WO2008049392A2 - Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung - Google Patents

Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung Download PDF

Info

Publication number
WO2008049392A2
WO2008049392A2 PCT/DE2007/001859 DE2007001859W WO2008049392A2 WO 2008049392 A2 WO2008049392 A2 WO 2008049392A2 DE 2007001859 W DE2007001859 W DE 2007001859W WO 2008049392 A2 WO2008049392 A2 WO 2008049392A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
vapor
deposited
pore
pore formers
Prior art date
Application number
PCT/DE2007/001859
Other languages
English (en)
French (fr)
Other versions
WO2008049392A3 (de
Inventor
Erwin Bayer
Jürgen STEINWANDEL
Stefan Laure
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to EP07817694A priority Critical patent/EP2087143A2/de
Publication of WO2008049392A2 publication Critical patent/WO2008049392A2/de
Priority to US12/422,555 priority patent/US20090258214A1/en
Publication of WO2008049392A3 publication Critical patent/WO2008049392A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the invention relates to a vapor-deposited coating and a thermally loadable component with such a coating, and to methods and apparatus for producing such a coating.
  • Such coatings, components, methods and devices are e.g. known from DE 102004033054 Al.
  • Known methods for applying gaseous substances are e.g. the so-called Chemical or Physical Vapor Deposition (CVD / PVD)
  • CVD / PVD Chemical or Physical Vapor Deposition
  • the coating material which is usually present in solid form, is first evaporated and then solidified again on the surface to be coated.
  • condensation occurs in atomic orders of magnitude under chemical and / or physical interactions.
  • the forming coating is characterized by high homogeneity and good splitting properties. This means that even filigree structures or capillaries can be uniformly coated without significantly smoothing the structures or closing the capillaries.
  • such coatings have a stem structure whose heat resistance is lowest perpendicular to the coating direction.
  • Known methods for applying liquid substances are, for example, different thermal spraying methods.
  • Flame wire spraying (FDS) and arc wire spraying (LDS) are particularly high-performance processes.
  • wire or flux cored spray additives are melted in an electric arc and thrown onto the surface of the workpiece in droplet form by a nebulizer gas.
  • the drops combine superficially on the substrate to form a more or less porous layer.
  • a typical droplet or platelet-shaped microstructure morphology predominantly forms with mechanical stapling, which results in inhomogeneous layer properties and a comparatively low adhesive tensile strength.
  • thermal spray processes are hardly splitting. That means filigree Structures or capillaries can hardly be uniformly coated, but the filigree structures are substantially smoothed or the capillaries are closed.
  • the object is with respect to the vapor-deposited coating, in particular for thermally loadable components such. for a gas turbine of an aircraft engine, according to the invention solved in that it comprises pore formers, which were introduced specifically.
  • the pore formers may e.g. be designed as fullerenes and / or nano- and / or microballs (e.g., metallic hollow spheres) and / or easily volatilizable materials, e.g. Polystyrene beads.
  • the pore size can be adjusted from the nanometer range to the micrometer range.
  • the pore formers preferably have a defined, in particular uniform form; they are e.g. all spherical.
  • such a coating according to the invention has a high degree of homogeneity and cracking properties owing to the nature of its application - vapor deposition - and, on the other hand, because of the pore-forming agents it comprises, a high heat resistance in comparison with a pure vapor-deposited coating.
  • the coating according to the invention proves to be particularly advantageous if it has a gradient of the composition of the vapor-deposited material and / or if it has a gradient of the concentration and / or type, in particular the size, of the pore former included.
  • the vapor-deposited coating comprises reinforcing materials, in particular fibrous, preferably ceramic. These reinforcing materials are preferably arranged in the region of the pore formers and there increase the bond strength.
  • the fibrous reinforcing materials may be incorporated into the coating as short fibers in a manner similar to or in concert with the pore formers.
  • long fibers in fabric or scrim or similar form may be placed on the surface to be coated and then enclosed by the coating.
  • Particularly suitable are ceramic fibers because of their excellent reinforcing properties with low weight.
  • Round pores promote cracking less than irregularly shaped pores such as occur during thermal spraying.
  • the use of the reinforcing materials further reduces the likelihood of cracking.
  • the coating according to the invention proves to be particularly advantageous if it is designed as an adhesion-promoting layer and / or as a thermal barrier coating.
  • the primer layer may be e.g. be made of MCrAl Y material, wherein M is selected from the elements iron, nickel, cobalt or mixtures thereof, or of PtAl.
  • the pore-forming agents comprised thereof compensate for differences in thermal expansion between the surface to be coated and a thermal barrier coating. In addition, they increase the thermal resistance of the primer layer.
  • the coating according to the invention may comprise a thermal barrier coating.
  • Mx is selected from the lanthanides, in particular lanthanum, cerium, neodymium, or mixtures thereof
  • My is selected from the alkaline earth metals, the transition metals and the rare earths or mixtures thereof, preferably of magnesium, zinc, cobalt, manganese, iron, nickel, chromium, europium, samarium or mixtures thereof.
  • zirconium oxide in particular yttrium-stabilized zirconium oxide, or lanthanum zirconate or other oxides or suicides. The naturally occurring heat resistance of such material layers is significantly increased by the pore formers involved.
  • a coating according to the invention is particularly advantageous if it has been vapor-deposited onto a thermally loadable component, in particular on a component of a gas turbine of an aircraft engine, and if it has an adhesion-promoting layer applied to a component surface and a heat-insulating layer applied to the adhesion-promoting layer.
  • Suitable base materials for such thermally loadable components are iron, nickel or cobalt alloys.
  • pore-forming agents are additionally introduced into the build-up coating during the vapor deposition.
  • pore formers e.g. Fullerenes and / or nano- and / or microballs (e.g., metallic hollow spheres) and / or easily volatilizable materials, e.g. Polystyrene balls, are used.
  • the specific thermal conductivity or the thermal resistance can be influenced in a wide range by selecting the type, size and concentration or number of pore formers. In principle, it is advantageous to expose the pore formers, if possible, only for a short time to a coating vapor which is as cool as possible. However, the decisive factor is the transfer of energy from the vapor to the pore formers, ie higher temperatures are permissible if the vapor density is lower. At atmospheric pressure, however, the maximum permeability limit of most pore-forming agents is around 300 ° C, in some it is much lower and in a few higher.
  • the pore-forming agents should first come into contact with the vaporous coating material on the surface to be coated or shortly before, since its heat energy is then dissipated comparatively quickly over the surface to be coated into deeper layers of the component without damaging or even destroying the pore-forming agents.
  • the carrier gas stream may be inert in order to influence the steam jet as little as possible or it may also consist of a reactive gas which reacts with the steam jet and so only causes a CVD.
  • the composition of the vapor-deposited material is changed during the vapor deposition.
  • continuous transitions can be created-for example, starting from a base material to be coated with a smooth transition to an adhesion-promoting layer, which in turn flows fluently into a thermal barrier layer, which in turn merges fluently into a protective layer that protects against erosion.
  • the type, size and / or concentration of the pore former included during the vapor deposition is changed. As a result, the specific thermal conductivity or the thermal resistance of the coating can be influenced in a wide range.
  • reinforcing materials are introduced, in particular fibrous, preferably ceramic. These reinforcing materials increase the bond strength and are therefore preferably introduced in the area of the pore formers.
  • the fibrous reinforcing materials may be incorporated into the coating as short fibers in a manner similar to or in concert with the pore formers.
  • long fibers in fabric or scrim or similar form can be placed on the surface to be coated and then enclosed by the condensing vapor phase.
  • the inventive method is used particularly advantageously if the coating is designed as an adhesion-promoting layer adjacent to the component surface by suitable choice of the respective material composition and, based on this, configured as a thermal barrier coating.
  • the coating is designed as an adhesion-promoting layer adjacent to the component surface by suitable choice of the respective material composition and, based on this, configured as a thermal barrier coating.
  • the object is achieved with respect to the device for producing a vapor-deposited coating by means of PVD or CVD according to the invention in that it has a device for introducing pore formers into the build-up coating.
  • Such a device is particularly advantageously designed if it has a device for producing a directed plasma jet of the material to be evaporated, and when the means for introducing pore formers comprises means for producing a directional carrier gas jet.
  • a plasma jet according to the invention is (as opposed to a thermal spray jet) substantially free of droplet-shaped sprayed material with droplet sizes above 500 nm; Particularly preferably, the maximum size of droplets contained in the plasma jet at the nozzle exit below 200 nm.
  • the plasma jet can also be described as an atomic nebula, which is formed by atoms and atomic microclusters, ie aggregates of a few atoms to several thousand atoms.
  • the directed plasma jet allows the targeted coating of selected surface areas with the vapor formed in it.
  • the directed carrier gas jet allows the targeted introduction of pore formers into selected surface areas.
  • the carrier gas stream may be inert in order to influence the steam jet as little as possible or it may also consist of a reactive gas which reacts with the steam jet and so only causes a CVD.
  • the device for generating the directed carrier gas jet is designed such that it allows an alignment of the carrier gas jet.
  • the carrier gas jet depending on the nature, size and concentration of the pore formers, can be optimally aligned relative to the plasma vapor jet with respect to its thermal capacity.
  • the energy transfer from the vaporous coating material to the pore former can be optimized. It is usually advantageous if both rays meet shortly before the surface or even on her.
  • the device according to the invention has at least one unit for metering the at least one type of pore-forming agent in order to be able to vary its concentration during the introduction into the coating to be created.
  • a mixed Device may be advantageous to allow a uniform mixing of different types and / or varieties.
  • FIG. 1 A section of a component surface of the base material G with a vapor-deposited coating B comprising a thin layer BG of vapor-deposited base material, above an adhesive layer BH, above an intermediate layer BZ, above a thermal barrier layer BW and finally a cover layer BD.
  • the inventive coating B is vapor-deposited on the surface of a component of a gas turbine of an aircraft engine which is subject to high thermal stress in a single operation. In the component required cooling air holes are not closed by the erfmdungshiel vapor-deposited coating.
  • the component surface of the base material G (e.g., a high strength iron alloy) is cleaned of oxide layers and / or other contaminants. This can be done by a transferred arc, by absorption, or by plasma ablation. The latter can be carried out in a particularly simple manner in the device according to the invention for the production of the coating which will be explained later on.
  • a very thin (few atomic layers) layer BG of the base material G is first vapor-deposited.
  • an adhesive layer BH is vapor-deposited, whereby the composition of the steam jet is continuously changed from that of the base material G to that of the adhesion-promoting material PtAl, so that a smooth transition of the layers results.
  • pore formers P in the form of metallic nano- and microballs are carried onto the surface by means of an inert carrier gas jet and are enclosed there by the adhesion-promoting material.
  • a dense intermediate layer BZ of Al 2 O 3 is vapor-deposited. Also between the layers BH and BZ there is a smooth transition of the material composition.
  • a thermal barrier layer BW of lanthanum hexaaluminate is vapor-deposited, which is constructed columnar or layered depending on the temperature. Also between the layers BZ and BW there is a smooth transition of the material composition.
  • pore formers P in the form of metallic nano- and microballs are carried on the surface by means of an inert carrier gas jet and are enclosed there by the thermal insulation material.
  • a ceramic cover layer BD made of zirconium oxide is vapor-deposited on the thermal barrier coating BW. Also between the layers BW and BD there is a smooth transition of the material composition.
  • the pore formers P in the bonding layer BH assist in balancing the different thermal expansion coefficients between the base material G and the thermal barrier layer BW.
  • the pore formers P in the thermal barrier coating BW serve primarily to enhance the thermal resistance of this layer.
  • the cover layer BD ensures good erosion protection.
  • the device for producing such a coating corresponds to the device shown in DE 102004033054 A1 and additionally has a device for introducing pore formers P into the build-up coating B.
  • the device for introducing pore formers P comprises an alignable device for producing a directional carrier gas jet.
  • the device according to the invention thus comprises as essential components a feeding device for wire-shaped coating material (alternatively, the
  • the cathode for generating the high-current arc plasma is formed by wire-shaped electrically conductive coating material and in addition
  • the wire-shaped coating material is fed in a wire feed through a slot nozzle in the plasma chamber.
  • the carrier gas is introduced via a device for gas supply on the wire feed side.
  • an additional gas introduction is provided, which is arranged here close to the arc discharge zone. Likewise, it is also possible to introduce the additional gas after premixing via the gas supply device.
  • the pore formers are directed by gravity or by a carrier gas to the area to be coated and embedded there by the cloud of vapor.
  • the vapor-deposited coating according to the invention and the thermally loadable component coated therewith, and the method and the device for producing the same Coating is characterized by good thermal resistance combined with very homogeneous deposition and excellent fissure or contour fidelity.
  • Preferred applications are in the production of thermal barrier coatings or fire protection coatings on metallic substrates, preferably low-pressure coatings, in particular for a gas turbine of an aircraft engine.
  • the method and device can also be used with normal or even overpressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Die Erfindung betrifft eine aufgedampfte Beschichtung für ein thermisch belastbares Bauteil, welche gezielt eingebrachte Porenbildner umfasst. Dies unterscheidet sie von üblichen aufgedampften Beschichtungen, die aufgrund der Beschichtungsart keine Poren aufweisen, oder auch von aufgespritzten Beschichtungen, welche keine oder lediglich willkürlich entstehende unregelmäßig geformte Poren aufweisen. Die Erfindung betrifft außerdem ein Verfahren und eine Vorrichtung zur Herstellung einer solchen Beschichtung.

Description

Aufgedampfte Beschichtung und thermisch belastbares Bauteil mit einer solchen Beschichtung, sowie Verfahren und Vorrichtung zur Herstellung einer solchen
Beschichtung
Die Erfindung betrifft eine aufgedampfte Beschichtung und ein thermisch belastbares Bauteil mit einer solchen Beschichtung, sowie Verfahren und Vorrichtung zur Herstellung einer solchen Beschichtung. Derartige Beschichtungen, Bauteile, Verfahren und Vorrichtungen sind z.B. aus der DE 102004033054 Al bekannt.
Beim Beschichten von Werkstücken werden gasförmige, flüssige oder feste Materialien aufgebracht.
Bekannte Verfahren zur Aufbringung gasförmiger Stoffe sind z.B. die sogenannte Chemical oder Physical Vapor Deposition (CVD/PVD) Dazu wird zunächst das meist in fester Form vorliegende Beschichtungsmaterial verdampft und dann auf der zu beschichtenden Oberfläche wieder verfestigt. Eine derartige Kondensation erfolgt in atomaren Größenordnungen unter chemischen und /oder physikalischen Wechselwirkungen. Die sich ausbildende Beschichtung zeichnet sich durch hohe Homogenität und große Spaltgängigkeit aus. Das bedeutet, auch filigrane Strukturen oder Kapillaren lassen sich gleichmäßig beschichten ohne die Strukturen wesentlich zu glätten oder die Kapillaren zu verschließen. Jedoch weisen derartige Beschichtungen eine Stängelstruktur auf, deren Wärmewiderstand senkrecht zur Beschichtungsrichtung am geringsten ist.
Bekannte Verfahren zur Aufbringung flüssiger Stoffe sind z.B. unterschiedliche thermische Spritzverfahren. Besonders leistungsfähige Verfahren stellen das Flammdrahtspritzen (FDS) und das Lichtbogendrahtspritzen (LDS) dar. Dabei werden Draht- oder Fülldraht- Spritzzusätze in einem elektrischen Lichtbogen geschmolzen und durch ein Zerstäubergas in Tropfenform auf die Oberfläche des Werkstückes geschleudert. Die Tropfen verbinden sich auf dem Substrat oberflächlich untereinander zu einer mehr oder weniger porösen Schicht. Dabei bildet sich im Allgemeinen eine typische tröpfchen- oder plättchenförmige Gefüge-Morphologie mit vorwiegend mechanischer Verklammerung aus, welche inhomogene Schichteigenschaften und eine vergleichsweise geringe Haftzugfestigkeit bewirkt. Darüber hinaus sind thermische Spritzverfahren kaum spaltgängig. Das bedeutet, filigrane Strukturen oder Kapillaren lassen sich kaum gleichmäßig beschichten, sondern die filigranen Strukturen werden wesentlich geglättet bzw. die Kapillaren werden verschlossen.
Es ist daher Aufgabe der Erfindung, eine aufgedampfte Beschichtung und ein thermisch belastbares Bauteil mit einer solchen Beschichtung, sowie Verfahren und Vorrichtung zur Herstellung einer solchen Beschichtung anzugeben, welche hohe Homogenität und Spalt- gängigkeit sowie guten Wärmewiderstand aufweisen.
Die Aufgabe wird bezüglich der aufgedampften Beschichtung, insbesondere für thermisch belastbare Bauteile wie z.B. für eine Gasturbine eines Flugtriebwerks, erfindungsgemäß dadurch gelöst, dass sie Porenbildner umfasst, die gezielt eingebracht wurden. Dabei können die Porenbildner z.B. ausgestaltet sein als Fullerene und/oder Nano- und/oder Microballs (z.B. metallische Hohlkugeln) und/oder leicht verdampfbare Materialien, z.B. Polystyrolkugeln. Die Porengröße lässt sich -je nach Art der verwendeten Porenbildner - vom Nanometerbereich bis in den Mikrometerbereich einstellen. Vorzugsweise weisen die Porenbildner eine definierte, insbesondere einheitliche Form auf; sie sind z.B. alle kugelförmig.
Eine solche erfindungsgemäße Beschichtung weist einerseits aufgrund der Art ihrer Aufbringung - des Bedampfens - eine hohe Homogenität und Spaltgängigkeit auf und andererseits aufgrund der von ihr umfassten Porenbildner einen im Vergleich zu einer reinen aufgedampften Beschichtung hohen Wärmewiderstand. Dies macht die erfindungsgemäße Beschichtung besonders geeignet für thermisch belastbare Bauteile wie z.B. für eine Gasturbine eines Flugtriebwerks, insbesondere da damit auch in solchen Gasturbinen erforderliche enge Kühlluftbohrungen ausreichend wärmedämmend beschichtet werden können ohne dabei zu verstopfen oder auch nur nicht tolerierbar eingeengt zu werden.
Als besonders vorteilhaft erweist sich die erfindungsgemäße Beschichtung, wenn sie einen Gradienten der Zusammensetzung des aufgedampften Materials aufweist und/oder wenn sie einen Gradienten der Konzentration und/oder Art, insbesondere der Größe, der umfassten Porenbildner aufweist. Mittels derartiger Gradienten lassen sich benötigte Materialeigenschaften stetig variieren und gleichzeitig fließende Materialübergänge schaffen, die gute Hafϊtzugfestigkeit in allen Schichtbereichen aufweisen.
Ebenfalls vorteilhaft ist es, wenn die aufgedampfte Beschichtung Verstärkungsmaterialien umfasst, insbesondere faserartige, vorzugsweise keramische. Diese Verstärkungsmaterialien sind vorzugsweise im Bereich der Porenbildner angeordnet und erhöhen dort die Verbundfestigkeit.
Die faserartigen Verstärkungsmaterialien können als Kurzfasern in ähnlicher Weise wie die Porenbildner oder auch gemeinsam mit diesen in die Beschichtung eingebracht werden. Alternativ können auch Langfasern in Gewebe- oder Gelege- oder ähnlicher Form auf der zu beschichtenden Oberfläche angeordnet und dann von der Beschichtung umschlossen werden. Besonders geeignet sind keramische Fasern aufgrund ihrer hervorragenden Verstärkungseigenschaften bei gleichzeitig geringem Gewicht.
Runde Poren begünstigen Rissbildung weniger als unregelmäßig geformte Poren wie sie beim thermischen Spritzen auftreten. Der Einsatz der Verstärkungsmaterialien reduziert die Wahrscheinlichkeit von Rissbildung weiter.
Als besonders vorteilhaft erweist sich die erfindungsgemäße Beschichtung, wenn sie als Haftvermittlungsschicht und/oder als Wärmedämmschicht ausgestaltet ist.
Die Haftvermittlungsschicht kann z.B. aus MCrAl Y-Material aufgebaut sein, wobei M aus den Elementen Eisen, Nickel, Kobalt oder Mischungen davon ausgewählt ist, oder aus PtAl. Die davon umfassten Porenbildner gleichen Unterschiede in der Wärmeausdehnung zwischen der zu beschichtenden Oberfläche und einer Wärmedämmschicht aus. Darüber hinaus erhöhen sie den Wärmewiderstand der Haftvermittlungsschicht.
Alternativ oder additiv kann die erfindungsgemäße Beschichtung eine Wärmedämmschicht umfassen. Z.B. basierend auf Mx2O3 und/oder MyO, wobei Mx aus den Lanthanoiden, insbesondere Lanthan, Cer, Neodym, oder Mischungen hiervon ausgewählt ist, und wobei My aus den Erdalkalimetallen, den Übergangsmetallen und den seltenen Erden oder Mischungen hiervon, vorzugsweise aus Magnesium, Zink, Kobalt, Mangan, Eisen, Nickel, Chrom, Europium, Samarium oder Mischungen hiervon, ausgewählt ist. Ebenfalls geeignet ist Zirkonoxid, insbesondere Yttrium stabilisiertes Zirkonoxid, oder Lanthanzirkonat oder andere Oxide oder Suizide. Der natürlich vorliegende Wärmewiderstand derartiger Materialschichten wird durch die umfassten Porenbildner noch wesentlich erhöht.
Besonders vorteilhaft ist eine erfmdungsgemäße Beschichtung, wenn sie auf ein thermisch belastbares Bauteil aufgedampft ist, insbesondere auf ein Bauteil einer Gasturbine eines Flugtriebwerks, und wenn sie eine auf einer Bauteiloberfläche aufgebrachte Haftvermittlungsschicht und eine auf die Haftvermittlungsschicht aufgebrachte Wärmedämmschicht aufweist.
Ein metallisches, mit Kühlluftbohrungen versehenes Bauteil einer Gasturbine erreicht mit der erfindungsgemäßen Beschichtung die notwendige Wärmedämmung ohne die Kühlluftbohrungen zu verstopfen oder aufwendig nachbearbeiten zu müssen und gewährleistet gleichzeitig eine hohe Verschleißbeständigkeit.
Geeignete Basismaterialien für derartige thermisch belastbare Bauteile sind Eisen-, Nickeloder Kobaltlegierungen.
Die Aufgabe wird bezüglich des Verfahrens zur Herstellung einer aufgedampften Beschichtung mittels PVD oder CVD erfϊndungsgemäß dadurch gelöst, dass während des Aufdampfens zusätzlich Porenbildner in die sich aufbauende Beschichtung eingebracht werden. Dabei können als Porenbildner z.B. Fullerene und/oder Nano- und/oder Microballs (z.B. metallische Hohlkugeln) und/oder leicht verdampfbare Materialien, z.B. Polystyrolkugeln, verwendet werden.
Die spezifische Wärmeleitfähigkeit bzw. der Wärmewiderstand lassen sich in breiten Bereichen durch die Auswahl von Art, Größe und Konzentration bzw. Anzahl der Porenbildner beeinflussen. Grundsätzlich ist es vorteilhaft, die Porenbildner möglichst nur kurzzeitig einem möglichst abgekühlten Beschichtungsdampf auszusetzen. Entscheidend ist jedoch der Energieübertrag vom Dampf auf die Porenbildner, d.h. bei geringerer Dampfdichte sind höhere Temperaturen zulässig. Bei atmosphärischem Druck ist die Belastbarkeitsgrenze der meisten Porenbildner aber bei circa 300°C gegeben, bei einigen bereits deutlich darunter, bei wenigen höher. Folglich sollten die Porenbildner möglichst erst auf der zu beschichtenden Oberfläche oder kurz davor in Kontakt mit dem dampfförmigen Beschichtungsmaterial kommen, da dessen Wärmeenergie dann über die zu beschichtende Oberfläche vergleichsweise schnell in tiefere Schichten des Bauteils abgeleitet wird ohne die Porenbildner zu beschädigen oder gar zu zerstören.
Besonders einfach lässt sich ein solcher lediglich kurzzeitiger Kontakt von Porenbildnern und heißer Gasphase sicherstellen, wenn zum Aufdampfen des Beschichtungsmaterials ein gerichteter Plasmastrahl verwendet wird. Verfahren und Vorrichtung zur Erzeugung eines geeigneten Plasmastrahls sind z.B. in der vorstehend genannten DE 102004033054 Al beschrieben. Wenn nun auch die Porenbildner z.B. mittels eines Trägergasstroms aufgebracht werden, so können beide Strahlen vorteilhaft derart ausgerichtet werden, dass sie sich erst auf oder kurz vor der zu beschichtenden Oberfläche treffen und somit die Einwirkzeit der heißen Dampfphase auf die vergleichsweise empfindlichen Porenbildner sehr kurz ist, woraus ein entsprechend geringer Energieübertrag resultiert.
Dabei kann der Trägergasstrom inert sein, um den Dampfstrahl möglichst wenig zu beeinflussen oder er kann auch aus einem reaktivem Gas bestehen, welches mit dem Dampfstrahl reagiert und so erst eine CVD bewirkt.
Vorteilhaft ist es auch, wenn die Zusammensetzung des aufgedampften Materials während des Aufdampfens verändert wird. Dadurch lassen sich kontinuierliche Übergänge schaffen - z.B. beginnend von einem zu beschichtenden Grundmaterial mit fließendem Übergang zu einer Haftvermittlungsschicht, welche wiederum fließend in eine Wärmedämmschicht ü- bergeht, die wiederum fließend in eine erossionsschützende Deckschicht übergeht. Alternativ oder additiv ist es vorteilhaft, wenn die Art, Größe und/oder Konzentration der umfassten Porenbildner während des Aufdampfens verändert wird. Dadurch lassen sich die spezifische Wärmeleitfähigkeit bzw. der Wärmewiderstand der Beschichtung in breiten Bereichen beeinflussen.
Alternativ oder additiv ist es außerdem vorteilhaft, wenn Verstärkungsmaterialien eingebracht werden, insbesondere faserartige, vorzugsweise keramische. Diese Verstärkungsmaterialien erhöhen die Verbundfestigkeit und werden deshalb vorzugsweise im Bereich der Porenbildner eingebracht.
Die faserartigen Verstärkungsmaterialien können als Kurzfasern in ähnlicher Weise wie die Porenbildner oder auch gemeinsam mit diesen in die Beschichtung eingebracht werden. Alternativ können auch Langfasern in Gewebe- oder Gelegeform oder in ähnlicher Form auf der zu beschichtenden Oberfläche angeordnet und dann von der kondensierenden Dampfphase umschlossen werden.
Besonders vorteilhaft wird das erfmdungsgemäße Verfahren eingesetzt, wenn die Beschichtung durch geeignete Wahl der jeweiligen Materialzusammensetzung an die Bauteiloberfläche angrenzend als Haftvermittlungsschicht ausgestaltet wird und darauf aufbauend als eine Wärmedämmschicht ausgestaltet wird. Eine derartige Ausgestaltung nutzt die erfindungsgemäßen Vorteile der hohen Homogenität und Spaltgängigkeit sowie des guten Wärmewiderstandes optimal aus.
Die Aufgabe wird bezüglich der Vorrichtung zur Herstellung einer aufgedampften Beschichtung mittels PVD oder CVD erfindungsgemäß dadurch gelöst, dass sie eine Einrichtung zur Einbringung von Porenbildnern in die sich aufbauende Beschichtung aufweist.
Besonders vorteilhaft ist eine derartige Vorrichtung ausgestaltet, wenn sie eine Einrichtung zur Erzeugung eines gerichteten Plasmastrahls des aufzudampfenden Materials aufweist, und wenn die Einrichtung zur Einbringung von Porenbildnern eine Einrichtung zur Erzeugung eines gerichteten Trägergasstrahl aufweist.
Ein erfindungsgemäßer Plasmastrahl ist (im Gegensatz zu einem thermischen Spritzstrahl) im wesentlichen frei von tropfenförmigem Spritzgut mit Tropfengrößen oberhalb 500 nm; besonders bevorzugt liegt die maximale Größe von im Plasmastrahl beim Düsenaustritt enthaltenen Tropfen unterhalb von 200 nm. Insbesondere unter Niederduckbedingungen lässt sich der Plasmastrahl auch als atomarer Nebel beschreiben, der durch Atome und atomare Mikrocluster, also Aggregate von wenigen Atomen bis einigen tausend Atomen gebildet wird.
Der gerichtete Plasmastrahl erlaubt die gezielte Beschichtung ausgewählter Oberflächenbereiche mit dem in ihm gebildeten Dampf. Der gerichtete Trägergasstrahl erlaubt die gezielte Einbringung von Porenbildnern in ausgewählte Oberflächenbereiche. Dabei kann der Trägergasstrom inert sein, um den Dampfstrahl möglichst wenig zu beeinflussen oder er kann auch aus einem reaktivem Gas bestehen, welches mit dem Dampfstrahl reagiert und so erst eine CVD bewirkt.
Vorzugsweise ist die Einrichtung zur Erzeugung des gerichteten Trägergasstrahl derart ausgestaltet, dass sie eine Ausrichtung des Trägergasstrahls ermöglicht. Dadurch kann der Trägergasstrahl -je nach Art, Größe und Konzentration der Porenbildner - in Hinsicht auf deren thermische Belastbarkeit optimal relativ zu dem Plasmadampfstrahl ausgerichtet werden, d.h. der Energieübertrag von dem dampfförmigen Beschichtungsmaterial auf die Porenbildner optimiert werden. Meist ist es vorteilhaft, wenn sich beide Strahlen kurz vor der Oberfläche oder gar erst auf ihr treffen.
Vorteilhaft ist es ebenfalls, wenn die erfmdungsgemäße Vorrichtung mindestens eine Einheit zur Dosierung der mindestens einen Art der Porenbildner aufweist, um deren Konzentration bei der Einbringung in die zu schaffende Beschichtung variieren zu können. Bei mehreren Arten oder Sorten, insbesondere Größensorten, kann auch ein Misch- Vorrichtung vorteilhaft sein, um eine gleichmäßige Vermischung der verschiedenen Arten und/oder Sorten zu erlauben.
Nachfolgend werden anhand der Figur sowie eines Ausführungsbeispiels die erfindungsgemäße aufgedampfte Beschichtung und ein thermisch belastbares Bauteil mit einer solchen Beschichtung, sowie das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zur Herstellung einer solchen Beschichtung näher erläutert. Dabei zeigt die Figur:
Figur: Einen Ausschnitt einer Bauteiloberfläche aus dem Grundmaterial G mit einer aufgedampften Beschichtung B umfassend eine dünne Schicht BG aus aufgedampften Grundmaterial, darüber eine Haftvermittlungsschicht BH, darüber eine Zwischenschicht BZ, darüber eine Wärmedämmschicht BW und abschließend eine Deckschicht BD.
Gemäß dem Ausfuhrungsbeispiel wird die erfϊndungsgemäße Beschichtung B auf die thermisch stark zu belastende Oberfläche eines Bauteils einer Gasturbine eines Flugtriebwerks in einem einzigen Arbeitsgang aufgedampft. In dem Bauteil erforderliche Kühlluftbohrungen werden von der erfmdungsgemäß aufgedampften Beschichtung nicht verschlossen.
Zunächst wird die Bauteiloberfläche aus dem Grundmaterial G (z.B. eine stark belastbare Eisenlegierung) von Oxidschichten und/oder anderen Verunreinigungen gereinigt. Dies kann durch einen übertragenen Lichtbogen, durch Absimmern oder durch Plasmaablation erfolgen. Letzteres kann besonders einfach in der später noch näher zu erläuternden erfϊndungsgemäßen Vorrichtung zur Herstellung der Beschichtung erfolgen.
Nach der Reinigung wird zunächst eine sehr dünne (wenige Atomlagen) Schicht BG aus dem Grundmaterial G aufgedampft. Darauf wird eine Haftvermittlungsschicht BH aufgedampft, wobei die Zusammensetzung des Dampfstrahls kontinuierlich von der des Grundmaterials G hin zu der des Haftvermittlungsmaterials PtAl geändert wird, so dass sich ein fließender Übergang der Schichten ergibt. Während der Beschichtung mit dem reinen Haftvermittlungsmaterial werden Porenbildner P in Form von metallischen Nano- und Microballs mittels eines inerten Trägergasstrahls auf die Oberfläche getragen und dort von dem Haftvermittlungsmaterial eingeschlossen. Auf die Haftvermittlungsschicht BH wird eine dichte Zwischenschicht BZ aus Al2O3 aufgedampft. Auch zwischen den Schichten BH und BZ erfolgt ein fließender Übergang der Materialzusammensetzung. Auf die Zwischenschicht BZ wird eine Wärmedämmschicht BW aus Lanthanhexaaluminat aufgedampft, die je nach Temperatoführung kolumnar oder schichtförmig aufgebaut ist. Auch zwischen den Schichten BZ und BW erfolgt ein fließender Übergang der Materialzusammensetzung. Während der Beschichtung mit dem reinen Wärmedämmmaterial werden Porenbildner P in Form von metallischen Nano- und Microballs mittels eines inerten Trägergasstrahls auf die Oberfläche getragen und dort von dem Wärmedämmmaterial eingeschlossen. Auf die Wärmedämmschicht BW wird eine keramische Deckschicht BD aus Zirkonoxid aufgedampft. Auch zwischen den Schichten BW und BD erfolgt ein fließender Übergang der Materialzusammensetzung.
Die Porenbildner P in der Haftvermittlungsschicht BH unterstützen den Ausgleich der unterschiedlichen Wärmeausdehnungskoeffizienten zwischen dem Grundmaterial G und der Wärmedämmschicht BW. Die Porenbildner P in der Wärmedämmschicht BW dienen vorrangig der Verstärkung des Wärmewiderstandes dieser Schicht. Die Deckschicht BD gewährleistet einen guten Erosionsschutz.
Die Vorrichtung zur Herstellung einer solchen Beschichtung entspricht der in der DE 102004033054 Al dargestellten Vorrichtung und weist zusätzlich eine Einrichtung zur Einbringung von Porenbildnern P in die sich aufbauende Beschichtung B auf. Die Einrichtung zur Einbringung von Porenbildnern P umfasst eine ausrichtbare Einrichtung zur Erzeugung eines gerichteten Trägergasstrahls.
Die erfindungsgemäße Vorrichtung umfasst also als wesentliche Bestandteile - eine Zufuhrvorrichtung für drahtförmiges Beschichtungsmaterial (alternativ ist auch die
Zuführung von flüssigem oder pulverförmigem Beschichtungsmaterial möglich)
- eine Gaszufuhr für Trägergas für das verdampfte Beschichtungsmaterial
- eine Plasmakammer mit Anode und Kathode in Drahtform zur Erzeugung eines
Hochstrom-Bogenplasmas
- und eine Austrittsdüse für einen gerichteten Plasmastrahl
wobei die Kathode zur Erzeugung des Hochstrom-Bogenplasmas durch drahtförmiges elektrisch leitfähiges Beschichtungsmaterial gebildet wird sowie zusätzlich
- eine Zufuhrvorrichtung für die Porenbüdner P
- eine Gaszufuhr für Trägergas für die Porenbildner P
- und eine ausrichtbare Austrittsdüse für einen gerichteten mit Porenbildnern P beladenen
Trägergasstrom
Dabei ist es entscheiden, dass die Plasmastrecke im Brenner sehr lang ist, so dass die Zufuhr des Materials direkt in den Plasmakernstrahl erfolgen kann.
Das drahtförmige Beschichtungsmaterial wird in einem Drahtvorschub durch eine Schlitzdüse in die Plasmakammer geführt. Das Trägergas wird über eine Vorrichtung zur Gaszuführung auf der Drahtzufuhrseite eingeleitet. Zur Zufuhr weiterer Gase, insbesondere reaktiver Gase ist eine Zusatzgaseinleitung vorgesehen, die hier nahe an der Lichtbogenentladungszone angeordnet ist. Ebenso ist es aber auch möglich das Zusatzgas nach Vormischung über die Gaszuführungsvorrichtung einzuleiten.
Die Porenbildner werden durch Schwerkraft oder durch ein Trägergas auf den zu beschichtenden Bereich gelenkt und dort von der Dampfwolke eingebettet.
Die erfindungsgemäße aufgedampfte Beschichtung und das damit beschichtete thermisch belastbare Bauteil sowie das Verfahren und die Vorrichtung zur Herstellung einer solchen Beschichtung zeichnen sich guten Wärmewiderstand bei gleichzeitig sehr homogener Abscheidung und hervorragender Spaltgängigkeit oder Konturtreue aus.
Bevorzugte Anwendungen liegen bei der Herstellung von Wärmedämmschichten bzw. Feuerschutzschichten auf metallischen Substraten bei bevorzugt Niederdruckbeschichtungen, insbesondere für eine Gasturbine eines Flugtriebwerks. Verfahren und Vorrichtung sind jedoch auch bei Normal- oder sogar Überdruck einsetzbar.

Claims

Patentansprüche
1. Aufgedampfte Beschichtung (B), insbesondere für thermisch belastbare Bauteile, vorzugsweise für eine Gasturbine eines Flugtriebwerks, dadurch gekennzeichnet, dass sie Porenbildner (P) umfasst.
2. Aufgedampfte Beschichtung (B) .nach Anspruch 1 , dadurch gekennzeichnet, dass die Porenbildner (P) ausgestaltet sind als Fullerene und/oder Nano- und/oder Microballs und/oder leicht verdampfbaren Materialien, z.B. Polystyrolkugeln.
3. Aufgedampfte Beschichtung (B) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie einen Gradienten der Zusammensetzung des aufgedampften Materials aufweist und/oder dass sie einen Gradienten der Konzentration und/oder Art, insbesondere Größe, der umfassten Porenbildner (P) aufweist.
4. Aufgedampfte Beschichtung (B) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Verstärkungsmaterialien umfasst, insbesondere faserartige, vorzugsweise keramische.
5. Aufgedampfte Beschichtung (B) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie als Haftvermittlungsschicht (BH) und/oder als Wärmedämmschicht (BW) ausgestaltet ist.
6. Thermisch belastbares Bauteil, insbesondere Bauteil einer Gasturbine eines Flugtriebwerks, mit einer auf einer Bauteiloberfläche aus einem Grundmaterial (G) aufgebrachten Be- schichtung (B) aus zumindest einer Haftvermittlungsschicht (BH) und einer auf die
Haftvermittlungsschicht (BH) aufgebrachten Wärmedämmschicht (BW), dadurch gekennzeichnet, dass die Beschichtung (B) nach einem der vorhergehenden Ansprüche ausgebildet ist.
7. Verfahren zur Herstellung einer aufgedampften Beschichtung (B) mittels PVD oder CVD dadurch gekennzeichnet, dass während des Aufdampfens zusätzlich Porenbildner (P) in die sich aufbauende
Beschichtung (B) eingebracht werden.
8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass als Porenbildner (P) Fullerene und/oder Nano- und/oder Microballs und/oder leicht verdampf bare Materialien eingebracht werden.
9. Verfahren nach Anspruch 7 oder 8 dadurch gekennzeichnet, dass zum Aufdampfen ein gerichteter Plasmastrahl verwendet wird.
10. Verfahren nach einem der Ansprüche 7 bis 9 dadurch gekennzeichnet, dass die Zusammensetzung des aufgedampften Materials und/oder die Art, Größe und/oder Konzentration der umfassten Porenbildner (P) während des Aufdampfens verändert wird.
11. Verfahren nach einem der Ansprüche 7 bis 10 dadurch gekennzeichnet, dass Verstärkungsmaterialien eingebracht werden, insbesondere faserartige, vorzugsweise keramische.
12. Verfahren nach einem der Ansprüche 7 bis 11 dadurch gekennzeichnet, dass die Beschichtung (B) an die Bauteiloberfiäche aus dem Grundmaterial (G) angrenzend als Haftvermittlungsschicht (BH) ausgestaltet wird und darauf aufbauend als eine Wärmedämmschicht (BW) ausgestaltet wird.
13. Vorrichtung zur Herstellung einer aufgedampften Beschichtung mittels PVD oder CVD dadurch gekennzeichnet, dass sie eine Einrichtung zur Einbringung von Porenbildnern (P) in die sich aufbauende Beschichtung (B) aufweist.
14. Vorrichtung nach Anspruch 13 dadurch gekennzeichnet, dass sie eine Einrichtung zur Erzeugung eines gerichteten Plasmastrahls des aufzudampfenden Materials aufweist, dass die Einrichtung zur Einbringung von Porenbildnern (P) eine Einrichtung zur Erzeugung eines gerichteten Trägergasstrahl aufweist.
15. Vorrichtung nach Anspruch 14 dadurch gekennzeichnet, dass die Einrichtung zur Erzeugung des Trägergasstrahls derart ausgestaltet ist, dass der Trägergasstrahl ausrichtbar ist.
PCT/DE2007/001859 2006-10-27 2007-10-17 Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung WO2008049392A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07817694A EP2087143A2 (de) 2006-10-27 2007-10-17 Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung
US12/422,555 US20090258214A1 (en) 2006-10-27 2009-04-13 Vapor-deposited coating and thermally stressable component having such a coating, and also a process and apparatus for producing such a coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610050789 DE102006050789A1 (de) 2006-10-27 2006-10-27 Aufgedampfte Beschichtung und thermisch belastbares Bauteil mit einer solchen Beschichtung, sowie Verfahren und Vorrichtung zur Herstellung einer solchen Beschichtung
DE102006050789.4 2006-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/422,555 Continuation US20090258214A1 (en) 2006-10-27 2009-04-13 Vapor-deposited coating and thermally stressable component having such a coating, and also a process and apparatus for producing such a coating

Publications (2)

Publication Number Publication Date
WO2008049392A2 true WO2008049392A2 (de) 2008-05-02
WO2008049392A3 WO2008049392A3 (de) 2009-10-15

Family

ID=38894010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001859 WO2008049392A2 (de) 2006-10-27 2007-10-17 Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung

Country Status (4)

Country Link
US (1) US20090258214A1 (de)
EP (1) EP2087143A2 (de)
DE (1) DE102006050789A1 (de)
WO (1) WO2008049392A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145000B2 (en) 2016-05-27 2018-12-04 General Electric Company Thermally dissipative article and method of forming a thermally dissipative article
JP6908973B2 (ja) * 2016-06-08 2021-07-28 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198742A1 (en) * 2002-04-17 2003-10-23 Vrtis Raymond Nicholas Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants
WO2004038783A2 (en) * 2002-10-21 2004-05-06 Massachusetts Institute Of Technology Pecvd of organosilicate thin films
US20040096593A1 (en) * 2002-11-14 2004-05-20 Lukas Aaron Scott Non-thermal process for forming porous low dielectric constant films
DE102004033054A1 (de) * 2004-07-08 2005-10-20 Daimler Chrysler Ag Vorrichtung und Verfahren zum Plasmaspritzen
EP1726681A1 (de) * 2005-05-23 2006-11-29 United Technologies Corporation Schichtsystem für siliziumhaltige Substrats

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196471A (en) * 1990-11-19 1993-03-23 Sulzer Plasma Technik, Inc. Thermal spray powders for abradable coatings, abradable coatings containing solid lubricants and methods of fabricating abradable coatings
JPH1088368A (ja) * 1996-09-19 1998-04-07 Toshiba Corp 遮熱コーティング部材およびその作製方法
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
FR2779448B1 (fr) * 1998-06-04 2000-12-15 Snecma Revetement ceramique a faible conductivite thermique et de type barriere thermique, procede de depot d'un tel revetement ceramique, et piece metallique protegee par ce revetement ceramique
US6537021B2 (en) * 2001-06-06 2003-03-25 Chromalloy Gas Turbine Corporation Abradeable seal system
US6881452B2 (en) * 2001-07-06 2005-04-19 General Electric Company Method for improving the TBC life of a single phase platinum aluminide bond coat by preoxidation heat treatment
US6921586B2 (en) * 2002-02-05 2005-07-26 General Electric Company Ni-Base superalloy having a coating system containing a diffusion barrier layer
US6887530B2 (en) * 2002-06-07 2005-05-03 Sulzer Metco (Canada) Inc. Thermal spray compositions for abradable seals
DE10225532C1 (de) * 2002-06-10 2003-12-04 Mtu Aero Engines Gmbh Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine
DE10337094A1 (de) * 2003-08-12 2005-03-03 Mtu Aero Engines Gmbh Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
DE10343761A1 (de) * 2003-09-22 2005-04-14 Mtu Aero Engines Gmbh Verschleißschutzschicht, Bauteil mit einer derartigen Verschleißschutzschicht sowie Herstellverfahren
US7150921B2 (en) * 2004-05-18 2006-12-19 General Electric Company Bi-layer HVOF coating with controlled porosity for use in thermal barrier coatings
US7549840B2 (en) * 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
CA2585992C (en) * 2006-06-08 2014-06-17 Sulzer Metco (Us) Inc. Dysprosia stabilized zirconia abradable
US8021742B2 (en) * 2006-12-15 2011-09-20 Siemens Energy, Inc. Impact resistant thermal barrier coating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198742A1 (en) * 2002-04-17 2003-10-23 Vrtis Raymond Nicholas Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants
WO2004038783A2 (en) * 2002-10-21 2004-05-06 Massachusetts Institute Of Technology Pecvd of organosilicate thin films
US20040096593A1 (en) * 2002-11-14 2004-05-20 Lukas Aaron Scott Non-thermal process for forming porous low dielectric constant films
DE102004033054A1 (de) * 2004-07-08 2005-10-20 Daimler Chrysler Ag Vorrichtung und Verfahren zum Plasmaspritzen
EP1726681A1 (de) * 2005-05-23 2006-11-29 United Technologies Corporation Schichtsystem für siliziumhaltige Substrats

Also Published As

Publication number Publication date
US20090258214A1 (en) 2009-10-15
EP2087143A2 (de) 2009-08-12
WO2008049392A3 (de) 2009-10-15
DE102006050789A1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
DE60111658T2 (de) Beschichtung auf faserverstärkte Verbundmaterialien
EP1926841B1 (de) Kaltgasspritzverfahren
EP3045560B1 (de) Verfahren und vorrichtung zur herstellung einer struktur oder eines bauteils für hochtemperaturanwendungen
EP1857183B1 (de) Vorrichtung zum Kaltgasspritzen
WO1986006106A1 (fr) Couche de protection
EP1969156A1 (de) Verfahren zum beschichten einer schaufel und schaufel einer gasturbine
EP2439306A1 (de) Verfahren zum Herstellen eines Wärmedämmschichtaufbaus
DE102012218448A1 (de) Verbessertes hybrides Verfahren zum Herstellen vielschichtiger und graduierter Verbundbeschichtungen durch Plasmaspritzen unter der Verwendung von Pulver- und Vorläuferlösungs-Zufuhrmaterial
EP1495151A1 (de) Plasmaspritzverfahren
EP1946012A1 (de) Vorrichtung zur hochdruckgaserhitzung
EP0532134B1 (de) Verfahren und Vorrichtung zum Beschichten von Substraten mit hochtemperaturbeständigen Kunststoffen
WO2008084025A2 (de) Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität
WO2013014214A2 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
WO2014191155A1 (de) Verfahren zum herstellen eines metallschaums sowie verfahren zum herstellen von für das vorgenannte verfahren geeigneten partikeln
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
WO2008049392A2 (de) Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
EP0990713B1 (de) Anwendung eines thermischen Spritzverfahrens zur Herstellung einer Wärmedämmschicht
EP2066827A1 (de) Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
WO2022073697A1 (de) Verfahren zur herstellung einer beschichtung sowie beschichtung
DE102006040360A1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
EP0536355B1 (de) Verfahren zum aufbringen einer beschichtung auf ein substrat
DE102022116236A1 (de) Beschichtetes bauteil, dessen verwendung, und verfahren zu dessen herstellung
WO2010017799A1 (de) Leichtbaupanzerung
WO2015031921A1 (de) Verfahren zur oberflächenbehandlung mittels kaltgasspritzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817694

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007817694

Country of ref document: EP