WO2008064504A1 - Mikroporöses filtermaterial, insbesondere zur virenentfernung - Google Patents

Mikroporöses filtermaterial, insbesondere zur virenentfernung Download PDF

Info

Publication number
WO2008064504A1
WO2008064504A1 PCT/CH2007/000581 CH2007000581W WO2008064504A1 WO 2008064504 A1 WO2008064504 A1 WO 2008064504A1 CH 2007000581 W CH2007000581 W CH 2007000581W WO 2008064504 A1 WO2008064504 A1 WO 2008064504A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter material
material according
basic metal
resulting
water
Prior art date
Application number
PCT/CH2007/000581
Other languages
English (en)
French (fr)
Inventor
Thomas Graule
Markus Wegmann
Benjamin Michen
Frank Clemens
Beatrix Ammann
Original Assignee
Katadyn Produkte Ag
Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katadyn Produkte Ag, Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt filed Critical Katadyn Produkte Ag
Publication of WO2008064504A1 publication Critical patent/WO2008064504A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2101/00Types of filters having loose filtering material
    • B01D2101/005Types of filters having loose filtering material with a binder between the individual particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite

Definitions

  • Microporous filter material in particular for virus removal
  • the invention relates to microporous filter material, filter cartridges containing this
  • WO94 / 22555 discloses a diatomaceous earth based filter material, process for its preparation and its use for separating bacteria from water.
  • a doping with Ag2 ⁇ is proposed to improve bacteriostatic properties.
  • the described materials with a small specific surface area and low Ag 2 O content are not suitable for sufficiently separating viruses from water.
  • a material is to be made available that allows a retention of more than 99.99% (4 LRV) with respect to viruses and / or bacteriophages.
  • the invention relates to a microporous filter material having a pore size of 0.1-10 microns comprising a) 60-80% diatomaceous earth; b) 15-35 m% clay and c) 2 -30m% of one or more basic metal oxides.
  • the pore size can be determined by means of preferably mercury porosimetry or alternatively by means of retention tests (for example to defined latex particle dispersions or fine dust) and characterizes a filter material in which 90% of all pores (based on the relative volume of the pores) are within the specified interval.
  • a typical pore size is about ; 2 um.
  • Diatomaceous earth is a known, naturally occurring and commercially available material which consists essentially of SiO 2 and has a negative surface potential.
  • Various grades of kieselguhr are available which differ in grain size and pretreatment. In the context of the present invention, all these qualities can be used for the production of the filter material according to the invention.
  • Diatomaceous earth is the main component of the filter material according to the invention; it forms the carrier and is responsible for the formation of the pores.
  • Clay is a known, naturally occurring and commercially available material which consists essentially of various phyllosilicates. Various qualities of clay are available, which differ in composition, grain size and pretreatment. In the context of the present invention, all these qualities can be used for the production of the filter material according to the invention. However, kaolin and bentonite are preferred. Clay in the context of the present invention functions essentially as an inorganic binder which improves the processability and mechanical properties of the filter material (such as fracture toughness, cracking).
  • basic metal oxides refers to those metal oxides which react basicly in water.
  • the term also includes metal oxides which are amphoteric, as these may also react basicly.
  • basic metal oxides are preferred over the amphoteric metal oxides.
  • basic metal oxides are present as nanoparticles. It is advantageous to use particles having a particle size of less than 50 ⁇ m, preferably less than 1 ⁇ m. With particle sizes in the range of> 100 nm, the particle size can be determined by means of static light scattering, in the range ⁇ 100 nm the determination is carried out by means of dynamic light scattering (photon correlation spectroscopy). Typically, particles are used which have a spec. Surface of 1 - 500 m 2 / g, preferably from 2 - 100 mVg (determined by BET, after temperature treatment of 1000 0 C) have. The basic metal oxides are added in an amount that forms a positive
  • the basic ones are
  • Metal oxides substantially homogeneously distributed in the filter material are substantially homogeneously distributed in the filter material.
  • the homogeneous distribution can be achieved, for example, by method A described below.
  • substantially homogeneous is described that an even distribution of the oxide particles is present in the filter material, but due to insufficient mixing, erosion, surface effects, inter alia may result in a deviation.
  • component c) is preferably present in a particle size of less than 50 micrometers.
  • the basic metal oxides are distributed substantially at the outer and inner surfaces of the filter material.
  • the superficial distribution can e.g. be achieved by the method B described below.
  • external surface is meant the area of the filter material which is directly accessible from the outside and thereby e.g. a mechanical cleaning is accessible.
  • the inner surface refers to the surface portion that is not directly accessible. The inner surface is essentially covered by the
  • component c) is preferably present in a particle size of less than 1 micron (1 ⁇ m).
  • Embodiment are the basic metal oxides selected from the group of rare earth oxides, and the metals Mg, Ca, Al, Ga, Zr, Fe, Mn, Y, preferably Al2O3, MgO, lanthanides (Ln2 ⁇ 3);
  • the basic metal oxides are selected from the group of mixed oxides, such as, for example, the spinels (in particular MgAl.sub.2O.sub.4).
  • metal precursors are used, which convert in subsequent reaction steps into the corresponding basic metal oxides; suitable are, for example, nitrates, carboxylates or hydroxides of the corresponding compounds.
  • the basic metal oxide particles may have hydroxy groups; such compounds are included in the invention. (An idealized example would be AI2O3 -> Al (OH) 3, which is amphoteric)
  • AI2O3 -> Al (OH) 3 which is amphoteric
  • Embodiment is added to the microporous filter material as further component d) silver oxide.
  • the mass fraction of Ag 2 O is preferably ⁇ 1% by mass, particularly preferably ⁇ 0.01% by mass.
  • the addition of silver oxide reduces microbiological contamination ("contamination"), especially during downtime.
  • Embodiment one or more organic binders are added in the production of the inventive filter material. These organic binders improve processability. Typically, the organic binders in the final
  • Embodiment of the invention relates to a filter material with micro-or nanoporous structure of diatomaceous earth ceramic, which contains an effective amount of metal oxide particles which cause a positive surface charge of the ceramic.
  • metal oxide particles are added in the amount that by
  • Such a kieselguhr ceramic preferably has a specific surface area of 2 to 100 m 2 / g, more preferably 5 to 15 m 2 / g (determined by BET adsorption).
  • Process A comprises the steps: a) Preparation of a suspension comprising kieselguhr, clay, one or more basic metal oxides (or metal oxide precursors), water, if appropriate binder b) granulation of the resulting composition c) shaping of the obtained granules d) drying and Burning the resulting molded piece.
  • Process B comprises the steps: a) preparation of a suspension containing kieselguhr, clay, water, if appropriate binder b) granulation of the resulting composition c) shaping of the obtained granulate d) drying and firing of the obtained molded article e) impregnation of the resulting molded article with a
  • Process C comprises the steps: a) Preparation of a suspension comprising kieselguhr, clay, one or more basic metal oxides, water, if appropriate binder b) granulation of the composition obtained c) shaping of the obtained granulate d) drying and firing of the resulting molded article e) impregnation the resulting molded article with a composition comprising basic metal oxide particles or precursors of basic metal oxides and diluents (preferably water) f) drying and firing of the resulting impregnated molded article.
  • the methods A, B and C differ essentially by the time of addition of basic metal oxide.
  • process A the basic metal oxides are added before granulation, in process B after granulation and in process C before and after granulation.
  • the method C opens a particularly comprehensive and safe impregnation, as well as the ability to selectively introduce different metal oxides.
  • Step a) The preparation of a suitable suspension is known.
  • binder for example, 5 m% of a compound from the class of organic binders such as: cellulose derivatives, butyral, polyacetal, polyacrylate, polyethylene, polyvinyl can be used.
  • the task of the binder is essentially to ensure dimensional stability and plasticization in the extrusion process.
  • basic metal oxides are added, they can be added either i) in the form of suitable micro- or nanoparticles or ii) in the form of a suitable soluble precursor.
  • Suitable micro or nano particles are available as a solid or suspension or can be obtained by wet grinding.
  • Suitable precursors are, for example, hydroxides, alcoholates, nitrates or complexes which are converted in subsequent steps to form basic metal oxide particles.
  • Step b) The granulation of the suspension from step a) is a known process that can be carried out on commercially available machines.
  • Step c) By molding or extrusion, optionally in the presence of an excipient, suitable shaped pieces, such as plate, tube, granules or the like, can be produced.
  • Step d) Drying and firing are usually carried out in two separate steps; The required temperatures and times depend on the material, the geometry of the molding and the desired pore size and can be optimized in simple series tests. Temperature and time should be chosen so that the structure of the fitting is not adversely affected (eg by sintering processes). Typical sintering temperatures are in the range of 300 to 1200 ° C., eg 400 to 700 ° C. In one
  • the sintering is carried out in the presence of ambient air.
  • sintering is by reducing fire (ie, in a reducing atmosphere).
  • Metal oxide nanoparticles are commercially available or can be prepared by known methods.
  • An aqueous suspension of these particles, which optionally contains further auxiliaries (for example for adjusting the viscosity, for stabilizing the nanoparticles) is contacted with the molding from step d) in such a way that there is a sufficient amount of particles on the outer and in particular the inner surface separates. This can happen, for example, by dipping, spraying or infiltration. Analogous methods are possible when metal oxide precursors are used.
  • Step f) This drying and firing process can also be carried out in several stages.
  • the purpose is to fix the metal oxide precursor, to eliminate solvent residues and, if necessary, to adjust the desired metal oxide modification and optionally to effect a further homogenization of the particle distribution.
  • the drying step includes, for example, the processes freeze-drying, microwave drying. In parallel, a fixation, for example by gelling by means of polymeric Gel former, done.
  • the firing process must be designed so that on the one hand the above effects are achieved and on the other hand an excessive reduction of the spec. Surface is avoided. Suitable temperatures and times depend, among other things, on the one used
  • the invention relates to filter materials obtained by one of the aforementioned methods.
  • the invention relates to a granulate for producing a filter material according to one of claims 1 to 6, comprising a) 60-80% diatomaceous earth b) 15-35% by mass and c) 2-30% by mass or more basic metal oxides and d) one or more binders.
  • Such granules accumulate after step b) of process A or of process C. These granules frequently still contain residues of water and optionally metal oxide precursors. Therefore, the granules do not necessarily show a positive surface potential and also not necessarily the size distribution of the pores described in detail.
  • filter elements containing a microporous filter material as described above.
  • Such filter elements can be present as shaped bodies or as bulk material.
  • such filter elements therefore comprise shaped bodies such as plates (for example angular or round), tubes or other expedient shapes which possibly have additional recesses (eg. B. holes or grooves) or other connection elements included.
  • the term filter element is understood to mean bulk materials such as granules or other free-flowing bodies. Suitable forms are determined by the preparation and intended use. Shapes and sizes of such filter elements per se are known.
  • Such filter elements are expediently integrated into modules ("filter cartridges") which contain one or more filter elements and are known per se.
  • Filter cartridges containing the filter elements described above are included in the present invention.
  • the invention relates to a method for purifying water in which water is passed through a filter element as described above.
  • This method is particularly suitable for the microbiological purification of water.
  • this process also makes it possible in particular to purify viruses and bacteriophages.
  • Water to be purified can be waste water (industrial or municipal), groundwater or surface water, with the water to be purified possibly already treated.
  • the water purification is therefore carried out in several stages, whereby first coarse and suspended matter are removed from the water to be purified, and this treated water is then passed through a filter element as described above. By this measure, clogging of the filter element is prevented or reduced.
  • the inventive method can in
  • Normal pressure or elevated pressure for example 30 bar, preferably about 3 bar, carried out.
  • that procedure can be without an external pressure applied, for example, when gravity / hydrostatic pressure are sufficient.
  • the invention relates to the use of microporous filter material for purifying water, in particular the use for the microbiological purification of water.
  • the filter materials as described above have a bacteriological retention capacity of 6 log levels and a retention level of 4 log levels for viruses (polioviruses, rotaviruses) as well as bacteriophages (MS2).
  • the granules are extruded to a tube of length 121 mm with outer and inner diameter of 39.8 / 25.6 mm at a pressure of 20 bar (ram extruder 232-16DT-60/80, LOOMIS PORUCTS, Germany) and then at 50 0 C for several days in the drying room with increased humidity (> 80%) dried in air and then sintered at 1000 ° C.
  • Katadyn Products AG is immersed in a 20m% ZrO2 suspension (NYACOL® ZrO2 Acetate Stabilized, Nyacol Nano Technologies Inc., USA) for two hours covering.
  • the impregnated filter element is dried at 15O 0 C for 12 h and then calcined at 250 ° C.
  • a commercially available filter element (Pocket, Katadyn Products AG) is immersed in a 20m% Y2O3 suspension (NYACOL® Colloidal Yttria, Nyacol Nano Technologies Inc., USA) for two hours. The resulting element is then for 12h at - 18 0 C cooled, then 5 min immersed into liquid nitrogen then transferred into a vacuum bell which is connected to a cold trap, and stored there until no more water condenses. The resulting filter is then dried at 8O 0 C for 12 h and then calcined at 500 0 C.
  • the obtained filter elements can be characterized by a microbiological retention test with MS2 bacteriophages according to the USEPA method (Manual of Methods for Virology, Chapter 16), flow potential measurements, BET and flow rate.
  • nb not determined; Flow: 3bar, 2O 0 C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)

Abstract

Die Erfindung betrifft mikroporöses Filtermaterial, mit einer Porengrösse von 0.1 - 10 Mikrometer enthaltend 60 - 80 m-% Kieselgur, 15 - 35 m-% Ton und 2 - 30 m-% eines oder mehrerer basischer Metalloxide, bevorzugt in der Form von Nanopartikeln; Filterkartuschen enthaltend dieses Material; Verfahren zur Herstellung von Filtermaterial und Filterkartuschen sowie die Verwendung dieser Materialien und Kartuschen zur Aufreinigung von Wasser, insbesondere zur Entfernung von Viren und/oder Bakteriophagen.

Description

Mikroporöses Filtermaterial , insbesondere zur Virenentfernung
Diese Anmeldung beansprucht die Priorität der Schweizer Patentanmeldung 1931/2006, die am 28. November 2006 eingereicht wurde und deren ganze Offenbarung hiermit durch Bezug aufgenommen wird.
Die Erfindung betrifft mikroporöses Filtermaterial, Filterkartuschen enthaltend dieses
Material, Verfahren zur Herstellung von Filtermaterial und Filterkartuschen sowie die Verwendung dieser Materialien und Kartuschen zur Aufreinigung von Wasser, insbesondere zur Abtrennung von Viren und/oder Bakteriophagen.
WO94/22555 offenbart ein Kieselgur-basiertes Filtermaterial, Verfahren zu dessen Herstellung und deren Verwendung zur Abtrennung von Bakterien aus Wasser. Eine Dotierung mit Ag2θ wird vorgeschlagen, um bakteriostatische Eigenschaften zu verbessern. Die beschriebenen Materialien mit kleiner spezifischer Oberfläche und geringem Ag2θ Gehalt sind jedoch nicht geeignet, Viren aus Wasser ausreichend abzutrennen.
Es ist daher eine Aufgabe der vorliegenden Erfindung, Filtermaterialien zur Verfügung zu stellen, die geeignet sind, neben Bakterien auch Viren aus Wasser abzutrennen. Insbesondere soll ein Material zur Verfügung gestellt werden, dass eine Retention von über 99.99% (4 LRV) bezüglich Viren und/oder Bakteriophagen ermöglicht.
Diese Aufgabe wird gelöst durch ein Filtermaterial gemäss Anspruch 1; vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben. In einem ersten Aspekt betrifft die Erfindung daher ein mikroporöses Filtermaterial mit einer Porengrösse von 0.1 - 10 Mikrometer enthaltend a) 60 - 80 m-% Kieselgur; b) 15 - 35 m-% Ton und c) 2 -30m-% eines oder mehrerer basischer Metalloxide.
Die Porengrösse kann mittels bevorzugt Quecksilberporosimetrie oder alternativ mitttels Rückhalteversuchen (z.B. gegenüber definierten Latex Partikel-Dispersionen oder Feinstaub) bestimmt werden und charakterisiert ein Filtermaterial, bei dem 90% aller Poren (bezogen auf das relative Volumen der Poren) im angegebenen Intervall liegen. Eine typische Porengrösse ist etwa; 2 um. Kieselgur ist ein bekanntes, natürlich vorkommendes und kommerziell erhältliches Material, welches im Wesentlichen aus Siθ2 besteht und ein negatives Oberflächenpotential aufweist. Verschiedene Qualitäten von Kieselgur sind erhältlich, die sich durch Korngrösse und Vorbehandlung unterscheiden. Im Rahmen der vorliegenden Erfindung können alle diese Qualitäten zur Herstellung des erfindungsgemässen Filtermaterials eingesetzt werden. Bevorzugt werden jedoch Mischungen verschiedener Kieselgure verwendet, die nicht- kalziniertes, kalziniertes und/oder flux-kalzinierts Kieselgur enthalten. Kieselgur ist die Hauptkomponente des erfindungsgemässen Filtermaterials; es bildet den Träger und ist für die Ausbildung der Poren verantwortlich . Ton ist ein bekanntes, natürlich vorkommendes und kommerziell erhältliches Material, welches im wesentlichen aus verschiedenen Schichtsilikaten besteht. Verschiedene Qualitäten von Ton sind erhältlich, die sich durch Zusammensetzung, Korngrösse und Vorbehandlung unterscheiden. Im Rahmen der vorliegenden Erfindung können alle diese Qualitäten zur Herstellung des erfindungsgemässen Filtermaterials eingesetzt werden. Bevorzugt sind jedoch Kaolin und Bentonit . Ton fungiert im Rahmen der vorliegenden Erfindung im wesentlichen als anorganischer Binder, welcher die Verarbeitbarkeit und die mechanischen Eigenschaften des Filtermaterials (wie Bruchfestigkeit, Rissbildung) verbessert.
Der Begriff basische Metalloxide ist bekannt und bezeichnet solche Metalloxide, die in Wasser basisch reagieren. Der Begriff umfasst auch Metalloxide welche amphoter sind, da diese ebenfalls basisch reagieren können. Gleichwohl sind basische Metalloxide gegenüber den amphoteren Metalloxiden bevorzugt. Im Rahmen der vorliegenden Erfindung liegen basische Metalloxide als Nanopartikel vor. Vorteilhaft werden Partikel mit einer Korngrösse kleiner als 50 um, bevorzugt kleiner als 1 um verwendet. Vorteilhaft sind weiterhin Partikel mit einer Korngrösse von über 5 nm. Bei Korngrössen im Bereich > 100 nm kann die Partikelgrösse mittels statischer Lichtstreuung bestimmt werden, im Bereich < 100 nm erfolgt die Bestimmung mittels dynamischer Lichtstreuung (Photonenkorrelationsspektroskopie) . Typischerweise werden Partikel eingesetzt, die eine spez. Oberfläche von 1 - 500 m2/g, bevorzugt von 2 - 100 mVg (mittels BET bestimmt, nach Temperaturbehandlung von 10000C) aufweisen. Die basischen Metalloxide werden in einer Menge zugesetzt, dass sich ein positives
Oberflächenpotential in einem pH-Bereich von 4 - 11, bevorzugt von 5 - 9 ergibt. Typischerweise sind 2 - 30 m- %, häufig 5 - 10 m-% ausreichend.
In einer Ausführungsform sind die basischen
Metalloxide im wesentlichen homogen im Filtermaterial verteilt. Die homogene Verteilung kann z.B. durch das nachstehend beschriebene Verfahren A erzielt werden. Mit „im wesentlichen" homogen wird beschrieben, dass eine Gleichverteilung der Oxidpartikel im Filtermaterial vorliegt, jedoch aufgrund von unzureichender Durchmischung, Abtragung, Oberflächeneffekten u.a. sich eine Abweichung ergeben kann. In dieser Ausführungsform liegt die Komponente c) bevorzugt in einer Korngrösse von unter 50 Mikrometer vor.
In einer weiteren Ausführungsform sind die basischen Metalloxide im wesentlichen an der äusseren und inneren Oberfläche des Filtermaterials verteilt. Die oberflächliche Verteilung kann z.B. durch das nachstehend beschriebene Verfahren B erzielt werden. Mit äussere Oberfläche wird der Bereich des Filtermaterials bezeichnet, der von aussen direkt zugänglich ist und dadurch z.B. einer mechanischen Reinigung zugänglich ist. Demgegenüber bezeichnet die innere Oberfläche den Oberflächenteil, der nicht direkt zugänglich ist. Die innere Oberfläche wird im wesentlichen durch die
Porenwände gebildet. In dieser Ausführungsform liegt die Komponente c) bevorzugt in einer Korngrösse von unter 1 Mikrometer (1 um) vor.
In einer weiteren vorteilhaften
Ausführungsform sind die basischen Metalloxide ausgewählt aus der Gruppe der Oxide der Seltenen Erden, sowie der Metalle Mg, Ca, Al, Ga, Zr, Fe, Mn, Y, bevorzugt AI2O3, MgO, Lanthanoide (Ln2θ3) ; besonders bevorzugt La2θ3, Y2°3- In einer weiteren vorteilhaften Ausführungsform sind die basischen Metalloxide ausgewählt aus der Gruppe der Mischoxide, wie z.B. der Spinelle (insbesondere MgAl2θ4). In einer weiteren vorteilhaften Ausführungsform werden Metall-precursor eingesetzt, die sich in nachfolgenden Reaktionsschritten in die entsprechenden basischen Metalloxide umwandeln; geeignet sind z.B. Nitrate, Carboxylate oder Hydroxide der entsprechenden Verbindungen. Je nach Herstellung und Betriebsbedingungen des Filters können die basischen Metalloxidpartikel Hydroxygruppen aufweisen; solche Verbindungen sind von der Erfindung mit umfasst. (Ein idealisiertes Beispiel wäre AI2O3 -> Al (OH) 3, welches amphoter ist) In einer weiteren vorteilhaften
Ausführungsform wird dem mikroporösem Filtermaterial als weitere Komponente d) Silberoxid zugesetzt. Der Massenanteil an Ag2O beträgt bevorzugt < lm-%, besonders bevorzugt < 0.01 m-%. Die Zugabe von Silberoxid vermindert die mikrobiologische Verunreinigung („Verkeimung"), insbesondere bei Stillstandzeiten.
In einer weiteren vorteilhaften
Ausführungsform werden bei der Herstellung des erfindungsgemässen Filtermaterials ein oder mehrere organische Binder zugesetzt. Diese organischen Binder verbessern die Verarbeitbarkeit . Typischerweise werden die organischen Binder im abschliessenden
Kalzinierungsprozess vollständig zu gasförmigen Produkten (CO2; NOx, SO2 ...) oxidiert, so dass sie im Filtermaterial nicht mehr vorliegen.
In einer weiteren vorteilhaften
Ausführungsform betrifft die Erfindung ein Filtermaterial mit mikro- oder nanoporöser Struktur aus Kieselgur- Keramik, welche eine wirksame Menge von Metalloxid- Partikeln enthält die eine positive Oberflächenladung der Keramik bewirken. Bevorzugt werden Metalloxid-Partikel in der Menge zugegeben, dass die durch
Strömungspotentialmessung charakterisierte Struktur über einen pH-Bereich von 4 - 11, bevorzugt von 5 - 9, als positiv geladen erscheint. Bevorzugt weist eine solche Kieselgur-Keramik eine spezifische Oberfläche von 2 - 100 m2/g, besonders bevorzugt von 5 - 15 m2/g auf (bestimmt mittels BET-Adsorption) .
In einem zweiten Aspekt betrifft die vorliegende Erfindung Verfahren zur Herstellung der erfindungsgemässen Filtermaterialien. Verfahren A umfasst die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, ein oder mehrere basische Metalloxide (bzw. Metalloxid-Precursor) , Wasser, ggf. Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes .
Verfahren B umfasst die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, Wasser, ggf. Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes e) Imprägnieren des erhaltenen Formstückes mit einer
Zusammensetzung enthaltend basische Metalloxid- Partikel oder Precursor basischer Metalloxide und Verdünnungsmittel (bevorzugt Wasser) f) Trocknen und Brennen des erhaltenen imprägnierten Formstückes.
Verfahren C umfasst die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, ein oder mehrere basische Metalloxide, Wasser, ggf. Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes e) Imprägnieren des erhaltenen Formstückes mit einer Zusammensetzung enthaltend basische Metalloxid- Partikel oder Precursor basischer Metalloxide und Verdünnungsmittel (bevorzugt Wasser) f) Trocknen und Brennen des erhaltenen imprägnierten Formstückes .
Die Verfahren A, B und C unterscheiden sich im Wesentlichen durch den Zeitpunkt der Zugabe von basischem Metalloxid. Im Verfahren A werden die basischen Metalloxide vor der Granulierung zugesetzt, im Verfahren B nach der Granulierung und im Verfahren C vor und nach der Granulierung. Das Verfahren C eröffnet eine besonders umfassende und sichere Imprägnierung, sowie die Möglichkeit, gezielt verschiedene Metalloxide einzubringen.
Die einzelnen Verfahrensschritte sind im Prinzip bekannt und sollen im folgenden näher erläutert werden.
Schritt a) Das Herstellen einer geeigneten Suspension ist bekannt. Als Binder können bspw. 5 m% einer Verbindung aus der Klasse der organischen Binder wie zum Beispiel: Cellulosederivate, Butyral, Polyacetal, Polyacrylat, Polyethylen, Polyvinyl eingesetzt werden. Die Aufgabe des Binders ist im Wesentlichen, Formstabilität und Plastifizierung im Extrusionsprozess zu gewährleisten. Sofern basische Metalloxide zugesetzt werden, können diese entweder i) in Form geeigneter Mikro- oder Nanopartikel oder ii) in Form eines geeigneten löslichen Precursors zugesetzt werden. Geeignete Micro- oder Nano-Partikel sind als Feststoff oder Suspension erhältlich oder können durch Nassmahlung erhalten werden. Suspensionen von Nanopartikeln können weitere Stabilisatoren enthalten, z.B. ZrC>2 welches durch HOAc bei pH = 3.5 stabilisiert ist. Geeignete Precursor sind bspw. Hydroxide, Alkoholate, Nitrate oder Komplexe, die in nachfolgenden Schritten zu basischen Metalloxid- Partikeln umgesetzt werden.
Schritt b) Das Granulieren der Supsension aus Schritt a) ist ein bekannter Prozess, der auf handelsüblichen Maschinen erfolgen kann.
Schritt c) Durch Pressen oder Extrudieren, ggf. in Gegenwart eines Hilfstoffes, können geeignete Formstücke, wie z.B. Platte, Rohr, Granulat oder dergleichen, erzeugt werden. Schritt d) Trocknen und Brennen erfolgen üblicherweise in zwei separaten Schritten; die erforderlichen Temperaturen und Zeiten hängen von Material, der Geometrie des Formstückes und der gewünschten Porengrösse ab und können in einfachen Reihenversuchen optimiert werden. Temperatur und Zeit sind so zu wählen, dass die Struktur des Formstücks nicht negativ beeinflusst wird (z.B. durch Sinterungsprozesse). Typische Temperaturen für die Sinterung liegen im Bereich von 300 - 12000C, z.B. 400 - 7000C. In einer
Ausführungsform erfolgt die Sinterung in Gegenwart von Umgebungsluft. In einer alternativen Ausführungsform erfolgt die Sinterung durch reduzierenden Brand (d.h. in reduzierender Atmosphäre) . Schritt e) Metalloxid-Nanopartikel sind kommerziell erhältlich oder nach bekannten Methoden herstellbar. Eine wässrige Suspension dieser Partikel, welche ggf noch weitere Hilfsstoffe (z.B. zur Einstellung der Viskosität, zur Stabilisierung der Nanopartikel) enthält wird mit dem Formstück aus Schritt d) so kontaktiert, dass sich eine ausreichende Menge an Partikeln auf der äusseren und insbesondere der inneren Oberfläche abscheidet. Dies kann bspw. durch Tauchen, Besprühen oder Infiltration geschehen. Analoge Verfahren sind möglich, wenn Metalloxid - Precurser verwendet werden. Eine Infiltration kann drucklos erfolgen, durch Anlegen eines Unterdrucks und/oder eines Überdruckes auf der entsprechenden Seite des Filtermaterials. Schritt f) Dieser Trocknungs- und Brennvorgang kann ebenfalls mehrstufig erfolgen. Zweck ist es, den Metalloxid-Precursor zu fixieren, Lösungsmittelreste zu eliminieren und ggf. die gewünschte Metalloxid-Modifikation einzustellen sowie ggf. eine weitere Homogenisierung der Partikelverteilung zu bewirken. Der Trocknungsschritt umfasst z.B. die Prozesse Gefriertrocknung, Mikrowellentrocknung. Parallel kann eine Fixierung, z.B. durch Gelierung mittels polymerer Gelbildner, erfolgen. Der Brennvorgang muss so gestaltet werden, dass einerseits die o.g. Effekte erzielt werden und andererseits eine zu starke Verringerung der spez. Oberfläche vermieden wird. Geeignete Temperaturen und Zeiten hängen unter anderem von den verwendeten
Materialien sowie der Geometrie des Formkörpers ab und können in einfachen Reihenversuchen ermittelt werden.
In einem weiteren Aspekt betrifft die Erfindung Filtermaterialien erhalten durch eines der vorstehend genannten Verfahren.
In einem weiteren Aspekt betrifft die Erfindung ein Granulat zur Herstellung eines Filtermaterials gemäss einem der Ansprüche 1 bis 6, enthaltend a) 60 - 80 m-% Kieselgur b) 15 - 35 m-% Ton und c) 2 - 30 m-% eines oder mehrerer basischer Metalloxide und d) einen oder mehrere Binder.
Solche Granulate fallen nach Schritt b) des Verfahrens A oder des Verfahrens C an. Diese Granulate enthalten häufig noch Reste von Wasser und ggf. Metalloxidprecursor. Daher zeigen die Granulate nicht notwendigerweise ein positives Oberflächenpotential und auch nicht notwendigerweise die eingehend beschriebene Grössenverteilung der Poren.
In einem weiteren Aspekt betrifft die
Erfindung ein Filterelement enthaltend ein mikroporöses Filtermaterial wie vorstehend beschrieben. Solche Filterelemente können als Formkörper oder als Schüttmaterial vorliegen. In einer ersten Ausführungsform umfassen solche Filterelemente daher Formkörper wie Platten (z. B. eckige oder runde), Rohre oder andere zweckmässige Formen welche ggf. weitere Aussparungen (z. B. Bohrungen oder Nuten) oder sonstige Anschluss-Elemente enthalten. In einer weiteren Ausführungsform werden unter dem Begriff Filterelement Schüttmaterialien wie Granulate oder andere schüttfähige Körper verstanden. Geeignete Formen werden durch die Herstellung und angestrebte Verwendung bestimmt. Formen und Grossen solcher Filterelemente an sich sind bekannt. Solche Filterelemente werden zweckmässigerweise in Baugruppen („Filterkartuschen") integriert, die eine oder mehrere Filterelemente enthalten und an sich bekannt sind.
Filterkartuschen enthaltend die vorstehend beschriebenen Filterelemente sind von der vorliegenden Erfindung mit umfasst .
In einem weiteren Aspekt betrifft die
Erfindung ein Verfahren zum Reinigen von Wasser, bei dem Wasser durch ein Filterelement wie vorstehend beschrieben, geleitet wird. Dieses Verfahren ist besonders geeignet zur mikrobiologischen Reinigung von Wasser. Dieses Verfahren ermöglicht neben der Reinigung von bakteriellen Verunreinigungen insbesondere auch die Reinigung von Viren und Bakteriophagen.
Zu reinigendes Wasser kann dabei Abwasser (industriell oder kommunal), Grundwasser oder Oberflächenwasser sein, wobei das zu reinigende Wasser ggf. schon aufbereitet ist. In einer vorteilhaften Ausführungsform des erfindungsgemässen Verfahrens erfolgt die Wasserreinigung daher mehrstufig, wobei aus dem zu reinigenden Wasser zunächst Grob- und Schwebstoffe entfernt werden, und dieses aufbereitete Wasser anschliessend durch ein Filterelement wie vorstehend beschrieben, geleitet wird. Durch diese Massnahme wird ein Verstopfen des Filterelements unterbunden oder vermindert . Das erfindungsgemässe Verfahren kann bei
Normaldruck oder erhöhtem Druck, z.B. 30 bar, bevorzugt etwa 3 bar, erfolgen. Alternativ kann dass Verfahren ohne einen äusseren angelegten Druck durchgeführt werden, z.B. wenn Gravitation / hydrostatischer Druck ausreichend sind.
In einem weiteren Aspekt betrifft die
Erfindung die Verwendung von mikroporösem Filtermaterial zum Reinigen von Wasser, insbesondere die Verwendung zum mikrobiologischen Reinigen von Wasser. Die Filtermaterialien, wie vorstehend beschrieben weisen ein bakteriologisches Rückhaltevermögen von 6 log-Stufen und ein Rückhaltevermögen von 4 log Stufen für Viren (Polioviren, Rotaviren) sowie Bakteriophagen (MS2) auf.
Die folgenden Beispiele dienen der Illustration und sind nicht abschliessend.
1.) Herstellung eines Filters nach Verfahren A
Eine Suspension mit 64m% Diatomeenerde, 25m% Ton, 10m%
La2O3 (d50=25um, SSA=lm2/g) sowie lm%Binder wird in der gleichen Menge an Wasser suspendiert und im Mischprozess granuliert. Das Granulat wird zu einem Rohr der Länge 121 mm mit äusserem und inneren Durchmesser von 39,8/25,6 mm bei einem Druck von 20 bar extrudiert (Kolbenstrangpresse 232-16DT-60/80, LOOMIS PORUCTS, Deutschland) und anschliessend bei 500C für mehrere Tage im Trockenraum mit erhöhter Luftfeuchtigkeit (>80%) an der Luft getrocknet und dann bei 1000 °C gesintert.
2.) Herstellung eines Filters nach Verfahren B Ein kommerziell erhältliches Filterelement (Pocket,
Katadyn Produkte AG) wird in eine 20m% ZrO2 Suspension (NYACOL® ZrO2 Acetate Stabilized,Nyacol Nano Technologies Inc., USA) für zwei Stunden bedeckend eingetaucht. Das imprägnierte Filterelement wird bei 15O0C für 12h getrocknet und anschliessend bei 250 °C kalziniert.
3.) Herstellung eines Filters nach Verfahren B Ein kommerziell erhältliches Filterelement (Pocket, Katadyn Produkte AG) wird in eine 20m% Y2O3 Suspension (NYACOL® Colloidal Yttria, Nyacol Nano Technologies Inc., USA) bedeckend für zwei Stunden eingetaucht. Das erhaltene Element wird anschliessend für 12h auf - 18 0C gekühlt , anschliessend 5 min in flüssigen Stickstoff getaucht dann in eine Vakuumglocke überführt, welche mit einer Kühlfalle verbunden ist, und dort gelagert, bis kein Wasser mehr kondensiert. Der erhaltene Filter wird dann bei 8O0C für 12h getrocknet und anschliessend bei 5000C kalziniert .
4.) Herstellung eines Filters nach Verfahren B Ein kommerziell erhältliches Filterelement (Pocket, Katadyn Produkte AG) wird in eine mit deionisiertem Wasser 1:1 verdünnte, 20m% Y2O3 Suspension (NYACOL® Colloidal Yttria, Nyacol Nano Technologies Inc., USA) bedeckend für zwei Stunden eingetaucht. Der Filter wird dann bei 8O0C für 12h getrocknet und anschliessend bei 5000C unter Formiergas (4%H2, 96%N2) reduzierend kalziniert .
Die erhaltenen Filterelemente lassen sich mit Hilfe eines mikrobiologischen Rückhaltetest mit MS2 Bakteriophagen nach USEPA Methode (Manual of Methods for Virology, Chapter 16) , Strömungspotentialmessungen, BET sowie Durchflussleistung charakterisieren.
In nachstehender Tabelle werden die Eigenschaften der hergestellten Filter mit denen eines nicht modifizierten Filters verglichen.
Figure imgf000014_0001
n.b.: nicht bestimmt; Durchfluss: 3bar, 2O0C
Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klar darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und in auch anderer Weise innerhalb des Umfangs der folgenden Ansprüche ausgeführt werden kann.

Claims

Patentansprüche
1. Filtermaterial mit einer Porengrösse von 0.1 - 10 Mikrometer enthaltend in der Trockenmasse a) 60 - 80 rtι-% Kieselgur b) 15 - 35 m-% Ton und c) 2 - 30 m-% eines oder mehrere basische Metalloxide .
2. Material gemäss Anspruch 1, wobei die Komponente c) im wesentlichen homogen im Filtermaterial verteilt ist.
3. Material gemäss Anspruch 1 oder 2, wobei die Komponente c) im wesentlichen in einer Korngrösse von kleiner als 50 Mikrometer vorliegt.
4. Material gemäss Anspruch 1, wobei die Komponente c) im wesentlichen an der äusseren und inneren Oberfläche des Filtermaterials vorliegt.
5. Material gemäss Anspruch 1 oder 4, wobei die Komponente c) im wesentlichen in einer Korngrösse von kleiner als 1 um vorliegt.
β. Material gemäss einem der Ansprüche 1 bis 5, wobei die Komponente c) ausgewählt ist aus der Gruppe der Oxide und Mischoxide der Elemente der seltenen Erden sowie der Metalle Mg, Ca, Al, Ga, Zr, Fe, Mn; insbesondere La, Y, Mg.
7. Granulat zur Herstellung eines Filtermaterials gemäss einem der Ansprüche 1 bis 6, enthaltend in der Trockenmasse a) 60 - 80 m-% Kieselgur b) 15 - 35 m-% Ton und c) 2 - 30 m-% eines oder mehrerer basischer Metalloxide d) einen oder mehrere Binder.
8. Filterelement enthaltend ein mikroporöses Filtermaterial gemäss einem der Ansprüche 1 bis 7.
9. Filterkarutsche, enthaltend ein Filterelement gemäss Anspruch 8.
10. Verfahren zur Herstellung von mikroporösen Filtermaterial gemäss Anspruch 1 umfassend die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, ein oder mehrere basische Metalloxide (bzw. deren Precursor) , Wasser, ggf . Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes .
11. Verfahren zur Herstellung von mikroporösem Filtermaterial gemäss Anspruch 1 umfassend die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, Wasser, ggf. Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes e) Imprägnieren des erhaltenen Formstückes mit einer Zusammensetzung enthaltend basische Metalloxid-Partikel oder Precursor basischer Metalloxide und Verdünnungsmittel f) Trocknen und Brennen des erhaltenen imprägnierten Formstückes.
12. Verfahren zur Herstellung von mikroporösen Filtermaterial gemäss Anspruch 1 umfassend die Schritte: a) Herstellen einer Suspension enthaltend Kieselgur, Ton, ein oder mehrere basische Metalloxide, Wasser, ggf. Binder b) Granulieren der erhaltenen Zusammensetzung c) Formgebung des erhaltenen Granulates d) Trocknen und Brennen des erhaltenen Formstückes e) Imprägnieren des erhaltenen Formstückes mit einer Zusammensetzung enthaltend basische Metalloxid-Partikel oder Precursor basischer Metalloxide und Verdünnungsmittel f) Trocknen und Brennen des erhaltenen imprägnierten Formstückes.
13. Mikroporöses Filtermaterial erhältlich durch ein Verfahren gemäss Anspruch 10, 11 oder 12.
14. Verwendung von mikroporösem Filtermaterial gemäss Anspruch 1 bis 6 oder 13 oder von Filterkartuschen gemäss Anspruch 9 zur Behandlung von Wasser, insbesondere zur Abtrennung von Viren und/oder Bakteriophagen aus Wasser.
15. Verfahren zum Behandeln von Wasser, insbesondere zur Abtrennung von Viren und/oder Bakteriophagen, dadurch gekennzeichnet, dass zu reinigendes Wasser durch ein mikroporöses Filtermaterial gemäss einem der Ansprüche 1 - 6 oder 13 oder durch eine Filterkartusche gemäss Anspruch 9 geleitet wird.
PCT/CH2007/000581 2006-11-28 2007-11-20 Mikroporöses filtermaterial, insbesondere zur virenentfernung WO2008064504A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH19312006 2006-11-28
CH1931/06 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008064504A1 true WO2008064504A1 (de) 2008-06-05

Family

ID=37865823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2007/000581 WO2008064504A1 (de) 2006-11-28 2007-11-20 Mikroporöses filtermaterial, insbesondere zur virenentfernung

Country Status (1)

Country Link
WO (1) WO2008064504A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067748A1 (en) * 2009-12-01 2011-06-09 Aqua-Nu Filtration Systems Limited Apparatus and a method for filtering liquid
EP2455351A1 (de) * 2010-11-19 2012-05-23 Phosbox Technologies Limited Verfahren zur Herstellung von porösen Keramikpellets zur Phosphorentfernung
WO2014004066A1 (en) * 2012-06-27 2014-01-03 Argonide Corporation Aluminized silicious sorbent and water purification device incorporating the same
WO2021105177A1 (de) * 2019-11-28 2021-06-03 Bwt Holding Gmbh Kartusche zur aufbereitung von trinkwasser sowie verfahren zur anreicherung von trinkwasser mit silicium
WO2021105178A1 (de) * 2019-11-28 2021-06-03 Bwt Holding Gmbh Verfahren und vorrichtung zum korrosionsschutz
EP3974401A1 (de) * 2020-09-28 2022-03-30 Polyplan-Kreikenbaum Gruppe GmbH Filtermaterial für bodenfilter zur phosphatadsorption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022555A1 (de) * 1993-03-29 1994-10-13 Lukopat Ag Mikrofilterscheibe und verfahren zu ihrer herstellung
US6150300A (en) * 1996-08-14 2000-11-21 Phillips Petroleum Company Process to produce sorbents
US20040178142A1 (en) * 2002-01-31 2004-09-16 Koslow Evan E. Integrated paper comprising fibrillated fibers and active particles immobilized therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022555A1 (de) * 1993-03-29 1994-10-13 Lukopat Ag Mikrofilterscheibe und verfahren zu ihrer herstellung
US6150300A (en) * 1996-08-14 2000-11-21 Phillips Petroleum Company Process to produce sorbents
US20040178142A1 (en) * 2002-01-31 2004-09-16 Koslow Evan E. Integrated paper comprising fibrillated fibers and active particles immobilized therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM S ET AL: "Ceramic filter prepn. - by pressing fine crushed ceramic and aq. soln. of organic binder, and baking in oxidising atmos", WPI / THOMSON, 20 July 1994 (1994-07-20), XP002449531 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067748A1 (en) * 2009-12-01 2011-06-09 Aqua-Nu Filtration Systems Limited Apparatus and a method for filtering liquid
EP2455351A1 (de) * 2010-11-19 2012-05-23 Phosbox Technologies Limited Verfahren zur Herstellung von porösen Keramikpellets zur Phosphorentfernung
WO2014004066A1 (en) * 2012-06-27 2014-01-03 Argonide Corporation Aluminized silicious sorbent and water purification device incorporating the same
US9309131B2 (en) 2012-06-27 2016-04-12 Argonide Corporation Aluminized silicious powder and water purification device incorporating same
US9707538B2 (en) 2012-06-27 2017-07-18 Argonide Corporation Aluminized silicious powder and water purification device incorporating same
WO2021105177A1 (de) * 2019-11-28 2021-06-03 Bwt Holding Gmbh Kartusche zur aufbereitung von trinkwasser sowie verfahren zur anreicherung von trinkwasser mit silicium
WO2021105178A1 (de) * 2019-11-28 2021-06-03 Bwt Holding Gmbh Verfahren und vorrichtung zum korrosionsschutz
EP3974401A1 (de) * 2020-09-28 2022-03-30 Polyplan-Kreikenbaum Gruppe GmbH Filtermaterial für bodenfilter zur phosphatadsorption
WO2022064056A1 (de) * 2020-09-28 2022-03-31 Polyplan-Kreikenbaum Gruppe Gmbh Filtermaterial für bodenfilter zur phosphatadsorption

Similar Documents

Publication Publication Date Title
DE60318062T2 (de) Mullit-aluminium titanat dieselabgasfilter
Saffaj et al. Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: application to filtration of solution containing dyes and salts
EP2845843B1 (de) Verfahren zur herstellung leichter, keramischer werkstoffe
DE60019214T2 (de) Transluzenter Aluminiumoxidsinterkörper und Verfahren zu seiner Herstellung
EP1204597B1 (de) Verfahren zur herstellung von aluminiumoxiden und daraus hergestellte produkte
DE112005000638B4 (de) Verfahren zur Herstellung eines porösen keramischen Körpers
AT389882B (de) Verfahren zur herstellung eines mikrokristallinen schleifmaterials
DE10114484C2 (de) Verfahren für die Herstellung eines Komposit-Werkstoffs mit einem SiO¶2¶-Gehalt von mindestens 99 Gew.-%, und Verwendung des nach dem Verfahren erhaltenen Komposit-Werkstoffs
WO2008064504A1 (de) Mikroporöses filtermaterial, insbesondere zur virenentfernung
EP2597075B1 (de) Poröser alpha-sic-haltiger formkörper mit durchgehend offener porenstruktur
DE10003505A1 (de) Durchsichtiger Aluminiumoxidsinterkörper und Verfahren zu seiner Herstellung
DE102010008477B4 (de) Verfahren zur Herstellung einer Aluminiumtitanatkeramik
EP2729431B1 (de) Verfahren zur herstellung einer porösen keramik
EP0518106A1 (de) Teilkristalline Übergangsaluminiumoxide, Verfahren zu deren Herstellung und Verwendung zur Gewinnung von Formkörpern, die im wesentlichen aus Gamma-A1203 bestehen
EP2873426B1 (de) Dauerfilter für einen Sterilisationsbehälter, Sterilisationsbehälter und Verfahren zum Herstellen eines Dauerfilters
DE60210732T2 (de) Keramikfilter und Verfahren zum Reinigen von Wasser
DE102009013567B4 (de) Verfahren zur Herstellung einer Wabenstruktur
DE60120586T2 (de) Verfahren zur Herstellung eines Siliziumnitridfilters
DE102015212290B4 (de) Wärmedämmstoff
WO2017077024A1 (de) Verfahren zur herstellung von kohlenstoffhaltigen keramischen bauteilen
DE102013019582A1 (de) Verfahren zur Herstellung poröser Sinterkörper
DE112016001561T5 (de) Zeolithimpfkristall vom DDR-Typ und ein Verfahren zur Herstellung einer Zeolithmembran vom DDR-Typ
WO2016093611A1 (ko) 메조포러스 실리카의 제조방법
KR20190081486A (ko) 에어로겔이 함유된 중금속 제거용 카본블럭 필터 및 그 제조방법
KR101227802B1 (ko) 톱밥을 이용한 미생물용 다공성 세라믹 담체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07816264

Country of ref document: EP

Kind code of ref document: A1