WO2008061949A1 - Optische messzelle und gasmonitor - Google Patents
Optische messzelle und gasmonitor Download PDFInfo
- Publication number
- WO2008061949A1 WO2008061949A1 PCT/EP2007/062481 EP2007062481W WO2008061949A1 WO 2008061949 A1 WO2008061949 A1 WO 2008061949A1 EP 2007062481 W EP2007062481 W EP 2007062481W WO 2008061949 A1 WO2008061949 A1 WO 2008061949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- measuring cell
- purge gas
- volume
- optical measuring
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 147
- 239000012510 hollow fiber Substances 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 238000011156 evaluation Methods 0.000 claims abstract description 3
- 238000010926 purge Methods 0.000 claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 108091008695 photoreceptors Proteins 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical group [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0346—Capillary cells; Microcells
Definitions
- the invention relates to an optical measuring cell for gas absorption method and a gas monitor.
- a known solution is to flush the cuvette with a gas from a reservoir, for example a compressed gas cylinder, which does not contain the gas component to be measured and also does not absorb in the wavelength range used.
- a gas from a reservoir for example a compressed gas cylinder
- nitrogen can be used here if ambient air is used as the measuring gas.
- conventional measuring cells generally have large volumes depending on the application, such as typically> 100 cm 3 to several liters, a multiple of the measuring cell volume of purge gas is required for each purge, which leads to a considerable gas consumption in continuously running or a large number of measuring operations.
- the invention is based on the object of generating a stable zero of an optical gas sensor system, for example fixed wavelengths and non-scanning system, to describe a measurement path which is independent of changes / contamination of the optical measurement setup, or of the measurement cuvette, and which is as small as possible Sample gas volume is excellent.
- At least one hollow fiber with typical diameters in the sub-millimeter range is used to measure the gas-dependent absorption.
- both the gas to be measured and the light used for the absorption measurement are guided into the open-end core of the hollow fiber.
- the coupling of the light takes place in the longitudinal direction of the hollow fiber: by the flat reflection angle occurring such good reflection properties are generated that the light can be performed even with heavily curved hollow fiber, in particular glass fiber, several meters without significant losses.
- hollow fibers With hollow fibers one achieves the particular advantage of a large absorption distance and thus a sensitive gas detection with a small measuring cell volume.
- One meter of a hollow fiber with 0.5 mm diameter, for example, has a volume of about 0.2 cm.
- purge gas are so few cm required.
- a 3-liter bottle of purge gas with a pressure of 200 bar is sufficient for a recurring measurement every 10 minutes and a gas consumption of approx. 1 cm of gas per flush for more than ten years to supply the measuring instrument with purge gas. This can be a self-sufficient
- Measurement setup can be realized, the without tracking of auxiliary media, e.g. for rinsing, during its lifespan.
- the structure then consists of the optical measuring cell 14 and the purge gas generator Bl, which in turn essentially consists of a gas pump 10 and a gas filter 11.
- the invention is based essentially on the combination of the use of a hollow fiber as optical measuring cell with her typical volume. This is dependent on the fiber length and is in the range of usually less than or equal learning 3 per meter fiber length, which reduced demands on the over many rinsing cycles summed refill amount of the required purge gas are provided.
- the requirements for the purge gas supply can be met with small-volume gas cylinders or purge gas generators, as described above.
- the figure shows a measuring cell with gas delivery A, which has an optical measuring cell 14 with a hollow fiber 1.
- the figure presents in detail an embodiment of the invention.
- the arrangement consists of the optical measuring cell 14, the sample gas delivery and the Spülgasusually, and a purge gas supply.
- the optical measuring cell comprises the hollow fiber 1 as an absorption measuring cell with the light source 2, the photo-detector 3 and the control and evaluation circuit 4th
- the sample gas delivery comprises the sample gas intake tube 5, depending on an optional small-pore particle filter 6 and after the hollow fiber 1, a valve 7 in front of the sample gas pump 9, and a Gas outlet.
- a valve 8 closes off the measuring cell with gas delivery A in the direction of the purge gas supply B.
- the purge gas supply may consist of a purge gas pressure bottle B2.
- a purge gas supply means of a purge gas generator Bl which generates a purge gas which contains no gas to be detected in a measurement.
- the purge gas generator Bl includes the gas pump 10 and the actual gas generator.
- the purge gas generator consists of a purge gas reservoir, for example a DruckgasfIaschel2 with the throttle 13 for adjusting the gas flow.
- Sample gas delivery pump 9 is switched off.
- the purge gas flows through the hollow fiber 1 and rinses the measurement gas residues back into the measurement gas atmosphere 15.
- an optical absorption measurement is performed, initially the zero measurement. Which is carried out on a gas volume filled with purge gas in the hollow fiber.
- the valve 8 is closed, the valve 7 is opened, the purge gas pump 10 is turned off and the sample gas pump 9 is put into operation. Now, the measurement gas flows through the hollow fiber 1 and an optical transmission measurement is performed. The ratio of transmission once with sample gas and once with purge gas (zero measurement) results in the gas-dependent transmission, independent of the fundamental transmission of the absorption path, of the hollow fiber.
- the process is analogous when the purge gas is provided from a compressed gas cylinder 12.
- sample gas and purge gas flow through the hollow fiber in the opposite direction.
- purge gas generators Examples of purge gas generators:
- the gas filter consists of a heated palladium membrane that is comparable to a Pd diffusion cell.
- the required pressure difference is provided by a gas pump.
- the filter is supplied with the contaminated hydrogen. Since only protons can diffuse through Pd, pure hydrogen results on the secondary side, which can be used as purge gas.
- an oxygen-ion pump cell provides conductive, for example, from about 600 0 C hot zirconium oxide, as oxygen supplier. Between the primary side and the secondary side of the heated zirconia ceramic, a voltage is applied, which leads to an oxygen transport through the ceramic. On the secondary side is pure oxygen, which can be used as purge gas.
- An additional pump is omitted in this embodiment, because the pumping action is already included in the principle of the cell. According to this principle, the reference gas oxygen can also be produced by the electrochemical decomposition of further oxygen-containing gases, such as H2O, CO2, CO, NO, NO2.
- Hydrogen or oxygen can be prepared in the liquid phase by electrolysis of acidified water.
- the gas generated at the cathode or at the anode can be used separately for rinsing.
- the electrolysis is always set in motion only when there is a need for purge gas. What is needed is an electrolysis cell and possibly a gas pump. Such a unit can be operated over several years, if only the above small purge gas quantities are needed.
- the reaction is started by adding the Al to the sodium hydroxide solution.
- the supply of Al stops.
- the apparatus consists of a respective reservoir for the NaOH and the Al, for example in the form of chips, a metering device for the aluminum chips and a gas pump.
- the design can deliver purge gas over several years, depending on the chemical supplies and number of purge cycles.
- Air is passed over glowing copper, allowing the oxygen to be completely extracted. What remains is a mixture of nitrogen with 1% argon, which does not bother.
- a gas pump is needed in addition to the Cu and the heating for the Cu nor a gas pump is needed. The process is only started if the measuring cell is to be rinsed. Maintenance is essentially necessary only for the replacement of the copper. Depending on the number of purging cycles and the amount of gas required, the device can be used for several years without maintenance.
- Oxygen can be prepared in accurately calculable amounts by adding dropwise potassium permanganate solution to a solution of hydrogen peroxide acidified with sulfuric acid.
- two storage tanks for the chemicals are needed, which are metered into a reaction vessel, and a gas pump.
- the process can proceed as follows: If a purge is to be started, a volume of hydrogen peroxide corresponding to the desired amount of oxygen is initially introduced into the reaction vessel and the potassium permanganate is added dropwise.
- An alternative method of representing oxygen is the decomposition of potassium chlorate or potassium permanganate by heating. At the beginning of the rinsing process, the chemical is heated until a sufficient amount of gas is generated. Then you stop the process by cooling.
- the storage vessel possibly a reaction vessel, a metering device for the chemical and a gas pump is needed. Only the stock of chemicals has to be added, the quantity determines the time interval of the maintenance.
- Water vapor can be removed from the air stream when passing through desiccant (silica gel or CaCl2).
- CO 2 can be removed from the air by reaction with CaO. Only the chemical containers and a gas pump are required. The gas drying device can be regenerated by simple heating, the CaO is consumed and must be topped up. The maintenance interval depends on the size of the chemical supplies and the need for purge gas.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/516,008 US8570520B2 (en) | 2006-11-22 | 2007-11-19 | Optical measuring cell and gas monitor |
JP2009537611A JP5230640B2 (ja) | 2006-11-22 | 2007-11-19 | 光学測定セル |
EP07822692A EP2092300A1 (de) | 2006-11-22 | 2007-11-19 | Optische messzelle und gasmonitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006055157A DE102006055157B3 (de) | 2006-11-22 | 2006-11-22 | Optische Messzelle und Gasmonitor |
DE102006055157.5 | 2006-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008061949A1 true WO2008061949A1 (de) | 2008-05-29 |
Family
ID=39046785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/062481 WO2008061949A1 (de) | 2006-11-22 | 2007-11-19 | Optische messzelle und gasmonitor |
Country Status (5)
Country | Link |
---|---|
US (1) | US8570520B2 (de) |
EP (2) | EP2392914B1 (de) |
JP (1) | JP5230640B2 (de) |
DE (1) | DE102006055157B3 (de) |
WO (1) | WO2008061949A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011107868A1 (en) | 2010-03-05 | 2011-09-09 | Finmeccanica - Societa' Per Azioni | System for surveillance of an area within which people move |
CN102483377A (zh) * | 2009-09-04 | 2012-05-30 | 西门子公司 | 光学气体测量的测量方法和测量装置 |
WO2013000886A1 (de) | 2011-06-28 | 2013-01-03 | Siemens Aktiengesellschaft | Gaschromatograph mit absorption spektrometer und verfahren zur gaschromatographischen analyse eines gasgemischs |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8705025B2 (en) | 2010-12-13 | 2014-04-22 | Utah State University Research Foundation | Transferring optical energy |
WO2012120957A1 (ja) * | 2011-03-09 | 2012-09-13 | 株式会社堀場製作所 | ガス分析装置 |
FR2981158A1 (fr) * | 2011-10-06 | 2013-04-12 | Air Liquide Medical Systems | Module d'analyse de gaz pour appareil de ventilation de patient |
EP3001181B1 (de) * | 2014-09-24 | 2018-02-28 | Littelfuse Italy S.r.l. | Vorrichtung zur Detektion der Konzentration von Harnstoff in wässriger Lösung |
DE102015015152B4 (de) * | 2015-11-25 | 2017-07-20 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung eines Gassensors in einem Gasmesssystem |
US10732099B2 (en) | 2016-01-06 | 2020-08-04 | Tokushima University | Gas analysis device and gas analysis method using laser beam |
DE102016015059B4 (de) * | 2016-12-19 | 2020-11-12 | Drägerwerk AG & Co. KGaA | Vorrichtung zum extrakorporalen Blutgasaustausch |
WO2019201449A1 (en) * | 2018-04-20 | 2019-10-24 | Flo2R Aps | Gas analyser system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040263843A1 (en) * | 2003-04-18 | 2004-12-30 | Knopp Kevin J. | Raman spectroscopy system and method and specimen holder therefor |
US20050063869A1 (en) * | 2003-09-24 | 2005-03-24 | Stephane Follonier | Device, system and method of detecting targets in a fluid sample |
EP1653216A2 (de) * | 2004-10-26 | 2006-05-03 | Acreo AB | Mikrofluidische Vorrichtung |
JP2006125919A (ja) | 2004-10-27 | 2006-05-18 | Univ Waseda | 分光分析装置及び分光分析方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777735A (en) * | 1996-09-30 | 1998-07-07 | Minnesota Mining And Manufacturing Company | In situ analysis apparatus |
US5822058A (en) * | 1997-01-21 | 1998-10-13 | Spectral Sciences, Inc. | Systems and methods for optically measuring properties of hydrocarbon fuel gases |
JPH11295213A (ja) | 1998-04-10 | 1999-10-29 | Nippon Steel Corp | 光学式検出器用透過面の汚染防止装置 |
US6294764B1 (en) | 1998-10-07 | 2001-09-25 | Mississippi State University | Multi-component process analysis and control |
NL1010540C2 (nl) | 1998-11-12 | 2000-05-15 | Maasland Nv | Werkwijze voor het vaststellen van de aanwezigheid van bepaalde stoffen in melk en inrichting voor het toepassen van deze werkwijze. |
JP3954745B2 (ja) | 1998-12-25 | 2007-08-08 | 株式会社堀場製作所 | 試料液流通用の液体セル |
AU4803600A (en) * | 1999-04-27 | 2000-11-10 | University Of Pittsburgh | Apparatus for optically monitoring concentration of a bioanalyte in blood and related methods |
JP3413131B2 (ja) | 1999-10-04 | 2003-06-03 | キヤノン株式会社 | 光学装置及びデバイス製造方法 |
US6748334B1 (en) * | 1999-12-06 | 2004-06-08 | Jorge E. Perez | Specialty gas analysis system |
JP2001330540A (ja) | 2000-05-23 | 2001-11-30 | Kawasaki Steel Corp | 排ガス分析計のサンプルガス採取方法 |
JP2002107299A (ja) | 2000-09-29 | 2002-04-10 | Yokogawa Electric Corp | ガス測定装置 |
US6603556B2 (en) * | 2000-10-12 | 2003-08-05 | World Precision Instruments, Inc. | Photometric detection system having multiple path length flow cell |
JP3762677B2 (ja) | 2001-01-29 | 2006-04-05 | 株式会社 堀場アドバンスドテクノ | 流体分析用セルおよびこれを用いた分析装置 |
US7046362B2 (en) * | 2001-12-12 | 2006-05-16 | Trustees Of Princeton University | Fiber-optic based cavity ring-down spectroscopy apparatus |
JP3693960B2 (ja) | 2002-01-11 | 2005-09-14 | 独立行政法人科学技術振興機構 | 光ファイバーチューブを応用した分光光度計用長光路セル |
DE10346769A1 (de) * | 2003-10-06 | 2005-04-21 | Zimmer Ag | Analyseautomat und Verfahren zur Überwachung der Polymerherstellung mittels Massenspektroskopie |
SE0402292D0 (sv) * | 2004-09-23 | 2004-09-23 | Goeran Palmskog | Arrangement for determining concentration of a substance in a fluid |
DE602005011398D1 (de) * | 2005-02-22 | 2009-01-15 | Siemens Ag | Verfahren und Vorrichtung zum Nachweis von Spurengasen |
DE102005016320A1 (de) * | 2005-04-09 | 2006-10-12 | M+R Meß- und Regelungstechnik GmbH -An-Institut an der FH Anhalt | Infrarot-Gassensor |
US7531470B2 (en) * | 2005-09-27 | 2009-05-12 | Advantech Global, Ltd | Method and apparatus for electronic device manufacture using shadow masks |
EP1969997A1 (de) * | 2007-03-12 | 2008-09-17 | Radiometer Basel AG | Sensorensystem |
-
2006
- 2006-11-22 DE DE102006055157A patent/DE102006055157B3/de not_active Expired - Fee Related
-
2007
- 2007-11-19 EP EP10015286.7A patent/EP2392914B1/de not_active Not-in-force
- 2007-11-19 WO PCT/EP2007/062481 patent/WO2008061949A1/de active Application Filing
- 2007-11-19 EP EP07822692A patent/EP2092300A1/de not_active Ceased
- 2007-11-19 US US12/516,008 patent/US8570520B2/en not_active Expired - Fee Related
- 2007-11-19 JP JP2009537611A patent/JP5230640B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040263843A1 (en) * | 2003-04-18 | 2004-12-30 | Knopp Kevin J. | Raman spectroscopy system and method and specimen holder therefor |
US20050063869A1 (en) * | 2003-09-24 | 2005-03-24 | Stephane Follonier | Device, system and method of detecting targets in a fluid sample |
EP1653216A2 (de) * | 2004-10-26 | 2006-05-03 | Acreo AB | Mikrofluidische Vorrichtung |
JP2006125919A (ja) | 2004-10-27 | 2006-05-18 | Univ Waseda | 分光分析装置及び分光分析方法 |
Non-Patent Citations (3)
Title |
---|
"Gas sensing using air-guiding photonic bandgap fibers", OPTICS EXPRESS, vol. 12, no. 17, 23 August 2004 (2004-08-23) |
RITARI T ET AL: "Gas sensing using air-guiding photonic bandgap fibers", OPTICS EXPRESS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC,, US, vol. 12, no. 17, 23 August 2004 (2004-08-23), pages 4082 - 4083, XP002373024, ISSN: 1094-4087 * |
See also references of EP2092300A1 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102483377A (zh) * | 2009-09-04 | 2012-05-30 | 西门子公司 | 光学气体测量的测量方法和测量装置 |
WO2011107868A1 (en) | 2010-03-05 | 2011-09-09 | Finmeccanica - Societa' Per Azioni | System for surveillance of an area within which people move |
CN103097874A (zh) * | 2010-03-05 | 2013-05-08 | 芬梅卡尼卡股份有限公司 | 用于监视人在其中移动的区域的系统 |
CN103097874B (zh) * | 2010-03-05 | 2015-06-10 | 芬梅卡尼卡股份有限公司 | 用于监视人在其中移动的区域的系统 |
WO2013000886A1 (de) | 2011-06-28 | 2013-01-03 | Siemens Aktiengesellschaft | Gaschromatograph mit absorption spektrometer und verfahren zur gaschromatographischen analyse eines gasgemischs |
DE102011078156A1 (de) | 2011-06-28 | 2013-01-03 | Siemens Aktiengesellschaft | Gaschromatograph und Verfahren zur gaschromatographischen Analyse eines Gasgemischs |
Also Published As
Publication number | Publication date |
---|---|
EP2092300A1 (de) | 2009-08-26 |
EP2392914A1 (de) | 2011-12-07 |
US20100149538A1 (en) | 2010-06-17 |
JP2010510507A (ja) | 2010-04-02 |
EP2392914B1 (de) | 2013-05-01 |
JP5230640B2 (ja) | 2013-07-10 |
US8570520B2 (en) | 2013-10-29 |
DE102006055157B3 (de) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006055157B3 (de) | Optische Messzelle und Gasmonitor | |
DE102009028165B4 (de) | Verfahren und Vorrichtung zur automatisierten Bestimmung des chemischen Sauerstoffbedarfs einer Flüssigkeitsprobe | |
DE3876503T2 (de) | Gasmischvorrichtung und ihre verwendung in einem gasanalysegeraet. | |
CN201662528U (zh) | 水质汞在线自动监测装置 | |
DE19624844C2 (de) | Vorrichtung zur Messung des Partialdruckes von in Flüssigkeiten gelösten Gasen in Anlagen zur Durchführung von biotechnologischen oder lebensmitteltechnologischen Prozessen | |
AT521823B1 (de) | Ermittlung des Massenstromes eines Abgasbestandteils einer Brennstoffzelle | |
CN103389279A (zh) | 亚甲基蓝分光光度法在线检测水质中硫化物浓度的装置及方法 | |
CN101819212A (zh) | 水质汞在线自动监测装置 | |
DE3605476A1 (de) | Verfahren und vorrichtung einer stroemungsanalyse | |
DE2233171A1 (de) | Spektrofluorometer und stroemungszelleneinheit fuer kolorimetrische messungen | |
EP3671184A1 (de) | Alkoholdetektionsvorrichtung mit redundanten messkanälen und verfahren zum messen einer ethanolkonzentration in atemluft | |
DE69127938T2 (de) | Nachweis des Eisen(II)ions in strömendem Wasser | |
IT9021475A1 (it) | Procedimento ed apparecchiatura per la determinazione elettrochimica di specie gassose o volatili con particolare riferimento ad emogsanalizzatori. | |
DE69807156T2 (de) | Elektrolysevorrichtung mit Überwachungsgerät | |
EP0043042A1 (de) | Vorrichtung zur kolorimetrischen Messung von Gasspuren | |
EP1036312A1 (de) | Vorrichtung zur messung des partialdruckes von in flüssigkeiten gelösten gasen | |
EP0727655A1 (de) | Messeinrichtung und Verfahren zur Messung der Sauerstoffpermeabilität eines Prüflings | |
JP2001124757A (ja) | 3態窒素分析システムにおけるシステムの自己診断方法 | |
US20240198326A1 (en) | Stabilized reagent compositions, systems and methods using the same | |
AT521829B1 (de) | Verfahren zum Prüfen einer Brennstoffzelle auf einem Prüfstand | |
JP3496779B2 (ja) | 全窒素および全リンの自動分析方法および装置 | |
DE4344235C2 (de) | Vorrichtung zur Messung der Konzentration einer Substanz, insbesondere Peroxid, in einer gasförmigen oder flüssigen Probe mittels enzymatischer Fluoreszenz | |
DE10150970A1 (de) | Optisches Durchflußmeßsystem | |
DE3151807A1 (de) | Sonde fuer ein system zum coulometrischen messen der dicke einer metallschicht | |
DE102015117638A1 (de) | Verfahren zur Dosierung einer Flüssigkeit in einem nasschemischen Analysegerät zur Bestimmung eines Parameters einer Flüssigkeitsprobe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07822692 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007822692 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009537611 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12516008 Country of ref document: US |