WO2008041724A1 - Optical fiber ribbon - Google Patents
Optical fiber ribbon Download PDFInfo
- Publication number
- WO2008041724A1 WO2008041724A1 PCT/JP2007/069376 JP2007069376W WO2008041724A1 WO 2008041724 A1 WO2008041724 A1 WO 2008041724A1 JP 2007069376 W JP2007069376 W JP 2007069376W WO 2008041724 A1 WO2008041724 A1 WO 2008041724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- coating
- flame retardant
- thickness
- fiber ribbon
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 174
- 238000000576 coating method Methods 0.000 claims abstract description 74
- 239000011248 coating agent Substances 0.000 claims abstract description 73
- 239000003063 flame retardant Substances 0.000 claims abstract description 66
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000011347 resin Substances 0.000 claims abstract description 33
- 229920005989 resin Polymers 0.000 claims abstract description 33
- 239000011521 glass Substances 0.000 claims abstract description 28
- 239000010410 layer Substances 0.000 claims description 55
- 239000002356 single layer Substances 0.000 claims description 3
- 238000012216 screening Methods 0.000 abstract description 17
- 238000012360 testing method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000012792 core layer Substances 0.000 description 12
- 230000000994 depressogenic effect Effects 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 8
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000011295 pitch Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000007706 flame test Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/4436—Heat resistant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02395—Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
- G02B6/03627—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4403—Optical cables with ribbon structure
Definitions
- the present invention relates to an optical fiber ribbon having flame retardancy.
- the optical fiber is generally used as an optical fiber ribbon.
- the optical fiber ribbon is a parallel arrangement of optical fiber strands that are coated with a strand of UV curable resin or the like on the outer periphery of a glass optical fiber, and are collectively covered with a tape coating of UV curable resin or the like. It was formed by coating.
- conventional optical fiber ribbons used in optical interconnection systems have a two-layer force consisting of a primary layer and a secondary layer on the outer periphery of a silica glass optical fiber with an outer diameter of 125 m.
- An optical fiber strand with an outer diameter of 250 ⁇ m was formed by arranging 12 parallel wires at a pitch of 250 Hm and covering them with a tape cover. Is about 3mm.
- Patent Document 1 discloses an optical fiber ribbon using a flame retardant ultraviolet curable resin as a tape coating.
- Patent Document 1 US Patent Application Publication No. 2006/0034575
- the present invention has been made in view of the above, and has good flame retardancy while being thin.
- An object of the present invention is to provide an optical fiber ribbon capable of realizing screening characteristics.
- an optical fiber ribbon according to the present invention includes optical fiber strands in which a strand coating is formed on the outer periphery of a glass optical fiber in parallel.
- the optical fiber ribbon according to the present invention is characterized in that, in the above invention, the strand covering is made up of a single layer.
- the optical fiber ribbon according to the present invention has an optical fiber ribbon of 300 Hm or less formed by arranging optical fiber strands in which the strand coating is formed on the outer periphery of the glass optical fiber in parallel and collectively coating with the tape coating.
- a non-flammable non-flame retardant resin comprising a non-flammable ultraviolet curable resin formed adjacent to a glass optical fiber, wherein the strand coating has a thickness of 3 ⁇ 40 m or more.
- a flame retardant layer comprising a flame retardant resin containing a flame retardant formed in the outermost layer, the tape coating is made of a flame retardant resin, and the thickness of the flame retardant layer and the tape coating The total is characterized by being over 40 am.
- an optical fiber ribbon according to the present invention is characterized in that in the above invention, the thickness is 200 m or less.
- the glass optical fiber has an outer diameter of 55 to 90 am in the above invention.
- the optical fiber ribbon according to the present invention is a thin optical fiber ribbon with a thickness of 300 m or less, but the wire coating is made of a non-flame retardant ultraviolet curable resin. As a result, good screening characteristics can be realized, and a good flame retardancy can be realized when the tape coating has a thickness of 40 m or more and is made of a flame retardant resin.
- the optical fiber ribbon according to the present invention is a thin optical fiber having a thickness of 300 m or less.
- the non-flammable layer made of a non-flammable UV-curable resin formed adjacent to the glass fiber and the outermost layer has a thickness of 30 m or more and a hard layer formed on the outermost layer.
- a flame retardant layer made of a flame retardant resin containing a flame retardant it is possible to achieve good screening characteristics while having a flame retardant layer on the wire, and the tape coating is made of a flame retardant resin and is difficult. If the total thickness of the flame layer and the tape coating is 40 m or more, good flame retardancy can be achieved!
- FIG. 1 is a cross-sectional view schematically showing an optical fiber ribbon according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view of the optical fiber shown in FIG.
- FIG. 3 is a diagram schematically showing a refractive index profile corresponding to the cross section of the optical fiber shown in FIG. 1.
- FIG. 4 is a cross-sectional view schematically showing an optical fiber ribbon according to Embodiment 2 of the present invention.
- FIG. 5 is a cross-sectional view of the optical fiber shown in FIG.
- FIG. 6 is a diagram for explaining the relationship between the coating thicknesses of the optical fiber ribbon shown in FIG. 4.
- FIG. 7 shows the total of the characteristics of the optical fiber, the characteristics of the optical fiber, and the thickness of the flame-retardant coating for the optical fiber ribbons according to Examples and Comparative Examples of the present invention. It is a figure showing the results of the combustion test and screening test, and the evaluation of capacity. Explanation of symbols
- FIG. 1 is a cross-sectional view schematically showing an optical fiber ribbon according to Embodiment 1 of the present invention.
- the optical fiber ribbon 10 according to the first embodiment twelve optical fiber strands 11 each having a single strand coating 112 formed on the outer periphery of the glass optical fiber 111 are arranged in parallel.
- the tape coating 12 is used to coat all at once.
- FIG. 2 is a cross-sectional view of the optical fiber strand 11 shown in FIG.
- the outer diameter R11 of the glass optical fiber 111 is 55 to 90 ⁇ m. Therefore, it has a smaller diameter than a normal optical fiber with an outer diameter of 125 ⁇ m, which improves storage capacity and reduces the probability of breakage due to bending, while reducing transmission loss and reducing the degree of diameter! / RU
- the glass optical fiber 111 will be described later.
- the wire coating 112 has a bang ratio of 40 to 2001 3 ⁇ 4 and is made of a non-flame retardant UV curable resin that does not contain a flame retardant. Therefore, the glass optical fiber 111 is protected from external damage and is made of microbend dross. Prevents occurrence and realizes good screening characteristics. Furthermore, since the glass optical fiber 111 has a small diameter and the strand coating 112 has a single layer, the outer diameter R12 of the optical fiber strand 11 is smaller than that of the conventional one. Ensures thinning.
- the tape coating 12 is made of an ultraviolet curable urethane acrylate resin containing aluminum hydroxide as a flame retardant and has a thickness T1 force of 0 am or more. Realizes good flame retardancy.
- the thickness HI of the optical fiber ribbon 10 is 300 m or less, realizing a reduction in thickness.
- the pitch P1 of the optical fiber 11 is narrower than before, the width D1 is smaller than that of the conventional one, increasing the flexibility and capacity of the wiring in the transmission equipment and realizing space saving.
- FIG. 3 is a diagram schematically showing a refractive index profile corresponding to a cross section of the glass optical fiber 111.
- the glass optical fiber 111 is formed around the central core portion 111a, the depressed core layer 11 lb formed around the central core portion 11 la, and the depressed core layer 11 lb. And a cladding layer 11 lc.
- the depressed core layer 11 lb has a lower refractive index than the central core portion 11 la
- the cladding layer 11 lc has a lower refractive index than the central core portion 11 la and a higher refractive index than the depressed core layer 111 b. That is, the glass optical fiber 111 has a so-called W-type refractive index profile.
- the clad layer 111c is made of pure quartz that does not contain a refractive index adjusting dopant.
- the relative refractive index difference of the central core portion 111a with respect to the cladding layer 111c is ⁇ 1
- ⁇ is a parameter representing the refractive index profile of the central core portion 11la
- ⁇ is ⁇
- the cladding layer 111c When the relative refractive index difference of 11 lb of the depressed core layer is ⁇ 2, the diameter of the central core portion 11 la is a, and the outer diameter of the pressed ⁇ core layer 11 lb is b, ⁇ 1% 0.8%, ⁇
- the force is 8.0, and ⁇ 2 force is 0.5%.
- the diameter a of the central core portion 11 la is 7.2 mm
- the outer diameter b of the depressed core layer 11 lb is 12. O ⁇ m.
- the optical fiber 111 has a mode field diameter of 5.8 ⁇ m at a wavelength of 1310 nm of a signal light source used for signal transmission in a transmission device, and a cutoff wavelength of 1238 nm. Therefore, when the light with a wavelength of 1250 nm is transmitted in a single mode and bent with a curvature radius of 1 mm, the bending loss at a wavelength of 1310 nm is 0.6 dB / turn, and the chromatic dispersion value at a wavelength of 1310 nm is 1.04 ps / nm / km, and can be suitably used for an optical fiber ribbon having a small bending loss and high capacity.
- the cutoff wavelength in this specification is the fiber cutoff wavelength c defined in ITU-T G.650.1.
- ITU-T G. 650. 1 The definition and measurement method in TU-T G. 650. 1 shall be followed.
- ⁇ 1 and ⁇ 2 are defined by the equations (1) and (2).
- ⁇ 1 ⁇ ( ⁇ - ⁇ ) / ⁇ ⁇ 100 [%] (1)
- n is the maximum refractive index of the central core portion 11 1a, and n is the minimum of the depressed core layer 11 lb.
- n is the refractive index of the cladding layer 111c.
- the diameter a of the central core portion 111a has the same refractive index as the cladding layer 11 lc at the boundary of the central core portion 11 la depressed core layer 11 lb!
- the outer diameter b of the depressed core layer 11 lb is at the boundary between the depressed core layer 11 lb and the clad layer 1 1 lc! /, 1/2 of the relative refractive index difference ⁇ 2
- ⁇ is defined as in equation (3).
- n 2 (r) n 2 X ⁇ 1-2 X ( ⁇ / 100) X (2r / a) ⁇ ⁇
- r represents the position in the radial direction from the center of the optical fiber
- n (r) represents the refractive index at the position r.
- the symbol “” represents a power.
- the optical fiber ribbon according to the first embodiment can be manufactured as follows. First, a liquid ultraviolet ray curable resin is applied using a coating die to a silica glass optical fiber drawn by heating and melting a preform mainly composed of quartz glass in a drawing furnace. Next, the coated ultraviolet curable resin is irradiated with ultraviolet rays and cured to form a strand coating, thereby producing an optical fiber strand. Next, twelve prepared optical fiber strands are arranged in parallel, and a liquid UV curable urethane acrylate resin containing aluminum hydroxide is applied all at once, and the applied resin is irradiated with UV rays and cured. Thus, the tape coating is formed, and the fiber ribbon is completed.
- the optical fiber tape core wire 10 is an ultraviolet curable resin in which the wire covering 112 is a non-flame retardant resin while the thickness HI is 300 m or less. In addition to being able to achieve good screening characteristics, it also has a tape coating 12 1S Thickness T1 of 40 m or more and flame retardant UV curing containing aluminum hydroxide Good flame retardancy can be realized by using a type urethane acrylate resin.
- a glass optical fiber having a w-type refractive index profile has been described. However, the optical fiber having a step type or other refractive index profile is not necessarily required. Applicable. Furthermore, it can be applied to a multimode optical fiber.
- FIG. 4 is a cross-sectional view schematically showing the optical fiber ribbon according to Embodiment 2 of the present invention.
- the optical fiber tape core wire 20 according to the second embodiment includes 12 optical fiber strands 21 in which the strand coating 212 is formed on the outer periphery of the glass optical fiber 211 and is parallel to the tape coating. It is formed by batch coating with 22.
- FIG. 5 is a cross-sectional view of the optical fiber strand 21 shown in FIG. Similar to the optical fiber 11 according to the first embodiment, the optical fiber 21 is formed by forming an element coating 212 on the outer periphery of the glass optical fiber 211. Further, the glass optical fiber 211 is a single mode optical fiber having a normal step type refractive index profile having a central core portion 211a and a clad layer 211b formed around the central core portion 211a. The outer diameter R21 i of the optical fiber 211 is 125 ⁇ m.
- the wire coating 212 includes a non-flame retardant layer 212a and a flame retardant layer 212b.
- the non-flame retardant layer 212a is formed adjacent to the glass optical fiber 211, and has a Young's modulus of 0.15-0.2kgf and is made of a non-flame retardant UV curable resin. Ensure that loss is prevented.
- the flame retardant layer 212b is formed on the outermost layer of the wire coating 212, has a Young's modulus of 40 to 200 kgf, and is made of an ultraviolet spring curable urethane acrylate resin containing aluminum hydroxide as a flame retardant.
- the glass optical fiber 211 is protected from external damage, and the flame resistance of the optical fiber ribbon 20 is enhanced.
- FIG. 6 is an enlarged view of a part of the optical fiber ribbon 20 shown in FIG. 4, and is a diagram for explaining the coating thickness of the optical fiber ribbon.
- the thickness T3 of the wire coating 212 is the total thickness of the non-flame retardant layer 212a and the flame retardant layer 212b, and the value is 30 m or more. Because it is included in the flame retardant layer 212b Even if aluminum hydroxide is agglomerated and formed into particles in the manufacturing process or the like, the particles do not damage the surface of the optical fiber 211. Therefore, the optical fiber 21 realizes good screening characteristics.
- the outer diameter R22 of the non-flame retardant layer 212a is 195 m
- the outer diameter of the non-flame retardant layer 212a that is, the outer diameter R23 of the optical fiber 21 is 250 ⁇ m.
- the tape coating 22 is made of an ultraviolet curable urethane acrylate resin containing aluminum hydroxide as a flame retardant. Further, the total thickness T5 of the thickness T2 of the tape coating 22 and the thickness T4 of the flame retardant layer 212b of the wire coating 212 shown in FIG. 6 is 40 m or more. As a result, even if the individual thicknesses of the tape coating 22 and the flame retardant layer 212b are less than 40 m, the optical fiber ribbon 20 exhibits good flame retardancy.
- the thickness H2 of the optical fiber ribbon 20 is 300 ⁇ m or less, realizing a reduction in thickness. Furthermore, since the pitch P2 of the optical fiber 21 is 250 m and the width D2 of the optical fiber ribbon 20 is the same as the conventional one, while maintaining compatibility with the conventional optical fiber ribbon, Increases the flexibility and capacity of the wiring in the transmission equipment, and saves space.
- the optical fiber ribbon according to the second embodiment is an actual fiber coating except that the step of forming the non-flame retardant layer and the step of forming the flame retardant layer are performed in sequence. It can be manufactured in the same manner as the optical fiber ribbon according to the first embodiment.
- the optical fiber ribbon 20 according to the second embodiment is thin with a thickness H2 of 300 Hm or less, while the thickness T3 of the strand coating 212 is 0 ⁇ m.
- the non-flame retardant layer 212a formed adjacent to the glass optical fiber 211 and the flame retardant layer 212b formed on the outermost layer can be used while the wire coating 212 has the flame retardant layer 212b.
- good flame retardancy can be realized by the fact that the tape coating 22 is made of a flame-retardant resin and the total thickness T5 of the flame-retardant layer 212b and the tape coating 22 is 40 m or more. There is an effect.
- the force S described for the case where a glass optical fiber having a step-type refractive index profile is used light having other refractive index profiles that does not necessarily need to be this refractive index profile.
- Figure 7 shows the optical fiber ribbon characteristics, optical fiber core characteristics, total thickness of flame retardant coating, flame test and screening test for the optical fiber ribbons according to the examples and comparative examples. It is the figure shown by the result and evaluation of accommodation.
- the resin used in the “primary” has a yang ratio of 0 ⁇ 15 ⁇ 0.2 kgf
- the resin used in the “secondary” has a Young's modulus of 40 to 200 kgf
- the “flame-resistant coating” ⁇ Total thickness '' refers to Examples 1 and 2 and Comparative Examples 2 to 4! /
- the "burning test” is a test according to the test standard UL1581-1080 (VW-1), and this test is applied to the optical fiber ribbon to give a flame that does not burn up well. “ ⁇ ” for indicating flame retardancy, and “X” for the case where the flame burns up.
- the “screening test” is a screening test for optical fiber under the condition that the screening strain is 1%. When a good optical fiber with a length of 1000m or more is obtained, ⁇ ”,“ X ”is the case where a good optical fiber having a length of 1000 m or more could not be obtained due to the breakage of the optical fiber. Concerning the storage capacity, “ ⁇ ” is indicated when the thickness is 300 m or less, and “X” is indicated when it is larger than 300 111.
- optical fiber used in Example 1 is the same as the optical fiber according to Embodiment 1 above.
- the optical fiber used in Example 2 has a W-type refractive index profile similar to that of the optical fiber according to Embodiment 1, and ⁇ 1 is 0.9%, ⁇ is 8.0, and ⁇ 2 is It is an optical fiber with 0.5%, & 7 .7 m, b force Sl l .2 m.
- This optical fiber has a mode field diameter of 5.5 m at a wavelength of 1310 nm and a cutoff wavelength of 1
- the bending loss at a wavelength of 131 Onm when bent at a curvature radius of 1 mm was 0.3 dB / turn, and the chromatic dispersion value was 0.25 ps / nm / km.
- the optical fiber used in Example 3 is a single mode optical fiber having a normal step-type refractive index profile, similar to the optical fiber according to the second embodiment.
- the optical fibers used in Comparative Examples 1 and 2 have a W-type refractive index profile similar to that of the optical fiber according to Embodiment 1, where ⁇ 1 is 1.2% and ⁇ is 1. 5, ⁇ 2 is -0.2%, a is 7. S ⁇ n ⁇ b force 4.5 111.
- This optical fiber has a mode field diameter of 5 ⁇ 5 111 at a wavelength of 1310 nm, a bending loss at a wavelength of 1310 nm of 0.6 dB / turn when bent at a cut-off wavelength of 2441 111 and a radius of curvature of lm m.
- the wavelength dispersion value was 7.4 ps / nm / km.
- the optical fiber according to Embodiment 2 it is a single mode optical fiber having a normal step type refractive index profile.
- the optical fiber strand used is only “UV”, and the optical fiber having a length of 1000 m or more is used. Wire was obtained and showed good screening characteristics.
- the thickness of the flame retardant tape coating was 50 ⁇ of 40 m or more, and the flame did not burn up in the combustion test, indicating good flame retardancy.
- the thickness of the tape is 200 m considering the increase in transmission loss due to the thinner coating and space saving of the wiring, so the thickness is sufficiently thin and the capacity is good.
- the optical fiber ribbons of Examples 1 and 2 have pitches of 100 m and 125 111, respectively, the width of the optical fiber ribbon is about half that of the conventional one, and the flexibility is very high. became.
- the core of the optical fiber tape of Example 3 is 62.5 ⁇ m in which the coating thickness is 30 ⁇ m or more, although the coatings are “UV” and “flame retardant”. Optical fiber strands with a length of 1000 m or more were obtained, and good screening characteristics were exhibited.
- the thickness of the “secondary” which is the flame retardant layer is 27.5 m
- the thickness of the tape coating is 25 m
- the total thickness of the flame retardant covering is 40 m or more. m, and flame did not burn up in the combustion test, indicating good flame retardancy.
- the thickness of the tape was 300 m, the storage capacity was good.
- the optical fiber ribbon of Comparative Example 1 was broken in a screening test when the length of the optical fiber was 1000 m or less.
- the flames of the optical fiber ribbons of Comparative Examples 2 and 3 burned up from the optical fiber ribbon in the combustion test.
- the optical fiber ribbon of Comparative Example 4 did not satisfy the storage capacity when the tape thickness was greater than 300 mm.
- Example 1 if the outer diameter of the optical fiber is 55 ⁇ m and the thickness of the strand coating is 10 ⁇ m, the pitch of the optical fiber strand can be further reduced to 75 m. The width of the tape core wire is further narrowed, and flexibility and capacity can be further increased.
- force S using an ultraviolet curable urethane acrylate resin containing aluminum hydroxide is used as the flame retardant resin, and an ultraviolet curable urethane acrylate resin containing magnesium hydroxide is used.
- Motole is used as the flame retardant resin, and an ultraviolet curable urethane acrylate resin containing magnesium hydroxide is used.
- the bending loss of the optical fiber is preferably 1 dB / turn or less at a wavelength of 1310 nm when bent with a curvature radius of 1 mm.
- the mode field diameter is preferably 5.4 m or more at a wavelength of 1310 nm.
- An optical fiber having the above characteristics is, for example, a silica-based optical fiber having a refractive index profile of W type, and ⁇ 1 is 0.8% or more, ⁇ is 1.5 or more, and ⁇ 2 is -0.2. It can be realized if it is less than%.
- optical fiber ribbon according to the present invention can be suitably used as, for example, an optical fiber ribbon for an optical interconnection system that is a signal transmission technique in equipment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Description
明 細 書
光ファイバテープ心線
技術分野
[0001] 本発明は、難燃性を有する光ファイバテープ心線に関するものである。
背景技術
[0002] 近年、伝送機器内における信号伝送技術として、配線に光ファイバを用いた光イン ターコネクション方式が注目されている。このとき光ファイバは光ファイバテープ心線 として用いられるのが一般的である。ここで、光ファイバテープ心線とは、ガラス光ファ ィバの外周に紫外線硬化型樹脂などの素線被覆を形成した光ファイバ素線を平行 に並べ、紫外線硬化型樹脂などのテープ被覆によって一括被覆して形成したもので ある。光インターコネクション方式に用いられる従来の光ファイバテープ心線は、たと えば外径が 125 mの石英系ガラス光ファイバの外周に、プライマリ層とセカンダリ層 の 2層力、らなる素線被覆を形成して外径が 250 μ mの光ファイバ素線としたものを、 2 50 H mのピッチで 12本平行に並べテープ被覆によって一括被覆して形成したもの で、厚さ 300〃 m程度、幅が 3. 1mm程度のものである。
[0003] この種の光ファイバテープ心線について、伝送機器内の配線の収容性を向上する 目的で、光ファイバ素線の細径化および光ファイバテープ心線の薄肉化が進んでい る。また、この種の光ファイバテープ心線の特性について、難燃性に対する要求が高 まっている。たとえば特許文献 1には、難燃性の紫外線硬化型樹脂をテープ被覆とし て用いた光ファイバテープ心線が開示されている。
[0004] 特許文献 1:米国特許出願公開第 2006/0034575号明細書
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、光ファイバ素線の細径化ゃ光ファイバテープ心線の薄肉化のために 素線被覆やテープ被覆を薄くすると、良好な難燃性やスクリーニング特性が得られな いという問題点があった。
[0006] 本発明は、上記に鑑みてなされたものであって、薄肉でありながら良好な難燃性と
スクリーニング特性を実現することができる光ファイバテープ心線を提供することを目 的とする。
課題を解決するための手段
[0007] 上述した課題を解決し、 目的を達成するために、本発明に係る光ファイバテープ心 線は、ガラス光ファイバの外周に素線被覆を形成した光ファイバ素線を平行に並べ テープ被覆によって一括被覆して形成した 300 m以下の厚さを有する光ファイバ テープ心線であって、前記素線被覆は非難燃性の紫外線硬化型樹脂からなり、前記 テープ被覆は厚さが 40 a m以上であって難燃性樹脂からなることを特徴とする。
[0008] また、本発明に係る光ファイバテープ心線は、上記の発明にお!/、て、前記素線被 覆は一層からなることを特徴とする。
[0009] また、本発明に係る光ファイバテープ心線は、ガラス光ファイバの外周に素線被覆 を形成した光ファイバ素線を平行に並べテープ被覆によって一括被覆して形成した 300 H m以下の厚さを有する光ファイバテープ心線であって、前記素線被覆は厚さ 力 ¾0 m以上であって、ガラス光ファイバに隣接して形成した非難燃性の紫外線硬 化型樹脂からなる非難燃層と最外層に形成した難燃剤を含む難燃性樹脂からなる 難燃層とを有し、前記テープ被覆は難燃性樹脂カゝらなり、前記難燃層と前記テープ 被覆との厚さの合計は 40 a m以上であることを特徴とする。
[0010] また、本発明に係る光ファイバテープ心線は、上記の発明にお!/、て、 200 m以下 の厚さを有することを特徴とする。
[0011] また、本発明に係る光ファイバテープ心線は、上記の発明において、前記ガラス光 ファイバの外径は 55〜90 a mであることを特徴とする。
発明の効果
[0012] 本発明に係る光ファイバテープ心線は、厚さが 300 m以下の薄肉の光ファイバテ ープ心線でありながら、素線被覆が非難燃性の紫外線硬化型樹脂からなることによ つて良好なスクリーニング特性を実現できるとともに、テープ被覆が厚さ 40 m以上 であって難燃性樹脂からなることによって良好な難燃性を実現できるという効果を奏 する。
[0013] また、本発明に係る光ファイバテープ心線は、厚さが 300 m以下の薄肉の光ファ
ィバテープ心線でありながら、素線被覆が厚さ 30 m以上であって、ガラス光フアイ バに隣接して形成した非難燃性の紫外線硬化型樹脂からなる非難燃層と最外層に 形成した難燃剤を含む難燃性樹脂からなる難燃層とを有することによって、素線に難 燃層を有しながらも良好なスクリーニング特性を実現できるとともに、テープ被覆が難 燃性樹脂からなり、かつ難燃層とテープ被覆との厚さの合計は 40 m以上であること によって、良好な難燃性を実現できると!/、う効果を奏する。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施の形態 1に係る光ファイバテープ心線を模式的に表した 断面図である。
[図 2]図 2は、図 1に示す光ファイバ素線の断面図である。
[図 3]図 3は、図 1に示す光ファイバの断面と対応する屈折率プロファイルを模式的に 示す図である。
[図 4]図 4は、本発明の実施の形態 2に係る光ファイバテープ心線を模式的に表した 断面図である。
[図 5]図 5は、図 4に示す光ファイバ素線の断面図である。
[図 6]図 6は、図 4に示す光ファイバテープ心線の被覆の厚さの関係について説明す る図である。
[図 7]図 7は、本発明の実施例および比較例に係る光ファイバテープ心線について、 光ファイバ素線の特性、光ファイバ心線の特性、難燃性の被覆の厚さの合計、燃焼 試験及びスクリーニング試験の結果、および収容性の評価につ!/、て示した図である。 符号の説明
[0015] 10、 20 光ファイバテープ心線
I I、 21 光ファイバ素線
I I I , 211 ガラス光ファイノく
111a, 211a 中心コア部
111b ディプレストコア層
111c, 211b クラッド層
112、 212 素線被覆
12、 22 テープ被覆
212a 非難燃層
212b 難燃層
D1、D2 幅
H1、H2、T1〜T5 厚さ
Rl l、 R12、 R2 〜 R23 外径
発明を実施するための最良の形態
[0016] 以下に、図面を参照して本発明に係る光ファイバテープ心線の実施の形態を詳細 に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
[0017] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る光ファイバテープ心線を模式的に表した断面 図である。図 1に示すように、本実施の形態 1に係る光ファイバテープ心線 10は、ガラ ス光ファイバ 111の外周に一層の素線被覆 112を形成した光ファイバ素線 11を 12 本平行に並べ、テープ被覆 12によって一括被覆して形成したものである。
[0018] また、図 2は、図 1に示す光ファイバ素線 11の断面図である。ガラス光ファイバ 111 の外径 R11は 55〜90 μ mである。したがって、外径が 125 μ mの通常の光ファイバ より細径として収容性の向上と曲げによる破断の確率の低減とを実現するとともに、 伝送損失の増加しなレ、程度の細径として!/、る。ガラス光ファイバ 111につ!/、ては後述 する。
[0019] また、素線被覆 112はャング率が40〜2001¾£でぁり、難燃剤を含まない非難燃性 の紫外線硬化型樹脂からなるので、ガラス光ファイバ 111を外傷から保護しマイクロ ベンドロスの発生を防止するとともに、良好なスクリーニング特性を実現する。さらに、 ガラス光ファイバ 111が細径であるとともに、素線被覆 112は一層からなっているので 、光ファイバ素線 11の外径 R12は従来よりも細径であり、光ファイバテープ心線 10の 薄肉化を確実にしている。
[0020] また、図 1に示す光ファイバテープ心線 10において、テープ被覆 12は難燃剤とし て水酸化アルミニウムを含む紫外線硬化型ウレタンアタリレート樹脂からなり、厚さ T1 力 0 a m以上であるので良好な難燃性を実現する。
[0021] また、光ファイバテープ心線 10の厚さ HIは 300 m以下であり、薄肉化を実現し ている。さらに、光ファイバ素線 11のピッチ P1が従来よりも狭いので、幅 D1は従来の ものよりも小さく、伝送機器内の配線のフレキシビリティと収容性とを高め、省スペース 化を実現する。
[0022] つぎに、ガラス光ファイバ 111について具体的に説明する。
[0023] 図 3はガラス光ファイバ 111の断面と対応する屈折率プロファイルを模式的に示す 図である。図 3に示すように、ガラス光ファイバ 11 1は、中心コア部 111aと、中心コア 部 11 laの周囲に形成されたディプレストコア層 11 lbと、ディプレストコア層 11 lbの 周囲に形成されたクラッド層 11 lcとを有する。ディプレストコア層 11 lbは中心コア部 11 laよりも屈折率が低く、クラッド層 11 lcは中心コア部 11 laよりも屈折率が低くかつ ディプレストコア層 111bよりも屈折率が高い。すなわち、ガラス光ファイバ 111はいわ ゆる W型屈折率プロファイルを有するものである。
[0024] クラッド層 111cは屈折率調整用ドーパントを含まない純粋な石英からなる。そして 図 3に示すように、クラッド層 111cに対する中心コア部 111aの比屈折率差を Δ 1、中 心コア部 11 laの屈折率分布形状を表すパラメータである αィ直を α、クラッド層 111c に対するディプレストコア層 11 lbの比屈折率差を Δ 2、中心コア部 11 laの直径を a、 ディプレス卜コア層 11 lbの外径を bとすると、厶1カ 0. 8%、 α力 8. 0であり、 Δ 2力 ー 0. 5%である。また、中心コア部 1 1 laの直径である aは 7. 2〃m、ディプレストコア層 11 lbの外径である bは 12. O ^ mである。
[0025] 上記の屈折率プロファイルとした結果、光ファイバ 111は、伝送機器内の信号伝送 において用いられる信号光源の波長 1310nmにおけるモードフィールド径が 5. 8 μ mであり、カットオフ波長が 1238nmであって波長 1250nmの光をシングルモード伝 搬し、曲率半径 lmmで曲げたときの波長 1310nmにおける曲げ損失が 0. 6dB/タ ーンであり、波長 1310nmにおける波長分散値が 1. 04ps/nm/kmであり、曲げ 損失が小さぐ収容性が高い光ファイバテープ心線に好適に用いることができるもの となる。
[0026] なお、本明細書におけるカットオフ波長とは ITU—T G. 650. 1に規定されたファ ィバカットオフ波長え cとする。その他、本明細書で特に定義しない用語については I
TU-T G. 650. 1における定義、測定方法に従うものとする。
[0027] また、 Δ 1、 厶2は式(1)、 (2)で定義される。
[0028] Δ 1 = { (η -η ) /η } Χ 100 [%] (1)
cl c c
Δ 2 = { (η -n ) /n } X IOO [%] (2)
c2 c c
[0029] ここで、 n は中心コア部 11 1aの最大屈折率、 n はディプレストコア層 11 lbの最小
cl c2
屈折率、 nはクラッド層 111cの屈折率である。
[0030] また、 W型屈折率プロファイルにおいて、中心コア部 111aの直径 aは、中心コア部 11 laディプレストコア層 11 lbの境界にお!/、てクラッド層 11 lcと同じ屈折率を有する 位置での径とし、ディプレストコア層 11 lbの外径 bは、ディプレストコア層 11 lbとクラ ッド層 1 1 lcの境界にお!/、て比屈折率差 Δ 2の 1/2の比屈折率差を有する位置での 径とする。
[0031] さらに、 αは式(3)のように定義される。
[0032] n2 (r) =n 2 X { 1 - 2 X ( Δ /100) X (2r/a) ^ α }
cl
(但し、 0 < r< a/2) (3)
[0033] ここで、 rは光ファイバの中心からの半径方向の位置を示し、 n (r)は位置 rにおける 屈折率を表している。また、記号「」はべき乗を表す記号である。
[0034] なお、本実施の形態 1に係る光ファイバテープ心線は、以下のようにして製造できる 。まず、石英ガラスを主成分とするプリフォームを線引き炉で加熱 ·溶融することによ つて線引きされた石英系ガラス光ファイバに、コーティングダイスを用いて液状の紫外 線硬化型樹脂を塗布する。つぎに、塗布した紫外線硬化型樹脂に紫外線を照射し 硬化させて素線被覆を形成し、光ファイバ素線を作製する。つぎに、作製した光ファ ィバ素線を 12本平行に並べ、水酸化アルミニウムを含む液状の紫外線硬化型ウレタ ンアタリレート樹脂を一括して塗布し、塗布した樹脂に紫外線を照射し硬化させてテ ープ被覆を形成し、ファイバテープ心線が完成する。
[0035] 以上説明したように、本実施の形態 1に係る光ファイバテープ心線 10は、厚さ HIが 300 m以下の薄肉でありながら、素線被覆 112が非難燃性の紫外線硬化型樹脂 力もなることによって良好なスクリーニング特性を実現できるとともに、テープ被覆 12 1S 厚さ T1が 40 m以上であって水酸化アルミニウムを含む難燃性の紫外線硬化
型ウレタンアタリレート樹脂からなることによって良好な難燃性を実現できる。本実施 の形態 1では w型屈折率プロファイルを有するガラス光ファイバを用いた場合につい て記述したが、必ずしもこの屈折率プロファイルである必要はなぐステップ型やその 他の屈折率プロファイルを有する光ファイバに適用可能である。さらにマルチモード 光ファイバに適用することもできる。
[0036] (実施の形態 2)
つぎに、本発明の実施の形態 2に係る光ファイバテープ心線について説明する。図 4は、本発明の実施の形態 2に係る光ファイバテープ心線を模式的に表した断面図 である。図 4に示すように、本実施の形態 2に係る光ファイバテープ心線 20は、ガラス 光ファイバ 211の外周に素線被覆 212を形成した光ファイバ素線 21を 12本平行に 並べ、テープ被覆 22によって一括被覆して形成したものである。
[0037] 図 5は、図 4に示す光ファイバ素線 21の断面図である。光ファイバ素線 21は、実施 の形態 1に係る光ファイバ素線 11と同様に、ガラス光ファイバ 211の外周に素線被覆 212を形成したものである。また、ガラス光ファイバ 211は、中心コア部 211aと、中心 コア部 211aの周囲に形成されたクラッド層 211bとを有する、通常のステップ型屈折 率プロファイルを有するシングルモード光ファイバである。なお、光ファイバ 211の外 径 R21 iま 125〃mである。
[0038] また、素線被覆 212は非難燃層 212aと難燃層 212bとからなる。非難燃層 212aは ガラス光ファイバ 211に隣接して形成しており、ヤング率が 0. 15-0. 2kgfであって 非難燃性の紫外線硬化型樹脂からなるので、ガラス光ファイバ 211のマイクロベンド ロスの発生を確実に防止する。また、難燃層 212bは素線被覆 212の最外層に形成 しており、ヤング率が 40〜200kgfであって、難燃剤として水酸化アルミニウムを含む 紫外泉硬化型ウレタンアタリレート樹脂からなるので、ガラス光ファイバ 211を外傷か ら保護するとともに、光ファイバテープ心線 20の難燃性を高めている。
[0039] また、図 6は図 4に示す光ファイバテープ心線 20の一部分を拡大した図であり、光 ファイバテープ心線の被覆の厚さについて説明する図である。図 6に示すように、光 ファイバ素線 21において、素線被覆 212の厚さ T3は、非難燃層 212aと難燃層 212 bとの合計の厚さであって、その値が 30 m以上であるから、難燃層 212bに含まれ
る水酸化アルミニウムが製造工程などにおいて凝集し粒子化しても、この粒子が光フ アイバ 211の表面を傷つけることがない。したがって、光ファイバ素線 21は、良好なス クリーニング特性を実現する。なお、非難燃層 212aの外径 R22は 195 m、非難燃 層 212aの外径すなわち光ファイバ素線 21の外径 R23は 250 μ mである。
[0040] また、図 4に示す光ファイバテープ心線 20において、テープ被覆 22は難燃剤とし て水酸化アルミニウムを含む紫外線硬化型ウレタンアタリレート樹脂からなる。そして 、図 6に示すテープ被覆 22の厚さ T2と素線被覆 212の難燃層 212bの厚さ T4との 合計の厚さ T5が 40 m以上である。その結果、テープ被覆 22と難燃層 212bとの個 々の厚さが 40 mより薄いとしても、光ファイバテープ心線 20は良好な難燃性を実 現する。
[0041] また、光ファイバテープ心線 20の厚さ H2は 300 μ m以下であり、薄肉化を実現し ている。さらに、光ファイバ素線 21のピッチ P2は 250 mであり、光ファイバテープ心 線 20の幅 D2は従来のものと同等であるので、従来の光ファイバテープ心線との互換 性を保ちつつ、伝送機器内の配線のフレキシビリティと収容性とを高め、省スペース 化を実現する。
[0042] なお、本実施の形態 2に係る光ファイバテープ心線は、素線被覆を形成する工程 において、非難燃層を形成する工程と難燃層を形成する工程を順次行う以外は、実 施の形態 1に係る光ファイバテープ心線と同様に製造できる。
[0043] 以上説明したように、本実施の形態 2に係る光ファイバテープ心線 20は、厚さ H2が 300 H m以下の薄肉でありながら、素線被覆 212の厚さ T3力 0 μ m以上であって、 ガラス光ファイバ 211に隣接して形成した非難燃層 212aと最外層に形成した難燃層 212bとを有することによって、素線被覆 212に難燃層 212bを有しながらも良好なス クリーニング特性を実現できる。それとともに、テープ被覆 22が難燃性樹脂からなり、 かつ難燃層 212bとテープ被覆 22との厚さの合計 T5が 40 m以上であることによつ て、良好な難燃性を実現できるという効果を奏する。
[0044] なお、本実施の形態 2ではステップ型屈折率プロファイルを有するガラス光ファイバ を用いた場合について記述した力 S、必ずしもこの屈折率プロファイルである必要はな ぐその他の屈折率プロファイルを有する光ファイバに適用可能である。さらにマルチ
モード光ファイバに適用することもできる。
[0045] (実施例;!〜 3、比較例;!〜 4)
本発明の実施例;!〜 3および比較例;!〜 4として、光ファイバテープ心線を作製した 。図 7は、実施例および比較例に係る光ファイバテープ心線について、光ファイバ素 線の特性、光ファイバ心線の特性、難燃性被覆の厚さの合計、燃焼試験及びスクリ 一ユング試験の結果、および収容性の評価にっレ、て示した図である。
[0046] 図 7において、素泉被覆が 1層からなる実施例 1、 2についてはこの被覆を「セカン ダリ」とし、素線被覆が非難燃層と難燃層とからなる実施例 3および比較例;!〜 4につ いては非難燃層を「プライマリ」、難燃層を「セカンダリ」とした。また、「UV」とは非難 燃性の紫外線硬化型樹脂、「難燃」とは水酸化アルミニウムを含む難燃性の紫外線 硬化型ウレタンアタリレート樹脂を意味する。なお、「プライマリ」に用いた樹脂のヤン グ率はいずれも 0· 15—0. 2kgf、「セカンダリ」に用いた樹脂のヤング率はいずれも 40〜200kgf、また、「難燃性の被覆の厚さの合計」とは、実施例 1、 2、比較例 2〜4 につ!/、ては「テープ被覆」の厚さ、実施例 3および比較例 1につ!/、ては「セカンダリ」と 「テープ被覆」との合計の厚さを意味する。
[0047] また、「燃焼試験」とは、試験規格 UL1581— 1080 (VW— 1)にしたがった試験で あり、光ファイバテープ心線にこの試験を施して炎が燃え上がらな力、つた場合を良好 な難燃性を示すとして「〇」、炎が燃え上がった場合を「X」とした。また、「スクリー二 ング試験」とは、スクリーニング歪みが 1 %となる条件下での光ファイバ素線に対する スクリーニング試験であり、長さ 1000m以上の良品の光ファイバ素線が得られた場合 を「〇」、光ファイバ素線の破断によって長さ 1000m以上の良品の光ファイバ素線が 得られな力 た場合を「X」とした。また、収容性については、厚さ 300 m以下の場 合は「〇」、 300 111より大きい場合は「X」とした。
[0048] なお、実施例 1において用いた光ファイバは、上記実施の形態 1に係る光ファイバと 同様のものである。また、実施例 2において用いた光ファイバは、実施の形態 1に係る 光ファイバと同様の W型の屈折率プロファイルを有し、厶1が0. 9%、 αが 8. 0、 Δ 2 が一 0. 5%、&カ . 7〃m、 b力 Sl l . 2 mの光ファイバである。この光ファイバの特性 は、波長 1310nmにおけるモードフィールド径が 5· 5 mであり、カットオフ波長が 1
236nmであり、曲率半径 lmmで曲げたときの波長 131 Onmにおける曲げ損失が 0 . 3dB/ターンであり、波長分散値が 0. 25ps/nm/kmであった。さらに、上記実 施例 3において用いた光ファイバは、上記実施の形態 2に係る光ファイバと同様に、 通常のステップ型屈折率プロファイルを有するシングルモード光ファイバである。
[0049] 一方、比較例 1、 2において用いた光ファイバは、実施の形態 1に係る光ファイバと 同様の W型の屈折率プロファイルを有し、厶1が1. 2%、 αが 1. 5、 Δ 2がー 0. 2% 、 aが 7. S ^ n^ b力 4. 5 111である。この光ファイバの特性は、波長 1310nmにお けるモードフィールド径が 5· 5 111でぁり、カットォフ波長カ 2441 111、曲率半径 lm mで曲げたときの波長 1310nmにおける曲げ損失が 0. 6dB/ターンであり、波長分 散値が 7. 4ps/nm/kmであった。さらに、比較例 3、 4において用いた光フアイ ノ^ま、実施の形態 2に係る光ファイバと同様に、通常のステップ型屈折率プロフアイ ルを有するシングルモード光ファイバである。
[0050] 図 7に示すように、実施例 1、 2の光ファイバテープ心線は、用いた光ファイバ素線 の素線被覆が「UV」のみであり、長さ 1000m以上の品の光ファイバ素線が得られ、 良好なスクリーニング特性を示した。また、難燃性のテープ被覆の厚さが 40 m以上 の 50 πιであり、燃焼試験において炎が燃え上がらず、良好な難燃性を示した。ま た、テープの厚さが被覆の薄肉化による伝送損失の増加と配線の省スペース化を考 慮した 200 mであるので、十分に薄肉化しており収容性も良好であった。さらに、 実施例 1、 2の光ファイバテープ心線は、ピッチがそれぞれ 100 m、 125 111である ので、光ファイバテープ心線の幅が従来の約半分程度となり、フレキシビリティが非常 に高いものとなった。
[0051] また、実施例 3の光ファイバテープ心線は、素線被覆が「UV」と「難燃」であるもの の素泉被覆厚さが 30 μ m以上の 62. 5 μ mであり、長さ 1000m以上の品の光フアイ バ素線が得られ、良好なスクリーニング特性を示した。またテープ被覆の厚さが 25 mであるものの難燃層である「セカンダリ」の厚さが 27. 5 mであるから難燃性の被 覆の厚さの合計が 40 m以上の 52. 5 mであり、燃焼試験において炎が燃え上が らず、良好な難燃性を示した。また、テープの厚さが 300 mであるので、収容性も 良好であった。
[0052] 一方、比較例 1の光ファイバテープ心線は、スクリーニング試験において光ファイバ 素線が長さ 1000m以下で破断してしまった。また、比較例 2、 3の光ファイバテープ 心線は、燃焼試験において光ファイバテープ心線から炎が燃え上がってしまった。さ らに、比較例 4の光ファイバテープ心線は、テープの厚さが 300〃 mより大きぐ収容 性を満足しなレ、ものとなった。
[0053] なお、実施例 1において、光ファイバの外径を 55 μ m、素線被覆の厚さを 10 μ mと すれば、光ファイバ素線のピッチを 75 mとさらに狭くでき、光ファイバテープ心線の 幅がさらに狭くなりフレキシビリティと収容性とをさらに高めることができる。
[0054] また、上記実施の形態において、難燃性の樹脂として水酸化アルミニウムを含む紫 外線硬化型ウレタンアタリレート樹脂を用いた力 S、水酸化マグネシウムを含む紫外線 硬化型ウレタンアタリレート樹脂を用いてもょレ、。
[0055] また、上記実施の形態において、素線被覆が一層からなる場合は、光ファイバの曲 げ損失は、曲率半径 lmmで曲げたときの波長 1310nmにおいて ldB/ターン以下 であることが好ましい。また、他の光ファイバとの接続を考慮すればモードフィールド 径は波長 1310nmにおいて 5. 4 m以上であることが好ましい。上記の特性を有す る光ファイバは、たとえば屈折率プロファイルが W型の石英系光ファイバであって、 Δ 1が 0. 8%以上、 αが 1. 5以上、 Δ 2がー 0. 2%以下であれば実現できる。
産業上の利用可能性
[0056] 本発明に係る光ファイバテープ心線は、たとえば機器内の信号伝送技術である光 インターコネクション方式用の光ファイバテープ心線として好適に利用できる。
Claims
[1] ガラス光ファイバの外周に素線被覆を形成した光ファイバ素線を平行に並べテープ 被覆によって一括被覆して形成した 300 m以下の厚さを有する光ファイバテープ 心泉であって、
前記素線被覆は非難燃性の紫外線硬化型樹脂からなり、
前記テープ被覆は厚さが 40 a m以上であって難燃性樹脂からなることを特徴とす る光ファイバテープ心線。
[2] 前記素線被覆は一層からなることを特徴とする請求項 1に記載の光ファイバテープ 心線。
[3] ガラス光ファイバの外周に素線被覆を形成した光ファイバ素線を平行に並べテープ 被覆によって一括被覆して形成した 300 m以下の厚さを有する光ファイバテープ 心泉であって、
前記素線被覆は厚さが 30 m以上であって、ガラス光ファイバに隣接して形成した 非難燃性の紫外線硬化型樹脂からなる非難燃層と最外層に形成した難燃剤を含む 難燃性樹脂からなる難燃層とを有し、
前記テープ被覆は難燃性樹脂からなり、
前記難燃層と前記テープ被覆との厚さの合計は 40 11 m以上であることを特徴とす る光ファイバテープ心線。
[4] 200 m以下の厚さを有することを特徴とする請求項 1〜3のいずれ力、 1つに記載 の光ファイバテープ心線。
[5] 前記ガラス光ファイバの外径は 55〜90 μ mであることを特徴とする請求項 1〜4の いずれ力、 1つに記載の光ファイバテープ心線。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07829115.0A EP2056147B1 (en) | 2006-10-03 | 2007-10-03 | Optical fiber ribbon |
US12/115,877 US7689080B2 (en) | 2006-10-03 | 2008-05-06 | Optical fiber ribbon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006271618A JP2008090040A (ja) | 2006-10-03 | 2006-10-03 | 光ファイバテープ心線 |
JP2006-271618 | 2006-10-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/115,877 Continuation US7689080B2 (en) | 2006-10-03 | 2008-05-06 | Optical fiber ribbon |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008041724A1 true WO2008041724A1 (en) | 2008-04-10 |
Family
ID=39268578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/069376 WO2008041724A1 (en) | 2006-10-03 | 2007-10-03 | Optical fiber ribbon |
Country Status (5)
Country | Link |
---|---|
US (1) | US7689080B2 (ja) |
EP (1) | EP2056147B1 (ja) |
JP (1) | JP2008090040A (ja) |
CN (1) | CN101375195A (ja) |
WO (1) | WO2008041724A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201219865A (en) | 2010-11-02 | 2012-05-16 | Hon Hai Prec Ind Co Ltd | Fiber |
US9529168B2 (en) * | 2013-07-26 | 2016-12-27 | Corning Optical Communications LLC | Fiber optic ribbon |
JP6658757B2 (ja) | 2015-08-04 | 2020-03-04 | 住友電気工業株式会社 | 光接続部品 |
WO2017026072A1 (ja) * | 2015-08-13 | 2017-02-16 | 住友電気工業株式会社 | 光接続部品 |
CN105137557B (zh) * | 2015-09-16 | 2018-11-30 | 烽火通信科技股份有限公司 | 一种等时延传输多芯光缆 |
US10222547B2 (en) | 2015-11-30 | 2019-03-05 | Corning Incorporated | Flame-retardant optical fiber coating |
US20200123052A1 (en) * | 2016-01-08 | 2020-04-23 | North Carolina State University | Enhanced optical fibers for low temperature sensing |
US10167396B2 (en) | 2017-05-03 | 2019-01-01 | Corning Incorporated | Low smoke fire-resistant optical ribbon |
CN109239841B (zh) * | 2018-10-12 | 2020-08-11 | 青岛海信宽带多媒体技术有限公司 | 光纤阵列、光模块及光纤耦合方法 |
US11822117B2 (en) * | 2019-10-08 | 2023-11-21 | Corning Incorporated | Primary coating compositions with improved microbending performance |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01295207A (ja) * | 1988-05-23 | 1989-11-28 | Sumitomo Electric Ind Ltd | 光ファイバ |
JPH0596811U (ja) * | 1992-06-03 | 1993-12-27 | 古河電気工業株式会社 | 光ファイバ心線 |
JP2002214492A (ja) | 2001-01-22 | 2002-07-31 | Sumitomo Electric Ind Ltd | 難燃性光ファイバテープ心線とその製造方法 |
JP2003279780A (ja) * | 2002-01-15 | 2003-10-02 | Sumitomo Electric Ind Ltd | 光ファイバ、光ファイバテープ、光ケーブル及び光ファイバ付き光コネクタ |
JP2004012616A (ja) * | 2002-06-04 | 2004-01-15 | Sumitomo Electric Ind Ltd | 光ファイバ心線、2次元テープ状光ファイバ心線および光ファイバコード |
JP2005008448A (ja) * | 2003-06-17 | 2005-01-13 | Sumitomo Electric Ind Ltd | 難燃性光ファイバ心線及び難燃性光ファイバテープ心線 |
JP2005326567A (ja) * | 2004-05-13 | 2005-11-24 | Fujikura Ltd | 光ファイバおよび光ファイバテープ心線 |
EP1628149A1 (en) * | 2004-08-11 | 2006-02-22 | The Furukawa Electric Co., Ltd. | Optical fibre, optical fibre ribbon, and optical interconnection system |
WO2006025231A1 (ja) * | 2004-08-30 | 2006-03-09 | Fujikura Ltd. | シングルモード光ファイバ |
WO2006101204A1 (ja) | 2005-03-24 | 2006-09-28 | The Furukawa Electric Co., Ltd. | 光伝送体および光インターコネクションシステム |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9121655D0 (en) * | 1991-10-11 | 1991-11-27 | Ici Plc | Optical fibre coating |
JPH0596811A (ja) | 1991-10-11 | 1993-04-20 | Seikosha Co Ltd | 印字方法 |
US5373578A (en) * | 1993-12-21 | 1994-12-13 | At&T Corp. | Strippable coating for optical fiber |
US5457762A (en) * | 1994-06-13 | 1995-10-10 | Siecor Corporation | Fiber optic ribbon |
US5761363A (en) * | 1996-03-07 | 1998-06-02 | Siecor Corporation | Optical fiber ribbon which is strippable and peelable |
US5949940A (en) * | 1997-05-27 | 1999-09-07 | Corning Incorporated | Enhanced ribbon strippability using coating additives |
US5717805A (en) * | 1996-06-12 | 1998-02-10 | Alcatel Na Cable Systems, Inc. | Stress concentrations in an optical fiber ribbon to facilitate separation of ribbon matrix material |
AU4969697A (en) * | 1996-11-08 | 1998-06-03 | Dsm N.V. | Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies |
US6097866A (en) * | 1998-05-01 | 2000-08-01 | Alcatel | Optical fiber ribbon |
US6362249B2 (en) * | 1998-09-04 | 2002-03-26 | Dsm Desotech Inc. | Radiation-curable coating compositions, coated optical fiber, radiation-curable matrix forming material and ribbon assembly |
US6134364A (en) * | 1998-09-18 | 2000-10-17 | Lucent Technologies Inc. | Optical fiber ribbon |
US6253013B1 (en) * | 1999-03-29 | 2001-06-26 | Siecor Operations, Llc | Optical fiber arrays |
US6243523B1 (en) * | 1999-06-29 | 2001-06-05 | Lucent Technologies Inc. | Coated optical fiber with increased modulus and thermally enhanced strippability |
US6535673B1 (en) * | 2000-03-30 | 2003-03-18 | Corning Cable Systems Llc | Optical fiber arrays having an interface characteristic |
US7214431B2 (en) * | 2000-04-03 | 2007-05-08 | Dsm Ip Assets B.V. | Two-layer film formed of radiation cured resin compositions and methods of making the same |
DE10024837A1 (de) * | 2000-05-19 | 2001-11-22 | Scc Special Comm Cables Gmbh | Verfahren zur Herstellung einer optischen Bandleitung aus mehreren Lichtwellenleitern |
US6584263B2 (en) * | 2000-07-26 | 2003-06-24 | Corning Incorporated | Optical fiber coating compositions and coated optical fibers |
US6489376B1 (en) * | 2000-07-31 | 2002-12-03 | Alcatel | Formulation of UV-curable coatings for optical fiber for a fast cure |
US7067564B2 (en) * | 2000-11-22 | 2006-06-27 | Dsm Ip Assets B.V. | Coated optical fibers |
US6621970B2 (en) * | 2001-03-28 | 2003-09-16 | Alcatel | UV-curable optical fiber coating composition including fullerenes |
US6600859B2 (en) * | 2001-07-02 | 2003-07-29 | Fitel Usa Corp. | Composite modular optical fiber ribbon |
US6678449B2 (en) * | 2001-07-10 | 2004-01-13 | Alcatel | Visibly distinguishable colored optical fiber ribbons |
US6690867B2 (en) * | 2001-08-31 | 2004-02-10 | Corning Cable Systems Llc | Optical interconnect assemblies and methods therefor |
US6895156B2 (en) * | 2001-10-09 | 2005-05-17 | 3M Innovative Properties Company | Small diameter, high strength optical fiber |
US6859600B2 (en) * | 2002-05-30 | 2005-02-22 | Alcatel | Coated optical fiber and optical fiber ribbon and method for the fabrication thereof |
US20040042743A1 (en) * | 2002-09-03 | 2004-03-04 | Kariofilis Konstadinidis | Optical fiber cables for microduct installations |
US6904210B2 (en) * | 2002-09-17 | 2005-06-07 | Fitel Usa Corp. | Fiber optic ribbon and method of buffering loss |
US7050688B2 (en) * | 2003-07-18 | 2006-05-23 | Corning Cable Systems Llc | Fiber optic articles, assemblies, and cables having optical waveguides |
US6973245B2 (en) * | 2003-12-30 | 2005-12-06 | Furukawa Electric North America | Optical fiber cables |
US7257299B2 (en) * | 2005-11-30 | 2007-08-14 | Corning Incorporated | Optical fiber ribbon with improved stripability |
JP4626535B2 (ja) * | 2006-02-22 | 2011-02-09 | 日立電線株式会社 | テープ状光ファイバケーブル |
US7274846B1 (en) * | 2006-09-29 | 2007-09-25 | Corning Cable Systems, Llc. | Fiber optic ribbon subunits having ends with different shapes |
-
2006
- 2006-10-03 JP JP2006271618A patent/JP2008090040A/ja active Pending
-
2007
- 2007-10-03 WO PCT/JP2007/069376 patent/WO2008041724A1/ja active Application Filing
- 2007-10-03 CN CNA2007800038045A patent/CN101375195A/zh active Pending
- 2007-10-03 EP EP07829115.0A patent/EP2056147B1/en not_active Ceased
-
2008
- 2008-05-06 US US12/115,877 patent/US7689080B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01295207A (ja) * | 1988-05-23 | 1989-11-28 | Sumitomo Electric Ind Ltd | 光ファイバ |
JPH0596811U (ja) * | 1992-06-03 | 1993-12-27 | 古河電気工業株式会社 | 光ファイバ心線 |
JP2002214492A (ja) | 2001-01-22 | 2002-07-31 | Sumitomo Electric Ind Ltd | 難燃性光ファイバテープ心線とその製造方法 |
JP2003279780A (ja) * | 2002-01-15 | 2003-10-02 | Sumitomo Electric Ind Ltd | 光ファイバ、光ファイバテープ、光ケーブル及び光ファイバ付き光コネクタ |
JP2004012616A (ja) * | 2002-06-04 | 2004-01-15 | Sumitomo Electric Ind Ltd | 光ファイバ心線、2次元テープ状光ファイバ心線および光ファイバコード |
JP2005008448A (ja) * | 2003-06-17 | 2005-01-13 | Sumitomo Electric Ind Ltd | 難燃性光ファイバ心線及び難燃性光ファイバテープ心線 |
JP2005326567A (ja) * | 2004-05-13 | 2005-11-24 | Fujikura Ltd | 光ファイバおよび光ファイバテープ心線 |
EP1628149A1 (en) * | 2004-08-11 | 2006-02-22 | The Furukawa Electric Co., Ltd. | Optical fibre, optical fibre ribbon, and optical interconnection system |
WO2006025231A1 (ja) * | 2004-08-30 | 2006-03-09 | Fujikura Ltd. | シングルモード光ファイバ |
WO2006101204A1 (ja) | 2005-03-24 | 2006-09-28 | The Furukawa Electric Co., Ltd. | 光伝送体および光インターコネクションシステム |
Non-Patent Citations (2)
Title |
---|
OTSUKA K. ET AL.: "Komitsudo Haisen-yo Tashinko Connector no Kaihatsu", 2003 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU ELECTRONICS 1, 3 March 2003 (2003-03-03), pages 158 (LECTURE NO. C-3-18), XP003022150 * |
See also references of EP2056147A4 |
Also Published As
Publication number | Publication date |
---|---|
CN101375195A (zh) | 2009-02-25 |
EP2056147B1 (en) | 2017-12-20 |
US7689080B2 (en) | 2010-03-30 |
EP2056147A4 (en) | 2013-06-19 |
US20080232750A1 (en) | 2008-09-25 |
JP2008090040A (ja) | 2008-04-17 |
EP2056147A1 (en) | 2009-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008041724A1 (en) | Optical fiber ribbon | |
JP5684109B2 (ja) | マルチコア光ファイバ | |
KR101920934B1 (ko) | 얇은 코팅경을 갖는 굴곡 강화 광섬유 및 이를 구비한 광케이블 | |
JP5595888B2 (ja) | マルチコアファイバ | |
WO2011114795A1 (ja) | マルチコア光ファイバおよびその製造方法 | |
WO2009104724A1 (ja) | 光ファイバおよび光ケーブル | |
WO2020162406A1 (ja) | 光ファイバ | |
US20230324606A1 (en) | Optical fiber | |
JPWO2009022479A1 (ja) | 光ファイバおよび光ファイバテープならびに光インターコネクションシステム | |
WO2006026664A1 (en) | Triple-band bend tolerant optical waveguide | |
JP2007033466A (ja) | 光ファイバ、光ファイバテープおよび光インターコネクションシステム | |
JP5471776B2 (ja) | マルチコア光ファイバ | |
WO2008026737A1 (fr) | Fibre optique, ruban de fibres optiques et système d'interconnexion optique | |
JP2022066053A (ja) | マルチコア光ファイバおよびマルチコア光ファイバケーブル | |
RU2018116578A (ru) | Оптическое волокно | |
JP2022066064A (ja) | マルチコア光ファイバおよびマルチコア光ファイバケーブル | |
CN111624698A (zh) | 光纤 | |
WO2013051481A1 (ja) | 光ファイバ | |
CN103323907B (zh) | 抗弯曲的多模光纤和光学系统 | |
US12032200B2 (en) | Trench assisted multi-core optical fiber with reduced crosstalk | |
KR20130106818A (ko) | 플라스틱 광파이버 유닛 및 그것을 사용한 플라스틱 광파이버 케이블 | |
JP2003337267A (ja) | 光ファイバケーブル | |
CN114660703A (zh) | 光纤和光纤滤波器 | |
JP7502080B2 (ja) | 光ファイバ、ならびにその処理方法および製造方法 | |
KR0160326B1 (ko) | 단일모드 광섬유의 색분산 및 무작위 굽힘 손실의 증가를 방지하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2007829115 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07829115 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780003804.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |