraction with a solvent, dehydration, and purification by distillation, recrystallization, silica gel column chromatography, etc. can easily provide a high-purity alcohol compound.
  • liquid medium consisting of 10 g of meat extract, 10 g of peptone, 5 g of yeast extract, 3 g of sodium chloride, Ade force nor LG-109 (manufactured by NOF) 0 ⁇ lg (all per 1 L) 400ml was prepared and steam sterilized at 120 ° C for 20 minutes.
  • This medium was inoculated with 4 ml of a culture solution of Candida maltosa IFO 1977 strain that had been pre-cultured in the same medium, and cultured at 30 ° C. with shaking for 60 hours.
  • the cells were collected by the above-described culture fluid force centrifugation, and the cells were washed with 0.8% aqueous sodium chloride solution. This cell is suspended in 20 mM phosphate buffer (pH 8.0) containing 5 mM / 3-mercaptoethanol, crushed using a SONIFIER250 ultrasonic crusher (manufactured by BRANSON), and then centrifuged. A cell-free extract was obtained by removing the cell residue.
  • the cell-free extract obtained above was treated at 60 ° C. for 30 minutes, and then the insoluble fraction was removed by centrifugation to obtain a heat-treated cell-free extract.
  • the heat-treated cell-free extract obtained above was added to a DEAE-TOYOPEARL 650 ⁇ (manufactured by Tosohichi Co., Ltd.) column pre-equilibrated with 20 mM phosphate buffer ( ⁇ 6 ⁇ 5) containing 5 mM / 3-mercaptoethanol. 95 ml) to adsorb unnecessary fractions.
  • the active fraction was eluted with a linear gradient of ammonium sulfate (0.66 M force, up to 0.26 M). The active fractions were collected and analyzed overnight in a 20 mM phosphate buffer ( ⁇ 6.5) containing 5 mM / 3-mercaptoethanol. Phenyl—Ammonium sulfate was dissolved in the active fraction obtained by TOYOPEARL column chromatography to a final concentration of 0 ⁇ 92M, and 20mM phosphate buffer containing 0.992M ammonium sulfate and 5mM / 3-mercaptoethanol.
  • this polypeptide will be referred to as RMA.
  • RMA was treated at 30 ° C. for 30 minutes in 50 mM Tris-HCl buffer ( ⁇ 8 ⁇ 0 to ⁇ 9.0) and 50 mM Britton-Robinson buffer ( ⁇ 5 ⁇ 0 to ⁇ 12.0). Thereafter, the oxidation activity against (S) -2-butanol was measured. When the activity value before the treatment was 100%, the oxidation activity after each treatment was calculated as a relative activity and summarized in Table 5. The pH range where the relative activity value was 80% or more was ⁇ 5 ⁇ 5 to ⁇ 7.5.
  • RMA was treated at 30 ° C. for 30 minutes in the presence of various reagents listed in Table 6. The concentration of each reagent during treatment is shown in Table 6. Thereafter, the oxidation activity for (S) 2-butanol was measured by the method described in [Method for evaluating oxidation ability for alcohol compound]. The oxidative activity after each treatment was calculated as relative activity when the untreated activity value was 100%, and is summarized in Table 6. RMA was inhibited by ethylenediamine 4 acetic acid, o phenanthrin, mercury chloride, copper sulfate, and zinc sulfate, but not 2-mercaptoethanol and dithiothreitol.
  • the purified RMA obtained in Example 1 was denatured in the presence of 8 M urea and then digested with lysyl endopeptidase derived from Achromopacter (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the amino acid sequence of the obtained peptide fragment was ABI492 type. It was determined by a protein sequencer (manufactured by Perkin Elma).
  • Example 1 Chromosome DNA was extracted from the cells of Candida maltosa IFO 1977 strain, which was similarly cultivated, using Gentorikun TM (manufactured by Takara Bio Inc.) according to the instruction manual. Next, using the DNA primers 1 and 2 prepared above, PCR was performed using the obtained chromosomal DNA as a saddle, and a DNA fragment of approximately 0.5 kbp, which is considered to be part of the target gene, was amplified. . PCR uses TaKaRa as a DNA polymerase
  • Candida maltosa IFO 1977 chromosomal DNA prepared above was completely digested with restriction enzymes Bgll, Muni or Xbal, and the resulting DNA fragment mixture was intramolecularly cyclized with T4 ligase. .
  • the entire base sequence of the RMA gene containing the base sequence shown in SEQ ID NO: 5 was determined by inverse PCR (Nucl. Acids Res., 16, 8186 (1988)). The results are shown in SEQ ID NO: 2 in the sequence listing. Inverse PCR was performed using Pyrobest DNA Polymerase (manufactured by Takara Bio Inc.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2 is shown in SEQ ID NO: 1.
  • plasmid pGDKl (Eur. J. Biochem., 186, 389 (1989) PCR is performed using the method described in 1) as a saddle type, and the start codon of the dalcose dehydrogenase (hereinafter referred to as GDH) gene derived from Bacillus megaterium IAM1030 strain.
  • GDH dalcose dehydrogenase
  • Example 7 Structure of recombinant vector DNCMFT further containing a formate dehydrogenase gene
  • FDH Thiobacillus sp. Formate dehydrogenase
  • Example 6 the recombinant vector pNCMG constructed in Example 6 was used to transform £. CoH HB101 combi- nation cells (manufactured by Takara Bio Inc.) to obtain £ ⁇ coH HBlOl (pNCMG). .
  • a medium tryptone 1 ⁇ 6%, yeast extract 1.0%, NaClO. 5%, pH 7.0
  • the reduction activity against acetophenone was carried out by the method described in [Method for evaluating reduction ability against ketone compound or aldehyde compound].
  • GDH activity is determined by adding 0.1M glucose, coenzyme NAD2mM, and crude enzyme solution to 1M Tris-HCl buffer (pH 8.0), reacting at 25 ° C for 1 minute, and increasing the absorbance at a wavelength of 340nm.
  • Calculated from FDH activity was determined by adding 0.5M formic acid, coenzyme NAD2mM, and crude enzyme solution to lOOmM phosphate buffer (pH 7.0), reacting at 30 ° C for 1 minute, and absorbance at 340nm wavelength. It was calculated from the increase rate of. Under these reaction conditions, 1 U was defined as the enzyme activity that reduces l ⁇ mol of NAD to NADH per minute.
  • RMA, GDH and FDH are summarized in Table 8 as specific activities. As shown in Table 8, all of the three transformants obtained in Example 8 had a acetophenone reducing activity and the expression of RMA was observed. In addition, in £ .coH HB101 (pNCMG) containing the GDH gene, expression of FDH was observed in £ ⁇ coH HB101 (pNCMFT) containing the FDH gene.
  • a culture solution was obtained by culturing E. coli HBlOl (pNCMG) in the same manner as in Example 9. Culture ⁇ Night 100g of gnolecose 17g, NAD + 3mg, and caseofenone 10g were added and stirred at 30 ° C for 20 hours while adjusting to pH 6.5 by dropwise addition of 5N sodium hydroxide solution. . After completion of the reaction, the reaction solution was extracted with toluene, and the resulting organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate, the organic solvent was distilled off under reduced pressure to obtain 9 ⁇ 9 g of (S) -phenylethanol. The optical purity was 99.9% e.e. or higher as measured by the above-mentioned [Analysis condition by gas chromatography (1)].
  • a culture solution was obtained by culturing E. coli HBlOl (pNCMFT) in the same manner as in Example 9.
  • Sodium formate 2.8 g, NAD + 3 mg, and acetophenone 10 g were added to 100 ml of the culture solution, and the mixture was stirred at 30 ° C. for 20 hours while adjusting to pH 6.0 by dropwise addition of 5N formic acid aqueous solution.
  • the reaction solution was extracted with toluene, and the obtained organic layer was dried over anhydrous sodium sulfate. After removing sodium sulfate, the organic solvent was distilled off under reduced pressure to obtain 9.8 g of (S) -phenylethanol.
  • the optical purity was 99.9% ee or higher as measured by [Analysis condition by gas chromatography (1)] described above.
  • E. coli HB101 After culturing E. coli HB101 (pNCM) in the same manner as in Example 9, cell disruption with an ultrasonic homogenizer was performed to obtain 100 ml of a cell-free extract. To 100 ml of this cell-free extract, add glucose dehydrogenase (trade name: GLUCDH ⁇ Amano “II, Amano Enzyme) 2000 U, gnolease 18.4 g, NAD + 10 mg, and add 30 ° C. To this, add 1 ⁇ 05g of methinorebutylketone and add 5N aqueous sodium hydroxide solution to drop ⁇ 5 ⁇ 5. While adjusting, stirring was continued at 30 ° C.
  • glucose dehydrogenase trade name: GLUCDH ⁇ Amano “II, Amano Enzyme
  • Carrier gas helium
  • the optical purity of the produced 3 butene 2 ol was measured by HPLC analysis after dinitrobenzoylation.
  • the dinitrobenzoylation of 3 butene 2 ol was performed by extracting 3 butene 2 ol from the reaction mixture with methylene chloride, adding 1.2 equivalents of triethylamine and 3,5 dinitro benzoyl chloride 3 butene 2 ol, and then at room temperature. This was done by stirring for 2 hours. After washing with 1N hydrochloric acid, it was purified and obtained by preparative thin-layer chromatography, dissolved in ethanol, and analyzed under the following high-performance liquid chromatography conditions.
  • Example 14 Production of (S) —3 butene-2-ol using E. coli HB101 (DNCMG) A culture solution was obtained by culturing E. coli HBlOl (pNCMG) in the same manner as in Example 9. Cultivation lOOmU, gnore course 7 ⁇ lg, NAD + 10mg, 5g of Emanoregen 810 (manufactured by Kao) were added and stirred at 30 ° C for 10 minutes. To this, 2.63 g of methyl vinyl ketone was added, and 5N aqueous sodium hydroxide solution was added dropwise to adjust the pH to 5.5, and stirring was continued at 30 ° C.
  • a culture solution was obtained by culturing E. coli HBlOl (pNCMFT) in the same manner as in Example 9.
  • pNCMFT E. coli HBlOl
  • To 100 ml of the culture solution 1 ⁇ 94 g of sodium formate and 10 mg of NAD + were added and stirred at 30 ° C.
  • a culture solution was obtained by culturing E. coli HBlOl (pNCMG) in the same manner as in Example 9.
  • Glucose 21 ⁇ 2 g, NAD + 2.5 mg and 2 oxo 5 pentano mononole 10.0 g are added to 50 ml of the medium, and 5N sodium hydroxide aqueous solution is added dropwise to adjust to ⁇ 6.5 ⁇ 30 ° C And stirring was continued. After reaction for 45 hours, the reaction solution is centrifuged. More cells were removed. The solution was extracted with 200 ml of ethyl acetate three times, and the resulting organic layers were combined and dried over anhydrous sodium sulfate.
  • Carrier gas helium
  • Carrier gas helium
  • a culture solution was obtained by culturing E. coli HBlOl (pNCMFT) in the same manner as in Example 9.
  • pNCMFT E. coli HBlOl
  • To 100 ml of the culture solution 2 ⁇ 8 g of sodium formate, NAD + 3 mg, and 10 g of methyl acetate acetate were added, and the mixture was stirred at 30 ° C. for 20 hours while adjusting the pH to 6.0 by dropwise addition of 5N aqueous formic acid solution. After completion of the reaction, the reaction solution was extracted with toluene, and the resulting organic layer was dried over anhydrous sodium sulfate.
  • Carrier gas Helium (70kPa)
  • the optical purity of the produced methyl (S) -3-hydroxybutyrate was measured by analysis under the following high performance liquid chromatography conditions after dinitrobenzoylation.
  • Dinitrobenzoylation of methyl 3-hydroxybutanoate was performed by extracting methyl 3-hydroxybutanoate from the reaction mixture with ethyl acetate, and then converting pyridine and 3,5-dinitrobenzoyl chloride to methyl 3-hydroxybutyrate 1. After adding 2 equivalents, the reaction was stirred at room temperature for 2 hours. After washing with 1N hydrochloric acid, it was purified and obtained by preparative thin layer chromatography, dissolved in ethanol, and analyzed under the following HPLC conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

明 細 書
新規アルコール脱水素酵素、その遺伝子、ベクター、形質転換体、およ びそれらを利用した光学活性アルコールの製造方法
技術分野
[0001] 本発明は、新規アルコール脱水素酵素、その遺伝子、その遺伝子を含むベクター
、そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性ァ ルコールの製造方法に関する。
背景技術
[0002] 2—ブタノールのような 2級アルコール化合物に作用するアルコール脱水素酵素は 、カルボニル化合物の立体的還元反応による光学活性アルコール化合物の合成や 、ラセミ体の 2級アルコール化合物を立体選択的に酸化させ、光学活性 2級アルコー ル化合物を合成する上で有用な酵素である。
[0003] 微生物が産生するアルコール脱水素酵素のうち、補酵素としてニコチンアミドアデ ニンジヌクレオチド(以下、 NAD+と略す)を要求し、かつ 2—ブタノールを酸化するァ ルコール脱水素酵素については数多くの報告がある。し力、し、 2—ブタノールの R体 に比較して S体を優先的に酸化するアルコール脱水素酵素で、かつその構造遺伝 子(酵素をコードする DNA)が取得されて!/、るものは少な!/、。
[0004] このようなアルコール脱水素酵素としては、ゴルドユア.エスピー (Gordonia sp.) TY
5株、キャンディダ 'パラプシロシス(Candida iparai3silosis) IF01396株由来の酵素 が知られている。
[0005] 上記酵素のうち、ゴルドユア ·エスピー(Gordonia sp.) TY 5株由来の酵素である ADH1は、 SDSポリアクリルアミド電気泳動での分子量が約 35, 000の酵素であり、 2 プロパノールの酸化時の至適温度は 30°C、至適 pHは pH10、であることを特徴 とする。また、同株由来の酵素である ADH3は、 SDSポリアクリルアミド電気泳動での 分子量が約 58, 000の酵素であり、 2 プロパノールの酸化時の至適温度は 60°C、 至適 pHは pH10、であることを特徴とする(特許文献 1)。
[0006] また、キャンディダ 'パラプシロシス(Candid n_ar¾psilosis) IF01396株由来の酵素 は、 SDSポリアクリルアミド電気泳動での分子量が 4万の酵素であり、酵素の安定 pH 範囲は ρΗ8· 0〜ρΗ10· 0、(S)— 2—ブタノール酸化時の作用適温の範囲は 25°C 〜55°C、であることを特徴とする。また、本酵素は、 2—メルカプトエタノール、ジチォ スレイトールで酵素活性が阻害される力 S、エチレンジァミン 4酢酸では阻害されない、 と!/、う特徴を有する (特許文献 2)。
[0007] このように、 2—ブタノールの R体に比較して S体を優先的に酸化し、かつその構造 遺伝子が取得されたアルコール脱水素酵素は少なぐ新たな酵素、その構造遺伝子 の取得が望まれていた。該酵素の構造遺伝子を取得することができれば、遺伝子ェ 学的手法を用いることにより該酵素を大量生産することができ、これにより該酵素を用 いた有用化合物、例えば光学活性アルコールなど、を非常に効率的に製造できるプ 口セスをあ確立すること力 S可倉 となる。
特許文献 1 :特開 2005— 102511号公報
特許文献 2:特許第 3574682号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、新規なアルコール脱水素酵素、その遺伝子、その遺伝子を含むベクタ 一、そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性 アルコールの製造方法を提供することを課題とする。 課題を解決するための手段
[0009] 本発明は、以下の 1又は複数の特徴を有する。
本発明の一つの特徴は、次の(1)から(6)に示す理化学的性質を有するポリぺプチ ドでめ。。
[0010] (1)作用:
NAD+を補酵素としてアルコールを酸化し、ケトン又はアルデヒドを生成する。また、 NADHを補酵素としてケトン又はアルデヒドを還元し、アルコールを生成する。
[0011] (2)基質特異性:
芳香族置換を含む脂肪族アルコールを酸化反応の基質とする。 2—ブタノールの R 体に比較して S体を優先的に酸化する。ケトン及びアルデヒドを還元反応の基質とす る。ァセトフエノンに作用し、 S体の 1 フエニルエタノールへ還元する。
[0012] (3)分子量:
還元 SDSポリアクリルアミド電気泳動において約 39, 000の分子量を示す。
[0013] (4) pH安定性:
pHの安定域は、 ρΗ5· 5〜7· 5の範囲である。
[0014] (5)至適温度:
(S) 2 ブタノールの酸化反応の作用至適温度は、 45°C〜70°Cである。
[0015] (6)阻害剤:
エチレンジァミン 4酢酸、 o フエナント口リン、塩化水銀、硫酸銅及び硫酸亜鉛で 酵素活性が阻害されるが、 2—メルカプトエタノール、ジチオスレィトールには阻害さ れなレ、。
[0016] 本発明の別の特徴は、以下の(a)〜(c)のいずれかに記載のポリペプチドである。
[0017] (a)配列表の配列番号 1に示すアミノ酸配列からなるポリペプチド、
(b)配列表の配列番号 1に示すアミノ酸配列にお!/、て、 1もしくは複数個のアミノ酸 が欠失、揷入、置換及び/または付加したアミノ酸配列からなり、かつァセトフエノン に作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチド、
(c)配列表の配列番号 1に記載のアミノ酸配列と 85%以上の配列同一性を持つァ ミノ酸配列からなり、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ 還元する活性を有するポリペプチド。
[0018] 本発明の別の特徴は、前記ポリペプチドをコードする DNAである。
[0019] 本発明の別の特徴は、以下の(A)又は(B)の DNA、これを含むベクター、及びこ のベクターにより宿主細胞を形質転換して得られる形質転換体である:
(A)配列表の配列番号 2に示す塩基配列を含む DNA、
(B)配列表の配列番号 2に示す塩基配列と相補的な塩基配列を含む DNAとストリ ンジェントな条件下でハイブリダィズし、かつァセトフエノンに作用して、 S体の 1 フエ ニルエタノールへ還元する活性を有するポリペプチドをコードする DNA、
(C)配列表の配列番号 2に示す塩基配列と 85%以上の配列同一性を示し、かつ ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポ リペプチドをコードする DNA、
(D)配列表の配列番号 2に示す塩基配列において、 1もしくは複数個の塩基が欠 失、揷入、置換及び/または付加した塩基配列からなり、かつァセトフエノンに作用し て、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコードする DNA。
[0020] 本発明の別の特徴は、本発明のポリペプチドまたは、本発明の DNAを導入した形 質転換体およびその処理物を、カルボ二ル基を有する化合物に作用させることを特 徴とするアルコール、とりわけ光学活性アルコールの製造方法である。
発明の効果
[0021] 本発明により、新規アルコール脱水素酵素、その遺伝子、その遺伝子を含むベクタ 一、そのベクターで形質転換された形質転換体、およびそれらを利用した光学活性 アルコールの製造方法が提供される。
図面の簡単な説明
[0022] [図 1],袓換えベクター pNCM、 pNCMG及び pNCMFTの作製法および構造を示す
発明を実施するための最良の形態
[0023] 以下、本発明について実施形態を用いて詳細に説明する。なお、本発明はこれら により限定されるものではない。
[0024] 本発明のポリペプチドの理学的諸性晳について
本発明におレ、て後述の方法により単離されたポリペプチドは、以下の(1)〜(6)の 理化学的性質を有するポリペプチドである。
[0025] (1)作用:
NAD+を補酵素としてアルコールを酸化し、ケトン又はアルデヒドを生成する。また、 NADHを補酵素としてケトン又はアルデヒドを還元し、アルコールを生成する。
[0026] (2)基質特異性:
芳香族置換を含む脂肪族アルコールを酸化反応の基質とする。 2—ブタノールの R 体に比較して S体を優先的に酸化する。ケトン及びアルデヒドを還元反応の基質とす る。ァセトフエノンに作用し、 S体の 1 フエニルエタノールへ還元する。 [0027] (3)分子量:
還元 SDSポリアクリルアミド電気泳動において約 39, 000の分子量を示す。
[0028] (4) pH安定性:
pHの安定域は、 ρΗ5· 5〜7· 5の範囲である。
[0029] (5)至適温度:
作用至適温度は、 45°C〜70°Cである。
[0030] (6)阻害剤:
エチレンジァミン 4酢酸、 o—フエナント口リン、塩化水銀、硫酸銅、硫酸亜鉛で酵素 活性が阻害される。
[0031] 以下に(1)〜(6)の理化学的諸性質につ!/、て説明する。
[0032] (1)作用について
本発明のポリペプチドは、 NAD+の存在下、 2級アルコール化合物を酸化してケトン 化合物に変換する能力を有する。また、本発明のポリペプチドは、 1級アルコール化 合物を酸化してアルデヒド化合物に変換する能力を有する。
[0033] アルコール化合物を酸化する能力は、例えば、以下の方法で評価することができる
[0034] [アルコール化合物に対する酸化能力の評価方法]
50mMトリスー塩酸緩衝液(ρΗ9· 0)に NAD+2. 5mM、酸化活性を評価したいァ ルコール化合物 50mMおよび本発明のポリペプチドを含む反応液を 30°Cで反応さ せ、 NADH量の増加に伴う波長 340nmの吸光度の増加を測定することにより、酸化 反応の進行を容易に評価することができる。吸光度が増加した場合、本発明のぺプ チドは評価対象のアルコール化合物を酸化する能力を有する、と判断することができ る。なお、吸光度の増加速度が速いほど、評価対象のアルコール化合物に対する酸 化能力が高いといえる。また、ポリペプチドの酸化能力は数 化することも可能であり 、酸化活性 1Uは、 1分間に 1 molの NADHの生成を触媒する酵素量とした。
[0035] また、本発明のポリペプチドは、 NADHの存在下、ケトン化合物もしくはアルデヒド 化合物を還元してアルコール化合物に変換する能力を有する。
[0036] ケトン化合物もしくはアルデヒド化合物を還元する能力は、例えば、以下の方法で 評価すること力 Sでさる。
[0037] [ケトン化合物もしくはアルデヒド化合物に対する還元能力の評価方法]
ジメチルスルホキシド 0. 3% (v/v)を含む lOOmMリン酸カリウム緩衝液(pH6. 5) に NADHO. 25mM、還元活性を評価したいケトン化合物もしくはアルデヒド化合物 50mMおよび本発明のポリペプチドを含む反応液を 30°Cで反応させ、 NADH量の 減少に伴う波長 340nmの吸光度の減少を測定することにより、還元反応の進行を容 易に評価すること力 Sできる。吸光度が減少した場合、本発明のペプチドは評価対象 のケトン化合物もしくはアルデヒド化合物を還元する能力を有する、と判断することが できる。なお、吸光度の減少速度が速いほど、評価対象のケトン化合物もしくはアル デヒド化合物に対する還元能力が高いといえる。また、ポリペプチドの還元能力は数 値化することも可能であり、還元活性 1Uは、 1分間に l rnolの NADHの消費を触 媒する酵素量とした。
[0038] (2)基質特異性について
本発明のポリペプチドは、芳香族置換を含む脂肪族アルコールを酸化反応の基質 とすること力 Sできる。これは、上記の(1)作用で記載の [アルコール化合物に対する酸 化能力の評価方法]に記載の方法で評価することができる。
[0039] また、本発明のポリペプチドは、 2 ブタノールの R体に比較して S体を優先的に酸 化するが、これは (R)— 2—ブタノールに対する酸化能力よりも(S)— 2—ブタノール に対する酸化能力のほうが高いことを意味する。このことは、上記の(1)作用で記載 の [アルコール化合物に対する酸化能力の評価方法]に記載の方法で、(R)— 2— ブタノール、 (S)— 2—ブタノールに対する酸化能力をそれぞれ別々に評価すること により、容易に判断することができる。
[0040] 更に、本発明のポリペプチドは、ケトン及びアルデヒドを還元反応の基質とすること ができる。これは、上記の(1)作用で記載の [ケトン化合物もしくはアルデヒド化合物 に対する還元能力の評価方法]に記載の方法で評価することができる。
[0041] 本発明のポリペプチドは、ァセトフエノンに作用し、 S体の 1 フエニルエタノールへ 還元する能力を有する。これは、例えば以下のような方法で確認することができる。
[0042] lOOmMのリン酸緩衝液(pH7)に、ァセトフエノン、 NADH及び本発明のポリぺプ チドを加えて 30°Cで攪拌して反応させる。反応後、酢酸ェチルなどの有機溶媒で抽 出操作を行い、下記のガスクロマトグラフィー条件で分析することにより、 1 フエニル エタノールの生成、その立体配置及び光学純度を確認することができる。
[0043] [ガスクロマトグラフィーによる分析条件(1) ]
カラム: CHIRALDEX G— PN (30m, 0. 25mmID)
(RESTEK社製) カラム温度: 100°C
注入口温度: 150°C
検出器温度: 150°C
検出: FID
キャリアーガス: He、 130kPa
溶出時間:ァセトフエノン(9· 2分)
(S)— 1 フエニルエタノール(14· 5分)
(R)— 1—フエニルエタノール(15· 2分)
[0044] (3)分子量について
本発明のポリペプチドの還元 SDSポリアクリルアミド電気泳動における分子量は約 39, 000である。この還元 SDSポリアクリルアミド電気泳動を用いた分子量測定は、 公知の方法、例えば「生物化学実験のてびき 2 タンパク質の分離'分析法」(化学同 人社刊行)に記載の方法、で実施できる。分子量標準蛋白質との移動度の差から、 その分子量を算出することができる。
[0045] (4) pH安定性について
本発明のポリペプチドの pHの安定域は、 pH5. 5〜7. 5の範囲である。本安定 pH 域の測定は、例えば、以下のように実施できる。 pHの異なるブリットン—ロビンソン緩 衝液中でポリペプチドを 30°Cで 30分間処理後、前記の [アルコール化合物に対する 酸化能力の評価方法]に記載の方法で(S)— 2—ブタノールに対する酸化活性を測 定する。処理後の残存活性値が、処理前の活性値の 80%以上の値を示す pH域を 安定 pH域とした。
[0046] (5)至適温度について
本発明のポリペプチドの酵素活性の作用至適温度は、 45°C〜70°Cである。本作 用至適温度の測定は、例えば、以下のように実施できる。前記の [アルコール化合物 に対する酸化能力の評価方法]に記載の方法において、測定温度を変化させて(S) 2—ブタノールに対する酸化活性を測定する。最も活性の高かった温度での酸化 活性値を 100%として、各温度での活性値を相対活性で示した時、その相対活性値 力 S 60 %以上の値を示す温度域を作用至適温度とした。
[0047] (6)阻害剤について
本発明のポリペプチドの酵素活性は、エチレンジァミン 4酢酸、 o フエナント口リン 、塩化水銀、硫酸銅及び硫酸亜鉛で阻害されるが、 2—メルカプトエタノール、ジチ オスレィトールには阻害されなレ、。化合物がポリペプチドの酵素活性を阻害するかど うかは、例えば、以下のような方法で評価できる。 ImM濃度の種々の化合物中でポ リペプチドを 30°Cで 30分間処理後、前記の [アルコール化合物に対する酸化能力の 評価方法]に記載の方法で(S)— 2—ブタノールに対する酸化活性を測定する。処 理後の残存活性値が、処理前の活性値の 30%以下の値を示した場合には、処理に 用いた化合物がポリペプチドの酵素活性を阻害する、と評価できる。また、処理後の 残存活性値が、処理前の活性値の 90%以上の値を示した場合には、処理に用いた 化合物はポリペプチドの酵素活性を阻害しない、と評価できる。
[0048] 本発明のポリペプチドの単離について
本発明のポリペプチドは、 2—ブタノールの R体に比較して S体を優先的に酸化す る能力を有するポリペプチドから選択しうる。もしくは、カルボ二ル基を有する化合物 を還元してアルコールを生成する活性を有するポリペプチド、好ましくは非対称ケトン を不斉的に還元して光学活性アルコールを生成する活性を有するポリペプチド、もつ とも好ましくはァセトフエノンを不斉的に還元して(S)— 1—フエニルエタノールを生成 する活性を有するポリペプチドから選択しうる。
[0049] このようなポリペプチドは、当該活性を有する微生物などの生物から単離することが できる。該酵素は、例えば、以下の方法で微生物より見出すことができる。微生物を 適当な培地で培養し、集菌後、緩衝液中、グルコースなどの栄養存在下でァセトフエ ノンを反応させる。反応後、溶剤などで抽出を行い、前記の [ガスクロマトグラフィーに よる分析条件(1) ]記載の条件で分析することにより、 1 フエニルエタノールの生成 を確認すればよい。
[0050] 微生物を培養するための培地としては、その微生物が増殖する限り、通常の、炭素 源、窒素源、無機塩類、有機栄養素などを含む液体栄養培地を用いることができる。 培養は、例えば、温度 25°Cから 37°C、 pH4〜8で振とうもしくは通気することで行い 得る。
[0051] 本発明のポリペプチドの起源となる微生物からの該ポリペプチドの単離は、公知の 蛋白質精製法を適当に組み合わせて用いることにより実施できる。例えば、以下のよ うに実施できる。まず、当該微生物を適当な培地で培養し、培養液から遠心分離、あ るいは、濾過により菌体を集める。得られた菌体を、超音波破砕機、あるいは、グラス ビーズ等を用いた物理的手法で破砕した後、遠心分離にて菌体残渣を除き、無細胞 抽出液を得る。そして、熱処理、塩析 (硫酸アンモニゥム沈殿、リン酸ナトリウム沈殿な ど)、溶媒沈殿 (アセトンまたはエタノールなどによる蛋白質分画沈殿法)、透析、ゲル 濾過クロマトグラフィー、イオン交換クロマトグラフィー、逆相クロマトグラフィー、限外 濾過等の手法を単独で、または組み合わせて用いることにより、該無細胞抽出液から 本発明のポリペプチドを単離する。
[0052] 本発明のポリペプチドの起源は限定されるものではないが、好ましくはキャンディダ
(Candida)属に属する微牛物である。好ましくは、キャンディダ ·マルトーサ(Candida maltosa)、より好ましくはキャンディダ'マルトーサ (Candida nmlm≤a) IF01977株が 挙げられる。当該微生物は、独立行政法人製品評価技術基盤機構バイオテクノロジ 一本部 生物遺伝資源部門(NBRC : T 292-0818 千葉県木更津巿かずさ鎌足 2_5 -8)より入手することができる。
[0053] 本発明のポリペプチドのアミノ酸配列について
本発明のポリペプチドとしては、以下の(a)〜(c)のポリペプチドを挙げることがで きる。
[0054] (a)配列表の配列番号 1に示すアミノ酸配列からなるポリペプチド、
(b)配列表の配列番号 1に示すアミノ酸配列にお!/、て、 1もしくは複数個のアミノ酸 が欠失、揷入、置換及び/または付加したアミノ酸配列からなり、かつァセトフエノン に作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチド、 (c)配列表の配列番号 1に記載のアミノ酸配列と 85%以上の配列同一性を持つァ ミノ酸配列からなり、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ 還元する活性を有するポリペプチド。
[0055] (a)〜(c)のそれぞれにつ!/、て、以下に詳説する。
[0056] (a)のポリペプチドについて
本発明のポリペプチドのアミノ酸配列としては、配列表の配列番号 2に示す塩基配 列によってコードされる、配列表の配列番号 1に示すアミノ酸配歹 IJ、を挙げること力 Sで きる。
[0057] (b)のポリペプチドについて
配列表の配列番号 1に示したアミノ酸配列において 1若しくは複数個のアミノ酸が 欠失、揷入、置換及び/または付加されたアミノ酸配列からなるポリペプチドは、 Cur rent Protocols in Molecular Biology (John Wiley and Sons, Inc., 1989)等 ίこ己載の公 知の方法に準じて調製することができ、ァセトフエノンに作用して、 S体の 1 フエニル エタノールへ還元する活性を有する限りは、上記ポリペプチドに包含される。
[0058] 配列表の配列番号 1に示したアミノ酸配列において、アミノ酸が置換、揷入、欠失 及び/または付加される場所は特に制限されな!/、が、高度保存領域を避けるのが好 ましい。ここで、高度保存領域とは、由来の異なる複数の酵素について、アミノ酸配列 を最適に整列させて比較した場合に、複数の配列間でアミノ酸が一致している位置 を表す。高度保存領域は、配列番号 1に示したアミノ酸配列と、公知の微生物由来の アルコール脱水素酵素のアミノ酸配列とを、 GENETYX等のツールを用いて比較す ることにより確言忍すること力 Sでさる。
[0059] 置換、揷入、欠失及び/又は付加により改変されたアミノ酸配列としては、 1種類の タイプ (例えば置換)の改変のみを含むものであっても良いし、 2種以上の改変(例え ば、置換と揷入)を含んでいても良い。
[0060] また、置換の場合には、置換するアミノ酸は、置換前のアミノ酸と類似の性質を有す るアミノ酸(同族アミノ酸)であることが好ましい。ここでは、以下に挙げる各群の同一 群内のアミノ酸を同族アミノ酸とする。
[0061] (第 1群:中性非極性アミノ酸) Gly, Ala, Val, Leu, lie, Met, Cys, Pro, Phe (第 2群:中性極性アミノ酸) Ser, Thr, Gin, Asn, Trp, Tyr
(第 3群:酸性アミノ酸) Glu, Asp
(第 4群:塩基性アミノ酸) His, Lys, Arg
[0062] 上記で記載の「複数個のアミノ酸」とは、例えば、 50個、好ましくは 30個、より好まし くは 15個、さらに好ましくは 10個、 5個、 4個、 3個、または 2個以下のアミノ酸、を意味 する。
[0063] (c)のポリペプチドについて
配列表の配列番号 1に示すアミノ酸配列と 85%以上の配列同一性を有するポリぺ プチドが、ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性 を有する場合は、これも本発明のポリペプチドに含まれる。配列表の配列番号 1のァ ミノ酸配列と 85 %以上の配列同一性を有するポリペプチドは本発明のポリぺプチド に含まれる力 その配列同一性は 90%以上が好ましぐ 95%以上がより好ましぐ 98 %以上が更に好ましぐ 99%以上がより最も好ましい。
[0064] アミノ酸配列の配列同一性は、配列表の配列番号 1に示したアミノ酸配列と評価し たレ、アミノ酸配列とを比較し、両方の配列でアミノ酸が一致した位置の数を比較総ァ ミノ酸数で除して、さらに 100を乗じた値で表される。
[0065] ァセトフヱノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有する 限り、配列番号 1に記載のアミノ酸配列に、付加的なアミノ酸配列を結合することがで きる。たとえば、ヒスチジンタグや HAタグのようなタグ配列を付加することができる。あ るいは、他のタンパク質との融合タンパク質とすることもできる。また、ァセトフエノンに 作用して、 S体の 1 フエニルエタノールへ還元する活性を有する限り、ペプチド断片 であってもよい。
[0066] 配列表の配列番号 1に示すアミノ酸配列と 85%以上の配列同一性を有するポリぺ プチドが、ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性 を有する場合は、これも本発明のポリペプチドに含まれる。
[0067] 本発明のポリペプチドをコードする DNAのクローニングについて
本発明のポリペプチドをコードする DNAは、後述する方法に従って導入された宿 主細胞内で該酵素を発現し得るものであればいかなるものでもよぐ任意の非翻訳領 域を含んでいてもよい。該酵素が取得できれば、該酵素の起源となる生物より、当業 者であれば公知の方法で、このような DNAを取得できる。例えば、以下に示した方 法で取得できる。
[0068] なお、本明細書において後述する、 DNAクローニング、ベクターの調製及び形質 転換等の遺伝子操作は、特に明記しない限り、 Molecular Cloning 2nd Edition (Cold Spring Harbor Laboratory Press, 1989)等の成書に記載されている方法により実施す ること力 Sできる。また、本明細書の記述に用いられる%は、特に断りのない限り、 % (w /v)を意味する。
[0069] まず、先の「本発明のポリペプチドの単離について Iで記載した方法で単離された 本発明のポリペプチドについて、適当なエンドぺプチダーゼを用いて消化し、生じた ペプチド断片を逆相 HPLCにより分取する。そして、例えば、 ABI492型プロテイン シークェンサ一(アプライドバイオシステムズ社製)により、これらのペプチド断片のァ ミノ酸配列の一部または全部を決定する。
[0070] このようにして得られたアミノ酸配列情報をもとにして、該ポリペプチドをコードする D NAの一部を増幅するための PCR (Polymerase Chain Reaction)プライマーを合成す る。次に、通常の DNA単離法、例えば、 Visser等の方法(Appl. Microbiol. Biotechn ol., 53, 415 (2000))により、該ポリペプチドの起源となる微生物の染色体 DNAを調製 する。この染色体 DNAを铸型として、先述の PCRプライマーを用いて PCRを行い、 該ポリペプチドをコードする DNAの一部を増幅し、その塩基配列を決定する。塩基 配列の決定は、例えば、 Applied Biosystems 3130x1 ジェネティックアナライザ (アプライドバイォシステムズ社製)等を用いて行うことができる。
[0071] 該ポリペプチドをコードする DNAの一部の塩基配列が明らかになれば、例えば、ィ ンバース(Inverse) PCR法(Nucl. Acids Res., 16, 8186 (1988))によりその全体の酉己 歹 IJを決定することができる。
[0072] このようにして得られる本発明のポリペプチドをコードする DNAとして、例えば、酉己 列表の配列番号 2に示す塩基配列を含む DNAを挙げることができる。
[0073] 以下に、配列番号 2に示す塩基配列について説明する。
[0074] 本発明のポリペプチドをコードする DNAの配列について 本発明のポリぺプチドをコ一ドする DNAとして、例えば、
配列表の配列番号 2に示した塩基配列からなる DNA、
配列表の配列番号 2に示した塩基配列と相補的な塩基配列を含む DNAと、ストリ ンジェントな条件下でハイブリダィズし、かつァセトフエノンに作用して、 S体の 1 フエ ニルエタノールへ還元する活性を有するポリペプチドをコードする DNA、
配列表の配列番号 2に示した塩基配列と 85%以上の配列同一性を示し、かつァセ トフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリぺ プチドをコードする DNA、又は、
配列表の配列番号 2に示した塩基配列において、 1もしくは複数個の塩基が欠失、 揷入、置換及び/または付加した塩基配列からなり、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコードする DN A、
を挙げること力 Sでさる。
[0075] ここで、「配列表の配列番号 2に示した塩基配列と相補的な塩基配列からなる DNA とストリンジェントな条件下でハイブリダィズし、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコードする DNA」とは 、配列表の配列番号 2に示した塩基配列と相補的な塩基配列からなる DNAをプロ一 ブとして、ストリンジェントな条件下にコロニー 'ノヽィブリダィゼーシヨン法、プラーク'ハ イブリダィゼーシヨン法、あるいはサザンハイブリダィゼーシヨン法等を用いることによ り得られる DNAで、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ 還元する活性を有するポリペプチドをコードする DNAを意味する。
[0076] ノヽィプリダイでーシヨンは、 Molecular Cloning, A laboratory manual, second edition
(Cold Spring Harbor Laboratory Press, 1989)等に記載されている方法に準じて行う こと力 Sできる。ここで、「ストリンジェントな条件でハイブリダィズする DNA」とは、例えば 、 コロニーあるいはプラーク由来の DNAを固定化したフィルターを用いて、 0. 7〜1 . 0Mの NaCl存在下、 65°Cでハイブリダィゼーシヨンを行った後、 2倍濃度の SSC溶 液(1倍濃度の SSC溶液の組成は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウ ムよりなる)を用い、 65°Cの条件下でフィルターを洗浄することにより取得できる DNA をあげること力 Sできる。好ましくは 65°Cで 0. 5倍濃度の SSC溶液で洗浄、より好ましく は 65°Cで 0. 2倍濃度の SSC溶液で洗浄、更に好ましくは 65°Cで 0. 1倍濃度の SS C溶液で洗浄することにより取得できる DNAである。
[0077] 以上のようにハイブリダィゼーシヨン条件を記載した力 これらの条件に特に制限さ れない。ノ、イブリダィゼーシヨンのストリンジエンシーに影響する要素としては温度や 塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択すること で最適なストリンジエンシーを実現することが可能である。
[0078] 上記の条件にてハイブリダィズ可能な DNAとしては、配列番号 2に示される DNA と、配列同一性が 70%以上、好ましくは 85%以上、より好ましくは 90%以上、さらに より好ましくは 95%以上、最も好ましくは 98%以上の DNAをあげることができ、コー ドされるポリペプチド力 ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ 還元する活性を有する限り、上記 DNAに包含される。
[0079] ここで、「配列同一性(%)」とは、対比される 2つの DNAを最適に整列させ、核酸塩 基 (例えば、 A、 T、 C、 G、 U、または I)が両方の配列で一致した位置の数を比較塩基 総数で除し、そして、この結果に 100を乗じた数値で表される。
[0080] 配列同一性は、例えば、以下の配列分析用ツールを用いて算出し得る: GCG Wise onsin Package (Program Manual ror he Wisconsin Package, Version8, 1994年 9月, enetics Computer Group, 575 Science Drive Medison, Wisconsin, USA 53711; Ric e, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hi nxton Hall, Cambridge, CB10 IRQ, England)、及び、 the ExPASy World Wide Web 分子生物字用サーノ 一 (Geneva University Hospital and University or ueneva, en eva, Switzerland)。
[0081] ここで、「配列表の配列番号 2に示した塩基配列と 85%以上の配列同一性を有す る DNA力 ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性 を有するポリペプチドをコードする場合は、これも本発明の DNAに含まれる。配列表 の配列番号 2の核酸配列と 85 %以上の配列同一性を有する DNAは本発明の DNA に含まれる力 その配列同一性は 90%以上が好ましぐ 95%以上がより好ましぐ 98 %以上が更に好ましぐ 99%以上がより最も好ましい。 [0082] 塩基配列の配列同一性は、配列表の配列番号 2に示した塩基配列と評価した!/、塩 基配列とを比較し、両方の配列で塩基が一致した位置の数を比較総塩基数で除して 、さらに 100を乗じた値で表される。
[0083] ここで、「配列表の配列番号 2に示した塩基配列において、 1もしくは複数個の塩基 が欠失、揷入、置換及び/または付加した塩基配列からなり、かつァセトフエノンに 作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコー トする DNA」とは、 Current Protocols in Molecular Biology (Jonn vViley and sons, Inc ., 1989)等に記載の公知の方法に準じて調製することができ、ァセトフヱノンに作用し て、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコードする 限りは、上記 DNAに包含される。
[0084] 配列表の配列番号 2に示した塩基配列において、塩基が置換、揷入、欠失及び/ または付加される場所は特に制限されないが、高度保存領域を避け、フレームシフト が生じないようにするのが好ましい。ここで、高度保存領域とは、由来の異なる複数の 酵素について、塩基配列を最適に整列させて比較した場合に、複数の配列間で塩 基が一致している位置を表す。高度保存領域は、配列番号 2に示した塩基配列と、 公知の微生物由来のアルコール脱水素酵素遺伝子の塩基配列とを、 GENETYX 等のツールを用いて比較することにより確認することができる。
[0085] 置換、揷入、欠失及び/又は付加により改変された塩基配列としては、 1種類のタ イブ (例えば置換)の改変のみを含むものであっても良いし、 2種以上の改変(例えば 、置換と揷入)を含んでいても良い。
[0086] 上記で記載の「複数個の塩基」とは、例えば、 150個、好ましくは 100個、より好まし くは 50個、さらに好ましくは 20個、 10個、 5個、 4個、 3個、または 2個以下の塩基、を 意味する。
[0087] 宿キーベクター系及び形晳転換体について
本発明のポリペプチドをコードする DNAを発現ベクターに揷入することにより、ポリ ペプチド発現ベクターが作成できる。また、このポリペプチド発現ベクターで宿主生 物を形質転換して得られる形質転換体を培養することにより、本発明のポリペプチド を発現させること力 Sできる。更に、本発明のポリペプチドをコードするポリヌクレオチド をを染染色色体体中中にに導導入入すするる方方法法ななどどもも利利用用ででききるる。。
[[00008888]] 上上記記でで用用いいるる発発現現ベベククタターーととししててはは、、適適当当なな宿宿主主生生物物内内でで当当該該 DDNNAAががココーードドすするる ポポリリペペププチチドドをを発発現現ででききるるももののででああれればば、、特特にに限限定定さされれなないい。。ここののよよううななベベククタターーととししてて はは、、例例ええばば、、ププララススミミドドベベククタターー、、フファァーージジベベククタターー、、ココススミミドドベベククタターーななどどがが挙挙げげらられれ、、 ささららにに、、他他のの宿宿主主株株ととのの間間ででのの遺遺伝伝子子交交換換がが可可能能ななシシャャトトルルベベククタターーもも使使用用ででききるる。。
[[00008899]] ここののよよううななベベククタターーはは、、例例ええばば大大腸腸菌菌のの場場合合でではは、、通通常常、、 llaaccUUVV55ププロロモモーータターー、、 ttrr ppププロロモモーータターー、、 ttrrccププロロモモーータターー、、 ttaaccププロロモモーータターー、、 llppppププロロモモーータターー、、 ttuuffBBププロロモモ 一一タターー、、 rreeccAAププロロモモーータターー、、 ppLLププロロモモーータターー等等のの制制御御因因子子をを含含みみ、、本本発発明明のの DDNNAA とと作作動動可可能能にに連連結結さされれたた発発現現単単位位をを含含むむ発発現現ベベククタターーととししてて好好適適にに使使用用ででききるる。。例例 ええばば、、 ppUUCCNN1188 ((実実施施例例 55参参照照))、、 ppSSTTVV2288 ((タタカカララババイイオオ社社製製))、、 ppUUCCNNTT ((WW009944 //0033661133公公報報))ななどどがが挙挙げげらられれるる。。
[[00009900]] 本本明明細細書書でで用用いいるる用用語語「「制制御御因因子子」」はは、、機機能能的的ププロロモモーータターー及及びび、、任任意意のの関関連連すするる 転転写写要要素素((例例ええばばェェンンハハンンササーー、、 CCCCAAAATTボボッッククスス、、 TTAATTAAボボッッククスス、、 SSPPII部部位位ななどど)) をを有有すするる塩塩基基配配列列ををいいうう。。
[[00009911]] 本本明明細細書書でで用用いいるる用用語語「「作作動動可可能能にに連連結結」」はは、、遺遺伝伝子子のの発発現現をを調調節節すするるププロロモモーー タターー、、ェェンンノノ、、ンンササ一一等等のの種種々々のの調調節節エエレレメメンントトとと遺遺伝伝子子力力 宿宿主主細細胞胞中中でで作作動動しし得得るる 状状態態でで連連結結さされれるるここととををいいうう。。制制御御因因子子ののタタイイププ及及びび種種類類がが、、宿宿主主にに応応じじてて変変わわりり得得 るるここととはは、、当当業業者者にに周周知知のの事事項項ででああるる。。
[[00009922]] 各各種種生生物物ににおおいいてて利利用用可可能能ななベベククタターー、、ププロロモモーータターーななどどにに関関ししてて「「微微生生物物学学基基礎礎 講講座座 88遺遺伝伝子子工工学学 ··共共立立出出版版」」ななどどにに詳詳細細にに記記述述さされれてていいるる。。
[[00009933]] 各各ポポリリペペププチチドドをを発発現現ささせせるるたためめにに用用いいるる宿宿主主生生物物はは、、各各ポポリリペペププチチドドををココーードドすするる
DDNNAAをを含含むむポポリリペペププチチドド発発現現ベベククタターーにによよりり形形質質転転換換さされれ、、導導入入ししたた DDNNAAががココーードド すするるポポリリペペププチチドドをを発発現現すするるここととががででききるる生生物物ででああれればば、、特特にに制制限限ははさされれなないい。。利利用用 可可能能なな微微生生物物ととししててはは、、例例ええばば、、ェェシシエエリリヒヒアア ((EEsscchheeriricchhiiaa))属属、、ババチチルルスス ((BBaacciilllluuss))属属、、 シシユユーードドモモナナスス ((££sseeuuddoommoonnaass))属属、、
Figure imgf000017_0001
erium)属、コリイノ クァリイヮム (Corynebacterium)属、ストレフ。トコッカス (Streptococcus )属、及びラクトバチルス (Lactobacillus.)属など宿主ベクター系の開発されている細菌 ロドコッカス (Rhodococcus)属 Omvces)属など キべク ター系の開発されている放線菌、サッカロマイセス (Saccharomvces)属、クライべ口マイ セス (Kluweromvces)属、シゾサッカロマイセス (Schizosaccharomyces)属、チゴサッカ 口マイセス (Zvgosaccharomvces 禹、ャロウィァ ( Yarro wi a) J禹、トリコスホロン (Trichospor 属、口ドスポリジゥム (RhodosiDoridium)属、ピキア (Pichia)属、及びキャンディダ (Can ^属などの宿主ベクター系の開発されている酵母、ノイロスポラ (NeurosDora)属、ァ スペルギルス (Aspergillus)属、セファロスポリウム (Ceiphalosiporium)属、及びトリコデル マ (Trichoderma)属などの宿キベクター系の開発されているカビ、などが挙げられる。 また、微生物以外でも、植物、動物において様々な宿主 ·ベクター系が開発されてお り、特に蚕を用いた昆虫(Nature, 315, 592-594 (1985))や菜種、トウモロコシ、ジャガ ィモなどの植物中に大量に異種タンパク質を発現させる系が開発されており、好適に 利用できる。これらのうち、導入及び発現効率から細菌が好ましぐ大腸菌が特に好 ましい。
[0094] 本発明のポリペプチドをコードする DNAを含むポリペプチド発現ベクターは、公知 の方法により宿主微生物に導入できる。例えば、ポリペプチド発現ベクターとして前 記の発現ベクター pUCNl 8に配列番号 2に示す DNAを導入した本発明のベクター であるプラスミド pNCM (実施例 5参照)を、宿主微生物として大腸菌を用いる場合は 、市販の E. coH HB101コンビテントセル(タカラバイオ社製)などを用いて、そのプ ロトコールに従って操作することにより、当該ベクターを宿主細胞に導入した形質転 換体、 E. mli HB101 (pNCM) (実施例 8参照)、が得られる。
[0095] また、本発明のポリペプチド及び後述する還元型補酵素再生能を有するポリぺプ チドの両ポリペプチドを、同一菌体内で発現させた形質転換体も育種することができ る。すなわち、本発明のポリペプチドをコードする DNA及び還元型補酵素再生能を 有するポリペプチドをコードする DNAを、同一のベクターに組み込み、これを宿主細 胞に導入することにより得られる他、これら 2種類の DNAを不和合性グループの異な る 2種のベクターにそれぞれ組み込み、それらを同一の宿主細胞に導入することによ つても得られ得る。このようにして得られる形質転換体としては、例えば、配列番号 2 に示す DNA、及び還元型補酵素再生能を有するポリペプチドであるグルコース脱水 素酵素をコードする DNA、の両 DNAを前記の発現ベクター pUCNl 8に導入した組 換えベクターである pNCMG (実施例 6参照)を、 Ε· coli HB101コンビテントセル( タカラバイオ社製)に導入した形質転換体である E. coli HB101 (pNCMG) (実施 例 8参照)などが挙げられる。また、配列番号 2に示す DNA、及び還元型補酵素再 生能を有するポリペプチドであるギ酸脱水素酵素をコードする DNA、の両 DNAを前 記の発現ベクター PUCN18に導入した組換えベクターである pNCMFT (実施例 7 参照)を、 coli HB101コンビテントセル (タカラバイオ社製)に導入した形質転 換体である coli HBlOl(pNCMFT) (実施例 8参照)なども挙げられる。
[0096] ポリペプチドもしくは形晳転換体を用いたアルコールもしくはアルデヒドの製造方法
[ 反応条件 ]
本発明のポリぺプチドもしくは本発明のポリぺプチドを発現させた形質転換体を用 いて、カルボ二ル基を有する化合物を還元してアルコールもしくはアルデヒドを製造 する場合、以下のように実施され得る。但し、以下の方法に限定されるわけではない
[0097] 適当な溶媒、例えば lOOmMりん酸緩衝液(ρΗ6· 5)など、中にカルボニル化合物 である基質、例えばァセトフエノン、を加え、 NADHや NAD+等の補酵素、及び該形 質転換体の培養物及び/またはその処理物などを添加し、 pH調整下、攪拌して反 応させる。
[0098] ここで、処理物とは、例えば、粗抽出液、培養菌体、凍結乾燥生物体、アセトン乾燥 生物体、菌体破砕物、またはそれらの固定化物等で、該ポリペプチドの酵素触媒活 性が残存して!/、る物を意味する。
[0099] この反応は 5〜80°C、好ましくは 10〜60°C、より好ましくは 20〜40°Cの温度で行 われ、反応中反応液の pHは 3〜; 10、好ましくは 4〜9、より好ましくは 5〜8に維持す る。反応はバッチ式あるいは連続方式で行われ得る。バッチ方式の場合は、反応基 質 (ま 0. 01〜; 1000/0 (w/v)、好ましく (ま 0. ;!〜 700/0、より好ましく (ま 0. 5〜500/0の 仕込み濃度で添加されうる。また、反応の途中で新たに基質を追加添加しても良い。
[0100] また、反応には水系溶媒を用いてもよいし、水系の溶媒と有機系の溶媒とを混合し て用いてもよい。有機系溶媒としては、例えば、トルエン、酢酸ェチル、酢酸 n—ブチ ル、へキサン、イソプロパノール、ジイソプロピルエーテル、メタノール、アセトン、ジメ チルスルホキシド等が挙げられる。
[0101] ここで形質転換体の処理物等とは、例えば、粗酵素液、培養菌体、凍結乾燥菌体、 アセトン乾燥菌体、あるいはそれらの磨砕物、これらの混合物などを意味する。更に それらは、ポリペプチド自体ある!/、は菌体のまま公知の手段で固定化されて用いられ 得る。また、本反応を行う際に、本発明のポリペプチド及び還元型補酵素再生能を有 するポリペプチドの両者を生産する形質転換体、例えば、 E. coli HB101 (pNCM G) (実施例 8参照)や E. coli HB101 (pNCMFT) (実施例 8参照)など、を用いれ ば、補酵素の使用量を大幅に減らすことが可能となる。還元型補酵素再生能を有す るポリペプチドについて、次に詳説する。
[0102] [還元型補酵素再生能を有するポリペプチド]
本発明のポリペプチドの生産能を有する形質転換体を用いて、カルボニル化合物 を還元してアルコール化合物を合成する場合、補酵素として NADHが必要となる。 上記のように、反応系に NADHを必要な量だけ添加しても実施しうる。しかし、酸化 された該補酵素(NAD+)を還元型 NADHに変換する能力(以後還元型補酵素再生 能力と呼ぶ)を有する酵素をその基質と共に、つまり補酵素再生系を本発明のポリぺ プチドと組み合わせて反応を行うことにより、高価な補酵素の使用量を大幅に削減す ること力 Sできる。還元型補酵素再生能力を有する酵素としては、ヒドロゲナーゼ、ギ酸 脱水素酵素、アルコール脱水素酵素、グルコース 6—リン酸脱水素酵素及びグノレ コース脱水素酵素等を用いることができる。好適には、グルコース脱水素酵素、ギ酸 脱水素酵素が用いられる。
[0103] このような反応は、補酵素再生系を不斉還元反応系内に添加することによつても行 われ得るが、本発明の酵素をコードする DNA及び還元型補酵素再生能を有するポ リペプチドをコードする DNAの両者により形質転換された形質転換体を触媒とした 場合は、還元型補酵素再生能を有する酵素を別に調製し反応系内に添加しなくても 、効率的に反応を行うことができる。このような形質転換体は、先述の「宿主一べクタ 一系及び形質転換体について」で記載した方法により得られる。例えば、配列番号 2 に示す DNA、及び還元型補酵素再生能を有するポリペプチドであるグルコース脱水 素酵素をコードする DNA、の両 DNAを前記の発現ベクター pUCNl 8に導入した組 換えベクターである pNCMG (実施例 6参照)を、 Ε· coli HB101コンビテントセル( タカラバイオ社製)に導入した形質転換体である E. coli HB101 (pNCMG) (実施 例 8参照)などが挙げられる。また、配列番号 2に示す DNA、及び還元型補酵素再 生能を有するポリペプチドであるギ酸脱水素酵素をコードする DNA、の両 DNAを前 記の発現ベクター PUCN18に導入した組換えベクターである pNCMFT (実施例 7 参照)を、 coli HB101コンビテントセル (タカラバイオ社製)に導入した形質転 換体である coli HBlOl(pNCMFT) (実施例 8参照)なども挙げられる。
[0104] [カルボ二ル基を有する化合物及び生成するアルコールにつ!/、て]
本発明のポリぺプチドもしくは本発明のポリぺプチドを発現させた形質転換体を用 いて、カルボ二ル基を有する化合物を還元してアルコールもしくはアルデヒドを製造 する場合、その基質となるカルボニル化合物についての制限はない。カルボニル基 を有する化合物が非対称ケトンである場合、その産物が有用な光学活性アルコール となるため、非常に有益な反応となる。
[0105] カルボ二ル基を有する化合物力 S、非対称ケトンである下記式(1):
[0106] [化 5]
Figure imgf000021_0001
[0107] (式中、
Figure imgf000021_0002
は水素原子、ハロゲン原子、水酸基、置換されていても良いアルコキ シ基、置換されていても良いアルキル基、アミノ基、またはニトロ基を示し、それぞれ 同一でも異なっていてもよい。また R3は水素原子、ハロゲン原子、水酸基、又は置換 されて!/、てもよ!/、アルキル基を示す)で表される 1 フエニルエタノン誘導体である場 合は、その産物は下記式(2) :
[0108] [化 6]
Figure imgf000022_0001
[0109] (式中、
Figure imgf000022_0002
R2、 R3は前記と同じ)で表される光学活性 1 フエニルエタノール誘導体 となる。
[0110] R1, R2としては、置換されていても良いアルコキシ基、置換されていても良いアルキ ル基の場合、その置換されていても良い基としては、ハロゲン原子、水酸基、アミノ基 またはニトロ基、などが挙げられる。
[0111] R3は、水素原子、ハロゲン原子、水酸基、又は置換されていてもよいアルキル基を 示すが、好ましくは水素原子である。
[0112] 上記で言うハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、など である。
[0113] カルボ二ル基を有する化合物力 S、非対称ケトンである下記式(3):
[0114] [化 7]
Figure imgf000022_0003
[0115] (式中、 R4は置換されていても良いアルキル基、置換されていても良いアルケニル基 もしくは置換されて!/、ても良レ、アルキニル基を示す)で表されるメチルケトン化合物で ある場合は、その産物は下記式 (4):
[0116] [化 8]
Figure imgf000022_0004
[0117] (式中、 R4は前記と同じ)で表される光学活性 1 置換 1 エタノール誘導体となる [0118] R4は置換されていても良いアルキル基、置換されていても良いアルケニル基もしく は置換されていても良いアルキニル基を示す。好ましくは、ハロゲン原子、水酸基、 アルコキシ基、アルコキシカルボニル基、アミノ基、またはニトロ基で置換されていても 良い炭素数 1〜7のアルキル基である。また、置換基がアルコキシ基の場合は、炭素 数 1〜5のアルコキシ基が好ましい。また、置換基がアルコキシカルボニル基の場合 は、炭素数 1〜5のアルコキシカルボニル基が好ましぐ例えば、メトキシカルボ二ノレ 基、エトキシカルボニル基などが挙げられる。
[0119] また、 R4がビュル基である場合も好ましい。
[0120] [アルコールの単離精製方法]
反応後の反応液からのアルコールまたはアルデヒド化合物の採取方法は特に限定 されないが、反応液から直接、あるいは菌体等を分離後、酢酸ェチル、トルエン、 t ブチルメチルエーテル、へキサン、塩化メチレン等の溶剤で抽出し、脱水後、蒸留、 再結晶あるいはシリカゲルカラムクロマトグラフィー等により精製すれば、高純度のァ ルコール化合物が容易に得られる。 実施例
[0121] 以下、実施例で本発明を詳細に説明するが、本発明はこれらにより限定されるもの ではない。なお、以下の実施例において用いた組み換え DNA技術に関する詳細な 操作方法などは、次の成書に記載されている:
Molecular Cloning 2ηα Edition (し old Spring Harbor Laboratory Press, 1989)、 し urren t Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscien ce)。
[0122] (実施例 1 )ポリぺプチドの精製
以下の方法に従って、キャンディダ ·マルトーサ(Candida maltosa) IFO 1977株よ り、ァセトフエノンを不斉的に還元し、(S)—フエニルエタノールを生成する活性を有 するポリペプチドを分離し、単一に精製した。特に断りのない限り、精製操作は 4°Cで 行った。また、ァセトフエノンに対する還元活性は、前述の [ケトン化合物もしくはアル デヒド化合物に対する還元能力の評価方法]に記載の方法で実施した。
[0123] (微生物の培養) 2L容坂ロフラスコに、肉エキス 10g、ペプトン 10g、酵母エキス 5g、塩化ナトリウム 3 g、アデ力ノール LG—109 (日本油脂製) 0· lg (いずれも 1L当たり)の組成からなる 液体培地 (pH7) 400mlを調製し、 120°Cで 20分間蒸気殺菌をおこなった。この培 地に、予め同培地にて前培養しておいたキャンディダ'マルトーサ(£ ¾ maltosa) IFO 1977株の培養液を 4ml接種し、 30°Cで 60時間振盪しながら培養を行った。
[0124] (無細胞抽出液の調製)
上記の培養液力 遠心分離により菌体を集め、 0. 8%塩化ナトリウム水溶液を用い て菌体を洗浄した。この菌体を、 5mMの /3—メルカプトエタノールを含む 20mMリン 酸緩衝液(pH8. 0)に懸濁し、 SONIFIER250型超音波破砕機(BRANSON社製 )を用いて破砕した後、遠心分離にて菌体残渣を除き、無細胞抽出液を得た。
[0125] (熱処理)
上記で得た無細胞抽出液を、 60°Cで 30分間処理した後、遠心分離にて不溶画分 を除き、熱処理した無細胞抽出液を得た。
[0126] (DEAE—TOYOPEARLカラムクロマトグラフィー)
上記で得た熱処理した無細胞抽出液を、 5mMの /3—メルカプトエタノールを含む 20mMリン酸緩衝液(ρΗ6· 5)で予め平衡化した DEAE— TOYOPEARL 650Μ (東ソ一株式会社製)カラム(95ml)に供し、不必要な画分を吸着させた。
DEAE— TOYOPEARLカラムクロマトグラフィーに吸着しなかった活性画分に終 濃度 0. 92Mとなるよう硫酸アンモニゥムを溶解後、遠心分離により沈殿を除去した。 これを 0· 92Mの硫酸アンモニゥム及び 5mMの β メルカプトエタノールを含む 20 mMリン酸緩衝液(ρΗ6· 5)で予め平衡化した Phenyl— TOYOPEARL 650M ( 東ソー株式会社製)カラム(60ml)に供し、活性画分を吸着させた。 0. 66Mの硫酸 アンモニゥムを含む同一緩衝液でカラムを洗浄した後、硫酸アンモニゥムのリニアグ ラジェント(0. 66M力、ら 0. 26Mまで)により活性画分を溶出させた。活性画分を集め 、 5mMの /3—メルカプトエタノールを含む 20mMリン酸緩衝液(ρΗ6· 5)にて 1夜透 析を行った。 Phenyl— TOYOPEARLカラムクロマトグラフィーにより得られた活性画分に終濃 度 0· 92Mとなるよう硫酸アンモニゥムを溶解し、 0. 92Mの硫酸アンモニゥム及び 5 mMの /3—メルカプトエタノールを含む 20mMリン酸緩衝液(pH6. 5)で予め平衡 化した Butyl— TOYOPEARL 650M (東ソ一株式会社製)カラム(23ml)に供し、 活性画分を吸着させた。同一緩衝液でカラムを洗浄した後、硫酸アンモニゥムのリニ アグラジェント(0. 92Mから 0Mまで)により活性画分を溶出させ、電気泳動的に単 一なポリペプチドの精製標品を得た。
[0129] 今後、本ポリペプチドを RMAと呼ぶこととした。
[0130] (実施例 2) RMAの理化学的件晳
前記のようにして得られた RMAの理化学的性質について検討した。なお各活性の 測定は、前記の [アルコール化合物に対する酸化能力の評価方法]に記載の方法に より実施した。
[0131] [基質特異性]
(S) 2—ブタノールの酸化活性を 100%とした場合の、各基質に対する酸化活性 を相対活性として算出し、表 1にまとめた。なお、活性測定条件下での各基質の濃度 は、表 1に記載の濃度でそれぞれ測定した。
[0132] [表 1]
Figure imgf000025_0001
[0133] [至適温度]
標準反応条件のうち温度だけを変化させて(S)— 2—ブタノールの酸化活性を測 定した。最も活性が高かった 60°Cでの酸化活性を 100%とした場合の、各温度での 酸化活性を相対活性として算出し、表 2にまとめた。相対活性値が 60%以上の値を 示す温度域は、 45°C〜70°Cであった。
[表 2] 温度(°C) 相対活性(
25 17
30 24
37 39
40 45
45 68
50 80
55 88
60 100
65 91
70 60
75 29
80 9
85 0
[0135] [安定温度範囲]
50mMトリス—塩酸緩衝液(pH 8. 0)中、 RMAを 30°C〜70°Cで 10分間処理した 。その後、(S)— 2 ブタノールに対する酸化活性を測定した。 30°Cでの酸化活性を 100%とした場合の、各温度での酸化活性を相対活性として算出し、表 3にまとめた
[0136] [表 3] 温度 (°C) 相対活性 (%)
30 100
35 96
40 95
50 75
60 37
70 9.4
[至適 pH]
50mMリン酸カリウム緩衝液(pH7〜pH9)、 50mMトリス塩酸緩衝液(pH6〜pH8 )及び 50mMグリシン 水酸化ナトリウム緩衝液(ρΗ9〜ρΗ10· 5)を用いて、反応 の pHを変化させて(S)— 2—ブタノールに対する酸化活性を測定した。最も活性が 高かったリン酸カリウム緩衝液 ρΗ9での酸化活性を 100%とした場合の、各緩衝液、 及び pHでの酸化活性を相対活性として算出し、表 4にまとめた。相対活性値が 60% 以上の値を示す pH域は、 pH7. 5〜pH9. 5であった。
[表 4] 緩衝液 PH 相対活性 (%)
7 47.5
卜リス—塩酸 7.5 60.2
緩衝液 8 84.6
8.5 87.8
9 100.0
6 41.1
リン酸カリウム 6.5 44.3
緩衝液 7 52.9
7.5 69.8
8 76.5
9 67.7
グリシン一水酸化ナトリウム 9.5 61.9
緩衝液 10 39.0
10.5 34.1
[0139] [安定 pH範囲]
50mMトリス塩酸緩衝液(ρΗ8· 0〜ρΗ9. 0)及び 50mMブリットン—ロビンソン緩 衝液(ρΗ5· 0〜ρΗ12. 0)中、 RMAを 30°Cで 30分間処理した。その後、(S)—2 ーブタノールに対する酸化活性を測定した。処理前の活性値を 100%とした場合の 、各処理後での酸化活性を相対活性として算出し、表 5にまとめた。相対活性値が 8 0%以上の値を示す pH域は、 ρΗ5· 5〜ρΗ7. 5であった。
[0140] [表 5] 緩衝液 pH 相対活性 (%)
4 21
5 56
5.5 81
6 87
6.5 89
ブリットン-ロビンソン 7 83
緩衝液 7.5 81
8 42
8.5 5
9 1
9.5 0
トリス一塩酸 8 59
緩衝液 8.5 32
9 16 [0141] [阻害剤]
RMAを表 6記載の各種試薬の存在下、 30°Cで 30分間処理した。なお、処理時の 各試薬濃度は表 6に記載した。その後、前記の [アルコール化合物に対する酸化能 力の評価方法]に記載の方法により、 (S) 2—ブタノールに対する酸化活性を測定 した。未処理の活性値を 100%とした場合の、各処理後での酸化活性を相対活性と して算出し、表 6にまとめた。 RMAは、エチレンジァミン 4酢酸、 o フエナント口リン、 塩化水銀、硫酸銅、硫酸亜鉛で阻害されたが、 2—メルカプトエタノール、ジチオスレ ィトールには阻害されない。
[0142] [表 6] 阻害剤 阻害剤処理濃度 相対活性
(mM) _ ― (%)
クロ卜ン酸 50 10.4
フエニルメタンスルホニルフルオリド 1 96.0
N—ェチルマレイミド 1 94.7
ョ一ド酢酸 1 78.9
エチレンジァミン 4酢酸 1 12.9
-フエナント口リン 1 0.0
HgCI2 1 0.0
CuS04 1 28.5
ZnS04 1 23.1
ジチオスレイト一ル 1 92.2
-メルカプトエタノール 1 95.4
パラヒドロキシ安息香酸 1 91.5
パラクロロ水銀安息香酸 0Ό5 96.3
ΝΗ2ΟΗ 0.01 96.1
[0143] [分子量]
RMAの還元 SDSポリアクリルアミド電気泳動における分子量は、分子量標準蛋白 質との移動度の差から、約 39, 000と算出された。
[0144] (実施例 3) RMAのカルボニル還元活件の某晳特 件
0. 3% (ν/ν)のジメチルスルホキシドを含む lOOmMリン酸緩衝液(ρΗ6· 5)に、 基質となるカルボニル化合物を終濃度 1. 5mM、補酵素 NADHを終濃度 0. 25mM となるようそれぞれ溶解した。これに、実施例 1で調製した精製 RMAを適当量添加し 、 30°Cで 3分間反応を行った。当該反応液の波長 340nmにおける吸光度の減少速 度から、各カルボニル化合物に対する還元活性を算出し、これをァセトフエノンに対 する活性を 100%とした場合の相対値で表し、表 7に示した。表 7から明らかなように 、 RMAは広範なカルボニル化合物に対して還元活性を示した。
[表 7] 相対活性 カルポニル化合物 相対活性 カルポニル化合物
(%) (%)
Acetone 28 2-Phenyipropionalde yde 37
2-Butanone 54 3-Phenylpropionaldehyde 112
2-Pentanone 141 Propionaldehyde 39
2-Hexanone 87 η-Butyraldehyde 117
2-Heptanone 82 n-Hexylaldehyde 117
2-0ctanone 95 Glutaraldehyde 9
3-Octanone 3 Benzalde yde 29
Chloroacetone 92 m-Chlorobenzaldehyde 87 p-Chlorobenzaldehyde 51
4-Methyl-2-pentanone 70 o-Nitrobenzaldehyde 29
Methyl iso - propyl ketone 4 m-Nitrobenzaldehyde 28
Methyl vinyl ketone 94 p-Nitrobenzaldehyde 27
Cyclopentanone 10 2-Pyridinecarbaldehyde 11
Aceto henone 100 4-Pyridtnecarbaldehyde 5 o-Chloroacetophenone 2
o-Methoxyacetophenone 10 Methyl pyruvate 71 o-Hydroxyacetophenone 9 Ethyl pyruvate 87 m-Chloroacetophenone 130 Methyl 2-oxodecanate 2 m-Methoxyacetophenone 111 Ethyl 4-c h I oroaceto acetate 52 m-Hydroxyacetophenone 12 Methyl 4-chloroacetoacetate 35 m-N itroacetopheno n e 89 Ethyl 3-oxobutanoate 93 p-Chloroacetophenone 130 Ethyl 3-oxohexanate 2 p-Fiuoroacetophenone 110 Benzyl acetoacetate 115 p- ethylacetophenone 91 n-Octyl 4-chloroacetoacetate 24
Ethyl 4-acetylbenzoate 70 Ethyl 4-azi dea ceto a c e ta te 21
2-Chloro-1-(3'-chrolop enyl)et anone 20 Ethyl 4-b en zy lo xya c et oa c etat e 10
Benzylacetone 33 Ethyl 2-c h ro lo a c β toa c etat e 26 tert-Butyl acetoacetate 88
2-Acetylpyridine 63 Methyl acetoacetate 66
3 - Acetyl pyridine 19
4一 Acetyl pyridine 83 Acetoacetoanilide 1
5-Acetytfuro[2.3-c]pyridine 63 o-Acetoacetanisidide 35
Acetylpyrazine 76 N-Acetoacetyl-p-toluidine 2
2-Acetylfuran 8 4'-Chroloacetoacetanilide 4
Tetra ydrothiophen-3-one 4 2',5 -Dichloro acetoacetanilide 34
Acetoacetamide 10
3 - Chlor。- 2,4 - pentadione 43
Acethylacetone 19
diacethyl 24
[0146] (実施例 4) RMAをコードする DNAの敗得
(PCRプライマーの作製)
実施例 1で得られた精製 RMAを 8M尿素存在下で変性した後、ァクロモパクター 由来のリシルエンドぺプチダーゼ(和光純薬工業株式会社製)で消化し、得られたぺ プチド断片のアミノ酸配列を ABI492型プロテインシーケンサー(パーキンエルマ一 社製)により決定した。このアミノ酸配列から予想される DNA配列に基づき、 RMAを コードする遺伝子の一部を PCRにより増幅するためのプライマー 1: 5'— GGTGAT TGGTTYGGTTTRGG— 3' (配列表の配列番号 3)、および、プライマー 2 : 5'— S WAGCACCYAAACCAACTGG- 3' (配列表の配列番号 4)を合成した。
[0147] (PCRによる遺伝子の増幅) 実施例 1 同様に培着したキャンディダ ·マルトーサ(Candida maltosa) IFO 1977 株の菌体から Genとるくん™ (タカラバイオ社製)を用い、取り扱い説明書に従って染 色体 DNAを抽出した。次に、上記で調製した DNAプライマー 1および 2を用い、得 られた染色体 DNAを铸型として PCRを行ったところ、 目的遺伝子の一部と考えられ る約 0. 5kbpの DNA断片が増幅された。 PCRは、 DNAポリメラ一ゼとして TaKaRa
Ex Taq (タカラバイオ社製)を用いて行い、反応条件はその取り扱い説明書に従 つた。この DNA断片を、 BigDye Terminator Cycle Sequencing Kit (ァプラ イドバイオシステムズ社製)および Applied Biosystems 3130x1 ジェネティックァ ナライザ(アプライドバイオシステムズ社製)を用いてダイレクトシーケンスを行!/、、そ の塩基配列を解析した。その結果判明した塩基配列を、配列表の配列番号 5に示し た。
[0148] (inverse PCR法による目的遺伝子の全長配列の決定)
上記で調製したキャンディダ ·マルトーサ(Candida maltosa) IFO 1977株の染色 体 DNAを、制限酵素 Bgll又は Muni又は Xbalで完全消化し、得られた DNA断片 の混合物を T4リガーゼにより分子内環化させた。これを铸型として用い、インバース PCR法(Nucl. Acids Res., 16, 8186 (1988))により、上述の配列番号 5に示す塩基配 列を含む RMA遺伝子の全塩基配列を決定した。その結果を配列表の配列番号 2に 示した。インバース PCRは、 DNAポリメラーゼとして Pyrobest DNA Polymerase (タカラバイオ社製)を用いて行い、反応条件はその取り扱い説明書に従った。また、 配列番号 2に示した塩基配列がコードするアミノ酸配列を配列番号 1に示した。
[0149] (実施例 5)組換えベクター DNCMの構築 3' (配列表の配列番号 6)、プライマー 4: 5'— CCGGAATTCTTATGGATGG AAAACAACTCTACC 3' (配列表の配列番号 7)を用い、キャンディダ .マルトー サ (Candida maltosa) IFO 1977株の染色体 DNAを铸型として PCRを行った。その 結果、配列表の配列番号 2に示す塩基配列からなる遺伝子の開始コドン部分に Nde I認識部位が付加され、かつ終始コドンの直後に EcoRI認識部位が付加された二本 鎖 DNAを得た。 PCRは、 DNAポリメラーゼとして、 Pyrobest DNA Polymerase (タカラバイオ社製)を用いて行い、反応条件はその取り扱!/、説明書に従った。
[0150] 上記の PCRで得られた DNA断片を Ndel及び EcoRIで消化し、プラスミド pUCNl 8 (PCR法により pUC18 (タカラバイオ社製、 GenBank Accession No. L09136 )の 185番目の Tを Aに改変して Ndelサイトを破壊し、更に 471— 472番目の GCを T Gに改変することにより新たに Ndelサイトを導入したプラスミド)の lacプロモーターの 下流の Ndel認識部位と EcoRI認識部位の間に挿入し、組換えベクター pNCMを構 築した。 pNCMの作製法および構造を図 1に示す。
[0151] (実施例 6) グルコース脱水素酵素遺伝子をさらに含む組換えベクター DNCMG の構築
3' (配列表の配列番号 8)と、プライマー 6: 5' ACGCGTCGACTTATCCGCGT CCTGCTTGG— 3' (配列表の配列番号 9)を用い、プラスミド pGDKl (Eur. J. Bioc hem., 186, 389 (1989)に記載の方法で当業者が取得及び調製可能)を铸型として P CRを行い、バシラス'メガテリゥム(Bacillus megaterium) IAM1030株由来のダルコ ース脱水素酵素(以後、 GDHと呼ぶ)遺伝子の開始コドンから 5塩基上流に大腸菌 のリボゾーム結合配列が、さらにその直前に EcoRI認識部位が付加され、かつ、終 止コドンの直後に Sail認識部位が付加された、二本鎖 DNAを取得した。
[0152] 得られた DNA断片を EcoRIおよび Sailで消化し、実施例 5記載のプラスミド pNC Mの RMA遺伝子の下流の EcoRI認識部位と Sail認識部位の間に挿入し、組換え ベクター pNCMGを構築した。 pNCMGの作製法および構造を図 1に示す。
[0153] (実施例 7) ギ酸脱水素酵素遺伝子をさらに含む組換えベクター DNCMFTの構 鎏
A- 3' (配列表の配列番号 10)、プライマー 8: 5' -CCACCAGAGCTCTCAGCC GGCCTTCTTGAAC 3' (配列表の配列番号 11)、プライマー 9: 5'—TCGGCG TCGACGAGTTCCTTCTCGAACAC 3' (配列表の配列番号 12)プライマー 1 番号 13)を用い、プラスミド pFT002 (国際公開公報 2003/031626号パンフレットに記 載の方法で当業者が取得及び調製可能)を铸型として PCRを行った。プライマー 7と 9の組合せ、及び、プライマー 8と 10の組合せで、それぞれ約 0. 3kbp、 0. 9kbpの 二本鎖 DNAが得られた。次に、これらの二本鎖 DNAを混合したものを铸型として、 プライマー 7と 8の組合せで PCRを行った。その結果、国際公開公報 2003/031626号 パンフレットの配列表配列番号 3に示す塩基配列の 354番目の Gを Aに改変した、チ ォバシラス ·エスピー(Thiobacillus sp.)のギ酸脱水素酵素(以後、 FDHと呼ぶ)遺伝 子の開始コドンから 5塩基上流に大腸菌のリボゾーム結合配列力 さらにその直前に EcoRI認識部位が付加され、かつ、終止コドンの直後に Sacl認識部位が付加された 二本鎖 DNAを取得した。得られた DNA断片を EcoRIおよび Saclで消化し、実施例 5記載のプラスミド pNCMの RMA遺伝子の下流の EcoRI認識部位と Sacl認識部位 の間に挿入し、組換えベクター pNCMFTを構築した。 pNCMFTの作製法および構 造を図 1に示す。
[0154] ( ¾ 8)开 ¾云^本のィ乍
実施例 5で構築した組換えベクター pNCMを用いて、 £. coH HB101コンビテント セル(タカラバイオ社製)を形質転換し、 E. coH HBlOl (pNCM)を得た。
[0155] また同様に、実施例 6で構築した組換えベクター pNCMGを用いて、 £. coH HB1 01コンビテントセル(タカラバイオ社製)を形質転換し、 £· coH HBlOl (pNCMG) を得た。
[0156] さらに、実施例 7で構築した組換えベクター pNCMFTを用いて、 £. ssli HB101 コンビテントセル(タカラバイオ社製)を形質転換し、 · coli HBlOl (pNCMFT)を 得た。
[0157] (実施例 9) 形晳転換体における DNAの発現
実施例 8で得た 3種の形質転換体、および、ベクタープラスミド pUCN18を含む形 質転換体である coli HB101 (pUCN18) (比較例)のそれぞれを、 200 μ g/ml のアンピシリンを含む 2 XYT培地(トリプトン 1 · 6%、イーストエキス 1. 0%, NaClO. 5%、 pH7. 0) 5mlに接種し、 37°Cで 24時間振盪培養した。遠心分離により菌体を 集め、 5mlの lOOmMリン酸緩衝液(ρΗ6· 5)に懸濁した。これを、 UH— 50型超音 波ホモゲナイザー(SMT社製)を用いて破砕した後、遠心分離により菌体残渣を除 去し、無細胞抽出液を得た。この無細胞抽出液の RMAによるァセトフエノン還元活 性、 GDH活性および FDH活性を測定した。
[0158] ァセトフエノンに対する還元活性は、前述の [ケトン化合物もしくはアルデヒド化合物 に対する還元能力の評価方法]に記載の方法で実施した。 GDH活性は、 1Mトリス 塩酸緩衝液(pH8. 0)に、グルコース 0. 1M、補酵素 NAD2mM、および粗酵素液 を添加して 25°Cで 1分間反応を行い、波長 340nmにおける吸光度の増加速度より 算出した。 FDH活性は、 lOOmMリン酸緩衝液(pH7. 0)に、ギ酸 0. 5M、補酵素 N AD2mM、および粗酵素液を添加して 30°Cで 1分間反応を行い、波長 340nmにお ける吸光度の増加速度より算出した。この反応条件において、 1分間に l ^ molの N ADを NADHに還元する酵素活性を 1Uと定義した。
[0159] RMA、 GDHおよび FDHを比活性として表 8にまとめた。表 8に示すように実施例 8 で得られた 3種の形質転換体のいずれにおいても、ァセトフエノン還元活性を有し、 R MAの発現が認められた。また、 GDH遺伝子を含む £. coH HB101 (pNCMG)で は、 GDHの発現力 FDH遺伝子を含む £· coH HB101 (pNCMFT)では、 FDH の発現が、それぞれ認められた。
[0160] [表 8] 菌株 RMA比活性 GDH比活性 FDH比活性
(U/mg) (U/mg) (U/mg)
E . c oli HB101 0 0 0
E . c oli HB101(pUCN18) 0 0 0
E . c oli HBIOKpNC ) 21.6 0 0
E . c oli HBIOKpNCMG) 17.7 42.5 0
E . c oli HB101(pNC FT) 14.7 0 3.4
[0161] (実施例 10) 形晳転椽体 E. coli HB I O I (ONCM)を用いた(S)—フエニルエタ ノールの製造
E. coH HB101 (pNCM)を実施例 9と同様に培養後、超音波ホモゲナイザーに よる菌体破砕を実施し、無細胞抽出液 100mlを得た。この無細胞抽出液 100mlに、 グルコース脱水素酵素(商品名: GLUCDH〃Amano"II、天野ェンザィム社製) 700 U、グノレコース 17g、 NAD+3mg、ァセトフエノン 10gを添カロし、 5Nの水酸ィ匕ナトリウム 水溶液を滴下することにより PH6. 5に調整しながら、 30°Cで 20時間攪拌した。反応 終了後、反応液をトルエンで抽出し、得られた有機層を無水硫酸ナトリウムで乾燥し た。硫酸ナトリウムを除去後、減圧下で有機溶媒を留去することにより、 (S) フエ二 ルエタノール 9. 8gを得た。先に記載の [ガスクロマトグラフィーによる分析条件(1) ] で測定したところ、その光学純度は 99· 9%e. e.以上であった。
[0162] (実施例 1 1 ) 形晳転換体 E. coli HB I O I (DNCMG)を用いた(S) フエニルェ タノールの製造
E. coli HBlOl (pNCMG)を実施例 9と同様に培養することで培養液を取得した 。培養 ί夜 100mlにグノレコース 17g、 NAD+3mg、ァセ卜フエノン 10gを添カロし、 5Nの 水酸化ナトリウム水溶液を滴下することにより pH6. 5に調整しながら、 30°Cで 20時 間攪拌した。反応終了後、反応液をトルエンで抽出し、得られた有機層を無水硫酸 ナトリウムで乾燥した。硫酸ナトリウムを除去後、減圧下で有機溶媒を留去することに より、(S)—フエニルエタノール 9· 9gを得た。先に記載の [ガスクロマトグラフィーによ る分析条件(1) ]で測定したところ、その光学純度は 99· 9%e. e.以上であった。
[0163] (実施例 12) 形晳転椽体 E. coli HB 101 (ONCMFT)を用いた(S) フエニル エタノールの製造
E. coli HBlOl (pNCMFT)を実施例 9と同様に培養することで培養液を取得し た。培養液 100mlにギ酸ナトリウム 2· 8g、 NAD+3mg、ァセトフエノン 10gを添加し、 5Nのギ酸水溶液を滴下することにより pH6. 0に調整しながら、 30°Cで 20時間攪拌 した。反応終了後、反応液をトルエンで抽出し、得られた有機層を無水硫酸ナトリウ ムで乾燥した。硫酸ナトリウムを除去後、減圧下で有機溶媒を留去することにより、 (S )—フエニルエタノール 9. 8gを得た。先に記載の [ガスクロマトグラフィーによる分析 条件(1) ]で測定したところ、その光学純度は 99· 9%e. e.以上であった。
[0164] (実施例 13) 形晳転換体 E. coli HB101 (DNCM)を用いた(S)— 3 ブテン
2—オールの製造
E. coli HB101 (pNCM)を実施例 9と同様に培養後、超音波ホモゲナイザーに よる菌体破砕を実施し、無細胞抽出液 100mlを得た。この無細胞抽出液 100mlに、 グルコース脱水素酵素(商品名: GLUCDH〃Amano"II、天野ェンザィム社製) 200 0U、グノレ ース 18. 4g、 NAD+10mgを添カロし、 30。Cで ί覺持した。これにメチノレビュ ルケトン 1 · 05gを加え、 5Nの水酸化ナトリウム水溶液を滴下することにより ρΗ5· 5に 調整しながら、 30°Cで攪拌を続けた。更に、メチルビユルケトン 1. 05gを 15分おきに 5回添加した(メチルビ二ルケトンの総添加量は 6. 3g)。 19時間の反応ののち、反応 液を 200mlの塩化メチレンで 5回抽出し、得られた有機層をあわせて、無水硫酸ナト リウムで乾燥した。ろ過によって硫酸ナトリウムを除去し、常圧下有機溶媒を留去した のち、常圧で蒸留し、 4. 5gの(S)— 3 ブテン— 2—オールを得た (沸点 96°C)。こ のものの光学純度は、 99. 6%e. e.であった。なお、(S)—3 ブテンー2 オール の生成量は、下記のガスクロマトグラフィー条件で分析することにより決定した。
[0165] [ガスクロマトグラフィー分析条件]
カラム: GLサイエンス株式会社製 InertCap5 (30m X 0. 25mm) 検出: FID
キャリアーガス:ヘリウム
カラム温度: 35°C
また、生成した 3 ブテン 2 オールの光学純度は、ジニトロベンゾィル化後、 H PLC分析することにより測定した。 3 ブテン 2 オールのジニトロベンゾィル化は 、反応液から 3 ブテン 2 オールを塩化メチレンで抽出後、トリェチルァミン及び 3, 5 ジニトロ塩化ベンゾィルを 3 ブテン 2 オールの 1. 2等量添加後、室温で 2時間攪拌することにより行なった。 1規定塩酸で洗浄後、分取用薄層クロマトグラフ ィ一により精製取得し、これをエタノールに溶解後、下記の高速液体クロマトグラフィ 一条件で分析した。
[0166] [高速液体クロマトグラフィー分析条件]
カラム:ダイセル化学工業株式会社製 Chiralpak AD— H
(250mm X 4. り mmノ
溶離液: n へキサン/エタノール = 7/3
流速: 1. Oml/ min
検出: 245應
溶出時間: S体 17. 2分、 R体 11. 0分
[0167] (実施例 14) 形晳転換体 E. coli HB101 (DNCMG)を用いた(S)— 3 ブテン —2—オールの製 i告 E. coli HBlOl (pNCMG)を実施例 9と同様に培養することで培養液を取得した 。培養 ί夜 lOOmUこ、グノレコース 7· lg、 NAD+10mg、 5gのエマノレゲン 810 (花王製) を添加し、 30°Cで 10分間攪拌した。これにメチルビ二ルケトン 2. 63gを加え、 5Nの 水酸化ナトリウム水溶液を滴下することにより pH5. 5に調整しながら、 30°Cで攪拌を 続けた。 3時間の反応ののち、反応液を 200mlの塩化メチレンで 5回抽出し、得られ た有機層をあわせて、無水硫酸ナトリウムで乾燥した。ろ過によって硫酸ナトリウムを 除去し、常圧下有機溶媒を留去したのち、常圧で蒸留し、 2. 54gの(S)— 3 ブテン 2 オールを得た。このものの光学純度は、 99· 2%e. e.であった。なお、(S)— 3 ブテン 2 オールの生成量及び光学純度は、実施例 13に記載の方法により fiなった。
[0168] (実施例 15) 形晳転椽体 E. coli HB101 (ONCMFT)を用いた(S)— 3 ブテ ンー 2—オールの製造
E. coli HBlOl (pNCMFT)を実施例 9と同様に培養することで培養液を取得し た。培養液 100mlにギ酸ナトリウム 1 · 94g、 NAD+10mgを添加し、 30°Cで攪拌した 。これにメチルビ二ルケトン 0. 525gをカロえ、 5Nのギ酸水溶液を滴下することにより p H5. 5に調整しながら、 30°Cで攪拌を続けた。更に、メチルビ二ルケトン 0. 525gを 3 0分おきに 7回添加した(メチルビ二ルケトンの総添加量は 4. 2g)。 19時間の反応の のち、反応液を 200mlの塩化メチレンで 5回抽出し、得られた有機層をあわせて、無 水硫酸ナトリウムで乾燥した。ろ過によって硫酸ナトリウムを除去し、常圧下有機溶媒 を留去したのち、常圧で蒸留し、 3. 94gの(S)—3 ブテンー2 オールを得た。こ のものの光学純度は、 96. 3%e. e.であった。なお、(S)—3 ブテンー2 ォーノレ の生成量及び光学純度は、実施例 13に記載の方法により行なった。
[0169] (実施例 16) 形晳転換体 E. coli HB101 (DNCMG)を用いた(S)— 2 ヒドロ キシー 5—ペンタノールの製造
E. coli HBlOl (pNCMG)を実施例 9と同様に培養することで培養液を取得した 。培養液 50mlに、グルコース 21 · 2g、 NAD+2. 5mg及び 2 ォキソ 5 ペンタノ 一ノレ 10. 0gを加えて、 5Nの水酸化ナトリウム水溶液を滴下することにより ρΗ6· 5に 調整しながら 30°Cで攪拌を続けた。 45時間の反応ののち、反応液から遠心分離に より菌体を除去した。その溶液を酢酸ェチル 200mlで 3回抽出し、得られた有機層を あわせて、無水硫酸ナトリウムで乾燥した。ろ過によって硫酸ナトリウムを除去し、常 圧下有機溶媒を留去したのち、溶媒を留去することにより、 8. 68gの(S)— 2 ヒドロ キシ 5 ペンタノールを得た。このものの光学純度は、 99· 2%e. e.であった。な お、 (S)—2 ヒドロキシー5 ペンタノールの生成量は下記のガスクロマトグラフィー 条件 (a)で、また、光学純度は下記のガスクロマトグラフィー条件 (b)で分析すること により決定した。
[0170] [ガスクロマトグラフィー分析条件 ω]
カラム: GLサイエンス株式会社製 InertCap5 (30mX 0. 25mm) 検出: FID
キャリアーガス:ヘリウム
カラム温度: 80°C
[0171] [ガスクロマトグラフィー分析条件 (b) ]
カラム: GLサイエンス株式会社製 InertCap CHIRAMI
X (30m X 0. 25mm)
検出: FID
キャリアーガス:ヘリウム
カラム温度: 90°C
溶出時間: S体 17. 2分、 R体 18. 3分
[0172] (実施例 17) 形晳転換体 E. coli HB101 (DNCMFT)を用いた(S)— 3 ヒドロ キシ酪酸メチルの製造
E. coli HBlOl (pNCMFT)を実施例 9と同様に培養することで培養液を取得し た。培養液 100mlにギ酸ナトリウム 2· 8g、 NAD+3mg、ァセト酢酸メチル 10gを添加 し、 5Nのギ酸水溶液を滴下することにより pH6. 0に調整しながら、 30°Cで 20時間 攪拌した。反応終了後、反応液をトルエンで抽出し、得られた有機層を無水硫酸ナト リウムで乾燥した。硫酸ナトリウムを除去後、減圧下で有機溶媒を留去することにより 、 (S)— 3—ヒドロキシ酪酸メチル 9· 7gを得た。このものの光学純度は、 99%e. e. 以上であった。なお、(S)— 3—ヒドロキシ酪酸メチルの生成量は、下記のガスクロマ トグラフィー条件で分析し算出した。
[0173] [ガスクロマトグラフィー分析条件]
カラム: TC— WAX (15mX 0. 25mm) (GLサイエンス社製)
検出: FID
カラム温度: 85°C
注入温度: 200°C
検出温度: 200°C
キャリアーガス:ヘリウム(70kPa)
スプリット比: 100/1
溶出時間:ァセト酢酸メチル 2. 9分、 3—ヒドロキシ酪酸メチノレ 3. 8分
[0174] また、生成した(S)— 3—ヒドロキシ酪酸メチルの光学純度は、ジニトロベンゾィル化 後、下記の高速液体クロマトグラフィー条件で分析することにより測定した。 3—ヒドロ キシブタン酸メチルのジニトロベンゾィル化は、反応液から 3—ヒドロキシブタン酸メチ ルを酢酸ェチルで抽出後、ピリジン及び 3, 5—ジニトロ塩化ベンゾィルを 3—ヒドロキ シ酪酸メチルの 1. 2当量添加後、室温で 2時間攪拌することにより行なった。 1規定 塩酸で洗浄後、分取用薄層クロマトグラフィーにより精製取得し、これをエタノールに 溶解後、下記 HPLC条件で分析した。
[0175] [高速液体クロマトグラフィー分析条件]
カラム: Chiralpak AD— H (ダイセル化学社製)
検出波長: 230nm
カラム温度: 20°C
溶離液: n—へキサン/エタノール = 3/7
流速: 0. 7ml/ min
溶出時間: S体 21. 7分、 R体 29. 8分

Claims

請求の範囲
[1] 以下の(A)、 (B)、 (C)又は(D)の DNA:
(A)配列表の配列番号 2に示す塩基配列を含む DNA;
(B)配列表の配列番号 2に示す塩基配列と相補的な塩基配列を含む DNAとストリ ンジェントな条件下でハイブリダィズし、かつァセトフエノンに作用して、 S体の 1 フエ ニルエタノールへ還元する活性を有するポリペプチドをコードする DNA;
(C)配列表の配列番号 2に示す塩基配列と 85%以上の配列同一性を示し、かつ ァセトフエノンに作用して、 S体の 1 フエニルエタノールへ還元する活性を有するポ リペプチドをコードする DNA ;
(D)配列表の配列番号 2に示す塩基配列において、 1もしくは複数個の塩基が欠 失、揷入、置換及び/または付加した塩基配列からなり、かつァセトフヱノンに作用し て、 S体の 1 フエニルエタノールへ還元する活性を有するポリペプチドをコードする DNA。
[2] 次の(1)〜(6)に示す理化学的性質を有するポリペプチド:
(1)作用:
NAD+を補酵素としてアルコールを酸化して、ケトン又はアルデヒドを生成し、また、 NADHを補酵素としてケトン又はアルデヒドを還元して、アルコールを生成する;
(2)基質特異性:
芳香族置換を含む脂肪族アルコールを酸化反応の基質とし、 2—ブタノールの R体 に比較して S体を優先的に酸化し、ケトン及びアルデヒドを還元反応の基質とし、ァセ トフエノンに作用し、 S体の 1 フエニルエタノールへ還元する;
(3)分子量:
還元 SDSポリアクリルアミド電気泳動において約 39, 000の分子量を示す;
(4) pH安定性:
pHの安定域は、 ρΗ5· 5〜7· 5の範囲である;
(5)至適温度:
作用至適温度は、 45°C〜70°Cである;
(6)阻害剤: エチレンジァミン 4酢酸、 o フエナント口リン、塩化水銀、硫酸銅及び硫酸亜鉛で 酵素活性が阻害されるが、 2—メルカプトエタノール、ジチオスレィトールには阻害さ れなレ、。
[3] キャンディダ(Candida)属に属する微牛物に由夹すろ、請求項 2に記載のポリぺプ チド。
[4] 前記微生物が、キャンディダ 'マルトーサ (Candida maltosa)である請求項 3に記載 のポリペプチド。
[5] 以下の(a)〜(d)のレ、ずれかに記載のポリペプチド:
(a)配列表の配列番号 1に示すアミノ酸配列からなるポリペプチド、
(b)配列表の配列番号 1に示すアミノ酸配列において、 1もしくは複数個のアミノ酸 が欠失、揷入、置換及び/または付加したアミノ酸配列からなり、かつァセトフエノン に作用して、 S体の 1 フエニルエタノールへ還元する活性を有するボリペプチド、
(c)配列表の配列番号 1に記載のアミノ酸配列と 85%以上の配列同一性を持つァ ミノ酸配列からなり、かつァセトフエノンに作用して、 S体の 1 フエニルエタノールへ 還元する活性を有するポリペプチド、
(d)請求項 1に記載の DNAがコードするポリペプチド。
[6] 請求項 2〜5のいずれ力、 1項に記載のポリペプチドをコードする DNA。
[7] 請求項 1もしくは請求項 6のいずれかに記載の DNAを含むベクター
[8] 還元型補酵素再生能を有するポリペプチドをコードする DNAをさらに含む、請求 項 7に記載のベクター。
[9] 還元型補酵素再生能を有するポリペプチドがグルコース脱水素酵素もしくはギ酸脱 水素酵素である、請求項 8に記載のベクター。
[10] 請求項 7〜9のいずれかに記載のベクターにより宿主細胞を形質転換して得られる 形質転換体。
[11] 前記宿主細胞が大腸菌である請求項 10記載の形質転換体。
[12] 請求項 2〜5のいずれかに記載のポリペプチド、又は、請求項 10もしくは請求項 11 に記載の形質転換体および/またはその処理物を、カルボ二ル基を有する化合物 に作用させることを特徴とする、アルコールの製造方法。 前記カルボ二ル基を有する化合物が非対称ケトンであり、その産物が光学活性ァ ルコールである、請求項 12に記載のアルコールの製造方法。
前記非対称ケトンが、下記式(1):
[化 1]
Figure imgf000041_0001
(式中、
Figure imgf000041_0002
R2は水素原子、ハロゲン原子、水酸基、置換されていても良いアルコキ シ基、置換されていても良いアルキル基、アミノ基、またはニトロ基を示し、それぞれ 同一でも異なっていてもよい。また R3は水素原子、ハロゲン原子、水酸基、又は置換 されて!/、てもよ!/、アルキル基を示す)で表される 1 フエニルエタノン誘導体であり、 その産物である光学活性アルコール力 下記式(2):
[化 2]
Figure imgf000041_0003
(式中、
Figure imgf000041_0004
Rは前記と同じ)で表される光学活性 1 フエニルェタノ である、請求項 13に記載のアルコールの製造方法。
R3が水素原子である、請求項 14に記載のアルコールの製造方法。
前記非対称ケトンが、下記式 (3):
[化 3]
Figure imgf000041_0005
(式中、 R4は置換されていても良いアルキル基、置換されていても良いアルケニル基 もしくは置換されて!/、ても良レ、アルキニル基を示す)で表されるメチルケトン化合物で あり、その産物である光学活性アルコール力 下記式(4):
[化 4]
Figure imgf000042_0001
(式中、 R4は前記と同じ)で表される光学活性 1 置換 1 エタノール誘導体である
、請求項 13に記載のアルコールの製造方法。
[17] R4がハロゲン原子、水酸基、アルコキシ基、アルコキシカルボニル基、アミノ基、ま たはニトロ基で置換されていても良い炭素数 1〜7のアルキル基である、請求項 16に 記載のアルコールの製造方法。
[18] R4がビュル基である、請求項 16に記載のアルコールの製造方法。
PCT/JP2007/072813 2006-11-29 2007-11-27 Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them WO2008066018A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07832538.8A EP2096165B1 (en) 2006-11-29 2007-11-27 Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them
JP2008546989A JP5308163B2 (ja) 2006-11-29 2007-11-27 新規アルコール脱水素酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
US12/516,388 US8129163B2 (en) 2006-11-29 2007-11-27 Gene suitable for alcohol dehydrogenase, vector and transformant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321139 2006-11-29
JP2006321139 2006-11-29

Publications (1)

Publication Number Publication Date
WO2008066018A1 true WO2008066018A1 (en) 2008-06-05

Family

ID=39467806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072813 WO2008066018A1 (en) 2006-11-29 2007-11-27 Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them

Country Status (5)

Country Link
US (1) US8129163B2 (ja)
EP (1) EP2096165B1 (ja)
JP (1) JP5308163B2 (ja)
SG (1) SG177149A1 (ja)
WO (1) WO2008066018A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063843A1 (ja) 2010-11-09 2012-05-18 株式会社カネカ ハロゲン化インデノン類及びそれを用いた光学活性インダノン類又は光学活性インダノール類の製造方法
WO2013002277A1 (ja) 2011-06-28 2013-01-03 株式会社カネカ 酵素機能改変方法及びその変異体
US9315782B2 (en) 2010-01-20 2016-04-19 Kaneka Corporation Isolated DNA encoding protein having improved stability

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012007583A (es) 2009-12-29 2012-07-30 Butamax Tm Advanced Biofuels Alcohol deshidrogenasas (adh) utiles para la produccion fermentativa de alcoholes alquilicos de cadena corta.
CN110914446B (zh) 2017-07-14 2024-02-06 C-乐克塔股份有限公司 酮还原酶

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103697A (ja) * 1991-10-17 1993-04-27 Toyobo Co Ltd アンモニウムイオン消去用組成物
JPH07231785A (ja) * 1993-09-24 1995-09-05 Daicel Chem Ind Ltd 新規な酵素、該酵素を製造する方法、該酵素をコードするdna、該dnaを含む形質転換体、該酵素による光学活性アルコール等の製造方法
JP2003169696A (ja) * 2001-12-05 2003-06-17 Toyobo Co Ltd 生体成分の測定方法およびそれに用いる試薬組成物
JP2005102511A (ja) * 2003-09-26 2005-04-21 Kaneka Corp 新規アルコール脱水素酵素、その遺伝子
JP2005533497A (ja) * 2002-07-20 2005-11-10 デグサ アクチエンゲゼルシャフト 2相のアルコールデヒドロゲナーゼをベースとする共役酵素反応系

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334507A (en) * 1991-09-20 1994-08-02 Toyo Boseki Kabushiki Kaisha Composition for measurement of potassium ion concentration and composition for elimination of ammonium ions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103697A (ja) * 1991-10-17 1993-04-27 Toyobo Co Ltd アンモニウムイオン消去用組成物
JPH07231785A (ja) * 1993-09-24 1995-09-05 Daicel Chem Ind Ltd 新規な酵素、該酵素を製造する方法、該酵素をコードするdna、該dnaを含む形質転換体、該酵素による光学活性アルコール等の製造方法
JP2003169696A (ja) * 2001-12-05 2003-06-17 Toyobo Co Ltd 生体成分の測定方法およびそれに用いる試薬組成物
JP2005533497A (ja) * 2002-07-20 2005-11-10 デグサ アクチエンゲゼルシャフト 2相のアルコールデヒドロゲナーゼをベースとする共役酵素反応系
JP2005102511A (ja) * 2003-09-26 2005-04-21 Kaneka Corp 新規アルコール脱水素酵素、その遺伝子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2096165A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315782B2 (en) 2010-01-20 2016-04-19 Kaneka Corporation Isolated DNA encoding protein having improved stability
US9376667B2 (en) 2010-01-20 2016-06-28 Kaneka Corporation Protein having NADH and/or NADPH oxidase activity
WO2012063843A1 (ja) 2010-11-09 2012-05-18 株式会社カネカ ハロゲン化インデノン類及びそれを用いた光学活性インダノン類又は光学活性インダノール類の製造方法
WO2013002277A1 (ja) 2011-06-28 2013-01-03 株式会社カネカ 酵素機能改変方法及びその変異体
CN103717734A (zh) * 2011-06-28 2014-04-09 株式会社钟化 酶功能改变方法及其突变体
JPWO2013002277A1 (ja) * 2011-06-28 2015-02-23 株式会社カネカ 酵素機能改変方法及びその変異体
US9416350B2 (en) 2011-06-28 2016-08-16 Kaneka Corporation Enzyme function modification method and enzyme variant thereof

Also Published As

Publication number Publication date
US20100035317A1 (en) 2010-02-11
US8129163B2 (en) 2012-03-06
EP2096165A1 (en) 2009-09-02
JPWO2008066018A1 (ja) 2010-03-04
EP2096165B1 (en) 2016-08-24
JP5308163B2 (ja) 2013-10-09
EP2096165A4 (en) 2010-03-10
SG177149A1 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
JP4757804B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4651896B2 (ja) (r)−2−オクタノール脱水素酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法
EP2034026A1 (en) Process for production of optically active alcohol
CA2697038C (en) Process for the enantioselective enzymatic reduction of intermediates
JP2000236883A (ja) 新規なカルボニル還元酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法
KR20070050461A (ko) 신규 카르보닐 환원 효소, 그의 유전자 및 그의 이용 방법
EP2022852A1 (en) Method for production of optically active amine compound, recombinant vector, and transformant carrying the vector
JP4966189B2 (ja) 光学活性2級アルコールの製造方法
WO2008066018A1 (en) Novel alcohol dehydrogenase, gene for the alcohol dehydrogenase, vector, transformant, and method for production of optically active alcohol by using them
WO2007114217A1 (ja) エリスロ又はスレオ-2-アミノ-3-ヒドロキシプロピオン酸エステルの製造方法、新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
JPWO2007094178A1 (ja) 新規な(s,s)−ブタンジオール脱水素酵素、その遺伝子、及びその利用法
WO2004027055A1 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP5005672B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびそれらを利用した光学活性アルコールの製造方法
JP4426437B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4688313B2 (ja) 新規なエノン還元酵素、その製造方法、およびこれを利用したα,β−不飽和ケトンの炭素−炭素2重結合を選択的に還元する方法
JP2003033185A (ja) エノン還元酵素
WO2007099994A1 (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
JP2010279272A (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
JP2007274901A (ja) 光学活性プロパルギルアルコールの製造方法
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法
EP1688480A2 (en) NOVEL ACETOACETYL-CoA REDUCTASE AND PROCESS FOR PRODUCING OPTICALLY ACTIVE ALCOHOL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546989

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007832538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007832538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516388

Country of ref document: US