WO2008044330A1 - Ruban adhésif - Google Patents

Ruban adhésif Download PDF

Info

Publication number
WO2008044330A1
WO2008044330A1 PCT/JP2007/001058 JP2007001058W WO2008044330A1 WO 2008044330 A1 WO2008044330 A1 WO 2008044330A1 JP 2007001058 W JP2007001058 W JP 2007001058W WO 2008044330 A1 WO2008044330 A1 WO 2008044330A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive tape
group
resin
solder
acid
Prior art date
Application number
PCT/JP2007/001058
Other languages
English (en)
French (fr)
Inventor
Toshio Komiyatani
Takashi Hirano
Kenzou Maejima
Satoru Katsurayama
Tomoe Yamashiro
Original Assignee
Sumitomo Bakelite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd. filed Critical Sumitomo Bakelite Co., Ltd.
Priority to US12/095,530 priority Critical patent/US8597785B2/en
Priority to EP20070827837 priority patent/EP2071000B1/en
Priority to JP2008538563A priority patent/JP5394066B2/ja
Priority to CN2007800023675A priority patent/CN101370887B/zh
Publication of WO2008044330A1 publication Critical patent/WO2008044330A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0191Using tape or non-metallic foil in a process, e.g. during filling of a hole with conductive paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2804Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/287Adhesive compositions including epoxy group or epoxy polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • the present invention relates to an adhesive tape.
  • This printed wiring board is a rigid flex printed wiring board that is a composite substrate of a flexible printed wiring board and a rigid printed wiring board, and its application is expanding.
  • a conventional method for manufacturing a multilayer flexible printed wiring board or a rigid flex printed wiring board is to laminate a plurality of single-sided circuit boards and adhesive layers alternately, and then form a laminate, and through holes for interlayer connection are formed there. After the through-hole plating for interlayer connection is performed on the through hole, a method of processing the circuit of the outermost layer, etc., or a hole not penetrating the copper foil on the insulating material side of the single-sided circuit board is made, and a metal or alloy is used. There has been proposed a construction method in which a conductor post is formed, the entire surface is coated, the adhesive layer and the wiring board are pressed and repeated as many times as necessary (for example, Patent Document 1).
  • the former manufacturing method as a generally used electrical connection method between layers, there is a method of electrically connecting each layer by forming a through-hole penetrating through all layers and attaching the through hole there. Used.
  • the processing method is simple, but the circuit design is very restrictive.
  • the most inferior point is that all layers are electrically connected through through-holes, so the outermost layer has more through-land connection lands, and the area ratio also increases.
  • this makes it impossible to increase the circuit packaging density, which can be fatal to component mounting and circuit wiring.
  • the greatest difference between a multilayer flexible printed wiring board or a rigid flex printed wiring board and a multilayer rigid printed wiring board is the presence or absence of a flexible part.
  • the force to remove the outer layer must be removed so that the flexible part is not stacked, or the outer layer must be removed after lamination. The number will go wrong.
  • the number of wiring boards per sheet may be limited to the smallest number of circuit boards available for each layer. The number will go wrong.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-5 4 9 3 4
  • the present invention provides an adhesive tape capable of reliably melting solder bumps and performing electrical bonding between layers of a circuit board.
  • an adhesive tape comprising a flux active compound having a strong lpoxyl group and / or a phenolic hydroxyl group, a thermosetting resin, and a film-forming resin.
  • the thermosetting resin may be an epoxy resin.
  • the thermosetting resin may include a curing agent. With this configuration, the controllability of the curing characteristics of the adhesive tape can be improved.
  • the curing agent may be an imidazole compound and / or a phosphorus compound. With this configuration, the curability of the adhesive tape can be improved.
  • the film-forming resin can be a phenoxy resin or an acrylic rubber.
  • a phenoxy resin By using a phenoxy resin, the fluidity of the adhesive tape before curing can be suppressed, and the interlayer thickness can be made uniform.
  • an acrylic rubber By using an acrylic rubber, it is possible to improve the film formation stability when producing a film-like adhesive tape, and to improve the adhesion between the adherend and the adhesive tape.
  • the adhesive tape may further include a silane coupling agent. With this configuration, the adhesion between the adhesive tape and the adherend can be improved.
  • the copper tape represented by the following formula (1) is used.
  • the copper oxide reduction rate is 70% or more.
  • Copper oxide reduction rate (%) ⁇ 1-(O atom concentration after reduction treatment) / (O atom concentration after oxidation treatment) ⁇ X 1 0 0 ⁇ ⁇ ⁇ Formula (1)
  • the above adhesive tape has the following formula (2)
  • the solder wetting spread rate expressed by is 40 ⁇ 1 ⁇ 2 or more.
  • Solder wetting spread rate (%) [ ⁇ (solder pole diameter) one (solder thickness after wetting spread) ⁇ / (solder pole diameter)] X 1 0 0 ⁇ ⁇ ⁇ Formula (2)
  • the adhesive tape has a thickness of 100 m, a melt viscosity at 2 23 ° C of 10 to 1 0 0 0 0 P a ⁇ s.
  • the adhesive tape has a thickness of 25 to 250 when the adhesive tape having a thickness of 100 m is measured with a viscoelasticity measuring device at a heating rate of 10 ° C / min and a frequency of 0.1 Hz.
  • Minimum melt viscosity at ° C is 1 P a s or more l OOOOP a s or less.
  • an adhesive tape that can reliably melt a solder bump and perform electrical bonding between layers of a circuit board.
  • FIG. 1 shows a multilayer circuit board using an adhesive tape.
  • FIG. 2 is a schematic diagram showing a connection portion of the multilayer circuit board of FIG.
  • the adhesive tape of the present invention includes a flux active compound having a strong lpoxyl group and / or a phenolic hydroxyl group, a thermosetting resin, and a film-forming resin.
  • a flux active compound having a strong lpoxyl group and / or a phenolic hydroxyl group a thermosetting resin, and a film-forming resin.
  • the flux-active compound having a strong lpoxyl group and / or a phenolic hydroxyl group used in the present invention means a compound in which at least one strong lpoxyl group and / or a phenolic hydroxyl group is present in the molecule, It may be solid or solid.
  • Examples of the flux active compound containing a strong lpoxyl group include an aliphatic acid anhydride, an alicyclic acid anhydride, an aromatic acid anhydride, an aliphatic carboxylic acid, and an aromatic carboxylic acid.
  • Examples of the flux active compound having a phenolic hydroxyl group include phenols.
  • Examples of the aliphatic acid anhydride include succinic anhydride, polydipic acid anhydride, polyzelaic acid anhydride, polysebacic acid anhydride, and the like.
  • Alicyclic acid anhydrides include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, And methylcyclohexene dicarboxylic acid anhydride.
  • aromatic acid anhydrides include phthalic anhydride trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarponic anhydride, ethylene glycol rubitrimitate, glycerol tristrimitate, etc. It is done.
  • Examples of the aliphatic carboxylic acid include compounds represented by the following formula (3):
  • n is an integer of 0 or more and 20 or less.
  • n in the above formula (3) is preferably 3 or more and 10 or less from the balance of the flux activity, the outgas at the time of bonding, the elastic modulus after curing of the adhesive tape, and the glass transition temperature.
  • n in the above formula (3) is preferably 3 or more and 10 or less from the balance of the flux activity, the outgas at the time of bonding, the elastic modulus after curing of the adhesive tape, and the glass transition temperature.
  • aliphatic carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid cabronic acid, strong prillic acid, lauric acid, myristic acid, palmitic acid, stearic acid, acrylic acid, methacrylic acid, Examples include crotonic acid, oleic acid, fumaric acid, maleic acid, oxalic acid, malonic acid, and oxalic acid.
  • aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, merophanic acid, platonic acid, pyromellitic acid, meritic acid, triylic acid, Xylylic acid, Hemellitic acid, Mesitylene acid, Planicylic acid, Toluic acid, Cain's acid, Salicylic acid, 2,3-Dihydroxybenzoic acid, 2,4-Dihydroxybenzoic acid, Genticic acid (2,5-Dihydroxy Benzoic acid), 2,6-dihydroxybenzoic acid Peroxy acid, 3,5-dihydroxybenzoic acid, gallic acid (3, 4, 5_trihydroxybenzoic acid), 1,4-dihydroxy-2-naphthoic acid, 3,5-dihydroxy-2-oxynaphthoic acid And naphthoic acid derivatives; phenolphthaline; diphenolic acid and the like.
  • Examples of flux active compounds having a phenolic hydroxyl group include phenol, o_cresolol, 2,6_xylenol, p_cresolol, m-cresolol, o_ethylphenol, 2,4_xylenol, 2,5 xylenol, m_ethylphenol, 2,3_xylenol, med!
  • the flux active compound is three-dimensionally incorporated by reaction with a thermosetting resin such as an epoxy resin, it contains at least two phenolic hydroxyl groups that can be added to the epoxy resin in one molecule.
  • a thermosetting resin such as an epoxy resin
  • Such compounds include 2,3_dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, gentisic acid (2,5-dihydroxybenzoic acid), 2,6-dihydroxybenzoic acid, 3,4-dihydroxyloxy Benzoic acid derivatives such as benzoic acid and gallic acid (3, 4, 5_trihydroxybenzoic acid); 1, 4-dihydroxy-2-naphthoic acid, 3, 5-dihydroxy 2-hydroxy-1,2-naphthoic acid, 3, 7 — Naphthoic acid derivatives such as dihydroxy-1-naphthoic acid; phenolphthalein; and diphenolic acid
  • These flux active compounds may be used alone or in combination of two or more.
  • the amount of the flux active compound is 1% by weight or more, preferably 5% by weight or more, based on the total amount of the ingredients of the adhesive tape. Residual thermosetting resin and unreacted flux-active compounds can cause migration. Therefore, in order not to leave a flux active compound that does not react with the thermosetting resin, the amount of the flux active compound is 30% by weight or less, preferably 25% by weight or less. If it is within the above range, the oxide film on the surface of the copper foil can be reduced to obtain a good bond with high strength.
  • thermosetting resin used in the present invention examples include epoxy resins, oxetane resins, phenol resins, (meth) acrylate resins, unsaturated polyester resins, diallyl phthalate resins, and maleimide resins. Used. Of these, epoxy resins having excellent curability and storage stability, heat resistance, moisture resistance, and chemical resistance of cured products can be suitably used.
  • the epoxy resin any one of an epoxy resin solid at room temperature and an epoxy resin liquid at room temperature may be used.
  • the resin may include an epoxy resin that is solid at room temperature and an epoxy resin that is liquid at room temperature. As a result, the degree of freedom in designing the melting behavior of the resin can be further increased.
  • the epoxy resin that is solid at room temperature is not particularly limited. Bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy Resin, glycidyl ester type epoxy resin, trifunctional epoxy resin, tetrafunctional epoxy resin and the like. More specifically, a solid trifunctional epoxy resin and a cresol nopolac type epoxy resin may be included.
  • the epoxy resin that is liquid at room temperature can be a bisphenol A type epoxy resin or a bisphenol F type epoxy resin. Also, these You may use it in combination.
  • thermosetting resins are preferably 25% by weight or more and 75% by weight or less, more preferably 45% by weight or more, based on the total amount of the blending components of the adhesive tape. 70% by weight or less.
  • the thermosetting resin may contain a curing agent.
  • the curing agent include phenols, amines, and thiols.
  • an epoxy resin is used as the thermosetting resin, good reactivity with the epoxy resin, low dimensional change upon curing, and appropriate physical properties after curing (eg, heat resistance, moisture resistance, etc.) are obtained.
  • phenols are preferably used.
  • the phenols are not particularly limited, but are preferably bifunctional or higher in view of the physical properties after curing of the adhesive tape.
  • bisphenol 8, tetramethyl bisphenol 8, diaryl bisphenol 8, biphenol, bisphenol F, diaryl bisphenol F, trisphenol, tetrakisphenol, phenol nopolacs examples include cresol mononolaccs, and phenol novolacs and cresol novolacs can be preferably used in view of melt viscosity, reactivity with epoxy resins and physical properties after curing.
  • the blending amount thereof is, for example, 5% by weight or more, preferably from the total amount of the blending components of the adhesive tape, from the viewpoint of reliably curing the resin. 10% by weight or more. Residual epoxy resin and unreacted phenol novolaks can cause migration. Therefore, in order not to remain as a residue, it is 30% by weight or less, preferably 25% by weight or less.
  • the amount of phenol novolac resin may be defined by an equivalent ratio with respect to the epoxy resin.
  • the equivalent ratio of phenol nopolac to epoxy resin is 0.5 or more and 1.2 or less, preferably 0.6 or more and 1.1 or less, and more preferably 0. 7 or more and 0.98 or less.
  • Examples of other curing agents include imidazole compounds and phosphorus compounds.
  • the imidazole compound for example, an imidazole compound having a melting point of 1550 ° C. or higher can be used. If the melting point of the imidazole compound is too low, the oxide film on the solder bumps is removed, and the adhesive tape hardens before the solder bumps and the electrodes are metal-bonded, resulting in unstable connection and storage stability of the adhesive tape. There are concerns about a decline. Therefore, the melting point of imidazole is preferably 1550 ° C or higher. Examples of the imidazole compound having a melting point of 150 ° C.
  • the blending amount thereof is, for example, from 0.05% by weight to 10% by weight of 0 / o or less based on the total amount of the blending components of the adhesive tape.
  • the content is 0.01 wt% or more and 5 wt% or less.
  • the resin has a melt viscosity that is not too high at the temperature at which the solder melts, and a good solder joint structure can be obtained.
  • the storage stability of the adhesive tape can be further improved.
  • Examples of the phosphorus compound include triphenylphosphine; a molecular compound of tetra-substituted phosphonium and a polyfunctional phenol compound; a phosphorus compound such as a molecular compound of tetra-substituted phosphonium, a phenone donor, and a trialkoxysilane compound. Things. Among these, molecular compounds of tetra-substituted phosphonium and polyfunctional phenolic compounds, and tetra-substituted phosphonium, which are superior in rapid curing of adhesive films, corrosiveness to aluminum pads of semiconductor elements, and storage stability of adhesive films. And a molecular compound of a proton donor and a trialkoxysilane compound are particularly preferred.
  • the molecular compound of a tetra-substituted phosphonium and a polyfunctional phenol compound and the molecular compound of a tetra-substituted phosphonium, a proton donor, and a trialkoxysilane compound are not merely a mixture of these compounds. It is a molecular compound having a structure such as a salt structure or a supramolecular structure.
  • the tetra-substituted phosphonium is preferably a tetra-substituted phosphonium in which four alkyl groups and aromatic compounds are coordinated to the phosphorus atom from the viewpoint of the balance between curability and storage stability of the adhesive film.
  • the substituent of the tetra-substituted phosphonium is not particularly limited, and the substituents may be the same or different from each other, and examples thereof include a substituted or unsubstituted aryl group or an alkyl group. .
  • a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl group or alkyl group is preferable because it is stable against heat and hydrolysis.
  • tetra-substituted phosphoniums include tetraphenyl phosphonium, tetratolyl phosphonium, tetraethyl phenyl phosphonium, tetramethoxyphenyl phosphonium, tetranaphthyl phosphonium, tetrabenzil phosphonium, and ethyltrif.
  • tetraphenylphosphonium is preferable in view of the balance between fast curing property and storage stability of the adhesive film.
  • the polyfunctional phenol compound in the molecular compound of a tetra-substituted phosphonium and a polyfunctional phenol compound is a phenol compound in which at least one hydroxyl group of phenolic hydroxyl groups is eliminated to form a phenoloxide.
  • Specific examples include hydroxybenzene compounds, biphenol compounds, bisphenol compounds, hydroxynaphthalene compounds, phenol nopolac resins, phenol aralkyl resins, and the like.
  • Examples of such polyfunctional phenolic compounds include bis (4-hydroxy-1,3-dimethylphenyl) methane (common name: tetramethylbisphenol F), 4, 4'_sulfonyl.
  • Diphenyl, and 4, 4 'isopropylidene diphenol (commonly known as bisphenol A), bis (4-hydroxyphenyl) methane, bis (2-hydroxyphenyl) methane, and (2-hydroxyphenyl) (4 —Hydroxyphenyl) methane, and bis (4 —hydroxyphenyl) methane and bis (2-hydroxyphenyl) methane and (2-hydroxyphenyl) (4-hydroxyphenyl) methane mixtures (eg Honshu Bisphenols such as bisphenol F—D) manufactured by Chemical Industry Co., Ltd .; 1,2_benzenediol, 1,3_benzenediol, And dihydroxybenzenes such as 14_benzenediol; trihydroxybenzenes such as 1,2,4_benzent
  • the proton donor in the molecular compound of the tetra-substituted phosphonium, the proton donor, and the trialkoxysilane compound is not particularly limited, but 1, 2, 2-cyclohexanediol, 2_ethanediol, 3,4-dihydroxy_3-cyclobutene 1, aliphatic dihydroxy compounds such as 1,2-dione and glycerin; aliphatic carboxylic acid compounds such as glycolic acid and thioacetic acid; benzoin, catechol, pyrogallol, gallic acid Propyl acid, tannic acid, 2-hydroxydiline, 2-hydroxybenzyl alcohol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene And aromatic hydroxy compounds such as salicylic acid, aromatic hydroxycarboxylic acid compounds such as 1-hydroxy_2-naphthoic acid and 3_hydroxy_2-naphthoic acid, and the like.
  • an aromatic dihydroxy compound is more preferable from the viewpoint of the stability of the phosphorus compound.
  • Aromatic dihydroxy compounds include, for example, catechol, pyrogallol, propyl gallate, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,2'-biphenol and tannin
  • catechol, 2,2′-biphenol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene are particularly preferable.
  • the trialkoxysilane compound includes a trialkoxysilane compound having a substituent containing a substituted or unsubstituted aromatic ring; a trialkoxysilane compound having a substituted or unsubstituted aliphatic group; a substituted or unsubstituted And trialkoxysilane compounds having a substituent containing a complex ring.
  • the group containing an aromatic ring includes a phenyl group, a pentafluorophenyl group, a benzyl group, a methoxyphenyl group, a tolyl group, a fluorophenyl group, a cyclophenyl group, a bromophenyl group, a nitrophenyl group, and a cyanophenyl group.
  • Examples of the aliphatic group include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a glycidyloxypropyl group, a mercaptopropyl group, an aminopropyl group, an anilinopropyl group, a butyl group, a hexyl group, Octyl group, chloromethyl group, bromomethyl group, black-mouth propyl group, cyanopropyl group, jetyl
  • Examples include amino group, vinyl group, allyl group, methacryloxymethyl group, methacryloxypropyl group, pentagenyl group, bicycloheptyl group, bicycloheptenyl group, and ethynyl group.
  • Examples of the group containing a heterocyclic ring include pyridyl group, pyrrolinyl group, imidazolyl group, indonyl group, triazolyl group, benzotriazolyl group, strong / zolyl group, triazinyl group, piperidyl group, quinolyl group, morpholinyl Group, furyl group, furfuryl group and chenyl group.
  • a vinyl group, a phenyl group, a naphthyl group, and a glycidyloxypropyl group are more preferable from the viewpoint of the stability of the silicate anion in the latent catalyst.
  • Trialkoxysilane compounds having a group containing a substituted or unsubstituted aromatic ring include phenyltrimethoxysilane, phenyltriethoxysilane, pentafluorophenyltriethoxysilane, 1-naphthyltrimethoxysilane, and (N —Phenylaminopropyl) trimethoxysilane and the like.
  • Examples of the trialkoxysilane compound having a substituted or unsubstituted aliphatic group include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, vinyltrimethoxysilane, hexyltriethoxy.
  • Examples thereof include silane, 3-glycidyloxypropyl trimethoxysilane, 3-mercaptoprovir trimethoxysilane, and 3-aminopropyltrimethoxysilane.
  • Examples of trialkoxysilane compounds having a group containing a substituted or unsubstituted heterocycle include 2_ (trimethoxysilylethyl) pyridine and N- (3-trimethoxysilylpropyl) pyrrole. It is done.
  • examples of the substituent in the aliphatic group include a glycidyl group, a mercapto group, and an amino group.
  • examples of the substituent in the aromatic ring and the heterocyclic ring include a methyl group, an ethyl group, a hydroxyl group, and an amino group. It is done.
  • the blending amount thereof is, for example, not less than 0.05% by weight and not more than 10% by weight with respect to the total amount of blending components of the adhesive tape. Preferably, it is 0.01 to 5% by weight.
  • the compounding ratio of the phosphorus compound is 0.05% by weight or more, the function of the thermosetting resin as a curing catalyst can be exhibited more effectively, and the curability of the adhesive tape can be improved.
  • the melt viscosity of the resin does not become too high at the temperature at which the solder melts, and a good solder joint structure can be obtained.
  • the storage stability of the adhesive tape can be further improved.
  • These curing agents may be used alone or in combination of two or more.
  • Examples of the film-forming resin include phenoxy resin, polyester resin, polyurethane resin, polyimide resin, cyclohexane-modified polyimide resin, polybutadiene, polypropylene, styrene-butadiene-styrene copolymer, styrene-ethylene-1 Butylene monostyrene copolymer, Polyacetal resin, Polyvinyl petital resin, Polyvinyl acetal resin, Butyl rubber, Chloroprene rubber, Polyamide resin, Acrylonitrile monobutadiene copolymer, Acrylonitrile monobutadiene monoacrylic acid copolymer, Acrylonitrile monobutadiene One styrene copolymer, polyvinyl acetate, nylon, acrylic rubber, etc. can be used. These may be used alone or in combination of two or more.
  • a phenoxy resin having a number average molecular weight of 500000 to 15500 is preferable.
  • the fluidity of the adhesive tape before curing can be suppressed, and the interlayer thickness can be made uniform.
  • the phenoxy resin skeleton include, but are not limited to, bisphenol A type, bisphenol F type, and biphenyl skeleton type.
  • a phenoxy resin having a saturated water absorption of 1% or less is preferable because it can suppress the occurrence of foaming and peeling even at high temperatures during bonding and solder mounting.
  • the adhesiveness and compatibility with other resins are improved.
  • a resin having a nitrile group, an epoxy group, a hydroxyl group, or a strong lpoxyl group may be used.
  • acrylic rubber can be used as such a resin.
  • the acrylic rubber is preferably a (meth) acrylic acid ester copolymer containing a monomer unit having an epoxy group, a hydroxyl group, a strong lpoxyl group, a nitrile group, or the like.
  • a monomer unit having an epoxy group, a hydroxyl group, a strong lpoxyl group, a nitrile group, or the like thereby, the adhesion to the adherend such as the back surface of the semiconductor element and the coating material on the semiconductor element can be further improved.
  • Monomers used in such (meth) acrylic acid ester copolymers include, for example, glycidyl (meth) acrylate having a glycidyl group, (meth) acrylate having a hydroxyl group, (meth) acrylate having a force loxyl group, And (meth) acrylonitrile having a nitrile group.
  • the content of the monomer unit having a strong lpoxyl group in the copolymer is more adhesive to an adherend. From the viewpoint of improving the amount, for example, it is 0.5% by weight or more, preferably 1% by weight or more of the entire (meth) acrylic acid ester copolymer.
  • the content of the monomer unit having a strong lpoxyl group is, for example, 10% by weight or less, preferably 5% by weight of the total (meth) acrylic acid ester copolymer, from the viewpoint of further improving the storage stability of the adhesive film. % Or less.
  • the (meth) acrylic acid ester copolymer has a weight average molecular weight of, for example, from 100 to 1,000,000, preferably from 3,000 to 800,000. By setting it within the above range, the film-forming property of the adhesive film can be further improved and the fluidity at the time of adhesion can be ensured.
  • the weight average molecular weight of the (meth) acrylic acid ester copolymer can be measured by, for example, gel permeation chromatography (GPC). TSK-GEL GMH X L_L, temperature 40 ° C, solvent tetrahydrofuran can be used.
  • the glass transition temperature of the (meth) acrylic acid ester copolymer is, for example, 0 ° C or higher, preferably 5 ° from the viewpoint of further improving workability by suppressing the adhesive film from becoming too sticky. C or higher. Further, the glass transition temperature of the (meth) acrylic acid ester copolymer is, for example, 30 ° C. or less, preferably 20 ° C. or less, from the viewpoint of further improving the adhesion at low temperatures.
  • the glass transition temperature of the (meth) acrylic acid ester copolymer is, for example, a constant load (1 OmN) using a thermomechanical characteristic analyzer (manufactured by Seiko Instruments Inc., TMA / SS 6 100). )-It can be measured from the inflection point when pulling while raising the temperature from 65 ° C at a heating rate of 5 ° C / min.
  • the blending amount of the film-forming resin can be, for example, 5 wt% or more and 45 wt% or less with respect to the total amount of blending components of the adhesive tape.
  • a decrease in film-forming property is suppressed and an increase in the elastic modulus after curing of the adhesive tape is suppressed, so that the adhesion to the adherend is further increased.
  • the increase in the melt viscosity of an adhesive tape is suppressed by setting it as the said range.
  • the adhesive tape of the present invention may further contain a silane coupling agent. Adhesiveness of the adhesive tape to the adherend can be further improved by including the silane coupling agent.
  • silane coupling agents epoxy silane coupling agents, aromatic-containing aminosilane couplings Agents and the like. These may be used alone or in combination of two or more.
  • the compounding amount of the silane coupling agent can be, for example, 0.01 to 5% by weight with respect to the total amount of the compounding components of the adhesive tape.
  • the adhesive tape of the present invention may contain components other than those described above.
  • various additives may be added as appropriate in order to improve various properties such as resin compatibility, stability, and workability.
  • the adhesive tape is obtained by mixing a flux active compound, a thermosetting resin, and a film-forming resin, applying the mixture onto a release substrate such as polyester, and drying at a predetermined temperature.
  • the above formula (1) when the adhesive tape is attached to the surface of the oxidized copper plate and reduced in air at 230 ° C for 1 minute, the above formula (1) is used.
  • the copper oxide reduction rate of the represented copper plate is 70% or more.
  • the flux active compound has the reducing power to reduce the oxide film on the electrode surface of the circuit board and remove the oxide film.
  • a sufficient copper oxide reduction rate is 70% or more to remove the oxide film and prevent the occurrence of poor connection.
  • the copper oxide reduction rate is preferably 75% or more, more preferably 80 ⁇ 1 ⁇ 2 or more.
  • the copper oxide reduction conditions (230 ° C, 1 minute) will be described. Since the reducing action of the flux active compound on copper oxide is manifested at a temperature higher than the melting point of the flux active compound, the copper oxide reduction temperature can be appropriately changed depending on the flux active compound.
  • Sn / 3. 5 Ag (221 ° C), Sn-3.0 A Ag-0.5 Cu (21 7 ° C), Sn_58 B Lead-free solders such as i (1 39 ° C) are used, and most of these have a melting point of 230 ° C or less. Therefore, in an embodiment of the present invention, a copper oxide reduction temperature of 230 ° C. is used.
  • the reduction time is set to 1 minute in consideration of the time during which the flux active compound melts, gets wet on the surface of copper oxide, and exhibits a reduction action, and variation in the reduction action.
  • the copper oxide (CuO) reduction rate is expressed by the following equation (1) and is obtained by the following measurement method.
  • Copper oxide reduction rate (%) ⁇ 1-(O atom concentration after reduction treatment) / (O atom concentration after oxidation treatment) ⁇ X 1 00
  • step (3) Within 1 minute after the reduction treatment in step (3), the adhesive tape component on the surface of the reduced copper plate is removed with aceton.
  • the adhesive tape has a tin-containing solder pole having a diameter of 500 Um disposed on the adhesive tape, and heated for 20 seconds at a temperature 30 ° C higher than the melting point of the solder pole.
  • the solder wetting spread rate expressed by the above formula (2) is 40% or more.
  • the flux active compound has the effect of reducing the oxide film of the solder bump, reducing the surface tension of the solder, and improving the wettability of the solder.
  • the higher the solder wetting and spreading rate the more metal bonding is promoted and the bonding strength increases.
  • the solder wetting spread rate that is sufficient to prevent the occurrence of poor bonding is 40% or more.
  • the solder wetting spread rate is preferably 45 ⁇ 1 ⁇ 2 or more, more preferably 50 ⁇ 1 ⁇ 2 or more.
  • the measurement conditions for the solder wetting spread rate (heating for 30 seconds at a temperature 30 ° C higher than the melting point of the solder pole) will be explained.
  • Lead such as at least Sn / A g (221 ° C), Sn-3.0 A Ag-0.5 Cu (2 17 ° C), Sn-58 Bi (139 ° C) It must be higher than the melting point of the free solder pole.
  • heating is performed at a temperature 30 ° C. higher than the melting point of the solder poles.
  • the heating time is 20 seconds in consideration of the time until the flux active compound melts and moves to the surface of the solder pole and the solder pole spreads out and the extent to which the solder spreads out.
  • solder wetting spread rate is expressed by the following equation (2), and can be obtained by the following measurement method.
  • Solder wetting spread rate (%) [ ⁇ (solder pole diameter) ichi (solder thickness after wetting spread) ⁇ / (solder pole diameter)] X 1 00 ⁇ ⁇ ⁇ Formula (2)
  • the adhesive tape has a thickness of 100; Um and a melt viscosity at 223 ° C. of not less than 10 Pa ⁇ s and not more than 10 000 Pa ⁇ s.
  • the melt viscosity is preferably 1 O O Pa a s to 3000 Pa a s, and particularly preferably 300 Pa to 15 O O Pa s.
  • the adhesive tape was measured using an adhesive tape having a thickness of 100 m with a viscoelasticity measuring device at a heating rate of 10 ° C / min and a frequency of O. 1 Hz.
  • the minimum melt viscosity at 25 to 250 ° C is 1 Pa's or more and 1 0000 Pa or less.
  • the minimum melt viscosity refers to the lowest melt viscosity in the range of 25 to 250 ° C when the melt viscosity is measured under the above measurement conditions.
  • the minimum melt viscosity is preferably 3 Pa ⁇ s to 3000 Pa ⁇ s, particularly preferably 5 Pa to 500 Pa ⁇ s.
  • the melt viscosity of the adhesive tape is determined by the following measurement method.
  • Adhesive tape with a thickness of 100 m was measured with a viscoelasticity measuring device (Rheo Stress RS-1 0 H AAKE Co., Ltd.) at a heating rate of 10 ° C / min, a frequency of 0.1 Hz, and a constant strain.
  • a viscoelasticity measuring device Roly Stress RS-1 0 H AAKE Co., Ltd.
  • the viscosity when the ambient temperature, which is the melting point of Sn / 3.5Ag, is 223 ° C is the measured value of the melt viscosity at 223 ° C.
  • the minimum melt viscosity between 25 ° C and 250 ° C shall be the measured value of the minimum melt viscosity.
  • the adhesive tape of the present invention satisfies one, preferably two, and more preferably all of the copper oxide reduction rate, the solder wetting spread rate, and the melt viscosity within the above ranges.
  • the adhesive tape includes the following components, but is not limited thereto.
  • the amount of each component shown is weight percent based on the total of the components.
  • the adhesive tape includes the following components.
  • the adhesive tape includes the following components.
  • the adhesive tape includes the following components.
  • the adhesive tape includes the following components.
  • V i force Rupokishiru flux activity compound having a group 5 to 2 0 wt%
  • V ii silane coupling agent 0. 0 1-1 wt 0/0.
  • the adhesive tape includes the following components. (i) Acrylic rubber 1 5-4 5 Weight 0 / o
  • V I Flux active compound having a phenolic hydroxyl group and a powerful loxyl group 5 to 20% by weight
  • the adhesive tape includes the following components.
  • the balance between curling viscosity and curability during heating can be further improved, so that the solder bumps can be melted and the interlayer connection of the circuit board can be reliably performed.
  • the acrylic rubber (i) by setting the blending amount of the acrylic rubber (i) to 15 to 45% by weight, it is possible to achieve a balance between the adhesive property of the adhesive tape and the melt viscosity during heating.
  • the blending amounts of the solid three-functional epoxy resin (ii), phenol nopolac resin (iii), and imidazole (i V) within the above ranges, the melt viscosity before curing of the adhesive tape is lowered.
  • the adhesive tape includes the following components.
  • the balance between curling viscosity and curability during heating can be further improved, so that the solder bumps can be melted and the interlayer connection of the circuit board can be reliably performed.
  • the acrylic rubber (i) by setting the blending amount of the acrylic rubber (i) to 15 to 45% by weight, it is possible to achieve a balance between the adhesive property of the adhesive tape and the melt viscosity during heating.
  • the blending amounts of the solid three-functional epoxy resin (ii), phenol nopolac resin (iii), and the phosphorus compound (iv) within the above range, the melt viscosity before curing of the adhesive tape can be lowered.
  • FIG. 2 is a schematic diagram of a connection portion of the laminate of FIG.
  • a copper foil 2 is provided so as to cover the build-up insulating layer 1
  • a core material layer 3 is provided so as to cover the copper foil 2.
  • the buildup insulation layer 4 is provided with a via post 7, and a solder plating layer 6 is provided so as to cover the via post 7.
  • the adhesive tape 5 is applied so as to cover the buildup insulating layer 4 and the solder plating layer 6.
  • pads 8 are provided on the core material layer 9 at intervals.
  • the upper substrate L 2 s and the lower substrate L 1 are heated and pressed to adhere to each other to obtain a laminate.
  • the resin flow coefficient is expressed by the following equation (4) and is obtained by the following measurement method.
  • Resin flow coefficient (Area after heating) / (Area before heating) ⁇ ⁇ ⁇ Formula (4) (Measurement method)
  • connection rate was measured using the adhesive tapes of Examples 1 to 33 and Comparative Examples 1 and 2.
  • a two-layer double-sided board with a copper foil of 12 m and a supporting base material of prepreg (thickness 200; U m) was etched to form a wiring pattern.
  • the build-up layer having a thickness of 40 m to both sides formed by C0 2 laser one to form a build-up opening of the 7 O m diameter from the wiring pattern side was subjected to desmear by permanganic acid strength potassium solution.
  • Electrolytic copper plating is applied to the build-up opening to form a copper post (70; U m diameter) with a height of 15 m from the surface of the build-up layer, and then solder (S n /3.5 A g)
  • a plating was applied to a thickness of 15 m to form a conductor post. Furthermore, it was cut into 25mm squares and a single-sided circuit board with vias was obtained.
  • Lay-up was performed on both sides of the single-sided circuit board with vias and the circuit board to be connected using jigs with pin guides for alignment.
  • pressing was performed at 260 ° C. and 0.5 MPa for 60 seconds, and the solder bossed conductor bosses were solder-bonded to the pads of the inner circuit board, and the layers were joined.
  • a heat history of 1 80 ° C for 60 minutes was added to obtain a multilayer circuit board.
  • the interlayer connection resistance of the multilayer circuit board obtained by the above method was measured at 20 locations using a digital multimeter. Measurements were taken both after fabrication of the multilayer circuit board and after 1 000 cycles at a temperature cycle of 1 hour at 165 ° C and 1 hour at 150 ° C. The results are shown in Tables 1 and 2 below.
  • a multilayer circuit board was produced in the same manner as described in the above connection rate measurement method, and the amount of resin protruding from the multilayer circuit board was observed. The results are shown in Tables 1 and 2 below.
  • Resin protrusion is observed force None between the layers of the multilayer circuit board.
  • X Resin bridges the layers of the multilayer circuit board.
  • a multilayer circuit board was prepared by the same method described in the above connection ratio, embedded in an epoxy resin hardened material, the cross section was polished, and 10 interlayer connection portions were observed with a SEM (scanning electron microscope). The cross-section was measured both after fabrication of the multilayer circuit board and after a temperature cycle of 1 hour at ⁇ 65 ° C and 1 hour at 1550 ° C. The results are shown in Tables 1 and 2 below.
  • Deformed or partly cracked compared to initial X: Open failure (such as cracks at the connection) or short-circuiting (connection bridging)

Description

明 細 書
接着テープ
技術分野
[0001 ] 本発明は、 接着テープに関する。
背景技術
[0002] 近年の電子機器の高密度化に伴い、 これに用いられるプリント配線板の多 層化が進んでおり、 フレキシブルプリント配線板も多層構造のものが多用さ れている。 このプリント配線板はフレキシブルプリント配線板とリジッドプ リント配線板との複合基板であるリジッドフレックスプリント配線板であり 、 用途が拡大している。
[0003] 従来の多層フレキシブルプリント配線板やリジッドフレックスプリント配 線板の製造方法は、 片面回路基板と接着剤層を交互に複数積層した後積層形 成し、 そこに層間接続用の貫通孔をあけ、 該貫通孔に層間接続用スルーホー ルめっきを施した後、 最外層の回路等の加工を行う方法や、 片面回路基板の 絶縁材側に銅箔を貫通しない穴を開け、 金属または合金により導体ボストを 形成し、 全層表面被覆処理を行い、 接着剤層と配線板を加圧し必要回数繰り 返し行い多層化する工法が提案されている (例えば特許文献 1 ) 。
[0004] 前者の製造方法では、 一般的に用いられる層間の電気的接続方式として、 全層を貫く貫通孔を開け、 そこへスルーホールめつきする形で各層間を電気 的に接続する手法が用いられる。 し力、し、 この電気的接続方法では、 加工方 法が簡単ではあるが回路の設計上非常に制約が多くなる。 また最も劣る点と しては、 貫通スルーホールめつきで全層を電気的に接続するため、 最外層は スルーホールめつき接続ランドが多くなり、 また占める面積割合も増える。 また、 これにより、 回路実装密度を上げることができないため、 部品の実装 や回路配線に致命的となることがある。 また、 今後の市場要求が高まる高密 度実装、 高密度配線の作製が困難な仕様となる。
[0005] フレキシブルプリント配線板の製造方法は、 安価に製造するために、 1枚 のシートに複数個配列した多面取りパターンにて作成する。 そのため、 多層 フレキシブルプリント配線板も同様の製造方法を経ることで、 安価に製造す ることができる。 しかし、 この製造方法では、 シート内にパターニング不良 があると、 パターニング不良部分が積層された多層フレキシブルプリント配 線板は不良となり、 積層工程におけるプロセス歩留まりが低下する。
[0006] また、 多層フレキシブルプリント配線板やリジッドフレックスプリント配 線板と、 多層リジッドプリント配線板との最大の相違点は、 柔軟性がある部 分の有無である。 この柔軟性がある部分の作製では、 柔軟性がある部分が積 層されないように外層を除く力、、 或いは積層後外層を除かなければならず、 シート積層した場合、 シートあたりの配線板取り数が悪くなつてしまう。 更 に各層大きさの異なるパターン設計の場合、 1シート当たりの配線板取り数 は、 各層回路基板取り数の内もっとも少ない回路基板取り数に制限されてし まい、 シ一トあたりの配線板取り数が悪くなつてしまう。
[0007] 後者の製造方法では、 導体ボス卜の受け側基材をレーザー加工にて穴あけ し、 デスミアを行い、 表面被覆開口部を作製する特殊工程がありこれらの技 術確立、 歩留まりの問題がある。 また層数が増えるに従い、 製造に時間、 コ ス卜がかかり、 表面被覆の材料コストも高くなる問題がある。
特許文献 1 :特開平 1 1—5 4 9 3 4号公報
発明の開示
[0008] 本発明は、 確実にはんだバンプを溶融させて回路基板の層間の電気的接合 を行うことが出来る接着テープを提供するものである。
[0009] 本発明によると、 力ルポキシル基および/またはフエノール性水酸基を有 するフラックス活性化合物と、 熱硬化性樹脂と、 フィルム形成性樹脂とを含 む接着テープが提供される。 上記構成により、 はんだバンプを溶融させて層 間の電気的接合時に半田表面の酸化膜および被接続面である銅箔表面の酸化 膜を還元し、 強度の大きい良好な接合を可能にすることができる。 更に、 本 発明の接着テープは、 はんだ接合後に洗浄などにより除去する必要がなく、 そのまま加熱することにより、 三次元架橋した樹脂となり密着力に優れた、 回路基板および多層フレキシブルプリント配線板の層間材料となる。
[0010] 上記接着テープにおいて、 熱硬化性樹脂はエポキシ樹脂であり得る。 この 構成により、 硬化性と保存性、 硬化物の耐熱性、 耐湿性、 耐薬品性に優れた 接着テープを得ることができる。
[0011] 上記接着テープにおいて、 熱硬化性樹脂は硬化剤を含み得る。 この構成に より、 接着テープの硬化特性の制御性を向上させることができる。
[0012] 上記接着テープにおいて、 硬化剤は、 イミダゾ一ル化合物および/または リン化合物であり得る。 この構成により、 接着テープの硬化性を向上するこ とができる。
[0013] 上記接着テープにおいて、 フィルム形成性樹脂はフエノキシ樹脂またはァ クリルゴムであり得る。 フヱノキシ樹脂を用いることにより、 硬化前の接着 テープの流動性を抑制し、 層間厚みを均一にすることができる。 アクリルゴ ムを使用することにより、 フィルム状の接着テープを作製する際の成膜安定 性を向上させることができるとともに、 被接着物と接着テープとの密着性を 向上させることができる。
[0014] 上記接着テープは、 シランカップリング剤をさらに含み得る。 この構成に より接着テープと被接着物との密着性を向上させることができる。
[0015] 上記接着テープは、 酸化処理した銅板の表面に接着テープを貼り付けて、 大気中、 2 30°Cで 1分間還元処理したとき、 以下の式 ( 1 ) で表される銅 板の酸化銅還元率が 7 0%以上である。
酸化銅還元率 (%) = { 1 - (還元処理後の O原子濃度) / (酸化処理後 の O原子濃度) } X 1 0 0 ■ ■ ■式 (1 )
[0016] 上記接着テープは、 接着テープ上に直径が 500 H mのスズ含有半田ポー ルを配置し、 半田ポールの融点より 30°C高い温度で 20秒加熱したとき、 以下の式 (2) で表される半田濡れ拡がり率が 40<½以上である。
半田濡れ広がり率 (%) = [ { (半田ポールの直径) 一 (濡れ拡がり後の 半田の厚み) } / (半田ポールの直径) ] X 1 0 0 ■ ■ ■式 (2 )
[0017] 上記接着テープは、 厚み 1 00 m、 2 2 3°Cにおける溶融粘度が 1 0〜 1 0 0 0 0 P a ■ sである。
[0018] 上記接着テープは、 厚み 1 0 0 mの上記接着テープを粘弾性測定装置で 昇温速度 1 0 °C/m i n、 周波数 0 . 1 H zで測定した時の 2 5〜 2 5 0 °C における最低溶融粘度が 1 P a ' s以上 l O O O O P a ' s以下である。
[0019] 本発明によれば、 確実にはんだバンプを溶融させて回路基板の層間の電気 的接合を行うことが出来る接着テープが、 提供される。
図面の簡単な説明
[0020] [図 1 ]図 1は、 接着テープが用いられた多層回路基板である。
[図 2]図 2は、 図 1の多層回路基板の接続部分を示す模式図である。
発明を実施するための最良の形態
[0021 ] 以下、 本発明の接着テープの好適な実施形態について詳細に説明する。
[0022] 本発明の接着テープは、 力ルポキシル基および/またはフヱノール性水酸 基を有するフラックス活性化合物と、 熱硬化性樹脂と、 フィルム形成性樹脂 とを含む。 以下、 各成分について説明する。
[0023] 本発明で使用される力ルポキシル基および/またはフエノール性水酸基を 有するフラックス活性化合物とは、 分子中に力ルポキシル基および/または フエノール性水酸基が少なくとも 1つ以上存在する化合物をいい、 液状であ つても固体であってもよい。
[0024] 力ルポキシル基を含有するフラックス活性化合物としては、 脂肪族酸無水 物、 脂環式酸無水物、 芳香族酸無水物、 脂肪族カルボン酸、 芳香族カルボン 酸等が挙げられる。 フエノール性水酸基を有するフラックス活性化合物とし ては、 フヱノール類が挙げられる。
[0025] 脂肪族酸無水物としては、 無水コハク酸、 ポリァジピン酸無水物、 ポリァ ゼライン酸無水物、 ポリセバシン酸無水物等が挙げられる。
[0026] 脂環式酸無水物としては、 メチルテトラヒドロ無水フタル酸、 メチルへキ サヒドロ無水フタル酸、 無水メチルハイミック酸、 へキサヒドロ無水フタル 酸、 テトラヒドロ無水フタル酸、 トリアルキルテトラヒドロ無水フタル酸、 メチルシクロへキセンジカルボン酸無水物等が挙げられる。 [0027] 芳香族酸無水物としては、 無水フタル酸無水トリメリット酸、 無水ピロメ リット酸、 ベンゾフエノンテトラカルポン酸無水物、 エチレングリコ一ルビ ストリメリテ一ト、 グリセロールトリストリメリテート等が挙げられる。
[0028] 脂肪族カルボン酸としては、 下記式 (3) で示される化合物が挙げられる
HOOC— (CH2) n_COOH (3)
上記式 (3) において、 nは、 0以上 20以下の整数である。
また、 フラックス活性、 接着時のアウトガスおよび接着テープの硬化後の 弾性率やガラス転移温度のバランスから、 上記式 (3) 中の nは、 3以上 1 0以下が好ましい。 nを 3以上とすることにより、 接着テープの硬化後の弾 性率の増加を抑制し、 被接着物との接着性を向上させることができる。 また 、 nを 1 0以下とすることにより、 弾性率の低下を抑制し、 接続信頼性をさ らに向上させることができる。
上記式 (3) で示される化合物として、 たとえば、 n = 3のグルタル酸 ( HOOC— (CH2) 3-COO H) 、 n = 4のアジピン酸 (HOOC— (CH 2) 4_COOH) 、 n = 5のピメリン酉 (HOOC- (CH2) 5_COOH) 、 n = 8のセバシン酸 (HOOC— (CH2) 8_COOH) および n = 1 0の HOOC- (CH2) 10_COO Hが挙げられる。
他の脂肪族カルボン酸としては、 蟻酸、 酢酸、 プロピオン酸、 酪酸、 吉草 酸、 ピバル酸カブロン酸、 力プリル酸、 ラウリン酸、 ミリスチン酸、 パルミ チン酸、 ステアリン酸、 アクリル酸、 メタクリル酸、 クロ トン酸、 ォレイン 酸、 フマル酸、 マレイン酸、 シユウ酸、 マロン酸、 琥珀酸等が挙げられる。
[0029] 芳香族カルボン酸としては、 安息香酸、 フタル酸、 イソフタル酸、 テレフ タル酸、 へミメリット酸、 トリメリット酸、 トリメシン酸、 メロファン酸、 プレートニ酸、 ピロメリット酸、 メリット酸、 トリイル酸、 キシリル酸、 へ メリ ト酸、 メシチレン酸、 プレーニチル酸、 トルィル酸、 ケィ皮酸、 サリチ ル酸、 2 , 3—ジヒドロキシ安息香酸、 2 , 4—ジヒドロキシ安息香酸、 ゲ ンチジン酸 (2, 5—ジヒドロキシ安息香酸) 、 2, 6—ジヒドロキシ安息 香酸、 3, 5—ジヒドロキシ安息香酸、 浸食子酸 (3, 4, 5_トリヒドロ キシ安息香酸) 、 1 , 4—ジヒドロキシ一 2 _ナフトェ酸、 3, 5_ジヒド 口キシ一 2 _ナフトェ酸等のナフトェ酸誘導体; フエノールフタリン; ジフ ェノール酸等が挙げられる。
[0030] フヱノール性水酸基を有するフラックス活性化合物としては、 フヱノール 、 o_クレゾ一ル、 2, 6 _キシレノール、 p_クレゾ一ル、 m—クレゾ一 ル、 o_ェチルフエノール、 2, 4_キシレノール、 2, 5キシレノール、 m_ェチルフエノール、 2, 3_キシレノール、 メジ! ル、 3, 5—キシ レノール、 p _タ一シヤリブチルフヱノール、 カテコール、 p_タ一シャリ ァミルフエノール、 レゾルシノール、 p—ォクチルフエノール、 p—フエ二 ルフヱノール、 ビスフヱノール A、 ビスフヱノール F、 ビスフヱノール A F 、 ビフエノール、 ジァリルビスフエノ一ル 、 ジァリルビスフエノ一ル八、 トリスフヱノール、 テトラキスフヱノール等のフヱノール性水酸基を含有す るモノマー類、 フヱノールノポラック樹脂、 o_クレゾ一ルノポラック樹脂 、 ビスフヱノール Fノボラック樹脂、 ビスフヱノ一ル Aノボラック樹脂等が 挙げられる。
[0031] フラックス活性化合物は、 エポキシ樹脂のような熱硬化性樹脂との反応で 三次元的に取り込まれるため、 1分子中にエポキシ樹脂に付加することがで きる少なくとも 2個のフエノール性水酸基と、 金属酸化膜に対してフラック ス作用を示す、 芳香族に直接結合した力ルポキシル基を一分子中に少なくと も 1個有する化合物が好ましい。 このような化合物としては、 2, 3_ジヒ ドロキシ安息香酸、 2, 4—ジヒドロキシ安息香酸、 ゲンチジン酸 (2, 5 —ジヒドロキシ安息香酸) 、 2 , 6—ジヒドロキシ安息香酸、 3 , 4—ジヒ ドロキシ安息香酸、 没食子酸 (3, 4, 5_トリヒドロキシ安息香酸) 等の 安息香酸誘導体; 1 , 4—ジヒドロキシ一 2_ナフトェ酸、 3, 5_ジヒド 口キシ一 2 _ナフトェ酸、 3, 7—ジヒドロキシ一 2 _ナフトェ酸等のナフ トェ酸誘導体; フヱノールフタリン; およびジフヱノール酸等が挙げられる これらのフラックス活性化合物は、 単独で用いても、 2種以上を組み合わ せて用いてもよい。
[0032] フラックス活性化合物の配合量は、 フラックス活性を向上させる観点では 、 接着テープの配合成分の合計量に対して、 1重量%以上、 好ましくは 5重 量%以上とする。 熱硬化性樹脂と未反応のフラックス活性化合物が残留して いると、 マイグレーションの原因となる。 したがって、 熱硬化性樹脂と反応 しないフラックス活性化合物が残らないようにするためには、 フラックス活 性化合物の配合量は、 3 0重量%以下、 好ましくは 2 5重量%以下とする。 また上記範囲内であると、 銅箔表面の酸化膜を還元し強度の大きい良好な接 合が得られる。
[0033] 本発明で使用される熱硬化性樹脂としては、 エポキシ樹脂、 ォキセタン樹 脂、 フヱノ一ル樹脂、 (メタ) ァクリレート樹脂、 不飽和ポリエステル樹脂 、 ジァリルフタレート樹脂、 マレイミ ド樹脂等が用いられる。 中でも、 硬化 性と保存性、 硬化物の耐熱性、 耐湿性、 耐薬品性に優れるエポキシ樹脂が好 適に用しゝ bれる。
[0034] エポキシ樹脂は、 室温で固形のエポキシ樹脂と、 室温で液状のエポキシ樹 脂のうち、 いずれを用いてもよい。 また、 樹脂が室温で固形のエポキシ樹脂 と、 室温で液状のエポキシ樹脂とを含んでもよい。 これにより、 樹脂の溶融 挙動の設計の自由度をさらに高めることができる。
[0035] 室温で固形のエポキシ樹脂としては、 特に限定されるものではなく、 ビス フエノール A型エポキシ樹脂、 ビスフエノール S型エポキシ樹脂、 フエノー ルノボラック型エポキシ樹脂、 クレゾールノボラック型エポキシ樹脂、 グリ シジルァミン型エポキシ樹脂、 グリシジルエステル型エポキシ樹脂、 3官能 エポキシ樹脂、 4官能エポキシ樹脂等が挙げられる。 さらに具体的には、 固 形 3官能エポキシ樹脂とクレゾールノポラック型エポキシ樹脂とを含んでも よい。
[0036] また、 室温で液状のエポキシ樹脂は、 ビスフエノール A型エポキシ樹脂ま たはビスフエノール F型エポキシ樹脂とすることができる。 また、 これらを 組み合わせて用いてもよい。
[0037] これらの熱硬化性樹脂の配合量は、 接着テープの配合成分の合計量に対し て、 好ましくは、 2 5重量%以上 7 5重量%以下であり、 より好ましくは 4 5重量%以上 7 0重量%以下である。 上記範囲とすることにより、 良好な硬 化性が得られると共に、 良好な溶融挙動の設計が可能となる。
[0038] 熱硬化性樹脂は、 硬化剤を含んでも良い。 硬化剤としては、 フエノール類 、 アミン類、 チオール類が挙げられる。 熱硬化性樹脂としてエポキシ樹脂が 用いられる場合、 このエポキシ樹脂との良好な反応性、 硬化時の低寸法変化 および硬化後の適切な物性 (例えば、 耐熱性、 耐湿性等) が得られるという 点で、 フエノール類が好適に用いられる。
[0039] フエノール類としては、 特に限定されるものではないが、 接着テープの硬 化後の物性を考えた場合、 2官能以上が好ましい。 たとえば、 ビスフエノー ル八、 テトラメチルビスフエノ一ル八、 ジァリルビスフエノ一ル八、 ビフエ ノール、 ビスフヱノール F、 ジァリルビスフヱノール F、 トリスフヱノール 、 テトラキスフエノール、 フエノールノポラック類、 クレゾ一ルノポラック 類等が挙げられるが、 溶融粘度、 エポキシ樹脂との反応性および硬化後の物 性を考えた場合、 フエノールノボラック類およびクレゾールノボラック類を 好適に用いることができる。
[0040] 硬化剤としてフエノールノポラック類が用いられる場合、 その配合量は、 樹脂を確実に硬化させる観点では、 たとえば、 接着テープの配合成分の合計 量に対して、 5重量%以上、 好ましくは 1 0重量%以上とする。 エポキシ樹 脂と未反応のフヱノールノボラック類が残留していると、 マイグレーション の原因となる。 したがって、 残渣として残らないようにするためには、 3 0 重量%以下、 好ましくは 2 5重量%以下とする。
熱硬化性樹脂がエポキシ樹脂である場合、 フエノールノボラック樹脂の配 合量は、 エポキシ樹脂に対する当量比で規定してもよい。 具体的には、 ェポ キシ樹脂に対するフエノールノポラック類の当量比は、 0 . 5以上 1 . 2以 下であり、 好ましくは 0 . 6以上 1 . 1以下であり、 さらに好ましくは 0 . 7以上 0 . 9 8以下である。 エポキシ樹脂に対するフエノールノポラック樹 脂の当量比を 0 . 5以上とすることで、 硬化後の耐熱性、 耐湿性を確保する ことができ、 この当量比を 1 . 2以下とすることで、 硬化後のエポキシ樹脂 と未反応の残留フエノールノボラック樹脂の量を低減することができ、 耐マ ィグレーション性が良好となる。
[0041 ] 他の硬化剤としては、 イミダゾール化合物およびリン化合物が挙げられる 。 ィミダゾ一ル化合物としては、 たとえば、 融点が 1 5 0 °C以上のィミダゾ ール化合物を使用することができる。 イミダゾール化合物の融点が低すぎる と、 半田バンプの酸化膜が除去され、 半田バンプと電極が金属接合する前に 接着テープが硬化してしまい、 接続が不安定になったり、 接着テープの保存 性が低下する懸念がある。 そのため、 イミダゾールの融点は 1 5 0 °C以上が 好ましい。 融点が 1 5 0 °C以上のイミダゾ一ル化合物として、 2 _フエニル ヒドロキシイミダゾ一ル、 2 _フエニル _ 4—メチルヒドロキシイミダゾ一 ル、 2 _フエニル _ 4—メチルイミダゾ一ル等が挙げられる。 なお、 イミダ ゾール化合物の融点の上限に特に制限はなく、 たとえば接着テープの接着温 度に応じて適宜設定することができる。
[0042] 硬化剤としてイミダゾール化合物が使用される場合、 その配合量は、 例え ば、 接着テープの配合成分の合計量に対して、 0 . 0 0 5重量%以上 1 0重 量0 /o以下、 好ましくは 0 . 0 1重量%以上 5重量%以下とする。 イミダゾー ル化合物の配合比を 0 . 0 0 5重量%以上とすることにより、 熱硬化性樹脂 の硬化触媒としての機能をさらに効果的に発揮させて、 接着テープの硬化性 を向上させることができる。 また、 イミダゾール化合物の配合比を 1 0重量 %以下とすることにより、 半田が溶融する温度において樹脂の溶融粘度が高 すぎず、 良好な半田接合構造が得られる。 また、 接着テープの保存性をさら に向上させることができる。
[0043] リン化合物としては、 トリフエニルホスフィン; テトラ置換ホスホニゥム と多官能フヱノール化合物との分子性化合物; テトラ置換ホスホニゥムとプ 口 トン供与体と トリアルコキシシラン化合物との分子性化合物等のリン化合 物が挙げられる。 これらの中でも、 接着フィルムの速硬化性、 半導体素子の アルミパッドへの腐食性、 さらには接着フィルムの保存性により優れる、 テ トラ置換ホスホニゥムと多官能フヱノール化合物との分子性化合物、 および テトラ置換ホスホニゥムとプロ トン供与体と トリアルコキシシラン化合物と の分子性化合物が特に好ましい。
[0044] テトラ置換ホスホニゥムと多官能フヱノール化合物との分子性化合物、 お よびテトラ置換ホスホニゥムとプロ トン供与体と トリアルコキシシラン化合 物との分子性化合物は、 これらの各化合物の単なる混合物ではなく、 塩構造 または超分子構造等の構造を有する分子性化合物である。
[0045] テトラ置換ホスホニゥムは、 接着フィルムの硬化性と保存性のバランスの 観点から、 アルキル基や芳香族化合物がリン原子に 4つ配位しているテトラ 置換ホスホニゥムが好ましい。
[0046] テトラ置換ホスホニゥムの置換基は、 特に限定されるものではなく、 置換 基は互いに同一であっても異なっていてもよく、 置換または無置換のァリ一 ル基またはアルキル基が挙げられる。 置換または無置換のァリール基または アルキル基を有するテトラ置換ホスホニゥムイオンは、 熱や加水分解に対し て安定であり好ましい。 具体的なテトラ置換ホスホニゥムとしては、 テトラ フエニルホスホニゥム、 テトラトリルホスホニゥム、 テトラェチルフエニル ホスホニゥム、 テトラメ トキシフエ二ルホスホニゥム、 テトラナフチルホス ホニゥム、 テトラべンジルホスホニゥム、 ェチルトリフエニルホスホニゥム 、 n _ブチルトリフエニルホスホニゥム、 2—ヒドロキシェチルトリフエ二 ルホスホニゥム、 トリメチルフエニルホスホニゥム、 メチルジェチルフエ二 ルホスホニゥム、 メチルジァリルフエニルホスホニゥム、 テトラ一 n _プチ ルホスホニゥム等が挙げられる。 これらの中でもテトラフェニルホスホニゥ ムが、 接着フィルムの速硬化性と保存性のバランスから好ましい。
[0047] テトラ置換ホスホニゥムと多官能フヱノール化合物との分子性化合物にお ける多官能フエノール化合物とは、 フエノール性水酸基のうち少なくとも 1 つの水酸基の水素が脱離して、 フヱノキシドを形成しているフヱノール化合 物をいう。 具体的には、 ヒドロキシベンゼン化合物、 ビフエノール化合物、 ビスフヱノール化合物、 ヒドロキシナフタレン化合物、 フヱノールノポラッ ク樹脂、 フエノールァラルキル樹脂等が挙げられる。
[0048] このような多官能フエノール化合物としては、 例えば、 ビス (4—ヒドロ キシ一3, 5—ジメチルフエニル) メタン (通称: テトラメチルビスフエノ —ル F) 、 4, 4' _スルホニルジフエノール、 および 4, 4' _イソプロピ リデンジフエノール (通称: ビスフエノール A) 、 ビス (4—ヒドロキシフ ェニル) メタン、 ビス (2—ヒドロキシフエニル) メタン、 および (2—ヒ ドロキシフエニル) (4—ヒドロキシフエニル) メタン、 ならびにビス (4 —ヒドロキシフエニル) メタンとビス (2—ヒドロキシフエニル) メタンと (2—ヒドロキシフエニル) (4—ヒドロキシフエニル) メタンとの混合物 (例えば、 本州化学工業 (株) 製、 ビスフエノール F— D) 等のビスフエノ —ル類; 1 , 2 _ベンゼンジオール、 1 , 3 _ベンゼンジオール、 および 1 4_ベンゼンジオール等のジヒドロキシベンゼン類; 1 , 2, 4_ベンゼ ントリオ一ル等のトリヒドロキシベンゼン類; 1 , 2—ジヒドロキシナフタ レン、 および 1 , 6—ジヒドロキシナフタレン等のジヒドロキシナフタレン 類、 およびその異性体; 2, 2 '—ビフエノール、 および 4, 4'—ビフエノ —ル等のビフヱノール類、 およびその異性体等が挙げられる。 中でも、 1 , 2—ジヒドロキシナフタレン、 および 4, 4' _スルホニルジフエノールが、 速硬化性と保存性のバランスに優れるため好ましい。
[0049] テトラ置換ホスホニゥムとプロ トン供与体と トリアルコキシシラン化合物 との分子性化合物におけるプロ トン供与体としては、 特に限定されるもので はないが、 1 , 2—シクロへキサンジオール、 1 , 2 _エタンジオール、 3 , 4—ジヒドロキシ _ 3—シクロブテン一 1 , 2—ジオンおよびグリセリン 等の脂肪族ヒドロキシ化合物; グリコール酸およびチォ酢酸等の脂肪族カル ポン酸化合物;ベンゾイン、 カテコール、 ピロガロール、 没食子酸プロピル 、 タンニン酸、 2—ヒドロキシァ二リン、 2—ヒドロキシベンジルアルコ一 ゾレ、 1 , 2—ジヒドロキシナフタレンおよび 2, 3—ジヒドロキシナフタレ ン等の芳香族ヒドロキシ化合物;サリチル酸、 1—ヒドロキシ _ 2 _ナフト ェ酸および 3 _ヒドロキシ _ 2—ナフトェ酸等の芳香族カルボン酸化合物等 、 が挙げられる。
[0050] プロ トン供与体の中でも、 リン化合物の安定性の観点から、 芳香族ジヒド ロキシ化合物がより好ましい。
[0051 ] 芳香族ジヒドロキシ化合物としては、 例えば、 カテコール、 ピロガロール 、 没食子酸プロピル、 1 , 2—ジヒドロキシナフタレン、 2 , 3—ジヒドロ キシナフタレン、 1 , 8—ジヒドロキシナフタレン、 2 , 2 ' —ビフエノール およびタンニン酸等の芳香族環含有有機基を有する芳香族ヒドロキシ化合物 ; 2 , 3—ジヒドロキシピリジンおよび 2 , 3—ジヒドロキシキノキサリン 等の複素環含有有機基を有するジヒドロキシ化合物が挙げられる。 これらの 中でも、 カテコール、 2 , 2 '—ビフエノール、 1 , 2—ジヒドロキシナフタ レンおよび 2 , 3—ジヒドロキシナフタレンが特に好ましい。
[0052] トリアルコキシシラン化合物としては、 置換もしくは無置換の芳香族環を 含有する置換基を有するトリアルコキシシラン化合物;置換もしくは無置換 の脂肪族基を有するトリアルコキシシラン化合物;置換もしくは無置換の複 素環を含有する置換基を有するトリアルコキシシラン化合物等が挙げられる
[0053] 芳香族環を含有する基としては、 フエニル基、 ペンタフルオロフェニル基 、 ベンジル基、 メ トキシフエ二ル基、 トリル基、 フルオロフェニル基、 クロ 口フエニル基、 ブロモフエニル基、 ニトロフエニル基、 シァノフエニル基、 ァミノフエ二ル基、 アミノフエノキシ基、 N—フエ二ルァニリノ基、 N—フ ェニルァニリノプロピル基、 フエノキシプロピル基、 フエニルェチニル基、 ィンデニル基、 ナフチル基およびビフヱニル基等が挙げられる。
[0054] 脂肪族基としては、 メチル基、 ェチル基、 プロピル基、 ブチル基、 へキシ ル基、 グリシジルォキシプロピル基、 メルカプトプロピル基、 ァミノプロピ ル基、 ァニリノプロピル基、 ブチル基、 へキシル基、 ォクチル基、 クロロメ チル基、 ブロモメチル基、 クロ口プロピル基、 シァノプロピル基、 ジェチル アミノ基、 ビニル基、 ァリル基、 メタクリロキシメチル基、 メタクリロキシ プロピル基、 ペンタジェニル基、 ビシクロへプチル基、 ビシクロヘプテニル 基およびェチニル基等が挙げられる。
[0055] 複素環を含有する基としては、 ピリジル基、 ピロリニル基、 イミダゾリル 基、 インドニル基、 トリァゾリル基、 ベンゾトリアゾリル基、 力ル /くゾリル 基、 トリアジニル基、 ピペリジル基、 キノリル基、 モルホリニル基、 フリル 基、 フルフリル基およびチェニル基等が挙げられる。 これらの中でも、 ビニ ル基、 フエニル基、 ナフチル基およびグリシジルォキシプロピル基が、 潜伏 性触媒におけるシリケ一トァニオンの安定性の観点から、 より好ましい。
[0056] 置換もしくは無置換の芳香族環を含有する基を有するトリアルコキシシラ ン化合物としては、 フエニルトリメ トキシシラン、 フエニルトリエトキシシ ラン、 ペンタフルオロフェニルトリェトキシシラン、 1—ナフチルトリメ ト キシシランおよび (N—フエニルァミノプロピル) トリメ トキシシラン等が 挙げられる。
[0057] 置換もしくは無置換の脂肪族基を有するトリアルコキシシラン化合物とし ては、 メチルトリメ トキシシラン、 メチルトリエトキシシラン、 ェチルトリ メ トキシシラン、 ェチルトリエトキシシラン、 へキシルトリメ トキシシラン 、 ビニルトリメ トキシシラン、 へキシルトリエトキシシラン、 3—グリシジ ルォキシプロビルトリメ トキシシラン、 3 _メルカプトプロビルトリメ トキ シシランおよび 3—ァミノプロピルトリメ トキシシラン等が挙げられる。
[0058] 置換もしくは無置換の複素環を含有する基を有するトリアルコキシシラン 化合物としては、 2 _ (トリメ トキシシリルェチル) ピリジンおよび N— ( 3—トリメ トキシシリルプロピル) ピロ一ル等が挙げられる。 なお、 脂肪族 基における置換基としては、 グリシジル基、 メルカプト基およびアミノ基等 が挙げられ、 芳香族環および複素環における置換基としては、 メチル基、 ェ チル基、 水酸基およびアミノ基などが挙げられる。
[0059] 硬化剤としてリン化合物が使用される場合、 その配合量は、 例えば、 接着 テープの配合成分の合計量に対して、 0 . 0 0 5重量%以上 1 0重量%以下 、 好ましくは 0 . 0 1重量%以上 5重量%以下である。 リン化合物の配合比 を 0 . 0 0 5重量%以上とすることにより、 熱硬化性樹脂の硬化触媒として の機能をさらに効果的に発揮させて、 接着テープの硬化性を向上させること ができる。 また、 リン化合物の配合比を 1 0重量%以下とすることにより、 半田が溶融する温度において樹脂の溶融粘度が高くなりすぎず、 良好な半田 接合構造が得られる。 また、 接着テープの保存性をさらに向上させることが できる。
これらの硬化剤は、 単独で用いてもよいし、 2種類以上を組み合わせて用 いてもよい。
[0060] フィルム形成性樹脂としては、 たとえば、 フエノキシ樹脂、 ポリエステル 樹脂、 ポリウレタン樹脂、 ポリイミ ド樹脂、 シ口キサン変性ポリイミ ド樹脂 、 ポリブタジエン、 ポリプロピレン、 スチレン一ブタジエン一スチレン共重 合体、 スチレン一エチレン一ブチレン一スチレン共重合体、 ポリアセタール 樹脂、 ポリビニルプチラール樹脂、 ポリビニルァセタール樹脂、 ブチルゴム 、 クロロプレンゴム、 ポリアミ ド樹脂、 アクリロニトリル一ブタジエン共重 合体、 アクリロニトリル一ブタジエン一アクリル酸共重合体、 ァクリロニト リル一ブタジエン一スチレン共重合体、 ポリ酢酸ビニル、 ナイロン、 ァクリ ルゴム等を用いることができる。 これらは、 単独で用いても、 2種以上を組 み合わせて用いてもよい。
[0061 ] フィルム形成性樹脂として、 フエノキシ樹脂が用いられる場合、 その数平 均分子量が 5 0 0 0〜 1 5 0 0 0であるフエノキシ樹脂が好ましい。 このよ うなフエノキシ樹脂を用いることにより、 硬化前の接着テープの流動性を抑 制し、 層間厚みを均一にすることができる。 フエノキシ樹脂の骨格は、 ビス フエノール Aタイプ、 ビスフエノール Fタイプ、 ビフエニル骨格タイプなど が挙げられるが、 これらに限定されない。 好ましくは、 飽和吸水率が 1 %以 下であるフエノキシ樹脂が、 接合時やはんだ実装時の高温下においても発泡 や剥離などの発生を抑えることができるため、 好ましい。
[0062] また、 上記フィルム形成性樹脂として、 接着性や他の樹脂との相溶性を向 上させる目的で、 二トリル基、 エポキシ基、 水酸基、 力ルポキシル基を有す る樹脂を用いてもよく、 このような樹脂として、 たとえばアクリルゴムを用 いることができる。
フィルム形成性樹脂として、 アクリルゴムが用いられる場合、 フィルム状 の接着テープを作製する際の成膜安定性を向上させることができる。 また、 接着テープの弾性率を低下させ、 被接着物と接着テープ間の残留応力を低減 することができるため、 被接着物に対する密着性を向上させることができる
[0063] アクリルゴムは、 エポキシ基、 水酸基、 力ルポキシル基、 または二トリル 基等を有するモノマー単位を含む (メタ) アクリル酸エステル共重合体であ ることが好ましい。 これにより、 半導体素子の裏面、 および半導体素子上の コ一ト材等の被接着物への密着性をより向上することができる。 このような (メタ) アクリル酸エステル共重合体に用いるモノマ一としては、 例えば、 グリシジル基を有するグリシジル (メタ) クリレート、 水酸基を有する (メ タ) クリレート、 力ルポキシル基を有する (メタ) クリレート、 二トリル基 を有する (メタ) アクリロニトリル等が挙げられる。
[0064] これらの中でも、 特に、 力ルポキシル基を有するモノマー単位を含む (メ タ) アクリル酸エステル共重合体を用いることが好ましい。 これにより、 接 着フィルムの硬化がさらに促進され、 さらに、 被着体に対する接着性を向上 することができる。
[0065] 力ルポキシル基を有するモノマー単位を含む (メタ) アクリル酸エステル 共重合体を用いる場合、 力ルポキシル基を有するモノマー単位の、 共重合体 中の含有量は、 より被接着物に対する接着性を向上させる観点では、 たとえ ば (メタ) アクリル酸エステル共重合体全体の 0 . 5重量%以上、 好ましく は 1重量%以上である。 また、 力ルポキシル基を有するモノマー単位の含有 量は、 接着フィルムの保存性をより一層向上させる観点では、 たとえば (メ タ) アクリル酸エステル共重合体全体の 1 0重量%以下、 好ましくは 5重量 %以下である。 [0066] (メタ) アクリル酸エステル共重合体の重量平均分子量は、 たとえば 1 0 00以上 1 00万以下であり、 3000以上 80万以下とすることが好まし し、。 上記範囲とすることにより、 接着フィルムの成膜性をさらに向上させる ことができるとともに接着時の流動性を確保することが可能となる。
[0067] (メタ) アクリル酸エステル共重合体の重量平均分子量は、 例えば、 ゲル パ一ミエ一シヨンクロマトグラフィー (G P C) で測定することができ、 測 定条件例としては、 例えば、 東ソ一 (株) 製、 高速 G P C S C—8020 装置で、 カラムは T S K— G E L GMH X L_ L、 温度 40°C、 溶媒テト ラヒドロフランを用いることができる。
[0068] (メタ) アクリル酸エステル共重合体のガラス転移温度は、 接着フィルム の粘着が強くなりすぎることを抑制して作業性をさらに向上させる観点では 、 たとえば 0°C以上、 好ましくは 5°C以上である。 また、 (メタ) アクリル 酸エステル共重合体のガラス転移温度は、 低温での接着性をさらに向上させ る観点では、 たとえば 30°C以下、 好ましくは 20°C以下である。
[0069] (メタ) アクリル酸エステル共重合体のガラス転移温度は、 例えば、 熱機 械特性分析装置(セイコーインスツル (株) 製、 TMA/S S 6 1 00)を用 いて、 一定荷重 (1 OmN) で— 65°Cから昇温速度 5°C/分で温度を上昇 させながら引っ張つた際の変極点より測定することができる。
[0070] フィルム形成性樹脂の配合量は、 例えば、 接着テープの配合成分の合計量 に対して、 5重量%以上 45重量%以下とすることができる。 フィルム形成 性樹脂が上記範囲内で配合される場合、 成膜性の低下が抑制されるとともに 、 接着テープの硬化後の弾性率の増加が抑制されるため、 被接着物との密着 性をさらに向上させることができる。 また、 上記範囲内とすることにより、 接着テープの溶融粘度の増加が抑制される。
[0071] また、 本発明の接着テープは、 シランカップリング剤をさらに含んでもよ し、。 シランカップリング剤を含む構成とすることにより、 接着テープの被接 着物への密着性をさらに高めることができる。 シランカップリング剤として は、 エポキシシラン力ップリング剤、 芳香族含有ァミノシランカツプリング 剤等が挙げられる。 これらは単独で用いても、 2種以上を組み合わせて用い てもよい。 シランカップリング剤の配合量は、 接着テープの配合成分の合計 量に対して、 たとえば 0. 01〜5重量%とすることができる。
[0072] さらに、 本発明の接着テープは、 上記以外の成分を含んでいてもよい。 た とえば、 樹脂の相溶性、 安定性、 作業性等の各種特性向上のため、 各種添加 剤を適宜添加してもよい。
[0073] 本発明の接着テープの作製方法について説明する。 接着テープは、 フラッ クス活性化合物、 熱硬化性樹脂およびフィルム形成性樹脂を混合し、 ポリエ ステルシ一ト等の剥離基材上に塗布し、 所定の温度で乾燥することにより得 られる。
[0074] 本発明の一実施形態において、 接着テープは、 酸化処理した銅板の表面に 接着テープを貼り付けて、 大気中、 230°Cで 1分間還元処理したとき、 上 記式 (1 ) で表される銅板の酸化銅還元率が 70%以上である。 フラックス 活性化合物は、 回路基板の電極表面の酸化膜を還元し、 酸化膜を取り除く還 元力を有する。 酸化膜が取り除かれて、 接続不良の発生が防止されるのに十 分な酸化銅還元率は、 70%以上である。 また、 接合確率を高め、 接合後の 種々の環境下における接合信頼性を考慮すると、 酸化銅還元率は 75%以上 であることが好ましく、 さらに好ましくは 80 <½以上である。
次に、 この酸化銅還元条件 (230°C、 1分間) について説明する。 フラ ックス活性化合物の、 酸化銅に対する還元作用は、 フラックス活性化合物の 融点より高い温度で発現するため、 酸化銅還元温度はフラックス活性化合物 によって適宜変更することが可能である。 一方、 回路基板の層間接続の際に は、 S n/3. 5 A g ( 221 °C) 、 S n - 3. 0 A g - 0. 5 C u (21 7°C) 、 S n_58 B i (1 39°C) などの鉛フリーの半田が使用され、 こ れらのほとんどの融点は、 230°C以下である。 従って、 本発明の実施形態 において、 230°Cの酸化銅還元温度を用いる。 また、 還元時間は、 フラッ クス活性化合物が溶融し、 酸化銅の表面に濡れ、 および還元作用を示す時間 、 ならびに還元作用のばらつきを考慮して、 1分間とする。 酸化銅 (C uO) 還元率は、 以下の式 (1 ) で表され、 下記の測定方法に より求められる。
(定義)
酸化銅還元率 (%) = { 1 - (還元処理後の O原子濃度) / (酸化処理後の O原子濃度) } X 1 00
■ ■ ■式 (1 )
(測定方法)
(1 ) 70 m厚の銅板 (三井金属 (株) 製、 3 EC_3、 2〜3 m厚) を市販のエツチング液でソフトエッチングする。
(2) ソフトエッチングした銅板をオーブンで、 大気中、 220°Cで、 30 分間酸化処理する。
(3) 酸化処理した銅板の表面に 25 m厚の接着テープを貼り付け、 大気 中、 230°Cで、 1分間還元処理をする。
(4) 工程 (3) の還元処理後、 1分以内に、 還元処理した銅板の表面にあ る接着テープ成分をァセトンで除去する。
(5) 樹脂成分を除去した銅板を速やかに真空デシケータに移し、 真空乾燥 を実施し銅板面を乾燥させる。 また、 銅板は ESC A測定まで真空を維持し た状態で保存する。
(6) 酸化処理のみの銅板および還元処理した銅板の表面 4 OAをプラズマ 処理により除去する。 次いで、 ESCA (U LVAC PH I社製) により C uおよび O原子濃度を測定する。 プラズマ処理と E S C A測定は真空中雰 囲気で実施する。 銅板の表面 4 OAをプラズマ処理により除去する目的は、 測定時のハンドリングの際に、 表面が酸化された分の影響を取り除くためで また、 用いる ES CA測定条件は以下である :
( i ) 光電子脱出角 45 d e g
( i i ) X線源 A I kひ線 (モノクロ)
( i i i ) 分析範囲 0. 8 m m Φ。 (7) 上記の式 (1 ) により、 酸化銅還元率を算出する。
[0076] 本発明の一実施形態において、 接着テープは、 接着テープ上に直径が 50 0 U mのスズ含有半田ポールを配置し、 半田ポールの融点より 30°C高い温 度で 20秒加熱したとき、 上記式 (2) で表される半田濡れ拡がり率が 40 %以上である。 フラックス活性化合物は、 半田バンプの酸化膜を還元し、 半 田の表面張力を低下させ、 半田の濡れを良くする作用を有する。 半田バンプ を用いて回路基板を金属接合する場合、 半田の濡れ拡がり率が大きい程、 金 属間結合が助長され、 接合強度が増加する。 接合不良の発生が防止されるの に十分な半田濡れ拡がり率は、 40%以上である。 また、 接合確率を高め、 接合後の種々の環境下における接合信頼性を考慮すると、 半田濡れ拡がり率 は、 45 <½以上であることが好ましく、 さらに好ましくは 50<½以上である 次に、 半田濡れ拡がり率の測定条件 (半田ポールの融点より 30°C高い温 度で、 20秒加熱) について説明する。 少なくとも S n/A g ( 22 1 °C) 、 S n - 3. 0 A g - 0. 5 C u ( 2 1 7 °C) 、 S n - 58 B i ( 1 39 °C ) などの鉛フリーの半田ポールの融点より高くする必要がある。 また、 半田 ポールが濡れ拡がる程度のばらつきを低減するために、 本発明の実施形態に おいては、 半田ポールの融点よりも 30°C高い温度で加熱する。 加熱時間は 、 フラックス活性化合物が溶融し、 半田ポールの表面に移動し、 半田ポール が濡れ拡がるまでの時間、 および半田が濡れ拡がる程度のばらつきを考慮し て、 20秒とする。
[0077] 半田濡れ拡がり率は、 以下の式 (2) で表され、 下記の測定方法により求 められる。
(定義)
半田濡れ拡がり率 (%) = [ { (半田ポールの直径) 一 (濡れ拡がり後の半 田厚み) } / (半田ポールの直径) ] X 1 00 ■ ■ ■式 (2)
(測定方法)
( 1 ) ベア C u板 (平井精密工業社 (株) 製) に、 厚み 1 の接着テ一 プを貼り付ける。
(2) 接着テープ上に下記の直径が 50 O mの半田ポールを静置する。
( i ) S n/63 P b (融点 1 83°C、 千住金属工業 (株) 製)
( i i ) M31 (S n/A g/C u、 融点 21 7°C、 千住金属工業 (株) 製)
( i i i ) L 20 (S n/B i、 融点 1 38°C、 千住金属工業 (株) 製)
(3) AS TM B 545に準じて、 各半田の融点よりも 30°C高い温度 にホットプレートを加熱し、 上記サンプルをホットプレート上で 20秒間加 熱する。
(4) ベア C u板上に濡れ拡がった半田ポールの高さを計測する。
(5) 上記の式 (2) により、 半田濡れ拡がり率を算出する。
[0078] 本発明の一実施形態において、 接着テープは、 厚み 1 00;Um、 223°C における溶融粘度が 1 0 P a ■ s以上 1 0000 P a ■ s以下である。 1 0 P a ■ s以上の溶融粘度とすることにより、 加熱時に接着テープが被接着物 からはみ出すことによる接着信頼性の低下を抑制でき、 また、 はみ出しによ る周辺部材の汚染も抑制することができる。 また、 気泡の発生、 上下回路基 板の未充填等の不良も防止することができる。 さらに、 半田が濡れ拡がりす ぎてしまい、 隣接電極間でショートするといつた問題も防止することが可能 となる。 l O O O O P a ■ s以下とすることで、 半田バンプと回路基板電極 が金属接合する際に、 半田バンプと回路基板電極間の樹脂が排除されるため 接合不良を抑制することが可能となる。 溶融粘度は、 好ましくは 1 O O P a ■ s以上 3000 P a ■ s以下であり、 特に好ましくは 300 P a以上 1 5 O O P a - s以下である。
[0079] 本発明の一実施形態において、 接着テープは、 厚み 1 00 mの接着テ一 プを粘弾性測定装置で昇温速度 1 0°C/m i n、 周波数 O. 1 H zで測定し た時の 25〜 250°Cにおける最低溶融粘度が 1 P a ' s以上 1 0000 P a ■ s以下である。 ここで、 最低溶融粘度とは、 上記測定条件で溶融粘度測 定した時に、 25〜 250°Cの範囲で最低の溶融粘度を指す。 1 P a ■ s以 上の最低溶融粘度とすることにより、 はんだバンプの種類によらず加熱時に 接着テープが被接着物からはみ出すことによる接着信頼性の低下を抑制でき 、 また、 はみ出しによる周辺部材の汚染も抑制することができる。 また、 気 泡の発生、 上下回路基板の未充填等の不良も防止することができる。 さらに 、 半田が濡れ拡がりすぎてしまい、 隣接電極間でショートするといつた問題 も防止することが可能となる。 最低溶融粘度を 1 0000 P a ■ s以下とす ることで、 半田バンプと回路基板電極が金属接合する際に、 半田バンプと回 路基板電極間の樹脂が排除されることによる接合不良を抑制することが可能 となる。 最低溶融粘度は、 好ましくは 3 P a ■ s以上 3000 P a ■ s以下 であり、 特に好ましくは 5 P a以上 500 P a ■ s以下である。
[0080] 接着テープの溶融粘度は、 以下の測定方法により求められる。
(測定方法)
厚み 1 00 mの接着テープを、 粘弾性測定装置 ( R h e o S t r e s s RS- 1 0 H AAKE (株) 製) で昇温速度 1 0°C/m i n、 周波数 0. 1 H zで、 歪み一定—応力検知で測定し、 S n/3. 5A gの融点であ る雰囲気温度が 223°Cの時の粘度を 223°Cにおける溶融粘度の測定値と する。 また、 25°C〜250°Cの間での最低溶融粘度を最低溶融粘度の測定 値とする。
[0081] 本発明の接着テープは、 上記範囲の酸化銅還元率、 半田濡れ拡がり率およ び溶融粘度のうちの 1つ、 好ましくは 2つ、 さらに好ましくは全てを満たす
[0082] 本発明の好ましい実施形態において、 接着テープは以下の成分を含むが、 これらに限定されるものではない。 示される各成分の配合量は、 配合成分の 合計を基準とした、 重量%である。
( i ) フヱノキシ樹脂 5〜 30重量%
( i i ) 液状ビスフヱノ _ル A型エポキシ樹脂 40〜 70重量%
( i i i ) フエノ一ルノポラック樹脂 1 0〜 25重量0 /o
( i V ) フエノール性水酸基を有するフラックス活性化合物 5〜 20 重量%。
[0083] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) フヱノキシ樹脂 5〜 3 0重量%
( i i ) 液状ビスフヱノ _ル A型エポキシ樹脂 4 0〜 7 0重量%
( i i i ) フエノ一ルノポラック樹脂 1 0〜 2 5重量0 /o
( i v ) 力ルポキシル基を有するフラックス活性化合物 5〜2 0重量
%。
[0084] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) フヱノキシ樹脂 5〜 3 0重量%
( i i ) 液状ビスフヱノ _ル A型エポキシ樹脂 4 0〜 7 0重量% ( i i i ) フエノ一ルノポラック樹脂 1 0〜 2 5重量0 /o ( i v ) フエノール性水酸基および力ルポキシル基を有するフラックス活 性化合物 5〜 2 0重量%
[0085] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) フヱノキシ樹脂 5〜 3 0重量%
( i i ) 液状ビスフヱノ _ル A型エポキシ樹脂 4 0〜 7 0重量% ( i i i ) イミダゾ一ル 0 . 0 1〜5重量0 /o
( i v ) フエノール性水酸基および力ルポキシル基を有するフラックス活 性化合物 5〜2 0重量%。
[0086] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) ァクリルゴム 1 5〜4 5重量0 /o
( i i ) 固形 3官能エポキシ樹脂 1 5〜6 0重量%
( i i i ) ビスフヱノール F型エポキシ樹脂 9〜 1 0重量%
( i V ) フエノ一ルノポラック樹脂 1 0〜 2 5重量0 /o
( V ) イミダゾ一ル 0 . 0 1〜5重量0 /o
( V i ) 力ルポキシル基を有するフラックス活性化合物 5〜2 0重量% ( V i i ) シランカップリング剤 0 . 0 1〜 1重量0 /0
[0087] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。 ( i ) ァクリルゴム 1 5〜4 5重量0 /o
( i i ) 固形 3官能エポキシ樹脂 1 5〜6 0重量%
( i i i ) ビスフヱノール F型エポキシ樹脂 9〜 1 0重量%
( i v ) フヱノ一ルノポラック樹脂 5〜2 5重量%
( V ) リン系化合物 0 . 0 1〜5重量%
( V I ) フエノール性水酸基および力ルポキシル基を有するフラックス活性 化合物 5〜 2 0重量%
[0088] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) ァクリルゴム 1 5〜4 5重量0 /o
( i i ) 固形 3官能エポキシ樹脂 1 5〜6 0重量%
( i i i ) フエノールノポラック樹脂 5〜2 5重量%
( i V ) イミダゾ一ル 0 . 0 1〜5重量0 /o
( V ) フエノール性水酸基および力ルポキシル基を有するフラックス活性 化合物 5〜 2 0重量%
上記配合とすることで、 熱時の溶融粘度下げることと硬化性のバランスを さらに向上させることができるため、 はんだバンプを溶融させて回路基板の 層間接続を確実に行うことができる。 なお、 上記配合例において、 アクリル ゴム ( i ) の配合量を 1 5〜4 5重量%とすることにより、 接着テープの接 着性と熱時の溶融粘度のバランスを両立することができる。 また、 固形 3官 能エポキシ樹脂 ( i i ) 、 フエノールノポラック樹脂 ( i i i ) 、 およびィ ミダゾ一ル ( i V ) の配合量を上記範囲とすることで、 接着テープの硬化前 の溶融粘度低くすることができるため良好な半田接続構造を得ることができ 、 さらに、 適度な硬化性を得ることができる。 さらに、 フエノール性水酸基 および力ルポキシル基を有するフラックス活性化合物 (V ) を上記範囲とす ることで、 半田接合時のフラックス活性と接着テ一プ硬化後のィオンマイグ レーシヨン性を両立することができる。
[0089] 本発明の好ましい実施形態において、 接着テープは以下の成分を含む。
( i ) ァクリルゴム 1 5〜4 5重量0 /o ( i i ) 固形 3官能エポキシ樹脂 1 5〜6 0重量%
( i i i ) フエノールノポラック樹脂 5〜2 5重量%
( i v ) リン系化合物 0 . 0 1〜5重量%
( V ) フエノール性水酸基および力ルポキシル基を有するフラックス活性 化合物 5〜 2 0重量%
上記配合とすることで、 熱時の溶融粘度下げることと硬化性のバランスを さらに向上させることができるため、 はんだバンプを溶融させて回路基板の 層間接続を確実に行うことができる。 なお、 上記配合例において、 アクリル ゴム ( i ) の配合量を 1 5〜4 5重量%とすることにより、 接着テープの接 着性と熱時の溶融粘度のバランスを両立することができる。 また、 固形 3官 能エポキシ樹脂 ( i i ) 、 フエノールノポラック樹脂 ( i i i ) 、 およびリ ン系化合物 ( i v ) の配合量を上記範囲とすることで、 接着テープの硬化前 の溶融粘度低くすることができるため良好な半田接続構造を得ることができ 、 さらに、 適度な硬化性と保存性を両立することができる。 さらに、 フエノ ール性水酸基および力ルポキシル基を有するフラックス活性化合物 (V ) を 上記範囲とすることで、 半田接合時のフラックス活性と接着テープ硬化後の イオンマイグレーション性を両立することができる。
接着テープは、 例えば、 図 1に示されるような積層体の作製に用いられる 。 図 1は、 被接続回路基板とビア付き片面回路基板とが、 接着テープを挟ん で接合された積層体を示す。 図 2は、 図 1の積層体の接続部分の模式図であ る。 上基板 L 2 sにおいて、 ビルドアップ絶縁層 1を覆うように銅箔 2が設 けられ、 この銅箔 2を覆うようにコア材層 3が設けられる。 ビルドアップ絶 縁層 4には、 ビアポスト 7が設けられ、 ビアポスト 7を覆うように半田メッ キ層 6が設けられる。 接着テープ 5は、 ビルドアップ絶縁層 4および半田メ ツキ層 6を覆うように適用される。 一方、 下基板 L 1において、 コア材層 9 の上に、 パッド 8が間隔をあけて設けられる。 上基板 L 2 sと下基板 L 1を 、 加熱加圧して互いに接着し、 積層体が得られる。
本発明の好ましい実施形態を記載してきたが、 本発明はこれらに限定され ない。
実施例
[0091 ] 以下に実施例について説明する。 本発明は以下の実施例に限定されるもの ではない。
(実施例 1〜3 3 )
(接着テープの作製)
以下の表 1に示される成分をトルエン、 キシレンなどの芳香族炭化水素系 溶剤、 酢酸ェチル、 酢酸ブチルなどのエステル系有機溶剤、 アセトン、 メチ ルェチルケトンなどのケトン系有機溶剤に溶解し、 得られたワニスをポリエ ステルシートに塗布し、 上記溶剤が揮発する温度で乾燥させて、 接着テープ を得た。 なお、 表中の配合量は、 配合成分の合計量に対する重量%である。 (比較例 1〜2 )
以下の表 2に示される成分を用いて、 実施例 1〜3 3に記載と同様の方法 を使用して、 接着テープを得た。
[0092] (酸化銅還元率の測定)
実施例 1〜3 3および比較例 1および 2の各接着テープを用いて、 上記の 測定方法を用いて酸化銅還元率を測定した。 この結果を、 以下の表 1および 2に示す。
[0093] (半田濡れ拡がり率の測定)
実施例 1〜 3 3の各接着テープを用いて、 上記の測定方法を用いて半田濡 れ拡がり率を測定した。 この結果を、 以下の表 1に示す。
[0094] (溶融粘度の測定)
実施例 1〜2 9および比較例 1および 2の各接着テープを用いて、 上記の 測定方法を用いて溶融粘度を測定した。 この結果を以下の表 1および 2に示 す。 また、 実施例 3 0〜 3 3の各接着テープを用いて、 上記の測定方法に基 づいて、 最低接着粘度を測定した。 この結果を以下の表 1に示す。
[0095] (樹脂フロー係数の測定)
実施例 1〜3 3および比較例 1および 2の各接着テープの樹脂フロー係数 を測定した。
樹脂フロー係数は、 以下の式 (4) で表され、 以下の測定方法により求め られる。
(定義)
樹脂フロー係数 = (加熱後の面積) / (加熱前の面積) ■ ■ ■式 (4) (測定方法)
5 mm角、 厚み 1 3 U mの接着テープを 30mmX 40mm、 厚み 1. 1 ; U mのガラス基板上に貼付けた。 次に、 別の30 40 、 厚み 1. 1 mのガラス基板を配設し、 1. OMP aにて加熱温度 250°Cで 30秒 間加熱した。 加熱前と加熱後の面積比により樹脂フロー係数を算出した。 結 果を以下の表 1および 2に示す。
(接続率の測定)
実施例 1〜33および比較例 1および 2の各接着テープを用いて接続率を 測定した。
(測定方法)
( 1 ) ビア付き片面回路基板の作製
銅箔が 1 2 m、 支持基材がプリプレグ (厚み 200 ;U m) の 2層両面板 をエッチングし、 配線パターンを形成した。 厚み 40 mのビルドアップ層 を両面形成し、 配線パターン側から C02レーザ一により 7 O m径のビルド アップ開口部を形成し、 過マンガン酸力リウム水溶液によるデスミアを施し た。 このビルドアップ開口部に電解銅メツキを施し、 ビルドアップ層の表面 からの高さが 1 5 mの銅ポスト (70 ;U m径) を形成した後、 この銅ボス 卜に、 はんだ (S n/3. 5 A g) メツキを厚み 1 5 mになるよう施し、 導体ポストを形成した。 さらに、 25mm角に個片化し、 ビア付き片面回路 基板を得た。
(2) 被接続回路基板の作製
銅箔が 1 2 m、 支持基材がプリプレグ (厚み 400 ;U m) の 2層両面板 をエッチングし、 配線パターンを形成した。 次に、 4 Omm角に個片化し被 接続回路基板を得た。 なお、 ビア付き片面回路基板の導体ポストと接合する パッド部分は 400 m径であった。
(3) 多層回路基板の作製
ビア付き片面回路基板と被接続回路基板の両面に、 位置合せ用のピンガイ ド付き治具を用いてレイアップした。 次いで、 260°C、 0. 5MP aで、 60秒間プレスし、 半田メツキ付き導体ボス卜が内層回路基板のパッドと半 田溶融接合し、 層間を接合した。 さらに、 接着テープを硬化させるために 1 80°C、 60分間の熱履歴を加え多層回路基板を得た。
(4) 接続率の測定
上記方法で得られた多層回路基板の層間接続抵抗を、 デジタルマルチメ一 タにより 20ケ所測定した。 測定は、 多層回路基板作製後と一 65°Cで 1時 間、 1 50°Cで 1時間の温度サイクルで 1 000サイクル後の両方を測定し た。 結果を以下の表 1および 2に示す。
判定基準
〇: 20/20導通がとれる。
△ : 1 8〜20/20導通が取れる。
X : 1 8以下/ 20導通が取れる。
(樹脂はみ出しの測定)
実施例 1〜33および比較例 1および 2の各接着テープを用いて樹脂はみ 出しを測定した。
(測定方法)
上記接続率の測定方法に記載したものと同様の方法で多層回路基板を作製 し、 多層回路基板からはみ出している樹脂量を観察した。 結果を以下の表 1 および 2に示す。
判定基準
〇:樹脂はみ出しがまったく観察されない。
△:樹脂はみ出しは観察される力 多層回路基板の層間をプリッジする ものはない。 X :樹脂が、 多層回路基板の層間をブリッジしている。
[0098] (接合部断面の測定)
実施例 1〜3 3および比較例 1および 2の各接着テープを用いて、 接合部 断面の観察を行った。
(測定方法)
上記接続率に記載した同様の方法で多層回路基板を作製、 エポキシ樹脂硬 化物で包埋し、 断面を研磨し、 層間接続部分 1 0箇所を S E M (走査型電子 顕微鏡) により観察した。 断面の観察は、 多層回路基板作製後と— 6 5 °Cで 1時間、 1 5 0 °Cで 1時間の温度サイクルで 1 0 0 0サイクル後の両方を測 定した。 結果を以下の表 1および 2に示す。
判定基準
〇:初期と変化なし
△:初期と比較して変形したまたは一部クラックが入り始めた X :オープン不良 (接続部クラック等), またはショート(接続部ブリッジ ング)発生
[0099]
Figure imgf000030_0001
Figure imgf000031_0001
表 2
Figure imgf000032_0001
上記の結果より、 実施例 1〜 29の接着テープはいずれも、 70 %以上の 酸化銅還元率、 40%以上の半田濡れ拡がり率、 および 1 O O P a ■ s以上 1 0000 P a ■ s以下の溶融粘度を有していた。 実施例 30〜 33の接着 テープはいずれも、 1 P a ' s以上 l O O O O P a ' s以下の最低溶融粘度 を有していた。 また、 樹脂フロー係数、 接続率、 樹脂はみ出しおよび接合部 断面の測定の全てにおいても良好な結果が得られた。

Claims

請求の範囲
[I] 力ルポキシル基および/またはフエノール性水酸基を有するフラックス活性 化合物と、 熱硬化性樹脂と、 フィルム形成性樹脂とを含む接着テープ。
[2] 前記熱硬化性樹脂がエポキシ樹脂である、 請求項 1に記載の接着テープ。
[3] 前記熱硬化性樹脂が硬化剤を含む、 請求項 2に記載の接着テープ。
[4] 前記硬化剤がィミダゾール化合物である、 請求項 3に記載の接着テープ。
[5] 前記硬化剤がリン化合物である、 請求項 3に記載の接着テープ。
[6] 前記フィルム形成性樹脂がフエノキシ樹脂またはァクリルゴムである、 請求 項 1に記載の接着テープ。
[7] シランカップリング剤をさらに含む、 請求項 1に記載の接着テープ。
[8] 請求項 1に記載の接着テープであって、 酸化処理した銅板の表面に該接着テ ープを貼り付けて、 大気中、 2 30°Cで 1分間還元処理したとき、 以下の式 ( 1 ) で表される該銅板の酸化銅還元率が 7 0%以上である、 接着テープ。 酸化銅還元率 (%) = { 1 - (還元処理後の O原子濃度) / (酸化処理後 の O原子濃度) } X 1 0 0 ■ ■ ■式 (1 )
[9] 請求項 1に記載の接着テープであって、 該接着テープ上に直径が 500 U m のスズ含有半田ポールを配置し、 該半田ポールの融点より 30°C高い温度で
20秒加熱したとき、 以下の式 (2) で表される半田濡れ拡がり率が 40 <½ 以上である、 接着テープ。
半田濡れ拡がり率 (%) = [ { (半田ポールの直径) 一 (濡れ拡がり後の 半田の厚み) } / (半田ポールの直径) ] X 1 0 0 ■ ■ ■式 (2 )
[10] 請求項 1に記載の接着テープであって、 厚み 1 0 0 mの該接着テープの、
2 2 3 °Cにおける溶融粘度が 1 0 P a ■ s以上 1 0000 P a ■ s以下であ る、 接着テープ。
[II] 請求項 1に記載の接着テープであって、 厚み 1 00 mの該接着テープを粘 弾性測定装置で昇温速度 1 0°C/m i n、 周波数 0. 1 H zで測定した時の 2 5〜 2 50°Cにおける最低溶融粘度が 1 P a ■ s以上 1 0000 P a ■ s 以下である、 接着テープ。
PCT/JP2007/001058 2006-10-03 2007-09-28 Ruban adhésif WO2008044330A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/095,530 US8597785B2 (en) 2006-10-03 2007-09-28 Adhesive film
EP20070827837 EP2071000B1 (en) 2006-10-03 2007-09-28 Adhesive tape
JP2008538563A JP5394066B2 (ja) 2006-10-03 2007-09-28 接着テープ
CN2007800023675A CN101370887B (zh) 2006-10-03 2007-09-28 胶带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-271731 2006-10-03
JP2006271731 2006-10-03

Publications (1)

Publication Number Publication Date
WO2008044330A1 true WO2008044330A1 (fr) 2008-04-17

Family

ID=39282542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001058 WO2008044330A1 (fr) 2006-10-03 2007-09-28 Ruban adhésif

Country Status (8)

Country Link
US (1) US8597785B2 (ja)
EP (1) EP2071000B1 (ja)
JP (2) JP5394066B2 (ja)
KR (1) KR20080059386A (ja)
CN (1) CN101370887B (ja)
SG (1) SG174840A1 (ja)
TW (1) TWI410472B (ja)
WO (1) WO2008044330A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302013A1 (en) * 2008-07-16 2011-03-30 Sony Chemical & Information Device Corporation Anisotropic conductive adhesive
US20120156502A1 (en) * 2009-09-16 2012-06-21 Sumitomo Bakelite Co., Ltd. Adhesive film, multilayer circuit board, electronic component and semiconductor device
JP2012136689A (ja) * 2010-10-18 2012-07-19 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP2013014638A (ja) * 2011-06-30 2013-01-24 Dainippon Printing Co Ltd 粘接着剤組成物、粘接着シート、及び積層体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094129A1 (ja) * 2006-02-13 2007-08-23 Sumitomo Bakelite Co., Ltd. 回路基板の製造方法および回路基板
TWI414580B (zh) 2006-10-31 2013-11-11 Sumitomo Bakelite Co 黏著帶及使用該黏著帶而成之半導體裝置
US8535454B2 (en) 2010-11-23 2013-09-17 Promerus, Llc Polymer composition for microelectronic assembly
KR101332437B1 (ko) * 2010-12-15 2013-11-25 제일모직주식회사 반도체용 접착 조성물, 이를 포함하는 접착 필름 및 이를 이용한 반도체 패키지
JP2013224362A (ja) * 2012-04-20 2013-10-31 Nitto Denko Corp 接合シート、電子部品およびそれらの製造方法
KR101399957B1 (ko) * 2012-11-23 2014-05-28 한국과학기술원 이중층 비전도성 폴리머 접착필름 및 전자패키지
JP2014149935A (ja) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
KR101460353B1 (ko) * 2014-03-04 2014-11-10 동우 화인켐 주식회사 점착제 조성물
US10538072B2 (en) * 2018-04-10 2020-01-21 Gulfstream Aerospace Corporation Devices and methods for dispensing adhesive elements
KR102204964B1 (ko) * 2018-04-17 2021-01-19 주식회사 엘지화학 반도체 회로 접속용 접착제 조성물 및 이를 포함한 접착 필름
CN109280531B (zh) * 2018-08-30 2021-04-06 宁波吉象塑胶科技股份有限公司 低噪音胶带
US11558963B2 (en) 2018-10-31 2023-01-17 Lear Corporation Electrical assembly
US11735891B2 (en) 2018-10-31 2023-08-22 Lear Corporation Electrical assembly
US11858437B2 (en) 2018-10-31 2024-01-02 Lear Corporation Electrical assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154934A (ja) 1997-06-06 1999-02-26 Ibiden Co Ltd 多層プリント配線板およびその製造方法
JP2001288445A (ja) * 2000-04-07 2001-10-16 Nagase Chemtex Corp 電気的接続可能な半導体用接着剤
JP2002033580A (ja) * 2000-05-11 2002-01-31 Sumitomo Bakelite Co Ltd 多層配線板およびその製造方法
JP2003128874A (ja) * 2001-10-29 2003-05-08 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体装置の製造方法及び半導体装置
JP2004291054A (ja) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd 硬化性フラックス機能付接着剤および硬化性フラックス機能付接着剤シート
JP2005501725A (ja) * 2001-09-04 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー フラックス組成物
JP2005194306A (ja) * 2003-12-26 2005-07-21 Togo Seisakusho Corp 通電接着剤とそれを用いた窓用板状部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235759B (en) * 1996-07-15 2005-07-11 Hitachi Chemical Co Ltd Multi-layered adhesive for connecting circuit and circuit board
US7331502B2 (en) * 2001-03-19 2008-02-19 Sumitomo Bakelite Company, Ltd. Method of manufacturing electronic part and electronic part obtained by the method
US7576288B2 (en) 2002-11-27 2009-08-18 Sumitomo Bakelite Company Limited Circuit board, multi-layer wiring boards, method of producing circuit boards and method of producing multilayer wiring boards
JP4083592B2 (ja) 2003-02-13 2008-04-30 住友ベークライト株式会社 接着フィルムおよびこれを用いた半導体パッケージならびに半導体装置
JP4296975B2 (ja) * 2004-03-24 2009-07-15 住友ベークライト株式会社 多層基板およびその製造方法
US7247683B2 (en) * 2004-08-05 2007-07-24 Fry's Metals, Inc. Low voiding no flow fluxing underfill for electronic devices
US8169090B2 (en) * 2005-05-31 2012-05-01 Sumitomo Bakelite Company, Ltd. Encapsulating resin composition for preapplication, semiconductor device made with the same, and process for producing the same
US20070073008A1 (en) * 2005-09-28 2007-03-29 Cookson Singapore Pte, Ltd. Compositions effective to suppress void formation
WO2007094129A1 (ja) * 2006-02-13 2007-08-23 Sumitomo Bakelite Co., Ltd. 回路基板の製造方法および回路基板
TWI414580B (zh) * 2006-10-31 2013-11-11 Sumitomo Bakelite Co 黏著帶及使用該黏著帶而成之半導體裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154934A (ja) 1997-06-06 1999-02-26 Ibiden Co Ltd 多層プリント配線板およびその製造方法
JP2001288445A (ja) * 2000-04-07 2001-10-16 Nagase Chemtex Corp 電気的接続可能な半導体用接着剤
JP2002033580A (ja) * 2000-05-11 2002-01-31 Sumitomo Bakelite Co Ltd 多層配線板およびその製造方法
JP2005501725A (ja) * 2001-09-04 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー フラックス組成物
JP2003128874A (ja) * 2001-10-29 2003-05-08 Sumitomo Bakelite Co Ltd 液状樹脂組成物、半導体装置の製造方法及び半導体装置
JP2004291054A (ja) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd 硬化性フラックス機能付接着剤および硬化性フラックス機能付接着剤シート
JP2005194306A (ja) * 2003-12-26 2005-07-21 Togo Seisakusho Corp 通電接着剤とそれを用いた窓用板状部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2071000A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302013A1 (en) * 2008-07-16 2011-03-30 Sony Chemical & Information Device Corporation Anisotropic conductive adhesive
EP2302013A4 (en) * 2008-07-16 2013-07-17 Sony Chem & Inf Device Corp ANISOTROPIC CONDUCTIVE ADHESIVE
US8636924B2 (en) 2008-07-16 2014-01-28 Dexerials Corporation Anisotropic conductive adhesive
US9418958B2 (en) 2008-07-16 2016-08-16 Dexerials Corporation Anisotropic conductive adhesive
US20120156502A1 (en) * 2009-09-16 2012-06-21 Sumitomo Bakelite Co., Ltd. Adhesive film, multilayer circuit board, electronic component and semiconductor device
JP2012136689A (ja) * 2010-10-18 2012-07-19 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP2013014638A (ja) * 2011-06-30 2013-01-24 Dainippon Printing Co Ltd 粘接着剤組成物、粘接着シート、及び積層体

Also Published As

Publication number Publication date
KR20080059386A (ko) 2008-06-27
EP2071000A4 (en) 2011-01-12
JP5742798B2 (ja) 2015-07-01
CN101370887B (zh) 2012-01-25
JP2012255157A (ja) 2012-12-27
EP2071000A1 (en) 2009-06-17
JPWO2008044330A1 (ja) 2010-02-04
SG174840A1 (en) 2011-10-28
TWI410472B (zh) 2013-10-01
EP2071000B1 (en) 2013-05-29
TW200829671A (en) 2008-07-16
US20100203307A1 (en) 2010-08-12
JP5394066B2 (ja) 2014-01-22
CN101370887A (zh) 2009-02-18
US8597785B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP5742798B2 (ja) 接着テープ
KR101633945B1 (ko) 전자 장치의 제조 방법 및 전자 장치
KR101581984B1 (ko) 도전 접속 재료 및 그것을 이용한 단자간 접속 방법 및 접속 단자의 제조 방법
JP5012794B2 (ja) 回路基板の製造方法および回路基板
KR101578968B1 (ko) 도전 접속 재료 및 그것을 사용한 단자 사이의 접속 방법
KR20120064701A (ko) 접착 필름, 다층 회로 기판, 전자 부품 및 반도체 장치
WO2009139153A1 (ja) 半導体部品の製造方法および半導体部品
JP2010010368A (ja) 半導体装置および半導体装置の製造方法
JP5569582B2 (ja) 可撓性基板および電子機器
WO2008032386A1 (fr) Structure de jonction, procédé de jonction, plaquette de câblage et son procédé de production
JP2011014717A (ja) 接着フィルム、多層回路基板、電子部品及び半導体装置
JP2011151251A (ja) バックグラインドテープ付き導電接続材料、端子間の接続方法及び電気、電子部品
JP2012079880A (ja) 接着剤、多層回路基板、半導体用部品および半導体装置
JP2011165954A (ja) 導電接続材料、端子間の接続方法、接続端子の製造方法、電子部材及び電気、電子部品
JP5381814B2 (ja) 端子間の接続方法およびそれを用いた半導体装置の製造方法、接続端子の形成方法
JP2010073872A (ja) 半田の接続方法および電子機器
JP5316441B2 (ja) 電子部品の製造方法及び電子部品
JP5533041B2 (ja) 導電接続材料の製造方法、半導体装置および電子機器
JP2011096864A (ja) 半導体装置の製造方法、半導体装置、および電子部品の製造方法、電子部品
JP2011187489A (ja) 電子部品の製造方法、電子部品、および電子装置の製造方法および電子装置
JP2011181703A (ja) 導電接続シートの製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2011171553A (ja) 導電接続材料の製造方法、端子間の接続方法、接続端子の形成方法、半導体装置および電子機器
JP2013225702A (ja) 端子間の接続方法及び接続端子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020087008347

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008538563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007827837

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780002367.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12095530

Country of ref document: US