WO2008052414A1 - Globular rubber adjuvants and the method of preparating the same - Google Patents

Globular rubber adjuvants and the method of preparating the same Download PDF

Info

Publication number
WO2008052414A1
WO2008052414A1 PCT/CN2007/002953 CN2007002953W WO2008052414A1 WO 2008052414 A1 WO2008052414 A1 WO 2008052414A1 CN 2007002953 W CN2007002953 W CN 2007002953W WO 2008052414 A1 WO2008052414 A1 WO 2008052414A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
resin
nozzle
spherical
tank
Prior art date
Application number
PCT/CN2007/002953
Other languages
English (en)
French (fr)
Inventor
Nongyue Wang
Xiaohui Mao
Xiaogen Feng
Qianwen Cheng
Luxin Wang
Original Assignee
Jiangsu Sinorgchem Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sinorgchem Technology Co., Ltd filed Critical Jiangsu Sinorgchem Technology Co., Ltd
Priority to US12/445,900 priority Critical patent/US8066919B2/en
Priority to ES07816567T priority patent/ES2403583T3/es
Priority to PL07816567T priority patent/PL2085135T3/pl
Priority to EP07816567A priority patent/EP2085135B1/en
Publication of WO2008052414A1 publication Critical patent/WO2008052414A1/zh
Priority to US13/305,454 priority patent/US8349230B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material

Definitions

  • the present invention relates to a spherical rubber auxiliary agent and a preparation method thereof, and more particularly to a spherical rubber antioxidant, a vulcanization system auxiliary agent, an operation system auxiliary agent, a reinforcing system auxiliary agent, Adhesive system additives.
  • a spherical rubber antioxidant e.g., a spherical rubber antioxidant, a vulcanization system auxiliary agent, an operation system auxiliary agent, a reinforcing system auxiliary agent, Adhesive system additives.
  • it relates to spherical particles of p-phenylenediamine rubber antioxidant 3 dimethylbutyl-N,-phenyl-p-phenylenediamine or N-isopropyl-N,-phenyl-p-phenylenediamine and a preparation method thereof.
  • Rubber auxiliaries are important chemical raw materials for the rubber industry, and they play an important role in improving rubber properties, improving the quality of rubber, and improving the technical level of rubber. As the rubber industry continues to advance, higher requirements are placed on the overall quality of rubber additives. At present, the rubber auxiliaries appearing on the market are generally powdery or hemispherical, and the powdery rubber auxiliaries are easy to fly, which not only makes the rubber auxiliaries easy to dissipate, but also is not conducive to the environment.
  • a commonly used rubber granulation method is rotary belt type condensing granulation.
  • the working principle is: using the low melting point (or softening point) characteristics of the material, according to the viscosity range of the material in the molten state, through a special cloth device
  • the molten material is evenly distributed on the steel strip under the hook movement, and under the forced cooling of the continuous spraying device disposed under the steel strip, the material is cooled and solidified during the moving and conveying process.
  • fabrics such as intermittent dripping, continuous stripping and full-width overflow can be selected to obtain hemispherical, strip and sheet products, respectively.
  • the cooling medium carries away the heat of the molten metal through the steel strip, and the heat is transmitted through the steel strip and then transferred to the cooling medium, so that the heat transfer efficiency is greatly reduced, and the main heat transfer is performed.
  • the way is to transfer heat through the plane of the steel strip and the cooling medium. It is necessary to increase the processing volume by the lengthening steel, which leads to an increase in the volume of the equipment and a low space utilization efficiency.
  • the second is that the droplets are formed on the steel strip, and the particles are all hemispherical or flat.
  • the rubber auxiliaries have some improvement compared with the powder, there are still some problems.
  • the spherical surface and the plane intersect with a certain angular angle, which is acute and will collide and fall off during the packaging and transportation process. It turns into a fine powder, pollutes the environment, and at the end of the steel strip, the granulated particles are scraped off the steel strip by a scraper, which also causes the dust to fly. The presence of these fines also results in a decrease in the local melting point of the adjuvant. Small fine powder will be bridged, agglomerated, and knotted, resulting in the overall or partial compaction of the additive product, forming a large block, which seriously affects the product quality.
  • the object of the present invention is to improve the granulation shape of the existing rubber auxiliaries, and to solve the dust pollution caused by powder, hemispherical and other irregular shape rubber auxiliaries during granulation, low heat transfer efficiency, and production. Low capacity, and relatively high equipment investment; and improvement of the local melting point of the product caused by the presence of small fine powder crystals, small fine powder will bridge, slab, agglomerate, resulting in quality problems of the whole or part of the product.
  • the inventor has found through various aspects that the rubber auxiliaries are made into spherical granules, which overcomes the drawbacks of the powdery and hemispherical rubber auxiliaries obtained by the current production process, and the number of sifting particles of the rubber auxiliaries of the present invention is compared.
  • the product rate is greatly increased, the dust pollution caused by the granulation process is well solved, the material loss and environmental pollution are avoided, and the local melting point of the product caused by the presence of small fine powder crystals is also solved, and The small fine powder will cause the quality of the whole or part of the knot of the product due to the bridge, the knot and the agglomeration.
  • the surface finish of the rubber auxiliaries is also improved, which facilitates the flow and mixing of the auxiliaries in the rubber mixing or opening process, thereby completing the present invention.
  • the present invention provides a novel spherical rubber adjuvant which preferably has a spherical diameter of the rubber auxiliary in the range of 0.2 to 10 mm.
  • the spherical rubber auxiliary of the present invention comprises a spherical rubber anti-aging agent, a spherical vulcanization system auxiliary agent, a spherical operation system auxiliary agent, a spherical reinforcing system auxiliary agent, and a spherical bonding system auxiliary agent.
  • the spherical vulcanization system auxiliary agent comprises spherical 2-mercaptobenzoxazole, and two stone filling two Benzothiazole, N-tert-butyl-2-benzothiazole sulfenamide, N-cyclohexyl-2-benzothiazole sulfenamide, N, N-dicyclohexyl-2-benzothiazole sulfenamide and N-oxydiethylene-2-benzothiazole sulfenamide.
  • the spherical vulcanization system auxiliary further comprises N-tert-butyl-bis(2-benzothiazepine) sulfenamide, N-cyclohexyl-bis(2-benzothiazole)sulfenamide, and Butyl thiuram, tetraisobutylamine thiuram disulfide, thiuram dibenzyl disulfide, tetradecyl thiuram disulfide, tetraethyl thiuram disulfide, tetradecyl monosulfide Thiuram, hexasulfide quinone thiuram, N,N-dicaprolactam, N-oxydiethylenesulfide amino decanoyl-N,-tert-butyl sulfenamide, diphenyl hydrazine, two An o-toluene and a vulcanized resin having a softening point of 250 °
  • the rubber antioxidant includes N-1,3 dimethylbutyl-N,-phenyl-p-phenylenediamine, N-isopropyl-N,-phenyl-p-phenylenediamine, N,N,-bis ( 1, 4-dimethylpentyl)-p-phenylenediamine, 2,2,4-tridecyl-1,2-dihydroquinoline polymer, octylated diphenylamine, N-phenyl-N, - cyclohexyl p-phenylenediamine and 4-aminodiphenylamine, among which spherical p-phenylenediamine antioxidant N-1,3 dimethylbutyl-N,-phenyl-p-phenylenediamine or N-isopropyl is particularly preferred.
  • Base-N,-phenyl-p-phenylenediamine Base-N,-phenyl-p-phenylenediamine.
  • the rubber antioxidant further includes N-phenyl-indole, - ⁇ -methylbenzyl-p-phenylenediamine, anthracene, fluorene,-diphenylene-p-phenylenediamine, 2,4,6-tri-( ⁇ - 1, 4-Dimethyl)pentyl p-phenylenediamine-1, 3, 5-tri" Qin.
  • the spherical operating system auxiliary of the present invention comprises a spherical scorch retarder, a spherical plasticizer, a spherical homogenizer, a spherical tackifier, and a spherical release agent.
  • the spherical scorch retarder comprises spherical ⁇ -cyclohexyl thiophthalimide.
  • the spherical plasticizer includes a spherical plasticizer ⁇ , pentachlorothiophenol.
  • the spherical homogenizer comprises a spherical resin having a softening point below 250 ° C, and comprises a polymeric resin selected from one or more saturated or unsaturated aromatic hydrocarbon monomers, a cycloalkane monomer and an aliphatic hydrocarbon monomer, A mixture of two or more kinds of saturated or unsaturated aromatic hydrocarbon resins, naphthenic resins and aliphatic hydrocarbon resins.
  • the spherical tackifier comprises a spherical resin having a softening point below 250 ° C, including stone Oleate, petroleum C9 tackifying resin, petroleum composite C9 tackifying resin, petroleum modified alkylphenol resin, p-tert-butylphenol guar resin, p-tert-octylphenol acetal resin, guema resin, Styrene-indene resin.
  • the spherical release agent comprises a spherical inner release agent AT-16.
  • the spherical binder system builder of the present invention comprises spherical cobalt ruthenate, cobalt naphthenate, and cobalt stearate.
  • the reinforcing system auxiliary of the present invention comprises a phenol resin, an oil-modified phenol resin, and a petroleum resin having a softening point of 250 ° C or less.
  • Another aspect of the present invention provides a method of preparing the above spherical rubber auxiliaries, which comprises a head granulation step, a cooling forming step, and a step of removing a cooling liquid.
  • the process of the invention further comprises a pre-crystallization step which is carried out prior to the head granulation step.
  • the bin and the dispensing panel are separated, and a gap is separated between the bin and the distribution plate.
  • the distribution plate in the head granulation step, is provided with heating and/or cooling medium; the distribution plate is provided with small holes and medium holes from top to bottom, and the diameter of the small holes is Between 0.1 and 5 mm, the diameter of the center nozzle is between 0.2 and 10 mm.
  • a large hole is provided below the center hole, and the inner wall of the large hole is 0.5 - 5 mm from the outer wall of the hole nozzle.
  • the lower end of the nozzle is chamfered.
  • a constant pressure ram can be maintained in the form of a self-gravity natural trickle, a reciprocating booster or a high viscosity pump feed pump. Among them, it is preferable to use a reciprocating force assisting press.
  • the nozzle hopper has a speed of from 1 to 4 drops per second.
  • a surfactant is added to the cooling liquid in the cooling tower and/or ultrasonic waves are applied during the cooling forming step.
  • the cooling liquid is at least one selected from the group consisting of water, ammonia water, an aqueous solution of a salt, and an organic substance.
  • the cooling liquid is selected from the group consisting of water, aqueous ammonia, aqueous methanol, aqueous sodium chloride, gasoline or acetone.
  • the surfactant is selected from the group consisting of polyethylene glycol ether, polypropylene glycol ether, fatty alcohol polyoxyethylene ether, alkylbenzenesulfonic acid compound, quaternary ammonium salt compound, alkyl alcohol At least one of an ammonium type surfactant and a betaine surfactant.
  • the fatty alcohol has a carbon number of 6-18 in the fatty alcohol polyoxyethylene ether and a polyoxyethylene degree of polymerization of 3-25.
  • the betaine surfactant is selected from the group consisting of cocoamidopropyl betaine, dinonylalkylbetaine, or hydrazine, hydrazine-dimethyl-N-alkoxymethylene betain.
  • spherical refers to spheres or spheroids with a diameter deviation of ⁇ 20%, as well as spheres or spheroids with minor defects on the surface.
  • diameter deviation refers to the difference between the length of a line segment connecting any two points on the surface of a sphere or a spheroidal sphere through a sphere or a ball-like sphere and its average length as a percentage of the average length.
  • Figure 1 is a process flow diagram of a rubber auxiliaries made into spherical granules in accordance with a preferred embodiment of the present invention.
  • 2 is a schematic view of a distribution plate in a preferred embodiment of the present invention
  • 1 is a small hole
  • 2 is a middle hole
  • 3 is a nozzle
  • 4 is a large hole, that is, a heat preservation hole
  • 5 is a heat retention groove
  • the distribution plate may not include the large hole 4.
  • Figure 3 is a schematic illustration of three differently shaped nozzles A, B, C in the present invention.
  • the lower ends of the nozzles A and C are chamfered, the lower end of the nozzle A has an outer chamfer, and the lower end of the nozzle C has an inner chamfer.
  • the present invention provides a spherical rubber auxiliary wherein the spherical rubber auxiliary preferably has an average diameter in the range of 0.2 - 10 mm. Further, the present invention provides the following method for preparing a spherical rubber auxiliary, which will be described in detail below.
  • the rubber additive material is pumped to the cooling pre-crystal part, after continuous circulation and cooling, a part reaches the pre-crystallization state, and enters the heat-insulated melting chamber of the machine head to granulate, or according to the material.
  • the characteristics can also be granulated directly into the insulated melting chamber of the head without the pre-crystallization step, and the material is granulated through the designed distribution plate.
  • the extruded molten particles are spherically dropped into the cooling tower, and the material and the cooling liquid are sufficiently exchanged. When the heat is exchanged, the material gradually solidifies into spherical solid particles, and the spherical solids thus obtained are further processed to remove the cooling liquid.
  • most of the cooling liquid may be first separated by draining, and then dried to remove a small amount of the cooling liquid on the spherical particles.
  • the material Before the material enters the machine head for granulation, especially the material coming out of the pre-crystallizer, because the material is in a state between solid and liquid, the fluidity is very poor, the seed crystal concentration is high but it is not crystallized.
  • the viscosity of the material varies greatly, from tens of CP to tens of thousands or even millions of CP. This puts high demands on the control. How to properly control the viscosity range and control the crystallization state of the material is successful in granulation. No key factor.
  • heat preservation measures are added on the outside of the tank, the temperature is kept constant on the distribution plate, heat preservation is added to the pipeline, and heat preservation is added to some moving devices, and different heat preservation means can be selected according to different characteristics.
  • the heating and/or cooling medium comprises steam, heat transfer oil, water of different temperatures, or an electrical heating control system to tightly control the accuracy of the insulation system to maintain a constant temperature.
  • the material is formed into a spherical state after the nozzle is dripped.
  • the state of the material during dripping is very important for the forming. It can be in the form of natural gravity drip, or it can be used in the form of reciprocating force, or it can be pumped through high viscosity.
  • the material pump maintains a suitable pressure to stabilize the discharge, so that the nozzle is dripped and formed.
  • the mass transfer can be improved by, for example, stirring or coiling, heat transfer.
  • a reciprocating force-assisted pressing material For the material with high seed concentration and easy to coagulate, it is preferred to use a reciprocating force-assisted pressing material. Any method and apparatus for realizing the reciprocating force-assisted pressing material in the art may be employed in the present invention, in a preferred embodiment of the present invention.
  • the reciprocating pump is connected to the tank, the coil is provided with a coil, and the coil is provided with heating and or cooling medium for precisely controlling the temperature of the liquid
  • the heating and cooling medium Preferably, the water moves with the frequency of the reciprocating pump, so that the material in the tank is kept in motion without condensation, and the boosting material can be realized
  • the reciprocating pump is The frequency is adjustable, preferably by adjusting the frequency of the reciprocating pump to control the speed of the nozzle drool at 1-4 drops/second, more preferably controlling the speed of the nozzle drool at 2-3 drops/second, so that the material reciprocates in the tank
  • the pump and the coil move upwards to retract the material, and when it moves downward under pressure, it is extruded from the nozzle to fall into a spherical material, thereby avoiding the material being stripped or clogging the nozzle.
  • the material with low concentration of seed crystal is easy to be broken and adhered in water
  • the material with high concentration of seed crystal is easy to solidify, which leads to blockage of the nozzle.
  • the distribution plate and the tank are separated, and the middle is insulated. Layer separation, the insulation layer only opens the hole at the nozzle, so that the liquid passes through the nozzle, so that the temperature of the tank can be different from the temperature of the distribution plate, and the heat transfer between the tank and the distribution plate is avoided, according to the tank
  • the state of the material is used to adjust the temperature of the distribution plate to achieve the purpose of controlling the state of the material. This kind of regulation has more room and is more suitable for industrial production.
  • the distribution plate In the design of the distribution plate, three holes are divided from top to bottom, the small hole controls the flow rate, the middle hole nozzle trickles into the material, and the large hole shields the heat preservation. It can also be based on the material condition, such as the seed crystal concentration is relatively high and it is not easy to coagulate.
  • the material can also be insulated without a large hole, and can be changed according to the characteristics of the product.
  • the distribution plate preferably includes a plurality of uniform small holes, a middle hole, an optional large hole and a built-in heat preservation groove, and the diameter of the small hole is 0.1- Between 5mm, the medium-hole nozzle is determined according to the spherical diameter requirement. The diameter is between 0.2 and 10mm.
  • the large hole that is, the inner wall of the thermal insulation hole is 0.5 - 5mm from the outer wall of the nozzle.
  • the nozzle can be in various forms, for example, as shown in Figure 3A.
  • it is preferable that the lower end of the nozzle has a chamfer.
  • the lower end of the nozzle A has an outer chamfer
  • the lower end of the nozzle C has an inner chamfer, and more preferably has an outer portion.
  • Chamfered nozzle A is preferred.
  • heat preservation groove between the nozzles of the distribution plate, and the heating and/or cooling medium can be provided in the heat preservation tank according to different temperature requirements, for example, steam, water or heat transfer oil is used to keep the temperature of the distribution plate constant, thereby making the material The state remains constant.
  • cooling liquids may be selected according to different product granulation, and the cooling liquid may be water, ammonia water, an aqueous salt solution, an organic substance, and a mixture of two or more kinds thereof.
  • the cooling liquid may be water, ammonia water, an aqueous salt solution, an organic substance, and a mixture of two or more kinds thereof.
  • the rubber auxiliary material in the cooling forming step, is directly contacted with the cooling liquid in a cooling mode, and the cooling liquid used is preferably water, so that the heat exchange efficiency is greatly improved because of the water ratio.
  • the cooling liquid used is preferably water, so that the heat exchange efficiency is greatly improved because of the water ratio.
  • Both heat and convection heat transfer coefficients are relatively large, directly Contact can best utilize the efficient heat transfer of water.
  • the droplets in the water are exchanged with water through the entire spherical surface and can be regarded as three-dimensional heat transfer.
  • the steel strip and the spray water are used, the thermal conductivity and the heat transfer coefficient are relatively low, and the particles are cooled by the plane attached to the steel strip, so that the heat exchange efficiency is limited, in a preferred embodiment of the present invention.
  • Cooling towers are used in the cooling forming step, which reduces equipment investment and greatly increases equipment efficiency per unit volume.
  • the cooling liquid in the cooling forming step is preferably treated with an aqueous methanol solution because the density of the aqueous methanol solution is lower, which is more advantageous for the rubber auxiliary particles to settle faster in the cooling liquid, so as to prevent the material from floating.
  • the liquid surface is not conducive to molding.
  • the material In the process of dropping the material under the cooling process, the material is often found to be spherical, but the hardness is not satisfactory.
  • the temperature of the cooling liquid In the cooling forming step, the temperature of the cooling liquid is important for solidification into granules, and the temperature of the cooling liquid is appropriately controlled. Time is very important, and the proper coolant temperature can be selected according to the properties such as the melting point of the material.
  • the rubber adjuvant is a p-phenylenediamine rubber antioxidant N-1, 3 dimethylbutyl-N,-phenyl-p-phenylenediamine or N-isopropyl Base-N,-phenyl-p-phenylenediamine
  • the coolant is water, ammonia or aqueous methanol, preferably the temperature of the coolant is in the range of 10-40 ° C, more preferably the temperature of the coolant is in the range of 20-35.
  • the surfactant is sprayed onto the liquid surface of the cooling liquid in the cooling forming step because it is easy to settle the cooling agent in the cooling liquid due to the surface tension.
  • the droplets that produced the last drop of rubber auxiliaries have not settled down, and the next drop of droplets has dripped, causing the superposition of two particles or even multiple drops, which seriously destroys the shape and shape of the particles.
  • the cooling liquid for example The above problem is solved by spraying a surfactant on the surface of the water or by using an ultrasonic generator to generate ultrasonic waves to lower the surface tension, so that the particles can be smoothly and quickly settled.
  • Surfactants added to the cooling liquid to aid in sedimentation of the particles include, but are not limited to, the following: polyethers such as polyethylene glycol ethers, polypropylene glycol ethers and fatty alcohol polyoxyethylene ethers, and mixtures thereof; Alkylbenzenesulfonic acid compound; quaternary ammonium salt compound; alkyl alkoxide type surfactant; and betaine surfactant such as cocoamidopropyl betaine, dinonylalkylbetaine, N , N-dimethyl-N-alkoxymethylene betaines, and the like.
  • polyethers such as polyethylene glycol ethers, polypropylene glycol ethers and fatty alcohol polyoxyethylene ethers, and mixtures thereof
  • Alkylbenzenesulfonic acid compound such as polyethylene glycol ethers, polypropylene glycol ethers and fatty alcohol polyoxyethylene ethers, and mixtures thereof
  • Alkylbenzenesulfonic acid compound such
  • Polyglycol ether may be polyethylene glycol dimethyl ether (molecular weight 200-1000), polyethylene glycol diethyl ether (molecular weight 200-1000) and polyethylene glycol oxime ether (molecular weight 200-1000); Propylene glycol ether, such as polypropylene glycol dimethyl ether (molecular weight 200-1000), polypropylene glycol diethyl ether (molecular weight 200-1000) and polypropylene glycol methyl ether (molecular weight 200-1000); fatty alcohol polyoxyethylene ether, such as fatty alcohol The carbon number is 6-18, and the degree of polymerization of polyoxyethylene is 3-25, such as AEO-7, that is, C 12 H 25 0 (CH 2 CH 2 0 ) 7 H. Different properties of surfactants can be used depending on the rubber additive and the different coolants.
  • fluidized bed drying For the drying of the rubber granules solidified into the ball, fluidized bed drying, vibration fluidized bed, belt drying, ordinary furnace drying, etc. may be employed.
  • the rubber auxiliaries material produces a spherical outer surface under the action of surface tension or interfacial tension, and the obtained product has a good sphericity and is substantially spherical.
  • the quality of the product thus obtained is improved, and it is more conducive to the flow and mixing of the additive in rubber mixing or opening. It avoids the dust pollution of the powdery material, and also avoids the dusty pollution caused by the falling and collision in the subsequent processes such as packaging, transportation, and bag opening process due to the existence of certain angular corners at the intersection of the spherical surface of the hemispherical particle and the plane.
  • the amount of dust generated during the granulation process is small. Although some friction and collision occur in the process of the granules, the strength of the friction is greatly reduced due to the small amount of coolant on the surface of the granules before the drying. dust. While the drying stage produces a certain amount of dust, since the dry fluidized bed is closed, the dust is disposed of by collection without polluting the environment and affecting the health of the operator. The steel strip cooling process must scrape the particles from the steel strip when collecting the product. It is an open system, and the time is accumulated, and the generated dust is very harmful. Compared with the granulation process of the present invention, the granulation process of the present invention has a large Improve and improve.
  • the rubber granules obtained by the method of the invention not only have a spherical shape, but also have a smooth surface, which creates favorable conditions for the granules to be inverted, and the dust caused by friction during transportation is also reduced.
  • Glue auxiliaries include, but are not limited to, the following examples: Antioxidant 4020 (N-1,3 dimethylbutyl-N,-phenyl-p-phenylenediamine), 4010NA (N-isopropyl-N,-phenyl pair Phenylenediamine) .4030 ( ⁇ , ⁇ ,-bis(1,4-dimethylpentyl)-p-phenylenediamine, R (2,2,4-tridecyl-1,2-dihydroquinoline Polymer), ODA (octylated diphenylamine), 4010 (N-phenyl-N, -cyclohexyl p-phenylenediamine:), intermediate RT (4 - aminodiphenylamine) vulcanization system additive M (2-mercaptobenzothiazole), DM (dibenzothiazole disulfide) NS (
  • Scorch retardant CTP N-cyclohexyl thiophthalimide.
  • Plasticizer A polymer fatty acid zinc soap mixture
  • pentachlorothiophenol Homogenizer 40MS, 40MS (F), 60NS, 60NS (F) (aromatic resin, cycloparaffin resin and aliphatic hydrocarbon resin composite resin), TH10FL , TH20FL, 140, 145A, 260, H501.
  • Release agent AT-16 (a mixture of surfactant and fatty acid calcium soap).
  • Adhesive system additives include spherical ruthenium Cobalt acid RC-D20, cobalt naphthenate RC-10, cobalt stearate RC-S95.
  • Reinforcing system auxiliary reinforcing resin 205 oil modified phenolic resin PF-P, PF-C, PF-0.
  • antioxidant 4020 N-1,3-didecylbutyl-N, monophenyl-p-phenylenediamine
  • 4010NA N-isopropyl-N,-phenyl-p-phenylenediamine
  • SPPD SPPD
  • antioxidant 4020 N-l, 3 dimethylbutyl-N,-phenyl-p-phenylenediamine
  • 4010NA >1-isopropyl-1 ⁇ ,-phenyl-p-phenylenediamine
  • the self-made N-1,3-dimethylbutyl-N,-phenyl-p-phenylenediamine (4020) molten material in the storage tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr.
  • the crystallizer cooling water temperature is 28 - 32 °C
  • the pipeline insulation water is 46-48 °C
  • the discharge pump is started to make the material enter the material tank.
  • the outside of the box has a jacket to keep the insulation water at a temperature of 48 - 49 ° C.
  • the tank and the distribution plate are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle and simultaneously drives the upper part of the tank.
  • the reciprocating device is connected to a coil below, the temperature of the coil is kept at 48 - 49 °C, the material enters the distribution plate for granulation, and the drip speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes several uniform cloths. Hole and built-in insulation tank, for example, as shown in Figure 2, the insulation tank is insulated with water, the water temperature is 49 - 59 °C, the diameter of the distribution plate is 2.5mm, the diameter of the middle hole is 4mm, and the inner wall of the insulation hole is away from the outer wall of the nozzle. 2mm, the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the cooling liquid of the cooling tower is water.
  • the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles. Up and down, fall to the bottom of the water cooling tower, control the cooling water temperature at 20 - 35 °C, solidify into a spherical solid, enter the drain, the frequency of the vibrating screen is 40Hz, then enter the vibrating fluidized bed to dry, air the temperature of the fluidizing gas 40 ° C, dry to quality qualified after loading The finished product.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 4.6 mm, and the normal distribution was good.
  • the self-made N-isopropyl-N,-phenyl-p-phenylenediamine (4010NA) molten material in the tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the temperature of the pre-former cooling water. 55 - 60 °C, pipe insulation water 75 - 80 °C, after the state of the pre-crystallizer reaches the discharge state, the discharge pump is started to enter the bin, and the outside of the bin has a jacket to keep the insulation water, the temperature is 78. - 83 °C, the tank and the distribution board are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects a coil to the bottom.
  • the temperature of the pipe insulation water is 85-86 °C
  • the material enters the distribution plate for granulation, and the drip speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes several uniform holes and built-in insulation tank, as shown in Fig. 2.
  • the insulation tank is insulated with water, the water temperature is 75 - 85 °C, the small hole of the distribution plate is 2.5mm in diameter, the diameter of the middle hole is 4mm, the inner wall of the thermal insulation hole is 2mm from the outer wall of the nozzle, and the lower end of the nozzle is chamfered, as shown in Fig. 3.
  • the material is dropped into the cooling tower after passing through the nozzle, the cooling liquid of the cooling tower is water, in the water Spraying the surfactant AEO-7 in order to facilitate The particles settle, use the particles from top to bottom, fall to the bottom of the water cooling tower, and control the cooling water temperature.
  • the distribution plate includes a plurality of uniform holes and a built-in heat preservation tank, and the heat preservation
  • the tank is insulated with water, the water temperature is 80-85 ° C, the diameter of the distribution plate is 2.5 mm, the diameter of the middle hole is 4 mm, there is no large insulation hole, and the lower end of the nozzle is chamfered, as shown by A in Figure 3, After the material passes through the nozzle, it is dropped into the cooling tower.
  • the cooling liquid of the cooling tower is water, and the surfactant coconut acrylamidopropyl betaine is sprayed on the water surface.
  • N-tert-butyl-2-benzothiazole sulfenamide (accelerator NS) spherical particles for the self-made N-tert-butyl-2-benzothiazole sulfenamide melt material (accelerator NS) in the storage tank
  • the pump is transported to the tank, keeping the material temperature at 110 °C.
  • the outside of the tank is insulated with steam at a temperature of 110 - 115 °C.
  • the tank and the distribution plate are separated by a heat insulation layer. The heat insulation layer only opens at the nozzle.
  • the distribution board It mainly includes a number of uniform holes and built-in insulation tank.
  • the insulation tank is insulated by steam.
  • the diameter of the distribution plate is 0.1mm, the diameter of the hole is 0.25mm, there is no large insulation hole, and the lower end of the nozzle has chamfer, as shown in Figure 3.
  • C the material is dropped into the cooling tower after passing through the nozzle.
  • the cooling liquid of the cooling tower is water.
  • the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom and fall to the bottom of the water cooling tower to control the cooling.
  • the water temperature is 60-70 ° C
  • Solid spherical solid into the draining, at 40Hz frequency vibration sieve, and then into the vibrating fluidized bed drying, the temperature of the main stream of the air gas is 40 ° C, and dried to achieve a finished product after bagging quality standards.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 0.2 mm, and the normal distribution was good.
  • the self-made Nl, 3 dimethylbutyl-N,-phenyl-p-phenylenediamine (4020) molten material in the storage tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the pre-crystallizer.
  • the cooling water temperature is 28 - 32 °C
  • the pipe insulation water is 46 - 48 °C
  • the discharge pump is started to make the material enter the material box, and the outer part of the material box has a jacket to keep warm.
  • Water, temperature is 48 - 49 °C
  • the tank and distribution board are separated by heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects below.
  • a coil the coil heat insulation water temperature is 48 - 49 ° C
  • the material enters the distribution plate for granulation
  • the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank, for example
  • the insulation tank is insulated and the water temperature is 49 - 59 °C
  • the diameter of the small hole of the distribution plate is 0.1mm
  • the diameter of the middle hole is 0.2mm
  • the inner wall of the large hole is 2mm away from the outer wall of the nozzle
  • the lower end of the nozzle is chamfered.
  • the material passes through the nozzle.
  • the cooling liquid of the cooling tower is water, and the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom and fall to the bottom of the water cooling tower to control the cooling water temperature at 20 - 35 °C. , solidified into a spherical solid, into the drain, the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed to dry, the temperature of the air-dried fluidized gas is 40 °C, and the quality is qualified to be bagged out of the finished product.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 0.022 mm, and the normal distribution was good.
  • the self-made Nl, 3-didecylbutyl-N,-phenyl-p-phenylenediamine (4020) molten material in the storage tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the pre-crystallizer.
  • the cooling water temperature is 28 - 32 °C
  • the pipe insulation water is 46 - 48 °C
  • the discharge pump is started to make the material enter the material box, and the outer part of the material box has a jacket to keep warm.
  • Water, temperature is 48 - 49 °C
  • the tank and distribution board are separated by heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects below.
  • a coil the coil heat insulation water temperature is 48 - 49 °C
  • the material enters the distribution plate for granulation, and the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank, for example As shown in Figure 2, the insulation tank is insulated with water, the water temperature is 49 - 59 °C, the diameter of the distribution plate is 5mm, the diameter of the middle hole is 8mm, the inner wall of the insulation hole is 2mm from the outer wall of the nozzle, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the cooling tower is cold.
  • the liquid is water
  • the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom, fall to the bottom of the water cooling tower, control the cooling water temperature at 20 - 35 °C, solidify into a spherical solid, and enter the drain.
  • the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed to dry.
  • the temperature of the air-dried fluidizing gas is 40 °C. After the drying reaches the shield, the bag is finished.
  • the spherical particles produced are well rounded, 100 spherical particles are randomly selected, and the diameter of each spherical particle is measured by a vernier caliper to take the average value.
  • the particles have an average diameter of 9.2 mm and a good normal distribution.
  • the self-made N-isopropyl-N,-phenyl-p-phenylenediamine (4010NA) molten material in the tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the temperature of the pre-former cooling water. 55 - 60 °C, pipe insulation water 75 - 80 °C, after the material state of the pre-crystallizer reaches the discharge state, the discharge pump is started to make the material enter the tank, and the outside of the tank has a jacket to take the insulation water, the temperature At 78 - 83 °C, the bin and the distribution plate are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device at the upper part of the tank is opened, and a coil is connected below.
  • the coil heat insulation water temperature is 85-86 ° C
  • the material enters the distribution plate for granulation, and the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank, for example, as shown in FIG. 2 .
  • the insulation tank is insulated with water, the water temperature is 75 - 85 °C, the diameter of the distribution plate is 2.5mm, the diameter of the middle hole is 4mm, the inner wall of the insulation hole is 2mm from the outer wall of the nozzle, and the lower end of the nozzle is chamfered, as shown in the figure.
  • the material passes through the nozzle and drops into the cooling tower.
  • the cooling liquid of the tower is water.
  • the ultrasonic probe is shaken at the four corners of the water surface to facilitate the sedimentation of the particles.
  • the particles are dropped from the top to the bottom and fall to the bottom of the ice-cold tower.
  • the cooling water temperature is controlled at 20 - 35 ° C and solidified.
  • the spherical solid enters the draining water.
  • the frequency of the vibrating screen is 40Hz, and then enters the vibrating fluidized bed to dry.
  • the temperature of the air-dried fluidizing gas is 70 °C. After the drying reaches the quality, the pellets produced by the finished product are visually rounded. The degree is good, 100 spherical particles are randomly selected, and the diameter of each spherical particle is measured by a vernier caliper, and the average diameter of the spherical particles is 4.6 mm, which is normally distributed.
  • the self-made N-1,3-dimethylbutyl-N,-phenyl-p-phenylenediamine (4020) molten material in the tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr. Crystallizer cooling water temperature 28 - 32 °C, pipe insulation water 46 - 48 ° C, etc. After the material state reaches the discharge state, the discharge pump is started to make the material enter the tank, and the outside of the tank has a jacket to take the insulation water at a temperature of 48 - 49 ° C. The tank and the distribution plate are separated by a heat insulation layer.
  • the hot layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device on the upper part of the tank is opened, and a coil is connected under the coil.
  • the coil is insulated at a temperature of 48-49 ° C, and the material enters the distribution plate for construction.
  • the distribution plate mainly includes thousands of uniform holes and built-in insulation tank, for example, as shown in Figure 2, the insulation tank is insulated with water, the water temperature is 49-59 ° C, distribution board The diameter of the small hole is 3.5mm, the diameter of the middle hole is 6mm, the inner wall of the large hole is 2mm away from the outer wall of the nozzle, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower, the cooling liquid of the cooling tower. It is ammonia water, the concentration is 6% (W/W), and the surfactant AEO-7 is sprayed on the liquid surface to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom and fall to the bottom of the water cooling tower to control the cooling water temperature at 20-35°.
  • C solidified into a spherical solid
  • the frequency of the vibrating screen is 40H z
  • the vibrating fluidized bed to dry
  • the temperature of the wind and the fluidized gas is 40 ° C
  • the bag is finished.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper.
  • the average diameter of the spherical particles was 6.6 mm, and the normal distribution was good.
  • the self-made Nl, 3 dimethylbutyl-N,-phenyl-p-phenylenediamine (4020) molten material in the storage tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the pre-crystallizer.
  • the cooling water temperature is 28 - 32 °C
  • the pipe insulation water is 46-48 °C
  • the discharge pump is started to make the material enter the material box, and the outer part of the material box has a jacket to keep warm.
  • Water the temperature is 48-49 °C
  • the tank and the distribution board are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects below.
  • a coil the coil heat insulation water temperature is 48-49 ° C
  • the material enters the distribution plate for granulation, and the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank, for example As shown in Figure 2, the insulation tank is insulated with water, the water temperature is 49-59 °C, the diameter of the distribution plate is 1.0mm, the diameter of the middle hole is 3mm, and the insulation is large.
  • the inner wall of the hole is 2mm from the outer wall of the nozzle, and the lower end of the nozzle is chamfered.
  • the cooling liquid of the cooling tower is an aqueous methanol solution, wherein the methanol content is 20% (W/W).
  • the surfactant is sprayed with the surfactant coconut amide propyl propyl betaine to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom and fall to the bottom of the water cooling tower.
  • the temperature of the cooling water is controlled at 20 - 35 °C, and solidifies into a spherical solid. Drain, the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed to dry.
  • the temperature of the air-dried fluidized gas is 40 °C. After the quality is qualified, the bag is finished.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 3.2 mm, and the normal distribution was good.
  • the self-made N-tert-butyl-bis(2-benzothiazole) sulfenamide melt material (accelerator TBSI) in the storage tank is pumped to the tank to keep the material temperature at 135 ° C, and there is heat conduction outside the tank. Oil, temperature is 135 - 140 °C, the tank and distribution board are separated by heat insulation layer. The heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects below. A coil, the coil passes through the heat transfer oil, and the material enters the distribution plate for granulation, and the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank, and the heat preservation tank is provided with heat transfer oil, and the distribution plate
  • the diameter of the small hole is 2.5mm
  • the diameter of the middle hole is 4mm
  • there is no large hole for heat preservation and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the coolant of the cooling tower is water.
  • the surface of the water is sprayed with surfactant AEO-7 to facilitate the sedimentation of the particles. The particles fall from the top to the bottom and fall to the bottom of the water-cooled tower.
  • the temperature of the cooling water is controlled at 60-70 ° C, solidified into a spherical solid, and the frequency of the vibrating sieve is entered. At 40 Hz, enter the vibrating fluidized bed drying again. The temperature of the air-dried fluidized gas is 40 ° C, and the finished product is bagged after the quality is qualified.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 4.5 mm, and the normal distribution was good.
  • the self-made tetrabenzyl disulfide thiuram molten material (accelerator TBZTD) in the tank is pumped to the tank to keep the material temperature at 132 ° C.
  • the heat transfer oil is outside the tank, and the temperature is 133 - 135 °C.
  • the material box and the distribution plate are separated by a heat insulation layer, and the heat insulation layer only opens a hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device on the upper part of the material box is opened, and a coil is connected under the coil, and the coil tube is connected to the heat transfer oil.
  • the material enters the distribution plate for granulation to control the drip flow rate of 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank.
  • the heat preservation tank is provided with heat transfer oil, and the diameter of the distribution plate is 2.5 mm.
  • the hole diameter is 4mm, the inner wall of the heat preservation hole is 2mm away from the outer wall of the nozzle, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the coolant of the cooling tower is water, and the surface is sprayed on the water surface.
  • the active agent AEO-7 is used to facilitate the sedimentation of the particles.
  • the particles fall from the top to the bottom, fall to the bottom of the water cooling tower, control the cooling water temperature at 60-70 ° C, solidify into a spherical solid, enter the drain, the frequency of the vibrating screen is 40 Hz, and then enter vibration
  • the fluidized bed is dry, the temperature of the air-dried fluidized gas is 40 °C, and the dryness reaches the quality and the bag is finished.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 4.8 mm, and the normal distribution was good.
  • the self-made N-phenyl-N,- ⁇ -mercaptobenzyl-p-phenylenediamine (SPPD) molten material in the tank was pumped to the pre-crystallization system, and the flow rate of the pump was 600 kg/hr, maintaining the pre-crystallizer.
  • the cooling water temperature is 65 - 75 °C
  • the pipeline insulation water is 86 - 90 °C
  • the discharge pump is started to enter the material tank, and the outside of the material tank has a jacket to take the insulation water.
  • the temperature is between 88 and 93 °C.
  • the tank and the distribution plate are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device on the upper part of the tank is opened, and a tray is connected below.
  • Tube, coil heat insulation water temperature is 85 - 86 °C, material entering points
  • the slab is granulated to control the drip flow rate of 2-3 drops/second.
  • the distribution plate mainly includes a number of uniform holes and a built-in heat preservation tank. For example, as shown in Fig. 2, the heat preservation tank is insulated with water, and the water temperature is 86 - 90 °C.
  • the small hole of the distribution plate is 2.5mm in diameter, the diameter of the middle hole is 4mm, the inner wall of the large hole is 2mm away from the outer wall of the nozzle, and the lower end of the nozzle is chamfered.
  • the coolant is water.
  • the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles.
  • the particles are dropped from top to bottom and fall to the bottom of the water cooling tower.
  • the cooling water temperature is controlled at 20 - 35 °C.
  • the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed to dry.
  • the temperature of the air-dried fluidized gas is 75 °C.
  • the pellets produced by the finished product are good in roundness.
  • 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper to obtain an average value.
  • the average diameter of the spherical particles was 4.4 mm, which was normally distributed.
  • the self-made N-cyclohexylthiophthalimide (CTP) molten material in the storage tank is pumped to the tank to keep the material temperature at 93 °C, and there is insulation water outside the tank, the temperature is 92 - At 95 °C, the bin and the distribution plate are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device at the upper part of the tank is opened, and a coil is connected under the coil, the coil Through the insulation water, the temperature is 90 - 95 °C, the material enters the distribution plate for granulation, and the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes several uniform holes and built-in insulation tank, and the insulation tank is insulated with water.
  • the water temperature is 95 - 100 °C
  • the diameter of the small hole of the distribution plate is 2.5mm
  • the diameter of the middle hole is 4mm
  • the inner wall of the large hole is 2mm away from the outer wall of the nozzle
  • the lower end of the nozzle is chamfered, as shown in Figure 3 (:, material passes through the nozzle
  • the cooling liquid of the cooling tower is water.
  • the surfactant AEO-7 is sprayed on the water surface to facilitate the sedimentation of the particles. The particles fall from the top to the bottom and fall to the bottom of the water cooling tower to control the cooling water temperature at 55-60.
  • Example 14 Solidified into a spherical solid, into the drain, The frequency of the movement is 40Hz, and then enters the vibrating fluidized bed to dry. The temperature of the air-dried fluidized gas is 35 °C. After the quality is qualified, the bag is finished and the finished product is finished. The spherical particles are well rounded and 100 balls are randomly selected. Granules, measured with vernier calipers The diameter of each spherical particle is taken as an average value, and the average diameter of the spherical particles is 5 mm, and the normal distribution is good.
  • Example 14 Example 14
  • the self-made cobalt stearate RC-S95 molten material (adhesive system additive) in the tank is pumped to the tank to keep the material temperature at 105 °C.
  • the outside of the tank is insulated with steam at a temperature of 105 - 110 °C.
  • the material box and the distribution plate are separated by a heat insulation layer, and the heat insulation layer only opens a hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device on the upper part of the material box is opened, and a coil is connected below, and the coil tube is insulated by steam.
  • the material enters the distribution plate for granulation to control the drip flow rate of 2-3 drops/second.
  • the distribution plate mainly includes a plurality of uniform holes and a built-in heat preservation tank.
  • the heat preservation tank is insulated by steam, and the diameter of the distribution plate is 2.5 mm.
  • the hole diameter is 4mm, there is no large hole for heat preservation, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the coolant of the cooling tower is water, and the surfactant AEO- is sprayed on the water surface.
  • the particles fall from the top to the bottom, fall to the bottom of the water cooling tower, control the cooling water temperature at 60-70 °C, solidify into a spherical solid, enter the drain, the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed.
  • the temperature of the dried, air-dried fluidized gas is 60 ⁇ , and the finished product is bagged after the quality is qualified.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 4.8 mm, and the normal distribution was good.
  • plasticizer A polymer fatty acid zinc soap mixture
  • spherical particles melting point 98 - 104 ° C
  • the self-made polymer fatty acid zinc soap mixture (plasticizer A) in the storage tank is pumped to the tank to keep the material temperature at 105 °C, and the outside of the tank is insulated with steam at a temperature of 105 - 115 °C.
  • the insulation layer Separated from the distribution plate by a heat insulation layer, the insulation layer only opens a hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously reciprocates the upper part of the tank, and connects below a coil, the coil is insulated by steam, the material enters the distribution plate for granulation, and the drip speed is controlled
  • the distribution plate mainly includes a number of uniform holes and built-in insulation tank, the insulation tank is insulated by steam, the diameter of the distribution plate is 2.5mm, the diameter of the middle hole is 4mm, there is no large insulation hole, and the lower end of the nozzle has Chamfering, as shown in C in Figure 3, the material is dropped into the cooling tower after passing through the nozzle.
  • the cooling liquid of the cooling tower is water.
  • the ultrasonic probe is placed on the four corners of the water surface to facilitate the sedimentation of the particles, and the particles fall from the top to the bottom.
  • the composite resin (40MS) of the self-made aromatic hydrocarbon resin, naphthenic resin and aliphatic hydrocarbon resin in the tank is pumped to the tank to keep the temperature of the material at 60 ° C.
  • the outside of the tank is insulated with water at a temperature of 60 - 65. °C, the tank and the distribution board are separated by a heat insulation layer.
  • the heat insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously drives the upper high viscosity pump of the tank, and a coil is connected below, and the coil is insulated.
  • Water, temperature is 60 - 63 °C
  • the material enters the distribution plate for granulation
  • the drip flow speed is controlled by 2-3 drops/second.
  • the distribution plate mainly includes several uniform holes and built-in heat preservation tank.
  • the heat preservation tank is insulated and the water temperature is At 65 - 68 °C, the diameter of the distribution plate is 2.5mm, the diameter of the middle hole is 4mm, there is no large hole for insulation, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower to cool.
  • the cooling liquid of the tower is water.
  • the ultrasonic probe is placed on the four corners of the water to facilitate the sedimentation of the particles. The particles fall from the top to the bottom and fall to the bottom of the water cooling tower.
  • the cooling water temperature is controlled at 20 - 35 °C and solidified into a spherical solid.
  • the frequency of the vibration is 4 0Hz, and then enter the vibrating fluidized bed to dry, the temperature of the air-dried fluidized gas is 40 °C, and the finished product is bagged after the quality is qualified.
  • the spherical particles produced are well rounded, 100 spherical particles are randomly selected, and the diameter of each spherical particle is measured by a vernier caliper. The average value of the spherical particles was 4.6 mm, and the normal distribution was good.
  • the self-made p-tert-octylphenol formaldehyde resin (TKO-70) in the tank is pumped to the tank to keep the temperature of the material at 85 ° C.
  • the outside of the tank is insulated with water at a temperature of 85-88 ° C. It is separated from the distribution plate by a heat insulation layer.
  • the insulation layer only opens the hole at the nozzle, so that the liquid material passes through the nozzle, and simultaneously drives the upper high viscosity pump of the tank, and a coil is connected below, the coil is insulated by water, and the temperature is 85. - 88 ⁇ , the material enters the distribution plate for granulation, and controls the drip flow rate of 2 - 3 drops / sec.
  • the distribution plate mainly includes several uniform holes and built-in insulation tank.
  • the insulation tank is insulated with water and the water temperature is 85 - 90 °C.
  • the diameter of the hole of the plate is 2.5mm, the diameter of the middle hole is 4mm, there is no large hole for heat preservation, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the coolant of the cooling tower is water. Place the ultrasonic probe vibration on the four corners of the water surface to facilitate the sedimentation of the particles. The particles fall from the top to the bottom and fall to the bottom of the water cooling tower.
  • the temperature of the cooling water is controlled at 20-35 ° C, solidified into a spherical solid, and the frequency of the vibrating screen is entered. At 40 Hz, enter the vibrating fluidized bed again. Dry, air-dried fluidized gas temperature is 40 ° C, dry to meet the quality and then bagged out of the finished product.
  • the spherical particles were well rounded, and 100 spherical particles were randomly selected. The diameter of each spherical particle was measured by a vernier caliper and the average diameter of the spherical particles was 5 mm, and the normal distribution was good.
  • the distribution board mainly includes several Uniform hole and built-in insulation tank, the insulation tank is insulated and the water temperature is 90 - 98 °C, the diameter of the distribution plate is 2.5mm, the diameter of the middle hole is 4mm, there is no large hole for heat preservation, and the lower end of the nozzle is chamfered.
  • the material passes through the nozzle and drops into the cooling tower.
  • the coolant of the tower is water.
  • the ultrasonic probe is placed on the four corners of the water to facilitate the sedimentation of the particles. The particles fall from the top to the bottom and fall to the bottom of the water cooling tower.
  • the temperature of the cooling water is controlled at 20 - 35 °C, and solidified into a spherical solid.
  • the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed to dry, the temperature of the air-dried fluidizing gas is 40 °C, and the quality is qualified to be bagged out of the finished product.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 4.8 mm, and the normal distribution was good.
  • the self-made surfactant and fatty acid calcium soap mixture molten material in the storage tank is pumped to the tank, keeping the material temperature at 105 °C, the outside of the tank is insulated steam, the temperature is 105 - 110 ° C, the tank and distribution
  • the plate is separated by a heat insulation layer, and the heat insulation layer only opens a hole at the nozzle, so that the liquid material passes through the nozzle, and at the same time, the reciprocating device on the upper part of the material box is opened, and a coil is connected below, the coil tube is insulated by steam, and the material enters the distribution plate.
  • the granulation is carried out to control the drip flow rate of 2-3 drops/second.
  • the distribution plate mainly comprises a plurality of uniform holes and a built-in heat preservation tank, and the heat preservation tank is insulated with steam.
  • the diameter of the distribution plate is 2.5 mm, and the diameter of the middle hole is 4 mm.
  • the material passes through the nozzle and drops into the cooling tower.
  • the cooling liquid of the cooling tower is water.
  • the surface of the water is sprayed with surfactant AEO-7 to facilitate particle sedimentation.
  • the particles fall from the top to the bottom, fall to the bottom of the water cooling tower, control the cooling water temperature at 60-70 °C, solidify into a spherical solid, enter the drain, the frequency of the vibrating screen is 40Hz, and then enter the vibrating fluidized bed drying.
  • the temperature of the air-dried fluidized gas is 60 °C, and the finished product is bagged after the quality is qualified.
  • the spherical particles were well rounded, 100 spherical particles were randomly selected, and the diameter of each spherical particle was measured by a vernier caliper. The average diameter of the spherical particles was 5.1 mm, and the normal distribution was good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Glanulating (AREA)

Description

球形橡胶助剂及其制备方法 技术领域 本发明涉及球形橡胶助剂及其制备方法, 更具体而言, 涉及球形 的橡胶防老剂, 硫化体系助剂, 操作体系助剂, 补强体系助剂、 黏合 体系助剂。 尤其涉及对苯二胺类橡胶防老剂 3二甲基丁基- N, -苯基对苯二胺或 N-异丙基 - N, -苯基对苯二胺的球形颗粒及其制 备方法。 背景技术 橡胶助剂是橡胶工业的重要化工原料, 它对改善橡胶性能, 提高 橡胶的质量, 提高橡胶的工艺水平具有重要的作用。 随着橡胶工业的 不断进步, 对橡胶助剂整体质量也提出的更高的要求。 目前, 市场上 出现的橡胶助剂一般是粉末状或半球形的, 粉末状的橡胶助剂粉尘容 易飞扬, 不但使得橡胶助剂容易散失, 而且也不利于环境。
目前常用的一种橡胶助剂造粒方法是回转带式冷凝造粒, 其工作 原理是: 利用物料的低熔点 (或软化点)特性, 根据物料熔融态时的 粘度范围, 通过特殊的布料装置将熔融液料均布在其下方勾速移动的 钢带上, 同时在钢带下方设置的连续喷淋装置的强制冷却作用下, 使 得物料在移动、 输送过程中得以冷却、 固化。 从而达到连续造粒成型 的目的。 根据物料性质和使用目的, 可选择断续滴下、 连续出条和全 宽度溢流等布料方式, 以分别得到半球形、 条状和片状成品。 这种方 法的缺点在于: 一是冷却介质通过钢带将熔融液的热量带走, 热量的 传出需要经过钢带, 然后再传到冷却介质带走, 这样传热效率大大降 低, 主要传热方式是通过钢带的平面和冷却介质传热, 需要依''靠加长 钢带来提高处理量, 导致设备体积增加, 空间利用效率不高。 二是通 过液滴在钢带上成型, 造出来的颗粒都呈半球形或扁平状, 这种形状 的橡胶助剂相对粉末虽有一定的改善, 但还是存在着问题, 造粒的过 程中, 球面与平面相交的地方, 有一定的棱角, 呈锐角状, 在包装运 输的过程中会碰撞脱落, 重新变成细粉状, 污染了环境, 还有在钢带 的尽头, 造粒颗粒通过刮刀将颗粒从钢带上刮落, 也会引起粉尘的飞 扬。 这些细粉的存在还会导致助剂的局部熔点降低。 小细粉会联桥, 聚团, 板结, 由此造成助剂产品的整体或局部的板结, 形成一个大整 块, 严重影响了产品质量。 因此橡胶助剂造粒领域需要提供能解决上 述问题的新型橡胶助剂。 发明内容 本发明的目的是改善现有橡胶助剂造粒形状不理想的状况, 解决 粉末、 半球形和其它不规则形状橡胶助剂在造粒过程中引起的粉尘污 染、 传热效率低、 生产能力低下、 以及设备投资相对高等问题; 并且 改善因为小细粉末状晶体的存在引起的产品局部熔点下降, 小细粉会 联桥、 板结、 聚团, 造成产品整体或部分板结的质量问题。
发明人经过多方面研究发现, 将橡胶助剂制成球形颗粒, 克服了 目前制作工艺制得的粉状、 半球形橡胶助剂的弊端, 与其相比, 本发 明的橡胶助剂颗粒过筛数大大增加, 产品颗粒率大大提高, 很好的解 决了造粒过程中引起的粉尘污染, 避免了物料散失和环境污染, 也解 决了小细粉末状晶体的存在引起的产品局部熔点下降, 以及因小细粉 会联桥、 板结、 聚团而造成产品整体或部分的板结的质量问题。 橡胶 助剂颗粒外表的光洁度也得到了提高, 有利于助剂在与橡胶混炼或者 开炼使用中的流动和混合, 从而完成了本发明。
因此本发明提供了一种新的球形橡胶助剂, 优选橡胶助剂球形颗 粒的直径在 0.2-10mm范围内。
本发明的球形橡胶助剂包括球形橡胶防老剂、 球形硫化体系助 剂、 球形操作体系助剂、 球形补强体系助剂、 球形黏合体系助剂。
所述球形硫化体系助剂包括球形的 2 -巯基苯并瘗唑、 二石充化二 苯并噻唑、 N-叔丁基 -2-苯并噻唑次磺酰胺、 N-环己基 -2-苯并 噻唑次磺酰胺、 N, N-二环己基 - 2 -苯并噻唑次磺酰胺和 N -氧联二 亚乙基 - 2 -苯并噻唑次磺酰胺。
所述球形硫化体系助剂还包括 N-叔丁基 -双 (2-苯并噻峻) 次磺酰胺、 N-环己基 -双(2-苯并噻唑)次磺酰胺、 一^化四异丁 胺基秋兰姆、 二硫化四异丁胺基秋兰姆、 四苄基二硫化秋兰姆、 二硫 化四曱基秋兰姆、 二硫化四乙基秋兰姆、 一硫化四曱基秋兰姆、 六硫 化五亚曱基秋兰姆、 N,N-二硫化二己内酰胺、 N-氧二亚乙基硫化 氨基曱酰 -N,-叔丁基次磺酰胺、 二苯胍、 二邻甲苯胍、 软化点在 250°C以下的硫化树脂, 包括对叔丁基苯酚曱醛树脂、 对叔辛基苯酚 甲醛树脂、 溴化对 -特辛基苯酚曱醛树脂。
所述橡胶防老剂包括 N-1, 3二甲基丁基 -N,-苯基对苯二胺、 N-异丙基 -N,-苯基对苯二胺、 N,N,-双 ( 1, 4-二甲基戊基) -对 苯二胺、 2,2,4-三曱基 - 1, 2-二氢化喹啉聚合物、 辛基化二苯胺、 N -苯基 - N, -环己基对苯二胺和 4 -氨基二苯胺、 其中尤其优选球形 对苯二胺类防老剂 N-1, 3二甲基丁基 -N,-苯基对苯二胺或 N-异丙 基- N,-苯基对苯二胺。
所述橡胶防老剂还包括 N-苯基 -Ν,- α -甲基苄基对苯二胺、 Ν,Ν,-二曱苯对苯二胺、 2, 4, 6-三- (Ν- 1, 4-二甲基)戊基对 苯二胺- 1, 3, 5-三 "秦。
本发明的球形操作体系助剂包括球形防焦剂、 球形增塑剂、 球形 均匀剂、 球形增黏剂、 球形脱膜剂。
所述球形防焦剂包括球形的 Ν-环己基硫代邻苯二甲酰亚胺。 所述球形增塑剂包括球形增塑剂 Α、 五氯硫酚。
球形均匀剂包括球形的软化点在 250°C以下的树脂, 包括选自一 种或一种以上的饱和或不饱和的芳香烃单体、 环烷烃单体与脂肪烃单 体的聚合树脂、 两种或两种以上的饱和或不饱和的芳香烃树脂、 环烷 烃树脂与脂肪烃树脂的混合物。
所述球形增黏剂包括球形的软化点在 250°C以下的树脂, 包括石 油树脂、 石油系 C9增黏树脂、 石油系复合 C9增黏树脂、 石油系改 性烷基酚树脂、 对叔丁基苯酚曱酪树脂、 对叔辛基苯酚曱醛树脂、 固 马隆树脂、 苯乙烯 -茚树脂。
所述球形脱膜剂包括球形的内脱膜剂 AT-16。
本发明的球形黏合体系助剂包括球形的癸酸钴, 环烷酸钴、 硬脂 酸钴。
本发明的补强体系助剂包括软化点在 250°C以下的酚醛树脂、 油 改性酚醛树脂、 石油树脂。
本发明另一方面提供了一种制备上述球形橡胶助剂的方法, 所述 方法包括机头造粒步驟、 冷却成型步驟和除去冷却液的步骤。
根据本发明的一个优选实施方案, 本发明的方法还包括预结晶步 驟, 所述预结晶步骤在机头造粒步骤之前进行。
在本发明的一个优选实施方案中, 在机头造粒步骤中, 料箱和分 布板分离, 料箱和分布板之间有隔热层分隔。
在本发明的另一个优选实施方案中, 在机头造粒步骤中, 分布板 上通有加热和 /或冷却介质; 分布板由上到下设置有小孔和中孔, 小孔 的直径在 0.1- 5mm之间, 中孔喷嘴的直径在 0.2 - 10mm之间。
根据本发明进一步优选的实施方案, 中孔下方还设置有大孔, 大 孔内壁距离中孔喷嘴外壁 0.5 - 5mm。 优选喷嘴的下端有倒角。
在机头造粒步骤中, 可以采用自身重力自然滴流形式、 往复运动 助力压料形式或通过高粘度泵进料泵维持恒定压力压料。 其中优选釆 用往复运动助力压料。
在机头造粒步骤中, 优选喷嘴滴料的速度为 1-4滴 /秒。
在本发明的另一个优选实施方案中, 在冷却成型步骤向冷却塔中 的冷却液中加入表面活性剂和 /或施加超声波。优选所述冷却液是选自 水、 氨水、 盐的水溶液以及有机物中的至少一种。 在本发明的某些优 选实施方案中, 所述冷却液选自水、 氨水、 甲醇水溶液、 氯化钠水溶 液、 汽油或丙酮。 优选表面活性剂是选自聚乙二醇醚、 聚丙二醇醚、 脂肪醇聚氧乙烯醚、 烷基苯磺酸类化合物、 季铵盐类化合物、 烷基醇 铵型表面活性剂以及甜菜碱类表面活性剂中的至少一种。 其中优选脂 肪醇聚氧乙烯醚中脂肪醇的碳数为 6-18, 聚氧乙烯的聚合度为 3-25。 并且优选甜菜碱类表面活性剂选自椰子油酰胺基丙基甜菜碱, 二曱基 烷基甜菜碱, 或 Ν,Ν-二甲基 - N -烷氧基亚甲基甜菜碱。
对于本文叙述的 "球形"一词,是指直径偏差≤20 %的球或类球体, 也包括表面有微小缺陷的上述球或类球体。本文中的术语 "直径偏差" 是指通过球或类球体重心连接球或类球体表面上任意两点的线段的 长度与其平均长度之差占平均长度的百分数。
附图说明 图 1是根据本发明的一个优选实施方式将橡胶助剂制成球形颗粒 的工艺流程图。
图 2是在本发明的一个优选实施方式中分布板的示意图, 1为小 孔, 2为中孔, 3为喷嘴, 4为大孔, 即保温孔, 5为保温槽, 在本发 明的其它实施方式中, 分布板也可以不包括大孔 4。
图 3是本发明中三种不同形状的喷嘴 A、 B、 C的示意图。 其中 喷嘴 A、 C均下端有倒角, 喷嘴 A下端有外倒角, 喷嘴 C下端有内倒 角。 具体实施方式
本发明提供了一种球形橡胶助剂, 其中优选球形橡胶助剂的平均 直径在 0.2 - 10mm范围内,此外,本发明还提供了如下的制备球形橡 胶助剂的方法, 以下进行详细描述。
如图 1 中所示, 橡胶助剂物料用泵输送到冷却预结晶部分, 经过 不断的循环和冷却, 一部分达到预结晶状态, 进入机头的保温的熔融 室料箱造粒, 或者根据物料的特性, 也可以不经过预结晶步骤直接进 入机头的保温的熔融室料箱造粒, 物料通过设计的分布板进行造粒, 挤出的熔融态的颗粒呈球形滴入冷却塔, 物料与冷却液进行充分的换 热, 在交换热量的同时, 物料逐渐固化成球形颗粒固体, 这样得到的 球形颗粒固体经进一步处理除去冷却液, 在除去冷却液的步骤中, 可 以先通过沥干分去大部分冷却液, 然后进行干燥除去球形颗粒上的少 量冷却液。
物料在进入机头造粒之前, 特别是从预结晶器出来的物料, 由于 物料是处在一种介于固体和液体之间的状态, 流动性很差, 晶种浓度 很高但又不结晶的物料粘度变化很大, 可以从几十 CP变化到几万甚 至上百万 CP,这对控制提出了很高的要求, 如何正确地控制粘度大小 范围, 控制物料的结晶状态是造粒成功与否的关键因素。
由于结晶的时候对温度控制精度的要求相当高, 尤其是橡胶助剂 在机头造粒的步骤, 我们采用了多处措施以保证工艺参数温度的稳 定。 具体而言, 在料箱外面加了保温措施, 在分布板上保温使温度恒 定, 在管道上加了保温, 在一些运动器件上加了保温, 可以根据不同 的特性来选用不同的保温手段,如通有加热和 /或冷却介质, 所述加热 和 /或冷却介质包括蒸汽、 导热油、 不同温度的水, 或者采用电加热控 制系统, 以严格控制保温系统的精度以保持温度的恒定。
物料是通过在喷嘴滴流后形成球形状态的, 物料滴流时的状态对 成型相当重要, 可以用自身重力自然滴流形式, 也可以用往复运动助 力压料形式, 还可以通过高粘度泵进料泵维持适宜的压力稳定出料, 使得喷嘴滴流后成型。 当料箱里面料液的粘度很大, 传质传热很困难 时, 停留时间稍微长一点就会引起料固化或局部凝固, 可以通过例如 加搅拌或盘管来改善它的传质, 传热效果, 对于晶种浓度很高且容易 凝结的物料优选采用往复运动助力压料, 本发明中可以采用本领域中 任何实现往复运动助力压料的方法和设备, 在本发明的一种优选实施 方式中, 料箱上连接往复泵, 料箱中设有盘管, 盘管中通有加热和或 冷却介质用于精确控制料液的温度, 在本发明的一个实施方案中, 加 热和或冷却介质优选为水, 盘管随着往复泵的频率运动, 这样使料箱 中的物料保持运动状态而不凝结, 又能实现助力压料, 并且往复泵的 频率可调, 优选通过调节往复泵的频率控制喷嘴滴料的速度在 1-4滴 /秒, 更优选控制喷嘴滴料的速度在 2-3 滴 /秒, 这样物料在料箱中随 着往复泵和盘管向上运动物料回缩, 在压力下向下运动时从喷嘴中挤 出成为球形物料下落, 避免了物料成条形或堵塞喷嘴。
考虑到晶种浓度低的物料在水中容易破碎、 粘连, 晶种浓度高的 物料又很容易固化, 导致堵塞喷嘴, 根据熔融造粒的特点, 设计了分 布板和料箱分离, 中间有隔热层分隔, 隔热层只在喷嘴处开孔, 以便 液体通过喷嘴, 这样料箱的温度可以和分布板的温度不同, 又避免了 料箱和分布板相互之间的传热, 可以根据料箱中物料的状态来调整分 布板的温度,从而达到控制物料的状态的目的。这样调控的余地更大, 更加适宜工业生产的要求。
在分布板的设计上由上到下分作三种孔, 小孔控制流速, 中孔喷 嘴滴流成料, 大孔屏蔽保温, 也可以根据物料情况, 比如晶种浓度比 较高又不容易凝结的物料也可以不用保温大孔, 可以根据产品的特性 作相应的变化, 分布板优选包括多个均布小孔、 中孔、 任选的大孔和 内置保温槽, 小孔的直径在 0.1-5mm之间, 中孔喷嘴根据球形直径要 求决定,其直径在 0.2 - 10mm之间, 大孔即保温孔内壁距离喷嘴外壁 0.5 - 5mm, 喷嘴的形式可以有多种, 例如如图 3中 A、 B、 C所示, 优选喷嘴下端有倒角, 在 A、 B、 C三种喷嘴中优选喷嘴 A和 C, 喷 嘴 A下端有外倒角, 喷嘴 C下端有内倒角, 其中更优选具有外倒角 的喷嘴 A。 而且分布板喷嘴之间通有保温槽, 保温槽中可以根据不同 的温度要求通有加热和 /或冷却介质, 例如通有蒸汽, 水或导热油, 使 分布板的温度保持恒定, 从而使物料状态保持恒定。
在冷却成型步骤中, 可以根据不同的产品造粒选用不同的冷却 液, 冷却液可以是水、 氨水、 盐的水溶液、 有机物以及它们中两种或 多种的混合物。 例如曱醇水溶液,氯化钠水溶液、 汽油、 丙酮等。
在本发明的一个优选实施方案中, 冷却成型步骤中, 在冷却方式 上釆用橡胶助剂物料与冷却液直接接触, 所用的冷却液优选是水, 这 样换热效率大大提高, 因为水的比热和对流换热系数都比较大, 直接 接触就能最好的利用水的高效换热这一特点。 而且液滴在水中, 是通 过整个球面与水产生热交换的, 可以看作是三维的传热。 而一般工艺 采用钢带和喷淋水, 导热系数和换热系数都比较低, 而且粒子是通过 钢带上附着的平面进行冷却, 使得换热效率受限, 在本发明的一个优 选实施方式中, 在冷却成型步骤中采用冷却塔, 这样可以减少设备投 资并大大提高单位体积的设备效率。
在本发明的另一个优选实施方案中, 冷却成型步骤中冷却液优选 釆用甲醇水溶液, 因为甲醇水溶液的密度较低, 更利于橡胶助剂颗粒 在冷却液中较快地沉降, 避免物料浮在液面上不利于成型。
在物料下滴冷却的过程中, 往往物料发现物料虽然已经成球形, 但是硬度达不到要求, 在冷却成型步骤中冷却液的温度对固化成粒很 重要, 适当的控制冷却液的温度对固化时间相当重要, 可以根据物料 的熔点等性质选择适当的冷却液温度。 例如, 在本发明的进一步优选 的实施方案中, 橡胶助剂为对苯二胺类橡胶防老剂 N-1 , 3二甲基丁 基- N,-苯基对苯二胺或 N-异丙基 - N,-苯基对苯二胺, 冷却液采 用水、 氨水或甲醇水溶液, 优选冷却液的温度在 10-40°C范围内, 更 优选冷却液的温度在 20-35 范围内。
在本发明的一个优选实施方案中, 向冷却成型步骤中的冷却液液 面上喷洒表面活性剂, 因为由于存在着表面张力, 如果橡胶助剂颗粒 在冷却液中沉降的速度比较慢,很容易产生上一滴橡胶助剂的液滴还 没有沉降下去,下一滴液滴又滴下,造成了两颗粒甚至多滴叠加现象, 严重破坏了颗粒形状和成型效果, 为了改善这种现象, 在冷却液例如 水面上喷洒了表面活性剂或利用超声波发生器发生超声波降低表面 张力, 使颗粒可以顺利快速沉降, 从而解决了上述问题。
加入到冷却液中以有助于颗粒沉降的表面活性剂包括但不限于 以下所举例子: 聚醚类, 例如聚乙二醇醚、 聚丙二醇醚和脂肪醇聚氧 乙烯醚, 及其混合物; 烷基苯磺酸类化合物; 季铵盐类化合物; 烷基 醇铵型表面活性剂; 还有甜菜碱类表面活性剂如椰子油酰胺基丙基甜 菜碱, 二曱基烷基甜菜碱, N,N-二甲基 - N -烷氧基亚甲基甜菜碱等。 聚乙二醇醚, 例如可以是聚乙二醇二甲醚 (分子量 200-1000 )、 聚乙 二醇二乙醚(分子量 200-1000 )和聚乙二醇 ψ乙醚(分子量 200-1000 ); 聚丙二醇醚, 如聚丙二醇二甲醚(分子量 200-1000 )、 聚丙二醇二乙 醚(分子量 200-1000 ) 和聚丙二醇甲乙醚(分子量 200-1000 ); 脂肪 醇聚氧乙烯醚, 例如其中脂肪醇的碳数为 6-18, 聚氧乙烯的聚合度为 3-25的, 例如 AEO-7, 即 C12H250 ( CH2CH20 ) 7H。 可根据不同的橡 胶助剂和不同的冷却液采用不同性质的表面活性剂。
对于固化成球的橡胶助剂颗粒的干燥可以采用流化床干燥, 震动 流化床, 也可以采用带式干燥, 普通炉式干燥等。
在本发明的方法中, 橡胶助剂物料在表面张力或者界面张力的作 用下产生球形外表面, 得到的产品球形度很好, 基本呈球形。 这样得 到的产品外观质量提高, 而且更有利于助剂在与橡胶混炼或者开炼使 用中的流动和混合。 避免了粉末状物料的粉尘污染, 也避免了半球形 颗粒球面与平面相交的地方存在一定的棱角引起包装、 运输、 开袋使 用过程等后续工序中脱落、 碰撞, 造成的种种粉尘污染。 通过对造粒 形状的改变, 也克服了因为后续工序中因为粉末过多引起的熔点降低 的产品质量下降的问题。
在造粒过程中产生的粉尘数量很少, 虽然颗粒在流程中也会发生 一些摩擦和碰撞, 但在干燥以前的阶段由于颗粒表面有少量的冷却 液, 所以摩擦的强度大大减弱, 基本不产生粉尘。 而干燥阶段虽然产 生一定量的粉尘, 但是由于干燥的流化床是封闭的, 所以这些粉尘通 过收集来处理, 而不会污染环境和影响操作工人的健康等。 而钢带冷 却工艺在收集产品时必须将粒子从钢带上刮下来, 是一个开放的体 系, 时间积累, 产生的粉尘危害很大, 与其相比, 本发明的造粒工艺 也有了较大的改进和提高。
经过本发明方法得到的橡胶助剂颗粒, 不但颗粒呈球形, 而且表 面光滑, 这对颗粒倒袋, 输送过程中摩擦引起的粉尘减少也创造了有 利的条件。
本发明的球形橡胶助剂以及可以通过本发明方法制备的球形橡 胶助剂包括但不限于以下例子: 防老剂 4020(N-1, 3二甲基丁基- N, -苯基对苯二胺), 4010NA (N-异丙基 -N,-苯基对苯二胺) .4030 (Ν,Ν,-双(1, 4-二甲基戊基) -对苯二胺, R (2,2,4-三曱基- 1, 2-二氢化喹啉聚合物), ODA (辛基化二苯胺), 4010 (N-苯基 - N, ―环己基对苯二胺:),、 中间体 RT培司 ( 4 -氨基二苯胺)硫化体系助 剂 M ( 2 -巯基苯并噻唑) ,DM (二硫化二苯并噻唑) NS ( N -叔丁 基- 2 -苯并噻唑次磺酰胺), CZ(N-环己基 - 2 -苯并噻唑次磺酰胺), DZ(N, N-二环己基 -2-苯并噻唑次磺酰胺), NOBS(N-氧联二亚乙 基- 2 -苯并噻唑次磺酰胺) 、 SPPD(N -苯基 - N, - ot -曱基苄基对 苯二胺)、 DTPD(N,N,-二甲苯对苯二胺)、 TAPDA(2,4,6 -三- (N- 1, 4-二甲基) 戊基对苯二胺 - 1, 3, 5-三嗪)、 TBSI(N-叔丁基- 双( 2 -苯并噻唑)次磺酰胺)、 CBBS(N -环己基 -双( 2 -苯并噻唑) 次磅酰胺)、 Cure-ritelBM (—硫化四异丁胺基秋兰姆)、 Cure-ritelBT (二 硫化四异丁胺基秋兰姆)、 TBZTD (四苄基二硫化秋兰姆)、 TMTD (二 硫化四甲基秋兰姆)、 TETD (二硫化四乙基秋兰姆)、 TMTM (—硫化 四甲基秋兰姆)、 DPTT (六硫化五亚曱基秋兰姆)、 DTDC (N,N-二硫 化二己内酰胺)、 OTTOS ( N -氧二亚乙基硫化氨基甲酰 - N,-叔丁 基次磺酰胺)、 DPG (二苯胍)、 D0TG (二邻甲苯胍), 对叔丁基苯酚 曱醛树脂、 对叔辛基苯酚甲醛树脂、 溴曱基羟曱基对叔辛基苯酚甲醛 树脂。 防焦剂 CTP(N-环己基硫代邻苯二甲酰亚胺)。 增塑剂 A (高分 子脂肪酸锌皂混合物)、 五氯硫酚。 均匀剂 40MS、 40MS(F)、 60NS、 60NS(F) (芳香烃树脂、 环烷烃树脂和脂肪烃树脂的复合树脂)、 TH10FL、 TH20FL、 140、 145A、 260、 H501。增黏剂石油树脂 PRF-80、 PRF-90, PRF-100, PRF-110, 石油系 C9增黏树脂, 石油系复合 C9 增黏树脂, 改性烷基酚树脂 TKM - M、 TKM-T、 TKM- 0、 对叔丁 基苯酚曱醛树脂 TKB- 120、 TKB- 130、 TKB_ 140、 TKB- N、 对 叔辛基苯酚甲醛树脂 TKO-70、 ΤΚ0- 80、 Τ Ο-90> ΤΚΟ-100、 ΤΚΟ- 110、 固马隆树脂、 苯乙烯-茚树脂 90型、 100型。 脱膜剂 AT - 16(表面活性剂和脂肪酸钙皂混合物)。 黏合体系助剂包括球形的癸 酸钴 RC- D20、 环烷酸钴 RC- 10、 硬脂酸钴 RC- S95。 补强体系助 剂补强树脂 205、 油改性酚醛树脂 PF - P、 PF- C、 PF - 0。
其中优选防老剂 4020(N-1, 3二曱基丁基 - N,一苯基对苯二胺), 4010NA ( N-异丙基 -N,-苯基对苯二胺), SPPD(N -苯基 - Ν, - α -曱基苄基对苯二胺), RD (2,2,4-三甲基- 1, 2-二氢化喹啉聚 合体)( η=2-4 ), 硫化体系助剂 Μ ( 2 -巯基苯并噻唑), TBSI(N-叔丁 基-双( 2 -苯并噻唑) 次磺酰胺), CBBS(N一环己基 -双( 2 -苯并 噻唑) 次礒酰胺), OTTOS (N-氧二亚乙基硫化氨基甲酰 -N,-叔 丁基次磺酰胺), TBZTD (四苄基二硫化秋兰姆), 防焦剂 CTP(N-环 己基硫代邻苯二曱酰亚胺), 增塑剂 A (高分子脂肪酸锌皂混合物), 黏 合体系助剂癸酸钴 RC - D20,环烷酸钴 RC - 10,硬脂酸钴 RC - S95, 脱膜剂 AT- 16 (表面活性剂与脂肪酸钙皂混合物), 均匀剂 40MS、 40MS(F)、 60NS、 60NS(F)(芳香烃树脂、 环烷烃树脂和脂肪烃树脂的 复合树脂)、增黏剂对叔辛基苯酚甲醛树脂 TKO― 70、 TKO - 80、 TKO - 90、 TKO- 100、 TKO- 110, 补强体系助剂油改性酚醛树脂 PF-P、 PF- C、 PF- 0。
更优选防老剂 4020 (N-l, 3二甲基丁基- N,-苯基对苯二胺) 和 4010NA (>1-异丙基_1^,-苯基对苯二胺)。 实施例 以下的实施例用于具体说明本发明, 但并不限制本发明的范围。 实施例 1
制备 N-1, 3二甲基丁基- N,-苯基对苯二胺球形颗粒
将贮罐中自制的 N-1, 3 二甲基丁基 -N, -苯基对苯二胺 ( 4020)熔融物料用泵输送到预结晶系统,泵的流量为 600公斤 /小时, 保持预结晶器冷却水温度 28 - 32 °C, 管道保温水 46- 48°C,等预结 晶器的物料状态达到出料的状态后, 开动出料泵使物料进入料箱, 料 箱外部有夹套走保温水, 温度在 48 - 49°C ,料箱和分布板有隔热层隔 开, 隔热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱 上部的往复运动装置, 下方连接一盘管,盘管通保温水温度在 48 - 49 °C , 物料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要 包括若干均布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 49 - 59°C , 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 保温大孔内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通过喷嘴后滴入冷却塔,冷却塔的冷却液是水,在水面上喷洒了表 面活性剂 AEO-7 以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔 底部, 控制冷却水温在 20 - 35 °C , 凝固成球形固体, 进入沥水, 震动 筛的频率在 40Hz,再进入振动流化床干燥,风干流化气的温度为 40°C , 干燥达到质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机 抽取 100个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均 值, 球形颗粒的平均直径在 4.6mm, 正态分布良好。 实施例 2
制备 N-异丙基 - N, -苯基对苯二胺球形颗粒
将贮罐中自制的 N-异丙基 - N,-苯基对苯二胺 (4010NA ) 熔融 物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预结晶 器冷却水温度 55 - 60 °C , 管道保温水 75 - 80°C ,等预结晶器的料状 态达到出料的状态后, 开动出料泵进入料箱, 料箱外部有夹套走保温 水, 温度在 78 - 83 °C , 料箱和分布板有隔热层隔开, 隔热层只在喷嘴 处开孔,以便液体物料通过喷嘴,同时开动料箱上部的往复运动装置, 下方连接一盘管,盘管通保温水温度在 85 - 86°C , 物料进入分布板进 行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置 保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 75 - 85 °C , 分布 板的小孔为直径 2.5mm, 中孔直径为 4mm, 保温大孔内壁距离喷嘴 外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通过喷嘴后滴入冷 却塔,冷却塔的冷却液是水, 在水面上喷洒表面活性剂 AEO-7以利于 颗粒沉降, 用颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温在
20- 35°C,凝固成的球形固体,进入沥水筛分,震动筛的频率在 40Hz, 再进入振动流化床干燥,风干流化气的温度为 70°C, 干燥达到质量合 格后装袋出成品造出的颗粒目测圆整度良好, 随机抽取 100个球形颗 粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平 均直径在 4.6mm,呈正态分布。 实施例 3
制备 2,2,4 -三甲基- 1, 2 -二氢化喹啉聚合体 ( n=2-4 ) ( RD ) 球形颗粒
将贮罐中自制的 2,2,4-三甲基 - 1, 2 -二氢化喹啉聚合体 (n=2-4) (助剂 RD) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预结晶器冷却水温度 50- 60 °C, 管道保温水 70 - 80°C, 等预结晶器的料状态达到出料的状态后, 开动出料泵物料进 入并充满整个料箱, 保持料箱压力在 0.1-0.5MPa, 料箱外部有夹套走 保温水, 温度在 75 - 85°C, 料箱和分布板有隔热层隔开, 隔热层只在 喷嘴处开孔, 以便液体物料通过喷嘴, 物料在出料泵的压力下进入分 布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板包括若干均布孔和内 置保温槽, 保温槽通保温水, 水温在 80- 85°C, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大孔, 喷嘴下端有倒角, 例如如图 3中的 A所示, 物料通过喷嘴后滴入冷却塔,冷却塔的冷却液是水, 在 水面上喷洒表面活性剂椰子油酰胺基丙基甜菜碱以利于颗粒沉降, 用 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温在 50-70°C, 凝 固成的球形固体, 进入沥水筛分, 震动筛的频率在 40Hz,再进入振动 流化床干燥,风干流化气的温度为 70°C, 干燥达到质量合格后装袋出 成品造出的目测颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标 卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直径为 5mm,呈正态分布。 实施例 4
制备 N-叔丁基 - 2 -苯并噻唑次磺酰胺 (促进剂 NS ) 球形颗粒 将贮罐中自制的 N-叔丁基 - 2 -苯并噻唑次磺酰胺熔融物料(促 进剂 NS )用泵输送到料箱, 保持物料温度在 110°C , 料箱外部有保温 蒸汽, 温度在 110 - 115 °C , 料箱和分布板有隔热层隔开, 隔热层只在 喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动 装置, 下方连接一盘管,盘管通保温蒸汽, 物料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保温蒸汽, 分布板的小孔直径为 0.1mm, 中孔直径为 0.25mm, 无保温大孔, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷 嘴后滴入冷却塔,冷却塔的冷却液是水, 在水面上喷洒了表面活性剂 AEO-7以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制 冷却水温在 60-70°C, 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 40°C , 干燥达到 质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100 个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形 颗粒的平均直径在 0.2mm, 正态分布良好。 实施例 5
制备 N-1 , 3二曱基丁基- N,-苯基对苯二胺球形颗粒
将贮罐中自制的 N-l, 3二甲基丁基 - N,-苯基对苯二胺(4020 ) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预 结晶器冷却水温度 28 - 32 °C , 管道保温水 46 - 48°C ,等预结晶器的 物料状态达到出料的状态后, 开动出料泵使物料进入料箱, 料箱外部 有夹套走保温水, 温度在 48 - 49°C , 料箱和分布板有隔热层隔开, 隔 热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的 往复运动装置, 下方连接一盘管, 盘管通保温水温度在 48 - 49°C , 物 料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若 干均布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 49 - 59°C , 分布板的小孔直径为 0.1mm, 中孔直径为 0.2mm, 保温大 孔内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通 过喷嘴后滴入冷却塔,冷却塔的冷却液是水,在水面上喷洒了表面活性 剂 AEO-7 以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温在 20 - 35 °C, 凝固成球形固体, 进入沥水, 震动筛的频 率在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 40°C , 干燥 达到质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直径在 0.0.22mm, 正态分布良好。 实施例 6
制备 N-1 , 3二曱基丁基- N,-苯基对苯二胺球形颗粒
将贮罐中自制的 N-l, 3二曱基丁基 - N,-苯基对苯二胺(4020 ) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预 结晶器冷却水温度 28 - 32 °C , 管道保温水 46 - 48°C,等预结晶器的 物料状态达到出料的状态后, 开动出料泵使物料进入料箱, 料箱外部 有夹套走保温水, 温度在 48 - 49°C , 料箱和分布板有隔热层隔开, 隔 热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的 往复运动装置, 下方连接一盘管, 盘管通保温水温度在 48 - 49 °C , 物 料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若 干均布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 49 - 59°C , 分布板的小孔直径为 5mm, 中孔直径为 8mm, 保温大孔 内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通过 喷嘴后滴入冷却塔,冷却塔的冷却液是水,在水面上喷洒了表面活性剂 AEO-7以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制 冷却水温在 20 - 35 °C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 40°C , 干燥达到 盾量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100 个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形 颗粒的平均直径在 9.2mm, 正态分布良好。 实施例 7
制备 N-异丙基 - N, -苯基对苯二胺球形颗粒
将贮罐中自制的 N-异丙基 - N,-苯基对苯二胺 (4010NA ) 熔融 物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预结晶 器冷却水温度 55 - 60 °C ,管道保温水 75 - 80°C ,等预结晶器的物料 状态达到出料的状态后, 开动出料泵使物料进入料箱, 料箱外部有夹 套走保温水, 温度在 78 - 83 °C , 料箱和分布板有隔热层隔开, 隔热层 只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复 运动装置, 下方连接一盘管, 盘管通保温水温度在 85 - 86°C , 物料进 入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均 布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 75 - 85°C , 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 保温大孔 内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角 , 如图 3中的 A, 物料通过 喷嘴后滴入冷却塔,冷却塔的冷却液是水,在水面上四角放上超声波探 头震动, 以利于颗粒沉降, 用颗粒从上到下落下, 落到氷冷塔底部, 控制冷却水温在 20 - 35°C , 凝固成的球形固体, 进入沥水 分, 震动 筛的频率在 40Hz,再进入振动流化床干燥,风干流化气的温度为 70°C , 干燥达到质量合格后装袋出成品造出的颗粒目测圆整度良好, 随机抽 取 100个球形颗粒,用游标卡尺测量各个球形颗粒的直径取其平均值 , 球形颗粒的平均直径在 4.6mm,呈正态分布。 实施例 8
制备 N-l, 3二甲基丁基 - N,-苯基对苯二胺球形颗粒 (冷却液 为氨水)
将贮罐中自制的 N-1 , 3二甲基丁基- N,-苯基对苯二胺(4020 ) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预 结晶器冷却水温度 28 - 32 °C , 管道保温水 46 - 48°C ,等预结晶器的 物料状态达到出料的状态后, 开动出料泵使物料进入料箱, 料箱外部 有夹套走保温水, 温度在 48 - 49°C, 料箱和分布板有隔热层隔开, 隔 热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的 往复运动装置, 下方连接一盘管, 盘管通保温水温度在 48- 49°C, 物 料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若 千均布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 49- 59°C, 分布板的小孔直径为 3.5mm, 中孔直径为 6mm, 保温大 孔内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通 过喷嘴后滴入冷却塔,冷却塔的冷却液是氨水, 浓度 6% (W/W), 在 液面上喷洒了表面活性剂 AEO-7 以利于颗粒沉降, 颗粒从上到下落 下, 落到水冷塔底部, 控制冷却水温在 20- 35°C, 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床干燥, 风千流化 气的温度为 40°C, 干燥达到质量合格后装袋出成品。造出的球形颗粒 圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺测量各个球形颗 粒的直径取其平均值,球形颗粒的平均直径在 6.6mm,正态分布良好。 实施例 9
制备 N-l, 3二甲基丁基- N,-苯基对苯二胺球形颗粒 (冷却液 为甲醇水溶液)
将贮罐中自制的 N-l, 3二甲基丁基 -N,-苯基对苯二胺(4020) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预 结晶器冷却水温度 28 - 32 °C, 管道保温水 46- 48°C,等预结晶器的 物料状态达到出料的状态后, 开动出料泵使物料进入料箱, 料箱外部 有夹套走保温水, 温度在 48- 49°C, 料箱和分布板有隔热层隔开, 隔 热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的 往复运动装置, 下方连接一盘管, 盘管通保温水温度在 48- 49°C, 物 料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若 干均布孔和内置保温槽, 例如如图 2所示, 保温槽通保温水, 水温在 49- 59°C, 分布板的小孔直径为 1.0mm, 中孔直径为 3mm, 保温大 孔内壁距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通 过喷嘴后滴入冷却塔,冷却塔的冷却液是甲醇水溶液, 其中甲醇含量 20% ( W/W ), 在液面上喷洒了表面活性剂椰子油酰胺基丙基甜菜碱 以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水 温在 20 - 35 °C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz, 再进入振动流化床干燥,风干流化气的温度为 40°C , 干燥达到质量合 格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形 颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的 平均直径在 3.2mm, 正态分布良好。 实施例 10
制备 N-叔丁基 -双( 2 -苯并噻唑)次磺酰胺(促进剂 TBSI )球 形颗粒 (熔点 130 - 133 °C )
将贮罐中自制的 N-叔丁基 -双( 2 -苯并噻唑) 次磺酰胺熔融物 料(促进剂 TBSI )用泵输送到料箱, 保持物料温度在 135°C , 料箱外 部有导热油, 温度在 135 - 140°C , 料箱和分布板有隔热层隔开, 隔热 层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往 复运动装置, 下方连接一盘管, 盘管通导热油, 物料进入分布板进行 造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保 温槽, 保温槽通导热油, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大孔, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷嘴 后滴入冷却塔,冷却塔的冷却液是水, 在水面上喷洒了表面活性剂 AEO-7以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制 冷却水温在 60-70°C, 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 40°C , 干燥达到 质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100 个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形 颗粒的平均直径在 4.5mm, 正态分布良好。 实施例 11
制备四苄基二硫化秋兰姆(促进剂 TBZTD )球形颗粒(熔点 130
°C )
将贮罐中自制的四苄基二硫化秋兰姆熔融物料(促进剂 TBZTD ) 用泵输送到料箱, 保持物料温度在 132°C , 料箱外部有导热油, 温度 在 133 - 135 °C ,料箱和分布板有隔热层隔开,隔热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动装置, 下方连 接一盘管, 盘管通导热油, 物料进入分布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通导热 油, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 保温大孔内壁 距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷嘴 后滴入冷却塔,冷却塔的冷却液是水, 在水面上喷洒了表面活性剂 AEO-7以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制 冷却水温在 60-70°C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床千燥, 风干流化气的温度为 40°C , 干燥达到 质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100 个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形 颗粒的平均直径在 4.8mm, 正态分布良好。 实施例 12
制备 N-苯基 - N,一 α—曱基苄基对苯二胺( SPPD )球形颗粒(熔 点 84.5 °C )
将贮罐中自制的 N-苯基- N,一 α—曱基苄基对苯二胺 (SPPD ) 熔融物料用泵输送到预结晶系统, 泵的流量为 600公斤 /小时,保持预 结晶器冷却水温度 65 - 75 °C, 管道保温水 86 - 90°C ,等预结晶器的 料状态达到出料的状态后, 开动出料泵进入料箱, 料箱外部有夹套走 保温水, 温度在 88 - 93 °C , 料箱和分布板有隔热层隔开, 隔热层只在 喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动 装置, 下方连接一盘管, 盘管通保温水温度在 85 - 86°C , 物料进入分 布板进行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔 和内置保温槽, 例如如图 2 所示, 保温槽通保温水, 水温在 86 - 90 °C , 分布板的小孔为直径 2.5mm, 中孔直径为 4mm, 保温大孔内壁 距离喷嘴外壁 2mm, 喷嘴下端有倒角, 如图 3中的 A, 物料通过喷嘴 后滴入冷却塔,冷却塔的冷却液是水,在水面上喷洒表面活性剂 AEO-7 以利于颗粒沉降, 用颗粒从上到下落下, 落到水冷塔底部, 控制冷却 水温在 20 - 35 °C , 凝固成的球形固体, 进入沥水筛分, 震动筛的频率 在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 75 °C , 干燥达 到质量合格后装袋出成品造出的颗粒目测圆整度良好, 随机抽取 100 个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形 颗粒的平均直径在 4.4mm,呈正态分布。 实施例 13
制备 N -环己基硫代邻苯二甲酰亚胺(CTP ) 球形颗粒 (熔点 > 90 °C )
将贮罐中自制的 N -环己基硫代邻苯二曱酰亚胺 ( CTP ) 熔融物 料用泵输送到料箱, 保持物料温度在 93 °C, 料箱外部有保温水, 温度 在 92 - 95 °C , 料箱和分布板有隔热层隔开, 隔热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动装置, 下方连 接一盘管, 盘管通保温水, 温度在 90 - 95 °C , 物料进入分布板进行 造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保 温槽, 保温槽通保温水, 水温在 95 - 100 °C , 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 保温大孔内壁距离喷嘴外壁 2mm, 喷嘴 下端有倒角, 如图 3中的(:, 物料通过喷嘴后滴入冷却塔,冷却塔的冷 却液是水, 在水面上喷洒了表面活性剂 AEO-7 以利于颗粒沉降, 颗 粒从上到下落下, 落到水冷塔底部, 控制冷却水温在 55-60°C , 凝固 成球形固体, 进入沥水, 震动 的频率在 40Hz,再进入振动流化床干 燥, 风干流化气的温度为 35 °C , 干燥达到质量合格后装袋出成品。 造 出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺测 量各个球形颗粒的直径取其平均值,球形颗粒的平均直径在 5mm, 正 态分布良好。 实施例 14
制备硬脂酸钴 RC-S95 (黏合体系助剂)球形颗粒 (软化点 80 - 100°C )
将贮罐中自制的硬脂酸钴 RC-S95熔融物料(黏合体系助剂) 用 泵输送到料箱, 保持物料温度在 105 °C , 料箱外部有保温蒸汽, 温度 在 105 - 110 °C ,料箱和分布板有隔热层隔开,隔热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动装置, 下方连 接一盘管, 盘管通保温蒸汽, 物料进入分布板进行造粒, 控制滴流速 度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保 温蒸汽, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大 孔, 喷嘴下端有倒角, 如图 3 中的 C, 物料通过喷嘴后滴入冷却塔, 冷却塔的冷却液是水, 在水面上喷洒了表面活性剂 AEO-7 以利于颗 粒沉降,颗粒从上到下落下, 落到水冷塔底部,控制冷却水温在 60-70 °C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动 流化床干燥,风干流化气的温度为 60Ό , 干燥达到质量合格后装袋出 成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游 标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直径在 4.8mm, 正态分布良好。 实施例 15
制备增塑剂 A (高分子脂肪酸锌皂混合物) 球形颗粒 (熔点 98 - 104°C )
将贮罐中自制的高分子脂肪酸锌皂混合物(增塑剂 A )用泵输送 到料箱, 保持物料温度在 105 °C, 料箱外部有保温蒸汽, 温度在 105 - 115 °C , 料箱和分布板有隔热层隔开, 隔热层只在喷嘴处开孔, 以 便液体物料通过喷嘴, 同时开动料箱上部的往复运动装置, 下方连接 一盘管, 盘管通保温蒸汽, 物料进入分布板进行造粒, 控制滴流速度
2-3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保温 蒸汽, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大孔, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷嘴后滴入冷却塔,冷却塔 的冷却液是水,在水面上四角放上超声波探头震动,以利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温在 60-70°C , 凝 固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动流化床 干燥, 风干流化气的温度为 60°C , 干燥达到质量合格后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺 测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直径在 4.7mm, 正态分布良好。 实施例 16
制备芳香烃树脂、 环烷烃树脂和脂肪烃树脂的复合树脂 (40MS ) 球形颗粒 (,软化点 50 - 60°C )
将贮罐中自制的芳香烃树脂、环烷烃树脂和脂肪烃树脂的复合树 脂 (40MS ) 用泵输送到料箱, 保持物料温度在 60°C , 料箱外部有保 温水, 温度在 60 - 65 °C, 料箱和分布板有隔热层隔开, 隔热层只在喷 嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部高粘度泵, 下 方连接一盘管, 盘管通保温水, 温度在 60 - 63 °C , 物料进入分布板进 行造粒, 控制滴流速度 2-3滴 /秒, 分布板主要包括若干均布孔和内置 保温槽, 保温槽通保温水, 水温在 65 - 68 °C, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大孔, 喷嘴下端有倒角, 如图 3中 的 C, 物料通过喷嘴后滴入冷却塔,冷却塔的冷却液是水, 在水面上四 角放上超声波探头震动, 以利于颗粒沉降, 颗粒从上到下落下, 落到 水冷塔底部,控制冷却水温在 20 - 35 °C ,凝固成球形固体,进入沥水, 震动 的频率在 40Hz,再进入振动流化床干燥, 风干流化气的温度为 40°C ,干燥达到质量合格后装袋出成品。造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其 平均值, 球形颗粒的平均直径在 4.6mm, 正态分布良好。 实施例 17
制备对叔辛基苯酚甲醛树脂 (TKO-70)球形颗粒 (软化点 70 - 85 °C )
将贮罐中自制的对叔辛基苯酚甲醛树脂 (TKO-70) 用泵输送到 料箱, 保持物料温度在 85°C, 料箱外部有保温水, 温度在 85-88°C, 料箱和分布板有隔热层隔开, 隔热层只在喷嘴处开孔, 以便液体物料 通过喷嘴, 同时开动料箱上部高粘度泵, 下方连接一盘管, 盘管通保 温水, 温度在 85 - 88Ό, 物料进入分布板进行造粒, 控制滴流速度 2- 3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保温 水,水温在 85 - 90°C,分布板的小孔直径为 2.5mm,中孔直径为 4mm, 无保温大孔, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷嘴后滴入 冷却塔,冷却塔的冷却液是水,在水面上四角放上超声波探头震动, 以 利于颗粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温 在 20- 35°C, 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再 进入振动流化床干燥,风干流化气的温度为 40°C, 干燥达到质量合格 后装袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗 粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平 均直径在 5mm, 正态分布良好。 实施例 18
制备对油改性酚醛树脂 ( PF-P )球形颗粒 (软化点 75 - 90 °C ) 将贮罐中自制的油改性酚醛树脂 (PF-P)用泵输送到料箱, 保持 物料温度在 90°C, 料箱外部有保温水, 温度在 90- 95°C, 料箱和分 布板有隔热层隔开,隔热层只在喷嘴处开孔,以便液体物料通过喷嘴, 同时开动料箱上部高粘度泵, 下方连接一盘管, 盘管通保温水, 温度 在 90- 95°C, 物料进入分布板进行造粒, 控制滴流速度 2-3 滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保温水, 水温在 90 - 98 °C , 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温 大孔, 喷嘴下端有倒角, 如图 3中的 C, 物料通过喷嘴后滴入冷却塔, 冷却塔的冷却液是水, 在水面上四角放上超声波探头震动, 以利于颗 粒沉降, 颗粒从上到下落下, 落到水冷塔底部, 控制冷却水温在 20 - 35 °C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入 振动流化床干燥,风干流化气的温度为 40°C , 干燥达到质量合格后装 袋出成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直 径在 4.8mm, 正态分布良好。 实施例 19
制备内脱膜剂 AT- 16(表面活性剂和脂肪酸钙皂混合物 )球形颗粒 (软化点 85 - 100°C )
将贮罐中自制的表面活性剂和脂肪酸钙皂混合物熔融物料用泵 输送到料箱, 保持物料温度在 105 °C , 料箱外部有保温蒸汽, 温度在 105 - 110°C , 料箱和分布板有隔热层隔开, 隔热层只在喷嘴处开孔, 以便液体物料通过喷嘴, 同时开动料箱上部的往复运动装置, 下方连 接一盘管, 盘管通保温蒸汽, 物料进入分布板进行造粒, 控制滴流速 度 2-3滴 /秒, 分布板主要包括若干均布孔和内置保温槽, 保温槽通保 温蒸汽, 分布板的小孔直径为 2.5mm, 中孔直径为 4mm, 无保温大 孔, 喷嘴下端有倒角, 如图 3 中的 C, 物料通过喷嘴后滴入冷却塔, 冷却塔的冷却液是水, 在水面上喷洒了表面活性剂 AEO-7 以利于颗 粒沉降,颗粒从上到下落下, 落到水冷塔底部,控制冷却水温在 60-70 °C , 凝固成球形固体, 进入沥水, 震动筛的频率在 40Hz,再进入振动 流化床干燥,风干流化气的温度为 60°C , 干燥达到质量合格后装袋出 成品。 造出的球形颗粒圆整度良好, 随机抽取 100个球形颗粒, 用游 标卡尺测量各个球形颗粒的直径取其平均值, 球形颗粒的平均直径在 5.1mm, 正态分布良好。

Claims

权 利 要 求
1. 一种橡胶助剂, 其特征在于所述橡胶助剂的形状为球形。
2. 根据权利要求 1 的橡胶助剂, 其特征在于所述橡胶助剂的平 均直径在 0.2- 10mm范围内。
3. 根据权利要求 1或 2的橡胶助剂, 其特征在于所述橡胶助剂 为橡胶防老剂或克化体系助剂。
4. 根据权利要求 3 的橡胶助剂, 其特征在于所述硫化体系助剂 为 2-巯基苯并噻唑、 二硫化二苯并噻唑、 N-叔丁基 -2-苯并噻唑 次磺酰胺、 N-环己基 -2-苯并噻唑次磺酰胺、 N, N-二环己基 -2- 苯并噻唑次磺酰胺或 N -氧联二亚乙基 - 2 -苯并噻唑次磺酰胺。
5. 根据权利要求 3 的橡胶助剂, 其特征在于所述橡胶防老剂为 N-1, 3 二甲基丁基- N,-苯基对苯二胺、 N-异丙基 -N,-苯基对苯 二胺、 Ν,Ν,-双( 1, 4-二甲基戊基) -对苯二胺、 2,2,4-三曱基- 1, 2 -二氢化喹啉聚合物、辛基化二苯胺、 Ν-苯基- Ν,-环己基对苯二 胺或 4-氨基二苯胺。
6. 根据权利要求 5 的橡胶助剂, 其特征在于所述橡胶防老剂为 Ν-1 , 3二甲基丁基 - Ν, -苯基对苯二胺或 Ν-异丙基 - N' -苯基对苯 二胺。
7. 根据权利要求 3的橡胶助剂,其特征在于所述硫化体系助剂选 自 Ν-叔丁基 -双 (2-苯并噻唑) 次碌酰胺、 Ν-环己基 -双(2- 苯并噻唑)次磺酰胺、 一硫化四异丁胺基秋兰姆、 二硫化四异丁胺基 秋兰姆、 四苄基二硫化秋兰姆、 二硫化四曱基秋兰姆、 二硫化四乙基 秋兰姆、 一硫化四甲基秋兰姆、 六硫化五亚曱基秋兰姆、 Ν,Ν-二硫 化二己内酰胺、 Ν -氧二亚乙基硫化氨基甲酰 - Ν, -叔丁基次磺酰胺、 二苯胍和二邻甲苯胍
8. 根据权利要求 3的橡胶助剂,其特征在于所述硫化体系助剂为 软化点在 250°C以下的硫化树脂。
9. 根据权利要求 8的橡胶助剂, 其特征在于所述软化点在 250°C 以下的硫化树脂为对叔丁基苯酚甲醛树脂、 对叔辛基苯酚甲醛树脂、 溴化对 -特辛基苯酚甲醛树脂。
10. 根据权利要求 3的橡胶助剂, 其特征在于所述橡胶防老剂为 N -苯基 - Ν' - α -甲基苄基对苯二胺、 Ν,Ν' -二曱苯对苯二胺、 2, 4, 6 -三- (Ν - 1 , 4 -二甲基) 戊基对苯二胺 - 1 , 3 , 5 -三嗪。
11. 根据权利要求 1或 2的橡胶助剂, 其特征在于所述橡胶助剂 为橡胶操作体系助剂、 补强体系助剂或黏合体系助剂。
12. 根据权利要求 11 的橡胶助剂, 其特征在于所述操作体系助 剂为防焦剂、 增塑剂、 均匀剂、 增黏剂或脱膜剂。
13. 根据权利要求 12的橡胶助剂, 其特征在于所述防焦剂为 Ν- 环己基^ ^代邻苯二曱酰亚胺。
14. 根据权利要求 12的橡胶助剂, 其特征在于所述增塑剂为增 塑剂 Α、 五氯硫酚。
15. 根据权利要求 12的橡胶助剂, 其特征在于所述均勾剂为软 化点在 25 TC以下的树脂。
16. 根据权利要求 15 的橡胶助剂, 其特征在于所述树脂为一种 或一种以上的饱和或不饱和的芳香烃单体、 环烷烃单体与脂肪烃单体 的聚合树脂、 两种或两种以上的饱和或不饱和的芳香烃树脂、 环烷烃 树脂与脂肪烃树脂的混合物。
17. 根据权利要求 12的橡胶助剂, 其特征在于所述增黏剂为软 化点在 250°C以下的树脂。
18. 根据权利要求 17的橡胶助剂, 其特征在于所述树脂为石油 树脂、 石油系 C9增黏树脂、 石油系复合 C9增黏树脂、 石油系改性 烷基酚树脂、 对叔丁基苯酚甲醛树脂、 对叔辛基苯酚甲醛树脂、 固马 隆树脂或苯乙烯-茚树脂。
19. 根据权利要求 12的橡胶助剂, 其特征在于所述脱膜剂为内 脱模剂 AT-16。
20. 根据权利要求 11 所述的橡胶助剂, 其特征在于所述黏合体 系助剂为癸酸钴, 环烷酸钴、 硬脂酸钴。
21. 根据权利要求 11 所述的橡胶助剂, 其特征在于所述橡胶补 强体系助剂为软化点在 250°C以下的酚醛树脂、 油改性酚醛树脂、 石 油树脂。
22. 一种制备权利要求 1 - 21中任一项所述的橡胶助剂的方法, 其特征在于所述方法包括机头造粒步骤、 冷却成型步骤和除去冷却液 的步驟。
23. 根据权利要求 22的方法, 其特征在于所述方法还包括预结 晶步骤, 所述预结晶步骤在机头造粒步骤之前进行。
24. 根据权利要求 22或 23的方法, 其特征在于, 在机头造粒步 骤中, 料箱和分布板分离, 料箱和分布板之间有隔热层分隔。
25. 根据权利要求 22或 23的方法, 其特征在于, 在机头造粒步 骤中,分布板上通有加热和 /或冷却介质; 分布板由上到下设置有小孔 和中孔, 小孔的直径在 0.1-5mm之间, 中孔喷嘴的直径在 0.2 - 10mm 之间。
26. 根据权利要求 25 的方法, 其特征在于中孔下方还设置有大 孔, 大孔内壁距离中孔喷嘴外壁 0.5 - 5mm。
27. 根据权利要求 22或 23的方法, 其特征在于, 在机头造粒步 骤中, 喷嘴的下端有倒角。
28. 根据权利要求 22或 23的方法, 其特征在于, 在机头造粒步 骤中, 采用自身重力自然滴流形式、 往复运动助力压料形式或通过高 粘度泵进料泵维持恒定压力压料。
29. 根据权利要求 28的方法, 其特征在于, 在机头造粒步驟中, 采用往复运动助力压料。
30. 根据权利要求 22或 23的方法, 其特征在于, 在机头造粒步 骤中, 喷嘴滴料的速度为 1-4滴 /秒。
31. 根据权利要求 22或 23的方法, 其特征在于, 在冷却成型步 骤向冷却塔中的冷却液中加入表面活性剂和 /或施加超声波。
32. 根据权利要求 31的方法, 其特征在于所述冷却液是选自水、 氨水、 盐的水溶液以及有机物中的至少一种。
33. 根据权利要求 32的方法, 其特征在于所述冷却液选自水、 氨水、 甲醇水溶液、 氯化钠水溶液、 汽油或丙酮。
34. 根据权利要求 31的方法,其特征在于所述表面活性剂是选自 聚乙二醇醚、聚丙二醇醚、脂肪醇聚氧乙晞醚、烷基苯磺酸类化合物、 季铵盐类化合物、烷基醇铵型表面活性剂以及甜菜碱类表面活性剂中 的至少一种。
35. 根据权利要求 34的方法,其特征在于所述脂肪醇聚氧乙烯醚 中脂肪醇的碳数为 6-18, 聚氧乙烯的聚合度为 3-25。
36.根据权利要求 34的方法, 其特征在于所述甜菜碱类表面活性 剂选自椰子油酰胺基丙基甜菜碱、二曱基烷基甜菜碱或 Ν,Ν-二曱基 -
Ν -烷氧基亚甲基甜菜碱。
PCT/CN2007/002953 2006-10-17 2007-10-15 Globular rubber adjuvants and the method of preparating the same WO2008052414A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/445,900 US8066919B2 (en) 2006-10-17 2007-10-15 Spherical rubber chemicals and the method for preparing the same
ES07816567T ES2403583T3 (es) 2006-10-17 2007-10-15 Método de preparación de adyuvantes de caucho globulares
PL07816567T PL2085135T3 (pl) 2006-10-17 2007-10-15 Sposób otrzymywania globularnych adjuwantów gumowych
EP07816567A EP2085135B1 (en) 2006-10-17 2007-10-15 Method of preparating globular rubber adjuvants
US13/305,454 US8349230B2 (en) 2006-10-17 2011-11-28 Spherical rubber chemicals and the method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610135744.X 2006-10-17
CN200610135744XA CN101165086B (zh) 2006-10-17 2006-10-17 球形橡胶助剂及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/445,900 A-371-Of-International US8066919B2 (en) 2006-10-17 2007-10-15 Spherical rubber chemicals and the method for preparing the same
US13/305,454 Continuation US8349230B2 (en) 2006-10-17 2011-11-28 Spherical rubber chemicals and the method for preparing the same

Publications (1)

Publication Number Publication Date
WO2008052414A1 true WO2008052414A1 (en) 2008-05-08

Family

ID=39333952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002953 WO2008052414A1 (en) 2006-10-17 2007-10-15 Globular rubber adjuvants and the method of preparating the same

Country Status (6)

Country Link
US (2) US8066919B2 (zh)
EP (1) EP2085135B1 (zh)
CN (1) CN101165086B (zh)
ES (1) ES2403583T3 (zh)
PL (1) PL2085135T3 (zh)
WO (1) WO2008052414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066919B2 (en) 2006-10-17 2011-11-29 Jiangsu Sinorgchem Technology Co., Ltd. Spherical rubber chemicals and the method for preparing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759860B (zh) * 2009-11-16 2012-07-25 天津市科迈化工有限公司 球粒状橡胶防老剂fr的生产方法
CN103921367B (zh) * 2013-01-15 2016-04-27 常州常京化学有限公司 一种抗硫化返原剂的造粒方法
CN105061808B (zh) * 2015-08-29 2018-02-23 江苏麒祥高新材料有限公司 一种橡胶防老剂的制备方法
CN105293432A (zh) * 2015-11-09 2016-02-03 广东合即得能源科技有限公司 一种甲醇水重整制氢机及其制氢方法
CN111908496B (zh) * 2020-08-13 2022-08-30 河北华晨药业集团有限公司 一种药用氯化钙产品制粒方法
CN112300440B (zh) * 2020-11-17 2021-11-02 圣奥化学科技有限公司 防老剂组合物、防老剂母胶及橡胶组合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146A (en) * 1980-06-04 1982-01-05 Toyo Soda Mfg Co Ltd Production of particulate vulcanization accelerator
JPS588546A (ja) * 1981-07-07 1983-01-18 Kawaguchi Kagaku Kogyo Kk 顆粒状有機ゴム薬品類の製造法
US4402859A (en) * 1981-03-24 1983-09-06 Sumitomo Chemical Co., Ltd. Process for producing diarylamine antioxidants in globular form
JPS6286032A (ja) * 1985-10-11 1987-04-20 Kawaguchi Kagaku Kogyo Kk ゴム用有機加硫促進剤の造粒方法
TW262484B (zh) * 1993-11-10 1995-11-11 Nukem Gmbh
CN2281836Y (zh) * 1996-12-19 1998-05-20 姜洪亮 熔融法真空造粒机
CN1515350A (zh) * 2003-01-03 2004-07-28 清华大学 将熔融液制成球形颗粒产品的造粒装置
CN1565715A (zh) * 2003-06-20 2005-01-19 清华大学 一种将熔融液制成球形颗粒的造粒装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1378084A (en) * 1919-10-06 1921-05-17 Texas Gulf Sulphur Co Refining sulfur
GB774681A (en) * 1953-09-01 1957-05-15 Ici Ltd Improvements in or relating to thermoplastic polymeric materials
GB849935A (en) * 1957-10-22 1960-09-28 Arthur Abbey Improvements in or relating to the treatment of thermo-plastic materials
US3334159A (en) * 1964-09-17 1967-08-01 Nat Sulphur Company Method for prilling sulphur
US3436449A (en) * 1966-02-03 1969-04-01 Ici Ltd Granulation of theromplastic materials
DE1604344B2 (de) * 1966-12-14 1972-12-14 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Spritzwerkzeug in unterwassergranulatoren
GB1289767A (zh) * 1969-07-22 1972-09-20
JPS545825B2 (zh) * 1974-09-25 1979-03-22
US4149837A (en) * 1976-03-22 1979-04-17 Ronald Baker Sulphur pelletizing apparatus
IT1174480B (it) * 1984-02-02 1987-07-01 Montedison Spa Filiera per il taglio a caldo di polimeri termoplastici
DE19515473A1 (de) * 1995-04-27 1996-10-31 Werner & Pfleiderer Unterwasser-Granulierlochplatte mit Verschleißschutzschicht
JP3672470B2 (ja) * 1999-12-24 2005-07-20 株式会社神戸製鋼所 樹脂ペレット製造用ダイス
US7413690B1 (en) * 2003-10-29 2008-08-19 The University Of Mississippi Process and apparatus for producing spherical pellets using molten solid matrices
CN101165086B (zh) 2006-10-17 2011-07-20 江苏圣奥化学科技有限公司 球形橡胶助剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146A (en) * 1980-06-04 1982-01-05 Toyo Soda Mfg Co Ltd Production of particulate vulcanization accelerator
US4402859A (en) * 1981-03-24 1983-09-06 Sumitomo Chemical Co., Ltd. Process for producing diarylamine antioxidants in globular form
JPS588546A (ja) * 1981-07-07 1983-01-18 Kawaguchi Kagaku Kogyo Kk 顆粒状有機ゴム薬品類の製造法
JPS6286032A (ja) * 1985-10-11 1987-04-20 Kawaguchi Kagaku Kogyo Kk ゴム用有機加硫促進剤の造粒方法
TW262484B (zh) * 1993-11-10 1995-11-11 Nukem Gmbh
CN2281836Y (zh) * 1996-12-19 1998-05-20 姜洪亮 熔融法真空造粒机
CN1515350A (zh) * 2003-01-03 2004-07-28 清华大学 将熔融液制成球形颗粒产品的造粒装置
CN1565715A (zh) * 2003-06-20 2005-01-19 清华大学 一种将熔融液制成球形颗粒的造粒装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2085135A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066919B2 (en) 2006-10-17 2011-11-29 Jiangsu Sinorgchem Technology Co., Ltd. Spherical rubber chemicals and the method for preparing the same
US8349230B2 (en) 2006-10-17 2013-01-08 Jiangsu Sinorgchem Technology Co., Ltd. Spherical rubber chemicals and the method for preparing the same

Also Published As

Publication number Publication date
US8066919B2 (en) 2011-11-29
CN101165086A (zh) 2008-04-23
ES2403583T3 (es) 2013-05-20
US20100314789A1 (en) 2010-12-16
US20120139140A1 (en) 2012-06-07
EP2085135A4 (en) 2011-11-30
CN101165086B (zh) 2011-07-20
EP2085135B1 (en) 2013-02-13
EP2085135A1 (en) 2009-08-05
US8349230B2 (en) 2013-01-08
PL2085135T3 (pl) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2008052414A1 (en) Globular rubber adjuvants and the method of preparating the same
JP5632459B2 (ja) ポリマーペレットの非付着処理方法及びこの方法に用いる遠心脱水機
JP6046489B2 (ja) 硫酸硝酸アンモニウムの錠剤化
KR101392713B1 (ko) 왁스 및 왁스-유사 물질을 펠렛화하기 위한 장치 및 방법
CN102794830B (zh) 一种尼龙聚合物喷雾冷却造粒方法及其设备
KR102618786B1 (ko) 발포제로서 기능화된 미립자 바이카보네이트, 이를 포함하는 발포성 중합체 조성물, 및 열가소성 발포 중합체의 제조에서 이의 용도
US5637350A (en) Encapsulation of asphalt prills
JP6031526B2 (ja) ポリアミド顆粒の調製方法
EP2217421A1 (en) Method and apparatus for pelletizing a polymer feed
JP2022084875A (ja) ポリマー組成物の調製方法、および前記方法によって入手可能なポリマー組成物
US20020077261A1 (en) Amino resin composition for mold cleaning
CN206897343U (zh) 一种低塔喷雾冷却造粒装置
CN103921367B (zh) 一种抗硫化返原剂的造粒方法
CN106492708B (zh) 用于硫化钠的造粒设备
CN108722310A (zh) 钢带冷凝造粒机
CN114849270B (zh) 一种硫磺颗粒成型预结晶装置
CN101722053B (zh) 一种微粒催化剂的预处理方法
JPH032362B2 (zh)
CN105904609B (zh) 一种热塑性弹性体造粒系统及其应用
JP4088832B2 (ja) 表面タック性を有する熱可塑性ポリマー混合物のペレット製造装置
CA2178053A1 (en) Encapsulation of asphalt prills
JPS6023006B2 (ja) ワックス類を熱硬化性ホルムアルデヒド系ベ−スレジンに転写する方法
JP2000271929A (ja) 粒状封止材料の製造方法
JP2003275965A (ja) 粒状ドライアイスの供給方法および供給装置
JP2011206908A (ja) 熱可塑性樹脂ペレットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12445900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1765/KOLNP/2009

Country of ref document: IN

Ref document number: 2007816567

Country of ref document: EP