DERIVATISIERTES EPOXID-FESTHARZ UND DESSEN VERWENDUNGEN
Technisches Gebiet
Die Erfindung betrifft das Gebiet der Epoxidharz- Zusammensetzun- gen, insbesondere das Gebiet der schlagzähen hitzehärtenden Epoxidharz- zusammensetzungen und Strukturschäumen.
Stand der Technik
Schlagzähigkeitsmodifikatoren werden schon seit langem dazu eingesetzt, um die Festigkeit von Duroplasten bei schlagartiger Krafteinwirkung zu verbessern. Insbesondere Epoxidharzzusammensetzungen weisen generell zwar hohe mechanische Festigkeiten auf, sind jedoch sehr spröde, das heisst, bei einer schlagartigen Krafteinwirkung, wie sie beispielsweise in einem Zusammenstoss von Fahrzeugen eintritt, bricht das gehärtete Epoxidharz und führt zu einer Zerstörung des Verbundes.
Flüssigkautschuke werden schon seit längerem zur Zähigkeitsmodifizierung eingesetzt. Beispielsweise werden Flüssigkautschuke auf Basis von Acrylnitril/Butadien-Copolymeren, wie sie beispielsweise unter dem Namen Hycar® erhältlich sind, eingesetzt. EP-B-O 338 985 beschreibt schlagzähe Epoxidharzzusammensetzungen, welche neben Flüssigkautschuken auf Basis von Acrylnitril/Butadien- Copolymeren zusätzlich auch Flüssigkautschuke auf Basis von Polyurethan- prepolymere aufweisen, welche mit einem Phenol oder einem Lactam terminiert sind. WO-A-2005/007766 offenbart schlagzähe Epoxidharzzusam- mensetzungen, welche ein Reaktionsprodukt eines Isocyanatgruppen- terminierten Prepolymers und eines Blockierungsmittels, welches ausgewählt ist aus der Gruppe Bisphenol, Phenol, Benzylalkohol, Aminophenol oder Benzylamin enthalten. WO-A-03/093387 offenbart schlagzähe Epoxidharzzusammensetzungen, welche Addukte von Dicarbonsäuren mit Glycidylethern oder von Bis(aminophenyl)sulfon-Isomeren oder aromatischen Alkoholen mit Glycidylethern enthalten. WO-A-2004/055092 und WO-A-2005/007720 offenbaren Epoxidharzzusammensetzungen mit verbesserter Schlagzähigkeit, welche ein Reaktionsprodukt eines Isocyanatgruppen-terminierten Polyure-
thanprepolymeren mit einem niedermolekularen Monohydroxyepoxid enthalten. Diese Epoxidharzzusammensetzungen weisen zwar gegenüber denjenigen, welche Phenol-terminierte Polyurethanprepolymere enthalten, eine verbesserte Tieftemperaturschlagzähigkeit auf, sind aber immer noch nicht optimal. Bei allen diesen genannten Schlagzähigkeitsmodifikatoren handelt es sich um hochviskose Substanzen, was für die Herstellung einiger Formulierungen nachteilig ist. Speziell für die Zähigkeitsverbesserung von festen Epoxid- systemen, die meist durch Formulierung in Extrudern erfolgt, ist die Zugabe hochviskoser Flüssigkeiten nur mit erhöhtem Aufwand machbar.
Darstellung der Erfindung
Aufgabe der vorliegenden Erfindung ist es daher, neue bei Raumtemperatur feste Schlagzähigkeitsmodifikatoren zu finden, welche einerseits als Epoxidharz fungieren können und andererseits die Schlagzähigkeit stark verbessern sowie einfach zu dosieren sind.
Überraschenderweise wurde gefunden, dass diese Aufgabe durch ein derivatisiertes Epoxid-Festharz gemäss Anspruch 1 gelöst werden kann.
Es lässt sich in einfacher Art und Weise aus kommerziellen Festharzen herstellen. Es wurde festgestellt, dass derartige ausgehärtete dehvatisierte Epoxid-Festharze eine hohe Schlagzähigkeit aufweisen. Dies ist auch der Fall, wenn dieses dehvatisierte Epoxid-Festharz auch anderen Harzen, insbesondere Epoxidharzen, zugegeben wird. Die derivatisierten Epoxid-Festharze erhöhen also die Schlagzähigkeit und können deshalb als Schlagzähigkeitsmodifikatoren eingesetzt werden. Ein weiterer Aspekt der Erfindung betrifft Zusammensetzungen, welche derartige dehvatisierte Epoxid-Festharze enthalten. Sie weisen ausserordent- lich gute Mechanik und Schlagzähigkeit auf. Weiterhin lassen sich derartige Zusammensetzungen als einkomponentige hitzehärtende Klebstoffe oder als Strukturschäume verwenden. Weitere Aspekte der Erfindung betreffen ein Verfahren zur Herstellung eines derart derivatisierten Epoxid-Festharzes und verklebte Artikel gemäss Anspruch 30 sowie geschäumte Artikel gemäss Anspruch 32. Besonders bevorzugte Ausführungsformen sind Gegenstand der Unteransprüche.
Wege zur Ausführung der Erfindung
Die vorliegende Erfindung betrifft in einem ersten Aspekt ein derivatisiertes Epoxid-Festharz der Formel (I).
Hierbei stehen R' und R" unabhängig voneinander entweder für H oder CH3. In diesem Dokument ist die Verwendung des Terms „unabhängig voneinander" in Zusammenhang mit Substituenten, Reste oder Gruppen dahin gehend auszulegen, dass in demselben Molekül die gleich bezeichneten Substituenten, Resten oder Gruppen gleichzeitig mit unterschiedlicher Bedeutung auftreten können.
Weiterhin steht s für einen Wert von 2 bis 12.
Schliesslich steht X unabhängig voneinander für H oder einen Rest der Formel (II).
Hierbei steht R4 für einen Rest eines eine primäre oder sekundäre Hydroxylgruppe enthaltenden aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Epoxids nach dem Entfernen der Hydroxid- und Epoxidgrup- pen. Weiterhin ist p = 1 , 2 oder 3 und R2 steht unabhängig voneinander für eine Blockierungsgruppe, welche sich bei einer Temperatur über 1000C abspaltet. R1 steht für ein mit (m+q+1 ) Isocyanatgruppen terminiertes lineares oder verzweigtes Polyurethanprepolymer PU1 nach dem Entfernen aller endständigen Isocyanatgruppen und m > 0 und q > 0, mit der Bedingung, dass 1 < (m+q) < 8.
Schliesslich besteht die Massgabe, dass mindestens ein X in der Formel (I) für einen Rest der Formel (II) steht.
Die gestrichelten Linien in den Formeln dieses Dokumentes stellen jeweils die Bindung zwischen dem jeweiligen Substituenten und dem dazu- gehörigen Molekülrest dar.
Bevorzugt stehen alle R' und R" für Methyl.
Die derivatisierten Epoxid-Festharz der Formel (I) können aus der Reaktion eines Epoxid-Festharzes der Formel (I1) und einem eine Isocyanat- gruppe enthaltenden Polyurethanprepolymer der Formel (IV) erhalten werden.
Diese Reaktion erfolgt typischerweise bei einer Temperatur, bei welcher sich das Epoxid-Festharz verflüssigen lässt, oder unter Verwendung von Lösungsmitteln, insbesondere in Gegenwart von Katalysatoren für die N CO/O H -Reaktion. Bevorzugt erfolgt die Reaktion bei einer Temperatur über dem Schmelzpunkt des Epoxidharzes der Formel (I1). Besonders bevorzugt wird die Reaktion unter Verwendung eines Compounders oder eines Extruders aus der Schmelze des Festharzes der Formel (I1) und des eine Isocyanat- gruppe enthaltenden Polyurethanprepolymers der Formel (IV) erhalten.
Als Katalysatoren für die Reaktion der Isocyanat-Gruppen mit den sekundären Hydroxylgruppen des Festharzes sind insbesondere die dem
Fachmann bekannten Salze, Komplexe oder metallorganische Verbindungen von Übergangsmetallen, insbesondere von Zinn und Wismut geeignet. Insbesondere handelt es sich hierbei um Zinnverbindungen wie Dibutyl- zinndiacetat, Dibutylzinndilaurat, Dibutylzinndistearat, Dibutylzinndiacetyl- acetonat, Dioctylzinndilaurat, Dibutylzinndichlorid und Dibutylzinnoxid, Zinn(ll)- carboxylate, Stannoxane wie Laurylstannoxan, Bismutverbindungen wie Bismut(lll)-octoat, Bismut(lll)-neodecanoat oder Bismut(lll)-oxinate. Besonders geeignet ist Dibutylzinndilaurat.
Die Glastemperatur von Epoxid-Festharzen liegt über Raumtemperatur, d.h. sie lassen sich bei Raumtemperatur zu schüttfähigen Pulvern zerkleinern. Typische derartige Epoxid-Festharze sind kommerziell erhältlich beispielsweise von Dow oder Huntsman oder Hexion.
Durch Variation des Stöchiometrieverhältnisses lassen sich unterschiedlich viele der Hydroxylgruppen abreagieren. Durch den stöchio- metrischen oder leicht überstöchiometrischen Einsatz des Isocyanates können alle OH-Gruppen abreagiert werden. Dies ist jedoch in den meisten Fällen nicht bevorzugt. Bevorzugt ist, dass nur ein Teil der OH-Gruppen abreagiert wird. Das heisst, dass es bevorzugt ist, dass in Formel (I) sowohl Reste X, welche für H stehen, als auch Reste X, welche für einen Rest der Formel (II) stehen, vorhanden sind.
Bevorzugt sind derivatisierte Epoxid-Festharze, in welchen maximal 90 %, insbesondere 10 - 80 %, bevorzugt 10 - 50 %, aller Reste X für einen Rest der Formel (II) stehen.
Bevorzugt steht in den Formeln (II) und (IV) R2 für einen Rest, welcher ausgewählt ist aus der Gruppe bestehend aus
Hierbei stehen R5, R6, R7 und R8 je unabhängig voneinander für eine Alkyl- oder Cycloalkyl- oder Aralkyl- oder Arylalkyl-Gruppe oder aber R5 bildet zusammen mit R6, oder R7 zusammen mit R8, einen Teil eines 4- bis 7- gliedrigen Rings, welcher allenfalls substituiert ist.
Weiterhin steht R9, R9 und R10 je unabhängig voneinander für eine Alkyl- oder Aralkyl- oder Arylalkyl-Gruppe oder für eine Alkyloxy- oder Aryloxy- oder Aralkyloxy-Gruppe und R11 für eine Alkylgruppe.
R ,12 , R ,13 und R ,14 stehen je unabhängig voneinander für eine Alkylengruppe mit 2 bis 5 C-Atomen, welche gegebenenfalls Doppelbindungen aufweist oder substituiert ist, oder für eine Phenylengruppe oder für eine hydrierte Phenylengruppe und R15, R16 und R17 stehen je unabhängig voneinander für H oder für eine Alkylgruppe oder für eine Arylgruppe oder eine Aralkylgruppe.
Schliesslich steht R18 für eine Aralkylgruppe oder für eine ein- oder mehrkernige substituierte oder unsubstituierte Aromatengruppe, welche gegebenenfalls aromatische Hydroxylgruppen aufweist.
Als R18 sind insbesondere einerseits Phenole oder Polyphenole, insbesondere Bisphenole, nach Entfernung einer Hydroxylgruppe zu betrachten. Bevorzugte Bespiele für derartige Phenole und Bisphenole sind insbesondere Phenol, Kresol, Resorcinol, Brenzkatechin, Cardanol (3-Penta- decenylphenol (aus Cashewnuss-Schalen-Öl)), Nonylphenol, mit Styrol oder Dicyclopentadien umgesetzte Phenole, Bis-Phenol-A, Bis-Phenol-F und 2,2'- Diallyl-bisphenol-A.
Als R18 sind andererseits insbesondere Hydroxybenzylalkohol und Benzylalkohol nach Entfernung einer Hydroxylgruppe zu betrachten. Falls R5, R6, R7, R8, R9, R9', R10, R11, R15, R16 oder R17 für eine Alkyl- gruppe steht, ist diese insbesondere eine lineare oder verzweigte d-C-20-Alkyl- gruppe.
Falls R5, R6, R7, R8, R9, R9', R10, R15, R16, R17 oder R18 für eine Aralkylgruppe steht, ist diese Gruppierung insbesondere eine über Methylen gebundene aromatische Gruppe, insbesondere eine Benzylgruppe.
Falls R5, R6, R7, R8, R9, R9' oder R10 für eine Alkylarylgruppe steht, ist diese insbesondere eine über Phenylen gebundene Ci- bis C2o-Alkylgruppe, wie beispielsweise ToIyI oder XyIyI.
Die Reste R2 sind vorzugsweise die Substituenten der Formeln
ist ε-Caprolactam nach Entfernung des NH-Protons bevorzugt.
Als besonders bevorzugte Reste R2 sind Monophenole oder
Polyphenole, insbesondere Bisphenole, nach Entfernung eines phenolischen Wasserstoffatoms zu betrachten. Bevorzugte Bespiele für derartigen Reste R
2 sind Reste, welche ausgewählt sind aus der Gruppe bestehend aus
Der Rest Y steht hierbei für einen gesättigten oder olefinisch ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere mit 1 bis 15 C-Atomen. Als Y sind insbesondere AIIyI, Methyl, Nonyl, Dodecyl oder ein ungesättigter Ci5-Alkylrest mit 1 bis 3 Doppelbindungen bevorzugt.
In einer möglichen Ausführungsform ist m = 0. In diesem Fall steht q bevorzugt für 1.
Besonders bevorzugt ist m jedoch > 0. Weiterhin bevorzugt ist q = 0. In einer sehr bevorzugten Ausführungsform ist m+q = 1 , insbesondere der Fall, wo m = 1 und q= 0 ist. In dieser Ausführungsform weist das derivatisierte Epoxid-Festharz in der Seitenkette ebenfalls mindestens eine Epoxidgruppe auf, welche dann bei der Vernetzung ebenfalls reagieren kann und damit insbesondere vorteilhaften Einfluss auf die Mechanik haben kann.
Als Rest R4 ist insbesondere ein dreiwertiger Rest der Formel
oder bevorzugt, wobei R für Methyl oder H steht.
Besonders bevorzugt steht R
4 für einen Rest, welcher ausgewählt ist aus der Gruppe bestehend aus Butandiolmonoglycidylether, Hexandiolmono- glycidylether, Trimethylolpropandiglycidylether, Glycerindiglycidylether, Penta- erythrittriglycidylether, Glycidol, 3-Glycidyloxybenzylalkohol, Hydroxymethyl- cyclohexenoxid und 1 ,3-bis(4-(2-(4-(oxiran-2-ylmethoxy)phenyl)propan-2-yl)- phenoxy)propan-2-ol) nach Entfernung aller OH- und Epoxid-Gruppen.
Die Herstellung des derivatisierten Epoxid-Festharz erfolgt, indem in einem ersten Schritt durch die Herstellung eines teilweise blockierten Polyurethanprepolymer der Formel (IV), welches aus dem Isocyanatgruppen terminierten linearen oder verzweigten Polyurethanprepolymer PU1 und der
Verbindung R2H und/oder einer Verbindung der Formel (V) gebildet wird.
In einem zweiten Schritt wird dann dieses NCO-Gruppenhaltige Zwischenprodukt der Formel (IV) mit einem Festharz der Formel (V) zum derivatisierten Epoxid-Festharz der Formel (I) umgesetzt.
Falls mehrere derartige Isocyanat-reaktive Verbindungen der Formel R2H und/oder der Formel (V) eingesetzt werden, kann die Reaktion sequentiell oder mit einer Mischung dieser Verbindungen erfolgen. Die Umsetzung erfolgt vorteilhaft derart, dass die eine oder die mehreren Isocyanat-reaktiven Verbindungen in einer leicht unterstöchio- metrischen Menge in Bezug auf die NCO-Gruppen eingesetzt werden. So wird gewährleistet, dass das Umsetzungsprodukt einen möglichst grossen Anteil
am eine NCO-Gruppe aufweisenden Polyurethanprepolymer der Formel (IV) aufweist. Wenn der Anteil der Polyurethanprepolymere, welche nach der Reaktion mehr als eine Isocyanatgruppe aufweisen, zu gross ist, wird bei der Umsetzung mit dem Epoxid-Festharz eine unerwünschte hohe Viskositäts- erhöhung, beziehungsweise Gelierung, erhalten. Wenn der Anteil der Polyurethanprepolymere, welche nach der Reaktion keine freie Isocyanatgruppe mehr aufweist, allzu gross ist, sind viele derartige Umsetzungsprodukte vorhanden, welche nicht mit dem Festharz reagieren.
Die Monohydroxyl-Epoxidverbindung der Formel (V) weist 1 , 2 oder 3
Epoxidgruppen auf. Die Hydroxylgruppe dieser Monohydroxyl-Epoxidverbindung (V) kann eine primäre oder eine sekundäre Hydroxylgruppe darstellen. Solche Monohydroxyl-Epoxidverbindungen lassen sich beispielsweise durch Umsetzung von Polyolen mit Epichlorhydrin erzeugen. Je nach Reaktionsführung entstehen bei der Umsetzung von mehrfunktionellen Alkoholen mit Epichlorhydrin als Nebenprodukte auch die entsprechenden Mono- hydroxyl-Epoxidverbindungen in unterschiedlichen Konzentrationen. Diese lassen sich durch übliche Trennoperationen isolieren. In der Regel genügt es aber, das bei der Glycidylisierungsreaktion von Polyolen erhaltene Produkt- gemisch aus vollständig und partiell zum Glycidylether reagiertem Polyol einzusetzen. Beispiele solcher hydroxylhaltigen Epoxide sind Butandiolmono- glycidylether (enthalten in Butandioldiglycidylether), Hexandiolmonoglycidyl- ether (enthalten in Hexandioldiglycidylether), Cyclohexandimethanolglycidyl- ether, Trimethylolpropandiglycidylether (als Gemisch enthalten in Trimethylol- propantriglycidylether), Glycerindiglycidylether (als Gemisch enthalten in Glycerintriglycidylether), Pentaerythrittriglycidylether (als Gemisch enthalten in Pentaerythrittetraglycidylether). Vorzugsweise wird Trimethylolpropan- diglycidylether, welcher zu einem relativ hohen Anteil in üblich hergestellten Trimethylolpropantriglycidylether vorkommt, verwendet. Es können aber auch andere ähnliche hydroxyl haltige Epoxide, insbesondere Glycidol, 3-Glycidyloxybenzylalkohol oder Hydroxymethyl-cyclo- hexenoxid eingesetzt werden. Weiterhin bevorzugt ist der ß-Hydroxyether der Formel (IX), der in handelsüblichen flüssigen Epoxidharzen, hergestellt aus
Bisphenol-A (R = CH3) und Epichlorhydrin, zu etwa 15 % enthalten ist, sowie die entsprechenden ß-Hydroxyether der Formel (IX), die bei der Reaktion von Bisphenol-F (R = H) oder des Gemisches von Bisphenol-A und Bisphenol-F mit Epichlorhydrin gebildet werden.
Weiterhin bevorzugt sind auch Destillationsrückstände, welche bei der Herstellung von hochreinen, destillierten Epoxid-Flüssigharzen anfallen. Solche Destillationsrückstände weisen eine bis zu drei Mal höhere Konzentration an hydroxylhaltigen Epoxiden auf als handelübliche undestillierte Epoxid- Flüssigharze. Im Weiteren können auch unterschiedlichste Epoxide mit einer ß-Hydroxyether-Gruppe, hergestellt durch die Reaktion von (Poly-)Epoxiden mit einem Unterschuss von einwertigen Nukleophilen wie Carbonsäuren, Phenolen, Thiolen oder sec- Aminen, eingesetzt werden.
Die freie primäre oder sekundäre OH-Funktionalität der Monohydroxyl- Epoxidverbindung der entsprechenden Formel (V) lässt eine effiziente Umsetzung mit terminalen Isocyanatgruppen von Prepolymeren zu, ohne dafür un- verhältnismässige Überschüsse der Epoxidkomponente einsetzen zu müssen.
Das Polyurethanprepolymer PU1 , auf dem R1 basiert, lässt sich aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen und / oder aus einem, gegebenenfalls substituierten, Polyphenol QPP herstellen.
In der gesamten hier vorliegenden Schrift werden mit der Vorsilbe „Poly" in „Polyisocyanat", „Polyol", „Polyphenol" und „Polymerkaptan" Moleküle bezeichnet, die formal zwei oder mehr der jeweiligen funktionellen Gruppen enthalten.
Geeignete Diisocyanate sind aliphatische, cycloaliphatische, aromatische oder araliphatische Diisocyanate, insbesondere handelsübliche Produkte wie Methylendiphenyldiisocyanat (MDI), Hexamethylendiisocyanat (HDI), Toluoldiisocyanat (TDI), Tolidindiisocyanat (TODI), Isophorondiisocyanat (IPDI), Trimethylhexamethylendiisocyanat (TMDI), 2,5- oder 2,6-Bis-(iso- cyanatomethyl)-bicyclo[2.2.1]heptan, 1 ,5-Naphthalindiisocyanat (NDI), Dicyclo- hexylmethyldiisocyanat (Hi2MDI), p-Phenylendiisocyanat (PPDI), m-Tetra- methylxylylen diisocyanat (TMXDI), etc. sowie deren Dimere. Bevorzugt sind HDI, IPDI, MDI oder TDI. Geeignete Triisocyanate sind Trimere oder Biurete von aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Diisocyanaten, insbesondere die Isocyanurate und Biurete der im vorherigen Absatz beschriebenen Diisocyanate.
Selbstverständlich können auch geeignete Mischungen von Di- oder Triisocyanaten eingesetzt werden.
Als Polymere QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen sind insbesondere geeignet Polymere QPM mit zwei oder drei endständigen Amino-, Thiol- oder Hydroxylgruppen.
Die Polymere QPM weisen vorteilhaft ein Equivalenzgewicht von 300 - 6000, insbesondere von 600 - 4000, bevorzugt von 700 - 2200 g/Equivalent NCO-reaktiver Gruppen auf.
Als Polymere QPM geeignet sind Polyole, beispielsweise die folgenden handelsüblichen Polyole oder beliebige Mischungen davon:
-Polyoxyalkylenpolyole, auch Polyetherpolyole genannt, welche das Polymerisationsprodukt von Ethylenoxid, 1 ,2-Propylenoxid, 1 ,2- oder 2,3- Butylenoxid, Tetrahydrofuran oder Mischungen davon sind, gegebenenfalls polymerisiert mit Hilfe eines Startermoleküls mit zwei oder drei aktiven H- Atomen wie beispielsweise Wasser oder Verbindungen mit zwei oder drei OH- Gruppen. Eingesetzt werden können sowohl Polyoxyalkylenpolyole, die einen niedrigen Ungesättigtheitsgrad aufweisen (gemessen nach ASTM D-2849-69
und angegeben in Milliequivalent Ungesättigtheit pro Gramm Polyol (mEq/g)), hergestellt beispielsweise mit Hilfe von sogenannten Double Metal Cyanide Complex Katalysatoren (kurz DMC-Katalysatoren), als auch Polyoxyalkylen- polyole mit einem höheren Ungesättigtheitsgrad, hergestellt beispielsweise mit Hilfe von anionischen Katalysatoren wie NaOH, KOH oder Alkalialkoholaten. Besonders geeignet sind Polyoxypropylendiole und -triole mit einem Ungesättigtheitsgrad tiefer als 0.02 mEq/g und mit einem Molekulargewicht im Bereich von 1000 - 30O00 Dalton, Polyoxybutylendiole und -triole, Polyoxypropylendiole und -triole mit einem Molekulargewicht von 400 - 8'00O Dalton, sowie sogenannte „EO-endcapped" (ethylene oxide-endcapped) Polyoxypropylendiole oder -triole. Letztere sind spezielle Polyoxypropylenpolyoxyethylen- polyole, die beispielsweise dadurch erhalten werden, dass reine Polyoxypro- pylenpolyole nach Abschluss der Polypropoxylierung mit Ethylenoxid alkoxy- liert werden und dadurch primäre Hydroxylgruppen aufweisen. -Hydroxyterminierte Polybutadienpolyole, wie beispielsweise solche, die durch Polymerisation von 1 ,3-Butadien und Allylalkohol oder durch Oxidation von Polybutadien hergestellt werden, sowie deren Hydrierungsprodukte;
-Styrol-Acryl n itril gepfropfte Polyetherpolyole, wie sie beispielsweise von Elastogran unter dem Namen Lupranol® geliefert werden;
-Polyhydroxyterminierte Acrylnitril/Butadien-Copolymere, wie sie beispielsweise aus carboxylterminierten Acrylnitril/Butadien-Copolymeren (kommerziell erhältlich unter dem Namen Hycar® CTBN von Nanoresins AG, Deutschland) und Epoxiden oder Aminoalkoholen hergestellt werden können; -Polyesterpolyole, hergestellt beispielsweise aus zwei- bis dreiwertigen
Alkoholen wie beispielsweise 1 ,2-Ethandiol, Diethylenglykol, 1 ,2-Propandiol, Dipropylenglykol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, Neopentyl- glykol, Glycerin, 1 ,1 ,1-Tπmethylolpropan oder Mischungen der vorgenannten Alkohole mit organischen Dicarbonsäuren oder deren Anhydriden oder Estern wie beispielsweise Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Sebacinsäure, Dodecandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und Hexahydrophthalsäure oder
Mischungen der vorgenannten Säuren, sowie Polyesterpolyole aus Lactonen wie beispielsweise ε-Caprolacton;
-Polycarbonatpolyole, wie sie durch Umsetzung beispielsweise der oben genannten - zum Aufbau der Polyesterpolyole eingesetzten - Alkohole mit Dialkylcarbonaten, Diarylcarbonaten oder Phosgen zugänglich sind.
Vorteilhaft sind die Polymere QPM di- oder höherfunktioneller Polyole mit OH-Equivalentsgewichten von 300 bis 6'00O g/OH-Equivalent, insbesondere von 600 bis 4000 g/OH-Equivalent, vorzugsweise 700 - 2200 g/OH- Equivalent. Weiterhin vorteilhaft sind die Polyole ausgewählt aus der Gruppe bestehend aus Polyethylenglycolen, Polypropylenglycolen, Polyethylenglycol- Polypropylenglycol-Block-Co-polymeren, Polybutylenglycolen, hydroxyl- terminierten Polybutadienen, hydroxylterminierten Butadien/Acrylnitril- Copolymeren, hydroxylterminierten synthetischen Kautschuken, deren Hydrierungsprodukten und Gemischen dieser genannten Polyole.
Im Weiteren können als Polymere QPM auch di- oder höherfunktionelle aminoterminierte Polyethylenether, Polypropylenether, wie sie zum Beispiel unter dem Namen Jeffamine® von Huntsman vertrieben werden, Polybutylenether, Polybutadiene, Butadien/Acrylnitril-Copolymere, wie sie zum Beispiel die unter dem Namen Hycar® ATBN von Nanoresins AG, Deutschland vertrieben werden, sowie weitere aminoterminierte synthetische Kautschuke oder Gemische der genannte Komponenten verwendet werden.
Für gewisse Anwendungen sind als Polymere QPM insbesondere Hydroxyl-Gruppen aufweisende Polybutadiene oder Polyisoprene oder deren partiell oder vollständig hydrierte Reaktionsprodukte geeignet.
Es ist weiterhin möglich, dass die Polymere QPM auch kettenverlängert sein können, wie es in dem Fachmann bekannter Art und Weise durch die Reaktion von Polyaminen, Polyolen und Polyisocyanaten, insbesondere von Diaminen, Diolen und Diisocyanaten, durchgeführt werden kann.
Am Beispiel eines Diisocyanates und eines Diols bildet sich daraus, wie im Folgenden gezeigt, je nach gewählter Stöchiometrie eine Spezies der Formel (VI) oder (VII)
Die Reste Y1 und Y2 stellen einen divalenten organischen Rest dar und die Indizes u und v variieren je nach Stöchiometrieverhältnis von 1 bis typischerweise 5.
Diese Spezies der Formel (VI) oder (VII) können dann wiederum weiterreagiert werden. So kann beispielsweise aus der Spezies der Formel (VI) und einem Diol mit einem divalenten organischen Rest Y3 ein kettenverlängertes Polyurethanprepolymer PU1 der folgenden Formel gebildet werden:
Aus der Spezies der Formel (VII) und einem Diisocyanat mit einem divalenten organischen Rest Y4 kann ein kettenverlängertes Polyurethanprepolymer PU1 der folgenden Formel gebildet werden:
Die Indizes x und y variieren je nach Stöchiometrieverhältnis von 1 bis typischerweise 5, und sind insbesondere 1 oder 2.
Weiterhin kann auch die Spezies der Formel (VI) mit der Spezies der Formel (VII) umgesetzt werden, so dass ein NCO Gruppen aufweisendes kettenverlängertes Polyurethanprepolymer PU1 entsteht.
Für die Kettenverlängerung werden insbesondere Diole und/oder
Diamine und Diisocyanate bevorzugt. Selbstverständlich ist dem Fachmann klar, dass auch höherfunktionelle Polyole, wie beispielsweise Trimethylolpro- pan oder Pentaerythrit, oder höherfunktionelle Polyisocyanate, wie Isocyanura- te von Diisocyanaten, für die Kettenverlängerung verwendet werden können.
Bei den Polyurethanprepolymeren PU1 generell und bei den kettenverlängerten Polyurethanprepolymeren im Speziellen ist vorteilhaft darauf zu achten, dass die Prepolymere nicht zu hohe Viskositäten aufweisen, insbesondere wenn höher funktionelle Verbindungen für die Kettenverlängerung eingesetzt werden, denn dies kann deren Umsetzung zu den Polymeren der Formel (I) beziehungsweise die Applikation der Zusammensetzung erschweren.
Als Polymere QPM bevorzugt sind Polyole mit Molekulargewichten zwischen 600 und 6000 Dalton ausgewählt aus der Gruppe bestehend aus Polyethylenglykolen, Polypropylenglykolen, Polyethylenglykol-Polypropylengly- kol-Blockpolymeren, Polybutylenglykolen, hydroxylterminierten Polybutadienen, hydroxylterminierten Butadien-Acrylnitril-Copolymeren sowie deren Gemische.
Als Polymere QPM sind insbesondere bevorzugt α,ω-Dihydroxypolyalky- lenglykole mit C2-C6-Alkylengruppen oder mit gemischten C2-C6- Alkylengrup- pen, die mit Amino-, Thiol- oder, bevorzugt, Hydroxylgruppen terminiert sind. Besonders bevorzugt sind Polypropylenglykole oder Polybutylenglykole. Weiterhin besonders bevorzugt sind Hydroxylgruppen-terminierte Polyoxybutylene.
Als Polyphenol QPP sind insbesondere geeignet Bis-, Tris- und Tetraphenole. Hierunter werden nicht nur reine Phenole, sondern gegebenenfalls auch substituierte Phenole verstanden. Die Art der Substitution kann sehr vielfältig sein. Insbesondere wird hierunter eine Substitution direkt am aromatischen Kern, an den die phenolische OH-Gruppe gebunden ist, verstanden. Unter Phenolen werden weiterhin nicht nur einkernige Aromaten, sondern auch mehrkernige oder kondensierte Aromaten oder Heteroaromaten verstanden, welche die phenolische OH-Gruppe direkt am Aromaten beziehungsweise Heteroaromaten aufweisen.
Durch die Art und Stellung eines solchen Substituenten wird unter anderem die für die Bildung des Polyurethanprepolymeren PU1 nötige Reaktion mit Isocyanaten beeinflusst.
Besonders eignen sich die Bis- und Trisphenole. Als Bisphenole oder Trisphenole sind beispielsweise geeignet 1 ,4-Dihydroxybenzol, 1 ,3-Dihydroxy-
benzol, 1 ,2-Dihydroxybenzol, 1 ,3-Dihydroxytoluol, 3,5-Dihydroxybenzoate, 2,2- Bis(4-hydroxyphenyl)propan (=Bisphenol-A), Bis(4-hydroxyphenyl)methan (=Bisphenol-F), Bis(4-hydroxyphenyl)sulfon (=Bisphenol-S), Naphtoresorcin, Dihydroxynaphthalin, Dihydroxyanthrachinon, Dihydroxy-biphenyl, 3,3-bis(p- hydroxyphenyl)phthalide, 5,5-Bis(4-hydroxyphenyl)hexahydro-4,7-methano- indan, Phenolpthalein, Fluorescein, 4,4'-[bis-(hydroxyphenyl)-1 ,3-Phenylene- bis-(1 -Methyl-ethyliden)] (=Bisphenol-M), 4,4'-[bis-(hydroxyphenyl)-1 ,4- Phenylenebis-(1 -Methyl-ethyliden)] (=Bisphenol-P), 2,2'-Diallyl-bisphenol-A, Diphenole und Dikresole hergestellt durch Umsetzung von Phenolen oder Kresolen mit Di-isopropylidenbenzol, Phloroglucin, Gallsäureester, Phenoloder Kresolnovolacke mit -OH-Funktionalität von 2.0 bis 3.5 sowie alle Isomeren der vorgenannten Verbindungen.
Bevorzugte Diphenole und Dikresole hergestellt durch Umsetzung von Phenolen oder Kresolen mit Di-isopropylidenbenzol weisen eine chemische Strukturformel auf, wie sie entsprechend für Kresol als Bespiel nachfolgend gezeigt ist:
Besonders bevorzugt sind schwerflüchtige Bisphenole. Als meist bevorzugt gelten Bisphenol-M, Bisphenol-S und 2,2'-Diallyl-Bisphenol-A. Bevorzugt weist das QPP 2 oder 3 phenolische Gruppen auf.
In einer ersten Ausführungsform wird das Polyurethanprepolymer PU1 aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen hergestellt. Die Herstellung des Polyurethanprepolymers PU1 erfolgt in einer dem Polyurethan-Fachmann bekannten Art und Weise, insbesondere, indem das Diisocyanat oder Triisocyanat in einem stöchiometrischen Überschuss in
Bezug auf die Amino-, Thiol- oder Hydroxylgruppen des Polymeren QPM eingesetzt wird.
In einer zweiten Ausführungsform wird das Polyurethanprepolymer PU1 aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem, gegebenenfalls substituierten, Polyphenol QPP hergestellt. Die Herstellung des
Polyurethanprepolymers PU1 erfolgt in einer dem Polyurethan-Fachmann bekannter Art und Weise, insbesondere indem das Diisocyanat oder
Triisocyanat in einem stöchiometrischen Überschuss in Bezug auf die phenolischen Gruppen des Polyphenols QPP eingesetzt wird.
In einer dritten Ausführungsform wird das Polyurethanprepolymer PU1 aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen sowie aus einem, gegebenenfalls substituierten, Polyphenol QPP hergestellt. Zur Herstellung des Polyurethanprepolymers PU1 aus mindestens einem Diisocyanat oder Triisocyanat sowie aus einem Polymeren QPM mit endständigen Amino-, Thiol- oder Hydroxylgruppen und / oder aus einem, gegebenenfalls substituierten, Polyphenol QPP stehen unterschiedliche Möglichkeiten zur Verfügung. In einem ersten Verfahren, „Eintopfverfahren" genannt, wird eine
Mischung von mindestens einem Polyphenol QPP und mindestens einem Polymeren QPM mit mindestens einem Diisocyanat oder Triisocyanat in einem Isocyanatüberschuss umgesetzt.
In einem zweiten Verfahren, „2-Schrittverfahren I" genannt, wird mindestens ein Polyphenol QPP mit mindestens einem Diisocyanat oder Triisocyanat in einem Isocyanatüberschuss und anschliessend mit mindestens einem Polymeren QPM in Unterschuss umgesetzt.
Im dritten Verfahren schliesslich, „2-Schrittverfahren II" genannt, wird mindestens ein Polymer QPM mit mindestens einem Diisocyanat oder Triisocyanat in einem Isocyanatüberschuss und anschliessend mit mindestens einem Polyphenol QPP in Unterschuss umgesetzt.
Die drei Verfahren führen zu Isocyanat-terminierten Polyurethanpre- polymeren PU1 , die sich bei gleicher Zusammensetzung in der Sequenz ihrer
Bausteine unterscheiden können. Es sind alle drei Verfahren geeignet, jedoch ist das „2-Schrittverfahren II" bevorzugt.
Werden die beschriebenen Isocyanat-endständigen Polyurethanpre- polymeren PU1 aus difunktionellen Komponenten aufgebaut, zeigte sich, dass das Equivalenz-Verhältnis Polymer QPM/Polyphenol QPP bevorzugt grösser als
1.50 und das Equivalenz-Verhältnis Polyisocyanat/(Polyphenol QPP + Polymer
QPM) bevorzugt grösser als 1.20 ist.
Wird die durchschnittliche Funktionalität der verwendeten
Komponenten grösser als 2, so erfolgt eine raschere Molekulargewichts- erhöhung als im rein difunktionellen Fall. Für den Fachmann ist klar, dass die
Grenzen der möglichen Equivalenz-Verhältnisse stark davon abhängen, ob entweder das gewählte Polymer QPM, das Polyphenol QPP, das Polyisocyanat oder mehrere der genannten Komponenten eine Funktionalität >2 besitzen. Je nach dem können unterschiedliche Equivalenz-Verhältnisse eingestellt werden, deren Grenzen durch die Viskosität der resultierenden Polymere bestimmt wird und die experimentell von Fall zu Fall bestimmt werden müssen.
Das Polyurethanprepolymer PU1 weist bevorzugt elastischen Charakter auf und zeigt eine Glasumwandlungstemperatur Tg von kleiner als 00C.
Das derivatisierte Epoxid-Festharz der Formel (I) ist bei Raumtemperatur fest und lässt sich einfach zu Granulat oder zu Schuppen, Brocken, Pulver oder Perlen, insbesondere aus dem aufgeschmolzenen Zustand, verarbeiten, welche einfach dosiert werden können.
Das derivatisierte Epoxid-Festharz der Formel (I) lässt sich breit einsetzen. Es lässt sich alleine oder in einer Zusammensetzung verwenden.
Das derivatisierte Epoxid-Festharz der Formel (I) lässt sich wie ein übliches Festharz einsetzen. Bei der Aushärtung dieses Epoxidharzes können jedoch bedeutend höhere Schlagzähigkeiten festgestellt werden, als dies der Fall mit üblichen Epoxidharzen der Fall ist.
Bevorzugt sind Zusammensetzungen, welche ein derartiges derivatisiertes Epoxid-Festharz umfassen, insbesondere zu einem Anteil von 5 - 60 Gew.-%, bezogen auf das Gewicht der Zusammensetzung.
In einer besonders bevorzugten Ausführungsform enthält die Zusammensetzung neben einem oben beschriebenen derivatisierten Epoxid- Festharz
- mindestens ein Epoxidharz A mit durchschnittlich mehr als einer Epoxidgruppe pro Molekül;
- mindestens einen Härter B für Epoxidharze, welcher durch erhöhte Temperatur aktiviert wird.
Die Epoxidgruppe des Epoxidharzes A liegt vorzugsweise als Glycidyl- ethergruppe vor. Das Epoxidharz A mit durchschnittlich mehr als einer Epoxid- gruppe pro Molekül ist vorzugsweise ein Epoxid-Flüssigharz oder ein Epoxid- Festharz. Die Möglichkeiten für ein Festharz sind dieselben, wie sie bereits für die Herstellung des derivatisierten Epoxid-Festharzes der Formel (I) beschrieben wurden.
Bevorzugte Epoxid-Flüssigharze weisen die Formel (Xl) auf
Hierbei stehen die Substituenten R'" und R"" unabhängig voneinander entweder für H oder CH
3. Weiterhin steht der Index r für einen Wert von 0 bis 1. Bevorzugt steht r für einen Wert von kleiner als 0.2.
Es handelt sich somit vorzugsweise um Diglycidylether von Bisphenol- A (DGEBA), von Bisphenol-F sowie von Bisphenol-A/F (Die Bezeichnung ,A/F' verweist hierbei auf eine Mischung von Aceton mit Formaldehyd, welche als Edukt bei dessen Herstellung verwendet wird). Solche Flüssigharze sind beispielsweise als Araldite® GY 250, Araldite® PY 304, Araldite® GY 282 (Huntsman) oder D.E.R.™ 331 oder D.E.R.™ 330 (Dow) oder Epikote 828 (Hexion) erhältlich.
Bevorzugt stellt das Epoxidharz A ein Epoxid-Flüssigharz der Formel (Xl) dar. In einer noch mehr bevorzugten Ausführungsform enthält die hitzehärtende Epoxidharzzusammensetzung sowohl mindestens ein Epoxid-
Flüssigharz der Formel (Xl) als auch mindestens ein Epoxid-Festharz der Formel (I1).
Der Anteil von Epoxidharzes A beträgt vorzugsweise 10 - 85 Gew.-%, insbesondere 15 - 70 Gew.-%, bevorzugt 15 - 60 Gew.-%, am Gewicht der Zusammensetzung.
Beim Härter B für Epoxidharze, welcher durch erhöhte Temperatur aktiviert wird, handelt es sich vorzugsweise um einen Härter, welcher ausgewählt ist aus der Gruppe bestehend aus Dicyandiamid, Guanamine, Guanidine, Aminoguanidine und deren Derivate. Weiterhin möglich sind beschleunigend wirksame Härter, wie substituierte Harnstoffe, wie beispielsweise 3-Chlor-4- Methylphenylharnstoff (Chlortoluron), oder Phenyl-Dimethylharnstoffe, insbesondere p-Chlorphenyl-N,N-dimethylharnstoff (Monuron), 3-Phenyl-1 ,1 -di- methylharnstoff (Fenuron) oder 3,4-Dichlorphenyl-N,N-dimethylharnstoff (Di- uron). Weiterhin können Verbindungen der Klasse der Imidazole und Amin- Komplexe eingesetzt werden.
Bevorzugt handelt es sich beim Härter B um einen Härter, welcher ausgewählt ist aus der Gruppe bestehend aus Dicyandiamid, Guanamine, Guanidine, Aminoguanidine und deren Derivate; substituierte Harnstoffe, ins- besondere 3-Chlor-4-Methylphenylharnstoff (Chlortoluron), oder Phenyl-Dimethylharnstoffe, insbesondere p-Chlorphenyl-N,N-dimethylharnstoff (Monuron), 3-Phenyl-1 ,1 -dimethylharnstoff (Fenuron), 3,4-Dichlorphenyl-N,N-di- methylharnstoff(Diuron), sowie Imidazole und Amin-Komplexe. Besonders bevorzugt als Härter B ist Dicyandiamid. Vorteilhaft beträgt der Gesamtanteil des Härters B 0.5 - 12 Gewichts-
%, vorzugsweise 2 - 8 Gewichts-%, bezogen auf das Gewicht der gesamten Zusammensetzung.
Die Zusammensetzung kann weiterhin ein Thixotropiermittel C auf Basis eines Harnstoffderivates enthalten. Das Harnstoffderivat ist insbesondere ein Umsetzungsprodukt eines aromatischen monomeren
Diisocyanates mit einer aliphatischen Aminverbindung. Es ist auch durchaus möglich, mehrere unterschiedliche monomere Diisocyanate mit einer oder
mehreren aliphatischen Aminverbindungen oder ein monomeres Diisocyanat mit mehreren aliphatischen Aminverbindungen umzusetzen. Als besonders vorteilhaft hat sich das Umsetzungsprodukt von 4,4'-Diphenyl-methylen- diisocyanat (MDI) mit Butylamin erwiesen. Das Harnstoffderivat ist vorzugsweise in einem Trägermaterial vorhanden. Das Trägermaterial kann ein Weichmacher, insbesondere ein Phthalat oder ein Adipat sein, vorzugsweise ein Diisodecylphthalat (DIDP) oder Dioctyladipat (DOA). Das Trägermittel kann auch ein nicht-diffundierendes Trägermittel sein. Dies ist bevorzugt, um möglichst eine geringe Migration nach Aushärtung von nicht regierten Bestandteilen zu gewährleisten. Bevorzugt sind als nicht-diffundierende Trägermittel blockierte Polyurethanprepolymere.
Die Herstellung von solchen bevorzugten Harnstoffderivaten und Trägermaterialien sind im Detail in der Patentanmeldung EP 1 152 019 A1 beschrieben. Das Trägermaterial ist vorteilhaft ein blockiertes Polyurethanpre- polymer PU2, insbesondere erhalten durch Umsetzung eines trifunktionellen Polyetherpolyols mit IPDI und anschliessender Blockierung der endständigen Isocyanatgruppen mit ε-Caprolactam.
Vorteilhaft beträgt der Gesamtanteil des Thixotropiermittels C 0 - 40 Gewichts-%, vorzugsweise 5 - 25 % Gewichts-%, bezogen auf das Gewicht der gesamten Zusammensetzung. Das Verhältnis vom Gewicht des Harnstoffderivates zum Gewicht des allenfalls vorhandenen Trägermittels beträgt vorzugsweise 2 / 98 bis 50 / 50, insbesondere 5 / 95 - 25 /75.
Die Zusammensetzung enthält vorzugsweise weiterhin einen Zähigkeitsverbesserer D. Unter einem „Zähigkeitsverbesserer" wird hierbei und im Folgenden ein Zusatz zu einer reaktiven Matrix verstanden, der bereits bei geringen Zuschlägen von 0.1 - 15 Gew.-%, insbesondere von 0.5 - 8 Gew.-%, eine deutliche Zunahme der Zähigkeit nach der Härtung der reaktiven Matrix bewirkt und somit in der Lage ist, höherer Biege-, Zug-, Schlag- oder Stoss- beanspruchung aufzunehmen, bevor die gehärtete Matrix einreisst oder bricht. Der Zähigkeitsverbesserer kann ein Flüssigkautschuk D' oder ein fester Zähigkeitsverbesserer E sein.
Der Zähigkeitsverbesserer D ist insbesondere ein carboxyl- oder epoxid-terminiertes Polymer, insbesondere ein carboxyl- oder epoxid- terminiertes Acrylnitril/Butadien-Copolymer, oder ein Derivat davon, oder ein Blockcopolymer.
In einer ersten Ausführungsform ist der Flüssigkautschuk D' ein carboxyl- oder epoxidterminiertes Acrylnitril/Butadien-Copolymer oder ein Derivat davon. Derartige Flüssigkautschuke sind beispielsweise unter dem unter dem Namen Hycar® CTBN und CTBNX und ETBN von Nanoresins AG, Deutschland kommerziell erhältlich. Als Derivate sind insbesondere Epoxid- gruppen aufweisende Elastomer-modifizierte Prepolymere, wie sie unter der Produktelinie Polydis®, vorzugsweise aus der Produktelinie Polydis® 36.., von der Firma Struktol® (Schill+Seilacher Gruppe, Deutschland) oder unter der Produktelinie Albipox (Nanoresins, Deutschland) kommerziell vertrieben werden, geeignet.
Es ist dem Fachmann klar, dass natürlich auch Mischungen von Flüssigkautschuken verwendet werden können, insbesondere Mischungen von carboxyl- oder epoxidterminierten Acrylnitril/Butadien-Copolymeren oder von Derivaten davon.
In einer zweiten Ausführungsform ist dieser Flüssigkautschuk D' ein Polyacrylatflüssigkautschuk, der mit flüssigen Epoxidharzen vollständig mischbar ist und sich erst beim Aushärten der Epoxidharzmatrix zu Mikrotröpfchen entmischt. Derartige Polyacrylatflüssigkautschuke sind beispielsweise unter der Bezeichnung 20208-XPA von Rohm und Haas erhältlich.
In einer dritten Ausführungsform ist der Flüssigkautschuk D' ein Flüssigkautschuk der Formel
wobei R
3 für ein mit m" Isocyanatgruppen terminiertes lineares oder verzweigtes Polyurethanprepolymer PU1' nach dem Entfernen aller endständigen Isocyanatgruppen steht,
R4 steht für einen Rest eines eine primäre oder sekundäre Hydroxylgruppe enthaltenden aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Epoxids nach dem Entfernen der Hydroxyl- und Epoxidgruppen. Die detaillierten Möglichkeiten und bevorzugten Ausführungsformen für R4 entsprechen denjenigen von R4, wie sie für die Formel (I) resp. Formel (V) bereits vorgängig beschrieben wurden. p' steht für die Werte 1 , 2 oder 3. Die detaillierten Möglichkeiten und bevorzugten Ausführungsformen für p' entsprechen denjenigen von p, wie sie für die Formel (I) resp. Formel (V) bereits vorgängig beschrieben wurden. m" steht für einen Wert m > 0. Die detaillierten Möglichkeiten und bevorzugten Ausführungsformen für m" entsprechen denjenigen von m, wie sie für die Formel (I) resp. Formel (IV) bereits vorgängig beschrieben wurden.
Die Möglichkeiten und Details für die Herstellung des Isocyanatgruppen terminiertes linearen oder verzweigten Polyurethanprepolymers PU1' entsprechen denjenigen, wie sie bereits für das Isocyanatgruppen terminierte lineare oder verzweigte Polyurethanprepolymer PU1 beschrieben wurden.
In einer bevorzugten Ausführungsform enthält die Zusammensetzung mindestens einen epoxidfunktionellen Flüssigkautschuk auf Basis eines Acrylnitril/Butadien-Copolymers und mindestens einen epoxidfunktionellen Flüssigkautschuk der Formel
Der feste Zähigkeitsverbesserer E ist in einer ersten Ausführungsform ein organisches lonen-getauschtes Schichtmineral E1.
Das lonen-getauschte Schichtmineral E1 kann entweder ein Kationengetauschtes Schichtmineral E1c oder ein Anionen-getauschtes Schichtmineral E1a sein.
Das Kationen-getauschte Schichtmineral E1c wird hierbei erhalten aus einem Schichtmineral ET, bei welchem zumindest ein Teil der Kationen durch organische Kationen ausgetauscht worden sind. Beispiele für derartige Kationen-getauschte Schichtmineralien E1c sind insbesondere diejenigen, welche in US 5,707,439 oder in US 6,197,849 erwähnt sind. Ebenso ist dort das Verfahren zur Herstellung dieser Kationen-getauschten Schichtminerale E1c beschrieben. Bevorzugt als Schichtmineral ET ist ein Schichtsilikat. Insbesondere bevorzugt handelt es sich beim Schichtmineral ET um ein Phyllosilikat, wie sie in US 6,197,849 Spalte 2, Zeile 38 bis Spalte 3, Zeile 5 beschrieben sind, insbesondere um einen Bentonit. Als besonders geeignet haben sich Schichtmineral ET wie Kaolinit oder ein Montmorillionit oder ein Hectorit oder ein Illit gezeigt.
Zumindest ein Teil der Kationen des Schichtminerals ET wird durch organische Kationen ersetzt. Beispiele für derartige Kationen sind n-Octyl- ammonium, Trimethyldodecylammonium, Dimethyldodecylammonium oder Bis(hydroxyethyl)octadecylammonium oder ähnliche Derivate von Aminen, die aus natürlichen Fetten und Ölen gewonnen werden können; oder Guanidinium Kationen oder Amidiniumkationen; oder Kationen der N-substituierten Derivate von Pyrrolidin, Piperidin, Piperazin, Morpholin, Thiomorpholin; oder Kationen von 1 ,4-Diazobicyclo[2.2.2]octan (DABCO) und 1 -Azobicyclo[2.2.2]octan; oder Kationen von N-substituierten Derivaten von Pyridin, Pyrrol, Imidazol, Oxazol, Pyrimidin, Chinolin, Isochinoilin, Pyrazin, Indol, Bezimidazol, Benzoxaziol, Thiazol Phenazin und 2,2'-Bipyridin. Weiterhin sind geeignet cyclische Amidiniumkationen, insbesondere solche, wie sie in US 6,197,849 in Spalte 3 Zeile 6 bis Spalte 4 Zeile 67 offenbart werden. Cyclische Ammoniumverbindungen zeichnen sich gegenüber linearen Ammoniumverbindungen durch eine erhöhte Thermostabil ität aus, da der thermische Hoffmann - Abbau bei ihnen nicht auftreten kann.
Bevorzugte Kationen-getauschte Schichtminerale E1c sind dem Fachmann unter dem Term Organoclay oder Nanoclay bekannt und sind
kommerziell zum Beispiel unter den Gruppennamen Tixogel® oder Nanofil® (Südchemie), Cloisite® (Southern Clay Products) oder Nanomer® (Nanocor Inc.) erhältlich.
Das Anionen-getauschte Schichtmineral E1a wird hierbei erhalten aus einem Schichtmineral E1", bei welchem zumindest ein Teil der Anionen durch organische Anionen ausgetauscht worden sind. Ein Beispiel für ein derartig Anionen-getauschtes Schichtmineral E1a ist ein Hydrotalcit E1", bei dem zumindest ein Teil der Carbonat-Anionen der Zwischenschichten durch organische Anionen ausgetauscht wurden. Ein weiteres Beispiel sind funktionalisierte Alumoxane wie z. B. in US Patent 6 322890 beschrieben.
Es ist durchaus auch möglich, dass die Zusammensetzung gleichzeitig ein Kationen-getauschtes Schichtmineral E1c und ein Anionen-getauschtes Schichtmineral E1a enthält.
Der feste Zähigkeitsverbesserer ist in einer zweiten Ausführungsform ein Blockcopolymer E2. Das Blockcopolymer E2 wird erhalten aus einer anionischen oder kontrollierten radikalischen Polymerisation von Methacryl- säureester mit mindestens einem weiteren eine olefinisch Doppelbindung aufweisenden Monomeren. Als eine olefinische Doppelbindung aufweisende Monomere sind insbesondere solche bevorzugt, bei denen die Doppelbindung unmittelbar mit einem Heteroatom oder mit mindestens einer weiteren Doppelbindung konjugiert ist. Insbesondere sind Monomere geeignet, welche ausgewählt sind aus der Gruppe umfassend Styrol, Butadien, Acrylnitril und Vinylacetat. Bevorzugt sind Acrylat-Styrol-Acrylsäure (ASA) Copolymere, erhältlich z.B. unter dem Namen GELOY 1020 von GE Plastics. Besonders bevorzugte Blockcopolymere E2 sind Blockcopolymere aus
Methacrylsäuremethylester, Styrol und Butadien. Derartige Blockcopolymere sind beispielsweise als Triblockcopolymere unter der Gruppenbezeichnung SBM bei Arkema erhältlich.
Der feste Zähigkeitsverbesserer E ist in einer dritten Ausführungsform ein Core-Shell Polymer E3. Core-Shell-Polymere bestehen aus einem elastischen Kernpolymer und einem starren Schalen-Polymer. Insbesondere geeignete Core-Shell-Polymere bestehen aus einem Kern (Core) aus
elastischem Acrylat- oder Butadien-Polymer, den eine starre Schale (Shell) eines starren thermoplastischen Polymers umhüllt. Diese Core-Shell Struktur bildet sich entweder spontan durch Entmischen eines Blockcopolymeren oder ist durch die Polymerisationsführung als Latex oder Suspensions- Polymerisation mit nachfolgender Pfropfung vorgegeben. Bevorzugte Core- Shell-Polymere sind sogenannte MBS Polymere, welche kommerziell unter dem Handelsnamen Clearstrength™ von Atofina, Paraloid™ von Rohm und Haas oder F-351 ™ von Zeon erhältlich sind.
Besonders bevorzugt sind Core-Shell Polymerpartikel, die bereits als getrockneter Polymerlatex vorliegen. Beispiele hierfür sind GENIOPERL M23A von Wacker mit Polysiloxankern und Acrylatschale, strahlungsvernetzte
Kautschukpartikel der NEP Reihe, hergestellt von Eliokem oder Nanoprene von Lanxess oder Paraloid EXL von Rohm und Haas.
Weitere vergleichbare Beispiele für Core-Shell-Polymere werden unter dem Namen Albidur ™ von Nanoresins AG, Deutschland, angeboten.
Der feste Zähigkeitsverbesserer E ist in einer vierten Ausführungsform ein festes Umsetzungsprodukt E4 eines carboxylierten festen Nitrilkautschuks mit überschüssigem Epoxidharz.
Als fester Zähigkeitsverbesserer E sind Core-Shell Polymere bevorzugt.
Die Zusammensetzung enthält den Zähigkeitsverbesserer D vorteilhaft in einer Menge von 1 - 25 Gew.-%, bezogen auf das Gewicht der Zusammensetzung.
In einer weiteren bevorzugten Ausführungsform enthält die Zusammensetzung zusätzlich mindestens einen Füllstoff F. Bevorzugt handelt es sich hierbei um Glimmer, Talk, Kaolin, Wollastonit, Feldspat, Syenith, Chlorit, Bentonit, Montmorillonit, Calciumcarbonat (gefällt oder gemahlen), Dolomit, Quarz, Kieselsäuren (pyrogen oder gefällt), Cristobalit, Calciumoxid, Aluminiumhydroxid, Magnesiumoxid, thermoplasticshe Polymerpulver wie
Polyamid oder Poly(methylmethacrylat) Keramikhohlkugeln, Glashohlkugeln, organische Hohlkugeln, Glaskugeln, Farbpigmente und Fasern. Als Fasern sind insbesondere Langfasern oder kurzgeschnittene Glasfasern, Kohlefasern, Polyacrylnitrilfasern oder Phenolharzfasern geeignet, thermoplasticshe Polymerpulver wie Polyamid oder Poly(methylmethacrylat) Keramikhohlkugeln, Glashohlkugeln, organische Hohlkugeln, Glaskugeln, Farbpigmente und Fasern. Als Fasern sind insbesondere Langfasern oder kurzgeschnittene Glasfasern, Kohlefasern, Polyacrylnitrilfasern oder Phenolharzfasern geeignet. Als Füllstoff F sind sowohl die organisch beschichteten als auch die unbeschichteten kommerziell erhältlichen und dem Fachmann bekannten Formen gemeint.
Vorteilhaft beträgt der Gesamtanteil des gesamten Füllstoffs F 3 - 50 Gewichts-%, vorzugsweise 5 - 35 Gewichts-%, insbesondere 5 - 25 Gewichts- %, bezogen auf das Gewicht der gesamten Zusammensetzung.
In einer besonders bevorzugten Ausführungsform enthält die Zusammensetzung ein physikalisches oder chemisches Treibmittel, wie es beispielsweise unter dem Handelsnamen Expancel™ der Firma Akzo Nobel oder Celogen™ der Firma Chemtura erhältlich ist. Der Anteil des Treibmittels be- trägt vorteilhaft 0.1 - 3 Gew.-%, bezogen auf das Gewicht der Zusammensetzung.
In einer weiteren bevorzugten Ausführungsform enthält die Zusammensetzung zusätzlich mindestens einen Epoxidgruppen-tragenden Reaktivverdünner G. Bei diesen Reaktivverdünnern G handelt es sich insbesondere um:
- Glycidylether von monofunktionellen gesättigten oder ungesättigten, verzweigten oder unverzweigten, zyklischen oder offen kettigen C4 - C30 Alkoholen, z.B. Butanolglycidylether, Hexanolglycidylether, 2-Ethyl- hexanolglycidylether, Allylglycidylether, Tetrahydrofurfuryl- und
Furfurylglycidylether, Trimethoxysilylglycidylether etc.
- Glycidylether von difunktionellen gesättigten oder ungesättigten, verzweigten oder unverzweigten, zyklischen oder offenkettigen C2 - C30
Alkolen, z.B Ethylenglykol-, Butandiol-, Hexandiol-, Oktandiolgylcidyl- ether, Cyclohexandimethanoldigylcidylether, Neopentylglycoldiglycidyl- ether etc.
- Glycidylether von tri- oder polyfunktionellen, gesättigten oder ungesät- tigten, verzweigten oder unverzweigten, zyklischen oder offen kettigen
Akoholen wie epoxidiertes Rhizinusöl, epoxidiertes Trimethylolpropan, epoxidiertes Pentaerythrol oder Polyglycidylether von aliphatischen Polyolen wie Sorbitol, Glycerin, Trimethylolpropan etc.
- Glycidylether von Phenol- und Anilinverbindungen wie Phenylglycidyl- ether, Kresylglycidylether, p-tert.-Butylphenylglycidylether, Nonyl- phenolglycidylether, 3-n-Pentadecenyl-glycidylether (aus Cashewnuss- Schalen-Öl), N,N-Diglycidylanilin etc.
- Epoxidierte Amine wie N, N-Diglycidylcyclohexylamin etc.
- Epoxidierte Mono- oder Dicarbonsäuren wie Neodecansäure-glycidyl- ester, Methacrylsäureglycidylester, Benzoesäureglycidylester, Phthalsäure-, Tetra- und Hexahydrophthalsäurediglycidylester, Diglycidyl- ester von dimeren Fettsäuren etc.
- Epoxidierte di- oder trifunktionelle, nieder- bis hochmolekulare PoIy- etherpolyole wie Polyethylenglycol-diglycidylether, Polypropylenegly- col-diglycidylether etc.
Besonders bevorzugt sind Hexandioldiglycidylether, Kresylglycidylether, p-te/t-Butylphenylglycidylether, Polypropylenglycoldiglycidylether und Polyethylenglycoldiglycidylether.
Vorteilhaft beträgt der Gesamtanteil des epoxidgruppentragenden Reaktivverdünners G 0.5 - 20 Gewichts-%, vorzugsweise 1 - 8 Gewichts-%, bezogen auf das Gewicht der gesamten Zusammensetzung.
Die Zusammensetzung kann weitere Bestandteile, insbesondere
Katalysatoren, Hitze- und/oder Lichtstabilisatoren, Thixotropiermittel, Weichmacher, Lösungsmittel, mineralische oder organische Füllstoffe, Treibmittel, Farbstoffe und Pigmente, umfassen.
Die Zusammensetzungen lassen sich besonders als einkomponentige Klebstoffe verwenden. Somit betrifft die Erfindung in einem weiteren Aspekt eine Verwendung der vorgängig beschriebenen Zusammensetzung als ein- komponentigen hitzehärtenden Klebstoff. Ein derartiger einkomponentiger Klebstoff weist breite Einsatzmöglichkeiten auf. Insbesondere sind hiermit hitzehärtende einkomponentige Klebstoffe realisierbar, die sich durch eine hohe Schlagzähigkeit, sowohl bei höheren Temperaturen und vor allem bei tiefen Temperaturen, insbesondere zwischen 00C bis -400C auszeichnen. Solche Klebstoffe werden für das Verkleben von hitzestabilen Materialien benötigt. Unter hitzestabilen Materialien werden Materialien verstanden, welche bei einer Aushärtetemperatur von 100 - 220 0C, vorzugsweise 120 - 2000C zumindest während der Aushärtezeit formstabil sind. Insbesondere handelt es sich hierbei um Metalle und Kunststoffe wie ABS, Polyamid, Polyphenylen- ether, Verbundmaterialien wie SMC, ungesättigte Polyester GFK, Epoxid- oder Acrylatverbundwerkstoffe. Bevorzugt ist die Anwendung, bei der zumindest ein Material ein Metall ist. Als besonders bevorzugte Verwendung gilt das Verkleben von gleichen oder verschiedenen Metallen, insbesondere im Rohbau in der Automobilindustrie. Die bevorzugten Metalle sind vor allem Stahl, insbesondere elektrolytisch verzinkter, feuerverzinkter, beölter Stahl, Bonazink- beschichteter Stahl, und nachträglich phosphatierter Stahl, sowie Aluminium insbesondere in den im Autobau typischerweise vorkommenden Varianten.
Mit einem Klebstoff basierend auf einer erfindungsgemässen Zusammensetzung ist es möglich, die gewünschte Kombination von hoher Crashfestigkeit sowohl hoher als auch tiefer Einsatztemperatur zu erreichen. Zusätzlich hierzu weist die Zusammensetzung hohe mechanische Werte auf. Insbesondere hat sich gezeigt, dass Glasübergangstemperaturen von über 90°C, insbesondere von 1000C oder höher, erreicht werden können, was insbesondere wichtig ist für Anwendungen mit hohen Arbeitstemperaturen. Ein weiterer Aspekt der Erfindung betrifft somit ein Verfahren zum
Verkleben von hitzestabilen Materialien, bei welchem diese Materialien mit einer vorgängig beschriebenen Epoxidharzzusammensetzung kontaktiert werden und welches einen oder mehrere Schritte des Aushärtens bei einer
Temperatur von 100 - 220 0C, vorzugsweise 120 - 2000C umfasst. Ein derartiger Klebstoff wird insbesondere zuerst mit den zu verklebenden Materialien bei einer Temperatur von zwischen 10° C und 800C, insbesondere zwischen 100C und 60°C, kontaktiert und später ausgehärtet bei einer Temperatur von typischerweise 100 - 220 °C, vorzugsweise 120 - 2000C.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft einen verklebten Artikel, welcher durch ein Verkleben mit einer vorgängig beschriebenen Zusammensetzung und Erhitzen der verklebten Materialien auf eine Temperatur von 100 - 220 °C, vorzugsweise 120 - 200°C, erhalten wird. Ein derartiger Artikel ist vorzugsweise ein Fahrzeug oder ein Anbauteil eines Fahrzeugs.
Selbstverständlich können mit einer erfindungsgemässen Zusammensetzung neben hitzehärtenden Klebstoffen auch Dichtmassen oder Beschich- tungen realisiert werden. Ferner eignen sich die erfindungsgemässen Zusammensetzungen nicht nur für den Automobilbau sondern auch für andere Anwendungsgebiete. Besonders zu erwähnen sind verwandte Anwendungen im Transportmittelbau wie Schiffe, Lastwagen, Busse oder Schienenfahrzeuge oder im Bau von Gebrauchsgütern wie beispielsweise Waschmaschinen.
Die mittels einer erfindungsgemässen Zusammensetzung verklebten
Materialien kommen bei Temperaturen zwischen typischerweise 1200C und -40°C, vorzugsweise zwischen 100°C und -400C, insbesondere zwischen 80°C und -40°C zum Einsatz.
Es wurde gefunden, dass das derivatisierte Epoxid-Festharz der
Formel (I) in hervorragender Art und Weise als Schlagzähigkeitsmodifikator, das heisst als Mittel zur Verbesserung der Schlagzähigkeit, insbesondere von Epoxidharzen, verwendet werden kann.
Eine besonders bevorzugte Anwendung der erfindungsgemässen hitzehärtenden Epoxidharzzusammensetzung ist die Anwendung als hitzehärtender Rohbauklebstoff im Fahrzeugbau.
Die besonders bevorzugten Zusammensetzungen, welche ein Treibmittel enthalten, lassen sich als Strukturschaum für die Verstärkung sowie Schalldämmung von Hohlräumen, insbesondere von metallischen Strukturen, verwenden. Insbesondere handelt es sich bei diesen Hohlräumen um Hohlräume von Transportmittel, vorzugsweise Automobilen, Bussen, Lastkraftwagen oder Schienenfahrzeugen. Diese metallischen Strukturen, die zu verfüllende Hohlräume aufweisen, sind insbesondere tragende Metallstrukturen, wie beispielsweise A-, B- oder C-Säulen oder Schweller von Automobilen. Die Zusammensetzung wird insbesondere vor der Elektrotauchlackie- rung in den Hohlraum appliziert. Später im Lackofen unter Hitzeeinwirkung von 100 - 220 0C, vorzugsweise 120 - 2000C, schäumt diese auf und vernetzt.
Somit betrifft die Erfindung in einem weiteren Aspekt geschäumte
Artikel, welche durch ein zumindest partielles Verfüllen eines Hohlraumes mit einer vorgängig beschriebenen Zusammensetzung und Erhitzen der verklebten Materialien auf eine Temperatur von 100 - 220 0C, vorzugsweise 120 - 2000C, erhalten wird.
Dieser geschäumte Artikel ist insbesondere ein Fahrzeug oder ein Anbauteil eines Fahrzeugs.
Beispiele
Im Folgenden sollen einige Beispiele aufgezeigt werden, welche die Erfindung weiter veranschaulichen, den Umfang der Erfindung aber in keiner Weise beschränken sollen.
Beispielhafte Herstellung eines monohydroxylhaltigen Epoxides
Monohydroxylhaltiges Epoxides MHE1
Trimethylolpropanglycidylether wurde gemäss dem Verfahren in Patent US 5,668,227, Beispiel 1 , aus Trimethylolpropan und Epichlorhydrin mit Tetramethylammoniumchlorid und Natronlauge hergestellt. Man erhält ein gelbliches Produkt mit einer Epoxidzahl von 7.5 eq/kg und einem Hydroxylgruppengehalt von 1.8 eq/kg. Aus dem HPLC-MS Spektrum kann geschlossen
werden, dass im Wesentlichen ein Gemisch von Trimethylolpropandiglycidyl- ether und Trimethylolpropantriglycidylether vorliegt. Dieses Produkt wurde als MHE1 eingesetzt.
Monohydroxylhaltiges Epoxid MHE2
1 ,3-bis(4-(2-(4-(oxiran-2-ylmethoxy)phenyl)propan-2-yl)phenoxy)- propan-2-ol):
Entsprechend Verbindung der Formel (IX), in welcher mit R für Methyl steht. 1 ,3-bis(4-(2-(4-(oxiran-2-ylmethoxy)phenyl)propan-2-yl)phenoxy)propan-2-ol) wurde aus technischem Bisphenol-A-diglycidylether (DGEBA) (Araldite® GY 250, Hersteller Huntsman) gewonnen, in welchem es ca. zu 15 Gew.-% vorhanden ist. Es kann durch destillatives Entfernen von DGEBA aufkonzentriert werden. In einem Dünnfilmverdampfer (Hersteller: Fa Ilmag) wird bei 180 0C Heizmanteltemperatur im Ölpumpenvakuum technischer Bisphenol-A-diglycidylether (EEW = 195 g/Epoxidequivalent, bestimmt durch Titration) mit einer Membranpumpe mit 200 ml/h dosiert. Dabei destilliert reines DGEBA ab, das bei Raumtemperatur kristallisiert. Der verbleibende Sumpf weist ein EEW = 207.1 g/Epoxidequivalent auf. Mit THF als Lösungsmittel zeigt das GPC Diagramm ein Flächenverhältnis der Peaks von „DGEBA-Dimer" und DGEBA von 40:60. Dieses Produkt wurde als MHE2 eingesetzt.
Beispiel eines Polyurethanprepolymers: PU1-1
400 g PoIyTHF 2000 (OH-Zahl 57.5 mg/g KOH) (BASF) wurden 30 Minuten unter Vakuum bei 1000C getrocknet. Anschliessend wurden 93.9 g
IPDI und 0.04 g Dibutylzinndilaurat zugegeben. Die Reaktion wurde unter
Vakuum bei 900C bis zur Konstanz des NCO-Gehaltes bei 3.58% nach 2.5 h geführt (theoretischer NCO-Gehalt: 3.70%).
In zu PU1-1 analoger Art und Weise wurden die Polyurethanprepoly- mere PU1-2, PU1-3 und PU1-4 aus den Diolen, Triol und Diisocyanaten
gemäss Tabelle 1 hergestellt. Für PU1-4 wurde zu Beginn eine Diol/Triol- Mischung verwendet.
Tabelle 1 . Herstellung von beispielhaften Polyurethanprepolymeren.
1DI= Polybutylenoxid-Diol (OH-Zahl:57.5 mg/g KOH, OH-Equivalentgewicht: ca.1000 g/OH-Eq.) (PoIy-THF 2000, BASF) 2D2= Polypropylenoxid-Diol (OH-Zahl: 28.1 mg/g KOH, OH-Equivalentgewicht: ca. 2000 g/OH-Eq.) 3TI= Polypropylenoxid- Triol (OH-Zahl: 31.2 mg/g KOH, OH-Equivalentgewicht: ca. 1800 g/OH-Eq.)
Beispiel eines teilweise blockierten Polvurethanprepolvmers: TBP- 1 Zu den obig beschriebenen 493.94 g Polyurethanprepolymer PU1-1 wurden anschliessend 173.7 g des oben beschriebenen Monohydroxyl haltigen Epoxids MHE1 zugegeben. Es wurde bei 900C unter Vakuum weitergerührt, bis der NCO-Gehalt nach weiteren 3h konstant bei 0.69 % NCO verblieb.
In zu TBP-1 analoger Art und Weise wurden die teilweise blockierten Polyure- than-prepolymere TBP-1, TBP-2, TBP-3, TBP-4 und TBP-5 aus den Polyurethanprepolymeren und den Blockierungsmittel gemäss Tabelle 2 hergestellt.
Tabelle 2. Herstellung von beispielhaften teilblockierten Polyurethanprepolymeren der Formel (V). 1NC700 = Cardolite NC700 (Cardanol, meta-substi- tuiertes Alkenyl-mono-Phenol) (Cardolite)
Beispiel eines derivatisierten Epoxid-Festharzes: 1
Das teilblockierte Polyurethanprepolymer wurde mit den Hydroxylgruppen eines Epoxid-Festharzes in einem Extruder wie folgt umgesetzt:
In einem Zweiwellenextruder (L/D 40, Wellendurchmesser 25 mm, Her- steller OMC, Italien) mit neun Heizzonen wurde das Epoxid-Festharz Araldite® GT 7004 (Huntsman)(hergestellt durch Advancement -Reaktion von Bisphe- nol-A-diglycidylether mit Bisphenol-A, Epoxid-Equivalentgewicht 735 g/ Epoxid- equivalent) bei 90 0C und 450 rpm extrudiert. Der Massenfluss betrug 2,640 kg/h. In Heizzone 4 wurde über eine Flüssigdosierung das auf 90 0C erhitzte teil blockierte Polyurethanprepolymer TBP-1 mit 660 ml/h zudosiert. Das derivatisierte Epoxid-Festharz 1 fiel nach Durchlaufen eines gekühlten Zweiwalzenkalanders als feste spröde Platten an, die in einer Schlagmühle zerkleinert wurden.
In zu 1 analoger Art und Weise wurden die derivatisierten Epoxid-
Festharze 2, 3, 4 und 5 aus den teilweise blockierten Polyurethanprepolymere und den Festharzen gemäss Tabelle 3 hergestellt.
Tabelle 3. Herstellung von beispielhaften derivatisierten Epoxid-festharzen der Formel (I).
Beispiel von Zusammensetzungen Klebstoffe
Es wurden die Klebstoffzusammensetzungen Z1 bis Z7 gemäss
Tabelle 4 hergestellt. In einem Planetenmischer werden alle Komponenten ausser Dicyandiamid vorgelegt und bei 90 - 1000C im Vakuum eine Stunde gerührt und dann in Kartuschen abgefüllt. Die Prüfung der mechanischen
Eigenschaften nach den beschriebenen Prüfmethoden.
Prüfmethoden:
Zuαscherfestiαkeit (ZSF) (DIN EN 1465)
Die Probekörper wurden aus den beschriebenen Zusammensetzungen und mit elektrolytisch verzinktem DC04 Stahl (eloZn) mit dem Mass 100 x 25 x 1.5 mm hergestellt, dabei betrug die Klebfläche 25 x 10 mm bei einer Schichtdicke von 0.3 mm. Gehärtet wurde 30 Min. bei 1800C. Die Zuggeschwindigkeit betrug 10 mm/min.
Zugfestigkeit (ZF) / Bruchdehnung (BD) /E-Modul (DIN EN ISO 527) Eine Klebstoffprobe wurde zwischen zwei Teflonpapieren auf eine Schichtdicke von 2 mm verpresst. Anschliessend wurde der Klebstoff während 30 Minuten bei 180°C gehärtet. Die Teflonpapiere wurden entfernt und die Probekörper nach DIN-Norm wurden im heissen Zustand ausgestanzt. Die Prüfkörper wurden nach 1 Tag Lagerung unter Normklima mit einer Zuggeschwindigkeit von 2 mm/min gemessen. Die Zugfestigkeit, Bruchdehnung und E-Modul (0.05-0.25%) wurde gemäss DIN EN ISO 527 bestimmt.
Schlagschälarbeit (ISO 11343)
Die Probekörper wurden aus den beschriebenen Zusammensetzungen und mit elektrolytisch verzinktem DC04 Stahl (eloZn) mit dem Mass 90 x 20 x 0.8 mm hergestellt, dabei betrug die Klebfläche 20 x 30 mm bei einer Schichtdicke von 0.3mm. Gehärtet wurde 30 Min. bei 1800C. Die Messung der Schlagschälarbeit erfolgte jeweils bei Raumtemperatur und bei minus 20°C. Die Schlag-
geschwindigkeit betrug 2 m/s. Als Bruchenergie (BE) in Joule wird die Fläche unter der Messkurve (von 25% bis 90%, gemäss ISO 11343) angegeben.
Die Ergebnisse dieser Prüfungen sind in Tabelle 4 zusammengestellt.
Tabelle 4. Zusammensetzungen und Resultate. 1DGEBA = D. E. R. 330 (Dow)(Epoxid-Flüssigharz) 2 GT= Gewichtsteile 3 Struktol = Struktol® Polydis® VP-3611 (Bisphenol-F-Diglycidylether modifizierer Nitril-Butadien-Rubber (EEW = 560 g/val)( Schill&Seilacher) 4BE =Bruchenergie 5n.m.= nicht gemessen.
Strukturschäume
Es wurden Strukturschäume mit der Zusammensetzung gemäss der Tabelle 5 hergestellt. Hierbei wurden die festen Inhaltsstoffe als Granulat über einen Feststoffdosierer in Zone 1 in einem Zweiwellenextruder (L/D 40, Wellen- durchmesser 25 mm, Hersteller OMC, Italien) mit neun Heizzonen, gekühlter Schlitzdüse und gekühltem Zweiwalzenkalanders zu einem spritzgussfähigen Granulat homogenisiert. Typische Einstellungen waren: Temperaturen in Zone 1 -4: 30,70,90,90,Zone 5-9: 90/ 90/ 90/ 85/ 800C Temperatur der Schmelze am Ausgang 72°C. Bei den Beispielen Ref.1 und Ref. 2 wurde der hochviskose Flüssigkautschuk EP1 wurde auf 800C geheizt und über eine Flüssigdosierung in Zone 5 eingespritzt. EP1 wurde wie folgt hergestellt:
Beispiel der Herstellung eines Epoxidgruppen-terminierten Polvurethanprepolv- mers (EPD
160 g PoIyTHF 1800 (BASF) (OH-Zahl 62.3 m/g KOH), 110 g Liquiflex H H (Hydroxylterminertes Polybutadien, Krahn)(OH-Zahl 46 mg/g KOH) und 130 g Caradol ED 56-10(Difunktionelles Polypropylenglykol, Shell) (OH-Zahl 56 mg/g KOH) wurden 30 Minuten unter Vakuum bei 1050C getrocknet. Nachdem die Temperatur auf 90°C reduziert worden war, wurden 92.5 g IPDI und 0.08 g Dibutylzinndilaurat zugegeben. Die Reaktion wurde unter Vakuum bei 90°C bis zur Konstanz des NCO-Gehaltes bei 3.60% nach 2.5 h geführt (berechneter NCO-Gehalt: 3.62%). Anschliessend wurden zu diesem Polyurethanpre- polymer 257.8 g des oben beschriebenen MHE1 zugegeben und die Reaktion wurde bei 900C unter Vakuum weitergeführt, bis der kein NCO-Gehalt mehr messbar war.
Prüfmethoden:
Glasübergangstemperatur (Tα) Die Glasübergangstemperatur wurde mittels DSC bestimmt. Es wurde hierfür ein Gerät Mettler DSC822e verwendet. 20 - 30 mg Klebstoffmuster wurden jeweils in einen Aluminiumtiegel eingewogen. Nachdem die Probe im DSC während 30 Min. bei 180°C gehärtet worden war, wurde die Probe auf minus
20°C abgekühlt und anschliessend mit einer Heizrate von 20°C/min bis 1500C aufgeheizt. Die Glasübergangstemperatur wurde mit Hilfe der DSC-Software aus der gemessenen DSC-Kurve bestimmt.
Zugfestigkeit (ZF) (DIN EN ISO 527)
Eine Klebstoffprobe wurde zwischen zwei Teflonpapieren auf eine Schichtdicke von 2 mm verpresst. Anschliessend wurde der Klebstoff während 30 Minuten bei 1800C gehärtet. Die Teflonpapiere wurden entfernt und die Probekörper nach DIN-Norm wurden im heissen Zustand ausgestanzt. Die Prüfkörper wurden nach 1 Tag Lagerung unter Normklima mit einer Zuggeschwindigkeit von 2 mm/min gemessen.
Die Zugfestigkeit, Bruchdehnung und E-Modul (0.05-0.25%) wurde gemäss DIN EN ISO 527 bestimmt.
3-Punkt-Biegung (ISO 178)
Die Probekörper wurden nach ISO 178 einem 3-Punkt-Biegetest unterworfen. Aus dieser Messung resultieren Biegespannung („BSP'), Biegemodul (im Bereich 0.05-0.25 %) {„BM") sowie die maximale Durchbiegung „dmaχ".
Die Ergebnisse dieser Prüfungen sind in Tabelle 5 zusammengestellt.
Tabelle 5. Beispielhafte Strukturschaumzusammensetzungen und deren Messresultate.1 GT 7004 = Araldite® GT 7004 (Huntsman) 2 GT= Gewichtsteile 3 Nipol = Nipol 1472 (Zeon, Granulat eines festen, hochmolekularen carboxylierten Nitrilkauschuks). 4 Expancel 95DU120 ist ein Treibmittel, Hersteller Akzo.