WO2008062700A1 - Appareil de contrôle servo et procédé de contrôle correspondant - Google Patents

Appareil de contrôle servo et procédé de contrôle correspondant Download PDF

Info

Publication number
WO2008062700A1
WO2008062700A1 PCT/JP2007/072111 JP2007072111W WO2008062700A1 WO 2008062700 A1 WO2008062700 A1 WO 2008062700A1 JP 2007072111 W JP2007072111 W JP 2007072111W WO 2008062700 A1 WO2008062700 A1 WO 2008062700A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
feedforward
speed
motor
torque command
Prior art date
Application number
PCT/JP2007/072111
Other languages
English (en)
French (fr)
Inventor
Wennong Zhang
Jun Hagihara
Fukashi Andoh
Noor Aamir Baloch
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2008545369A priority Critical patent/JP4992909B2/ja
Priority to EP07831841A priority patent/EP2096507A4/en
Publication of WO2008062700A1 publication Critical patent/WO2008062700A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41426Feedforward of torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41428Feedforward of position and speed

Definitions

  • the present invention relates to a servo control device that performs feedback control of a load machine in which inertia largely varies, and a control method therefor.
  • FIG. 3 is a block diagram showing the configuration of the first conventional servo control device.
  • 4 is an actual plant including the motor rotor and load machine, and shows the transfer function from the torque command to the motor speed.
  • Reference numeral 5 denotes a disturbance observer, which includes a reverse system 53 of a nominal plant and a first low-pass filter 52.
  • Reference numeral 6 denotes a phase advance compensation observer, which includes a nominal plant 61, a second low-pass filter 62, and an observer compensator 63.
  • 1 is a position controller
  • 2 is a PI controller
  • 9 is an integral.
  • Rotation speed, ⁇ is feedback speed, is torque command, ⁇ is basic signal of torque command fb 0
  • is the disturbance compensation torque
  • j is the inertia of the actual plant
  • j is the inertia d n of the nominal plant
  • S is the Laplace operator
  • the minimum value of the actual plant inertia J is J, and the maximum value is J.
  • the first low-pass filter 52 is a first-order low-pass filter expressed by equation (1).
  • Equation (2) When the transfer function G (s) up to the rotational speed ⁇ of the motive is obtained, Equation (2) is obtained.
  • reference numeral 3 denotes a first equivalent control target, which includes an equivalent low-pass filter 31 and a nominal plant 32. If the actual plant inertia J, which is the worst situation, becomes maximum, the equivalent low
  • the pass filter L (s, J) is given by equation (4).
  • the second low-pass filter L (s) is expressed by equation (5) accordingly.
  • Equation (3) Equation (3), Equation (5), and Equation (8), the lagging phase of equivalent low-pass filter L (s, J) 81 is almost compensated by the leading phase of equivalent high-pass filter H (s, J) 83, and the phase Vibration and unstable problems due to delay are eliminated.
  • the stability of the control system can be
  • the second conventional servo control device calculates a feedforward signal from the output of the reference model unit and adds it to the feedback control system (see, for example, Patent Document 1).
  • FIG. 6 is a block diagram showing the configuration of the second conventional servo control device.
  • Reference numeral 7 denotes a feedforward control unit, which includes a reference model unit 70, a differentiator 73, and an inverse system 74 of a nominal plant.
  • is the feedforward position command
  • is the feedforward speed command ff fff
  • T is a feedforward torque command.
  • the response to the target position command can be improved by improving the response of the reference model section.
  • Non-Patent Document 1 2006 IEEJ Industrial Application Conference, p. 11337-340
  • Patent Document 1 JP 2003-241802
  • An object of the present invention is to provide a servo control device and a control method capable of suppressing adverse effects such as load fluctuations and realizing a robust and high-speed tracking performance with respect to a target command.
  • the present invention is configured as follows.
  • the invention according to claim 1 is a servo control device that drives a motor and a load machine based on a torque command, and performs feedback control for causing the position of the previous motor to follow a target position.
  • Speed based on deviation from motor position A position control unit that calculates a degree command, a PI control unit that calculates a basic signal of the torque command based on a deviation between the speed command and the feedback speed, a basic signal of the torque command, and a rotation speed of the motor.
  • a disturbance observer for estimating a disturbance torque based on the above, and a phase advance compensation observer for estimating the feedback speed which is a phase advance from the rotation speed of the motor based on the basic signal of the torque command and the rotation speed of the motor.
  • a reference model unit that inputs the target position and outputs a feed forward position command, a differentiator that inputs the feed forward position command, and feeds the input of the differentiator.
  • the first high-pass filter that outputs the forward speed command and the inverse reverse of the nominal plant that receives the output of the differentiator.
  • a second high-pass filter that inputs the output of the reverse system of the nominal plant and outputs a feedforward torque command, wherein the feedforward position command is the position command of the feedback system, and the feedforward speed The command is added to the speed command to make a new speed command, and the feedforward torque command is added to the basic signal of the torque command to make a new basic signal of the torque command.
  • the first high-pass filter is an inverse system of the second low-pass filter.
  • the invention according to claim 3 is a servo control device that drives the electric motor and the load machine based on the torque command and performs the feedback control for causing the position of the previous electric motor to follow the target position.
  • a position control unit that calculates a speed command based on a deviation from the position of the motor
  • a PI control unit that calculates a basic signal of the torque command based on a deviation between the speed command and a feedback speed
  • the torque command
  • a disturbance observer that estimates a disturbance torque based on the basic signal of the motor and the rotational speed of the motor, and the feedback that is a phase advance from the rotational speed of the motor based on the basic signal of the torque command and the rotational speed of the motor.
  • the target position is set as a reference model.
  • a feed forward position command, a feed forward position command is output to the differentiator, a feed forward position command is input to the differentiator, and an output of the differentiator is input to the first high-pass filter to output a feed forward speed command.
  • Steps Inputting the output of the differentiator into a reverse system of the nominal plant, inputting the output of the reverse system of the nominal plant into a second high-pass filter and outputting a feedforward torque command, and the feedforward position command To the position command of the feedback system, the step of adding the feed forward speed command to the speed command to obtain a new speed command, and the feed forward torque command to the basic signal of the torque command. And a step of adding to a basic signal of a new torque command.
  • the invention according to claim 4 is the control method of the servo control device according to claim 3, wherein the first high-pass filter is an inverse system of the second low-pass filter.
  • the present invention suppresses adverse effects such as load fluctuations by configuring a feedforward control unit suitable for a feedback control system in which a disturbance observer and a phase advance compensation observer are combined with PI control.
  • a feedforward control unit suitable for a feedback control system in which a disturbance observer and a phase advance compensation observer are combined with PI control.
  • PI control phase advance compensation observer
  • FIG. 1 is a block diagram of a servo control device showing an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the first conventional servo control device.
  • FIG. 6 is a block diagram showing the configuration of the second conventional servo control device.
  • FIG. 7 is a flowchart showing a control method of the servo control device of the present invention.
  • FIG. 1 is a block diagram of a servo control apparatus showing an embodiment of the present invention.
  • Reference numeral 71 denotes a first high-pass filter
  • 72 denotes a second high-pass filter.
  • the present invention is a skillful combination of the feedforward controller improved from the second prior art with the first prior art.
  • T ff (s) H ff 2 (s) 'J n s's' ⁇ ff (s (17)
  • Expression (18) is established by Expression (14) and Expression (16).
  • the second high-pass filter 72 needs to be expressed by equations (20) and (21)
  • Equation (3) the cut frequency of the equivalent low-pass filter L (s, J) 82 changes almost in inverse proportion to the load inertia J, so the condition of Equation (21) must be satisfied for all J Is impossible. Therefore, when the load inertia J is in the middle of the fluctuation range,
  • the second high-pass filter 72 is expressed by equation (23).
  • the torque feedforward of the present invention is greatly different from the torque feedforward of the second conventional servo control device, and even if the load inertia varies, the nominal inertiar used in the feedforward control unit is always the first. 2 Since it matches the inertia of the equivalent control target 8, there is little disturbance in response characteristics due to the addition of torque feed forward. In particular, unless there is a sudden target position command, the effect of the equivalent low-pass filter L (s, J) 82 is small
  • FIG. 7 is a flowchart showing a control method of the servo control device of the present invention.
  • the target position is input to the reference model part and the feedforward position command is output.
  • the feedforward position command is input to the differentiator.
  • the output of the differentiator is input to the first high-pass filter. Output the feed forward speed command.
  • the output of the differentiator is input to the reverse system of the nominal plant, and in step ST5, the output of the reverse system of the nominal plant is input to the second high-pass filter to output a feedforward torque command.
  • step ST6 the feed-forward position command is used as the feedback system position command, and in step ST7, the feed-forward speed command is added to the speed command to obtain a new speed command.
  • step ST8 the feedforward torque command is added to the basic torque command signal to obtain a new basic torque command signal.
  • the position of the motor since the position of the motor follows the output of the reference model section even if the load inertia varies, the position of the motor can be improved by improving the response of the reference model section. The followability with respect to the target position command can be improved.
  • a feedforward control unit suitable for a feedback control system that combines a disturbance observer and a phase advance compensation observer with PI control, it is possible to realize mouth-bust and high-performance follow-up control for commands. Therefore, it can be applied not only to servos but also to applications where the nominal plant is represented by a non-minimum phase system and the parameters vary greatly, and the command follows the command at a high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

明 細 書
サーボ制御装置とその制御方法
技術分野
[0001] 本発明は、イナ一シャが大きく変動する負荷機械をフィードバック制御するサーボ制 御装置とその制御方法に関する。
背景技術
[0002] 近年、産業機械を駆動制御するサーボ制御システムは、使!/、易さと駆動の速さとの 両方の要求が年々高まっている。通常のサーボ装置は、良い制御性能を達成するた めに電動機の回転子を含む機械可動部の総イナ一シャを正確に設定する必要があ るため、使!/、易さと駆動の速さとの両立が実現できな!/、こと力 Sある。
[0003] 第 1の従来のサーボ制御装置は、 PI制御に外乱オブザーバと位相進み補償ォブ ザーバを組み合わせている(例えば、非特許文献 1参照)。図 3は第 1の従来のサー ボ制御装置の構成を示すブロック図である。図において、 4は電動機の回転子およ び負荷機械を含む実際のプラントで、トルク指令から電動機の回転速度までの伝達 関数が示されている。また、 5は外乱オブザーバであり、ノミナルプラントの逆システム 53と第 1ローパスフィルタ 52とを含んでいる。また、 6は位相進み補償オブザーバで あり、ノミナルプラント 61と第 2ローパスフィルタ 62とオブザーバ補償器 63とを含んで いる。また、 1は位置制御部、 2は PI制御部、 9は積分である。
また、 は目標位置指令、 Θ は電動機位置、 は速度指令、 ω は電動機の m m
回転速度、 ω はフィードバック速度、 はトルク指令、 Τ はトルク指令の基本信号 fb 0
、τは外乱補償トルク、 jは実際のプラントのイナ一シャ、 jはノミナルプラントのイナ d n 一 シャ、 Sはラプラス演算子である。
また、実際のプラントのイナーシャ Jの最小値を J とし、最大値を J とする。
m M
次に、第 1の従来のサーボ制御装置の動作原理について説明する。簡単のため、 第 1ローパスフィルタ 52を式(1)で表される 1次ローパスフィルタとする。
[0004] ここで、 Tは第 1ローパスフィルタの時定数である。トルク指令の基本信号 Τ *から電
1 0 動機の回転速度 ω までの伝達関数 G (s)を求めると、式(2)になる。
m 1
[0005] = = (2)
Figure imgf000004_0001
また、等価ローパスフィルタ 31を式(3)で表されるものとする。
[0006]
Figure imgf000004_0002
よって、図 3の制御システムを図 4のように書き直すことができる。図 4において、 3は 第 1等価制御対象であり、等価ローパスフィルタ 31とノミナルプラント 32を含んでいる 。最悪の状況である実際のプラントのイナーシャ Jが最大 となった場合、等価ロー
M
パスフィルタ L (s, J)は式 (4)となる。
[0007]
Figure imgf000004_0003
(
このとき、等価ローパスフィルタの位相遅れが一番大きいので、第 2ローパスフィルタ L (s)をこれに合わせて式(5)とする。
[0008]
Figure imgf000004_0004
また、 ω から ω までの伝達関数を式(6)とすると、図 4の制御システムを図 5のよう m fb
に書き直すことができる。
[0009]
Figure imgf000004_0005
また、オブザーバ補償器 63のゲインを十分大きく設定すると、式(7)が成り立つ c
[0010] よって、式(8)が成り立つ。
[0011]
H(s. J)
m( 。(
式(3)、式(5)および式(8)により、等価ローパスフィルタ L (s, J) 81の遅れ位相は ほぼ等価ハイパスフィルタ H (s, J) 83の進み位相に補償されて、位相遅れによる振 動や不安定な問題が解消される。すなわち、負荷変動があっても制御系の安定性が
2
保証され、 目標指令に対する応答特性が殆ど変わらない。
[0012] 第 2の従来のサーボ制御装置は、規範モデル部の出力からフィードフォワード信号 を算出しフィードバック制御系に加える(例えば、特許文献 1参照)。図 6は第 2の従来 のサーボ制御装置の構成を示すブロック図である。図において、各部には、図 3の相 当部分と同一記号を付してその説明を省略する。また、 7はフィードフォワード制御部 であり、規範モデル部 70と微分器 73とノミナルプラントの逆システム 74とを含んでい る。また、また、 Θ はフィードフォワード位置指令、 ω はフィードフォワード速度指令 ff ff
、 Tはフィードフォワードトルク指令である。
ff
次に、第 2の従来のサーボ制御装置の動作原理につ!/、て説明する。
図 6により、式(9)、 (10)、 (11)、 (12)が成り立つ。
[0013]
mJh is) = s - 0m (s)
[0014]
Figure imgf000005_0001
[0015]
Figure imgf000005_0002
[0016]
Figure imgf000005_0003
が成り立つ。負荷イナ一シャの変動がなぐし力、もノミナルイナーシャ J力 と等しい場 合は、式(13)が成り立つ。
[0017]
T: wm (s) 0m (s)
よって、フィードバック制御の構成と関係なぐ電動機の位置 Θ は完全に規範モデ
m
ル部 70の出力であるフィードフォワード位置指令 Θ に追従する。従って、フィードバ
ff
ック系のゲインを上げなくても、規範モデル部の応答性を向上することにより、 目標位 置指令に対する追従性を向上することができる。
非特許文献 1 :平成 18年電気学会産業応用部門大会, p. 11337- 340
特許文献 1 :特開 2003— 241802
発明の開示
発明が解決しょうとする課題
[0018] しかしながら、第 1の従来技術では、フィードバックだけの構成でどうしても十分な高 速応答特性が得られない。
また、第 2の従来技術では、負荷イナ一シャが変動するか正確に同定できなくて実 際の負荷イナ一シャがノミナルイナ一シャと大きくずれる場合、フィードフォワードトル ク指令が起こした速度信号がフィードフォワード速度指令と大きく違ってしまって、ォ 一バーショートなどの制御特性が悪化する問題があった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、 PI制御に外乱ォ ブザーバと位相進み補償オブザーバを組み合わせたフィードバック制御系に合うよう なフィードフォワード制御部を構成することにより、負荷変動などの悪影響を抑制し、 目標指令に対してロバストかつ高速な追従性能を実現することができるサーボ制御 装置と制御方法を提供することを目的とする。
課題を解決するための手段
[0019] 上記問題を解決するため、本発明は、次のように構成したのである。
請求項 1に記載の発明は、トルク指令に基づいて電動機および負荷機械を駆動し 、前期電動機の位置を目標位置に対して追従させるフィードバック制御を行うサーボ 制御装置にて、フィードバック系の位置指令と電動機の位置との偏差に基づいて速 度指令を計算する位置制御部と、前記速度指令とフィードバック速度との偏差に基 づいて前記トルク指令の基本信号を計算する PI制御部と、前記トルク指令の基本信 号および電動機の回転速度に基づいて外乱トルクを推定する外乱オブザーバと、前 記トルク指令の基本信号および前記電動機の回転速度に基づいて前記電動機の回 転速度より位相進みである前記フィードバック速度を推定する位相進み補償ォブザ ーバと、を備えたサーボ制御装置において、前記目標位置を入力しフィードフォヮ一 ド位置指令を出力する規範モデル部と、前記フィードフォワード位置指令を入力する 微分器と、前記微分器の出力を入力しフィードフォワード速度指令を出力する第 1ハ ィパスフィルタと、前記微分器の出力を入力するノミナルプラントの逆システムと、前 記ノミナルプラントの逆システムの出力を入力しフィードフォワードトルク指令を出力 する第 2ハイパスフィルタと、を備え、前記フィードフォワード位置指令を前記フィード バック系の位置指令とし、前記フィードフォワード速度指令を前記速度指令に足して 新たな速度指令とし、前記フィードフォワードトルク指令を前記トルク指令の基本信号 に足して新たなトルク指令の基本信号とするものである。
請求項 2に記載の発明は、前記第 1ハイパスフィルタを前記第 2ローパスフィルタの 逆システムとするものである。
請求項 3に記載の発明は、トルク指令に基づいて電動機および負荷機械を駆動し 、前期電動機の位置を目標位置に対して追従させるフィードバック制御を行うサーボ 制御装置にて、フィードバック系の位置指令と電動機の位置との偏差に基づいて速 度指令を計算する位置制御部と、前記速度指令とフィードバック速度との偏差に基 づいて前記トルク指令の基本信号を計算する PI制御部と、前記トルク指令の基本信 号および電動機の回転速度に基づいて外乱トルクを推定する外乱オブザーバと、前 記トルク指令の基本信号および前記電動機の回転速度に基づいて前記電動機の回 転速度より位相進みである前記フィードバック速度を推定する位相進み補償ォブザ ーバと、を備えたサーボ制御装置の制御方法において、前記目標位置を規範モデ ル部に入力しフィードフォワード位置指令を出力するステップと、前記フィードフォヮ ード位置指令を微分器に入力するステップと、前記微分器の出力を第 1ハイパスフィ ルタに入力しフィードフォワード速度指令を出力するステップと、 前記微分器の出力をノミナルプラントの逆システムに入力するステップと、前記ノミ ナルプラントの逆システムの出力を第 2ハイパスフィルタに入力しフィードフォワードト ルク指令を出力するステップと、 前記フィードフォワード位置指令を前記フィードバ ック系の位置指令とするステップと、前記フィードフォワード速度指令を前記速度指令 に加算して新たな速度指令とするステップと、前記フィードフォワードトルク指令を前 記トルク指令の基本信号に加算して新たなトルク指令の基本信号とするステップと、 を備えたことを特徴とするものである。
請求項 4に記載の発明は、請求項 3記載のサーボ制御装置の制御方法において、 前記第 1ハイパスフィルタは、前記第 2ローパスフィルタの逆システムであることを特徴 とするあのである。
発明の効果
[0020] 本発明は、 PI制御に外乱オブザーバと位相進み補償オブザーバを組み合わせた フィードバック制御系に合うようなフィードフォワード制御部を構成することにより、負 荷変動などの悪影響を抑制し、 目標指令に対してロバストかつ高速な追従性能を実 現することができるサーボ制御装置と制御方法を提供できる。
図面の簡単な説明
[0021] [図 1]本発明の実施例を示すサーボ制御装置のブロック図
[図 2]図 1の等価ブロック図
[図 3]第 1の従来のサーボ制御装置の構成を示すブロック図
[図 4]図 3の等価ブロック図
[図 5]図 4の等価ブロック図
[図 6]第 2の従来のサーボ制御装置の構成を示すブロック図
[図 7]本発明のサーボ制御装置の制御方法を示したフローチャート
符号の説明
[0022] 10、 11 加減算器
12、 54 加算器
51、 64、 65 減算器
1 位置制御部 2 PI制御部
3 第 1等価制御対象
31、 82 等価ローパスフィルタ
4 実際のプラント
5 外乱オブザーバ
52 第 1ローパスフィルタ
53、 74 ノミナノレプラントの逆システム
6 位相進み補償オブザーバ
32、 61、 81 ノミナノレプラント
62 第 2ローパスフィルタ
63 オブザーバ補償器
7 フィードフォワード制御部
70 規範モデル部
71 第 1ハイパスフィルタ
72 第 2ハイパスフィルタ
73 微分器
8 第 2等価制御対象
83 等価ハイパスフィルタ
9 積分項
発明を実施するための最良の形態
以下、本発明の実施の形態について図を参照して説明する。
図 1は、本発明の実施例を示すサーボ制御装置のブロック図である。図において、 各部には、図 3および図 6の相当部分と同一記号を付してその説明を省略する。また 、 71は第 1ハイパスフィルタ、 72は第 2ハイパスフィルタである。本発明は第 1の従来 技術に第 2の従来技術から改良したフィードフォワード制御部を巧みに組み合わせた ものである。
以下、本発明のサーボ制御装置の動作原理および構成方法について説明する。 本発明のサーボ制御装置のフィードバック制御部は第 1の従来技術と全く同じであ るため、第 1の従来技術と同じ理由で、図 1の制御システムを図 2のように書き直す と力 ^できる。また、式(1)乃至式(8)は依然成り立つ。図 2により、
[0024]
(14)
[0025]
(15)
[0026]
Figure imgf000010_0001
[0027]
Tff{s) = Hff 2 (s) ' Jns ' s ' Θ ff {s (17)
が成り立つ。
式(14)および式(16)により、式(18)が成り立つ。
[0028]
Figure imgf000010_0002
となる。また、式(15)および式(17)により、式(19)が成り立つ
[0029]
Figure imgf000010_0003
よって、電動機の位置 Θ をフィードフォワード位置指令 Θ に追従させるため、第 1 ff
第 2ハイパスフィルタ 72を式(20)、(21)とする必要がある
[0030]
(20)
[0031]
Figure imgf000010_0004
式(8)より、等価ハイパスフィルタ H (s, J) 83のカット周波数は殆ど負荷イナーシャ J によらず一定であるため、第 1ハイパスフィルタ 71を式(22)とすると、式(20)の条件 が満たされる。
[0032]
Hff (^ = ^ (22)
また、式(3)より、等価ローパスフィルタ L (s, J) 82のカット周波数はほぼ負荷イナ一 シャ Jに反比例して変わるので、すべての Jに対して式(21)の条件を満たすことが不 可能である。そこで、負荷イナーシャ Jが変動範囲の中間 になる場合に合わせて
0
第 2ハイパスフィルタ 72を式(23)とする。
[0033]
^2 ( ) = ( ) (23)
一方、本発明のトルクフィードフォワードは第 2の従来のサーボ制御装置のトルクフィ ードフォワードと大きく違って、負荷イナ一シャの変動があっても、フィードフォワード 制御部に使われたノミナルイナ一シャが必ず第 2等価制御対象 8のイナ一シャと一致 するので、トルクフィードフォワードを加えるによる応答特性の乱れが少ない。特に、 急変な目標位置指令がでない限り、等価ローパスフィルタ L (s, J) 82の影響が小さい
[0034] 図 7は本発明のサーボ制御装置の制御方法を示したフローチャートである。ステップ ST1で、 目標位置を規範モデル部に入力しフィードフォワード位置指令を出力し、ス テツプ ST2でフィードフォワード位置指令を微分器に入力し、ステップ ST3で微分器 の出力を第 1ハイパスフィルタに入力しフィードフォワード速度指令を出力する。ステ ップ ST4で微分器の出力をノミナルプラントの逆システムに入力し、ステップ ST5でノ ミナルプラントの逆システムの出力を第 2ハイパスフィルタに入力しフィードフォワード トルク指令を出力する。ステップ ST6でフィードフォワード位置指令をフィードバック系 の位置指令とし、ステップ ST7でフィードフォワード速度指令を速度指令に加算して 新たな速度指令とする。ステップ ST8でフィードフォワードトルク指令をトルク指令の 基本信号に加算して新たなトルク指令の基本信号とする。
以上のように、負荷イナ一シャの変動があっても、電動機の位置が規範モデル部の 出力に追従するので、規範モデル部の応答性を向上することにより、電動機の位置 の目標位置指令に対する追従性を向上することができる。
産業上の利用可能性
PI制御に外乱オブザーバと位相進み補償オブザーバを組み合わせたフィードバック 制御系に合うようなフィードフォワード制御部を構成することによって、指令に対して口 バストかつ高性能な追従制御を実現することができる。したがって、サーボのみなら ず、レ、わゆるノミナルプラントが非最小位相システムで表されパラメータが大きく変動 するシステムに対して、ロバストかつ高速度に指令に追従するという用途にも適用で きる。

Claims

請求の範囲
[1] トルク指令に基づ V、て電動機および負荷機械を駆動し、前期電動機の位置を目標 位置に対して追従させるフィードバック制御を行うサーボ制御装置にて、フィードバッ ク系の位置指令と電動機の位置との偏差に基づいて速度指令を計算する位置制御 部と、前記速度指令とフィードバック速度との偏差に基づいて前記トルク指令の基本 信号を計算する PI制御部と、前記トルク指令の基本信号および電動機の回転速度 に基づ V、て外乱トルクを推定する外乱オブザーバと、前記トルク指令の基本信号お よび前記電動機の回転速度に基づいて前記電動機の回転速度より位相進みである 前記フィードバック速度を推定する位相進み補償オブザーバと、を備えたサーボ制 御装置において、
前記目標位置を入力しフィードフォワード位置指令を出力する規範モデル部と、 前記フィードフォワード位置指令を入力する微分器と、
前記微分器の出力を入力しフィードフォワード速度指令を出力する第 1ハイパスフィ ノレタと、
前記微分器の出力を入力するノミナルプラントの逆システムと、
前記ノミナルプラントの逆システムの出力を入力しフィードフォワードトルク指令を出 力する第 2ハイパスフィルタと、
を備え、
前記フィードフォワード位置指令を前記フィードバック系の位置指令とし、前記フィ ードフォワード速度指令を前記速度指令に加算して新たな速度指令とし、前記フィー ドフォワードトルク指令を前記トルク指令の基本信号に加算して新たなトルク指令の 基本信号とすることを特徴とするサーボ制御装置。
[2] 前記第 1ハイパスフィルタは、前記第 2ローパスフィルタの逆システムであることを特 徴とする請求項 1記載のサーボ制御装置。
[3] トルク指令に基づ V、て電動機および負荷機械を駆動し、前期電動機の位置を目標 位置に対して追従させるフィードバック制御を行うサーボ制御装置にて、フィードバッ ク系の位置指令と電動機の位置との偏差に基づいて速度指令を計算する位置制御 部と、前記速度指令とフィードバック速度との偏差に基づいて前記トルク指令の基本 信号を計算する PI制御部と、前記トルク指令の基本信号および電動機の回転速度 に基づ V、て外乱トルクを推定する外乱オブザーバと、前記トルク指令の基本信号お よび前記電動機の回転速度に基づいて前記電動機の回転速度より位相進みである 前記フィードバック速度を推定する位相進み補償オブザーバと、を備えたサーボ制 御装置の制御方法にお V、て、
前記目標位置を規範モデル部に入力しフィードフォワード位置指令を出力するステ 前記フィードフォワード位置指令を微分器に入力するステップと、
前記微分器の出力を第 1ハイパスフィルタに入力しフィードフォワード速度指令を出 前記微分器の出力をノミナルプラントの逆システムに入力するステップと、 前記ノミナルプラントの逆システムの出力を第 2ハイパスフィルタに入力しフィードフ ォワードトルク指令を出力するステップと、
前記フィードフォワード位置指令を前記フィードバック系の位置指令とするステップ と、
前記フィードフォワード速度指令を前記速度指令に加算して新たな速度指令とする 前記フィードフォワードトルク指令を前記トルク指令の基本信号に加算して新たなト ルク指令の基本信号とするステップと、
を備えたことを特徴とするサーボ制御装置の制御方法。
前記第 1ハイパスフィルタは、前記第 2ローパスフィルタの逆システムであることを特徴 とする請求項 3記載のサーボ制御装置の制御方法。
PCT/JP2007/072111 2006-11-21 2007-11-14 Appareil de contrôle servo et procédé de contrôle correspondant WO2008062700A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008545369A JP4992909B2 (ja) 2006-11-21 2007-11-14 サーボ制御装置とその制御方法
EP07831841A EP2096507A4 (en) 2006-11-21 2007-11-14 SERVO CONTROL DEVICE AND CONTROL PROCEDURE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006313776 2006-11-21
JP2006-313776 2006-11-21

Publications (1)

Publication Number Publication Date
WO2008062700A1 true WO2008062700A1 (fr) 2008-05-29

Family

ID=39429635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072111 WO2008062700A1 (fr) 2006-11-21 2007-11-14 Appareil de contrôle servo et procédé de contrôle correspondant

Country Status (4)

Country Link
EP (1) EP2096507A4 (ja)
JP (1) JP4992909B2 (ja)
TW (1) TW200841141A (ja)
WO (1) WO2008062700A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022145A (ja) * 2008-07-11 2010-01-28 Yaskawa Electric Corp 同期制御装置
JP2010137724A (ja) * 2008-12-11 2010-06-24 Toyota Motor Corp 制振制御装置および制振制御方法
JP2015122846A (ja) * 2013-12-20 2015-07-02 Juki株式会社 位置決め装置の制御装置
JP2019159733A (ja) * 2018-03-13 2019-09-19 富士電機株式会社 速度・位置制御システム
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531682B2 (ja) 2016-03-11 2019-06-19 オムロン株式会社 モータ制御装置、モータ制御方法、プログラム、および記録媒体
CN108873698B (zh) * 2018-07-07 2021-06-01 福州大学 一种抗扰动两阶段定点伺服控制方法
CN113311706B (zh) * 2021-05-26 2022-05-27 广东电网有限责任公司 高性能超前观测器的高频噪声功率增益的自动跟踪方法
CN113359485B (zh) * 2021-07-27 2022-08-16 安徽工业大学 一种电液伺服系统输出反馈预设性能控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147038A (ja) * 1994-11-21 1996-06-07 Tsubakimoto Chain Co モータの駆動制御装置
JP2003241802A (ja) 2001-12-10 2003-08-29 Yaskawa Electric Corp 最適指令作成装置
JP2004272883A (ja) * 2003-02-20 2004-09-30 Mitsubishi Electric Corp サーボ制御装置
JP2005267296A (ja) * 2004-03-19 2005-09-29 Yaskawa Electric Corp サーボ制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835528B2 (ja) * 2001-07-19 2006-10-18 株式会社安川電機 速度制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147038A (ja) * 1994-11-21 1996-06-07 Tsubakimoto Chain Co モータの駆動制御装置
JP2003241802A (ja) 2001-12-10 2003-08-29 Yaskawa Electric Corp 最適指令作成装置
JP2004272883A (ja) * 2003-02-20 2004-09-30 Mitsubishi Electric Corp サーボ制御装置
JP2005267296A (ja) * 2004-03-19 2005-09-29 Yaskawa Electric Corp サーボ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2096507A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022145A (ja) * 2008-07-11 2010-01-28 Yaskawa Electric Corp 同期制御装置
JP2010137724A (ja) * 2008-12-11 2010-06-24 Toyota Motor Corp 制振制御装置および制振制御方法
JP2015122846A (ja) * 2013-12-20 2015-07-02 Juki株式会社 位置決め装置の制御装置
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
JP2019159733A (ja) * 2018-03-13 2019-09-19 富士電機株式会社 速度・位置制御システム
JP7020200B2 (ja) 2018-03-13 2022-02-16 富士電機株式会社 速度・位置制御システム

Also Published As

Publication number Publication date
TW200841141A (en) 2008-10-16
JPWO2008062700A1 (ja) 2010-03-04
EP2096507A1 (en) 2009-09-02
JP4992909B2 (ja) 2012-08-08
EP2096507A4 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
WO2008062700A1 (fr) Appareil de contrôle servo et procédé de contrôle correspondant
JP5169836B2 (ja) 位置制御装置
JP5120654B2 (ja) サーボ制御装置
EP0967535B1 (en) Position controller
JP4575508B1 (ja) デュアル位置フィードバック制御を行うサーボ制御装置
CN105932930B (zh) 电动机控制装置
KR20060127233A (ko) 전동기 제어 장치
CN110601624B (zh) 一种伺服控制装置
WO2001088649A1 (fr) Servomecanisme de positionnement
TWI461877B (zh) 伺服控制裝置
JPH0199485A (ja) サーボ電動機の制御装置
JP5067656B2 (ja) ディジタル制御装置
JPH0549284A (ja) 同期形交流サーボモータの速度制御方法
JP2009303432A (ja) モータによる位置制御装置
CN103167737B (zh) 电动机控制装置
JP2015115990A (ja) モータ制御装置
JP6041762B2 (ja) モータ制御装置
JP2017099084A (ja) 多慣性共振システムにおける共振抑制制御装置
JP4226420B2 (ja) 位置制御装置
JP2008097334A (ja) サーボ制御装置とその制御方法
JP5413036B2 (ja) モータ制御装置及びモータ制御システム
JP5052987B2 (ja) 位置又は速度制御装置
JP5017984B2 (ja) サーボ制御装置とその速度追従制御方法
WO2002025390A1 (fr) Procede de servocommande
CN109507873B (zh) 一种带宽参数化直流调速反馈控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008545369

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007831841

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE