WO2008059835A1 - Complexe de type chélate métallique, agent améliorant la vitesse de relaxation de protons et agent de contraste en rm - Google Patents

Complexe de type chélate métallique, agent améliorant la vitesse de relaxation de protons et agent de contraste en rm Download PDF

Info

Publication number
WO2008059835A1
WO2008059835A1 PCT/JP2007/072008 JP2007072008W WO2008059835A1 WO 2008059835 A1 WO2008059835 A1 WO 2008059835A1 JP 2007072008 W JP2007072008 W JP 2007072008W WO 2008059835 A1 WO2008059835 A1 WO 2008059835A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal chelate
chelate complex
contrast agent
mri contrast
present
Prior art date
Application number
PCT/JP2007/072008
Other languages
English (en)
French (fr)
Inventor
Tetsuji Yamaoka
Yoichi Tachibana
Hidehiro Iida
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2008544149A priority Critical patent/JPWO2008059835A1/ja
Publication of WO2008059835A1 publication Critical patent/WO2008059835A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups

Definitions

  • Metal chelate complex Metal chelate complex, proton relaxation rate enhancer, and MRI contrast agent
  • the present invention relates to a novel compound that can be used for diagnostic imaging, and changes over time in a certain area such as a cell or an organ by staying at a certain place without going back and forth between cell membranes.
  • This relates to a proton relaxation rate enhancer or MRI contrast agent that can be verified.
  • the present invention relates to an intracellular stay type MRI contrast agent for staying in a cell and tracking the cell in a regenerative treatment process or the like.
  • image diagnosis plays a major role, but there is an image diagnosis method that can measure the internal form and function of a living body non-destructively and non-invasively and show the result as an image. It has become important.
  • Such diagnostic imaging methods include X-ray diagnostic methods, radionuclide diagnostic methods (Positron C
  • T PET, single photon (SPECT), nuclear magnetic resonance diagnosis (MRI), ultrasound US, etc.
  • MRI is highly versatile because it has the advantages of superior soft tissue resolution, imaging in any direction, and the need for high-power measurement like PET.
  • MRI is a method that utilizes the nuclear magnetic resonance (NMR) phenomenon, and is a method that uses an MR signal obtained from hydrogen atoms (protons) in water molecules present in a living body.
  • the energy level force of protons present in the measurement object The time (relaxation time) or speed (relaxation rate) until it returns to the original energy level after it is once raised by electromagnetic waves irradiated from the MRI apparatus Due to the difference or the difference in proton density in the test object, it appears as contrast on the image.
  • An MRI contrast agent may be used for this MRI.
  • the MRI contrast agent is used for obtaining a clearer image when the contrast is small using a substance having an action of shortening the proton relaxation time in MRI or the like.
  • MRI contrast agents are mainly metals such as gadolinium. And chelate compounds (metal chelates).
  • this metal chelate Since this metal chelate has the action of shortening the relaxation time of protons, the contrast between the region where the contrast agent using the metal chelate stays and the region where it does not stay is more emphasized in the test object. Is done.
  • Omniscan registered trademark, Gd-DTPA-BMA, manufactured by Daiichi Pharmaceutical
  • Prohans registered trademark, Gd (HP—D03A), manufactured by Eisai
  • Magnescope registered trademark, Gd— Low molecular weight compounds such as DOTA, manufactured by Eiken or Tanabe Seiyaku
  • Magnevist registered trademark, Gd-DTPA, manufactured by Schering
  • Non-Patent Documents in which the blood half-life of the above-described low-molecular contrast agent is extended (Non-Patent Documents; see! -3 etc.), Metal-encapsulated micelles targeting cancer, dendrimer-type contrast agents that can bind a large amount of metal chelate to enhance contrast have been developed.
  • Non-Patent Document 1 describes Gd-DTPA and Gd-DOTA bound to polyglutamic acid (PG).
  • Non-Patent Documents 2 and 3 describe a product in which Gd-DTPA-cysteine complex, Gd-D03A, or the like is bound to polyethylene glycol (PEG).
  • organ transplantation has problems such as a shortage of donors, rejection after transplantation, and side effects caused by an immune suppressant to suppress rejection.
  • the above-mentioned contrast agent composed of a low molecular weight compound is small, it can penetrate cell membranes and the like. Even after being administered to a living body, it is free to move and it is not always possible to track the state of the tissue in the target area.
  • polymers having a relatively large molecular weight such as a polymer-bonded contrast agent and a dendrimer type contrast agent have been developed, but these also have an insufficient effect of preventing interaction with the cell membrane. Also, there is a possibility that deviation from the tracking target may occur due to membrane permeation.
  • all of the polymer-bound MRI contrast agents described in non-patent literature are biodegraded after one imaging.
  • Non-patent literature l Bioconjugate Chem .; (Article); 2004; 15 (6); 1408-1415
  • Non-Patent Document 2 Bioconjugate Chem .; (Article); 2004; 15 (6); 1424-1430
  • Non-Patent Document 3 Journal of Alloys and Compounds 249 (1997) 185-190
  • Non-Patent Document 4 J. Pharm. Pharmacol., 1995, 47, 479-486.
  • the present inventors have found that the contrast agent power using polybulualcohol is stable in the cell for a long period of time, and is extremely low in cytotoxicity even though long-term imaging is possible.
  • the invention has reached the invention, and the purpose of the invention is to stay in a certain place without going in and out of the cell membrane, and to stay in a certain area without being limited to one-time imaging.
  • the ability to observe the tissue state of the tissue, especially the regeneration process by cell transplantation over time, and is extremely low in cytotoxicity, metal chelate complex, proton relaxation rate enhancer, MRI contrast agent, or intracellular residence To provide type MRI contrast media.
  • a metal chelate complex comprising one or more metal chelates and polybulal alcohol as constituent components.
  • the metal chelate complex according to the first invention characterized in that the metal chelate is bound to polybulal alcohol via a linker.
  • the chelating agent is one or more chelating agents selected from the group consisting of DTPA, DTP A anhydride, DOTA, D03A, HP—D03A, DTPA BMA.
  • the metal chelate complex according to any one of the three inventions.
  • a proton relaxation rate enhancer comprising the metal chelate complex according to any one of the first to sixth inventions.
  • An MRI contrast agent comprising the metal chelate complex according to any one of the first to sixth inventions.
  • An intracellular stay-type MRI contrast agent comprising the metal chelate complex according to any one of the first to sixth inventions.
  • the invention's effect [0026]
  • the compound of the present invention can be used for diagnostic imaging. By staying in a certain area without going back and forth between cell membranes, the state of the organization in a certain area such as a cell or an organ. It can be used as a proton relaxation rate enhancer, more specifically an MRI contrast agent, etc. that can track the presence or absence of disease and the degree of progression over time.
  • the metal chelate complex of the present invention contains one or more metal chelates and polybulal alcohol (hereinafter sometimes referred to as “PVA”) as constituent components.
  • PVA polybulal alcohol
  • metal ions used for the metal chelate include various magnetic metals.
  • the six lanthanoid elements such as gadolinium ion, cerium ion, samarium ion, upium ion, dysprosium ion, thulium ion, and yttrium ion, chromium ion, molybdenum ion, tungsten ion, etc.
  • Element ions Group 7 element ions such as manganese, Iron ion, Ruthenium ion, Group 8 element ion such as osmium ion, Cobalt ion, Group 9 element ion such as rhodium, Nickel ion, Palladium ion, etc. 10 Ions of group elements, ions of group 11 elements such as copper ions, ions of group 12 elements such as zinc ions and cadmium ions.
  • gadmium (Gd) ions are preferably used from the viewpoint that the complex having the largest number of coordination with the chelating agent atom has the highest stability. This is because the metal chelate complex of the present invention using gadolinium ions is highly effective as an agent having the highest proton relaxation rate enhancement effect.
  • chelating agent used for metal chelates include the well-known DTPA (diethylenetriaminepentaacetic acid), DTPA-BMA (diethylenetriaminepentaacetic acid butyl methacrylate), DTP A anhydride, DOTA (l, 4, 7, 10 Tetraazacyclododecane 1, 4, 7, 10 Tetraacetate), D03A (1, 4, 7, 10 Tetraazacyclododecane 1, 4, 7 Triacetate), HP—D03A (2 Hydroxypro Pinole 1, 4, 7, 10 tetraazacyclododecane-1, 4, 7 triacetate), etc., but DTPA is particularly preferred because of its long track record of clinical use. Then DOTA is preferred.
  • DOTA having high stability is preferable because long-term cell tracking is required.
  • the metal chelate used in the metal chelate complex of the present invention includes Omniscan (registered trademark, Gd—DTPA—BMA, manufactured by Daiichi Pharmaceutical), Prohans (registered trademark, Gd (HP—D03A), manufactured by Eisai), Magnescope (Registered trademark, Gd—DOTA, manufactured by Eiken or Tanabe Seiyaku), Magnevist (registered trademark, Gd—DTPA, manufactured by Schering), etc. Use force S. You can also.
  • the metal ion and the quenching agent can be produced by, for example, mixing in an aqueous solution at room temperature, normal pressure, pH 6 to 6.5 for 24 hours.
  • the preferred pH range depends on the type of chelating agent. Generally, it is preferable to set the pH value as described above in view of the fact that chelation is promoted.
  • the PVA used in the metal chelate complex of the present invention is a known polymer having butyl alcohol as its structural unit (monomer), and is a highly hydrophilic synthetic resin.
  • the structural component, butyalcohol is unstable in molecular structure and unsuitable as a raw material for polymer production. Therefore, usually, acetic acid bull is first polymerized into polyacetic acid bull, and then the acetate ester residue is obtained. It is produced by converting a group into a hydroxyl group by hydrolysis.
  • PVA used in the metal chelate complex of the present invention may be a straight chain or a part thereof. Have a branched structure, or have a crosslinked structure or a cyclic structure.
  • the property is not particularly limited as long as it does not affect the property of the present invention as a proton relaxation rate enhancer or an MRI contrast agent, but the following are preferable.
  • the weight-average molecular weight is a certain area where the blood half-life is difficult to traverse the cell membrane, or if it is likely to stay in the cell, it is difficult to accumulate more than 2000 in the body! / 100,000 is preferable in terms of the point. More preferably, it is 20,000-50,000, More preferably, it is 30,000-40,000.
  • the saponification degree is preferably 85-99.9%.
  • the glass transition temperature is preferably 10 to 80 ° C.
  • the glass transition temperature is measured by DSC.
  • the solution viscosity is preferably !! ⁇ lOOOOOcps force S.
  • PVA used in the metal chelate complex of the present invention has other high molecular weights within a range that does not adversely affect the properties of the present invention as a proton relaxation rate enhancer or an MRI contrast agent.
  • These block units may be used as block copolymers or other copolymers, and may be blended with other high molecules.
  • the content ratio of the bull alcohol unit (the raw material component is bull acetate) is not particularly limited, but it has a certain half-life in blood, hydrophilicity, and a property that makes it difficult to access the cell membrane. In order to hold it reliably, it is about 70% or more, preferably 80% or more, particularly preferably 90% or more as a butyl alcohol unit among the monomer units constituting the polymer.
  • the chelate complex of the present invention is easy to control the rate of introduction of metal chelate into PVA
  • a linker is included as a constituent component.
  • linker in order to increase the introduction rate of the metal chelate, it is preferable to use a linker.
  • the term “linker” as used in the present invention is a substance capable of binding PVA and metal chelate by binding to PVA and metal chelate at both ends.
  • Examples of the structural component of the linker include polyamines such as diamine and triamine, polyhydric alcohols such as dialcohol, oxycarboxylic acid, amino acid, diisocyanate and the like.
  • One end of diamine forms an amide bond with the carboxyl group of the metal chelate, and the other end of diamine forms a urethane bond with the OH group of PVA using a condensing agent such as imidazole such as carboxyimidazole (CDI).
  • diamine is preferred because it can be performed under mild reaction conditions without the need for special equipment and the like!
  • diamines examples include hydrocarbon compounds such as ethylenediamine, propanediamine, butylenediamine, hexamethylenediamine, diaminodecane and the like.
  • the number of carbon atoms of the linker is not particularly limited, but! ⁇ 10 forces Create a suitable space between the metal chelate to be linked and the PVA, so that a lot of metal chelate can be bound, and water solubility should not be maintained.
  • increasing the rate of introduction of metal chelates is preferred from the standpoint of using biomaterials.
  • a biomaterial 6 or less is preferable, and 2 to 5 is more preferable, and the most preferable is a linker having 3 carbon atoms such as propanediamin, and in particular, 1,3-propanediol. Ammine is preferred.
  • the metal chelate complex of the present invention can be produced by a known method, for example, by directly bonding the chelate COOH group to the OH group of PVA using an esterifying agent or the like and then introducing a metal ion.
  • the ability to produce COOH groups of metal chelates prepared in advance may be combined with the OH groups of PVA.
  • a scheme showing an example of the production process of the metal chelate complex of the present invention is shown in FIG.
  • the metal chelate complex of the present invention contains a linker as a constituent component, for example, after a chelating agent is bonded to PV A via the linker, the metal chelating agent contains a metal It is possible to obtain power S by introducing a method such as ION.
  • the metal ion may be used as a metal chelate by a chelating agent in advance and then used for binding to PVA.
  • the binding of PVA to the linker can be performed as follows, for example, when diamine is used as the linker.
  • PVA is dissolved in DMSO (dimethyl sulfoxide).
  • CDI Carboxidiimidazole
  • the obtained reaction solution is dialyzed in water and the desired product is obtained by lyophilization.
  • Binding of the chelating agent to the linker can be performed by a conventional method.
  • diamine when used, it can be performed as follows.
  • N-hydroxysuccinimide is added to the chelating agent to form an activated ester, which is reacted with amine.
  • the obtained reaction solution is dialyzed in water and freeze-dried to obtain the desired product.
  • the introduction of the metal ion into the chelating agent can be performed by a force S that can be performed by a conventional method, for example, as follows.
  • a chelating agent and metal ions are stirred in water at an optimum pH.
  • the obtained reaction solution is dialyzed in water and the desired product is obtained by lyophilization.
  • the metal chelate prepared in advance can be bound to the linker by a conventional method. For example, it can be applied as follows.
  • the linker contains diamine as a constituent component
  • the dehydration condensing agent and PVA side chain alcohol are reacted to form an active ester intermediate, and diamine is added.
  • the other amine group is amide-bonded to the carboxylate group of the chelating agent.
  • a metal ion is introduced into the chelating agent.
  • the ratio of the linker introduced into the PVA correlates with the amount of linker added. Therefore, the introduction ratio can be adjusted by changing the addition amount.
  • the percentage of units in which the linker is introduced to all the units when technically considering bull alcohol as one unit and introducing it by the above method can range from several percent to 90%. From the viewpoint of exhibiting a sufficient proton relaxation rate enhancing effect and maintaining water solubility, 3% to 40% is preferable, and more preferably about 5% to 30%.
  • the introduction ratio of the chelating agent to the linker is almost 100% if a sufficient amount of the chelating agent is added during the introduction operation.
  • the introduction ratio of the metal ion to the chelating agent is a force S that can be adjusted according to various experimental conditions, and the PVA-linker single chelating agent complex before introduction of the metal ion at room temperature, When mixing metal ions under normal pressure, ⁇ 6 to ⁇ 6 ⁇ 5, approximately 50
  • % To 100% of the chelate can be introduced.
  • the introduction ratio when introducing a chelating agent or metal chelate directly into PVA without using a linker can be adjusted by various experimental conditions and by the amount of chelating agent or metal chelate added. It is.
  • the ratio force S of the unit in which the metal chelate is introduced to the entire unit is the same as in the case of using the linker S, 1.5 to 40%.
  • the force S is preferable, and more preferably 2.5 to 30%.
  • the metal chelate complex of the present invention has the property of hardly passing through the cell membrane.
  • the degree of saponification of PVA is high, it has the property that the adsorption to the cell membrane is small, and there is little advantage of approaching the cell membrane itself! RU
  • the metal chelate complex of the present invention can be used as a later-described proton relaxation rate enhancer, an MRI contrast agent, or the like.
  • it is particularly useful as an intracellular MRI contrast agent because it is difficult to pass through the cell membrane.
  • the proton relaxation rate enhancer of the present invention is characterized by containing the metal chelate complex of ⁇ 1> above.
  • the concentration of the metal chelate complex of the above ⁇ 1> in the proton relaxation rate enhancer of the present invention is preferably from 0.5 to 10% by weight, and more preferably from 0.5 to 5% by weight. This is because when the amount is 1% by weight or more, an effect of enhancing the proton relaxation rate is obtained, and when the amount is 10% by weight or less, the viscosity is suppressed and it is suitable for an injection solution or the like.
  • the proton relaxation rate enhancer of the present invention is a component generally used in injections such as mannitol, in addition to solvents such as water, alcohol, and physiological saline, Alternatively, components generally used in proton relaxation rate enhancers and MRI contrast agents can be further included.
  • an excipient for example, an excipient , Lubricants, binders, disintegrants, stabilizers, flavoring agents, diluents, surfactants, emulsifiers, solubilizers, absorption promoters, moisturizers, adsorbents, fillers, extenders, moisturizers , And can be formulated by known methods using additives such as preservatives.
  • excipients include organic excipients and inorganic excipients.
  • the proton relaxation rate enhancer of the present invention is a cell treatment for treating transplanted cells even when the form of the solution is preferable, such as injection, catheter solution, oral solution, cell treatment solution, tissue treatment solution, etc. Liquid, tissue treatment liquid is preferred! [0063] (Production method)
  • the proton relaxation rate enhancer of the present invention can be obtained by a method such as mixing the metal chelate complex as the main component and each of the other components such as the second component at room temperature and normal pressure. Touch with S.
  • the proton relaxation rate enhancer of the present invention has the property that the metal chelate complex as the main component is difficult to pass through the cell membrane, and the property that it hardly approaches the cell membrane itself.
  • the proton relaxation rate enhancer of the present invention is an MRI contrast agent described later, in particular, an intracellular residence type.
  • the MRI contrast agent of the present invention comprises the metal chelate complex of ⁇ 1> above.
  • the concentration of the metal chelate complex of the above ⁇ 1> in the MRI contrast agent of the present invention is preferably from 0.5 to 10% by weight, and more preferably from 0.5 to 5% by weight. This is because when the amount is 1% by weight or more, the effect of enhancing the proton relaxation rate is obtained, and when the amount is 10% by weight or less, the viscosity is suppressed, which is suitable for an injection solution or the like.
  • the MRI contrast agent of the present invention includes components generally used for injections such as mannitol in addition to the metal chelate complex of ⁇ 1> above, solvents such as water, alcohol, and physiological saline, or MRI contrast agents In addition, generally used components can be further included. [0070] In addition, other components can be contained within a range that does not adversely affect the properties of the MRI contrast agent of the present invention.
  • an excipient for example, an excipient, a lubricant, Binders, disintegrants, stabilizers, flavoring agents, diluents, surfactants, emulsifiers, solubilizers, absorption promoters, humectants, adsorbents, fillers, extenders, moisturizers, preservatives It can be formulated by a known method using additives such as.
  • excipients include organic excipients and inorganic excipients.
  • the MRI contrast medium of the present invention is a cell treatment solution or tissue for treating transplanted cells, even though the form of the solution is preferable, such as an injection, a catheter solution, an oral solution, a cell treatment solution, a tissue treatment solution, etc.
  • a treatment liquid is preferred.
  • the MRI contrast agent of the present invention can be obtained by a method such as mixing the metal chelate complex as the main component and each of the other components such as the second component at room temperature and normal pressure.
  • the MRI contrast agent of the present invention has the property that the metal chelate complex as the main component is difficult to pass through the cell membrane, and the property of approaching the cell membrane itself is small.
  • the MRI contrast agent of the present invention was introduced into cells, the presence of the MRI contrast agent was observed over almost the entire cell group even after cell division (FIGS. 15 and 16).
  • the MRI contrast agent of the present invention is particularly suitable as an intracellular stay type MRI contrast agent described later.
  • Intracellular MRI contrast agent of the present invention Intracellular MRI contrast agent of the present invention
  • the intracellular MRI contrast agent of the present invention comprises the metal chelate complex of ⁇ 1> above.
  • the concentration of the metal chelate complex of ⁇ 1> above in the intracellular residence type MRI contrast agent of the present invention is preferably 0.;! To 10% by weight, more preferably 0.5 to 5% by weight. is there. 0.1% by weight or more provides a proton relaxation rate enhancing effect, and 10% by weight or less suppresses viscosity and is suitable for injections and the like.
  • the intracellular residence type MRI contrast agent of the present invention includes components generally used in injections such as mannitol, in addition to the metal chelate complex of ⁇ 1> above, solvents such as water, alcohol, and physiological saline, Alternatively, MRI contrast agents can be made to contain more commonly used components.
  • compositions can be included within a range that does not adversely affect the properties of the intracellular residence type MRI contrast agent of the present invention! /,
  • a pharmaceutically acceptable carrier for example, as a pharmaceutically acceptable carrier.
  • excipients include organic excipients and inorganic excipients.
  • the intracellular residence type MRI contrast medium of the present invention is suitable for treatment of transplanted cells even when the form of the liquid agent is preferable, such as an injection, a catheter liquid, an oral liquid, a cell treatment liquid, and a tissue treatment liquid.
  • Cell treatment solution and tissue treatment solution are preferred.
  • the intracellular MRI contrast agent of the present invention is obtained by a method such as mixing the above-mentioned metal chelate complex as the main component and each of the other components such as the second component at room temperature and normal pressure. That's the power S.
  • the intracellular residence type MRI contrast agent of the present invention has the property that it is difficult to pass through the cell membrane of the metal chelate complex force that is the main component, and has the property that it is less likely to approach the cell membrane itself. Further, the intracellular residence type MRI contrast agent of the present invention stays in the cell for a long time when introduced into the cell, and after cell division, the intracellular residence type MRI contrast agent extends over almost the entire cell group. Was observed ( Figures 15 and 16).
  • the administration method for administering the proton relaxation rate enhancer, MRI contrast agent, and intracellular residence type MRI contrast agent of the present invention to muscles, blood vessels, organs and other tissues includes oral administration, catheter administration, static administration.
  • Intravenous administration such as injection, intramuscular administration, transdermal administration, nasal administration, intradermal administration, subcutaneous administration, intraperitoneal administration, rectal administration, mucosal administration, inhalation, etc. can be mentioned. In terms of keeping constant, intravenous administration such as intravenous injection is preferable.
  • a method such as tail vein injection is also included.
  • a method for administering the proton relaxation rate enhancer, MRI contrast agent, and intracellular residence type MRI contrast agent of the present invention to the target cells cells are immersed in a solution such as a cell treatment solution or a tissue treatment solution.
  • a solution such as a cell treatment solution or a tissue treatment solution.
  • the dosage forms of the proton relaxation rate enhancer, MRI contrast agent, and intracellular residence type MRI contrast agent of the present invention include cell treatment solution and tissue treatment solution used for electoral mouth position, etc., as well as injection and catheter solution, Examples include oral liquid preparations, but are not necessarily limited thereto.
  • the dose can be adjusted as appropriate according to the type and number of target tissues and cells, the type of suspected disease, the degree of progression, the patient's age, sex, weight, etc., and is not necessarily limited. In general, however, the following amounts can be selected.
  • the amount of the lei complex is from 0. Olmg to 1000 mg, preferably from 0.1 mg to 1000 mg, more preferably from 0.1 mg to OOmg.
  • the Gd weight it is preferable to administer 0.001 mg to 10 mg per administration.
  • administer when administered directly into cells by methods such as microinjection, electoporation, and cell membrane fusion ribosome, administer so that 10 7 to 10 12 metal chelate complexes per cell enter. I prefer it.
  • the appropriate amount of the metal chelate complex is also distributed to the dividing cells during cell division, which is more reliable than the ability to follow the tissue regeneration process through the growth of cell transplantation. Because.
  • a proton relaxation rate enhancer, an MRI contrast agent, or an intracellular residence type MRI contrast agent can be obtained by in vivo or in vitro methods using microinjection, electroporation, or cell membrane fusion ribosome, etc. Introduce into cells to be transplanted
  • the state of the transplanted cells and their dividing cells can be observed over time by 4.7T (three-dimensional) MRI or the like.
  • MRI contrast agent When the proton relaxation rate enhancer of the present invention, MRI contrast agent, or intracellular residence type MRI contrast agent, etc. are introduced into cells, they are present over almost the entire cell group even after cell division. It has been observed (Figs. 15 and 16) that, for example, in regeneration therapy, it is possible to observe the growth of transplanted cells.
  • the DOTA introduction rate (%) for the PVA unit was correlated with the amount of jamain charged to the PVA unit.
  • the metal chelate complex of the present invention was produced as follows.
  • the manufacturing process is as shown in FIG.
  • 1, 1 'Carbonylbis 1H— as a dehydrating agent for the side chain OH group of linear PVA with a weight average molecular weight of 74800 (calculated from the degree of polymerization), saponification degree of 98.5% and Tg of 45 ° C
  • 1,3-propanediamin was introduced at an arbitrary ratio, and four samples (A to D) having different introduction rates were obtained.
  • the DOTA introduction rate into the PVA unit is determined by NMR measurement in terms of unit ratios: Sample A: 13 ⁇ 2%, Sample B: 7.5%, Sample C: 3.6%, Sample D : 12. 9%.
  • the metal chelate complex of the present invention was obtained by complexing gadolinium, which is the central metal, with DOTA.
  • FITC fluorescent label
  • Mn the number average molecular weight of PVA
  • Mw the weight average molecular weight
  • the Inversion Recovery method is a method in which the NMR spectrum is measured at an arbitrary time after irradiating an electromagnetic wave, and T is measured from the time change of the signal intensity. This IR method
  • the metal chelate complex of the present invention enhances the proton relaxation rate in a concentration-dependent manner, and the degree of relaxation can be arbitrarily set by adjusting the amount of metal chelate in the complex.
  • the relaxation rate that is, the reciprocal of the relaxation time, can be obtained by the following equation.
  • the metal chelate complex (sample D), which is a proton relaxation rate enhancer of the present invention, is more relaxed than Magnevist (registered trademark, Gd-DTPA, manufactured by Schering), which is a known contrast agent.
  • Magnevist registered trademark, Gd-DTPA, manufactured by Schering
  • T- that is, T 1 when the amount of Gd is OmM, is a force that is difficult to distinguish in FIG. It is.
  • the relationship between the concentration of the proton relaxation rate enhancer of the present invention in the present experimental example and the relaxation rate is as follows.
  • the cytotoxicity test using WST-1 is a known method, and is a commercially available test kit (Premix WST-1 Cell Proliferation Assay System: manufactured by Takara Bio Inc./Cell Proliferation Reagent WST-1: manufactured by Roche / W201 : Dojindo Laboratories Co., Ltd., etc.) and can be performed according to the instructions attached to the kit, etc.
  • the principle is as follows.
  • Tetrazolium salt is degraded to formazan dye by succinate tetrazolium reductase (EC 1.3.99.1), which is active only in living cells. Therefore, if the number of viable cells increases, the enzyme activity in the sample increases and the formazan dye increases. The formazan dye and the number of viable cells show a linear correlation. Therefore, the number of viable cells can be measured by measuring the absorbance of the dye solution by ELISA or the like and quantifying the formazan dye. That is, after adding a metal chelate complex or a metal chelate to the cell culture medium, the cytotoxicity can be confirmed by measuring the number of viable cells.
  • a metal chelate Magneticnevist (registered trademark, Gd-DTPA, manufactured by Schering)
  • a PBS solution containing the metal chelate complex of the present invention (sample B), which is a known MRI contrast medium for comparison
  • the cytotoxicity was confirmed by measuring the number of viable cells when each control PBS solution was administered to the medium in which NIH-3T3 cells were cultured, and the results are shown in Figs.
  • the vertical axis represents the UV value.
  • the chelate concentration of the solution containing the metal chelate or metal chelate complex is as shown in FIGS.
  • Cytotoxicity is measured by measuring the number of viable cells according to the above-described method when the culture solution containing the metal chelate complex of the present invention (samples A and B) is introduced into the cells by electroporation. confirmed. The results are shown in Figs. The vertical axis represents the UV value.
  • a PBS solution containing the metal chelate complex of the present invention (samples A, B, and C in Table 1) was imaged using MRI.
  • the brightness of each sampled image was measured by methods such as image processing.
  • FIG. 8 is a diagram showing the respective concentrations corresponding to the three metal chelate complexes in the MRI imaging diagrams of FIGS.
  • the vertical axis in Fig. 12 represents the luminance of each sample when the luminance of PBS is 1.
  • the metal chelate complex of the present invention (Sample A in Table 1) was introduced into NIH-3T3 cells by electopore positioning.
  • the agarose gel encapsulating the obtained cells was imaged using MRI.
  • the obtained image image processing as one of the luminance of Agarosugeru, Agarosu + cells (cells only), Agarosu + 10 3 cells transduced under the conditions of M (10_ 3 M), Agarosu + 10- 2 M of obtains the brightness of the cells (10- 2 M) was introduced under the conditions, and each Dara off of.
  • Samples were introduced into NIH-3T3 cells using the electoporation method, and changes over time in the amount of sample in the cells were measured using fluorescence measurements.
  • Sample D was used as the metal chelate complex sample of the present invention. The results are shown in FIG. In addition, the vertical axis
  • example D introduction into the cells was performed by the electopore method.
  • the sample was distributed evenly to a certain degree evenly to the individual split cells as well as not leaking out of the cell.
  • the sample is retained in the cells over time, and that it can be traced by MRI for a long time even after cell transplantation.
  • example D in Table 1 After the metal chelate complex of the present invention (sample D in Table 1) is introduced into NIH-3T3 cells by electo-poration, the cells are accumulated at the bottom of the test tube and sliced horizontally to include the bottom of the test tube. MRI imaging was performed. The results are shown in FIG.
  • NIH-3T3 cells into which no sample was introduced and a test tube containing only the medium were used.
  • the cells into which the metal chelate complex (sample D) was introduced showed an increase in brightness as compared with the comparison target. Since the increase in luminance depends on the sample contained in the cells, it was confirmed that the cells can be detected by MRI by using the metal chelate complex of the present invention.
  • the metal chelate complex of the present invention (sample D in Table 1) was introduced into NIH 3T3 cells by electopore positioning, and the cells were encapsulated in an agarose gel. The obtained gel was implanted subcutaneously in mice and MRI imaging was performed. The results are shown in FIG.
  • FIGS. 9, 10, 11, 15 and 16 the same drawings with higher resolution are shown as FIGS. 20, 21, 22, 23 and 24, respectively.
  • the present invention relates to a novel compound that can be used for diagnostic imaging, and changes over time in certain areas such as cells and organs by staying in a certain place without going back and forth between cell membranes. It is related to proton relaxation rate enhancers or MRI contrast agents that can be verified, and can be widely used in medical and research fields.
  • FIG. 1 is a scheme showing the production process of the metal chelate complex of the present invention.
  • FIG. 2 is a graph showing that the proton relaxation rate increases in proportion to the concentration of the metal chelate complex (polymer) in the solution and the amount of metal chelate in the complex.
  • FIG. 3 is a graph showing that the slope (relaxation) increases as the amount of metal introduced into the metal chelate complex increases.
  • FIG. 4 is a graph showing cell toxicity when a known metal chelate (Magnevist: registered trademark) is administered extracellularly.
  • FIG. 5 is a graph showing cytotoxicity when the metal chelate complex of the present invention is administered extracellularly.
  • FIG. 6 is a graph showing cytotoxicity when the metal chelate complex of the present invention (sample A) is administered into cells.
  • FIG. 7 is a graph showing cytotoxicity when the metal chelate complex of the present invention (sample B) is administered intracellularly.
  • FIG. 9 It is the figure which imaged the PBS solution of the metal chelate complex (sample A) of the present invention by MRI at different concentrations.
  • FIG. 13 A diagram showing the results of MRI measurement of cells labeled with the metal chelate complex of the present invention (sample A).
  • FIG. 14 A graph showing intracellular retention of the metal chelate complex of the present invention (sample D) administered into cells.
  • FIG. 15 is a view showing a bright field photograph two days after introduction of the metal chelate complex of the present invention (sample D) into cells.
  • FIG. 16 shows a fluorescent photograph two days after introduction of the metal chelate complex of the present invention (sample D) into cells.
  • FIG. 17 A graph showing the intracellular retention of the metal chelate complex together with the cell proliferation ability after administration of the metal chelate complex of the present invention (sample D) into the cell.
  • FIG. 18 This figure shows the results of MRI imaging after introducing samples into NIH-3T3 cells, accumulating cells at the bottom of the test tube, slicing horizontally to include the bottom of the test tube, and so on.
  • FIG. 4 is a view showing the results of MRI imaging after the metal chelate complex of the present invention (sample D) was introduced into cells and transplanted subcutaneously into mice.
  • FIG. 20 is a diagram in which the resolution is increased in FIG.
  • FIG. 21 is a diagram in which the resolution is increased in FIG.
  • FIG. 22 is a diagram with the resolution increased in FIG.
  • FIG. 23 is a diagram in which the resolution is increased in FIG.
  • FIG. 24 is a diagram in which the resolution is increased in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
金属キレート複合体及びプロトン緩和速度増強剤並びに MRI造影剤 技術分野
[0001] 本発明は、画像診断に用いることが可能な新規化合物に関するものであり、細胞膜 の内外で行き来することなぐ一定の箇所に滞在することによって、細胞や器官等の 一定エリアの経時的変化を検証可能な、プロトン緩和速度増強剤,又は MRI造影剤 に関するものである。特に、細胞内に滞在させ、再生治療過程等における細胞の追 跡を行うための、細胞内滞在型 MRI造影剤に関するものである。
背景技術
[0002] 現代医療において、画像診断の果たす役割は大きいが、中でも非破壊的,非侵襲 的に生体の内部形態や内部機能を測定し、その結果を画像によって示すことのでき る画像診断方法が重要になっている。
[0003] このような画像診断方法には、 X線診断方法,放射線核医学診断方法 (ポジトロン C
T : PET,シングルフオトン: SPECT) ,核磁気共鳴診断法(MRI) ,超音波 US等が 挙げられる。
中でも、 MRIは、軟部組織の解像力に優れ、任意の方向での撮像が可能で、 PET のような大力 Sかりも不要という利点があるため、汎用性が高い。
[0004] MRIとは、核磁気共鳴 (NMR)現象を利用する方法であり、生体内に存在する水分 子中の水素原子(プロトン)から得られる MR信号を、画像化して用いる方法である。 測定対象中に存在するプロトンの、エネルギーレベル力 MRI装置から照射された 電磁波によって、一旦高くなつた後、元のエネルギーレベルに戻るまでの時間(緩和 時間)又はその際の速度 (緩和速度)の差,あるいは被験物中のプロトン密度の違!/、 によって、画像上にコントラストとして現れる。
[0005] この MRIには、 MRI造影剤が用いられる場合がある。 MRI造影剤とは、 MRI等にお いて、プロトンの緩和時間を短くする作用を有する物質を用いて、コントラストが小さ い場合等に、より鮮明な画像を得るために用いられるものである。
現在用いられている MRI造影剤としては、ガドリニウム等に代表される金属を中心と したキレート化合物(金属キレート)が挙げられる。
この金属キレートが、プロトンの緩和時間を短くする作用を有することから、被験物に おいて、金属キレートを用いた造影剤が滞在する領域と、滞在しない領域との間のコ ントラストが、より強調される。
[0006] MRI造影剤としては、ォムニスキャン (登録商標, Gd-DTPA-BMA,第一製薬製 ) ,プロハンス(登録商標, Gd (HP— D03A) ,エーザィ製),マグネスコープ (登録 商標, Gd— DOTA,栄研又は田辺製薬製),マグネビスト(登録商標, Gd— DTPA ,シエーリング製)等の低分子化合物が市販されて!/、る。
[0007] また、血流情報をより正確に得るために、上記の低分子造影剤の血中半減期を延長 させた、高分子結合型造影剤 (非特許文献;!〜 3等参照),癌をターゲットとした金属 内包ミセル,コントラストを高めるために多量の金属キレートを結合させうるようにした 、デンドリマー型の造影剤等が開発されている。
[0008] 例えば、下記非特許文献 1の造影剤は、ポリグルタミン酸 (PG)に結合させた、 Gd— DTPA, Gd— DOTAが記載されている。非特許文献 2, 3では、ポリエチレングリコ ール(PEG)に、 Gd— DTPA—システィン複合体や、 Gd— D〇3A等を結合させたも のが記載されている。
[0009] し力、しながら、人為的に製造した化合物を用いた MRI造影剤は、生体にとっては異 物である。そのため、上記の非特許文献に記載のものは、全て"一度撮像した後には 、速やかに生体内で分解する"ようにデザインされており、生体投与後 1時間から 24 時間程度で生分解されてレ、る。
[0010] 一方、失われた身体機能の回復手段として、臓器移植などに代わって、患者自身の 細胞を用いる細胞移植による再生療法が注目を集めて!/、る。
臓器移植には、提供者不足や、移植後の拒絶反応,拒絶反応を抑制するための免 疫抑制剤による副作用等の問題点があるためである。
現在、ほぼ全ての組織,臓器の再生が臨床応用を目指して研究されており、皮膚, 軟骨,血管などの再生は、臨床応用に耐えうる結果が示されている力、その応用の 成果を確認する際にも、画像診断方法の果たす役割は、大きくなつてきている。
[0011] しかし、上述の低分子化合物からなる造影剤は、小さいため細胞膜等も透過可能で 、生体に投与後も、自由に移動してしまい、必ずしも目的とする一定エリアの組織の 様子を追跡することができなレ、。
また、上述の通り、高分子結合型造影剤ゃデンドリマー型造影剤等の比較的分子量 の大きいものも開発されているが、これらもまた、細胞膜との相互作用の防止効果が 十分で無いことから、やはり膜透過によって追跡対象とのズレが生じる可能性がある 。しかも、上述した様に、非特許文献に記載されている高分子結合型 MRI造影剤は いずれも、一回の撮像後には生分解されてしまうのが現状である。
[0012] 従って、上述のいずれの MRI造影剤によっても、非常に長期間を要する組織再生過 程での、「経時的な作用機序 (移植細胞の増殖,分化,可塑性,融合等)を解明する ことは、できないというのが現状である。
[0013] そこで、本発明者の一人が、血中半減期の長い高分子を探索した結果、ポリビュル アルコールを見レ、だした(非特許文献 4)。
[0014] 非特許文献 l : Bioconjugate Chem.; (Article); 2004; 15(6); 1408-1415
非特許文献 2: Bioconjugate Chem.; (Article); 2004; 15(6); 1424-1430
非特許文献 3 : Journal of Alloys and Compounds 249 (1997) 185-190
非特許文献 4 : J. Pharm. Pharmacol., 1995, 47, 479-486.
発明の開示
発明が解決しょうとする課題
[0015] 本発明者等は、ポリビュルアルコールを用いた造影剤力、長期間安定に細胞内に留 まり、長期にわたる撮像が可能であるにもかかわらず、細胞毒性が極めて低いことを 見出し本発明に到達したものであって、その目的とするところは、細胞膜の内外で行 き来することなく、一定の箇所に滞在し続けることができ、一回切りの撮像に留まらず 、一定のエリアの組織の様子,特に細胞移植による再生過程を、経時的に観察する こと力 Sでき、尚かつ細胞毒性の極めて低い、金属キレート複合体,プロトン緩和速度 増強剤, MRI造影剤,又は細胞内滞在型 MRI造影剤を提供するにある。
課題を解決するための手段
[0016] 上述の目的は、下記第一の発明から第九の発明によって、達成される。
[0017] <第一の発明〉 1又は 2以上の金属キレートと、ポリビュルアルコールを構成成分として含むことを特 徴とする、金属キレート複合体である。
[0018] <第二の発明〉
金属キレートが、リンカ一を介してポリビュルアルコールに結合していることを特徴と する、第一の発明に記載の金属キレート複合体である。
[0019] <第三の発明〉
リンカ一が、ジァミンであることを特徴とする、第二の発明に記載の金属キレート複合 体である。
[0020] <第四の発明〉
キレート化剤が、 DTPA, DTP A無水物, DOTA, D03A, HP— D03A, DTPA BMAからなる群から選択される 1又は 2以上のキレート化剤であることを特徴とす る、第一乃至第三の発明のいずれかに記載の金属キレート複合体である。
[0021] <第五の発明〉
ポリビュルアルコールの重量平均分子量が 2000〜; 10万であることを特徴とする、第 一乃至第四の発明のいずれかに記載の金属キレート複合体である。
[0022] <第六の発明〉
金属がガドリニウムであることを特徴とする、第一乃至第五の発明のいずれかに記載 の金属キレート複合体である。
[0023] <第七の発明〉
第一乃至第六の発明のいずれかに記載の金属キレート複合体を含むことを特徴とす る、プロトン緩和速度増強剤である。
[0024] <第八の発明〉
第一乃至第六の発明のいずれかに記載の金属キレート複合体を含むことを特徴とす る、 MRI造影剤である。
[0025] <第九の発明〉
第一乃至第六の発明のいずれかに記載の金属キレート複合体を含むことを特徴とす る、細胞内滞在型 MRI造影剤である。
発明の効果 [0026] 本発明の化合物は、画像診断に用いることが可能であり、細胞膜の内外で行き来す ることなぐ一定のエリアに滞在することによって、細胞や器官等の一定エリア内の組 織の様子(疾患の有無,進行度等)を経時的に追跡可能な、プロトン緩和速度増強 剤,より具体的には MRI造影剤等に利用することが可能である。
特に、細胞内に導入した場合には、細胞内に滞在し続け、 1つの細胞内に複数導入 してある場合には、細胞増殖等の後も、増殖細胞に分配されることから、再生過程の 追跡が可能である。
発明を実施するための最良の形態
[0027] < 1〉本発明の化合物
[0028] (構造)
本発明の金属キレート複合体は、 1又は 2以上の金属キレートと、ポリビュルアルコー ル (以下、「PVA」と記載することがある。)を構成成分として含んでいる。
[0029] (バリエーション)
(1)金属キレート
(i)金属
金属キレートに用いられる金属イオンとしては、各種の磁性金属が挙げられる。具体 的には、ガドリニウムイオン,セリウムイオン,サマリウムイオン,ユウピウムイオン,ジス プロシゥムイオン,ツリウムイオン,イツトリビゥムイオンなどのランタノイド系元素のィォ ン,クロミゥムイオン,モリブデニゥムイオン,タングステンイオンなどの 6族元素のィォ ン,マンガンなどの 7族元素のイオン,鉄イオン,ルテニウムイオン,ォスニゥムイオン などの 8族元素のイオン,コバルトイオン,ロジウムなどの 9族元素のイオン,ニッケル イオン,パラジウムイオンなどの 10族元素のイオン,銅イオンなどの 11族元素のィォ ン,亜鉛イオン,カドミウムイオンなどの 12族元素のイオンなどが挙げられる。
これらの中では、キレート化剤の原子と配位する数が最も多ぐ錯体の安定性が高い などの点から、ガドリュウム(Gd)イオンを用いることが好ましい。ガドリュウムイオンを 用いた本発明の金属キレート複合体は、プロトンの緩和速度増強効果が最も高ぐ造 影剤としての効果が高レ、ためである。
[0030] (ii)キレート化剤 金属キレートに用いられるキレート化剤(キレート配位子)としては、公知の DTPA (ジ エチレントリアミン五酢酸), DTPA—BMA (ジエチレントリアミン五酢酸 ブチルメタ タリレート), DTP A無水物, DOTA ( l , 4, 7, 10 テトラァザシクロドデカン 1 , 4, 7, 10 テトラアセテート), D03A ( 1 , 4, 7, 10 テトラァザシクロドデカン 1 , 4, 7 トリアセテート), HP— D〇3A (2 ヒドロキシプロピノレー 1 , 4, 7, 10 テトラァザ シクロドデカン— 1 , 4, 7 トリアセテート)等が挙げられるが、特に、臨床で使用され た実績が長いという点では、 DTPAが好ましく、キレートの安定性の点では、 DOTA が好ましい。
従って、本発明の化合物を、本発明の、細胞内滞在型 MRI造影剤として用いる場合 には、特に、長期間の細胞追跡を必要とするため、安定性の高い DOTAが好ましい
[0031] (iii)金属キレート
本発明の金属キレート複合体に用いられる金属キレートは、ォムニスキャン (登録商 標, Gd— DTPA— BMA,第一製薬製),プロハンス(登録商標, Gd (HP— D03A) ,エーザィ製),マグネスコープ (登録商標, Gd— DOTA,栄研又は田辺製薬製), マグネビスト(登録商標, Gd— DTPA,シエーリング製)等の市販されているものを用 いること力 Sでさるが、常法により製造することもできる。具体的には、金属イオンとキレ 一ト化剤を、例えば水溶液中で常温,常圧化、 pH6〜6. 5で、 24時間混合する等の 方法により、製造することもできる。
好ましい pHの範囲は、キレート化剤の種類にもよる力 一般に、キレート化が促進さ れとレ、う点で、上記のような pH値とすることが好まし!/、。
[0032] (2) PVA
本発明の金属キレート複合体に用レ、られる P VAとは、ビュルアルコールをその構成 単位 (モノマー)とする公知の高分子であり、非常に親水性の高い合成樹脂である。 構成成分であるビュルアルコールは、分子構造的に不安定で、高分子の製造原料と しては適さないことから、通常は、まず酢酸ビュルを重合し、ポリ酢酸ビュルとした後、 酢酸エステル残基を加水分解によって水酸基とすることによって製造される。
[0033] 本発明の金属キレート複合体に用いられる PVAとしては、直鎖状のものの他、一部 が分岐構造をとつているものや、架橋構造や環状構造をとるもの等が挙げられる。そ の性質は、本発明の、プロトン緩和速度増強剤あるいは MRI造影剤としての性質に 影響しない限り、特に制限されるものでは無いが、下記のものが好ましい。
[0034] (i)重量平均分子量
重量平均分子量は、細胞膜を往き来し難ぐ血中半減期がある程度長ぐ一定エリア あるいは細胞内に留まり易いとレ、う点で 2000以上が好ましぐ体内に蓄積し難!/、と!/ヽ う点で 10万以下のものが好ましい。より好ましくは 2万〜 5万,更に好ましくは、 3万〜 4万である。
[0035] (ii)ケン化度
ケン化度は、 85-99. 9%が好ましい。
[0036] (iii)ガラス転移温度 (Tg)
ガラス転移温度は、 10〜80°Cが好ましい。
ガラス転移温度は、 DSCで測定する。
[0037] (iv)溶液粘度
溶液粘度は、;!〜 lOOOOOcps力 S好ましい。
[0038] 尚、本発明の金属キレート複合体に用いられる PVAは、本発明の、プロトン緩和速 度増強剤あるいは MRI造影剤としての性質に悪影響を及ぼさなレ、範囲で、他の高分 子の構成単位を用いて、ブロック共重合その他の共重合物としても良ぐまた他の高 分子とブレンドしても良い。
また、一つの種類の PVAを単独で用いても良ぐ複数種の PVAをブレンドして用い ることあでさる。
[0039] 共重合の場合の、ビュルアルコール単位(原料成分としては、酢酸ビュル)の含有比 率は、特に限定されないが、ある程度の血中半減期と親水性,及び細胞膜に近づき 難い性質等を確実に保持するためには、高分子を構成するモノマー単位中、ビュル アルコール単位として大凡 70%以上,好ましくは 80%以上,特に好ましくは 90%以 上である。
[0040] (3)リンカ一
本発明のキレート複合体は、 PVAへの金属キレートの導入率をコントロールし易い点 で、リンカ一を構成成分として含んでいることが好ましい。特に、金属キレートの導入 率を上げるためには、リンカ一を使用することが好ましい。本発明で言うリンカ一とは、 その両端において、 PVAと金属キレートのそれぞれと結合することにより、 PVAと金 属キレートを結合させることのできる物質である。
リンカ一の構成成分としては、ジァミン,トリアミン等のポリアミン類,ジアルコール等の 多価アルコール類,ォキシカルボン酸,アミノ酸,ジイソシアナート等が挙げられる。 ジァミンの一端は、金属キレートの持つカルボキシル基と、アミド結合し、ジァミンの他 端は、カルボキシイミダゾール(CDI)等のイミダゾール等の縮合剤を用いて、 PVAの OH基とウレタン結合する。中でも、ジァミンが、特別な装置等を必要とせず、緩和な 反応条件で行えるなど、反応が簡単であるため好まし!/、。
[0041] ジァミンとしては、エチレンジァミン,プロパンジァミン,ブチレンジァミン,へキサメチ レンジァミン,ジァミノデカン等の、炭化水素化合物のジァミンが挙げられる。
[0042] リンカ一の炭素数は特に限定されないが、;!〜 10力 リンクさせる金属キレートと PVA との間に、適度な空間を作り、金属キレートが多く結合でき、また水溶性を維持しなが ら金属キレートの導入率を上げるとレ、う点,更には生体材料とレ、う観点から好ましレ、。 特に、生体材料としては 6以下が好ましぐ炭素数が 2〜5がより好ましぐ最も好まし いのは、プロパンジァミン類等の炭素数 3のリンカ一であり、特に、 1 , 3—プロパンジ ァミンが好ましい。
[0043] (製法)
本発明の金属キレート複合体は、例えば PVAの OH基に、エステル化剤等を用いて 、直接、キレートの COOH基を結合させ、その後金属イオンを導入する等、公知の方 法によって製造することができる力 予め製造した金属キレートの COOH基を、 PVA の OH基と結合させても良い。尚、本発明の金属キレート複合体の製造過程の一例 を表すスキームを図 1に示す。
[0044] 本発明の金属キレート複合体がリンカ一を構成成分として含む場合は、例えば、 PV Aに、リンカ一を介して、キレート化剤を結合させた後、キレート化剤の中に、金属ィ オンを導入する等の方法によって、得ること力 Sできる。
これら各々の結合,導入工程は、常法に従い行うことができる。 尚、金属イオンを、予めキレート化剤によって金属キレートとしてから、 PVAへの結合 に用いても良い。
[0045] PVAのリンカ一への結合は、常法によって行うことができる力 例えばジァミンをリン カーとして用いる場合、下記のようにして行うことができる。
まず、 PVAを DMSO (ジメチルスルフォキシド)に溶解させる。さらに CDI (カルボキ シジイミダゾール)を添加し、禁水条件で 1日攪拌する。 1日後ジァミンを過剰量加え、 1日攪拌する。得られた反応溶液を水中で透析し、凍結乾燥により目的物を得る。
[0046] リンカ一へのキレート化剤の結合は、常法によって行うことができる力 例えば、ジアミ ンを用いる場合、下記のようにして行うこと力 Sできる。
まず、 DMSO中で、キレート化剤に対して、 N—ヒドロキシスクシンイミドを加え、活性 化エステルを形成させ、ァミンと反応させる。得られた反応溶液を水中で透析し、凍 結乾燥により目的物を得る。
[0047] キレート化剤中への金属イオンの導入は、常法によって行うことができる力 S、例えば、 下記のようにして fiうことカできる。
まず、キレート化剤と金属イオンを水中、至適 pHで攪拌させる。得られた反応溶液を 水中で透析し、凍結乾燥により目的物を得る。
[0048] 予め作成した金属キレートのリンカ一への結合は、常法によって行うことができるが、 例えば、下記のようにして fiうこと力 Sできる。
まず、例えば、アルデヒド型の金属錯体を用いてァミンと反応させ、シッフベースを形 成させることで、リンカ一に結合させる方法等である。
[0049] 例えば、リンカ一が、ジァミンを構成成分として含む場合は、脱水縮合剤と PVA側鎖 アルコールを反応し、活性エステル中間体を形成させ、ジァミンを加える。次に、他方 のァミン基を、キレート化剤のカルボキシノレ基とアミド結合させる。最後に、キレート化 剤の中に、金属イオンを導入する。
これらの反応は、常法に従って行うことができ、例えば Bioconjugate Chem.; (Article) ( 2004; 15(4); P.841-849)に記載の方法等を用いることができる。
[0050] (金属キレート導入比率)
リンカ一を用いた場合の PVAへのリンカ一導入比率は、リンカ一の添加量に相関す るため、添加量を変化させることによって、導入比率を調整可能である。 ビュルアルコールを 1つのユニットと考えた場合に、上述の方法で導入した場合の、 全ユニットに対してリンカ一が導入されたユニットの割合は、技術的には、数%〜90 %程度まで可能である力 十分なプロトン緩和速度増強効果を発揮し、かつ水溶性 を維持するという観点からは、 3%〜40%が好ましぐ更に好ましくは 5%〜30%程 度である。
[0051] リンカ一に対するキレート化剤の導入比率は、導入作業時に十分量のキレート化剤 を配合すれば、ほぼ 100%である。
[0052] 金属イオンの、キレート化剤に対する導入比率は、種々の実験条件によって、調整 可能である力 S、金属イオン導入前の PVA—リンカ一一キレート化剤の複合体に対し て、常温,常圧, ρΗ6〜ρΗ6· 5の条件下、金属イオンを混合する場合には、凡そ 50
%〜100%のキレートに導入可能である。
尚、リンカ一を用いず、直接 PVAに対して、キレート化剤あるいは金属キレートを導 入する場合の導入比率は、種々の実験条件によって、またキレート化剤あるいは金 属キレートの添加量によって調整可能である。この場合も、リンカ一を用いる場合と同 じぐ全ユニットに対して金属キレートが導入されたユニットの割合力 S、 1. 5〜40%で あること力 S好ましく、更に好ましくは 2. 5〜30%である。
[0053] (性質)
本発明の金属キレート複合体は、細胞膜を通り抜け難い性質を有している。特に、 P VAのケン化度が高い場合は、細胞膜への吸着が少ないという性質を有しており、細 胞膜に近づくこと自体が少なレ、と!/、う利点を有して!/、る。
特に、 PVAのケン化度が高い場合は、細胞膜への吸着が少ないという性質を有して いる。
[0054] また、本発明の金属キレート複合体を細胞内に導入した場合、細胞分裂後も、細胞 群のほぼ全体に亘つて、金属キレート複合体の存在が観察された(図 15, 16)。つま り、分裂細胞にも金属キレート複合体が分配されることが確認された。
このことによって、例えば、再生治療等において、 MRI等の手段によって、移植細胞 の増殖の様子を観察可能であることが分かった。 [0055] (用途)
本発明の金属キレート複合体は、後述のプロトン緩和速度増強剤や、 MRI造影剤等 として利用することが可能である。特に、細胞膜を通り抜け難いため、細胞内滞在型 MRI造影剤として特に有用である。
[0056] < 2〉本発明のプロトン緩和速度増強剤
[0057] (主成分)
本発明のプロトン緩和速度増強剤は、上記 < 1〉の金属キレート複合体を含むことを 特徴とする。
[0058] (濃度)
本発明のプロトン緩和速度増強剤中の、上記 < 1〉の金属キレート複合体の濃度は 、 0. ;!〜 10重量%が好ましぐ更に好ましくは、 0. 5〜5重量%である。 0. 1重量% 以上で、プロトン緩和速度増強効果が得られ、 10重量%以下では、粘性が抑えられ 、注射液等に好適であるからである。
[0059] (第 2成分)
本発明のプロトン緩和速度増強剤は、上記 < 1〉の金属キレート複合体の他、水,ァ ルコール,生理食塩水等の溶媒の他、マンニトール等の、注射剤等に一般に用いら れる成分,あるいはプロトン緩和速度増強剤や、 MRI造影剤に、一般に用いられて いる成分を、更に含ませることができる。
[0060] また、本発明のプロトン緩和速度増強剤としての性質に悪影響を及ぼさな!/、範囲で、 他の成分を含有させることができ、例えば薬学的に許容される担体として、賦形剤, 滑沢剤,結合剤,崩壊剤,安定剤,矯味矯臭剤,希釈剤,界面活性剤,乳化剤,可 溶化剤,吸収促進剤,保湿剤,吸着剤,充填剤,増量剤,付湿剤,防腐剤等の添加 剤を用いて周知の方法で製剤化することができる。
[0061] 賦形剤としては、有機系賦形剤及び無機系賦形剤等が挙げられる。
[0062] (剤形)
本発明のプロトン緩和速度増強剤は、注射剤,カテーテル用液剤,経口用液剤,細 胞処理液,組織処理液等の、液剤の形態が好ましぐ中でも、移植細胞を処理する 場合の細胞処理液,組織処理液が好まし!/、。 [0063] (製法)
本発明のプロトン緩和速度増強剤は、上記の主成分である金属キレート複合体と、 上記の第 2成分等の他の成分各々を、常温,常圧下で混合する等の方法によって、 得ること力 Sでさる。
[0064] (性質)
本発明のプロトン緩和速度増強剤は、主成分である金属キレート複合体が、細胞膜 を通り抜け難い性質を有しており、細胞膜に近づくこと自体、少ないという性質を有し ている。
また、本発明のプロトン緩和速度増強剤を細胞内に導入した場合、細胞分裂後も、 細胞群のほぼ全体に亘つて、プロトン緩和速度増強剤の存在が観察された(図 15, 16)。
このことによって、例えば、再生治療等において、 MRI等の手段によって、移植細胞 の増殖の様子を観察可能であることが分力、つた。
[0065] (用途)
本発明のプロトン緩和速度増強剤は、後述の MRI造影剤, 中でも、細胞内滞在型の
MRI造影剤として適して!/ヽる。
[0066] < 3 >本発明の MRI造影剤
[0067] (主成分)
本発明の MRI造影剤は、上記 < 1〉の金属キレート複合体を含むことを特徴とする。
[0068] (濃度)
本発明の MRI造影剤中の、上記 < 1〉の金属キレート複合体の濃度は、 0. ;!〜 10 重量%が好ましぐ更に好ましくは、 0. 5〜5重量%である。 0. 1重量%以上で、プロ トン緩和速度増強効果が得られ、 10重量%以下では、粘性が抑えられ、注射液等に 好適であるからである。
[0069] (第 2成分)
本発明の MRI造影剤は、上記 < 1〉の金属キレート複合体の他、水,アルコール, 生理食塩水等の溶媒の他、マンニトール等の、注射剤等に一般に用いられる成分, あるいは MRI造影剤に、一般に用いられている成分を、更に含ませることができる。 [0070] また、本発明の MRI造影剤としての性質に悪影響を及ぼさない範囲で、他の成分を 含有させることができ、例えば薬学的に許容される担体として、賦形剤,滑沢剤,結 合剤,崩壊剤,安定剤,矯味矯臭剤,希釈剤,界面活性剤,乳化剤,可溶化剤,吸 収促進剤,保湿剤,吸着剤,充填剤,増量剤,付湿剤,防腐剤等の添加剤を用いて 周知の方法で製剤化することができる。
[0071] 賦形剤としては、有機系賦形剤及び無機系賦形剤等が挙げられる。
[0072] (剤形)
本発明の MRI造影剤は、注射剤,カテーテル用液剤,経口用液剤,細胞処理液, 組織処理液等の、液剤の形態が好ましぐ中でも、移植細胞を処理する場合の細胞 処理液,組織処理液が好ましい。
[0073] (製法)
本発明の MRI造影剤は、上記の主成分である金属キレート複合体と、上記第 2成分 等の他の成分各々を、常温,常圧下で混合する等の方法によって、得ること力 Sできる
[0074] (性質)
本発明の MRI造影剤は、主成分である金属キレート複合体が、細胞膜を通り抜け難 い性質を有しており、細胞膜に近づくこと自体、少ないという性質を有している。 また、本発明の MRI造影剤を細胞内に導入した場合、細胞分裂後も、細胞群のほぼ 全体に亘つて、 MRI造影剤の存在が観察された(図 15, 16)。
このことによって、例えば、再生治療等において、移植細胞の増殖の様子を観察する ことが可能となる。
[0075] (用途)
本発明の MRI造影剤は、特に、後述の細胞内滞在型の MRI造影剤として適してい
[0076] < 4〉本発明の細胞内滞在型 MRI造影剤
[0077] (主成分)
本発明の細胞内滞在型 MRI造影剤は、上記 < 1〉の金属キレート複合体を含むこと を特徴とする。 [0078] (濃度)
本発明の細胞内滞在型 MRI造影剤中の、上記 < 1〉の金属キレート複合体の濃度 は、 0.;!〜 10重量%が好ましぐ更に好ましくは、 0. 5〜5重量%である。 0. 1重量 %以上で、プロトン緩和速度増強効果が得られ、 10重量%以下では、粘性が抑えら れ、注射液等に好適であるからである。
[0079] (第 2成分)
本発明の細胞内滞在型 MRI造影剤は、上記 < 1〉の金属キレート複合体の他、水, アルコール,生理食塩水等の溶媒の他、マンニトール等の、注射剤等に一般に用い られる成分,あるいは MRI造影剤に、一般に用いられている成分を、更に含ませるこ と力 Sできる。
[0080] また、本発明の細胞内滞在型 MRI造影剤としての性質に悪影響を及ぼさな!/、範囲 で、他の成分を含有させることができ、例えば薬学的に許容される担体として、賦形 剤,滑沢剤,結合剤,崩壊剤,安定剤,矯味矯臭剤,希釈剤,界面活性剤,乳化剤 ,可溶化剤,吸収促進剤,保湿剤,吸着剤,充填剤,増量剤,付湿剤,防腐剤等の 添加剤を用いて周知の方法で製剤化することができる。
[0081] 賦形剤としては、有機系賦形剤及び無機系賦形剤等が挙げられる。
[0082] (剤形)
本発明の細胞内滞在型 MRI造影剤は、注射剤,カテーテル用液剤,経口用液剤, 細胞処理液,組織処理液等の、液剤の形態が好ましぐ中でも、移植細胞を処理す る場合の細胞処理液,組織処理液が好ましレ、。
[0083] (製法)
本発明の細胞内滞在型 MRI造影剤は、上記の主成分である金属キレート複合体と、 上記の第 2成分等の他の成分各々を、常温,常圧下混合する等の方法によって、得 ること力 Sでさる。
[0084] (性質)
本発明の細胞内滞在型 MRI造影剤は、主成分である金属キレート複合体力 細胞 膜を通り抜け難い性質を有しており、細胞膜に近づくこと自体、少ないという性質を有 している。 また、本発明の細胞内滞在型 MRI造影剤は、細胞内に導入した際、細胞内に長期 間滞在し、細胞分裂後は、細胞群のほぼ全体に亘つて、細胞内滞在型 MRI造影剤 の存在が観察された(図 15, 16)。
このことによって、例えば、再生治療等において、移植細胞の増殖の様子を観察する ことが可能となる。
[0085] < 5〉本発明のプロトン緩和速度増強剤, MRI造影剤,細胞内滞在型 MRI造影剤 の使用方法
[0086] (投与方法)
本発明のプロトン緩和速度増強剤, MRI造影剤,細胞内滞在型 MRI造影剤を、筋 肉,血管,臓器その他の組織に投与する場合の投与方法としては、経口投与,カテ 一テル投与,静注等の静脈投与,筋肉内投与,経皮投与,経鼻投与,皮内投与,皮 下投与,腹腔内投与,直腸内投与,粘膜投与、吸入等が挙げられるが、安全かっ血 中濃度を一定に保つという点では、静注等の静脈投与が好ましい。
マウス等の実験動物が測定対象の場合には、尾静脈注射等の方法も挙げられる。
[0087] 本発明のプロトン緩和速度増強剤, MRI造影剤,細胞内滞在型 MRI造影剤を、対 象細胞に投与する方法としては、細胞処理液,組織処理液等の溶液に細胞を浸積し て電気刺激を与えるエレクト口ポレーシヨンのほ力、、マイクロインジェクション,細胞膜 融合性リボソームを用いる方法等を用いることができる。
[0088] (投与形態)
本発明のプロトン緩和速度増強剤, MRI造影剤,細胞内滞在型 MRI造影剤の剤形 は、エレクト口ポレーシヨン等に用いる細胞処理液,組織処理液の形態のほか、注射 剤やカテーテル用液剤,経口用液剤等の形態が挙げられるが、必ずしもこれらに限 られるものでは無い。
[0089] (投与量)
投与量は、標的となる組織や細胞の種類,数,疑われている疾患の種類,進行度, 患者の年齢,性別,体重等により適宜調整することができ、必ずしも限定されるもので は無いが、一般に、下記の量が選択し得る。
経口,経皮,注射等によって、組織に投与する際には、 1回の投与量は、通常金属キ レー卜複合体量として、 0. Olmg〜; 1000mg、好ましくは 0. lmg~1000mg,より好 ましくは 0. lmg〜; !OOmgである。
Gd重量としては、 1回の投与当たり、 0. OOlmgから 10mg投与することが好ましい。 また、マイクロインジェクション,エレクト口ポレーシヨン,細胞膜融合性リボソームを用 いる方法等によって、細胞内に直接投与する際には、 1細胞辺り 107〜1012個の金属 キレート複合体が入る様に投与することが好ましレ、。
この量を投与された細胞は、細胞分裂に際して、分裂細胞にも適当な量の金属キレ ート複合体が分配されるため、細胞移植の増殖による組織の再生課程の追跡力 よ り確実となるからである。
[0090] < 6〉本発明のプロトン緩和速度増強剤, MRI造影剤,細胞内滞在型 MRI造影剤 の、細胞移植における使用方法
細胞移植に際し、 in vivo,あるいは in vitroで、マイクロインジェクション,エレクトロポ レーシヨン,又は細胞膜融合性リボソームを用いる方法等によって、プロトン緩和速度 増強剤, MRI造影剤,又は細胞内滞在型 MRI造影剤を、移植する細胞に導入する
当該導入細胞を移植した後、 4. 7T (3次元) MRI等によって、移植細胞,及びその 分裂細胞の様子を、経時的に観察することができる。
本発明のプロトン緩和速度増強剤, MRI造影剤,又は細胞内滞在型 MRI造影剤等 を、細胞内に導入した場合、細胞分裂後も、細胞群のほぼ全体に亘つて、それらが 存在していることが観察されており(図 15, 16)、例えば再生治療等において、移植 細胞の増殖の様子を観察することが可能となる。
[0091] 以下、本発明を、実施例を挙げて説明するが、本発明はこれらに限られるものでは無 い。
実施例 1
[0092] [リンカ一結合量の確認]
PVAユニットに対する DOTA導入率(%)は、 PVAユニットに対するジァミンの仕込 み量に相関していた。
結果を、表 1に示す。 キレート化剤(DOTA)は、添加量が十分であれば、ほぼ 100%のリンカ一(ジァミン) に結合することから、表 1の結果は、 PVAへのリンカ一の結合量が、リンカ一の添カロ 量に相関することを示して!/、る。
実施例 2
[0093] [ガドリニウム導入率の確認]
ガドリニウムをキレートに導入した際、およそ 5〜7割程度の割合で、安定して導入さ れることを確言忍した。
結果を、後述する表 1に示す。
実施例 3
[0094] 〔プロトン緩和速度増強効果の確認 (測定溶液中)〕
プロトン緩和速度増強効果力 PVAに導入されたリンカ一比率( 金属キレート導入 比率)や、プロトン緩和速度増強中の金属キレート複合体濃度に比例することを、実 験により確認した。
[0095] 金属キレート複合体の製造:
本発明の金属キレート複合体を、下記の様にして製造した。
尚、製造過程は、図 1に示した通りである。
[0096] (ステップ 1)
重量平均分子量 74800 (重合度からの計算値),ケン化度 98. 5%, Tg45°Cの、直 鎖状 PVAの側鎖 OH基に対し、脱水剤である 1 , 1 ' カルボニルビス 1H—イミダ ゾールを用いて、 1 , 3—プロパンジァミンを任意の割合で導入し、導入率の異なる 4 種のサンプル (A〜D)を得た。
下記表 1に示す通り PVAユニットへの DOTA導入率は、 NMR測定により、ュ ニット比で、サンプル A : 13· 2%,サンプル B : 7· 5%,サンプル C : 3· 6%,サンプル D : 12. 9%であった。
[0097] (ステップ 2)
次に、キレート化剤である 1 , 4, 7, 10 テトラァザシクロドデカン 1 , 4, 7, 10 テ トラアセテート(DOTA)を側鎖に導入した。
[0098] (ステップ 3) 更に、中心金属であるガドリニウムを DOTAと錯形成させることで、本発明の金属キ レート複合体を得た。
尚、サンプル Dに関しては、 DOTAの導入に先立って、測定用の蛍光標識(FITC) を添加し、 PVAに結合した複数のリンカ一(ジァミン)の一部に、 DOTAでは無ぐ FI TCを結合させた。
[0099] 尚、以下の試験で用いた金属キレート複合体の構成を下記の表 1に示す。
また、表中、 Mnは、 PVAの数平均分子量, Mwは重量平均分子量を表す。
[0100] [表 1]
Figure imgf000021_0001
プロトン緩和時間の測定:
上記サンプル A〜Cの金属キレート複合体を用い、 795μ\<ΌΌ Οと 5 1の Η Οを混 合した測定用溶液中で、プロトン緩和時間の測定を行った。
、/則疋は、 Varian Gemini 300 J MR spectrometerを使用し、 Inversion Recovery法 によって fiつた。
Inversion Recovery法(反転回復(IR)法)とは、電磁波を照射後、任意の時間に NM Rスペクトルを測定し、信号強度の時間変化から Tを測定する方法である。この IR法
1
では、まず始めに 180° ノ ルスを印加する。次に、任意の時間に 90° ノ ルスを印加 し、得られる信号虽度を日寺間に対してプロットすることで Tを得ること力 Sできる。
1
高分子濃度に対してプロトン緩和速度 (緩和時間の逆数)をプロットしたところ、上記 測定用溶液中の、金属キレート複合体(高分子)濃度や、金属キレート複合体中の金 属キレートの量に対して比例的に、プロトン緩和速度が増加していることが分かった( 図 2)。
これらの結果から、本発明の金属キレート複合体は、濃度依存的にプロトン緩和速度 を増強し、また複合体中の金属キレート量を調節することによって、緩和度を任意に 設定可能であることが分力、つた。
[0102] 尚、緩和速度すなわち緩和時間の逆数は、次式によって求めることができる。
T _1 ( = 1/T ) = 1/T +RX C
1 1 0
Τ:測定対象の緩和時間
1
τ—1:測定対象の緩和速度
1
τ:物質固有の緩和時間
0
C:プロトン緩和速度増強剤(又は MRI造影剤)濃度
R :緩和度(グラフの傾き)
実施例 4
[0103] 〔プロトン緩和速度増強効果に対する、 PVAの役割〕
本発明の金属キレート複合体(サンプル D)と、公知の造影剤であるマグネビスト (登 録商標, Gd— DTPA,シエーリング製)とで、プロトン緩和速度を比較した。結果を図 3に k f^。
[0104] 図 3から、本発明のプロトン緩和速度増強剤である、金属キレート複合体(サンプル D )は、公知の造影剤であるマグネビスト(登録商標, Gd— DTPA,シエーリング製)より も、緩和度が高ぐ緩和速度増強効果が高いことが分力、つた。
[0105] 尚、 Gd量が OmMの場合の T— 即ち T 1は、図 3では判別が困難である力 0. 0639 である。
即ち、本実験例における本発明のプロトン緩和速度増強剤の濃度と、緩和速度の関 係、下記式の通りとなる。
[0106] Y=T _1 ( = 1/T ) = 1/T +RX C = 0. 0639 + 6. 6067 X X
1 1 0
実施例 5
[0107] [細胞毒性試験]
本発明の金属キレート複合体の安全性を確認するため、テトラゾリゥム塩 (WST— 1) を用いた細胞毒性試験を実施した。
[0108] 〈細胞毒性試験方法〉
WST— 1を用いた細胞毒性試験は、公知の方法であり、市販の試験キット(Premix WST-1 Cell Proliferation Assay System :タカラバイオ(株)製/ Cell Proliferation Rea gent WST-1 :ロッシュ製/ W201 :株式会社 同仁化学研究所製等)を用い、当該キッ トに付属の説明書等に従って行うことができる力 S、その原理は下記の通りである。
[0109] テトラゾリゥム塩は、生存細胞にだけ活性のあるコハク酸塩テトラゾリゥム還元酵素 (EC 1.3.99.1)によって、ホルマザン色素に分解される。従って、生存細胞数が増加すれ ば、試料中の酵素活性が増加し、ホルマザン色素が増加することになる。ホルマザン 色素と生存細胞数とは直線的な相関を示す。従って、 ELISA法等によって色素溶液 の吸光度を測定し、ホルマザン色素を定量することによって、生存細胞数が測定でき る。つまり、細胞培養液に、金属キレート複合体や金属キレートを添加した後に、生 存細胞数を測定することによって、これらの細胞毒性を確認することができる。
[0110] 以下、この方法を用い、金属キレートや金属キレート複合体を、細胞の内'外に投与 した場合の細胞毒性を、各々確認した。その結果を、図 4, 5で表す。
[0111] 〈1 :細胞外投与による毒性試験〉
上述の方法に従い、比較対照となる公知の MRI造影剤である金属キレート(マグネビ スト(登録商標, Gd-DTPA,シエーリング製)又は本発明の金属キレート複合体(サ ンプル B)を含む PBS溶液,あるいは対照となる PBS溶液を、 NIH— 3T3細胞を培 養している培地に各々投与した場合の、生存細胞数を測定することによって、細胞毒 性を確認した。結果を図 4, 5に示す。尚、縦軸は UVの値を表す。 尚、金属キレート又は金属キレート複合体を含む溶液の、キレート濃度は、図 4, 5に 示す通りである。
[0112] 図 4, 5から、本発明の金属キレート複合体は、投与 3日後も、無投与群と比べて生存 細胞数に代わりが無ぐ筋肉,血管,臓器その他の組織に投与した場合に、従来公 知の MRI造影剤と比較して、同等あるいはそれ以上に細胞毒性が無!/、ことが分かつ た。
[0113] 〈2 :細胞内投与による毒性試験〉
本発明の金属キレート複合体(サンプル A, B)を含有する培養液を、エレクトロボレ ーシヨンによって細胞内に導入した場合の、生存細胞数を、上述の方法に従って測 定することにより、細胞毒性を確認した。結果を図 6, 7に示す。尚、縦軸は UVの値を 表す。
[0114] 図 6, 7から、本発明の金属キレート複合体(サンプル A, B)は、いずれも、投与 3日 後も、無投与群と比べて生存細胞数に代わりが無ぐ細胞内に投与した場合にも、殆 ど細胞毒性が無レ、ことが分力、つた。
実施例 6
[0115] [MRIによる細胞内コントラスト増加の確認試験]
本発明の金属キレート複合体(表 1のサンプル A, B, C)を含む PBS溶液を、 MRIを 用いて撮像した。撮像されたそれぞれのサンプルの画像の輝度を画像処理等の方 法によって測定した。
[0116] 結果を図 9〜; 11及び図 12に表す。
[0117] 尚、図 8は、図 9〜; 11の MRI撮像図中の、 3つの金属キレート複合体に対応するそれ ぞれの濃度を表す図である。
また、図 12の縦軸は PBSの輝度を 1とした場合におけるそれぞれのサンプルの輝度 を表している。
[0118] 図 12から、本発明の金属キレート複合体(サンプル A, B, C)は、いずれも、サンプル 濃度の増加に応じて MRI画像のコントラストの増加が見られることが分力、つた。また、 金属キレートの導入率に依存してコントラストに差が見られることもわ力、つた。
実施例 Ί [0119] [MRIによる、造影剤ラベル化細胞の撮像]
本発明の金属キレート複合体(表 1のサンプル A)を、エレクト口ポレーシヨンによって NIH— 3T3細胞内に導入した。得られた細胞を封入したァガロースゲルを、 MRIを 用いて撮像した。得られた画像を画像処理により、ァガロースゲルの輝度を 1として、 ァガロース +細胞(細胞のみ)、ァガロース + 10— 3Mの条件下で導入した細胞(10_3 M)、ァガロース + 10— 2Mの条件下で導入した細胞(10— 2M)の輝度を求め、各々ダラ フ化した。
[0120] 図 13から、細胞内にサンプル Aを導入した場合、 MRIを用いて撮像可能であるとい うことが分かった。
実施例 8
[0121] [細胞内滞在性の確認]
NIH— 3T3細胞内にエレクト口ポレーシヨン法を用いてサンプルを導入し、細胞内の サンプル量の経時的変化を、蛍光測定を用いて測定した。本発明の金属キレート複 合体サンプルとしては、サンプル Dを用いた。結果を図 14に表す。尚、図中の縦軸 は、蛍光強度の値である。
[0122] 図 14から、細胞が増殖するにも関わらず、系中におけるサンプル量はほぼ一定の値 をとつた。これより、細胞の増殖過程において、サンプルが細胞外に漏れ出すことなく 、細胞内に留まっているということが分かった。つまり、時間が経過しても細胞内にサ ンプルが保持されており、細胞移植しても長期間 MRI等によって追跡が可能である ことを示唆している。
実施例 9
[0123] [細胞内に取り込まれている様子の確認]
本発明の金属キレート複合体(サンプル D)を用い、エレクト口ポレーシヨン法により細 胞内への導入を行った。導入 2日後の顕微鏡写真(明視野、蛍光)を示す(図 15, 16 )
[0124] 図 15, 16から、細胞内に導入後 2日経過した後でも、細胞内に安定にサンプルが存 在して!/、ると!/、うことが分かった。
また、細胞が増殖しているにも関わらず、ほとんどすべての細胞が光っていることから 、サンプルが、細胞分裂の過程で、細胞外に漏れ出していないだけでなぐ個々の分 裂細胞にも、ある程度均等に、サンプルが分配されていることが分力、つた。
実施例 10
[0125] [細胞内滞在性の確認 2]
実施例 8と同様にして、本発明の金属キレート複合体(サンプル D)を細胞内に投与 した後の、金属キレート複合体の細胞内滞在性の経時的変化を、細胞の増殖性と共 に測定した結果を、図 17に示す。
[0126] 図 17から、系中におけるサンプル量はほぼ一定の値をとる一方、細胞数は、サンプ ルを導入しいていない細胞と同様に、 日数経過に伴い確実に増殖していること力 数 値的に確認できた (破線)。これより、細胞の増殖過程において、サンプルが細胞外 に漏れ出すことなぐ細胞内に留まって!/、ると!/、うことが分力、つた。
つまり、時間が経過しても細胞内にサンプルが保持されており、細胞移植しても長期 間 MRI等によって追跡が可能であることを示唆している。
実施例 11
[0127] [細胞の in vitroにおける MRI撮像]
本発明の金属キレート複合体(表 1のサンプル D)を、エレクト口ポレーシヨンによって NIH— 3T3細胞内に導入後、試験管底部に細胞を集積させ、試験管底部を含むよ うに水平方向にスライスし、 MRI撮像を行った。結果を図 18に示す。
比較対象として、サンプルを導入していない NIH— 3T3細胞,及び培地のみを入れ た試験管を用いた。
[0128] 図 18から、金属キレート複合体(サンプル D)を導入した細胞は、比較対象に比べて 輝度の増加が見られた。輝度の上昇は細胞内に含まれるサンプルに依存するため、 本発明の金属キレート複合体を用いることによって、 MRIによる細胞の検出が出来る ことが確認できた。
実施例 12
[0129] [細胞の in vivoにおける MRI撮像]
本発明の金属キレート複合体(表 1のサンプル D)を、エレクト口ポレーシヨンによって NIH 3T3細胞内に導入後、ァガロースゲル内に細胞を封入した。 得られたゲルをマウス皮下に移植し、 MRI撮像を行った。結果を図 19に示す。
比較対象として、ァガロースゲルのみを、同マウスの別の部位 (皮下)に移植した。
[0130] 図 19から、金属キレート複合体(サンプル D)を導入した細胞が内包されているゲル の部分で、輝度の上昇が見られた。
これより、 in vivoにおいても、 MRIを用いて細胞の追跡が可能であることが確認できた
[0131] 尚、図 9, 10, 11 , 15, 16について、同じ図面の、解像度を上げたものを、それぞれ 図 20, 21 , 22, 23, 24として、記載する。
産業上の利用可能性
[0132] 本発明は、画像診断に用いることが可能な新規化合物に関するものであり、細胞膜 の内外で行き来することなぐ一定の箇所に滞在することによって、細胞や器官等の 一定エリアの経時的変化を検証可能な、プロトン緩和速度増強剤,又は MRI造影剤 に関するものであり、医療現場や研究現場での幅広い利用が可能である。
図面の簡単な説明
[0133] [図 1]本発明の金属キレート複合体の製造過程を表すスキームである。
[図 2]溶液中の、金属キレート複合体 (高分子)濃度や、複合体中の金属キレート量が 多くなるのに比例して、プロトン緩和速度が増加することを示す図である。
[図 3]金属キレート複合体中の金属導入量が増加するに従って、傾き (緩和度)が大 きくなることを示す図である。
[図 4]公知の金属キレート(マグネビスト:登録商標)を、細胞外に投与した場合の細 胞毒性を示す図である。
[図 5]本発明の金属キレート複合体を、細胞外に投与した場合の細胞毒性を示す図 である。
[図 6]本発明の金属キレート複合体 (サンプル A)を、細胞内に投与した場合の細胞 毒性を示す図である。
[図 7]本発明の金属キレート複合体 (サンプル B)を、細胞内に投与した場合の細胞 毒性を示す図である。
[図 8]図 9〜; 11の MRI撮像図中の、 3つの金属キレート複合体に対応するそれぞれ の濃度を表す図である。
園 9]本発明の金属キレート複合体(サンプル A)の PBS溶液を、異なる濃度で MRI により撮像した図である。
園 10]本発明の金属キレート複合体(サンプル B)の PBS溶液を、異なる濃度で MRI により撮像した図である。
園 11]本発明の金属キレート複合体(サンプル C)の PBS溶液を、異なる濃度で MRI により撮像した図である。
園 12]PBSの輝度を 1とした場合のそれぞれの輝度を表す図である。
園 13]細胞を本発明の金属キレート複合体 (サンプル A)でラベル化したものを MRI で測定した結果を示す図である。
園 14]細胞内に投与した、本発明の金属キレート複合体 (サンプル D)の、細胞内滞 在性を示す図である。
[図 15]細胞内への、本発明の金属キレート複合体(サンプル D)の導入 2日後の、明 視野写真を示す図である。
[図 16]細胞内への、本発明の金属キレート複合体(サンプル D)の導入 2日後の、蛍 光写真を示す図である。
園 17]本発明の金属キレート複合体 (サンプル D)を細胞内に投与した後の、金属キ レート複合体の細胞内滞在性を、細胞の増殖性と共に示す図である。
園 18]NIH— 3T3細胞内にサンプルを導入後、試験管底部に細胞を集積させ、試 験管底部を含むように水平方向にスライスし、 MRI撮像を行った結果を示す図である 園 19]本発明の金属キレート複合体(サンプル D)を細胞内に導入し、マウス皮下に 移植後、 MRIにより撮像した結果を示す図である。
[図 20]図 9の、解像度を上げた図である。
[図 21]図 10の、解像度を上げた図である。
[図 22]図 11の、解像度を上げた図である。
[図 23]図 15の、解像度を上げた図である。
[図 24]図 16の、解像度を上げた図である。

Claims

請求の範囲
[1] 1又は 2以上の金属キレートと、ポリビュルアルコールを構成成分として含むことを特 徴とする、金属キレート複合体。
[2] 金属キレートが、リンカ一を介してポリビュルアルコールに結合していることを特徴と する、請求項 1記載の金属キレート複合体。
[3] リンカ一が、ジァミンであることを特徴とする、請求項 2記載の金属キレート複合体。
[4] キレート化剤が、 DTPA, DTP A無水物, DOTA, D03A, HP— D03A, DTPA
BMAからなる群から選択される 1又は 2以上のキレート化剤であることを特徴とす る、請求項 1乃至 3のいずれかに記載の金属キレート複合体。
[5] ポリビュルアルコールの重量平均分子量が 2000〜; 10万であることを特徴とする、請 求項 1乃至 4のいずれかに記載の金属キレート複合体。
[6] 金属がガドリニウムであることを特徴とする、請求項 1乃至 5のいずれかに記載の金属 キレート複合体。
[7] 請求項 1乃至 6記載のいずれかに記載の金属キレート複合体を含むことを特徴とする
、プロトン緩和速度増強剤。
[8] 請求項 1乃至 6記載のいずれかに記載の金属キレート複合体を含むことを特徴とする
、 MRI造影剤。
[9] 請求項 1乃至 6記載のいずれかに記載の金属キレート複合体を含むことを特徴とする 、細胞内滞在型 MRI造影剤。
PCT/JP2007/072008 2006-11-16 2007-11-13 Complexe de type chélate métallique, agent améliorant la vitesse de relaxation de protons et agent de contraste en rm WO2008059835A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544149A JPWO2008059835A1 (ja) 2006-11-16 2007-11-13 金属キレート複合体及びプロトン緩和速度増強剤並びにmri造影剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006310159 2006-11-16
JP2006-310159 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008059835A1 true WO2008059835A1 (fr) 2008-05-22

Family

ID=39401642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072008 WO2008059835A1 (fr) 2006-11-16 2007-11-13 Complexe de type chélate métallique, agent améliorant la vitesse de relaxation de protons et agent de contraste en rm

Country Status (2)

Country Link
JP (1) JPWO2008059835A1 (ja)
WO (1) WO2008059835A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107164A (ja) * 2010-11-19 2012-06-07 Kyushu Univ 常磁性を有する水溶性高分岐ポリマー
WO2013176292A2 (en) * 2012-05-23 2013-11-28 Canon Kabushiki Kaisha Polymer, contrast agent for nuclear magnetic resonance analysis or magnetic resonance imaging using the polymer, compound and method of nuclear magnetic resonance analysis and method of magnetic resonance imaging using the polymer
JP2015040242A (ja) * 2013-08-21 2015-03-02 独立行政法人国立循環器病研究センター 高分子化造影剤
JP2016515158A (ja) * 2013-03-15 2016-05-26 ドレハー,マシュー,アール. 結像可能な塞栓性微小球

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158195A (ja) * 1996-11-28 1998-06-16 Res Inst For Prod Dev 配位結合を利用した薬物−高分子複合体製剤の調製方法
JP2003104914A (ja) * 2001-09-28 2003-04-09 Yasuhiko Tabata Dna−金属−水溶性高分子複合体
JP2005239641A (ja) * 2004-02-26 2005-09-08 Bando Chem Ind Ltd ジエチレントリアミンペンタ酢酸錯体ポリマー組成物
WO2006003731A1 (ja) * 2004-07-05 2006-01-12 Kanagawa Academy Of Science And Technology 高分子ミセル型mri造影剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158195A (ja) * 1996-11-28 1998-06-16 Res Inst For Prod Dev 配位結合を利用した薬物−高分子複合体製剤の調製方法
JP2003104914A (ja) * 2001-09-28 2003-04-09 Yasuhiko Tabata Dna−金属−水溶性高分子複合体
JP2005239641A (ja) * 2004-02-26 2005-09-08 Bando Chem Ind Ltd ジエチレントリアミンペンタ酢酸錯体ポリマー組成物
WO2006003731A1 (ja) * 2004-07-05 2006-01-12 Kanagawa Academy Of Science And Technology 高分子ミセル型mri造影剤

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107164A (ja) * 2010-11-19 2012-06-07 Kyushu Univ 常磁性を有する水溶性高分岐ポリマー
WO2013176292A2 (en) * 2012-05-23 2013-11-28 Canon Kabushiki Kaisha Polymer, contrast agent for nuclear magnetic resonance analysis or magnetic resonance imaging using the polymer, compound and method of nuclear magnetic resonance analysis and method of magnetic resonance imaging using the polymer
JP2014001371A (ja) * 2012-05-23 2014-01-09 Kyoto Univ 重合体、前記重合体を用いた核磁気共鳴分析用または磁気共鳴イメージング用の造影剤、化合物、前記重合体を用いた核磁気共鳴分析方法および磁気共鳴イメージング方法
WO2013176292A3 (en) * 2012-05-23 2014-03-13 Canon Kabushiki Kaisha Polymer, contrast agent for nuclear magnetic resonance analysis or magnetic resonance imaging using the polymer, compound and method of nuclear magnetic resonance analysis and method of magnetic resonance imaging using the polymer
US10029021B2 (en) 2012-05-23 2018-07-24 Canon Kabushiki Kaisha Polymer, contrast agent for nuclear magnetic resonance analysis or magnetic resonance imaging using the polymer, compound and method of nuclear magnetic resonance analysis and method of magnetic resonance imaging using the polymer
JP2016515158A (ja) * 2013-03-15 2016-05-26 ドレハー,マシュー,アール. 結像可能な塞栓性微小球
US10307493B2 (en) 2013-03-15 2019-06-04 Biocompatible UK Limited Imageable embolic microsphere
US11672876B2 (en) 2013-03-15 2023-06-13 Biocompatibles Uk Limited Imageable embolic microsphere
JP2015040242A (ja) * 2013-08-21 2015-03-02 独立行政法人国立循環器病研究センター 高分子化造影剤

Also Published As

Publication number Publication date
JPWO2008059835A1 (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4758346B2 (ja) 高分子ミセル型mri造影剤
Adkins et al. High relaxivity MRI imaging reagents from bimodal star polymers
US20110110866A1 (en) Elastin-like polypeptide and gadolinium conjugate for magnetic resonance imaging
CN102336838B (zh) 一种顺磁性金属配合物和合成方法及应用
Lu et al. Polydisulfide Gd (III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents
Nwe et al. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments
KR101059285B1 (ko) 가돌리늄 착물, 그 제조방법, 및 그것을 포함하는 mri 조영제
CN104258426A (zh) 一种核磁共振可视化可注射pH敏感型自修复水凝胶及其制备方法和用途
JP2024506891A (ja) ガドリニウムキレート及びその調製方法と使用
WO2014036037A1 (en) N-boc-dendrimers and their conjugates
WO2008059835A1 (fr) Complexe de type chélate métallique, agent améliorant la vitesse de relaxation de protons et agent de contraste en rm
Schopf et al. An extracellular MRI polymeric contrast agent that degrades at physiological pH
US9801958B2 (en) Polymer nanoparticle composite and composition for MRI imaging including same
US8961949B2 (en) Polymer-metal complex composite having MRI contrast ability and MRI contrasting and/or antitumor composition using the same
Zhang et al. The degradation and clearance of Poly (N-hydroxypropyl-L-glutamine)-DTPA-Gd as a blood pool MRI contrast agent
Jackson et al. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents
CN104069515B (zh) 天门冬氨酸-亮氨酸共聚物修饰的顺磁性金属配合物及其制备方法和应用
CN104083778B (zh) 天门冬氨酸-苯丙氨酸共聚物修饰的顺磁性金属配合物及其制备方法和应用
JP5142251B2 (ja) 金酸化鉄粒子を利用した複合粒子およびmri造影剤
Soikkeli et al. Assessment of the Relaxation‐Enhancing Properties of a Nitroxide‐Based Contrast Agent TEEPO‐Glc with In Vivo Magnetic Resonance Imaging
CN106916318A (zh) 一种可生物降解的核交联含钆配合物的聚合物及其制备方法和用途
Zhang et al. Lactose-modified enzyme-sensitive branched polymers as a nanoscale liver cancer-targeting MRI contrast agent
JP6182019B2 (ja) 高分子化造影剤
CN101002950B (zh) 甘草酸为载体的磁共振成像造影剂
AU6244500A (en) Non-covalent bioconjugates useful for magnetic resonance imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544149

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831738

Country of ref document: EP

Kind code of ref document: A1