WO2008044454A1 - Dispositif de commande de décharge - Google Patents

Dispositif de commande de décharge Download PDF

Info

Publication number
WO2008044454A1
WO2008044454A1 PCT/JP2007/068406 JP2007068406W WO2008044454A1 WO 2008044454 A1 WO2008044454 A1 WO 2008044454A1 JP 2007068406 W JP2007068406 W JP 2007068406W WO 2008044454 A1 WO2008044454 A1 WO 2008044454A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
discharge
secondary battery
end voltage
amount
Prior art date
Application number
PCT/JP2007/068406
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Muraoka
Haruya Nakai
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07807738A priority Critical patent/EP2073302A4/en
Priority to US12/441,687 priority patent/US8102155B2/en
Priority to CN2007800362265A priority patent/CN101523659B/zh
Publication of WO2008044454A1 publication Critical patent/WO2008044454A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a discharge using a non-aqueous electrolyte secondary battery suitable as a secondary battery that is used in transportation equipment such as high-load equipment and electric vehicles and is required to have a high capacity and a long life.
  • the present invention relates to a control device.
  • Secondary batteries used in these devices include nickel-cadmium batteries, nickel-metal hydride batteries, lead batteries, and lithium ion secondary batteries. To achieve small size and weight reduction, lithium ion secondary batteries are used. Secondary battery is optimal
  • the discharge lower limit voltage is the lower limit of the voltage allowed during discharge.
  • a secondary battery has a property that the dischargeable capacity of the secondary battery decreases as charging and discharging are repeated. This decrease in capacity is called cycle deterioration and is a problem related to the life of secondary batteries.
  • One cause of secondary battery deterioration is discharge to the lower limit, that is, discharge until the terminal voltage falls below the lower discharge voltage. When such a discharge is performed, the cathode or anode material deteriorates at the end of the discharge.
  • the potential at which the positive electrode and the negative electrode start to deteriorate at the end of discharge is generally the positive electrode potential (V).
  • V 1.5 V or less (vs lithium potential), and the negative electrode potential (V) is generally 2.5 V or more (vs lithium)
  • the positive electrode When the positive electrode is used as an active material having an ⁇ -NaFeO type layered rock salt structure represented by cobalt acid generally used in lithium ion batteries, a potential of 1.5 V or less (vs. lithium potential) An irreversible reaction takes place, resulting in rapid cycle deterioration.
  • the negative electrode is 2.0 V or more
  • Elution of copper occurs at a potential of (versus lithium).
  • a battery that has reached the elution potential of copper is charged again, copper is deposited on the positive electrode side, causing a short circuit of the cell and an increase in resistance, resulting in rapid cycle deterioration. Accordingly, rapid cycle deterioration occurs if the potential of the positive electrode or negative electrode is not terminated within the aforementioned potential range.
  • V 1 V 1 + V l.
  • FIG. 3 is a block diagram showing the operation of the conventional discharge control device.
  • the discharge control device 1 has a configuration in which a secondary battery 2, a load 3, and a control unit 4 are combined. However, load 3 may not be combined except when discharging.
  • the secondary battery 2 is a battery that can be charged and discharged, and is connected to the control unit 4.
  • Load 3 is a power consuming device such as a power tool or motor, and is connected to the control unit 4! /.
  • the control unit 4 includes a voltage detector 5, an end voltage control circuit unit 6, and an open / close switch 7.
  • the voltage detector 5 detects the voltage value V of the secondary battery 2.
  • the end voltage control circuit unit 6 is connected to the voltage detector 5 by
  • the detected voltage value V of the secondary battery 2 is compared with the discharge end voltage V.
  • the pressure control circuit unit 6 performs control to connect or disconnect the secondary battery 2 to or from the load 3 with the opening / closing switch 7 according to the comparison result.
  • Final voltage control circuit 6 is the final discharge voltage V
  • the end voltage control circuit unit 6 is configured using, for example, a micro computer.
  • the method is usually used so far!
  • Patent Document 1 proposes that the discharge end voltage can be varied according to the magnitude of the discharge current.
  • the means for varying the discharge end voltage with the discharge current value as in Patent Document 1 cannot stop the discharge at the optimum voltage, and depending on the environmental temperature, rapid cycle deterioration may occur, I was unable to get enough battery capacity. This is because, at a certain temperature, it is excellent when the end-of-discharge voltage is changed according to the discharge current value.
  • the power to obtain cycle performance and battery capacity S depending on the difference in battery temperature due to the difference in operating environment temperature and the use conditions of the discharge control device, the polarity of the positive and negative electrodes changes greatly. This is because if the discharge end voltage is changed accordingly, the discharge ends before the charged charge is sufficiently discharged, or rapid cycle deterioration due to overdischarge occurs.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-257684
  • An object of the present invention is to provide a discharge control device that can easily improve the utilization efficiency of stored energy by lowering the discharge end voltage while suppressing deterioration of the cycle performance of the secondary battery. is there.
  • a discharge control device includes a secondary battery, a switch unit that opens and closes a discharge path from the secondary battery to a load, and a voltage detection unit that detects a terminal voltage of the secondary battery;
  • the terminal voltage detected by the voltage detector is a predetermined discharge end voltage V
  • the switch unit When the following conditions are met, the switch unit is opened, and the amount of decrease in the terminal voltage detected by the voltage detection unit per unit time is measured, and the discharge amount increases as the amount of decrease per unit time increases.
  • the discharge end voltage V is reduced so that the end voltage V decreases.
  • the pond discharge is stopped. Also, the end voltage control unit controls the end of discharge so that the end voltage V decreases as the amount of decrease in the terminal voltage of the secondary battery per unit time increases.
  • Stop voltage V is set. Then, the secondary battery is discharged with a large current and the positive and negative polarities are polarized.
  • the end-of-discharge voltage control unit decreases the end-of-discharge voltage V so as to correspond to the increase in the polarization of the positive and negative electrodes.
  • the end voltage control unit reduces the polarization of the positive and negative electrodes.
  • the discharge end voltage V is increased to correspond to.
  • the polarization of the positive and negative electrodes Even if the voltage that causes deterioration of cycle performance increases due to the decrease, it is easy to stop the discharge before the deterioration of cycle performance and reduce the deterioration of the secondary battery.
  • the final discharge voltage V is determined by reflecting the change in the polarization of the positive and negative electrodes as the ambient temperature changes.
  • FIG. 1 is a block diagram showing an example of a configuration of a charge / discharge control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an example of the operation of the charge / discharge control device shown in FIG.
  • FIG. 3 is a block diagram showing a form of a conventional discharge control device.
  • Embodiment 1 will be described with reference to FIG.
  • the discharge control apparatus according to Embodiment 1 of the present invention has a configuration in which the secondary battery 12, the load 13, and the control unit 14 are combined.
  • the load 13 may not be combined except during discharging.
  • the load 13 is a wide range from a low current to a large current, such as when the load 13 is a high-load device such as an electric tool, an electric scooter, or an assist bicycle. This is suitable for discharging at a current value.
  • the secondary battery 12 is a lithium ion secondary battery using a non-aqueous electrolyte.
  • the secondary battery 12 may be a combination of a plurality of cells 1], parallel and series-parallel, and any number of batteries (cells) may be combined.
  • the secondary battery 12 is connected to the control unit 14 of the discharge control device 11. This load 13 is also connected to the control unit 14.
  • the control unit 14 includes a voltage detector 15 (voltage detection unit), an end voltage control circuit unit 16 (end voltage control unit), and an open / close switch 17 (switch unit).
  • a voltage detector 15 for detecting a voltage across the secondary battery 12 is connected to the control unit 14. Further, a load 13 is connected to the secondary battery 12 via an open / close switch 17, and predetermined power is supplied from the secondary battery 12 to the load 13 via the open / close switch 17. The value detected by the voltage detector 15 is input to the end voltage control circuit unit 16.
  • the end voltage control circuit unit 16 is configured using, for example, a microcomputer.
  • the discharge voltage V of the secondary battery 12 detected by the voltage detector 15 (the terminal voltage of the secondary battery 12 at the time of discharge) is supplied to the end voltage control circuit unit 16.
  • the discharge operation is stopped by giving an instruction to open / close switch 17 and opening open / close switch 17.
  • FIG. 2 is a flowchart showing an example of the discharge control operation of the discharge control device shown in FIG. In FIG. 2, the discharge voltage V of the secondary battery 12 is detected by the voltage detector 15.
  • V for example, a voltage value of about 2V to 3V is used.
  • the end voltage control circuit unit 16 confirms whether or not the discharge voltage V inputted by the voltage detector 15 in step S14 is smaller than V (S15), and the discharge voltage V becomes the discharge end voltage.
  • the end voltage control circuit unit 16 issues an instruction to the open / close switch 17, and the discharge operation is stopped by opening the open / close switch 17 (S16).
  • the secondary battery 12 When the discharge of the secondary battery 12 is stopped when the terminal voltage of the secondary battery 12 is lowered to a predetermined discharge end voltage, the secondary battery 12 is discharged when the secondary battery 12 is discharged at a low current. If the voltage immediately before the rapid deterioration of the material occurs and the rapid cycle deterioration is defined as the discharge end voltage, the positive and negative electrodes become more polarized when the secondary battery 12 is discharged at a large current. Even though the potential of the negative electrode does not reach the potential at which the material deteriorates, the terminal voltage of the secondary battery 12 drops to the predetermined discharge end voltage, and the discharge ends. As a result, the secondary battery 12 is charged with the electric charge that can still be discharged, and the discharge stops, so that a sufficient battery capacity cannot be obtained.
  • the discharge end voltage When the battery 12 is discharged at a low current, the polarity of the positive and negative electrodes decreases, and as a result, the discharge stops after the discharge proceeds to the state where the potentials of the positive and negative electrodes reach the potential at which the material deteriorates. Rapid cycle degradation occurs.
  • the discharge stop voltage is set so that the terminal voltage of the secondary battery becomes the voltage just before cycle deterioration occurs at each current value.
  • the terminal voltage of the secondary battery immediately before the cycle deterioration occurs is greatly affected by the change in environmental temperature.
  • the polarization of the positive and negative electrodes during discharge is smaller than in a 20 ° C environment.
  • the discharge is terminated using a discharge control device optimized to adjust the discharge end voltage in consideration of the polarization generated according to the discharge current value under the temperature condition of 20 ° C.
  • the polarity of the positive and negative electrodes during discharge is smaller than in the environment at 20 ° C. Deterioration potential may be reached. Therefore, there is a risk of rapid cycle deterioration of the secondary battery.
  • step S13 the end voltage control circuit unit 16 measures the amount of change V, for example.
  • V ⁇ / 3-a X (V / t) 2 ⁇ XX ⁇ ⁇ ⁇ (A)
  • serial number X is the serial number of the single cells constituting the secondary battery 12.
  • the measurement time t is a measurement time for measuring the amount of decrease in the terminal voltage of the secondary battery 12 per unit time.
  • the amount of change V is measured by the terminal voltage of the secondary battery 12 detected by the voltage detector 15.
  • the measurement time t is a time during which a voltage value of about 0.1 V to 0.8 V is obtained as the change amount V.
  • Such a measurement time t varies depending on characteristics such as a discharge current value of the secondary battery 12 and a battery capacity of the secondary battery 12, but is generally preferably 0.1 sec to 5 sec.
  • the value of the constant ⁇ is a value that varies depending on the cell design. A smaller value is better for a high-power cell with less voltage fluctuation, and a larger value is better for a low-power cell with larger voltage fluctuation.
  • the value of constant / 3 is a value that varies depending on the material, and is caused by the fact that the decomposition voltage differs for each material. Further, the values of the constant ⁇ and the constant / 3 were obtained experimentally as a result of the intensive studies by the present inventors.
  • the end voltage control circuit unit 16 calculates the discharge end voltage V based on, for example, the above formula ( ⁇ ).
  • the end voltage control circuit unit 16 sets the discharge end voltage V of the secondary battery.
  • the terminal voltage can be set immediately before the cycle deterioration occurs.
  • the end-of-discharge voltage V is set to the end immediately before the cycle deterioration of the secondary battery occurs. It is not easy to set to a child voltage.
  • the inventors of the present application determined that the terminal voltage of the secondary battery immediately before the cycle deterioration occurs is the voltage change amount V in the measurement time.
  • the discharge end voltage V can be decreased by a voltage corresponding to an increase in the polarization of the positive and negative electrodes.
  • the discharge end voltage V decreases by a voltage corresponding to an increase in the polarization of the positive and negative electrodes.
  • the secondary battery 12 is discharged until just before the cycle deterioration occurs, the remaining charge that can be discharged is reduced, and the secondary battery 12 can be sufficiently discharged, so that sufficient battery capacity can be obtained. I'll do it.
  • the discharge end voltage V force increases by a voltage corresponding to a decrease in the polarity of the positive and negative electrodes.
  • the end-of-discharge voltage V can be determined to reflect the change in the polarization of the positive and negative electrodes accompanying changes in the environmental temperature.
  • the end voltage control circuit unit 16 has a terminal voltage of the secondary battery 12 detected by the voltage detector 15 within a range of 3.0 V or less and 2.0 or more. When the voltage drops below the preset threshold voltage, the amount of decrease per unit time is measured. That is, the end voltage control circuit unit 16 measures the voltage change amount V, and the battery voltage is 3.
  • the positive electrode is generally represented by a cobalt acid used in lithium ion batteries.
  • the final discharge voltage V is the secondary voltage due to the discharge.
  • the discharge end voltage V Before the battery terminal voltage decreases to the discharge end voltage V, the discharge end voltage V must be determined.
  • the end voltage control circuit unit 16 discharges while the terminal voltage of the secondary battery is maintained at a voltage equal to or higher than the discharge end voltage V when the secondary battery is discharged at a constant current.
  • the inventors of the present application have conducted a study based on the experimental results, and found that the rapid deterioration of the cycle is suppressed by terminating the discharge when the cell voltage is 1.5 V or higher. And the measurement of the voltage change amount V in the control unit to determine the discharge end voltage is
  • the amount of change in the battery is so large that the battery voltage instantaneously reaches the degradation potential of the material after determining the amount of change in voltage. Therefore, it is not preferable because sufficient cycle performance cannot be obtained.
  • the secondary battery 12 is regulated by the positive electrode capacity, in which the discharge is terminated by the decrease in the potential of the positive electrode at the end of the discharge.
  • Li CO, Co O, NiO, and MnO are fired and then mixed to form LiNi Mn Co O
  • the positive electrode active material was produced by firing at 900 ° C. for 10 hours. 100 parts by weight of this positive electrode active material is stirred together with 2.5 parts by weight of acetylene black, 4 parts by weight of a fluororesin binder and an appropriate amount of an aqueous solution of carboxymethylcellulose to produce a positive electrode paste. did.
  • This paste was applied to both sides of a 30-am thick aluminum foil and dried so that the total thickness was 99 m, the theoretical capacity per unit area was 3.7 mAh, and the porosity of the composite part was 25%.
  • the positive electrode plate was obtained by cutting into a coating width of 52 mm and a coating length of 1660 m.
  • mesophase black mesophase spherules graphitized at a high temperature of 2800 ° C (hereinafter referred to as mesophase black) (Referred to as lead) was used as the negative electrode active material.
  • 100 parts by weight of this active material is BM-400B (solid content of 40 parts by weight), a modified SBR acrylic acid made by Nippon Zeon, 2.5 parts by weight, 1 part by weight of carboxymethyl cellulose, and an appropriate amount of water.
  • a negative paste was prepared by stirring with a kneader.
  • This paste was applied and dried on both sides of a copper foil with a thickness of 0.02 mm, rolled to a total thickness of 97 lim and a porosity of the composite material of 35%, and then a coating width of 57 mm and a long length.
  • a negative electrode plate was obtained by cutting to a size of 1770 mm.
  • the load capacity of the negative electrode at a charge of 4.2 V by charging the positive electrode and the negative electrode was 250 mA h / g, and the battery design was regulated by the capacity of the positive electrode.
  • an aluminum foil having a width of 2.5 mm and not coated with the positive electrode paste is exposed at the center in the length direction of the positive electrode plate.
  • copper foil that is not coated with a 2.5 mm wide negative electrode paste is exposed at both ends of the negative electrode in the longitudinal direction.
  • An aluminum lead having a width of 10 mm and a thickness of 0.1 mm was welded to the positive electrode aluminum foil portion, and the same lead having a copper lead width of 3 ⁇ Omm was welded to each of the two negative electrode copper foil portions.
  • This positive electrode plate and negative electrode plate were wound in a spiral shape through a separator made of polyethylene, width 59 mm, thickness 20 ⁇ m, and an electrode group was produced. Supplied to a battery case with a height of 65 mm. Next, a sealing plate was welded to the positive electrode aluminum lead of the electrode group, and the two negative electrode leads were welded to the bottom of the case. Then, non-aqueous solution of 1.40M LiPF in a mixture of ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate (volume ratio 15:15:70).
  • a cylindrical lithium ion secondary battery having a nominal capacity of 2.6 Ah and an internal resistance of 19 ⁇ ⁇ was fabricated by injecting 13 g of electrolyte and sealing.
  • V ⁇ / 3- ⁇ X (V / t) 2 ⁇ ⁇ 4... (B)
  • Example 2 An assembled battery in which four cells of the lithium secondary battery produced in Example 1 are connected in series The battery was charged to 4.2V at 10A. Then, the assembled battery was connected as a secondary battery 2 to the discharge control device shown in FIG. 3, and the discharge was terminated at 10V.
  • the assembled battery in which four lithium secondary batteries prepared in Example 1 were connected in series was charged to 4.2 V at 10 A in advance. Then, the assembled battery was connected to the conventional discharge control device shown in FIG. 3, and the discharge was terminated at 6V.
  • Example 1 As shown in Table 1, in Example 1 according to the present invention, even when the discharge current is large, the discharge capacity of the battery is larger than that in Comparative Example 1 according to the background art. . This is because the end-of-discharge voltage V depends on the amount of decrease in the terminal voltage of the secondary battery 12 per unit time.
  • the final discharge voltage V can be changed according to the discharge current.
  • Example 1 Using the discharge control devices of Example 1 and Comparative Example 1, after charging the assembled battery to 4.2V at a constant current of 10A, the battery was rested for 30 minutes, and the discharge currents were 10A, 20A, 30A, and 40A, respectively. The process of discharging at 50A and 60A, resting for 30 minutes, and charging the next time was taken as one cycle, and the cycle was repeated.
  • Table 2 shows the discharge capacity maintenance ratio (capacity after 500 cycles / initial capacity%) after repeating this cycle for 500 cycles. The ambient temperature at that time was 20 ° C.
  • Example 1 when the discharge current increases, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, when the discharge current increases, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, when the discharge current increases, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, when the discharge current increases, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown in Table 2, in Example 1 according to the present invention, the value obtained by dividing the voltage change amount V by the measurement time t increases. As shown
  • Example 1 of the present invention while maintaining the cycle performance equivalent to that of Comparative Example 1, the utilization efficiency of the energy stored by lowering the discharge end voltage than Comparative Example 1 is improved. I was able to improve.
  • a discharge control device is a discharge control device using a non-aqueous electrolyte secondary battery as a power source, and includes the power source, a load, and a control unit, and the control unit includes: The discharge end voltage V of the power supply is controlled by a value obtained by dividing the voltage change amount V by the measurement time t.
  • this discharge control device By using this discharge control device, it is possible to stop the discharge just before the potential at which the positive and negative electrodes deteriorate, and it is possible to sufficiently achieve excellent cycle performance and high capacity.
  • a discharge control device includes a secondary battery, a switch unit that opens and closes a discharge path from the secondary battery to a load, and a voltage detection unit that detects a terminal voltage of the secondary battery.
  • the terminal voltage detected by the voltage detector is a predetermined discharge end voltage V
  • the switch unit When the following conditions are met, the switch unit is opened, and the amount of decrease in the terminal voltage detected by the voltage detection unit per unit time is measured, and the discharge amount increases as the amount of decrease per unit time increases.
  • the discharge end voltage V is reduced so that the end voltage V decreases.
  • the pond discharge is stopped. Also, the end voltage control unit controls the end of discharge so that the end voltage V decreases as the amount of decrease in the terminal voltage of the secondary battery per unit time increases.
  • Stop voltage V is set. Then, the secondary battery is discharged with a large current and the positive and negative polarities are polarized.
  • the end-of-discharge voltage control unit decreases the end-of-discharge voltage V so as to correspond to the increase in the polarization of the positive and negative electrodes.
  • the end voltage controller reduces the polarization of the positive and negative electrodes.
  • the discharge end voltage V is increased to correspond to.
  • the polarization of the positive and negative electrodes Even if the voltage that causes deterioration of cycle performance increases due to the decrease, it is easy to stop the discharge before the deterioration of cycle performance and reduce the deterioration of the secondary battery.
  • the final discharge voltage V is determined by reflecting the change in the polarization of the positive and negative electrodes as the ambient temperature changes.
  • the end voltage control unit measures a decrease amount of the terminal voltage detected by the voltage detection unit as a change amount V during a predetermined measurement time t! This
  • the value obtained by dividing the amount of change V by the measurement time t is used as the amount of decrease per unit time.
  • the secondary battery is preferably a non-aqueous electrolyte secondary battery.
  • the amount of decrease in terminal voltage with respect to the amount of discharge becomes large at the end of discharge, so it is easy to measure the amount of decrease in terminal voltage per unit time.
  • the end voltage control unit sets the discharge end voltage V based on the following equation (1).
  • V / 3-a X (V / t) 2 ⁇ ⁇ ⁇ (1)
  • the secondary battery is an assembled battery in which a plurality of cells are connected in series, and when the end voltage control unit is the number of series cells in the secondary battery, 2) It is preferable to set the discharge end voltage V based on this.
  • V ⁇ / 3-a X (V / t) 2 ⁇ XX ⁇ ⁇ ⁇ (2)
  • the end voltage control unit is configured to reduce the terminal voltage detected by the voltage detection unit to a threshold voltage set in advance in a range of 3.0 V or less per cell of the secondary battery 2.0 or more. It is preferable to measure the amount of decrease per unit time.
  • the amount of decrease in terminal voltage due to discharge is small in the region where the terminal voltage per cell exceeds 3. OV. Therefore, by measuring the amount of decrease of the terminal voltage per unit time in the region where the terminal voltage is 3.OV or less, the measurement accuracy of the amount of decrease per unit time is improved.
  • the terminal voltage drop due to discharge is abrupt when the terminal voltage per cell is less than 2.OV. For this reason, if the amount of decrease in the terminal voltage per unit time is measured in a region where the terminal voltage is less than 2.OV, the amount of change in voltage is too large, and after determining the amount of change in voltage, the battery The voltage reaches the degradation potential of the material. Therefore, by measuring the amount of decrease of the terminal voltage per unit time in the region where the terminal voltage is 2.0 or more, the possibility that the battery voltage reaches the deterioration potential of the material can be reduced.
  • the secondary battery is regulated by the positive electrode capacity so that the discharge is terminated by the decrease in the potential of the positive electrode at the end of the discharge!
  • the secondary battery is preferably restricted with a positive electrode capacity.
  • the secondary battery discharge method and discharge control apparatus according to the present invention are used in transportation equipment such as high-load equipment and electric vehicles, and are used for secondary batteries that are required to have high capacity and long life. It is suitable to apply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

明 細 書
放電制御装置
技術分野
[0001] 本発明は、高負荷機器、電気自動車などの輸送機器に使用され、高容量、長寿命 であることが要求される二次電池として、好適な非水電解質二次電池を用いた放電 制御装置に関する。
背景技術
[0002] 近年、電子技術の進歩により、高負荷機器や電気自動車などの輸送機器の高性能 化、小型化が進み、これらの機器に使用される二次電池も高エネルギー密度、長寿 命であることが要求されるようになっている。これらの機器に使用される二次電池とし ては、ニッケル ·カドミウム電池、ニッケル水素電池、鉛電池、リチウムイオン二次電池 等があるが、小型 ·軽量化を達成するためには、リチウムイオン二次電池が最適であ
[0003] このリチウムイオン二次電池は、放電の際に端子電圧が低い電圧になると電池内 部で不可逆な化学反応を起こして性能が著しく低下する。このためリチウムイオン二 次電池には、性能が著しく低下しないように放電下限電圧を製造者が定める。すな わち放電下限電圧とは、放電の際に許される電圧の下限である。
[0004] このような二次電池の使用方法には、サイクル使用やフロート使用がある。サイクノレ 使用では、まず充電器で二次電池の上限電圧まで充電を行ない、次に負荷に接続 して放電下限電圧まで放電するという方法が一般的であった。フロート使用では、ま ず充電器と負荷とを常に二次電池に接続しておき、二次電池が上限電圧以下ならば 常に充電を行ない、負荷は必要に応じて放電するという方法が一般的であった。
[0005] 一般に、二次電池には充電'放電を繰り返すにつれて、その二次電池の放電可能 な容量が減少していく性質がある。この容量の減少をサイクル劣化といい、二次電池 の寿命にかかわる問題である。二次電池が劣化する原因の一つに、下限以下までの 放電、つまり端子電圧が放電下限電圧以下になるまでの放電がある。このような放電 を行うと、放電末期に正極もしくは負極材料の劣化が起こる。 [0006] 電池電圧(V )とは、正極の電位(V )と負極の電位(V )の電位差であり、 V =V cell p n cell
-Vで示される。二次電池の設計によって、正極の電位(V )の低下により電池電圧
P η ρ
(V )が放電終止電圧に達する場合と、負極の電位 (V )の上昇により電池電圧 (V cell n eel
)が放電終止電圧に達する場合とがある。
[0007] 放電終止時に正極及び負極の劣化が開始する電位は、正極の電位 (V )が一般的
P
に 1. 5V以下(対リチウム電位)、負極の電位 (V )が一般的に 2. 5V以上(対リチウム
n
電位)とされる。
[0008] 正極は、一般的にリチウムイオン電池に用いられているコバルト酸に代表される α — NaFeO型層状岩塩構造を有する活物質に用いた場合、 1. 5V以下(対リチウム 電位)の電位で不可逆反応が起って急速なサイクル劣化をもたらす。
[0009] 一方負極は、一般的に用いられている銅箔を集電部品に用いた場合、 2. 0V以上
(対リチウム電位)の電位で銅の溶出が起こる。そして、一度銅の溶出電位に達した 電池を再度充電すると、銅が正極側に析出するためセルの微少短絡及び抵抗増加 が起って急速なサイクル劣化をもたらす。従って正極もしくは負極の電位が前述の電 位範囲内で放電を終止しないと急激なサイクル劣化が起こる。
[0010] ここで、放電時の電流値が増加すると、正極及び負極の両極共に分極が大きくなる 。すなわち正極の電位 (V )は低下し、負極の電位 (V )は上昇する。ここで正極の電
P n
位低下によって放電が終了する場合、電流値 IIで放電した場合の電池の放電終止 電圧を V 1、正極電位 V 1、負極電位 V 1とすると、放電終止電圧 V 1 =V 1 -V cell p n cell p n
1で示され V 1 =V 1 +V lとなる。
p cell n
[0011] 次に電流値 IIより大きい電流値 12で放電させた場合の放電終止電圧を、電流値 II で放電した場合と同じ V 1とし、正極電位 V 2、負極電位 V 1 + a ( aは電流増加に
cell p n
よる分極分)とすると、放電終止電圧 V 1 =V 1 - (V 1 + α )で示され V 2 =V 1 cell p n p cell
+ V 1— αとなる。
n
[0012] 従って電流値 IIから電流値 12への電流増加による負極電位上昇 a相当分だけ、 放電終止電圧を低下させた場合であっても、放電終止時の正極電位は電流値 IIで 放電した場合と電流値 12で放電した場合とで同等の電位になる。従って、放電電流 の増加に伴い放電下限電圧を低く設定することが可能である。 [0013] 一方、負極の電位低下によって放電が終了する場合は、前述の正極の電位と負極 の電位が逆であり、正極の電位低下によって放電が終了する場合と同様に放電電流 の増加に伴い放電下限電圧を低下することができる。
[0014] 図 3に従来の放電制御装置の動作を示すブロック図を示す。この放電制御装置 1 は、二次電池 2、負荷 3、及び制御部 4を組合せた構成となっている。但し、負荷 3は 放電のとき以外は組合せなくてもよい。二次電池 2は充電'放電ができる電池で、制 御部 4に接続されている。負荷 3は電力を消費するもの、例えば電動工具、モーター などの高負荷機器であり、制御部 4に接続されて!/、る。
[0015] 制御部 4は、電圧検出器 5と終止電圧制御回路部 6と開閉スィッチ 7とから構成され る。電圧検出器 5は、二次電池 2の電圧値 Vを検出する。終止電圧制御回路部 6は、
b
放電終止電圧 Vを設定する。そして、終止電圧制御回路部 6は、電圧検出器 5により
E
検出された二次電池 2の電圧値 Vと、放電終止電圧 Vとを比較する。さらに、終止電
b E
圧制御回路部 6は、当該比較結果に応じて、開閉スィッチ 7で二次電池 2を負荷 3に 接続したり、切り離したりする制御を行う。終止電圧制御回路部 6は放電終止電圧 V
E
を設定しておき、その電圧値を出力する。この終止電圧制御回路部 6は例えば、マイ クロコンピュータを用いて構成される。
[0016] このような制御部 4の構成のもとで、 V 〉 Vであると、放電が終了すると!/、つた制御
E b
方法がこれまで通常用いられて!/、た。
[0017] しかしながら、このような放電終止方法を用いると、放電電流値が増加していった場 合、正極及び負極の電位が正極及び負極の劣化に至る電位に達していないにも関 わらず、分極の発生により電池電圧が設定下限値に達してしまう。そのため、放電電 流の増加と共に使用できるエネルギー量が小さくなる。
[0018] そのような中、特許文献 1には放電終止電圧を放電電流の大きさにより可変するこ とが提案されている。
[0019] しかしながら、特許文献 1のような放電電流値で放電終止電圧を可変する手段では 、最適な電圧で放電を終止することができず、環境温度によっては、急速なサイクル 劣化が起こったり、十分な電池容量を得ることができな力 たりした。なぜならば、ある 一定の温度では、放電電流値に応じて放電終止電圧を変化させた場合には優れた サイクル性能と電池容量を得ることができる力 S、使用環境温度や、放電制御装置の 使用条件の違いによる電池温度の違いによっては、正負極の分極は大きく変わって くるため、放電電流値のみに応じて放電終止電圧を変化させた場合には、充電され ている電荷を十分放電する前に放電が終止したり、過放電による急速なサイクル劣 化が起こったりするからである。
特許文献 1 :特開平 10— 257684号公報
発明の開示
[0020] 本発明の目的は、二次電池のサイクル性能の劣化を抑えつつ放電終止電圧を低 下させて蓄えられたエネルギーの利用効率を向上させることが容易な放電制御装置 を提供することである。
[0021] 本発明の一局面に従う放電制御装置は、二次電池と、前記二次電池から負荷への 放電経路を開閉するスィッチ部と、前記二次電池の端子電圧を検出する電圧検出部 と、前記電圧検出部によって検出された前記端子電圧が、所定の放電終止電圧 V
E
以下になったとき前記スィッチ部を開かせると共に、前記電圧検出部によって検出さ れた前記端子電圧の、単位時間あたりの低下量を測定し、当該単位時間あたりの低 下量が大きくなるほど前記放電終止電圧 Vが低下するように、前記放電終止電圧 V
E E
を設定する終止電圧制御部とを備える。
[0022] この構成によれば、二次電池の端子電圧が放電終止電圧 V以下になると、二次電
E
池の放電が停止される。また、二次電池の端子電圧の、単位時間あたりの低下量が 大きくなるほど放電終止電圧 Vが低下するように、終止電圧制御部によって、放電終
E
止電圧 Vが設定される。そうすると、二次電池が大電流で放電されて正負極の分極
E
が増大した場合には、前記単位時間あたりの低下量が増大する結果、終止電圧制 御部によって、正負極の分極の増大に対応するように放電終止電圧 Vが低下される
E
ので、二次電池のサイクル性能の劣化を抑えつつ放電終止電圧を低下させて蓄えら れたエネルギーの利用効率を向上させることが容易となる。
[0023] そして、二次電池が低電流で放電されて正負極の分極が減少した場合には、前記 単位時間あたりの低下量が減少する結果、終止電圧制御部によって、正負極の分極 の減少に対応するように放電終止電圧 Vが増大される。その結果、正負極の分極が 減少することによりサイクル性能の劣化が生じる電圧が上昇した場合であっても、サイ クル性能の劣化が生じる前に放電を停止して、二次電池の劣化を低減することが容 易となる。
[0024] さらに、環境温度によって正負極の分極の程度が変化した場合であっても、二次電 池の端子電圧の、単位時間あたりの低下量に基づき正負極の分極を推定することで 、環境温度の変化に伴う正負極の分極の変化を反映させて放電終止電圧 Vを決定
E
することができるので、上述した背景技術に係る放電電流値に基づき放電終止電圧 を設定する技術のように、環境温度によって妥当な放電終止電圧が得られなくなるお それが低減される。
図面の簡単な説明
[0025] [図 1]本発明の実施形態 1に係る充放電制御装置の構成の一例を示すブロック図で ある。
[図 2]図 1に示す充放電制御装置の動作の一例を示すフローチャートである。
[図 3]従来の放電制御装置の形態を示すブロック図である。
発明を実施するための最良の形態
[0026] (実施の形態 1)
以下、実施の形態 1について図 1に基づいて説明する。本発明の実施の形態 1に 係る放電制御装置は、二次電池 12、負荷 13、及び制御部 14を組合せた構成である 。但し、負荷 13は放電のとき以外は組合せなくても良い。図 1に示す放電制御装置 は、特に、この負荷 13が、高負荷機器である電動工具、電動スクーター、アシスト自 転車等である場合のように、低電流から大電流の幅広!/、放電電流値で放電される場 合に好適である。
[0027] 二次電池 12は非水電解液を使用したリチウムイオン二次電池である。この二次電 池 12は、複数のセルが直歹 1]、並列及び直列並列の組合せられたものであっても良い し、組合せる電池(セル)の数は何本でも良い。この二次電池 12は放電制御装置 11 の制御部 14に接続されている。この負荷 13も制御部 14に接続されている。
[0028] また、二次電池 12は、放電終了時に正極の電位の低下によって放電が終止するよ うに、正極容量で規制されている。 [0029] 制御部 14は、電圧検出器 15 (電圧検出部)、終止電圧制御回路部 16 (終止電圧 制御部)、及び開閉スィッチ 17 (スィッチ部)を備えて!/、る。
[0030] 制御部 14には、二次電池 12の両端間の電圧を検出するための電圧検出器 15が 接続されている。またこの二次電池 12には、開閉スィッチ 17を介して負荷 13が接続 されており、二次電池 12から開閉スィッチ 17を介して負荷 13に所定の電力が供給さ れる。電圧検出器 15で検出した値は終止電圧制御回路部 16に入力される。
[0031] 終止電圧制御回路部 16は、例えばマイクロコンピュータを用いて構成されている。
終止電圧制御回路部 16では、電圧検出器 15によって検出された二次電池 12の放 電電圧 V (放電時における二次電池 12の端子電圧)が、終止電圧制御回路部 16に
b
よって設定される放電終止電圧 Vまで低下した場合に、終止電圧制御回路部 16が
E
開閉スィッチ 17に指示を出し、開閉スィッチ 17を開くことにより放電動作が停止され
[0032] 図 2は、図 1に示す放電制御装置の放電制御動作の一例を示すフローチャートで ある。図 2において、二次電池 12の放電電圧 Vが電圧検出器 15によって検出され
b
て、終止電圧制御回路部 16に入力される(Sl l)。次に、終止電圧制御回路部 16に よって、入力された放電電圧 Vが定数 V (閾値電圧)より小さいか否かが確認される(
b a
S 12)。定数 Vとしては、例えば 2V〜3V程度の電圧値が用いられる。
[0033] そして、終止電圧制御回路部 16は、放電電圧 Vが定数 Vより大きいと Vが V以下
b a b a になるまで Vの検出を続け(SI 2で NO)、放電電圧 Vが定数 V以下になった時点(
b b a
S I 2で YES)で放電終止電圧 Vの算出を行う(S13)。ステップ S13における放電終
E
止電圧 Vの算出方法については後述する。
E
[0034] さらに終止電圧制御回路部 16は、ステップ S14において電圧検出器 15により入力 された放電電圧 Vが Vより小さいか否力、確認し(S 15)、放電電圧 Vが放電終止電
b E b
圧 Vより大きいと Vが V以下になるまで Vの検出を続ける(S 15で N〇)。そして、終
E b E b
止電圧制御回路部 16は、放電電圧 Vが放電終止電圧 V以下になると(S15で YES b E
)、終止電圧制御回路部 16が開閉スィッチ 17に指示を出し、開閉スィッチ 17を開くこ とにより放電動作が停止される(S 16)。
[0035] 以上により本実施の形態 1に係る放電制御装置の放電時における制御動作が終了 する。
[0036] 二次電池 12の端子電圧が所定の放電終止電圧まで低下したときに、二次電池 12 の放電を終止する場合、二次電池 12を低電流で放電させたときに二次電池 12の材 料の劣化が起こり急速なサイクル劣化が起こる直前の電圧を、放電終止電圧として 定めると、二次電池 12を大電流で放電した場合には、正負極の分極が大きくなるた め、正負極の電位がそれぞれ材料の劣化の起こる電位に達していないにも関わらず 、二次電池 12の端子電圧が所定の放電終止電圧まで低下して放電が終止してしま う。そうすると、二次電池 12に充電されているまだ放電可能な電荷を残して放電が停 止してしまうため、十分な電池容量を得ることができない。
[0037] 一方、二次電池 12を大電流値で放電させたときに二次電池 12の材料の劣化が起 こり急速なサイクル劣化が起こる直前の電圧を、放電終止電圧として定めると、二次 電池 12を低電流で放電した場合には、正負極の分極が小さくなるため、正負極の電 位がそれぞれ材料の劣化の起こる電位に達した状態まで放電が進んでから放電が 終止する結果、急速なサイクル劣化が起こる。
[0038] また、放電電流値によって二次電池の放電を終止する電圧を変化させる場合、二 次電池の端子電圧がそれぞれの電流値でサイクル劣化が起こる直前の電圧になる ように、放電終止電圧を調節すれば、十分な放電容量を確保しつつ優れたサイクル 性能を達成することが可能となる。
[0039] しかしながら環境温度の変化によって、サイクル劣化が起こる直前の二次電池の端 子電圧は大きく影響を受ける。例えば、 20°Cを超える環境下で二次電池の放電を行 つたときには、 20°C環境下よりも、放電時の正負極の分極が小さくなる。そうすると、 例えば 20°Cの温度条件で、放電電流値に応じて生じる分極を考慮して放電終止電 圧を調節するように最適化された放電制御装置を用いて放電を終止する場合、 20°C を超える環境下で二次電池の放電を行ったときには、 20°C環境下よりも、放電時の 正負極の分極が小さくなるため、大電流放電時には放電終止時に正負極の電位が 材料の劣化電位に達するおそれがある。そのため二次電池の急速なサイクル劣化が 生じるおそれがある。
[0040] 一方 20°Cに満たない低温の環境下で大電流放電を行った場合には、正負極の分 極が大きくなるため、二次電池 12に充電されているまだ放電可能な電荷を残して二 次電池の端子電圧が放電終止電圧に達する。そうすると、十分に放電しない状態で 二次電池の放電が停止してしまうため、十分な電池容量が得られない。
[0041] そこで、終止電圧制御回路部 16は、ステップ S 13において、例えば変化量 V、測
X
定時間 t、直列数 X、定数 α (5. 0≤ a≤25)、及び定数 /3 ( 1. 5≤ /3≤3. 0)に基 づき、以下の式 (A)を用いて、放電終止電圧 Vを算出、設定する。
E
[0042] V = { /3 - a X (V /t) 2 } X X · · · (A)
E x
ここで、直列数 Xは、二次電池 12を構成する単セルの直列数である。
[0043] なお、二次電池 12が単セルで構成されている場合には、「X X」の項は不要である
[0044] 測定時間 tは、二次電池 12の端子電圧の、単位時間あたりの低下量を測定するた めの測定時間である。
[0045] 変化量 Vは、電圧検出器 15によって検出された二次電池 12の端子電圧が、測定
X
時間 tの期間内で低下した低下量である。
[0046] 測定時間 tは、変化量 Vとして 0. 1V〜0. 8V程度の電圧値が得られるような時間
X
が好ましい。このような測定時間 tは、二次電池 12の放電電流値や二次電池 12の電 池容量等の特性によって異なるが、一般的には 0. l sec〜5secが好ましい。
[0047] 定数 αの値はセル設計によって変わる値であり、電圧変動の少ない高出力セルで は値が小さい方がよぐ電圧変動の大きな低出力セルでは値の大きい方がよい。また 、定数 /3の値は材料によって変わる値であり、それぞれの材料で分解電圧が異なる ことに起因する。さらにこれら定数 αおよび定数 /3の値は本発明者らの鋭意検討した 結果、実験的に得られたものである。
[0048] 終止電圧制御回路部 16は、例えば上記式 (Α)に基づき放電終止電圧 Vを算出す
Ε
ることにより、放電終止電圧 Vを、電圧の変化量 Vを測定時間 tで除した値に基づき
E X
設定する。これにより、終止電圧制御回路部 16は、放電終止電圧 Vを、二次電池の
E
サイクル劣化が起こる直前の端子電圧になるように設定することができる。
[0049] サイクル劣化が起こる直前の二次電池の端子電圧は、放電時の正負極の分極によ つて変化するため、放電終止電圧 Vを、二次電池のサイクル劣化が起こる直前の端 子電圧になるように設定することは容易でない。し力、しながら、本願発明者らは、サイ クル劣化が起こる直前の二次電池の端子電圧は、電圧の変化量 Vを測定時間で
X
除した値に基づき推定できることを実験的に見出した。
[0050] 上記式 (A)に基づき放電終止電圧 Vを算出することにより、終止電圧制御回路部
E
16は、二次電池 12を大電流で放電した場合には、電圧の変化量 Vを測定時間で
X
除した値、すなわち二次電池 12の端子電圧の、単位時間あたりの低下量が増大す る結果、放電終止電圧 Vを、正負極の分極の増加に相当する電圧だけ低下させるこ
E
とができる。放電終止電圧 V 、正負極の分極の増加に相当する電圧だけ低下する
E
と、サイクル劣化が起こる直前まで二次電池 12を放電させ、放電可能な電荷の残りを 減少させて、二次電池 12を充分に放電させることができるので、十分な電池容量を 得ること力 Sでさる。
[0051] 上記式 (A)に基づき放電終止電圧 Vを算出することにより、終止電圧制御回路部
E
16は、二次電池 12を低電流で放電した場合には、電圧の変化量 Vを測定時間で
X
除した値、すなわち二次電池 12の端子電圧の、単位時間あたりの低下量が減少す る結果、放電終止電圧 V力 正負極の分極の低下に相当する電圧だけ増大する。
E
放電終止電圧 V力 正負極の分極の低下に相当する電圧だけ増大すると、サイクル
E
劣化が起こる直前で二次電池 12の放電を停止させることができるので、二次電池 12 の材料の劣化による急速なサイクル劣化を抑制することができる。
[0052] また、環境温度の変化があってもその影響を受けにくい。これは環境温度によって 正負極の分極が変わっても、電圧の変化量 Vを測定時間 tで除した値(二次電池 12
X
の端子電圧の、単位時間あたりの低下量)で正負極の分極を推定することで、環境 温度の変化に伴う正負極の分極の変化を反映させて放電終止電圧 Vを決定するこ
E
とができるためである。したがってこのような放電終止制御を行うことによって、十分な 放電容量を確保しつつ優れたサイクル性能を達成することができる。
[0053] 本願発明者らは、実験結果に基づく検討の結果、放電終止電圧 Vを上述の式に
E
基づいて制御した場合、最もサイクル劣化を抑制しつつ高容量が得られることを見出 した。これは、最も精度よく材料の劣化が始まる直前の電圧で放電を終了することが できるためであると考えられる。 [0054] また、終止電圧制御回路部 16は、ステップ S12に示すように、電圧検出器 15によ つて検出された二次電池 12の端子電圧が、 3. 0V以下 2. 0以上の範囲で予め設定 された閾値電圧以下になったとき、単位時間あたりの低下量の測定を行う。すなわち 、終止電圧制御回路部 16は、電圧の変化量 Vの測定を、電池電圧がセルあたり 3.
X
0V〜2. 0Vに達した時点から開始する。
[0055] 正極は、一般的にリチウムイオン電池に用いられているコバルト酸に代表される α
— NaFeO型層状岩塩構造を有する活物質を用いた場合、 1. 5V以下(対リチウム 電位)の電位で不可逆反応が起こり始め、急速なサイクル劣化をもたらす。
[0056] 一方、負極は、一般的に用いられている銅箔を集電部品として用いた場合、 2. 0V 以上(対リチウム電位)の電位で銅の溶出が起こる。そして、一度銅の溶出電位に達 した電池を再度充電した場合、銅が正極側に析出するためセルの微少短絡及び抵 抗増加をもたらして、急速なサイクル劣化をもたらす。
[0057] 従って正極もしくは負極の電位が前述の電位範囲内で放電を終止しないと急激な サイクル劣化が起こるため、これらの材料の劣化が起こる電池電圧以上で放電終止 電圧を決定する必要がある。
[0058] ここで、二次電池の放電電流の減少に伴い、同じ電圧で放電を終止した場合の正 極電位は低くなり負極の電位は高くなる。また、放電電流が少ないほど、高い端子電 圧で放電を停止させる必要がある。そして、放電終止電圧 Vは、放電により二次電
E
池の端子電圧が放電終止電圧 Vまで低下する前に、放電終止電圧 Vを決定する必
E E
要がある。
[0059] 従って、終止電圧制御回路部 16は、二次電池の端子電圧が、二次電池を定電流 で放電させた場合における放電終止電圧 V以上の電圧を維持している間に、放電
E
終止電圧 Vを決定する必要がある。
E
[0060] そこで本願発明者らは、実験結果に基づく検討を行った結果、セルの電圧が 1. 5 V以上で放電を終止することでサイクルの急速な劣化を抑制することを見出した。そ して、放電終止電圧を判定するための制御部における電圧の変化量 Vの測定は、
X
時間のロスや電圧のバラツキを加味して、 3. 0V〜2. 0Vの範囲で行うことが最適で あることが検討によって明確になった。 [0061] リチウムイオン二次電池は、端子電圧が 3. 0Vを超える領域では、放電に伴う端子 電圧の低下量が少ない。そのため、二次電池 12の直列セルあたりの端子電圧が 3. 0Vを超える領域で変化量 Vの測定を行った場合、変化量 Vの値が小さくなる結果
X X
、式 (A)に基づく放電終止電圧 Vの算出精度が低下し、サイクル性能の向上と高容
E
量化が不十分となる。
[0062] また、二次電池 12の直列セルあたりの端子電圧力 2. 0Vに満たない領域では、 放電に伴う端子電圧の低下が急激となる。そのため、二次電池 12の直列セルあたり の端子電圧が 2. 0Vに満たない領域で電圧の変化量 Vの測定を行った場合、電圧
X
の変化量が大きすぎて、電圧の変化量を判定後、瞬時に電池電圧が材料の劣化電 位に達してしまう。従って、十分に優れたサイクル性能を得ることができないため好ま しくない。
[0063] また、二次電池 12は、放電終了時に正極の電位の低下によって放電が終止する、 正極容量で規制されたものであることが好ましい。
[0064] これは負極容量規制の電池では、電池電圧の変化が緩やかなため、電圧変化の 検出が困難なためである。
[0065] 以下に、本発明に基づく非水電解質二次電池及びそれを電源とする放電制御装 置に関する実施例を示す。
[0066] (実施例 1)
本発明の実施の形態 1に基づく非水電解質二次電池及びそれを電源とする放電 制御装置に関する実施例を示す。
[0067] Li COと Co Oと NiOと MnOとを焼成後、 LiNi Mn Co Oとなるように混合
2 3 3 4 2 0.33 0.33 0.33 2
し、 900°Cで 10時間焼成し正極活物質を作製した。この正極活物質 100重量部をァ セチレンブラック 2. 5重量部、フッ素樹脂系結着剤 4重量部、及び適量のカルボキシ メチルセルロース水溶液と共に双腕式練合機にて攪拌し、正極ペーストを作製した。
[0068] このペーストを 30 a m厚のアルミニウム箔の両面に塗布乾燥し、総厚が 99 m、単 位面積当たりの理論容量が 3. 7mAh、合材部の多孔度が 25%となるようにして圧延 した後、塗工幅 52mm、塗工長さ 1660mの寸法に裁断し正極板を得た。
[0069] 一方、メソフェーズ小球体を 2800°Cの高温で黒鉛化したもの(以下メソフェーズ黒 鉛と称す)を負極活物質として用いた。この活物質 100重量部を日本ゼオン製の SB Rアクリル酸変性体である BM— 400B (固形分 40重量部) 2. 5重量、カルボキシメチ ルセルロースを 1重量部、及び適量の水と共に双腕式練合機にて攪拌し、負極ぺー ストを作製した。このペーストを厚さ 0· 02mmの銅箔の両面に塗着乾燥し、総厚が 9 7 li m、合材部の多孔度が 35%となるように圧延した後、塗着幅 57mm、長さ 1770 mmの寸法に裁断し負極板を得た。
[0070] この正極及び負極の,袓み合わせによる 4. 2V充電での負極の負荷容量は 250mA h/gとし、正極の容量で規制された電池設計とした。
[0071] 次いで、正極板の長さ方向の中央部には幅 2. 5mmの、正極ペーストが塗布され ていないアルミ箔が露出している。また、負極の長さ方向の両端には幅 2. 5mm負極 ペーストが塗布されていない銅箔が露出している。正極アルミ箔部には幅 10mm、厚 み 0· 1mmのアルミリードを溶接し、 2箇所の負極銅箔部にはそれぞれ銅リード幅 3· Ommの同リードを溶接した。
[0072] 次!/、で、この正極板及び負極板をポリエチレン製、幅 59mm、厚み 20 μ mのセパ レータを介して渦巻状に巻回して電極群を作製し、これを直径 26. Omm、高さ 65m mの電池ケースに納入した。次いで、電極群の正極アルミリードには封口板を溶着し 、 2本の負極リードはケース底部と溶接した。その後、炭酸エチレンと炭酸メチルェチ ルと炭酸ジメチルの混合液(体積比 15 : 15 : 70)に 1. 40Mの LiPFを溶解した非水
6
電解液を 13g注入し、封口加工を施して、公称容量 2. 6 Ah,内部抵抗 19πι Ωの円 筒型のリチウムイオン二次電池を作製した。
[0073] 以上のようにして作製したリチウムイオン二次電池を 4セル直列に接続した組電池 を、二次電池 12として図 1に示す放電制御装置に接続した。そして、図 2に示すフロ 一図に従って、当該放電制御装置を動作させ、その放電容量と放電終止電圧を測 定した。ここで放電終止電圧を下記の式 (Β)に基づいて算出するように設定した。
[0074] V = { /3 - α X (V /t) 2 } Χ 4 …(B)
E x
但し、 α = 15、 β = 2. 5、 t = 0. 5sec
[0075] (比較例 1 )
実施例 1で作製したリチウム二次電池を 4セル直列に接続した組電池を、あらかじ め 10Aにて 4. 2Vまで充電した。そして、当該組電池を図 3に示される放電制御装置 に二次電池 2として接続し、 10Vで放電を終了した。
[0076] (比較例 2)
実施例 1で作製したリチウム二次電池を 4セル直列に接続した組電池を、あらかじ め 10Aにて 4. 2Vまで充電した。そして、当該組電池を図 3に示す従来の放電制御 装置に接続し、 6Vで放電を終了した。
[0077] [表 1]
Figure imgf000016_0001
[0078] そして、実施例 1及び比較例 1、 2の放電制御装置を用いて、放電電流を 10A、 20 A、 30A、 40A、 50A、 60Aとした場合の放電容量と放電終止電圧とを測定した。こ の時の環境温度は 20°Cとした。それらの結果を表 1に記載する。
[0079] 表 1に示すように、本発明に係る実施例 1においては、放電電流が大きくなつた場 合でも、電池の放電容量が背景技術に係る比較例 1と比較して大きくなつている。こ れは、放電終止電圧 Vを、二次電池 12の端子電圧の単位時間あたりの低下量に応
E
じて設定することで、結果的に放電終止電圧 Vを放電電流に応じて変化させること
E
が出来る結果、放電容量の低下を抑制する事ができたためである。
[0080] [表 2]
Figure imgf000017_0001
[0081] 実施例 1及び比較例 1の放電制御装置を用いて、 10Aの定電流で 4. 2Vまで組電 池を充電した後に、 30分休止し、それぞれ放電電流 10A、 20A、 30A、 40A、 50A 、 60Aの電流値で放電しその後 30分休止し、次の充電を行うといった過程を 1サイク ノレとし、そのサイクルを繰り返し行った。このサイクルを 500サイクル繰り返した後の放 電容量維持率(500サイクル後容量/初期容量%)を表 2に記載する。そのときの環 境温度は 20°Cとした。
[0082] 表 2に示すように、本発明に係る実施例 1においては、放電電流が大きくなつた場 合、電圧の変化量 Vを測定時間 tで除した値が増大する結果、表 1に示すように上
X
記式 (B)に基づき放電終止電圧 Vが低下するにもかかわらず、比較例 1 (放電終止
E
電圧を 10Vにしたもの)と比較してサイクル劣化(放電容量維持率の低下)は見られ ない。これは放電電流の増加に伴って、分極が増大して負極の電位が上昇した結果
、正極の電位が正極の分解電位まで達しなかったためである。一方、比較例 2では 放電終止電圧を 6Vという低い電圧に設定しているため、 10A、 20Aといった低電流 放電時にサイクル劣化が大きくなつて!/、る。
[0083] このように、本発明に係る実施例 1によれば、比較例 1と同等のサイクル性能を維持 しつつ、比較例 1より放電終止電圧を低下させて蓄えられたエネルギーの利用効率 を向上させることができた。
[0084] 本発明の一局面に従う放電制御装置は、非水電解質二次電池を電源とする放電 制御装置であって、前記電源と、負荷と、制御部とを有し、前記制御部が、前記電源 の放電終止電圧 Vの制御を、電圧の変化量 Vを測定時間 tで除した値で行う。
E X
[0085] この放電制御装置を用いることにより、正負極が劣化する電位の直前で放電を終止 することが可能となり優れたサイクル性能と高容量化を十分に達成することができる。
[0086] 本発明の一局面に従う放電制御装置は、二次電池と、前記二次電池から負荷への 放電経路を開閉するスィッチ部と、前記二次電池の端子電圧を検出する電圧検出部 と、前記電圧検出部によって検出された前記端子電圧が、所定の放電終止電圧 V
E
以下になったとき前記スィッチ部を開かせると共に、前記電圧検出部によって検出さ れた前記端子電圧の、単位時間あたりの低下量を測定し、当該単位時間あたりの低 下量が大きくなるほど前記放電終止電圧 Vが低下するように、前記放電終止電圧 V
E E
を設定する終止電圧制御部とを備える。
[0087] この構成によれば、二次電池の端子電圧が放電終止電圧 V以下になると、二次電
E
池の放電が停止される。また、二次電池の端子電圧の、単位時間あたりの低下量が 大きくなるほど放電終止電圧 Vが低下するように、終止電圧制御部によって、放電終
E
止電圧 Vが設定される。そうすると、二次電池が大電流で放電されて正負極の分極
E
が増大した場合には、前記単位時間あたりの低下量が増大する結果、終止電圧制 御部によって、正負極の分極の増大に対応するように放電終止電圧 Vが低下される
E
ので、二次電池のサイクル性能の劣化を抑えつつ放電終止電圧を低下させて蓄えら れたエネルギーの利用効率を向上させることが容易となる。
[0088] そして、二次電池が低電流で放電されて正負極の分極が減少した場合には、前記 単位時間あたりの低下量が減少する結果、終止電圧制御部によって、正負極の分極 の減少に対応するように放電終止電圧 Vが増大される。その結果、正負極の分極が 減少することによりサイクル性能の劣化が生じる電圧が上昇した場合であっても、サイ クル性能の劣化が生じる前に放電を停止して、二次電池の劣化を低減することが容 易となる。
[0089] さらに、環境温度によって正負極の分極の程度が変化した場合であっても、二次電 池の端子電圧の、単位時間あたりの低下量に基づき正負極の分極を推定することで 、環境温度の変化に伴う正負極の分極の変化を反映させて放電終止電圧 Vを決定
E
することができるので、上述した背景技術に係る放電電流値に基づき放電終止電圧 を設定する技術のように、環境温度によって妥当な放電終止電圧が得られなくなるお それが低減される。
[0090] また、前記終止電圧制御部は、予め設定された測定時間 tの期間にお!/、て、前記 電圧検出部によって検出された前記端子電圧の低下量を変化量 Vとして測定し、当
X
該変化量 Vを前記測定時間 tで除した値を、前記単位時間あたりの低下量として用
X
いることが好ましい。
[0091] この構成によれば、単位時間あたりの低下量を測定することが容易である。
[0092] また、前記二次電池は、非水電解質二次電池であることが好ましい。
[0093] 非水電解質二次電池は、放電末期において、放電量に対する端子電圧の低下量 が大きくなるから、端子電圧の単位時間あたりの低下量を測定することが容易である
。従って、上述の二次電池として好適に用いることができる。
[0094] また、前記終止電圧制御部は、下記の式(1 )に基づき、放電終止電圧 Vを設定す
E
ることが好ましい。
[0095] V = /3 - a X (V /t) 2 · · · ( 1 )
E x
但し、 5≤ a≤25
1. 5≤ β≤3. 0
[0096] 本願出願人らは、下記の式(1 )に基づき、放電終止電圧 Vを設定することで、二次
Ε
電池のサイクル性能の劣化を抑えつつ放電終止電圧を低下させることが容易となる ことを、実験的に見出した。
[0097] また、前記二次電池は、複数のセルが直列に接続された組電池であり、前記終止 電圧制御部は、前記二次電池における直列セル数力なであるとき、下記の式(2)に 基づき放電終止電圧 Vを設定することが好ましい。
E
[0098] V = { /3 - a X (V /t) 2 } X X · · · (2)
E x
但し、 5≤ a≤25
1. 5≤ β≤3. 0
[0099] 本願出願人らは、下記の式(2)に基づき、放電終止電圧 Vを設定することで、二次
Ε
電池のサイクル性能の劣化を抑えつつ放電終止電圧を低下させることが容易となる ことを、実験的に見出した。
[0100] また、前記終止電圧制御部は、前記電圧検出部によって検出された前記端子電圧 ヽ前記二次電池のセルあたり 3. 0V以下 2. 0以上の範囲で予め設定された閾値 電圧以下になったとき、前記単位時間あたりの低下量の測定を行うことが好ましい。
[0101] 非水電解質二次電池は、セルあたりの端子電圧が 3. OVを超える領域では、放電 に伴う端子電圧の低下量が少ない。そのため、前記端子電圧の単位時間あたりの低 下量を、端子電圧が 3. OV以下の領域で測定することで、当該単位時間あたりの低 下量の測定精度が向上する。
[0102] そして、非水電解質二次電池は、セルあたりの端子電圧が 2. OVに満たない領域 では、放電に伴う端子電圧の低下が急激となる。そのため、もし仮に前記端子電圧の 単位時間あたりの低下量を、端子電圧が 2. OVに満たない領域で測定すると、電圧 の変化量が大きすぎて、電圧の変化量を判定後、瞬時に電池電圧が材料の劣化電 位に達してしまう。そこで、端子電圧が 2. 0以上の領域で、前記端子電圧の単位時 間あたりの低下量を測定することで、電池電圧が材料の劣化電位に達してしまうおそ れを低減することができる。
[0103] また、前記二次電池は、放電終了時に正極の電位の低下によって放電が終止する 、正極容量で規制されたものであることが好まし!/、。
[0104] 負極容量規制の電池では、電圧変化の検出が困難であるため、前記二次電池とし ては、正極容量で規制されたものが好適である。
産業上の利用可能性
[0105] 本発明に係る二次電池の放電方法及び放電制御装置は、高負荷機器、電気自動 車などの輸送機器に使用され、高容量、長寿命であることが要求される二次電池に 適用して好適である。

Claims

請求の範囲
[1] 二次電池と、
前記二次電池から負荷への放電経路を開閉するスィッチ部と、
前記二次電池の端子電圧を検出する電圧検出部と、
前記電圧検出部によって検出された前記端子電圧が、所定の放電終止電圧 V以
E
下になつたとき前記スィッチ部を開かせると共に、前記電圧検出部によって検出され た前記端子電圧の、単位時間あたりの低下量を測定し、当該単位時間あたりの低下 量が大きくなるほど前記放電終止電圧 Vが低下するように、前記放電終止電圧 Vを
E E
設定する終止電圧制御部と
を備えることを特徴とする放電制御装置。
[2] 前記終止電圧制御部は、
予め設定された測定時間 tの期間において、前記電圧検出部によって検出された 前記端子電圧の低下量を変化量 Vとして測定し、当該変化量 Vを前記測定時間 t
X X
で除した値を、前記単位時間あたりの低下量として用いること
を特徴とする請求項 1記載の放電制御装置。
[3] 前記二次電池は、非水電解質二次電池であること
を特徴とする請求項 2記載の放電制御装置。
[4] 前記終止電圧制御部は、
下記の式(1 )に基づき、放電終止電圧 Vを設定すること
E
を特徴とする請求項 3記載の放電制御装置。
V = /3 - a X (V /t) 2 …ひ)
E
但し、 5≤ a≤25
1. 5≤ β≤3. 0
[5] 前記二次電池は、複数のセルが直列に接続された組電池であり、
前記終止電圧制御部は、
前記二次電池における直列セル数力 であるとき、下記の式(2)に基づき放電終 止電圧 Vを設定すること
Ε
を特徴とする請求項 3記載の放電制御装置。 V = { /3 - a X (V /t) 2 } X X · · · (2)
但し、 5≤ a≤25
1. 5≤ β≤3. 0
[6] 前記終止電圧制御部は、
前記電圧検出部によって検出された前記端子電圧が、前記二次電池のセルあたり 3. 0V以下 2. 0以上の範囲で予め設定された閾値電圧以下になったとき、前記単位 時間あたりの低下量の測定を行うこと
を特徴とする請求項;!〜 5のいずれか 1項に記載の放電制御装置。
[7] 前記二次電池は、放電終了時に正極の電位の低下によって放電が終止する、正 極容量で規制されたものであること
を特徴とする請求項;!〜 6のいずれか 1項に記載の放電制御装置。
PCT/JP2007/068406 2006-10-06 2007-09-21 Dispositif de commande de décharge WO2008044454A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07807738A EP2073302A4 (en) 2006-10-06 2007-09-21 DISCHARGE CONTROL DEVICE
US12/441,687 US8102155B2 (en) 2006-10-06 2007-09-21 Discharge controller
CN2007800362265A CN101523659B (zh) 2006-10-06 2007-09-21 放电控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006274916 2006-10-06
JP2006-274916 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044454A1 true WO2008044454A1 (fr) 2008-04-17

Family

ID=39282659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068406 WO2008044454A1 (fr) 2006-10-06 2007-09-21 Dispositif de commande de décharge

Country Status (5)

Country Link
US (1) US8102155B2 (ja)
EP (1) EP2073302A4 (ja)
KR (1) KR20090060324A (ja)
CN (1) CN101523659B (ja)
WO (1) WO2008044454A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722334B2 (en) 2010-04-07 2017-08-01 Black & Decker Inc. Power tool with light unit
US8423215B2 (en) * 2010-08-10 2013-04-16 Tesla Motors, Inc. Charge rate modulation of metal-air cells as a function of ambient oxygen concentration
US9454197B2 (en) * 2011-01-28 2016-09-27 Renesas Electronics Corporation Controller and semiconductor system
US9935477B2 (en) * 2013-08-22 2018-04-03 Hitachi, Ltd. Charge/discharge control method and charge/discharge control apparatus for lithium ion battery
US11104231B2 (en) * 2014-04-17 2021-08-31 Michael Lynn Froelich System for maintaining acceptable battery cycle life for electric-powered vehicles
KR102558740B1 (ko) * 2016-10-27 2023-07-24 삼성전자주식회사 배터리 관리 방법, 장치, 및 시스템
CN111129626B (zh) * 2018-10-30 2021-10-22 宏碁股份有限公司 低电压门槛调整方法
CN114586210A (zh) * 2019-08-28 2022-06-03 斯巴克充电公司 电池模块
KR20220101996A (ko) * 2021-01-12 2022-07-19 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554275A (ja) * 1991-08-28 1993-03-05 Sharp Corp 鉛蓄電池の電圧低下警告装置
JPH08126214A (ja) * 1994-10-26 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> 蓄電池容量測定方法及び回路
JPH08149707A (ja) * 1994-11-18 1996-06-07 Canon Inc 電池の充電方法及び電源装置
JPH10257684A (ja) 1997-03-14 1998-09-25 Toyota Motor Corp 充放電制御装置
JP2001307781A (ja) * 2000-04-24 2001-11-02 Hitachi Ltd リチウム二次電池及びその充放電方法
JP2005085566A (ja) * 2003-09-08 2005-03-31 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691556B2 (ja) 1988-04-06 1997-12-17 マツダ株式会社 車体および車両組立ラインにおけるワーク搬送装置
JP3389670B2 (ja) * 1994-03-11 2003-03-24 日産自動車株式会社 2次電池の直列接続回路
JPH09215213A (ja) * 1996-02-05 1997-08-15 Fuji Elelctrochem Co Ltd 過放電防止装置
JPH118940A (ja) 1997-06-16 1999-01-12 Toshiba Battery Co Ltd 電池電圧測定装置およびこれを用いた充電量測定装置
US6163131A (en) * 1998-04-02 2000-12-19 The Procter & Gamble Company Battery having a built-in controller
JP4030331B2 (ja) * 2002-03-28 2008-01-09 日本碍子株式会社 ナトリウム−硫黄電池の制御装置
JP4059838B2 (ja) * 2003-11-14 2008-03-12 ソニー株式会社 バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の制御方法
CN1333262C (zh) * 2004-01-02 2007-08-22 清华大学 基于小波变换的电动车电池放电终止状态的判定方法
EP1712924A1 (en) * 2004-01-21 2006-10-18 Yazaki Corporation Battery pure resistance measuring method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554275A (ja) * 1991-08-28 1993-03-05 Sharp Corp 鉛蓄電池の電圧低下警告装置
JPH08126214A (ja) * 1994-10-26 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> 蓄電池容量測定方法及び回路
JPH08149707A (ja) * 1994-11-18 1996-06-07 Canon Inc 電池の充電方法及び電源装置
JPH10257684A (ja) 1997-03-14 1998-09-25 Toyota Motor Corp 充放電制御装置
JP2001307781A (ja) * 2000-04-24 2001-11-02 Hitachi Ltd リチウム二次電池及びその充放電方法
JP2005085566A (ja) * 2003-09-08 2005-03-31 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2073302A4

Also Published As

Publication number Publication date
US8102155B2 (en) 2012-01-24
EP2073302A4 (en) 2012-11-28
CN101523659A (zh) 2009-09-02
CN101523659B (zh) 2011-10-26
US20100045236A1 (en) 2010-02-25
EP2073302A1 (en) 2009-06-24
KR20090060324A (ko) 2009-06-11

Similar Documents

Publication Publication Date Title
KR101222220B1 (ko) 비수 전해질 이차전지의 충전방법 및 충전장치
JP5109619B2 (ja) 組電池システム、及び充放電制御方法
JP4898308B2 (ja) 充電回路、充電システム、及び充電方法
CN102171882B (zh) 非水电解质二次电池的充电方法和充电装置
WO2008044454A1 (fr) Dispositif de commande de décharge
US8125185B2 (en) Method for charging non-aqueous electrolyte secondary battery
US8232776B2 (en) Charging method for an assembled cell and an assembled cell system
JP4492683B2 (ja) 電池システム
KR101777526B1 (ko) 2차 전지의 제어 장치 및 제어 방법
KR20080036591A (ko) 리듐-이온 배터리용 제어 전자장치
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
KR20070098642A (ko) 조전지 시스템, 조전지의 충전 방법 및 충전식 청소기
US12074467B2 (en) Secondary battery charging system
US20070111044A1 (en) Hybrid cell and method of driving the same
JP5122899B2 (ja) 放電制御装置
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
JP5284029B2 (ja) 組電池パック及び組電池パックの製造方法
WO2021186781A1 (ja) 容量回復装置、容量回復方法および二次電池システム
JP2007166698A (ja) 充電式電源装置
JP2004297974A (ja) 充電器
JP5197904B2 (ja) 非水電解液二次電池パックの充電方法
JP2022086167A (ja) リチウムイオン二次電池の制御方法
JP2005310618A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036226.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12441687

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007807738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097006825

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE