WO2008041570A1 - Fiber material for piece dyeing - Google Patents

Fiber material for piece dyeing Download PDF

Info

Publication number
WO2008041570A1
WO2008041570A1 PCT/JP2007/068626 JP2007068626W WO2008041570A1 WO 2008041570 A1 WO2008041570 A1 WO 2008041570A1 JP 2007068626 W JP2007068626 W JP 2007068626W WO 2008041570 A1 WO2008041570 A1 WO 2008041570A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber material
dyeing
post
resin
grade
Prior art date
Application number
PCT/JP2007/068626
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Miyamoto
Original Assignee
Sakaguchi, Naoki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakaguchi, Naoki filed Critical Sakaguchi, Naoki
Priority to JP2008514263A priority Critical patent/JP4358894B2/en
Publication of WO2008041570A1 publication Critical patent/WO2008041570A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/54Substances with reactive groups together with crosslinking agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/277Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5207Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • D06P1/525Polymers of unsaturated carboxylic acids or functional derivatives thereof

Definitions

  • the present invention relates to a fiber material having improved dyeability when post-dying.
  • a method of manufacturing a fiber material through such a process is excellent in that a product with a stable quality is manufactured in large quantities.
  • a product with a stable quality is manufactured in large quantities.
  • manufacturers will consider consumer needs such as colors, sizes, materials, and patterns. It was too time consuming to manufacture the products desired by consumers in a timely manner by using conventional manufacturing methods such as thread manufacture, fabric manufacture, dyeing, resin processing, and sewing after grasping. It is impossible to supply to the market.
  • Patent Document 1 describes a post-dyed fabric that can be processed into a fabric material that is not dyed to obtain a fabric having a necessary color and design by post-dying. Yes. This is because fiber products made of synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, etc. are pre-formed in the form of woven fabric, knitted fabric, non-woven fabric, etc., and a synthetic resin film is formed on the surface by a laminating method, etc. This improves the dyeability of post-dying.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-105865
  • the fibers are often damaged during the dyeing process.
  • the yarn for knitting may cause fluffing, and the surface is easily whitened by washing with a washing machine after sewing.
  • the composite material of plant fiber and animal fiber there is a problem that sufficient pretreatment cannot be performed due to severe damage to the animal fiber, which uses alkali in the preparation process required before dyeing process, Even with the dyeing process itself, it was difficult to dye the animal fibers in a dark color without damaging them.
  • the dye used is effective for both materials As a result, the dyeing process took longer and the damage to the fiber material was even greater.
  • Recycled fibers such as rayon could not be made durable due to severe damage during dyeing and a decrease in strength, and severe damage in washing tests after dyeing.
  • the present invention can be applied not only to fabrics but also to all fiber materials, and even if post-dyeing is performed, the fibers are difficult to be damaged and the dyeability after dyeing is further increased. Accordingly, an object is to provide a fiber material for post-dyeing having high water repellency, oil repellency, and washing resistance.
  • the present invention provides a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group with a functional group that binds to the functional group of the fiber material.
  • the above-mentioned problems have been solved by including a resin solution containing as a main component a synthetic resin that improves the dyeability of the fiber material and binding the molecules of the synthetic resin to the molecules of the fiber material. .
  • the synthetic resin that exhibits water repellency and oil repellency, etc. which improves the dyeability simply by the presence of the synthetic resin, is used in the subsequent dyeing process. For example, it was made difficult to peel off from the fiber material.
  • the shape of the fiber material bonded to the synthetic resin according to the present invention is not particularly limited. More specifically, it can be used for cotton, sliver, filament yarn, spun yarn, sewing yarn, woven fabric, knitted fabric, non-woven fabric, or a sewing product made of these.
  • the fiber material having the above functional group include paper fiber, bamboo fiber, cotton, hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, copper ammonia rayon, silk, wool, polyester, aliphatic.
  • aromatic polyamide fibers such as polyamide fibers and aramid fibers, polyurethane, diacetate, triacetate, and composite fibers using a plurality of these.
  • a crosslinking agent that binds a functional group of each molecule is included in the resin solution, and each molecule is bound by the crosslinking agent.
  • the method of combining is mentioned.
  • an isocyanate compound having a plurality of isocyanate groups can be used.
  • the synthetic resin when the synthetic resin includes a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit, it is hydrophilic and hydrophobic. Because it has both a part and a perfluoroalkyl group in water, it exhibits water repellency and oil repellency to repel dirt, and in water the hydrophilic end of the bull group comes out on the surface and exhibits hydrophilicity. And demonstrates the effect of removing dirt. In addition, since there is a hydrophilic group, it is possible to improve dyeability and hygroscopicity in particular.
  • a perfluoroalkyl acrylate resin when the synthetic resin is added to the copolymer resin, a perfluoroalkyl acrylate resin, a polyester resin, a silicone resin, a urethane resin, or the like that does not have a hydrophilic group is added to each of the added resins. Combined effects can be imparted.
  • a perfluoroalkyl acrylate resin improves water repellency, and a silicon resin improves strength and flexibility in a bath.
  • polyester resin or urethane resin when polyester resin or urethane resin is included, it can be made into a fiber material with a characteristic texture for each resin.
  • the fiber material for post-dyeing combined with the above synthetic resin can have an oil repellency resulting from the oil repellency test described in AATCC118-2002, which can be at least second grade, and can be improved up to grade 7 I can do it.
  • the water repellency result according to the water repellency test described in JIS L 1092 can be at least grade 2, and can be improved up to grade 5.
  • the invention's effect [0020]
  • the post-dyeing fiber material, which is effective in the present invention, enables post-dyeing not only for fabrics but also for all textile products.
  • any fiber that has a functional group that reacts can be used, so many fiber materials can be post-dyed, and damage that may occur during the post-dyeing process or after dyeing can occur. Can be suppressed.
  • the fiber material that can be post-dyed is a fiber with low surface tension that has high washing resistance, water repellency, and oil repellency because a synthetic resin that enhances dyeability is bonded to the fiber material through molecules. It becomes a material. This eliminates the need for water-repellent spraying, which was conventionally performed after product dyeing, and allows easy dyeing. In addition, the fiber material is resistant to oil stains. In addition, the synthetic resin having enhanced dyeability makes the fiber material excellent in hygroscopicity. This hygroscopicity can be compatible with water repellency. Furthermore, since it is combined with synthetic resin, the durability of the fiber material itself is increased, and the fiber material becomes damaged when dyeing compared to conventional fiber materials. As a result, in the case of spun yarn, there is no need to protect the yarn by performing sizing processing, which has a large burden of desizing after weaving.
  • a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group is bonded to the functional group of the fiber material so as to increase the dyeability of the fiber material.
  • a fiber material for post-dyeing which includes a resin solution containing a synthetic resin to be improved as a main component and binds molecules of the synthetic resin to molecules of the fiber material.
  • to improve the dyeability means to obtain a product with a higher density and density under the same conditions.
  • the density of the dye can be determined by, for example, the light absorption coefficient K and scattering. It is expressed as a K / S value that is the ratio to the coefficient S.
  • the fiber material that can be post-dyed in the present invention is not particularly limited in shape, but is made of raw materials and yarns such as cotton, sliver, filament yarn, spun yarn, sewing yarn, woven fabric, knitted fabric, or Fabrics such as non-woven fabrics and sewing products made of these fabrics and threads Even in a state of deviation, post-dyeing can be made possible.
  • the fiber material examples include vegetable fibers such as paper fiber, bamboo fiber, cotton and hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, regenerated fiber such as copper ammonia rayon, silk Animal fibers such as wool, polyester, polyurethane, aliphatic polyamide fiber 1 ⁇ 2—nylon, 6, 6—nylon. ), Synthetic fibers such as aromatic polyamide fibers, and semisynthetic fibers such as diacetate and triacetate.
  • Specific examples of cellulose fibers obtained by the organic solvent spinning method include tencel and lyocell (both are registered trademarks), and copper ammonia rayon is a registered trademark of Bemberg and Cubula (both are registered trademarks). ).
  • plant fibers, regenerated fibers, and diacetates have hydroxyl groups
  • polyesters also have hydroxyl groups at the ends.
  • Polyamide fibers and animal fibers have amino groups, carboxyl groups, and amide groups.
  • the terminal of the polyester has a carboxyl group
  • nylon has an amide group.
  • the polyurethane fiber has a urethane group at the end.
  • triacetate theoretically has the ability to change all hydroxyl groups to acetyl groups. Actually, some hydroxyl groups remain, and these hydroxyl groups react.
  • polyester fibers in particular, have been difficult to impart moisture permeability and water repellency, not only dyeability, with conventional methods.
  • moisture permeability can be easily provided, and by combining other synthetic resins, water repellency can be easily provided.
  • the desizing is performed to prevent warp from being damaged when a cotton yarn or a cotton composite spun yarn (including rayon, cellulose fiber obtained by an organic solvent spinning method, hemp) is used as a woven fabric.
  • a sizing process to apply glue, but to remove this glue.
  • a high concentration of alkali and an oxidizing paste remover are used in combination, and treatment is performed at a high temperature for a long time.
  • Cellulose fibers obtained by rayon and organic solvent spinning methods are susceptible to damage when treated for a long time with a high concentration of alkali. Remove.
  • the paste is removed by the enzymatic method without using an alkaline agent as in the case of rayon. Synthetic fibers such as polyester do not require sizing, so no desizing is necessary.
  • the synthetic resin to be bonded to the functional group of these fiber materials preferably contains a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit.
  • a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit.
  • the presence of the hydrophilic butyl monomer unit improves the dyeability by increasing the affinity with the dye.
  • Such a copolymer resin may be one obtained by simply mixing and copolymerizing the monomers as the units! /, And the block copolymer that is bonded after the respective monomers are polymerized. It may be a coalescence.
  • the attalylate unit having a perfluoroalkyl group may be an ester unit having a structure in which a perfluorinated alkyl group is bonded to an acrylic acid unit! /, But between the perfluoroalkyl group and the acrylic group.
  • the ester unit has a polyalkylene ether chain and has a structure as shown in the following chemical formula (1), the effects such as water repellency are more excellent.
  • hydrophilic butyl monomer unit examples include, for example, a butyl alcohol unit and an acrylate ester unit having a hydrophilic group in the ester moiety.
  • a butyl alcohol unit for example, after copolymerization using butyl acetate, the butyl acetate unit is hydrolyzed to form a butyl alcohol unit.
  • the synthetic resin Since the acrylate unit having a perfluoroalkyl group is hydrophobic by containing the copolymer resin as the synthetic resin and binding to the fiber material, the synthetic resin is The water repellency and oil repellency of the bonded fiber material can be improved. At the same time, the presence of hydrophilic bull monomer units improves water-repellency, but improves affinity for dyes to improve dyeability and absorb detergents. The effect of making it easier to remove dirt in water and improving hygroscopic water absorption is obtained. The force depending on the ratio of each structural unit of this copolymer resin The water repellency obtained by this copolymer resin is not high. This copolymer resin alone is about the first grade in the water repellency test described in JIS L 1092. It becomes. In order to obtain other effects such as the effect of improving water repellency and repelling dirt, it is necessary to use another synthetic resin in combination.
  • Examples of the resin that can be used in combination with the copolymer resin as the synthetic resin include, for example, a silicone resin, a urethane resin, a polyester resin, and a perfluoroalkyl acrylate resin, which are used alone. Alternatively, a plurality of resins may be used in combination.
  • a silicone resin as the synthetic resin, because the silicone resin is molecularly bonded to the fiber material by a crosslinking agent, thereby exhibiting a durable softening effect.
  • a crosslinking agent for example, cotton, cellulose fibers obtained by organic solvent spinning, and the like become very stiff when wet, but the softness of silicon makes the fibers very soft even when wet. This effect makes the cotton material that is originally hard during dyeing and washing more flexible, resulting in a decrease in the strength of the fiber material and the occurrence of a slack.
  • silicon resins include amino silicon, epoxy silicon, and dimethyl silicon.
  • the synthetic resin contains an acrylate resin having a perfluoroalkyl group
  • the effect of improving the water repellency of the post-dyed fiber material obtained by bonding to the fiber material is high.
  • the acrylate resin also has a polyalkylene ether chain between the perfluoroalkyl group and the acryl group, the resulting water repellency is more excellent.
  • it can maintain the hygroscopicity and water absorption of the resulting post-dyed fiber material by using it together with the copolymer resin.
  • the synthetic resin contains a urethane resin or a polyester resin
  • the synthetic resin contains a water-absorbing polyester resin and the content of the resin having an effect of improving water repellency is negligible, it is possible to improve the water absorbability of the obtained fiber material for post-dyeing.
  • a fiber material for post-dyeing having water absorption and oil repellency can be obtained.
  • the fiber material can be softened and the destruction of the non-crystalline portion can be suppressed.
  • cellulose-based fibers such as cotton counts, rayon, and hemp are weak.
  • silicone resin is added in the same way as above to make it stronger. That's the power S.
  • the resin solution in the resin solution The active ingredient is preferably 1% by weight or more, more preferably 2% by weight or more, although it depends on the material. If it is less than 1% by weight, the effect of adding this copolymerized resin is hardly expected.
  • the higher the content the higher the oil repellency of the resulting post-dyed fiber material.
  • about 3rd grade about 2% by weight of the above copolymerized resin is included. It is good to include. On the other hand, it is preferably 6% by weight or less.
  • the amount used is preferably small.
  • the synthetic resin contains a silicone resin
  • the silicone resin inhibits the effect of the copolymer resin, and therefore it is preferable that the copolymer resin is contained in an amount of about 6% by weight.
  • the synthetic resin is only the copolymer resin and the water-absorbing polyester resin, the water absorption can be improved while improving the oil repellency without improving the water repellency.
  • the active ingredient in the resin solution is preferably 0.2% by weight or more, and 0.8% by weight.
  • the above is more preferable. If it is less than 0.2% by weight, the effect of adding a perfluoroalkyl acrylate resin can hardly be expected. On the other hand, it is preferably 4% by weight or less. If it exceeds 4% by weight, the texture becomes slightly hard. However, when the amount of the copolymer resin or silicon resin is large, the amount necessary for exhibiting a sufficient effect increases.
  • the acrylate resin is 6% by weight. It is good to include a degree.
  • the water repellency is about grade 1, it can be realized only by the copolymer resin, even if the acrylate resin is not included.
  • the active ingredient is preferably 0.026 wt% or more, more preferably 0.26 wt% or more. If it is less than 0.026% by weight, the effect of adding silicone resin is hardly expected. On the other hand, it is preferably 4% by weight or less, more preferably 2% by weight or less. Silicone resin lowers water repellency and oil repellency, so if it exceeds 4% by weight, the water repellency and oil repellency decline exhibited by the above-mentioned copolymer resin cannot be compensated.
  • the total amount of the active ingredients of the synthetic resin contained in the resin solution is preferably 15% by weight or less, more preferably 10% by weight or less. Good. If it exceeds 15% by weight, the stability of the preparation may be impaired.
  • the pickup rate is preferably 10% or more, more preferably 40% or more.
  • the pick-up rate is the ratio of the weight difference between the dried raw dough and the dough after being immersed in the solution, and is a value represented by the following formula (1).
  • the amount of the synthetic resin applied to the fiber material is 0.6% by weight or more for the copolymer resin.
  • an acrylate resin having a monofluoroalkyl group it should be 1.5% by weight or more, and in the case of a silicone resin, it should be 0.4% by weight or more. If it is more than these values, the effect by fully bonding a synthetic resin can be exhibited.
  • an isocyanate is included as a crosslinking agent when the crosslinking agent described later is included, if 0.3% by weight or more is applied to the fiber material, the reaction can be sufficiently performed. it can.
  • Examples of a method of bonding these synthetic resins to the functional group of the fiber material include a method of bonding the functional group of the synthetic resin and the functional group of the fiber material with a crosslinking agent. It is done.
  • This cross-linking agent must be a compound having a plurality of reactive groups capable of binding to each functional group.
  • an aromatic block isocyanate or an aliphatic block isocyanate having an isocyanate group or a urethane group Isocyanate compounds such as cyanate.
  • aromatic block isocyanate is preferable because the crosslinking temperature is low and the reactivity is high, but the whiteness may change slightly, and for products that require whiteness V, the reactivity is slightly higher.
  • an aliphatic block isocyanate Although it is inferior, it is preferable to use an aliphatic block isocyanate. .
  • an isocyanate compound having a urethane group instead of an isocyanate group is used as a crosslinking agent, the urethane group portion needs to be converted into an isocyanate group by thermal dissociation or the like and then a crosslinking reaction must be caused.
  • the minimum required temperature varies depending on the type of cross-linking agent. It is generally preferred that the cross-linking agent reacts with a force of 140 ° C or higher. On the other hand, if the temperature exceeds 200 ° C, the above fiber material may be damaged, and it is preferable that the temperature is 200 ° C or less, more preferably 180 ° C or less. In addition, if carpositimide or a silane coupling agent is used as a crosslinking agent, the durability will be insufficient.
  • the concentration of the cross-linking agent in the resin solution is preferably such that the effective component is 0.04% by weight or more. If the amount is less than 0.04% by weight, the fiber material and the synthetic resin cannot be sufficiently bonded, and the effect of improving the dyeability and the like becomes insufficient. On the other hand, it is preferably 4% by weight or less, more preferably 0.5% by weight or less. If it exceeds 4% by weight, the dyeability may be deteriorated and the texture may be deteriorated. In particular, when the above isocyanate compound is used, it is preferably 1% by weight or less.
  • the molecules of the fiber material and the molecules of the synthetic resin are combined.
  • the main component means that the solid content in the solution is 50% by weight or more.
  • the solvent of the solution is not particularly limited, and water can be used.
  • the apparatus and method used when the resin solution is specifically applied to the fiber material is selected appropriately depending on the shape of the fiber material.
  • sizing machine cheese processing machine, Hank dyeing machine, cassette processing machine, rope processing machine, A shearing machine or the like can be used.
  • a method of applying the resin solution by a dipping method or a coating method using a spreading machine (tentering machine) or the like while the cloth is spread can be used.
  • the resin solution can be applied with a wins machine, a liquid dyeing machine, a drum dyeing machine or the like.
  • a drum dyeing machine or a washer type processing machine can be used. Such provision may be performed once, or may be performed continuously twice or more. Depending on the fiber material, various fabric materials are used as secondary materials, so it takes time for the chemicals to penetrate evenly. It is possible to sufficiently permeate the above fiber material. When performing two or more times, the above-mentioned application may be performed continuously, or it may be dried and heat-treated once, and then applied again! /.
  • the fiber material is dried to remove water and react with the crosslinking agent, and heat treatment is performed to strengthen the reaction of the crosslinking agent.
  • Such a fiber material for post dyeing can be obtained.
  • the temperature of the drying treatment performed after the application of the resin solution is preferably 50 ° C or higher, and more preferably 130 ° C or higher. This is because if the temperature is lower than 50 ° C, it takes too much time S to dry because the evaporation of water is too slow, and the higher the temperature, the easier it is to dry. On the other hand, it is preferable that it is 200 degrees C or less. This is because if the temperature exceeds 200 ° C, the fiber material may be damaged by heat during drying.
  • these optimum temperatures and the time required for the drying process vary depending on the heat source of the dryer and the heat treatment method. Also, it varies depending on the shape of the fiber material.
  • the drying heat treatment time is longer than that of the other yarn.
  • a spreading processing machine at around 160 ° C with a drying time of about 1 minute.
  • the drying time be around 10 to 30 minutes.
  • the temperature at which the heat treatment is performed after the drying treatment is preferably 130 ° C or higher, while it is preferably 200 ° C or lower, more preferably 180 ° C or lower. preferable.
  • the heat treatment time is at least 10 minutes for fiber materials that are cheese-like or corn-like yarns, but at least 20 seconds for fabric materials such as woven fabrics and knitted fabrics that are preferred. Min Is preferable.
  • the fiber material for post-dyeing according to the present invention which can be post-dyed in this manner, enables uniform dyeing without hindering dyeability by the molecules of the synthetic resin bonded, and has a sufficient dyeing density. Can keep.
  • the synthetic resin is integrated with the fiber material, the physical strength of the fiber material is prevented from being lowered, and water repellency and oil repellency are exhibited.
  • the synthetic resin If the synthetic resin is simply impregnated, it will fall off from the fiber material during washing and dyeing, and the effect exhibited by the respective synthetic resin will not be exhibited after washing or decoloring, or Although there is a problem that it is significantly reduced, when the synthetic resin is combined with the fiber material, the synthetic resin does not fall off even during washing and dyeing, and after that, it continues to exhibit the results. I can do it.
  • the copolymer resin contained in the synthetic resin When the copolymer resin contained in the synthetic resin is combined with the fiber material, sufficient oil repellency is exhibited even after washing and dyeing.
  • the acrylate resin having the perfluoroalkyl group as the synthetic resin combines with the fiber material, thereby exhibiting sufficient oil repellency even after washing and dyeing.
  • the effect of softening the texture of the fiber material obtained by the silicone resin is not lost even during washing and dyeing, but in a bath immersed in water. Then, the fiber material can be softened more than the dry state. As a result, a decrease in strength of the fiber material can be prevented.
  • This effect is particularly suitable when the fiber material is a cellulose material that becomes very hard when wet.
  • the fiber material for post-dyeing according to the present invention has high water repellency and oil repellency, and since the surface tension can be made smaller than that of polyester, it is not only excellent in dyeability but also has high moisture permeability. It can be used as a fiber material that is resistant to oil stains.
  • the fiber material for post-dyeing that is strong in the present invention has a water repellency test result of JIS L 1092 that can achieve a water repellent grade of 2 or higher, and achieve this value. It is preferable that it is a thing. If it is grade 1, the water repellency is insufficient, and in order to ensure sufficient water repellency, as is conventionally done, the product is dyed and dried and then water-repellent by a water-repellent spray etc. It is necessary to do. In this case, the texture of the water-repellent durability becomes harder, and when the fiber material is a synthetic fiber such as polyester, the problem is that the friction fastness is lowered.
  • the maximum grade is Grade 5, and it may be Grade 5 that is rarely required to be Grade 4 or higher except when the fiber material is a coat. Products with water repellency or grade 5 can be achieved by adjusting the concentration ratio of the chemicals used.
  • the post-dyed fiber material according to the present invention does not cause a problem in dyeability even if the above water repellency is achieved.
  • the post-dyed fiber material according to the present invention is an oil repellency test described in AATCC (American Association of Textile Chemists and Colorists).
  • AATCC American Association of Textile Chemists and Colorists.
  • the result is oil repellency of 1st grade (corresponding to surface tension of 32 dyne / cm or less) or higher, and it is preferable to achieve this value.
  • Grade 2 or higher is more preferable.
  • Grade 3 or higher Is more preferable. If it is not grade 1, the oil repellency will be insufficient, and oleic acid contained in human sweat oil equivalent to grade 1 will adhere. It is more preferable to satisfy the third grade (corresponding to 27.3 dyne / cm or less) because oil contamination of n-hexadecane can be prevented.
  • the post-dye fiber material which has the power of the present invention, does not cause a problem in dyeability even if the above oil repellency is achieved.
  • the maximum grade is grade 8, but the surface tension of silicon resin is 24 dyne / cm and the surface tension of fluororesin is lOdyne / cm. Since it is practically difficult to achieve the class (19.8 dyne / cm), it is realistic that it is actually 7th class or lower.
  • the post-dyed fiber material according to the present invention can have a surface tension of 32 dyne / cm or less according to a general preparation procedure. Since this value is smaller than ordinary polyester fiber and smaller than most oils, most oil stains are strong in this invention, and can be easily wiped off without penetrating into the fiber material for post-dyeing. Power S can be. Also, the smaller the surface tension, the better. In the present invention, the surface tension of ordinary polyester not bonded is 45 dyne / cm and nylon is 60 dyne / cm, whereas the surface tension of water is 70 dyne / cm.
  • the fiber material for post-dyeing which is suitable for the present invention, is described in JIS L 1099A-1.
  • the result in the moisture permeability test can be improved from a fiber material that is not processed.
  • Moisture permeability is not directly related to dyeability! /, But exhibits the beneficial effect of absorbing sweat, etc. when using fiber materials for post-dyeing that are good for moisture permeability in clothes, etc. To do.
  • Such good moisture permeability is established even if the water repellency is high. This is because the water vapor that is the target of hygroscopicity is smaller than the liquid water that is the target of water repellency, and they exhibit different behavior.
  • the conventional water-repellent finish is performed after dyeing, the moisture permeability is lower than that of the fabric not subjected to the water-repellent finish. In the present invention, the moisture permeability can be improved.
  • the fiber material for post-dyeing according to the present invention improves the water absorbability of the fiber material for post-dyeing by selecting only the above-mentioned copolymer resin or water-absorbing polyester resin as the synthetic resin to be applied. You can also.
  • the acrylate resin having a perfluoroalkyl group or the copolymer resin is present as the synthetic resin, the effect of improving the oil repellency as described above is particularly high.
  • the copolymer resin is inferior to the acrylate resin in terms of surface tension, but has a high effect of repelling oil because it is hydrophilic in the dry state.
  • the copolymer resin is hydrophilic in water such as during dyeing and washing, so it improves the washing effect and easily removes dirt, and also has the effect of improving the adsorptivity of the dye during dyeing. It also has the effect of increasing hygroscopicity.
  • the acrylate resin does not have a hydrophilic group, the effect of improving water repellency is high.
  • the fiber material for post-dyeing which is strong in the present invention
  • at least one of the above water repellency and oil repellency values can be easily achieved, and in particular, the above acrylate resin or the above copolymer.
  • the resin content By adjusting the resin content, both values can be easily met.
  • the water repellent property can be improved by the acrylate resin
  • the moisture permeability can be improved by the copolymer resin.
  • dyeing the fiber material for post-dyeing depending on the shape of the fiber material, treatment can be performed under any conditions suitable for them, and the dyeing means is particularly limited. It is not something. Specifically, disperse dyes, acid dyes, reactive dyes as dyes Any dyes such as direct dyes, vat dyes and basic dyes can be used.
  • any method such as dip dyeing or cold patch dyeing can be used.
  • the fiber material is spun yarn or filament yarn, cloth-like materials such as woven fabrics, knitted fabrics, and nonwoven fabrics that can be used with casserole processing machines, cheese calorie machines, rope processing machines, slasher processing machines, etc. are liquid dyeing. Or a cold patch dyeing machine may be used.
  • the fiber material is a knitted fabric other than polyester, it is preferable to use wins, and for dyeing woven fabrics and nonwoven fabrics, it is preferable to use a zicker dyeing machine or a batch dyeing machine.
  • the shape of the sewn product can be changed by using a drum dyeing machine, or by using a dyeing machine for dip dyeing that is difficult to apply tension, such as a normal pressure washer and high pressure washer. It is preferable because it is difficult to damage.
  • the post-dyeing fiber material obtained by post-dying the post-dyeing fiber material according to the present invention was subjected to a water repellency test according to JIS L 1092, which was sufficiently dried after the post-dyeing. It is preferable that the above-mentioned and grade 5 or less can be maintained even after dyeing.
  • the high water repellency after dyeing means that the synthetic resin is not dropped during the dyeing process, and is firmly integrated with the fiber material by intermolecular bonding. It is. If these values can be achieved, it is no longer necessary to apply a water repellent by spraying, which has been practiced after dyeing, and the product has high quality notes, jackets, coats, coats, interiors. It will be suitable for the material.
  • the dyed fiber material is the result of the oil repellency test described in AATCC118-2002.
  • Level 3 or higher is more preferred. If it is lower than grade 1, the oil repellency will be insufficient and it will be extremely weak against oil stains.
  • the standard is that oil repellency grade 2 has a surface tension of 29 ⁇ 6 dyne / cm and less than 32 dyne / cm of sweat oil (oleic acid), so oil repellency of grade 2 or higher is the minimum requirement. This is because if it is 3rd grade or higher (27.3 dyne / cm), it will be effective against most oily soils. On the other hand, it is preferable that it is 7th grade or less. As above, Grade 8 is difficult due to the limited oil repellency.
  • the surface tension is preferably 31.5 dyne / cm or less 29. More preferably, it is 6 dyne / cm or less. 31. If it exceeds 5 dyne / cm, the component of sweat oil This is because the oleic acid is easily attached. This value is smaller than the surface tension of conventional cotton, polyester, nylon, and other fibers that are dyed as they are without being processed. However, even if the amount of chemicals used is reduced, the same processing effect can be obtained. On the other hand, since the surface tension is not more than oil repellency, it is preferably 21.4 dyne / cm or more.
  • These water repellency, oil repellency, and surface tension values are values that can be easily achieved by performing normal dyeing using the fiber material for post-dyeing. It is more preferable that the value of is also satisfied.
  • the synthetic resin is a phthalate resin having a perfluoroalkyl group or a copolymer resin having an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit
  • the tension can be easily reduced to 29.6 dyne / cm or less.
  • Fluorine-containing resins such as these have a surface tension of about lOdyne / cm in the form of a film, and a very high oil repellency.
  • the water repellency after washing 30 times by the method described in JIS L 0217 103 is preferably 1st grade or more and 5th grade or less. That is, it is preferable that the decrease in water repellency can be suppressed even after washing.
  • the oil repellency after washing 30 times is preferably 2nd grade or more and 7th grade or less.
  • the post-dye fiber material according to the present invention is excellent in water repellency and oil repellency as it is, but after the post-dyeing, water repellency, oil repellency, improved fastness, antibacterial, Processing such as electricity control and deodorization may be performed. Even during these processes, since the fibers are integrated with the synthetic resin, the fibers are easily damaged and the properties such as the water repellency, oil repellency and surface tension are easily maintained. That is, it is preferable to satisfy the water repellency, oil repellency, and surface tension values of the dyed fiber material before washing.
  • 'Silicon resin (Aminosilicon, manufactured by Makiguchi: SM—Cube JN, solid content 26%) 'Silicon resin (dimethyl silicon, manufactured by Makiguchi: SM—Cube JN—DM, solid content 38%)
  • 'Silicon resin epoxy silicone, manufactured by Makiguchi: SM—Cube JN—EP, solid content 36%)
  • Polyester resin manufactured by Nikka Chemical Co., Ltd .: Nicepol PR—99, solid content 10%
  • Polyester resin manufactured by Meisei Chemical Industry Co., Ltd .: Mei force finish SRM—65
  • Aromatic block isocyanate (Makiguchi: SM—Cube KK, solid content 40%)
  • Neoproton ATO Neoproton ATO
  • Oxidizing agent remover (Shinto Kasei Co., Ltd .: Ratatogen LS)
  • Daiwa Boseki Co., Ltd . 100% cotton woven fabric (warp yarn 60 twin yarn, horizontal yarn 60 twin yarn, twill weave bentile) is subjected to scouring 'glue removal' bleaching and then sodium hydroxide The sirket processing was performed at
  • scouring and desizing and bleaching were continuously performed as scouring for oxidized desizing.
  • apparatus As a product of Shandong Tekko Co., Ltd., a continuous hair-baking refined bleach dryer was used.
  • scouring with oxidized paste the dough is continuously dipped in a mixed aqueous solution of the following components, and the reaction tower is used.
  • Oxidizing agent Ratatogen LS ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 20g / L
  • the dough was continuously immersed in a mixed solution of the following components, steamed in a reaction tower at 98 ° C for 40 minutes, then washed with water and dried.
  • the resin solution was applied by a pad-dry method using a tenter with a chemical mangle (Kyoto Kikai Co., Ltd .: resin tenter). At this time, the pickup rate of the resin solution was 65%, which was applied to the fiber material. After the application, the film was dried in an environment of 130 ° C for 1 minute, and then heat-treated at 160 ° C for 40 seconds with a baking machine (Kyoto Kikai Co., Ltd .: resin processing machine). A raincoat is sewn using the fiber material for post-dying obtained in this way as a surface material. I obtained a sewn product.
  • this sewing product was washed as a dye with a washer type atmospheric pressure dyeing machine (manufactured by Kawai Iron Works: atmospheric pressure dyeing machine): Sumitomo Chemical Co., Ltd .: Sumifix HF Yellow 3R, Red 4B, Bl ue 3R, Remazol Black B (manufactured by Dystar Co., Ltd.) is used in an amount that matches the color to be dyed and dyed over an hour at 80 ° C and over 30 minutes at 80 ° C. Washing was performed, and the fix treatment agent was fixed at a concentration of 1% owf in an environment of 40 ° C for 20 minutes, dehydrated and dried in a tumbler drier.
  • a washer type atmospheric pressure dyeing machine manufactured by Kawai Iron Works: atmospheric pressure dyeing machine
  • Sumifix HF Yellow 3R, Red 4B, Bl ue 3R, Remazol Black B manufactured by Dystar Co., Ltd.
  • the dyed raincoat had a natural grainy feeling with good dyeability and no threaks.
  • Table 1 shows the test results of water repellency and oil repellency before and after dyeing this raincoat and after 50 washings.
  • Such dyeing was performed for all 10 colors by changing the mixing ratio of the above dyes to obtain a total of 300 colored raincoats. All of these had water repellency that could be supplied to the market without post-processing such as water-repellent spraying after dyeing.
  • the 300 items are divided into 3 sewing patterns, 5 sizes, and 15 types in total, and 10 colors are designated for dyeing. However, after the arrival of the sewing product from the sewing company, the days spent for dyeing could be delivered in two days.
  • Example 2 In Example 1, except that the resin solution was not applied, and drying and heat treatment were not performed, a 10-color raincoat was obtained in the same manner as in Example 1, and the dyeing density was measured in the same manner, and the K / S value was obtained. Asked. The results are shown in Table 2. In all colors, the dyeing density was higher in the post-dyed fiber material to which the resin solution was applied.
  • cotton stretch fabric vertical cotton 100 double, horizontal cotton 16 + polyurethane 70D
  • scouring, desizing, bleaching, and sino-recket processing are performed in the same procedure as in Example 1, and the following mixing ratio is obtained.
  • a resin solution was applied to the fiber material.
  • the resin solution was applied to the fiber material using a tenter with a chemical mangle and a pickup rate of 62%. This was dried in an environment of 130 ° C for 1 minute, and then heat-treated at 155 ° C for 60 seconds in a baking machine. By using the fiber material for post-dyeing thus obtained, a raincoat for ladies was sewn to obtain a sewn product made of the fiber material for post-dyeing.
  • Example 3 100% hemp fabric as textile material (tatelinen 1/20, yokorinen 1/20, 100 x 80)
  • Example 1 Plain weave, made in Italy), and after scouring, desizing, bleaching and mercerizing in the same manner as in Example 1, a resin solution having the following mixing ratio was added to a tenter with a chemical mangrove as in Example 1. Was applied to the fiber material.
  • Tencel (cellulose fiber obtained by organic solvent spinning method) 100% woven fabric (Vertical Tencel 20, Yoko Tencel 20, 110 x 70, manufactured by Muramatsu Sangyo Co., Ltd.) as a fiber material, enzyme in Pad-Steamer method After desizing and scouring, it was bleached with hydrogen peroxide by the cold batch method.
  • a mixed aqueous solution containing 40 g / L of neoproton ATO as a phosphorus organic acid and 60 g / L of PAS600 as an enzyme was manufactured by Shandong Tekko Co., Ltd .: Washed with water . Processed for 60 seconds in a 100 ° C environment using a Pad-Streamer with a dryer. In the cold batch method, specifically, a mixed aqueous solution having the following composition was used, and the roll was processed in a home-made cold batch apparatus for 8 hours in a room temperature environment, and then washed and dried. 'Hydrogen peroxide ⁇ ⁇ ⁇ ⁇ ⁇ 15g / L
  • the pad-steamer method was applied for 60 seconds under the above conditions.
  • Example 4 After the above treatment, the same resin solution as in Example 3 was used, applied to the fiber material under the same conditions, and dried and heat-treated.
  • the resulting fabric which is a fiber material for post-dying, was dyed in the same manner as in Example 4. After drying, both the cotton yarn and the wool yarn were dyed in the same color with the reactive dye, and the shading treatment with the acid dye was unnecessary.
  • Table 7 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 30 times.
  • a resin solution having the following composition was applied using a KHS universal sizer machine.
  • the yarn speed of the sizer machine was 260 m / min, and the pickup rate of resin solution to the yarn was 45-55%.
  • the yarn After applying the resin solution, the yarn is dried in a dryer attached to the sizer machine, and then applied for 40 minutes at 130 ° C in a steam set machine (manufactured by Nippon Air Industries Co., Ltd .: SBR-8). Heat treatment I did it.
  • the four types of yarn obtained were each wound with cheese, scoured and bleached with a cheese dyeing machine (manufactured by Nisaka Seisakusho Co., Ltd.), and dyed.
  • Scouring was carried out using a penetrant with a concentration of 2 g / L in an environment with a bath ratio of 1:20 and 80 ° C over 20 minutes.
  • bleaching was carried out for 40 minutes in an environment with a bath ratio of 1:20 and 90 ° C with a mixed aqueous solution having the following component ratio.
  • Dye for dyeing is Cibacron Yellow LS-R, Red LS-B, made by Ciba: Blue
  • LS-3R is blended at the concentration of 1.5% owf, 0.6% owf, 0.4% owf respectively, and the bath ratio
  • the dyeing was performed for 1 hour at 1:15 and a dyeing temperature of 85 ° C.
  • Table 9 shows the results of measuring the water repellency and oil repellency after dyeing of each yarn obtained as described above.
  • Example 6 water and oil repellency tests were conducted in the same manner as in Example 6 on four types of yarn that were dyed in the same manner except that the resin solution was not applied and then dried and heat-treated. The results are shown in Table 9.
  • Example 6 Using each of the four types of yarn obtained by applying the resin solution, drying and heat treatment obtained in Example 6, continuous knitting with a knitting machine (manufactured by Fukuhara Co., Ltd .: circular knitting machine), and liquid dyeing Machine (Nisaka Seisakusho Co., Ltd .: Circuler machine) Scouring and bleaching were performed.
  • a knitting machine manufactured by Fukuhara Co., Ltd .: circular knitting machine
  • liquid dyeing Machine Neaka Seisakusho Co., Ltd .: Circuler machine Scouring and bleaching were performed.
  • Neofix R-800 was fixed for 20 minutes under the conditions of a concentration of 2% owf and 40 ° C.
  • Table 10 shows the water and oil repellency of the dyed knitted fabric after drying. Table 10 also shows the results of K / S values obtained by colorimetry.
  • Example 7 a knitted fabric was obtained in the same procedure using each of the four types of yarns to which the resin solution was not applied, and the water repellency, oil repellency, and K / S value were determined in the same manner as in Example 7. .
  • the results are shown in Table 10. In any yarn count, the dyeing density was improved in Example 7 using the yarn to which the resin solution was applied, compared to Comparative Example 4 using the yarn to which the resin solution was not applied.
  • a polyester knitted fabric (70D, manufactured by Toray Industries, Inc.) is used as the fiber material.
  • a mixed aqueous solution of sodium carbonate strength 3 ⁇ 4g / L and a scouring agent of 2g / L the liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. Scouring for 20 minutes in an environment with a bath ratio of 1:15 and 80 ° C, and then dried.
  • the resin solution was applied by a pad-dry-bake method using a pin tenter with a knit chemical mangle (manufactured by Kyoto Kikai Co., Ltd.).
  • the pick-up rate of the resin solution was 48%, and baking was performed for 60 seconds at 160 ° C.
  • a polyester knitted fabric for post-dyeing which is a fiber material for post-dyeing made in this way, was manufactured by Nisaka Manufacturing Co., Ltd. using a high-pressure liquid dyeing machine, with a bath ratio of 1:20 and a temperature of 130 ° C. Dyeing was performed for 1 minute, and then reduction washing was performed at 80 ° C for 20 minutes.
  • the dye used was Kiwa Chemical Industry Co., Ltd .: KP Black B RN-SF 200 at a concentration of 7.5% owf. After dyeing, the K / S value, water repellency, oil repellency, and wet and dry friction fastness (according to JIS L-0849 IIType) were measured. The results are shown in Table 11.
  • Example 8 a dyed dough was obtained by the same procedure as in Example 8, except that the resin solution was not applied and drying and baking were not performed. Similarly, Table 11 shows the results of measurements.
  • Example 8 The processing with the resin solution of Example 8 was able to exhibit high dyeability without being peeled off from the fiber material even under high pressure dyeing conditions of polyester.
  • Example 8 that was applied exhibited high water repellency and oil repellency even after dyeing. Compared to processing, etc., the decrease can be suppressed.
  • This is a polyester material that is particularly oil-repellent and resistant to oil stains.
  • 100% cotton fabric made in China warp cotton 60, horizontal cotton 60, satin
  • a resin solution was applied to the fiber material.
  • This resin solution was applied to a fiber material at a pick-up rate of 55% using a tenter with a chemical mangore (same as above). This was dried in an environment of 120 ° C. over 1 minute, and then heat-treated at 160 ° C. for 60 seconds in a baking machine (same as in Example 1).
  • Remazol Black B Liquid dye (manufactured by Dystar Co., Ltd.) was applied to the fiber material for post-dying obtained in this way over 60 minutes at 65 ° C using a liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. V and staining were performed at a concentration of 25% owf.
  • Example 9 shows the results of the same measurement performed on the fiber material in Example 9 where the resin solution was not applied. Compared with Comparative Example 6, it was found that Example 9 did not deteriorate the dyeability and had high water repellency and oil repellency.
  • 100% woven fabric (warp yarn 80, yo yarn 80, 200 xl 70 twinoles) is used as the material for the silk cocoon, and scouring, desizing, bleaching and mercerizing are performed in the same manner as in Example 1.
  • the resin solution having the following mixing ratio was applied to the fiber material.
  • Example 9 The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, dyeing similar to that in Example 9 was performed on the obtained fabric, which was a fiber material for post-dying. The dyed fiber material had a soft texture and was evenly dyed with no flare. Table 13 shows the test results obtained by measuring the water repellency, oil repellency and fabric strength of the obtained fabric before and after dyeing by a tear test.
  • Example 7 Table 13 shows the results of the same measurement performed on the fiber material in Example 10 where the resin solution was not applied. Compared with Comparative Example 7, the tear strength of the fiber material of Example 10 was greatly improved both before and after dyeing.
  • 100% cotton fabric 50 vertical cotton, 40 horizontal cotton, 120 xl 10 plain fabric
  • scouring, desizing, bleaching and mercerizing are performed in the same manner as in Example 1.
  • a resin solution having the following mixing ratio was applied to the fiber material.
  • This resin solution was applied to the fiber material using a tenter with chemical mangles at a pickup rate of 65%. This was dried in an environment of 120 ° C for 1 minute. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material.
  • Table 14 shows the results of the same measurement performed on the fiber material in Example 11 where the resin solution was not applied. Compared to Comparative Example 8, the tear strength of the fiber material of Example 11 was greatly improved both before and after dyeing.
  • Example 15 shows the results of the same measurement performed on the fiber material in Example 12 where the resin solution was not applied. Compared with Comparative Example 9, the fiber material of Example 12 had a slightly low K / S value, but had high water repellency and high oil repellency both before and after dyeing. [0162] (Example 13)
  • 6-Nylon100% knitted fabric (70D, made in China), which is an aliphatic polyamide fiber, is used as the fiber material. Made by Sakurai Mfg. Co., Ltd. Was granted.
  • the pick-up rate was 58%, and drying was performed for 60 seconds in an environment of 120 ° C. Next, it was baked for 45 seconds in a 170 ° C environment using a Shimadzu Baking test machine.
  • the resulting post-dyed nylon knitted fabric which is a fiber material for post-dyeing, was dyed for 50 minutes under the conditions of a bath ratio of 1:15 and 100 ° C. using a test dyeing machine manufactured by Texam.
  • a test dyeing machine manufactured by Texam As a dye, Erionyl Black AM—R (manufactured by Chinoku “Specialty” Chemicals) was used at a concentration of 5% ow f.
  • Table 16 shows the test results obtained by measuring the water and oil repellency before and after dyeing, and the K / S value of the obtained fabric. The K / S value is expressed as a relative value with the following Comparative Example 10 as 100.
  • Example 13 had high oil repellency, and a high dyeing density could be obtained.
  • a polyester woven fabric (70D, manufactured by Toray Industries, Inc.) was used as the fiber material, and scouring and drying were performed in the same manner as in Example 8. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material.
  • SM—Cube HS > 10 parts by weight
  • Example 1 For the application of the resin solution, the same tenter with chemical mangles as in Example 1 was used, and the fiber solution was applied at a pick-up rate of 55%. This was dried for 1 minute in an environment of 130 ° C, and then heat-treated at 180 ° C for 60 seconds using the same baking machine as in Example 1.
  • the polyester fabric which is a fiber material for post-dying obtained in this way, was dyed and reduced and washed under the same dyeing conditions as in Example 8.
  • As the dye Nippon Kayaku Co., Ltd .: KP Black BRN-SF 200 was used at a concentration of 5% owf. After dyeing, K / S value, water repellency and moisture permeability were measured. The results are shown in Table 17. In addition, when the K / S value is expressed in relative values, if Comparative Example 11 is 100, Implementation 14 is 104.9.
  • Example 14 a dyed fiber material was obtained by the same procedure as in Example 14 except that the resin solution was not applied and drying and baking were not performed. Table 17 shows the results of similar measurements.
  • Example 14 even under the high-pressure dyeing condition of the polyester fiber material, it was possible to exhibit high dyeing properties without causing the synthetic resin to peel off from the fiber material. Further, the water repellency was high and the moisture permeability was also better than that of Comparative Example 11.
  • a polyester composite fabric (length: polyester, width: polyester 'cotton blend, manufactured by Toray Industries, Inc.) was processed in the same manner as in Example 14 to measure water repellency and moisture permeability. . The results are shown in Table 18. [0172] [Table 18]
  • Example 15 a dyed fiber material was obtained by the same procedure as in Example 15 except that the resin solution was not applied and drying and baking were not performed. Table 18 shows the results of similar measurements.
  • Example 15 Similar to Example 14, Example 15 also exhibited higher water repellency and higher moisture permeability than those not provided with the resin solution.
  • Example 14 The same polyester fabric as in Example 14 was used as the fiber material, and scouring and drying were performed in the same procedure, and each resin solution having a mixing ratio shown in Table 19 below was applied to the fiber material.
  • Table 19 “SS” iiSM-Cube SS, “: L” ⁇ SM-Cube KL, “SRM-65J” indicates the Mei force finish SRM-65, which is a polyester resin solution.
  • the resin solution was applied to a fiber material at a pick-up rate of 60% using a Pad-Drier tester manufactured by Sakurai Mfg. Co., Ltd.
  • Example 16 a dyed fiber material was obtained by the same procedure as in Example 16 except that the resin solution was not applied and drying and baking were not performed, and the same measurement was performed. The results are shown in Table 19.
  • Example 18 in which the SRM-65, which is a water-absorbing polyester, was increased, the water-absorbing property was greatly improved as compared to Example 17 having a lower water-absorbing polyester content, and Example 16 and Comparative Example 13 having no water-absorbing polyester. . Therefore, it was found that oil repellency and water absorption can be adjusted by adjusting the content of SRM-65, which is a polyester resin solution. In addition, with polyester fibers, even if conventional oil repellency and water absorbency are imparted, they will be reduced by subsequent post-dying.
  • the power of unsuccessful post-dyeing does not reduce the dyeing density in post-dyeing, and it does not reduce oil repellency or water absorption by post-dyeing. That's it.
  • a micro denier polyester nonwoven fabric (manufactured by Toray Industries, Inc.) was used as the fiber material, and a resin solution having the following mixing ratio was applied to the fiber material.
  • the resin solution was applied to a fiber material using a tenter with chemical mangle manufactured by Kyoto Kikai Co., Ltd. at a pickup rate of 55%. After drying this in a 120 ° C environment for 2 minutes, using the same tenter, 1
  • the baking process was performed at 80 ° C for 2 minutes.
  • the polyester non-woven fabric which is the fiber material for post-dying, was obtained by using a high-pressure drum dyeing machine (TEXAM: RD-830) as a dyeing machine and KP Black BRN- SF200 made by Nippon Kayaku Co., Ltd. as a dye. Was stained at a concentration of 25% owf.
  • the dyeing solution is a dye dispersant (Nikka Chemical Co., Ltd. product: Sancareto RM340E) was used as a solution containing lg / L, acetic acid 0.5 g / L, and sodium acetate 1.2 g / L.
  • the dyeing temperature was 120 ° C for 60 minutes, and the bath ratio was 1:20.
  • the reducing cleaning solution contains 7g / L of reducing agent (Mensei Chemical Co., Ltd .: MRC powder), 5g / L of detergent (Makisei Chemical Co., Ltd .: Lakkor ST-700), and 5cc / L of acetic acid. This was used and washed at 80 ° C for 20 minutes.
  • Example 19 a material dyed by the same procedure as in Example 19 except that the resin solution was not applied and drying and baking were not performed. After dyeing, a water repellent (Meisei Chemical Co., Ltd.) was used. Manufactured by Asahi Guard AG970) and then dried at 105 ° C. for 2 minutes by the tenter used in Example 19. Thereafter, under the same conditions as in Example 19, water repellency and oil repellency values before and after the washing durability test were measured. The results are shown in Table 20.
  • Example 19 which is a fiber material for post-dyeing processed with the resin solution according to the present invention, the washing durability test is performed. Even after the test, the oiliness and water repellency were hardly lowered.

Abstract

Disclosed is a fiber material for piece dyeing, wherein fibers are hardly damaged by piece dyeing over the entire material. This fiber material for piece dyeing is high in dyeability after dyeing, water repellency, oil repellency and washing resistance. Specifically, a fiber material having at least one functional group selected from the group consisting of a hydroxyl group, an amino group, an amide group, a carboxyl group and a urethane group is impregnated with a resin solution containing a synthetic resin, which has a functional group bondable with the functional group of the fiber material and improves dyeability, so that molecules of the synthetic resin are bonded with molecules of the fiber material.

Description

明 細 書  Specification
後染め用繊維素材  Textile material for post dyeing
技術分野  Technical field
[0001] この発明は、後染めを行った際の染色性を向上させた繊維素材に関する。  [0001] The present invention relates to a fiber material having improved dyeability when post-dying.
背景技術  Background art
[0002] 従来の繊維製品で用いられて!/、る、撥水機能加工、撥油機能加工、柔軟加工、汚 れ防止加工、抗ピリング加工等の耐久性の高い加工は、糸、編物、織物、不織布な どを染色した後、樹脂加工を施されて、その後縫製することで、衣服、鞫、帽子、スポ ーッ衣料として製品化されている。また、糸においても、染色後に、編物や織物に加 ェされた後で樹脂加工されて製品化されている。  [0002] Used in conventional textile products! /, Ru, water repellent functional processing, oil repellent functional processing, flexible processing, antifouling processing, anti-pilling processing, etc. After dyeing woven fabrics and non-woven fabrics, they are processed with resin, then sewn, and commercialized as clothing, bags, hats, and sports clothing. In addition, yarns are also processed into products after dyeing, after being added to knitted fabrics and fabrics.
[0003] このような工程を経て繊維素材を製造する方法は、品質の安定した製品を大量に 製造する点では優れている。し力、し現在のように、消費者の好みが急速に変化する 時代では、製品納期の短期化が最も重要であり、製造者側が色、サイズ、素材、バタ ーンなどの消費者ニーズを掴んでから、糸の製造、織物の製造、染色加工、樹脂加 ェ及び縫製を行うという従来の製造方法によって製造していたのでは、時間がかかり すぎ、消費者の望んでいる商品をタイムリーに市場に供給することは不可能となって いる。  [0003] A method of manufacturing a fiber material through such a process is excellent in that a product with a stable quality is manufactured in large quantities. In today's era where consumer preferences change rapidly, it is most important to shorten product delivery times, and manufacturers will consider consumer needs such as colors, sizes, materials, and patterns. It was too time consuming to manufacture the products desired by consumers in a timely manner by using conventional manufacturing methods such as thread manufacture, fabric manufacture, dyeing, resin processing, and sewing after grasping. It is impossible to supply to the market.
[0004] 特に流行商品は、店頭に置ける販売期間が短ぐ消費者の指向を店頭で情報とし て入手しても、既に色、サイズ、パターンが決定された縫製品を在庫すると、消費者 の嗜好にそぐわない物は不良在庫となってしまう。一方で、ニーズを受けて販売期間 中に企画の変更を行おうとしても間に合わず、ビジネスチャンスを逃してしまうこととな  [0004] In particular, for trendy products, even if consumer-oriented information is obtained at the store, which has a short sales period that can be placed at the store, if the sewn product whose color, size, and pattern are already in stock is stocked, Anything that doesn't suit your taste will be a bad stock. On the other hand, if you try to change the plan during the sales period in response to your needs, you will miss the business opportunity.
[0005] このため、製品完成後に染色を行う製品染めを行うことで短納期に対応することが 行われているが、特に綿、麻などの植物性繊維やレーヨンなどの再生繊維では、色 管理が安定せず、スレアタリやシヮが発生したり、染色ムラが起きやすかつたりし、ま た、染色後に耐久性のある撥水加工や撥油加工などを行うことはほとんどできず、行 える撥水加工は、染色後の撥水スプレーの塗布程度に限られてしまい、高級な商品 にはなりえなかった。また、合成繊維や半合成繊維では、通常の染色や製品染めの 後で撥水加工、撥油加工を行うと、摩擦堅牢度が低下し、特にポリエステルのマイク 口ファイバー素材ではその傾向が著し力、つた。 [0005] For this reason, product dyeing is performed after product completion to meet short delivery times, but color management is particularly important for plant fibers such as cotton and hemp and regenerated fibers such as rayon. Is not stable, can cause scratches and wrinkles, can easily cause uneven dyeing, and can hardly perform durable water-repellent or oil-repellent treatment after dyeing. The water-repellent finish is limited to the degree of application of the water-repellent spray after dyeing. I couldn't. Synthetic fibers and semi-synthetic fibers, when subjected to water- and oil-repellent finishing after normal dyeing or product dyeing, decrease the friction fastness, especially in polyester microphone fiber materials. Power, ivy.
[0006] これに対して、布帛にした染色していない繊維素材に加工を施し、後染めによって 必要な色やデザインの布帛を得ることができる後染め用布帛が特許文献 1に記載さ れている。これは、合成繊維、半合成繊維、再生繊維、天然繊維等からなる繊維製 品を予め織物、編物、不織布等の形にしておき、その表面にラミネート法などにより 合成樹脂膜を形成して、後染めの染色性を向上させたものである。 [0006] On the other hand, Patent Document 1 describes a post-dyed fabric that can be processed into a fabric material that is not dyed to obtain a fabric having a necessary color and design by post-dying. Yes. This is because fiber products made of synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, etc. are pre-formed in the form of woven fabric, knitted fabric, non-woven fabric, etc., and a synthetic resin film is formed on the surface by a laminating method, etc. This improves the dyeability of post-dying.
[0007] 特許文献 1:特開 2002— 105865号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-105865
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、特許文献 1の方法では、合成樹脂膜を形成させるため、加工を行う 対象が布帛に限られていた。また、合成樹脂膜を貼り合わせるために接着剤を用い る必要があり、得られる繊維製品の撥水性、耐洗濯性等は不十分になってしまうとい う問題があった。 [0008] However, in the method of Patent Document 1, since a synthetic resin film is formed, the object to be processed is limited to a fabric. In addition, it is necessary to use an adhesive to bond the synthetic resin film, and there has been a problem that the resulting fiber product has insufficient water repellency, washing resistance, and the like.
[0009] また、染色前に予め撥水剤を使用して撥水加工をしておいたとしても、染色性が低 下するだけでなぐ染色工程中に撥水剤が脱落してしまい、染色後の繊維素材はほ とんど撥水性を有しないものとなってしまった。このため、従来は撥水加工後の後染 めは事実上不可能であると考えられていた。逆に、染色後に撥水加工を行う場合に は、耐久性を出すためにべ一キングを行う必要がある力 この熱によって堅牢度が低 下してしまうという問題があった。  [0009] Even if the water repellent is used in advance before dyeing, the water repellent will fall off during the dyeing process just by reducing the dyeability. The later fiber material has almost no water repellency. For this reason, it has been considered that post-dyeing after water-repellent processing is virtually impossible. On the other hand, when water-repellent processing is performed after dyeing, there is a problem that the fastness is reduced by this heat that needs to be baked for durability.
[0010] さらに、後染めではなく通常の染色を行う場合でも、染色加工時には繊維が傷む場 合が多力 た。例えば、編み立て用糸は毛羽ァレが発生することがあり、また、縫製 後の洗濯機洗いによって表面が白化されやす力、つた。植物性繊維と動物性繊維との 複合素材では、染色加工前に必要となる準備加工ではアルカリを使用する力 動物 性繊維が受ける損傷が激しいために十分な前処理が出来ないという問題があり、染 色加工そのものでも、動物性繊維を損傷させることなく濃色に染色することは困難で あった。また、複合繊維であるために、用いる染料は両方の素材に対して効果のある ものでなければならず、結果として染色処理時間が長くなり、繊維素材の損傷をさら に大きくしていた。レーヨンなどの再生繊維でも、染色加工中のスレアタリや強度低下 が著しぐまた染色後の洗濯試験での損傷が激しいために耐久性のある商品とはなり えなかった。 [0010] Furthermore, even when normal dyeing is performed instead of post-dyeing, the fibers are often damaged during the dyeing process. For example, the yarn for knitting may cause fluffing, and the surface is easily whitened by washing with a washing machine after sewing. In the composite material of plant fiber and animal fiber, there is a problem that sufficient pretreatment cannot be performed due to severe damage to the animal fiber, which uses alkali in the preparation process required before dyeing process, Even with the dyeing process itself, it was difficult to dye the animal fibers in a dark color without damaging them. Also, because it is a composite fiber, the dye used is effective for both materials As a result, the dyeing process took longer and the damage to the fiber material was even greater. Recycled fibers such as rayon could not be made durable due to severe damage during dyeing and a decrease in strength, and severe damage in washing tests after dyeing.
[0011] さらにまた、紡績糸のサイジング加工では、織りの際に縦糸が損傷しないように澱粉 、 PVA、アクリル糊剤を縦糸に塗布するが、その紡績糸を用いて織り上がった生地に は、大量の糊剤が付着されているために、染色加工場において、大きな精練糊抜き 機を用いて除去する必要があり、大きな設備投資、エネルギー使用、排水処理等の 負担が大きなものとなって!/、た。  [0011] Furthermore, in the sizing process of spun yarn, starch, PVA, and acrylic glue are applied to the warp so that the warp is not damaged during weaving. For fabrics woven using the spun yarn, Since a large amount of glue is attached, it is necessary to remove it with a large scouring desizing machine at the dyeing processing plant, resulting in a large burden on capital investment, energy use, wastewater treatment, etc.! /
[0012] そして、染色後に樹脂加工する従来の方法で得られた製品でも、洗濯処理におい て、風合いの劣化、表面の白化現象、ピリングの発生、強度の低下等が起こることが 知られていた。このため、洗濯の条件よりもさらに厳しい条件となる染色加工を、撥水 性、撥油性、柔軟性を向上させる樹脂加工を行った後に行った場合には、それらの 機能を維持させることは難しレ、と考えられて!/、た。  [0012] And it has been known that even in the product obtained by the conventional method of resin processing after dyeing, deterioration of texture, surface whitening phenomenon, occurrence of pilling, reduction in strength, etc. occur in the washing process. . For this reason, if the dyeing process, which is more severe than the conditions for washing, is performed after resin processing that improves water repellency, oil repellency, and flexibility, it is difficult to maintain these functions. I thought it was! /
[0013] そこでこの発明は、布帛に限らず繊維素材全般に適用することができ、後染めの染 色加工を行っても繊維が傷みにくぐかつ、染色後の染色性が高ぐさらに必要に応 じて、撥水性、撥油性、耐洗濯性が高い後染め用繊維素材を提供することを目的と する。  [0013] Therefore, the present invention can be applied not only to fabrics but also to all fiber materials, and even if post-dyeing is performed, the fibers are difficult to be damaged and the dyeability after dyeing is further increased. Accordingly, an object is to provide a fiber material for post-dyeing having high water repellency, oil repellency, and washing resistance.
課題を解決するための手段  Means for solving the problem
[0014] この発明は、水酸基、アミノ基、アミド基、カルボキシル基、及びウレタン基のうち少 なくとも 1種の官能基を有する繊維素材に、その繊維素材の前記官能基と結合する 官能基を有し、前記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂 溶液を含ませて、前記合成樹脂の分子を繊維素材の分子と結合させることで、上記 の課題を解決したのである。すなわち、繊維素材の官能基に分子として合成樹脂を 結合させることにより、合成樹脂があることで染色性を向上させるだけでなぐ撥水性 や撥油性などを発揮するその合成樹脂が、その後の染色加工などにおいて繊維素 材から剥がれにくいようにしたのである。  [0014] The present invention provides a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group with a functional group that binds to the functional group of the fiber material. The above-mentioned problems have been solved by including a resin solution containing as a main component a synthetic resin that improves the dyeability of the fiber material and binding the molecules of the synthetic resin to the molecules of the fiber material. . In other words, by combining a synthetic resin as a molecule with the functional group of the fiber material, the synthetic resin that exhibits water repellency and oil repellency, etc., which improves the dyeability simply by the presence of the synthetic resin, is used in the subsequent dyeing process. For example, it was made difficult to peel off from the fiber material.
[0015] この発明により合成樹脂と結合させる繊維素材の形状は特に限定されるものではな ぐ具体的には綿、スライバー、フィラメント糸、紡績糸、縫製糸、又はこれらからなる、 織物、編み物、若しくは不織布、又はこれらからなる縫製品などに用いることができる 。また、上記の官能基を有する繊維素材としては、例えば、紙繊維、竹繊維、綿、麻、 レーヨン、有機溶剤紡糸法により得られるセルロース繊維、銅アンモニアレーヨン、シ ルク、ウール、ポリエステル、脂肪族ポリアミド系繊維、ァラミド繊維などの芳香族ポリ アミド系繊維、ポリウレタン、ジアセテート、トリアセテート、又はこれらを複数用いた複 合繊維が挙げられる。 [0015] The shape of the fiber material bonded to the synthetic resin according to the present invention is not particularly limited. More specifically, it can be used for cotton, sliver, filament yarn, spun yarn, sewing yarn, woven fabric, knitted fabric, non-woven fabric, or a sewing product made of these. Examples of the fiber material having the above functional group include paper fiber, bamboo fiber, cotton, hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, copper ammonia rayon, silk, wool, polyester, aliphatic. Examples thereof include aromatic polyamide fibers such as polyamide fibers and aramid fibers, polyurethane, diacetate, triacetate, and composite fibers using a plurality of these.
[0016] 上記合成樹脂の分子と繊維素材の分子とを結合させる方法としては、それぞれの 分子の官能基を結合する架橋剤を上記樹脂溶液に含ませ、この架橋剤によりそれぞ れの分子を結合させる方法が挙げられる。このような架橋剤としては、複数のイソシァ ネート基を有するイソシァネート系化合物を用いることができる。  [0016] As a method of binding the molecule of the synthetic resin and the molecule of the fiber material, a crosslinking agent that binds a functional group of each molecule is included in the resin solution, and each molecule is bound by the crosslinking agent. The method of combining is mentioned. As such a crosslinking agent, an isocyanate compound having a plurality of isocyanate groups can be used.
[0017] また、特に上記合成樹脂が、パーフルォロアルキル基を有するアタリレート単位と親 水性ビュルモノマー単位とからなる共重合樹脂を含むものであると、親水性である部 分と疎水性である部分との両方を有するために、空気中ではパーフルォロアルキル 基が撥水性 ·撥油性を発揮して汚れを弾き、水中ではビュル基の親水性末端が表面 に出ることで親水性を発揮して汚れを落とす効果を発揮する。また、親水性基がある ために、特に染色性や吸湿性を向上させることができる。  [0017] In particular, when the synthetic resin includes a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit, it is hydrophilic and hydrophobic. Because it has both a part and a perfluoroalkyl group in water, it exhibits water repellency and oil repellency to repel dirt, and in water the hydrophilic end of the bull group comes out on the surface and exhibits hydrophilicity. And demonstrates the effect of removing dirt. In addition, since there is a hydrophilic group, it is possible to improve dyeability and hygroscopicity in particular.
[0018] さらに、上記合成樹脂が上記の共重合樹脂に加えて、親水性基を持たないパーフ ルォロアルキルアタリレート樹脂、ポリエステル樹脂、シリコン樹脂、ウレタン樹脂など を加えると、それぞれ追加した樹脂に合わせた効果を付与することができる。パーフ ノレォロアルキルアタリレート樹脂であれば撥水性が向上し、シリコン樹脂であれば強 度と浴中における柔軟性が向上する。ポリエステル樹脂やウレタン樹脂を含めた場合 は、それぞれの樹脂に特徴的な風合いを持った繊維素材とすることができる。  [0018] Further, when the synthetic resin is added to the copolymer resin, a perfluoroalkyl acrylate resin, a polyester resin, a silicone resin, a urethane resin, or the like that does not have a hydrophilic group is added to each of the added resins. Combined effects can be imparted. A perfluoroalkyl acrylate resin improves water repellency, and a silicon resin improves strength and flexibility in a bath. When polyester resin or urethane resin is included, it can be made into a fiber material with a characteristic texture for each resin.
[0019] 上記の合成樹脂と結合させた後染め用繊維素材は、 AATCC118— 2002に記載 の撥油性試験による撥油性の結果力 少なくとも 2級とすることができ、最大で 7級ま で向上させることが出来る。また、 JIS L 1092に記載の撥水性試験による撥水性 の結果を、少なくとも 2級とすることができ、最大で 5級まで向上させることができる。 発明の効果 [0020] この発明に力、かる後染め用繊維素材により、布帛に限らず繊維製品全般について 、後染めを可能とすることができる。また、反応する官能基がある繊維であればよいの で、多くの繊維素材を後染め可能とすることができ、後染め加工中又は後染め後に 生じやすかつたスレアタリやシヮ、素材の損傷の発生を抑えることができる。これにより 、繊維素材からなる製品を製造、出荷するにあたって、縫製拠点に隣接する染色ェ 程で簡易に染色可能となり、市場の動向に合わせて短期間で染色して製品を出荷 すること力 Sできるようになり、販売機会のロスを削減し、売れ残り商品が生じることを抑 制できる。 [0019] The fiber material for post-dyeing combined with the above synthetic resin can have an oil repellency resulting from the oil repellency test described in AATCC118-2002, which can be at least second grade, and can be improved up to grade 7 I can do it. In addition, the water repellency result according to the water repellency test described in JIS L 1092 can be at least grade 2, and can be improved up to grade 5. The invention's effect [0020] The post-dyeing fiber material, which is effective in the present invention, enables post-dyeing not only for fabrics but also for all textile products. In addition, any fiber that has a functional group that reacts can be used, so many fiber materials can be post-dyed, and damage that may occur during the post-dyeing process or after dyeing can occur. Can be suppressed. As a result, when manufacturing and shipping products made of fiber materials, it is possible to easily dye in the dyeing process adjacent to the sewing base, and it is possible to ship products after dyeing in a short period of time according to market trends. As a result, it is possible to reduce the loss of sales opportunities and to prevent unsold products.
[0021] 後染め可能とした繊維素材は、染色性を高めている合成樹脂が繊維素材と分子に より結合しているため、耐洗濯性、撥水性や撥油性が高ぐ表面張力が小さい繊維素 材となる。このため、従来は製品染め後に行っていた撥水剤のスプレー塗布などが 不要となるため、染色を容易に行うことができる。また、油汚れにも強い繊維素材とな る。また、染色性を高めている合成樹脂によって、吸湿性も優れた繊維素材となる。こ の吸湿性は、撥水性と両立させることもできる。さらに、合成樹脂と結合しているため に、繊維素材自体の耐久性が高くなり、従来の繊維素材に比べて染色時に繊維素 材が傷みに《なる。これにより紡績糸の場合には、織り後に糊抜きの負担が大きい サイジング加工を行って糸を保護する必要がなくなる。  [0021] The fiber material that can be post-dyed is a fiber with low surface tension that has high washing resistance, water repellency, and oil repellency because a synthetic resin that enhances dyeability is bonded to the fiber material through molecules. It becomes a material. This eliminates the need for water-repellent spraying, which was conventionally performed after product dyeing, and allows easy dyeing. In addition, the fiber material is resistant to oil stains. In addition, the synthetic resin having enhanced dyeability makes the fiber material excellent in hygroscopicity. This hygroscopicity can be compatible with water repellency. Furthermore, since it is combined with synthetic resin, the durability of the fiber material itself is increased, and the fiber material becomes damaged when dyeing compared to conventional fiber materials. As a result, in the case of spun yarn, there is no need to protect the yarn by performing sizing processing, which has a large burden of desizing after weaving.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、この発明について詳細に説明する。この発明は、水酸基、アミノ基、アミド基 、カルボキシル基、及びウレタン基のうち少なくとも 1種の官能基を有する繊維素材に 、その繊維素材の前記官能基と結合して前記繊維素材の染色性を向上させる合成 樹脂を主成分とする樹脂溶液を含ませて、前記合成樹脂の分子を繊維素材の分子 と結合させた、後染め用繊維素材である。なお、ここで染色性を向上させるとは、同 等の条件でより濃レ、染色濃度の製品が得られるようにすることをレ、い、その染色濃度 はたとえば、光の吸収係数 Kと散乱係数 Sとの比である K/S値で表される。  Hereinafter, the present invention will be described in detail. According to the present invention, a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group is bonded to the functional group of the fiber material so as to increase the dyeability of the fiber material. A fiber material for post-dyeing, which includes a resin solution containing a synthetic resin to be improved as a main component and binds molecules of the synthetic resin to molecules of the fiber material. Here, to improve the dyeability means to obtain a product with a higher density and density under the same conditions. For example, the density of the dye can be determined by, for example, the light absorption coefficient K and scattering. It is expressed as a K / S value that is the ratio to the coefficient S.
[0023] この発明で後染め可能とする繊維素材は、形状を特に限定されるものではなぐ綿 、スライバー、フィラメント糸、紡績糸、縫製糸などの原料や糸、これらからなる織物、 編み物、若しくは不織布などの布帛、さらに、これらの布帛と糸とからなる縫製品のい ずれの状態に対しても、後染め可能とすることができる。 [0023] The fiber material that can be post-dyed in the present invention is not particularly limited in shape, but is made of raw materials and yarns such as cotton, sliver, filament yarn, spun yarn, sewing yarn, woven fabric, knitted fabric, or Fabrics such as non-woven fabrics and sewing products made of these fabrics and threads Even in a state of deviation, post-dyeing can be made possible.
[0024] 上記の繊維素材としては、例えば、紙繊維、竹繊維、綿、麻などの植物性繊維、レ 一ヨン、有機溶剤紡糸法により得られるセルロース繊維、銅アンモニアレーヨンなどの 再生繊維、シルク、ウールなどの動物性繊維、ポリエステル、ポリウレタン、脂肪族ポリ アミド系繊維 ½—ナイロン、 6, 6—ナイロンを含む。)、芳香族ポリアミド系繊維などの 合成繊維、ジアセテート、トリアセテートなどの半合成繊維が挙げられる。なお、有機 溶剤紡糸法により得られるセルロース繊維としては、具体的にはテンセル、リヨセル( いずれも登録商標。)が挙げられ、銅アンモニアレーヨンとしては、ベンベルグ、キュ ブラ(レ、ずれも登録商標。 )が挙げられる。  [0024] Examples of the fiber material include vegetable fibers such as paper fiber, bamboo fiber, cotton and hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, regenerated fiber such as copper ammonia rayon, silk Animal fibers such as wool, polyester, polyurethane, aliphatic polyamide fiber ½—nylon, 6, 6—nylon. ), Synthetic fibers such as aromatic polyamide fibers, and semisynthetic fibers such as diacetate and triacetate. Specific examples of cellulose fibers obtained by the organic solvent spinning method include tencel and lyocell (both are registered trademarks), and copper ammonia rayon is a registered trademark of Bemberg and Cubula (both are registered trademarks). ).
[0025] これらの繊維素材のうち、植物性繊維や再生繊維、ジアセテートは水酸基を有し、 また、ポリエステルも末端に水酸基を有している。ポリアミド系繊維、動物性繊維はァ ミノ基、カルボキシル基、アミド基を有している。また、ポリエステルの末端にはカルボ キシル基があり、ナイロンはアミド基を有している。さらに、ポリウレタン繊維は末端に ウレタン基を有している。またトリアセテートは、理論上は水酸基が全てァセチル基に 変わっている力 実際には一部の水酸基が残っており、その水酸基が反応する。  [0025] Of these fiber materials, plant fibers, regenerated fibers, and diacetates have hydroxyl groups, and polyesters also have hydroxyl groups at the ends. Polyamide fibers and animal fibers have amino groups, carboxyl groups, and amide groups. The terminal of the polyester has a carboxyl group, and nylon has an amide group. Furthermore, the polyurethane fiber has a urethane group at the end. In addition, triacetate theoretically has the ability to change all hydroxyl groups to acetyl groups. Actually, some hydroxyl groups remain, and these hydroxyl groups react.
[0026] これらの中でも特にポリエステル繊維は、従来の方法では、染色性だけでなぐ透 湿性や撥水性を持たせることが困難であった力 この発明に力、かる方法で、染色性を 向上させる合成樹脂を結合させることで透湿性を容易に持たせることができ、その他 の合成樹脂を結合させることで撥水性を付与することも容易にできる。  [0026] Among these, polyester fibers, in particular, have been difficult to impart moisture permeability and water repellency, not only dyeability, with conventional methods. By combining a synthetic resin, moisture permeability can be easily provided, and by combining other synthetic resins, water repellency can be easily provided.
[0027] これらの繊維素材に上記合成樹脂を結合させる前には、精練、漂白、糊抜きなどを 行っておくと、上記合成樹脂が結合させやすぐ品質が安定するため好ましい。  [0027] Prior to bonding the synthetic resin to these fiber materials, scouring, bleaching, desizing and the like are preferably performed because the synthetic resin is bonded and the quality is immediately stabilized.
[0028] 具体的には、精練では繊維素材に付着している夾雑物を除去して、上記合成樹脂 が結合しやすくなるようにすることができる。綿には天然ワックスゃぺクチンなどの天 然の夾雑物が含まれており、これらは高濃度アルカリや、洗剤にて高温処理すること により除去すること力 Sできる。綿/ウールなど、セルロース系と動物性繊維の混紡、交 織の場合、アルカリを使用すると動物性繊維が溶解してしまうので、酸性溶液で精練 を行う。なお、合成繊維では夾雑物が無いが、工程中に使用される油剤が付着して いるため、高温下で洗剤を用いて除去する。 [0029] 漂白は綿素材を中心に行われる。塩素法と過酸化水素法があり、環境的観点から 過酸化水素法を用いると好ましい。この方法は過酸化水素とアルカリとを併用して処 理を行うが、ウールなど動物性繊維を含んだ繊維素材の場合は、繊維が溶けるため アルカリの使用量を出来るだけ下げて漂白を行う。 [0028] Specifically, in scouring, impurities adhering to the fiber material can be removed so that the synthetic resin can be easily bonded. Cotton contains natural contaminants such as natural wax pectin, which can be removed by high-temperature alkali or detergent treatment at high temperatures. In the case of blending and weaving of cellulose and animal fibers such as cotton / wool, animal fibers will be dissolved if alkali is used, so scouring with an acidic solution. Synthetic fibers are free of contaminants, but the oil used during the process is adhered to them, so they are removed using detergent at high temperatures. [0029] Bleaching is performed mainly on cotton materials. There are a chlorine method and a hydrogen peroxide method, and it is preferable to use the hydrogen peroxide method from an environmental viewpoint. In this method, hydrogen peroxide and alkali are used in combination, but in the case of fiber materials containing animal fibers such as wool, the fiber is melted and bleaching is performed with the alkali used as low as possible.
[0030] 糊抜きは、綿糸や綿複合紡績糸(レーヨン、有機溶剤紡糸法により得られるセル口 ース繊維、麻、も含む。)を織物にする際に経糸が傷むのを防止するために糊剤を付 与するサイジング加工を行うが、この糊剤を取り除くことをいう。綿 100%の場合は、 高濃度のアルカリと酸化糊抜き剤を併用し、高温で長時間処理を行う。レーヨンや有 機溶剤紡糸法により得られるセルロース繊維では、高濃度のアルカリを用いて長時 間処理するとスキン層が傷みやすいため、アルカリを併用する酸化糊抜き方式では なぐ酵素を用いて糊剤を除去する。綿/ウールなどの場合も、レーヨンなどと同様に アルカリ剤を使用せずに酵素法により糊剤を除去する。なお、ポリエステルなどの合 成繊維ではサイジングを行わないため、糊抜きは不要である。また、編物については [0030] The desizing is performed to prevent warp from being damaged when a cotton yarn or a cotton composite spun yarn (including rayon, cellulose fiber obtained by an organic solvent spinning method, hemp) is used as a woven fabric. A sizing process to apply glue, but to remove this glue. In the case of 100% cotton, a high concentration of alkali and an oxidizing paste remover are used in combination, and treatment is performed at a high temperature for a long time. Cellulose fibers obtained by rayon and organic solvent spinning methods are susceptible to damage when treated for a long time with a high concentration of alkali. Remove. In the case of cotton / wool, etc., the paste is removed by the enzymatic method without using an alkaline agent as in the case of rayon. Synthetic fibers such as polyester do not require sizing, so no desizing is necessary. For knitting
、サイジングを行わな!/、ため糊抜きは不要である。 No sizing! / No desizing required.
[0031] これらの繊維素材の官能基に結合させる上記の合成樹脂としては、パーフルォロア ルキル基を有するアタリレート単位と親水性ビュルモノマー単位とからなる共重合樹 脂を含むことが好ましい。このうち、親水性ビュルモノマー単位があることにより、染料 との親和性が高くなることで、染色性が向上する。このような共重合樹脂としては、そ れらの単位となるモノマーを単純に混合して共重合させたものでもよ!/、し、それぞれ のモノマーを重合させた後で結合させたブロック共重合体であってもよい。 [0031] The synthetic resin to be bonded to the functional group of these fiber materials preferably contains a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit. Among these, the presence of the hydrophilic butyl monomer unit improves the dyeability by increasing the affinity with the dye. Such a copolymer resin may be one obtained by simply mixing and copolymerizing the monomers as the units! /, And the block copolymer that is bonded after the respective monomers are polymerized. It may be a coalescence.
[0032] パーフルォロアルキル基を有するアタリレート単位は、アクリル酸単位にパーフルォ 口アルキル基が結合した構造のエステル単位でもよ!/、が、パーフルォロアルキル基と アクリル基との間に、ポリアルキレンエーテル鎖を有する、下記化学式(1)のような構 造のエステル単位であると、撥水性等の得られる効果がより優れたものとなる。 [0032] The attalylate unit having a perfluoroalkyl group may be an ester unit having a structure in which a perfluorinated alkyl group is bonded to an acrylic acid unit! /, But between the perfluoroalkyl group and the acrylic group. In addition, when the ester unit has a polyalkylene ether chain and has a structure as shown in the following chemical formula (1), the effects such as water repellency are more excellent.
[0033] [化 1] 一 (一 C H 2— C H—) m[0033] [Chemical 1] One (One CH 2 — CH—) m
I " ) I ")
〇= C一 O— ( C H 2 ) D— O— ( C F 2 ) n - C F 3 〇 = C 1 O— (CH 2 ) D — O— (CF 2 ) n -CF 3
(m、 n、 pは自然数)  (m, n, p are natural numbers)
[0034] また、親水性ビュルモノマー単位の例としては、例えばビュルアルコール単位や、 アクリル酸エステル単位でエステル部分に親水性基を有するものなどが挙げられる。 なお、ビュルアルコール単位を用いる場合には、例えば酢酸ビュルを用いて共重合 させた後で、その酢酸ビュル単位を加水分解してビュルアルコール単位とする。 [0034] Examples of the hydrophilic butyl monomer unit include, for example, a butyl alcohol unit and an acrylate ester unit having a hydrophilic group in the ester moiety. In the case of using a butyl alcohol unit, for example, after copolymerization using butyl acetate, the butyl acetate unit is hydrolyzed to form a butyl alcohol unit.
[0035] 上記の共重合樹脂を上記合成樹脂として含み、上記繊維素材と結合させることによ つて、パーフルォロアルキル基を有するアタリレート単位が疎水性であるために、上 記合成樹脂を結合させた繊維素材の撥水性、撥油性を向上させることができる。また それとともに、親水性ビュルモノマー単位が存在することによって、撥水性を発揮す るにも関わらず、染料との親和性がよくなることで染色性を向上させたり、洗剤を吸収 しゃすくなるために水中で汚れを落としやすくしたり、吸湿性吸水性を向上させる効 果が得られる。なお、この共重合樹脂のそれぞれの構成単位の比率にもよる力 この 共重合樹脂により得られる撥水性は高いものではなぐこの共重合樹脂だけでは JIS L 1092に記載の撥水性試験で 1級程度となる。より撥水性を高めて汚れを弾く効 果等、その他の効果を得るためには、さらに別の合成樹脂を併用する必要がある。  [0035] Since the acrylate unit having a perfluoroalkyl group is hydrophobic by containing the copolymer resin as the synthetic resin and binding to the fiber material, the synthetic resin is The water repellency and oil repellency of the bonded fiber material can be improved. At the same time, the presence of hydrophilic bull monomer units improves water-repellency, but improves affinity for dyes to improve dyeability and absorb detergents. The effect of making it easier to remove dirt in water and improving hygroscopic water absorption is obtained. The force depending on the ratio of each structural unit of this copolymer resin The water repellency obtained by this copolymer resin is not high. This copolymer resin alone is about the first grade in the water repellency test described in JIS L 1092. It becomes. In order to obtain other effects such as the effect of improving water repellency and repelling dirt, it is necessary to use another synthetic resin in combination.
[0036] また、上記の合成樹脂として上記共重合樹脂と併用可能な樹脂は、例えば、シリコ ン樹脂、ウレタン樹脂、ポリエステル樹脂、パーフルォロアルキルアタリレート樹脂が 挙げられ、これらを単独で用いてもよいし、複数の樹脂を併用しても良い。  [0036] Examples of the resin that can be used in combination with the copolymer resin as the synthetic resin include, for example, a silicone resin, a urethane resin, a polyester resin, and a perfluoroalkyl acrylate resin, which are used alone. Alternatively, a plurality of resins may be used in combination.
[0037] この中でも特に、上記の合成樹脂としてシリコン樹脂を含むと、シリコン樹脂が架橋 剤により繊維素材に分子結合することで、耐久柔軟効果が発揮されるので好ましい。 特に、綿、有機溶剤紡糸法により得られるセルロース繊維などは、濡れると非常に風 合いが剛直になるが、シリコンの柔軟効果により、濡れた場合でも繊維を非常に柔軟 にする。この効果が、染色中や洗濯中に本来ならば硬くなる綿素材をより柔軟にして 、繊維素材の強度低下、スレアタリを発生しに《なる。このようなシリコン樹脂として は、ァミノシリコン、エポキシシリコン、ジメチルシリコン等が挙げられる。 [0038] また、上記合成樹脂がパーフルォロアルキル基を有するアタリレート樹脂を含むと、 繊維素材に結合させて得られる後染め用繊維素材の撥水性が向上する効果が高い 。このアタリレート樹脂も、パーフルォロアルキル基とアクリル基との間に、ポリアルキ レンエーテル鎖を有するものであると、得られる撥水性効果がより優れたものとなる。 ただし、上記アタリレート樹脂を有して撥水性を発揮させても、上記共重合樹脂と併 用することで、得られる後染め用繊維素材の吸湿性や吸水性を維持することができる [0037] Among these, it is particularly preferable to include a silicone resin as the synthetic resin, because the silicone resin is molecularly bonded to the fiber material by a crosslinking agent, thereby exhibiting a durable softening effect. In particular, cotton, cellulose fibers obtained by organic solvent spinning, and the like become very stiff when wet, but the softness of silicon makes the fibers very soft even when wet. This effect makes the cotton material that is originally hard during dyeing and washing more flexible, resulting in a decrease in the strength of the fiber material and the occurrence of a slack. Examples of such silicon resins include amino silicon, epoxy silicon, and dimethyl silicon. [0038] When the synthetic resin contains an acrylate resin having a perfluoroalkyl group, the effect of improving the water repellency of the post-dyed fiber material obtained by bonding to the fiber material is high. If the acrylate resin also has a polyalkylene ether chain between the perfluoroalkyl group and the acryl group, the resulting water repellency is more excellent. However, even if it has the above acrylate resin and exhibits water repellency, it can maintain the hygroscopicity and water absorption of the resulting post-dyed fiber material by using it together with the copolymer resin.
[0039] さらに、上記合成樹脂がウレタン樹脂やポリエステル樹脂を含むと、繊維素材に結 合させて得られる後染め用繊維素材の風合レ、や触感を調整することができる。また、 上記合成樹脂が吸水性ポリエステル樹脂を含み、撥水性の向上効果のある樹脂の 含有量が無視できる程度であると、得られる後染め用繊維素材の吸水性を向上させ ること力 S出来る。その際に、上記共重合樹脂と併用すると、吸水性がありかつ撥油性 を有する後染め用繊維素材を得ることができる。 [0039] Further, when the synthetic resin contains a urethane resin or a polyester resin, it is possible to adjust the texture and feel of the post-dyeing fiber material obtained by bonding to the fiber material. In addition, if the synthetic resin contains a water-absorbing polyester resin and the content of the resin having an effect of improving water repellency is negligible, it is possible to improve the water absorbability of the obtained fiber material for post-dyeing. . At that time, when used in combination with the copolymer resin, a fiber material for post-dyeing having water absorption and oil repellency can be obtained.
[0040] これらの上記合成樹脂を添加することで、繊維素材が有するピリング、フイビリル、 引き裂きに対する弱さなど、様々な問題を解決することが出来る。例えば、合成繊維 の短繊維ヮタを乾燥状態で摩擦すると静電気や物理的力によってヮタ球となってしま うピリングを抑制するためには、上記共重合樹脂や上記シリコン樹脂、ポリエステル樹 脂を添加するとよい。上記シリコン樹脂は素材を柔ら力、くして物理的力を緩和し、上 記共重合樹脂は素材の公定水分率を上げて静電気発生を弱め、ポリエステル樹脂 は静電気発生を抑制することで、ピリングを抑制する作用を発揮する。  [0040] By adding these synthetic resins, it is possible to solve various problems such as pilling, fibrils and weakness against tearing of the fiber material. For example, in order to suppress pilling, which occurs when a synthetic fiber short fiber sheet is rubbed in a dry state, it becomes a table ball due to static electricity or physical force, the copolymer resin, the silicon resin, or the polyester resin is used. It is good to add. The silicone resin softens the material and relaxes the physical force, the copolymer resin increases the official moisture content of the material to reduce static electricity generation, and the polyester resin suppresses static electricity generation, thereby preventing pilling. Demonstrate the effect.
[0041] また、セルロース繊維が水中で揉まれたり、乾燥状態でも物理的な力によって発生 する、非結晶部分が破壊されて微毛化されるフイビリルに対しては、上記シリコン樹脂 を添加すると、繊維素材が柔軟化して、非結晶部分の破壊を抑制することができる。  [0041] In addition, for the fibrils in which the cellulose fibers are squeezed in water or are generated by physical force even in a dry state, and the non-crystalline portion is destroyed and becomes fine hair, The fiber material can be softened and the destruction of the non-crystalline portion can be suppressed.
[0042] さらに、合成繊維に比べて、綿の細番手やレーヨン、麻などのセルロース系繊維が 弱い、対引き裂き試験に対しては、上記と同様に上記シリコン樹脂を加えることで、強 くすること力 Sでさる。  [0042] Furthermore, compared with synthetic fibers, cellulose-based fibers such as cotton counts, rayon, and hemp are weak. For anti-tear tests, the above-mentioned silicone resin is added in the same way as above to make it stronger. That's the power S.
[0043] 上記樹脂溶液にこれらの合成樹脂を混合して用いる場合の、それぞれの好ましい 濃度は以下の通りである。上記共重合樹脂を含む場合は、上記樹脂溶液中のその 有効成分は、素材などにもよるが、 1重量%以上であると好ましぐ 2重量%以上であ るとより好ましい。 1重量%未満であると、この共重合させた樹脂を加えることによる効 果がほとんど望めなくなってしまう。この含有量が多いほど、得られる後染め用繊維 素材が高い撥油性を発揮する。後述する撥油性を 3級程度とするためには、 2重量 %程度の上記共重合樹脂を含んでいるとよぐ撥油性を 5級程度とするには 4重量% 程度の上記共重合樹脂を含んでいるとよい。一方で、 6重量%以下であると好ましい 。 6重量%を超えてもよいが、製造コストが高いものであるので、使用量は少ないこと が好ましい。ただし、上記合成樹脂がシリコン樹脂を含む場合には、シリコン樹脂が 上記共重合樹脂による効果を阻害するため、上記共重合樹脂が 6重量%程度含ま れること力 S好ましい。また、上記合成樹脂がこの共重合樹脂と吸水性ポリエステル樹 脂のみである場合には、撥水性を向上させずに撥油性を向上させつつ、かつ吸水性 を向上させることができる。 [0043] When these synthetic resins are used in a mixture with the resin solution, preferred concentrations thereof are as follows. When the copolymer resin is included, the resin solution in the resin solution The active ingredient is preferably 1% by weight or more, more preferably 2% by weight or more, although it depends on the material. If it is less than 1% by weight, the effect of adding this copolymerized resin is hardly expected. The higher the content, the higher the oil repellency of the resulting post-dyed fiber material. In order to make the oil repellency, which will be described later, about 3rd grade, about 2% by weight of the above copolymerized resin is included. It is good to include. On the other hand, it is preferably 6% by weight or less. Although it may exceed 6% by weight, since the production cost is high, the amount used is preferably small. However, when the synthetic resin contains a silicone resin, the silicone resin inhibits the effect of the copolymer resin, and therefore it is preferable that the copolymer resin is contained in an amount of about 6% by weight. When the synthetic resin is only the copolymer resin and the water-absorbing polyester resin, the water absorption can be improved while improving the oil repellency without improving the water repellency.
[0044] 上記合成樹脂がパーフルォロアルキル基を有するアタリレート樹脂を含む場合は、 上記樹脂溶液中のその有効成分は、 0. 2重量%以上であると好ましぐ 0. 8重量% 以上であるとより好ましい。 0. 2重量%未満であると、パーフルォロアルキルアタリレ ート樹脂を加えることによる効果がほとんど望めなくなってしまう。一方で、 4重量%以 下であると好ましい。 4重量%を超えると、風合いがやや硬くなつてしまう。ただし、上 記共重合樹脂やシリコン樹脂の量が多い場合は、十分な効果を発揮させるために必 要な量が多くなる。この場合は、後述する撥水性を 4〜5級とするために、上記アタリ レート樹脂を 12%程度含むとよぐ撥水性が 3級程度でよいのであれば、上記アタリ レート樹脂を 6重量%程度含むとよい。なお、撥水性 1級程度であれば、上記アタリレ ート樹脂を含まなくても、上記共重合樹脂だけで実現できる。  [0044] When the synthetic resin includes an acrylate resin having a perfluoroalkyl group, the active ingredient in the resin solution is preferably 0.2% by weight or more, and 0.8% by weight. The above is more preferable. If it is less than 0.2% by weight, the effect of adding a perfluoroalkyl acrylate resin can hardly be expected. On the other hand, it is preferably 4% by weight or less. If it exceeds 4% by weight, the texture becomes slightly hard. However, when the amount of the copolymer resin or silicon resin is large, the amount necessary for exhibiting a sufficient effect increases. In this case, in order to make the water repellency described later 4th to 5th grade, if the water repellency of about 12% is sufficient if it contains about 12% of the above acrylate resin, the acrylate resin is 6% by weight. It is good to include a degree. In addition, as long as the water repellency is about grade 1, it can be realized only by the copolymer resin, even if the acrylate resin is not included.
[0045] 上記合成樹脂がシリコン樹脂を含む場合、その有効成分は 0. 026重量%以上で あると好ましく、 0. 26重量%以上であるとより好ましい。 0. 026重量%未満であると、 シリコン樹脂を加えることによる効果がほとんど望めなくなってしまう。一方で、 4重量 %以下であると好ましぐ 2重量%以下であるとより好ましい。シリコン樹脂は撥水性や 撥油性を低下させるため、 4重量%を超えると、上記共重合樹脂などにより発揮され る撥水性や撥油性の低下が補完しきれなくなってしまう。 [0046] また、これらの合成樹脂を併用する場合、上記樹脂溶液中に含まれる上記合成樹 脂の有効成分の合計量は、 15重量%以下が好ましぐ 10重量%以下であるとより好 ましい。 15重量%を超えると、調合液の安定性が損なわれる可能性があるためであ [0045] When the synthetic resin contains a silicon resin, the active ingredient is preferably 0.026 wt% or more, more preferably 0.26 wt% or more. If it is less than 0.026% by weight, the effect of adding silicone resin is hardly expected. On the other hand, it is preferably 4% by weight or less, more preferably 2% by weight or less. Silicone resin lowers water repellency and oil repellency, so if it exceeds 4% by weight, the water repellency and oil repellency decline exhibited by the above-mentioned copolymer resin cannot be compensated. [0046] When these synthetic resins are used in combination, the total amount of the active ingredients of the synthetic resin contained in the resin solution is preferably 15% by weight or less, more preferably 10% by weight or less. Good. If it exceeds 15% by weight, the stability of the preparation may be impaired.
[0047] 上記樹脂溶液を上記繊維素材に付与する際に、そのピックアップ率は、 10%以上 であると好ましぐ 40%以上であるとより好ましい。ピックアップ率とは、乾燥された未 加工の生地重量に対して、溶液に浸漬された後の生地との重量差の比であり、下記 式(1)で表される値である。 [0047] When the resin solution is applied to the fiber material, the pickup rate is preferably 10% or more, more preferably 40% or more. The pick-up rate is the ratio of the weight difference between the dried raw dough and the dough after being immersed in the solution, and is a value represented by the following formula (1).
ピックアップ率(%) = (浸漬後の生地重量 乾燥生地重量) /乾燥生地重量 X 10 0…… (1 )  Pickup rate (%) = (Dough weight after soaking, Dry dough weight) / Dry dough weight X 10 0 …… (1)
[0048] この値が 10%未満であると、上記樹脂溶液中の上記合成樹脂が、上記繊維素材 の中に水を媒体として浸透しに《なってしまい、その分長い浸透時間が必要になつ てしまうためである。  [0048] If this value is less than 10%, the synthetic resin in the resin solution will permeate into the fiber material using water as a medium, which requires a longer permeation time. It is because it ends up.
[0049] また、上記樹脂溶液を上記繊維素材に付与する際に、上記繊維素材に対する上 記合成樹脂の付与量は、上記共重合樹脂であれば 0. 6重量%以上であるとよぐパ 一フルォロアルキル基を有するアタリレート樹脂であれば 1. 5重量%以上であるとよ ぐシリコン樹脂であれば 0. 4重量%以上であるとよい。これらの値以上であれば、十 分に合成樹脂を結合させることによる効果を発揮できる。また、後述する架橋剤を含 む場合に、架橋剤としてイソシァネートを含む場合には、上記繊維素材に対して 0. 3 重量%以上付与されて!/、ると、十分に反応を行うことができる。  [0049] When the resin solution is applied to the fiber material, the amount of the synthetic resin applied to the fiber material is 0.6% by weight or more for the copolymer resin. In the case of an acrylate resin having a monofluoroalkyl group, it should be 1.5% by weight or more, and in the case of a silicone resin, it should be 0.4% by weight or more. If it is more than these values, the effect by fully bonding a synthetic resin can be exhibited. In addition, when an isocyanate is included as a crosslinking agent when the crosslinking agent described later is included, if 0.3% by weight or more is applied to the fiber material, the reaction can be sufficiently performed. it can.
[0050] これらの合成樹脂を上記繊維素材の官能基と結合させる方法としては、例えば、上 記合成樹脂の官能基と、上記繊維素材の官能基とを、架橋剤で結合させる方法が挙 げられる。この架橋剤は、それぞれの官能基と結合可能な反応基を複数有する化合 物である必要があり、例えば、イソシァネート基又はウレタン基を有する、芳香族系ブ ロックイソシァネートや脂肪族系ブロックイソシァネートなどのイソシァネート系化合物 力 S挙げられる。芳香族系ブロックイソシァネートを用いると、架橋温度が低く反応性が 高いため好ましいが、白度が若干変化する場合があり、白度が求められる製品につ V、ては、反応性がやや劣るものの脂肪族系ブロックイソシァネートを用いると好ましレ、 。なお、イソシァネート基ではなくウレタン基を有するイソシァネート系化合物を架橋 剤として用いる場合には、ウレタン基部分を熱解離などでイソシァネート基にした上で 架橋反応を起こさせるものである必要がある。 [0050] Examples of a method of bonding these synthetic resins to the functional group of the fiber material include a method of bonding the functional group of the synthetic resin and the functional group of the fiber material with a crosslinking agent. It is done. This cross-linking agent must be a compound having a plurality of reactive groups capable of binding to each functional group. For example, an aromatic block isocyanate or an aliphatic block isocyanate having an isocyanate group or a urethane group. Isocyanate compounds such as cyanate. The use of aromatic block isocyanate is preferable because the crosslinking temperature is low and the reactivity is high, but the whiteness may change slightly, and for products that require whiteness V, the reactivity is slightly higher. Although it is inferior, it is preferable to use an aliphatic block isocyanate. . When an isocyanate compound having a urethane group instead of an isocyanate group is used as a crosslinking agent, the urethane group portion needs to be converted into an isocyanate group by thermal dissociation or the like and then a crosslinking reaction must be caused.
[0051] このような架橋剤を用いる場合、上記樹脂溶液を上記繊維素材に付与した後、架 橋反応を起こさせるための熱処理を行うと好ましい。この熱処理としては、最低限必 要な温度は架橋剤の種類により異なる力 140°C以上であると一般に架橋剤が反応 しゃすレ、ため好ましレ、。一方で 200°Cを超えると上記繊維素材が傷んだりするおそ れがあるため 200°C以下であることが好ましぐ 180°C以下であるとより好ましい。な お、カルポジイミド、シランカップリング剤を架橋剤として用いると、耐久性が不足して しまう。 [0051] When such a crosslinking agent is used, it is preferable to perform a heat treatment for causing a bridge reaction after the resin solution is applied to the fiber material. For this heat treatment, the minimum required temperature varies depending on the type of cross-linking agent. It is generally preferred that the cross-linking agent reacts with a force of 140 ° C or higher. On the other hand, if the temperature exceeds 200 ° C, the above fiber material may be damaged, and it is preferable that the temperature is 200 ° C or less, more preferably 180 ° C or less. In addition, if carpositimide or a silane coupling agent is used as a crosslinking agent, the durability will be insufficient.
[0052] また、このような架橋剤を含む場合、上記樹脂溶液中の架橋剤の濃度は、その有 効成分が、 0. 04重量%以上であると好ましい。 0. 04重量%未満であると上記繊維 素材と上記合成樹脂とを十分に結合できず、染色性等を向上させる効果が不十分に なってしまうためである。一方で、 4重量%以下であると好ましぐ 0. 5重量%以下で あるとより好ましい。 4重量%を超えると、かえって染色性が低下してしまい、風合いが 悪くなることがある。特に上記のイソシァネート系化合物を用いる場合は、 1重量%以 下であると好ましい。  [0052] When such a cross-linking agent is included, the concentration of the cross-linking agent in the resin solution is preferably such that the effective component is 0.04% by weight or more. If the amount is less than 0.04% by weight, the fiber material and the synthetic resin cannot be sufficiently bonded, and the effect of improving the dyeability and the like becomes insufficient. On the other hand, it is preferably 4% by weight or less, more preferably 0.5% by weight or less. If it exceeds 4% by weight, the dyeability may be deteriorated and the texture may be deteriorated. In particular, when the above isocyanate compound is used, it is preferably 1% by weight or less.
[0053] 上記合成樹脂を主成分とし、上記架橋剤等を必要に応じて含む樹脂溶液を上記 繊維素材に含ませることで、上記繊維素材の分子と上記合成樹脂の分子とを結合さ せて、上記繊維素材の染色性を向上させる。なお、主成分とするとは、溶液中の固形 分の 50重量%以上を占めることをいう。また、溶液の溶媒は特に限定されるものでは なぐ水を用いることができる。  [0053] By incorporating into the fiber material a resin solution containing the synthetic resin as a main component and optionally containing the crosslinking agent or the like, the molecules of the fiber material and the molecules of the synthetic resin are combined. , Improve the dyeability of the fiber material. The main component means that the solid content in the solution is 50% by weight or more. Further, the solvent of the solution is not particularly limited, and water can be used.
[0054] 上記樹脂溶液を上記繊維素材に含ませる方法としては、上記繊維素材の表面だけ でなぐ内部にまで上記樹脂溶液を染みこませることができる方法を用いると、染色 性を高める効果にムラが生じに《なるため好ましい。  [0054] As a method of incorporating the resin solution into the fiber material, using a method in which the resin solution can be impregnated into the interior of the fiber material only, the effect of improving dyeability is uneven. Is preferable because it becomes <<.
[0055] 具体的に上記繊維素材に上記樹脂溶液を付与させる際に用いる装置や方法は、 上記繊維素材の形状により適切なものを選択する。例えば紡績糸やフィラメント糸で は、サイジング機、チーズ加工機、ハンク染色機、カセ加工機、ロープ加工機、スラッ シヤー加工機などを用いることができる。織物、編物、不織布では、布を広げた状態 で拡布加工機 (テンター加工機)などを用いて、上記樹脂溶液を浸漬法ゃコーティン グ法で付与する方法を用いることができる。ロープ状である場合は、ゥインス機、液流 染色機、ドラム染色機などで上記樹脂溶液を付与することができる。縫製品の場合は 、ドラム染色機、ワッシャー型加工機を用いることができる。このような付与は一回で 行っても良いし、二回以上連続して付与してもよい。上記繊維素材によっては様々な 生地素材が副資材として使用されているため薬品が均一に浸透するのに時間がか 力、る場合がある力 S、二回以上の付与を行うと、そのような上記繊維素材にも十分に浸 透させること力 Sできる。二回以上行う場合は、上記の付与を連続して行っても良いし、 一旦乾燥し熱処理を行ってから再付与してもよ!/、。 [0055] The apparatus and method used when the resin solution is specifically applied to the fiber material is selected appropriately depending on the shape of the fiber material. For example, in the case of spun yarn and filament yarn, sizing machine, cheese processing machine, Hank dyeing machine, cassette processing machine, rope processing machine, A shearing machine or the like can be used. For woven fabrics, knitted fabrics and non-woven fabrics, a method of applying the resin solution by a dipping method or a coating method using a spreading machine (tentering machine) or the like while the cloth is spread can be used. In the case of a rope shape, the resin solution can be applied with a wins machine, a liquid dyeing machine, a drum dyeing machine or the like. In the case of a sewn product, a drum dyeing machine or a washer type processing machine can be used. Such provision may be performed once, or may be performed continuously twice or more. Depending on the fiber material, various fabric materials are used as secondary materials, so it takes time for the chemicals to penetrate evenly. It is possible to sufficiently permeate the above fiber material. When performing two or more times, the above-mentioned application may be performed continuously, or it may be dried and heat-treated once, and then applied again! /.
[0056] これらの装置により上記樹脂溶液を付与させた後、上記繊維素材を乾燥させて水 分を飛ばすとともに架橋剤を反応させ、熱処理を行って架橋剤の反応を強固にして、 この発明にかかる後染め用繊維素材を得ることができる。  [0056] After the resin solution is applied by these apparatuses, the fiber material is dried to remove water and react with the crosslinking agent, and heat treatment is performed to strengthen the reaction of the crosslinking agent. Such a fiber material for post dyeing can be obtained.
[0057] また、上記樹脂溶液を付与させた後で行う乾燥処理の温度は、 50°C以上であると 好ましく、 130°C以上であるとより好ましい。 50°C未満では低温すぎて水の蒸発が遅 ぐ乾燥に時間力 Sかかりすぎてしまうためであり、より高温であるほど乾燥させやすい。 一方で、 200°C以下であると好ましい。 200°Cを超えると、乾燥の際に上記繊維素材 が熱により傷んでしまう可能性があるためである。ただし、これらの最適な温度や、乾 燥処理に要する時間は、乾燥機の熱源や熱処理方法の違いにより変化する。また、 繊維素材の形状によっても異なり、例えばコーン状の糸、チーズ状の糸、かせ状の糸 の場合は、そうでない糸よりも乾燥熱処理時間は長くなる。具体的には、織物や編物 の場合、拡布状加工機械を用いて、 160°C前後で、 1分程度の乾燥時間で行うとよく 、チーズ状、コーン状の糸の場合は、 140°C前後で 10〜30分程度の乾燥時間で行 うとよい。  [0057] The temperature of the drying treatment performed after the application of the resin solution is preferably 50 ° C or higher, and more preferably 130 ° C or higher. This is because if the temperature is lower than 50 ° C, it takes too much time S to dry because the evaporation of water is too slow, and the higher the temperature, the easier it is to dry. On the other hand, it is preferable that it is 200 degrees C or less. This is because if the temperature exceeds 200 ° C, the fiber material may be damaged by heat during drying. However, these optimum temperatures and the time required for the drying process vary depending on the heat source of the dryer and the heat treatment method. Also, it varies depending on the shape of the fiber material. For example, in the case of corn-like yarn, cheese-like yarn, and skein-like yarn, the drying heat treatment time is longer than that of the other yarn. Specifically, in the case of woven fabrics and knitted fabrics, it is better to use a spreading processing machine at around 160 ° C with a drying time of about 1 minute. In the case of cheese-like and corn-like yarns, 140 ° C It is recommended that the drying time be around 10 to 30 minutes.
[0058] さらに、上記の乾燥処理後に熱処理を行う際の温度は、 130°C以上であると好まし く、一方で、 200°C以下であると好ましぐ 180°C以下であるとより好ましい。また、熱 処理の時間は、チーズ状、コーン状の糸である繊維素材であれば 10分以上 1時間 以下が好ましぐ織物、編物などの拡布状の繊維素材であれば、 20秒以上 2分以下 であると好ましい。 [0058] Further, the temperature at which the heat treatment is performed after the drying treatment is preferably 130 ° C or higher, while it is preferably 200 ° C or lower, more preferably 180 ° C or lower. preferable. The heat treatment time is at least 10 minutes for fiber materials that are cheese-like or corn-like yarns, but at least 20 seconds for fabric materials such as woven fabrics and knitted fabrics that are preferred. Min Is preferable.
[0059] このようにして後染め可能としたこの発明にかかる後染め用繊維素材は、結合した 上記合成樹脂の分子によって染色性を阻害することなく均一な染色を可能とし、かつ 十分な染色濃度を保つことができる。また、合成樹脂が上記繊維素材と一体化して いるため、上記繊維素材の物理的な強度低下を抑制するとともに、撥水性ゃ發油性 などの効果を発揮する。  [0059] The fiber material for post-dyeing according to the present invention, which can be post-dyed in this manner, enables uniform dyeing without hindering dyeability by the molecules of the synthetic resin bonded, and has a sufficient dyeing density. Can keep. In addition, since the synthetic resin is integrated with the fiber material, the physical strength of the fiber material is prevented from being lowered, and water repellency and oil repellency are exhibited.
[0060] 上記合成樹脂を単に含浸させただけでは、洗濯や染色の際に繊維素材から脱落し てしまい、それぞれの上記合成樹脂により発揮される効果が洗濯や脱色の後には発 揮されない、又は著しく低減してしまうという問題点があつたが、上記合成樹脂が上 記繊維素材と結合することにより、上記合成樹脂が洗濯、染色中でも脱落せず、その 後も ¾]果を発揮し続けること力できる。  [0060] If the synthetic resin is simply impregnated, it will fall off from the fiber material during washing and dyeing, and the effect exhibited by the respective synthetic resin will not be exhibited after washing or decoloring, or Although there is a problem that it is significantly reduced, when the synthetic resin is combined with the fiber material, the synthetic resin does not fall off even during washing and dyeing, and after that, it continues to exhibit the results. I can do it.
[0061] 上記合成樹脂に含まれる上記共重合樹脂が、上記繊維素材と結合することにより、 洗濯、染色中後でも、十分な發油性を発揮する。また、上記合成樹脂として上記のパ 一フルォロアルキル基を有する上記アタリレート樹脂が上記繊維素材と結合すること により、洗濯、染色後も十分な發油性を発揮する。  [0061] When the copolymer resin contained in the synthetic resin is combined with the fiber material, sufficient oil repellency is exhibited even after washing and dyeing. In addition, the acrylate resin having the perfluoroalkyl group as the synthetic resin combines with the fiber material, thereby exhibiting sufficient oil repellency even after washing and dyeing.
[0062] さらに、上記合成樹脂としてシリコン樹脂を用いた場合には、シリコン樹脂により得ら れる上記繊維素材の風合いを柔らかにする効果が、洗濯、染色中でも脱落せず、水 に浸漬した浴中では乾燥状態よりも上記繊維素材を柔ら力べすることができる。これ により上記繊維素材の強度低下ゃスレアタリを防ぐことができる。この効果は特に、上 記繊維素材が濡れると非常に硬くなるセルロース素材である場合に好適に発揮され [0062] Furthermore, when a silicone resin is used as the synthetic resin, the effect of softening the texture of the fiber material obtained by the silicone resin is not lost even during washing and dyeing, but in a bath immersed in water. Then, the fiber material can be softened more than the dry state. As a result, a decrease in strength of the fiber material can be prevented. This effect is particularly suitable when the fiber material is a cellulose material that becomes very hard when wet.
[0063] この発明にかかる後染め用繊維素材は、撥水性、撥油性が高ぐまた、表面張力を ポリエステルよりも小さくすることができるため、単に染色性に優れるだけではなぐ透 湿性が高かったり、油汚れにも強い繊維素材として用いることができる。 [0063] The fiber material for post-dyeing according to the present invention has high water repellency and oil repellency, and since the surface tension can be made smaller than that of polyester, it is not only excellent in dyeability but also has high moisture permeability. It can be used as a fiber material that is resistant to oil stains.
[0064] 具体的には、この発明に力、かる後染め用繊維素材は、 JIS L 1092に記載の撥水 性試験による結果が撥水性 2級以上とすることができ、この値を達成する物であると 好ましい。 1級であると撥水性が不十分であり、十分な撥水性を確保するためには従 来行われているように、製品を染めた後で乾燥してから撥水スプレー等により撥水加 ェを行う必要がある。し力、もその場合は撥水性の耐久性がなぐ風合いが硬くなり、上 記繊維素材がポリエステルなどの合成繊維である場合には摩擦堅牢度が低下すると いう問題を生じてしまう。なお、等級は最大で 5級であり、上記繊維素材がコートであ る場合以外では 4級以上を要求されることは希である力 5級であってもよい。撥水性 力 級又は 5級の製品は、使用する薬品の濃度比率を調整することで達成可能であ る。なお、この発明にかかる後染め用繊維素材は、上記の撥水性を達成しても、染色 性に問題を生じない。 [0064] Specifically, the fiber material for post-dyeing that is strong in the present invention has a water repellency test result of JIS L 1092 that can achieve a water repellent grade of 2 or higher, and achieve this value. It is preferable that it is a thing. If it is grade 1, the water repellency is insufficient, and in order to ensure sufficient water repellency, as is conventionally done, the product is dyed and dried and then water-repellent by a water-repellent spray etc. It is necessary to do. In this case, the texture of the water-repellent durability becomes harder, and when the fiber material is a synthetic fiber such as polyester, the problem is that the friction fastness is lowered. The maximum grade is Grade 5, and it may be Grade 5 that is rarely required to be Grade 4 or higher except when the fiber material is a coat. Products with water repellency or grade 5 can be achieved by adjusting the concentration ratio of the chemicals used. The post-dyed fiber material according to the present invention does not cause a problem in dyeability even if the above water repellency is achieved.
[0065] また、この発明にかかる後染め用繊維素材は、 AATCC (American Associatio n of Textile Chemists and Colorists、アメリカ繊維化学者.色彩技術者協会 を示す。) 118— 2002に記載の撥油性試験の結果が撥油性 1級 (表面張力 32dyne /cm以下に相当する。)以上とすることができ、この値を達成するものであると好まし ぐ 2級以上であるとより好ましぐ 3級以上であるとより好ましい。 1級ですらないと撥 油性が不十分であり、 1級に相当する人間の汗油に含まれるォレイン酸が付着してし まうためである。 3級(27· 3dyne/cm以下に相当する。)を満たすと、 n—へキサデ カン程度の油汚れであれば防止できるのでより好ましい。なお、この発明に力、かる後 染め用繊維素材は、上記の撥油性を達成しても染色性に問題を生じない。なお、等 級は最大で 8級であるが、シリコン樹脂の表面張力は 24dyne/cmでフッ素樹脂の 表面張力が lOdyne/cmであるので、これらを併用して使用する場合には、撥油性 8級(19. 8dyne/cm)を実現することが現実的に難しくなるため、実際には 7級以 下であるのが現実的である。  [0065] Further, the post-dyed fiber material according to the present invention is an oil repellency test described in AATCC (American Association of Textile Chemists and Colorists). The result is oil repellency of 1st grade (corresponding to surface tension of 32 dyne / cm or less) or higher, and it is preferable to achieve this value. Grade 2 or higher is more preferable. Grade 3 or higher Is more preferable. If it is not grade 1, the oil repellency will be insufficient, and oleic acid contained in human sweat oil equivalent to grade 1 will adhere. It is more preferable to satisfy the third grade (corresponding to 27.3 dyne / cm or less) because oil contamination of n-hexadecane can be prevented. It should be noted that the post-dye fiber material, which has the power of the present invention, does not cause a problem in dyeability even if the above oil repellency is achieved. The maximum grade is grade 8, but the surface tension of silicon resin is 24 dyne / cm and the surface tension of fluororesin is lOdyne / cm. Since it is practically difficult to achieve the class (19.8 dyne / cm), it is realistic that it is actually 7th class or lower.
[0066] さらに、この発明にかかる後染め用繊維素材は、一般的な作成手順によれば表面 張力を 32dyne/cm以下とすることができる。この値は通常のポリエステル繊維よりも 小さく、ほとんどの油よりも小さい値であるので、ほとんどの油汚れはこの発明に力、か る後染め用繊維素材の内部に浸透することなぐ容易に拭き取ること力 Sできる。また、 この表面張力は小さいほど好ましい。なお、本発明における結合を行っていない通 常のポリエステルの表面張力は 45dyne/cm、ナイロンは 60dyne/cmであり、これ に対して、水の表面張力は 70dyne/cmである。  [0066] Furthermore, the post-dyed fiber material according to the present invention can have a surface tension of 32 dyne / cm or less according to a general preparation procedure. Since this value is smaller than ordinary polyester fiber and smaller than most oils, most oil stains are strong in this invention, and can be easily wiped off without penetrating into the fiber material for post-dyeing. Power S can be. Also, the smaller the surface tension, the better. In the present invention, the surface tension of ordinary polyester not bonded is 45 dyne / cm and nylon is 60 dyne / cm, whereas the surface tension of water is 70 dyne / cm.
[0067] さらにまた、この発明に力、かる後染め用繊維素材は、 JIS L 1099A— 1に記載の 透湿性試験における結果を、加工を行わない繊維素材より向上させることができる。 透湿性は染色性とは直接の関係は無!/、が、透湿性が良好であると得られる後染め用 繊維素材を衣服等に用いた際に、汗などを吸収する有益な効果を発揮する。なお、 このような良好な透湿性は、上記の撥水性が高くても成立する。吸湿性の対象となる 水蒸気は、撥水性の対象となる液体の水よりも小さなものであり、これらは異なる挙動 を示すためである。従来の撥水加工を染色後に行うと、撥水加工されていない生地 よりも透湿性は低下する力 この発明では逆に透湿性を向上させることができる。 [0067] Furthermore, the fiber material for post-dyeing, which is suitable for the present invention, is described in JIS L 1099A-1. The result in the moisture permeability test can be improved from a fiber material that is not processed. Moisture permeability is not directly related to dyeability! /, But exhibits the beneficial effect of absorbing sweat, etc. when using fiber materials for post-dyeing that are good for moisture permeability in clothes, etc. To do. Such good moisture permeability is established even if the water repellency is high. This is because the water vapor that is the target of hygroscopicity is smaller than the liquid water that is the target of water repellency, and they exhibit different behavior. When the conventional water-repellent finish is performed after dyeing, the moisture permeability is lower than that of the fabric not subjected to the water-repellent finish. In the present invention, the moisture permeability can be improved.
[0068] 一方、この発明にかかる後染め用繊維素材は、付与する合成樹脂として上記共重 合樹脂や吸水性ポリエステル樹脂のみを選択することで、後染め用繊維素材の吸水 性を向上することもできる。  [0068] On the other hand, the fiber material for post-dyeing according to the present invention improves the water absorbability of the fiber material for post-dyeing by selecting only the above-mentioned copolymer resin or water-absorbing polyester resin as the synthetic resin to be applied. You can also.
[0069] 上記合成樹脂として、パーフルォロアルキル基を有するアタリレート樹脂や上記共 重合樹脂が存在すると、上記のように撥油性を向上させる効果が特に高い。また、上 記共重合樹脂は、表面張力では上記アタリレート樹脂よりも劣るものの、乾燥状態で は親水性であるため油分を弾く効果が高い。さらに、上記共重合樹脂は、染色中や 洗濯中などの水中では、親水性であるため洗濯効果を向上させて汚れが落としやす ぐまた、染色中では染料の吸着性を向上させる効果を有し、吸湿性を高める効果も 発揮する。一方、上記アタリレート樹脂は親水基を持たないため、撥水性を向上させ る効果が高い。  [0069] When the acrylate resin having a perfluoroalkyl group or the copolymer resin is present as the synthetic resin, the effect of improving the oil repellency as described above is particularly high. In addition, the copolymer resin is inferior to the acrylate resin in terms of surface tension, but has a high effect of repelling oil because it is hydrophilic in the dry state. Furthermore, the copolymer resin is hydrophilic in water such as during dyeing and washing, so it improves the washing effect and easily removes dirt, and also has the effect of improving the adsorptivity of the dye during dyeing. It also has the effect of increasing hygroscopicity. On the other hand, since the acrylate resin does not have a hydrophilic group, the effect of improving water repellency is high.
[0070] この発明に力、かる後染め用繊維素材では、上記の撥水性と撥油性の値の少なくと も一方を容易に達成することができ、特に、上記アタリレート樹脂や、上記共重合樹 脂の含有量を調製することで、どちらの値も容易に満たすことが可能である。すなわ ち、上記アタリレート樹脂により撥水性を向上させるとともに、上記共重合樹脂によつ て透湿性を高めることができる。これらの合成樹脂を共に繊維素材に結合させること によって、例えば、雨水などを弾くことができる一方で、内部の汗による湿気を外に出 すことができる衣服などが実現可能となる。  [0070] In the fiber material for post-dyeing, which is strong in the present invention, at least one of the above water repellency and oil repellency values can be easily achieved, and in particular, the above acrylate resin or the above copolymer. By adjusting the resin content, both values can be easily met. In other words, the water repellent property can be improved by the acrylate resin, and the moisture permeability can be improved by the copolymer resin. By combining these synthetic resins with the fiber material, for example, it is possible to realize clothes that can play rainwater and the like, while being able to remove moisture from internal sweat.
[0071] この発明にかかる後染め用繊維素材を染色する際には、上記繊維素材の形状に 応じて、それらに適した任意の条件下で処理を行うことができ、特に染色手段を限定 されるものではない。具体的には、染料としては分散性染料、酸性染料、反応性染料 、直接性染料、建染め染料、塩基性染料など、任意のものを用いることができる。 [0071] When dyeing the fiber material for post-dyeing according to the present invention, depending on the shape of the fiber material, treatment can be performed under any conditions suitable for them, and the dyeing means is particularly limited. It is not something. Specifically, disperse dyes, acid dyes, reactive dyes as dyes Any dyes such as direct dyes, vat dyes and basic dyes can be used.
[0072] また、染色方法としては、浸染、コールドパッチ染色などの任意の方法を用いること 力できる。上記繊維素材が紡績糸、フィラメント糸の場合は、カセ加工機、チーズカロ ェ機、ロープ加工機、スラッシャー加工機などを用いるとよぐ織物、編物、不織布等 の布状の素材は、液流染色機、コールドパッチ染色機などを用いるとよい。また、上 記繊維素材がポリエステル以外の編物生地の場合は、ゥインスを用いるとよく、織物 ゃ不織布の染色ではジッカー染色機やバッチ染色機を用いるとよい。また、縫製後 の繊維素材を染色する場合には、ドラム染色機を用いたり、常圧ワッシャー、高圧ヮ ッシヤーなどの張力がかかり難い浸染用の染色機を用いたりすると、縫製した製品の 形状が傷みにくいため好ましい。  [0072] Further, as a dyeing method, any method such as dip dyeing or cold patch dyeing can be used. If the fiber material is spun yarn or filament yarn, cloth-like materials such as woven fabrics, knitted fabrics, and nonwoven fabrics that can be used with casserole processing machines, cheese calorie machines, rope processing machines, slasher processing machines, etc. are liquid dyeing. Or a cold patch dyeing machine may be used. In addition, when the fiber material is a knitted fabric other than polyester, it is preferable to use wins, and for dyeing woven fabrics and nonwoven fabrics, it is preferable to use a zicker dyeing machine or a batch dyeing machine. In addition, when dyeing fiber materials after sewing, the shape of the sewn product can be changed by using a drum dyeing machine, or by using a dyeing machine for dip dyeing that is difficult to apply tension, such as a normal pressure washer and high pressure washer. It is preferable because it is difficult to damage.
[0073] この発明にかかる後染め用繊維素材に後染めを行った染色後繊維素材は、後染 め後に十分に乾燥させて行った、 JIS L 1092に記載の撥水性試験の結果力 1級 以上かつ 5級以下の状態を染色後も維持できるものであると好ましい。染色後の撥水 性が高いということは、その染色中に上記合成樹脂が脱落しておらず、分子間結合 によって上記繊維素材と強固に一体となっており、耐久性が高いことを示すためであ る。このような値を実現できると、染色後にて従来施行されているような、スプレーによ る撥水剤付与は要らなくなり、製品として高品質な、ノ ンツ、ジャケット、コート、カーシ ート、インテリア素材に適することになる。  [0073] The post-dyeing fiber material obtained by post-dying the post-dyeing fiber material according to the present invention was subjected to a water repellency test according to JIS L 1092, which was sufficiently dried after the post-dyeing. It is preferable that the above-mentioned and grade 5 or less can be maintained even after dyeing. The high water repellency after dyeing means that the synthetic resin is not dropped during the dyeing process, and is firmly integrated with the fiber material by intermolecular bonding. It is. If these values can be achieved, it is no longer necessary to apply a water repellent by spraying, which has been practiced after dyeing, and the product has high quality notes, jackets, coats, coats, interiors. It will be suitable for the material.
[0074] また、上記染色後繊維素材は、 AATCC118— 2002に記載の撥油性試験の結果  [0074] Further, the dyed fiber material is the result of the oil repellency test described in AATCC118-2002.
1S 2級以上であると好ましぐ 3級以上であるとより好ましい。 1級以下であると、撥油 性が不足してしまい、油汚れに対して極端に弱くなつてしまう。なお、その基準は、撥 油性 2級は表面張力 29· 6dyne/cmで汗油(ォレイン酸)の 32dyne/cmより小さ いので、 2級以上の撥油性は最低必要となるためであり。 3級以上であれば(27. 3d yne/cm)大体の油性汚れに対し有効となるためである。一方で、 7級以下であると 好ましい。上記と同様に、撥油性の限界のため 8級は困難である。  1S Grade 2 or higher is preferred Level 3 or higher is more preferred. If it is lower than grade 1, the oil repellency will be insufficient and it will be extremely weak against oil stains. The standard is that oil repellency grade 2 has a surface tension of 29 · 6 dyne / cm and less than 32 dyne / cm of sweat oil (oleic acid), so oil repellency of grade 2 or higher is the minimum requirement. This is because if it is 3rd grade or higher (27.3 dyne / cm), it will be effective against most oily soils. On the other hand, it is preferable that it is 7th grade or less. As above, Grade 8 is difficult due to the limited oil repellency.
[0075] さらに、上記染色後繊維素材が織物、編物、不織布やそれらの複合素材からなる 布状のものである場合には、表面張力が 31. 5dyne/cm以下であると好ましぐ 29 . 6dyne/cm以下であるとより好ましい。 31. 5dyne/cmを超えると、汗油の成分 であるォレイン酸が付着しやすくなるためである。この値は、従来の綿、ポリエステル 、ナイロンなどの繊維を加工せずにそのまま染色した際の表面張力よりも小さレ、ため に、染色後繊維素材に薬品による加工を行う際には、従来よりも薬品の使用量を削 減しても、同等の加工効果を得ることができる。一方で、表面張力は撥油性 7級以下 であるので、 21. 4dyne/cm以上であると好ましい。 [0075] Further, when the dyed fiber material is a cloth-like material composed of a woven fabric, a knitted fabric, a non-woven fabric or a composite material thereof, the surface tension is preferably 31.5 dyne / cm or less 29. More preferably, it is 6 dyne / cm or less. 31. If it exceeds 5 dyne / cm, the component of sweat oil This is because the oleic acid is easily attached. This value is smaller than the surface tension of conventional cotton, polyester, nylon, and other fibers that are dyed as they are without being processed. However, even if the amount of chemicals used is reduced, the same processing effect can be obtained. On the other hand, since the surface tension is not more than oil repellency, it is preferably 21.4 dyne / cm or more.
[0076] なお、これらの撥水性、撥油性、表面張力の値は、この発明に力、かる後染め用繊維 素材を用いて通常の染色を行うと、容易に達成可能な値であり、いずれの値も満たし ているとより好ましい。特に上記合成樹脂として、パーフルォロアルキル基を有するァ タリレート樹脂や、パーフルォロアルキル基を有するアタリレート単位と親水性ビュル モノマー単位とを有する共重合樹脂を用いた場合には、表面張力を 29. 6dyne/c m以下にすることが容易にできる。これらのようなフッ素含有樹脂は、フィルム状であ ると表面張力は lOdyne/cm程度となり、非常に高い撥油性を発揮する力 上記繊 維素材と分子間結合した場合はそこまでの値とはならない。その分、親水性ビュルモ ノマーと共重合して、水溶性である性質により油成分を弾いて撥油性を高める効果を 発揮させるとよい。なお、親水性ビュルモノマーを単独重合しても得られる樹脂の撥 水性が 1級程度にしかならないため、パーフルォロアルキル基を有するアタリレートと の共重合樹脂を用いると、これらの効果が相互に補完できて好ましい樹脂となる。  [0076] These water repellency, oil repellency, and surface tension values are values that can be easily achieved by performing normal dyeing using the fiber material for post-dyeing. It is more preferable that the value of is also satisfied. In particular, when the synthetic resin is a phthalate resin having a perfluoroalkyl group or a copolymer resin having an acrylate unit having a perfluoroalkyl group and a hydrophilic butyl monomer unit, The tension can be easily reduced to 29.6 dyne / cm or less. Fluorine-containing resins such as these have a surface tension of about lOdyne / cm in the form of a film, and a very high oil repellency. When intermolecularly bonded to the above fiber material, what is the value up to that point? Don't be. Therefore, it is better to copolymerize with the hydrophilic butyl monomer to exert the effect of improving oil repellency by repelling the oil component due to its water-soluble property. In addition, since the water repellency of the resin obtained by homopolymerizing the hydrophilic butyl monomer is only about the first grade, these effects can be obtained by using a copolymer resin with an acrylate having a perfluoroalkyl group. It can complement each other and is a preferable resin.
[0077] 上記染色後繊維素材について、 JIS L 0217 103に記載の方法により、洗濯を 30回行った後の上記撥水性は 1級以上、 5級以下であると好ましい。すなわち、洗濯 を行っても撥水性の低下を抑制できると好ましい。同様の理由により、洗濯を 30回行 つた後の上記撥油性は、 2級以上、かつ 7級以下であると好ましい。  [0077] Regarding the post-dyed fiber material, the water repellency after washing 30 times by the method described in JIS L 0217 103 is preferably 1st grade or more and 5th grade or less. That is, it is preferable that the decrease in water repellency can be suppressed even after washing. For the same reason, the oil repellency after washing 30 times is preferably 2nd grade or more and 7th grade or less.
[0078] なお、この発明にかかる後染め用繊維素材は、そのままでも撥水性、撥油性に優 れているが、後染めを行った後にさらに撥水、撥油、堅牢度向上、制菌、制電、消臭 などの加工などを行ってもよい。これらの加工時においても、上記合成樹脂と一体化 しているために、繊維が傷みにくぐかつ上記の撥水性、撥油性、表面張力等の性質 を保持しやすい。すなわち、上記の染色後繊維素材の洗濯前における撥水性、撥油 性、表面張力の値を満たすと好ましい。  [0078] The post-dye fiber material according to the present invention is excellent in water repellency and oil repellency as it is, but after the post-dyeing, water repellency, oil repellency, improved fastness, antibacterial, Processing such as electricity control and deodorization may be performed. Even during these processes, since the fibers are integrated with the synthetic resin, the fibers are easily damaged and the properties such as the water repellency, oil repellency and surface tension are easily maintained. That is, it is preferable to satisfy the water repellency, oil repellency, and surface tension values of the dyed fiber material before washing.
[0079] このように、水酸基、アミノ基、アミド基、カルボキシル基、又はウレタン基の少なくと も!/、ずれかを含有する繊維素材に対して、その繊維素材の前記官能基と反応して前 記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませる処 理加工を行うことで、洗濯後も繊維素材の撥水性、撥油性、表面張力が上記の条件 を満たし、かつ、染色性が高ぐ洗濯耐久性も高い後染め用繊維素材を製造すること ができる。 [0079] As described above, at least hydroxyl group, amino group, amide group, carboxyl group, or urethane group is present. /! Treatment for including a resin solution mainly composed of a synthetic resin that reacts with the functional group of the fiber material to improve the dyeability of the fiber material. By processing, it is possible to produce a fiber material for post-dyeing after washing, which satisfies the above conditions for water repellency, oil repellency and surface tension of the fiber material, and has high dyeability and high washing durability. .
実施例  Example
[0080] 以下、この発明を、実施例を挙げてより具体的に説明する。まず、以下の実施例中 で行う試験方法にっレ、て説明する。  Hereinafter, the present invention will be described more specifically with reference to examples. First, the test methods performed in the following examples will be described.
•撥水性試験…… JIS L 1092に記載のスプレー法により行う。  • Water repellency test: Performed by the spray method described in JIS L 1092.
'撥油性試験…… AATCC 118— 2002に記載の方法により行う。  'Oil repellency test: Performed according to the method described in AATCC 118-2002.
'ウール混紡率試験…… JIS L 1030に記載の 5%水酸化ナトリウム法において、 1 'Wool blend rate test …… In the 5% sodium hydroxide method described in JIS L 1030, 1
00°C環境、 15分の条件で行う。 Perform at 00 ° C for 15 minutes.
•染色濃度試験…… K/S測定、光源 D65、反射率 Rである (株)ミノルタ製分光測色 計: SPECTRO PHOTOMETER CM— 3700dを用いて、(1— R) 2/2R=絶 対値として、(絶対値 A) / (絶対値 St) X 100 = K/Sを計算して算出した。 • Dye density test: K / S measurement, light source D65, reflectance R spectrophotometer manufactured by Minolta Co., Ltd .: Using SPECTRO PHOTOMETER CM— 3700d, (1—R) 2 / 2R = absolute value (Absolute value A) / (Absolute value St) X 100 = K / S.
•摩擦堅牢度試験…… JIS L 0849に記載の方法により行った。  • Friction fastness test: Measured according to JIS L 0849.
•洗濯耐久性試験…… JIS L 0217 103に記載の方法により行った。  • Washing durability test: The method described in JIS L 0217 103 was used.
•引裂き試験…… JIS L 1096 生地の強度を測定する目的でベンジュラム法により 行った。  • Tear test: Benzuram method was used to measure the strength of JIS L 1096 fabric.
'透湿性試験…… JIS L 1099A— 1に記載の塩化カルシウム法により行う。  'Moisture permeability test: Performed by the calcium chloride method described in JIS L 1099A-1.
•吸水性試験…… JIS L 1096に記載の水滴滴下法により行う。  • Water absorption test: Performed by the water drop method described in JIS L 1096.
[0081] 次に、用いる薬品について説明する。 [0081] Next, chemicals to be used will be described.
<合成樹脂 >  <Synthetic resin>
'パーフルォロアルキル基を有するアタリレート樹脂(合名会社マキ口製: SM— Cube HS、固形分 20%)  'Atalylate resin with perfluoroalkyl group (Makiguchi: SM-Cube HS, solid content 20%)
•パーフルォロアルキル基を有するアタリレート単位と親水性ビュルモノマー単位を有 する共重合樹脂 (合名会社マキ口製: SM— Cube SS、固形分 20%)  • Copolymer resin with acrylate units with perfluoroalkyl groups and hydrophilic bull monomer units (manufactured by Makiguchi: SM—Cube SS, solid content 20%)
'シリコン樹脂(ァミノシリコン、合名会社マキ口製: SM— Cube JN、固形分 26%) 'シリコン樹脂(ジメチルシリコン、合名会社マキ口製: SM— Cube JN— DM、固形 分 38%) 'Silicon resin (Aminosilicon, manufactured by Makiguchi: SM—Cube JN, solid content 26%) 'Silicon resin (dimethyl silicon, manufactured by Makiguchi: SM—Cube JN—DM, solid content 38%)
'シリコン樹脂(エポキシシリコン、合名会社マキ口製: SM— Cube JN— EP、固形分 36%)  'Silicon resin (epoxy silicone, manufactured by Makiguchi: SM—Cube JN—EP, solid content 36%)
.ポリエステル樹脂(日華化学 (株)製:ナイスポール PR— 99、固形分 10 % ) •ポリエステル樹脂(明成化学工業 (株)製:メイ力フィニッシュ SRM— 65)  .Polyester resin (manufactured by Nikka Chemical Co., Ltd .: Nicepol PR—99, solid content 10%) • Polyester resin (manufactured by Meisei Chemical Industry Co., Ltd .: Mei force finish SRM—65)
'ポリウレタン樹脂(日華化学 (株)製:エバファノール HA— 107C、固形分 40%) [0082] <架橋剤〉  'Polyurethane resin (manufactured by Nikka Chemical Co., Ltd .: Evaphanol HA-107C, solid content 40%) [0082] <Crosslinking agent>
•芳香族系ブロックイソシァネート(合名会社マキ口製: SM— Cube KK、固形分 40 %)  • Aromatic block isocyanate (Makiguchi: SM—Cube KK, solid content 40%)
•脂肪族系イソシァネート (合名会社マキ口製: SM— Cube KL、固形分 35%) [0083] <加工処理剤〉  • Aliphatic isocyanate (manufactured by Makiguchi: SM—Cube KL, solid content 35%) [0083] <Processing agent>
•フィックス処理剤 (日華化学 (株)製:ネオフィックス R800)  • Fix treatment agent (manufactured by Nikka Chemical Co., Ltd .: Neofix R800)
'リン系有機酸(日華化学 (株)製:ネオプロトン ATO)  'Phosphorus organic acid (Nikka Chemical Co., Ltd .: Neoproton ATO)
•酵素 (洛東化成 (株)製: PAS600)  • Enzyme (manufactured by Toto Kasei Co., Ltd .: PAS600)
•精練剤(日華化学 (株)製:ピッチラン L 160)  • Scouring agent (Nikka Chemical Co., Ltd .: Pitch Run L 160)
•過酸化水素(濃度 35重量%)  • Hydrogen peroxide (concentration 35% by weight)
•水酸化ナトリウム(濃度 48重量%)  • Sodium hydroxide (concentration 48% by weight)
•劣化防止剤(日華化学 (株)製:クロークス CW— 1)  • Anti-degradation agent (manufactured by Nikka Chemical Co., Ltd .: Crokes CW-1)
.安定剤 (日華化学 (株)製:ネオレート PLC— 7000)  Stabilizer (Nikka Chemical Co., Ltd .: Neorate PLC—7000)
•浸透剤(日華化学 (株)製:サンモール BH— 75)  • Penetration agent (Nikka Chemical Co., Ltd .: Sunmall BH-75)
•酸化糊抜き剤 (洛東化成 (株)製:ラタトーゲン LS)  • Oxidizing agent remover (Shinto Kasei Co., Ltd .: Ratatogen LS)
.キレート剤(日華化学 (株)製: HNC - 100)  .Chelating agent (manufactured by Nikka Chemical Co., Ltd .: HNC-100)
[0084] (実施例 1) [0084] (Example 1)
繊維素材として、大和紡績 (株)製:綿 100%織物(タテ糸 60双糸、ョコ糸 60双糸、 ツイル織ベンタイル)に対し、精練'糊抜き'漂白を施した後、水酸化ナトリウムにてシ ルケット加工を行った。  As a fiber material, Daiwa Boseki Co., Ltd .: 100% cotton woven fabric (warp yarn 60 twin yarn, horizontal yarn 60 twin yarn, twill weave bentile) is subjected to scouring 'glue removal' bleaching and then sodium hydroxide The sirket processing was performed at
[0085] ここでは酸化糊抜き精練として精練及び糊抜きと、漂白とを連続的に行った。装置 としては山東鉄工 (株)製:連続毛焼き洗練漂白乾燥機を使用した。酸化糊抜き精練 にあたっては、以下のような成分の混合水溶液に生地を連続浸漬し、反応塔にて 98[0085] Here, scouring and desizing and bleaching were continuously performed as scouring for oxidized desizing. apparatus As a product of Shandong Tekko Co., Ltd., a continuous hair-baking refined bleach dryer was used. For scouring with oxidized paste, the dough is continuously dipped in a mixed aqueous solution of the following components, and the reaction tower is used.
°Cの環境で 30分間スチーミングした。 Steamed for 30 minutes in a ° C environment.
•酸化糊抜き剤:ラタトーゲン LS · · · · · · 20g/L  • Oxidizing agent: Ratatogen LS · · · · · · · 20g / L
'水酸化ナトリウム水溶液 (48重量%)…… 40g/L  'Sodium hydroxide aqueous solution (48wt%) …… 40g / L
•精練剤:ピッチラン L - 160 · · · · · · 3g/L  • Scouring Agent: Pitch Run L-160 · · · · · · · 3g / L
'キレート剤: HNC— 100…… 2g/L  'Chelating agent: HNC— 100 …… 2g / L
[0086] また、漂白に当たっては以下のような成分の混合液に生地を連続浸漬し、反応塔 にて 98°Cの環境で 40分間スチーミングし、その後連続水洗し、乾燥を行った。[0086] In bleaching, the dough was continuously immersed in a mixed solution of the following components, steamed in a reaction tower at 98 ° C for 40 minutes, then washed with water and dried.
'過酸化水素…… 20g/L 'Hydrogen peroxide …… 20g / L
•精練剤:ピッチラン L - 160 · · · · · · 3g/L  • Scouring Agent: Pitch Run L-160 · · · · · · · 3g / L
•安定剤:ネオレート PLC - 7000…… 5g/L  • Stabilizer: Neolate PLC-7000 …… 5g / L
'キレート剤: HNC— 100…… 2g/L  'Chelating agent: HNC— 100 …… 2g / L
'水酸化ナトリウム…… pHl l〜; 12となるように投下  'Sodium hydroxide ... pHl l ~; dropped to 12
[0087] 次に、水酸化ナトリウム水溶液を用いて、浴温度 20〜30°Cを維持した状態で、比 重濃度 24Beでシルケット加工を行った。 [0087] Next, mercerization was performed using a sodium hydroxide aqueous solution at a specific gravity of 24Be while maintaining a bath temperature of 20 to 30 ° C.
[0088] さらに次に下記の構成からなる樹脂溶液を調製し、シルケット加工後の生地に付与 した。 [0088] Next, a resin solution having the following constitution was prepared and applied to the dough after mercerization.
•SM— Cube HS…… 10重量部  • SM—Cube HS …… 10 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube JN…… 2重量部  • SM—Cube JN …… 2 parts by weight
•SM-Cube KK…… 1重量部  • SM-Cube KK ...... 1 part by weight
'水…… 83重量部  'Water …… 83 parts by weight
[0089] この樹脂溶液の付与にはケミカルマングル付きテンター(京都機械 (株)製:樹脂テ ンター)にて Pad— Dry方式で行った。この際の樹脂溶液のピックアップ率は 65%で 繊維素材に付与された。付与後を 130°Cの環境で 1分かけて乾燥した後、ベーキン グ機 (京都機械 (株)製:樹脂加工機)にて 160°C、 40秒の熱処理を行った。こうして 得られた後染め用繊維素材を表地としてレインコートを縫製し、後染め用繊維素材か らなる縫製品を得た。 [0089] The resin solution was applied by a pad-dry method using a tenter with a chemical mangle (Kyoto Kikai Co., Ltd .: resin tenter). At this time, the pickup rate of the resin solution was 65%, which was applied to the fiber material. After the application, the film was dried in an environment of 130 ° C for 1 minute, and then heat-treated at 160 ° C for 40 seconds with a baking machine (Kyoto Kikai Co., Ltd .: resin processing machine). A raincoat is sewn using the fiber material for post-dying obtained in this way as a surface material. I obtained a sewn product.
[0090] 次に、この縫製品をワッシャータイプ常圧型染色機((有)河合鉄工所製:常圧染色 機)により、染料として住友化学(株)製: Sumifix HF Yellow 3R, Red 4B, Bl ue 3R, Remazol Black B (ダイスター社製)を染める色に合わせた量を選択混 合して用いて、 80°Cの環境で 1時間かけて染色し、 80°Cの環境で 30分かけて洗浄 を行い、フィックス処理剤を濃度 l %owfで 40°Cの環境で 20分間かけてフィックス処 理を行い、脱水後タンブラ 乾燥機にて乾燥した。  [0090] Next, this sewing product was washed as a dye with a washer type atmospheric pressure dyeing machine (manufactured by Kawai Iron Works: atmospheric pressure dyeing machine): Sumitomo Chemical Co., Ltd .: Sumifix HF Yellow 3R, Red 4B, Bl ue 3R, Remazol Black B (manufactured by Dystar Co., Ltd.) is used in an amount that matches the color to be dyed and dyed over an hour at 80 ° C and over 30 minutes at 80 ° C. Washing was performed, and the fix treatment agent was fixed at a concentration of 1% owf in an environment of 40 ° C for 20 minutes, dehydrated and dried in a tumbler drier.
[0091] 染色されたレインコートは染色性も良ぐスレアタリもなぐ自然なシボ感のあるもの であった。このレインコートの染色前と染色後、及び 50回の洗濯後に行った、撥水性 と撥油性の試験結果を表 1に示す。  [0091] The dyed raincoat had a natural grainy feeling with good dyeability and no threaks. Table 1 shows the test results of water repellency and oil repellency before and after dyeing this raincoat and after 50 washings.
[0092] [表 1]  [0092] [Table 1]
Figure imgf000023_0001
Figure imgf000023_0001
[0093] このような染色を、上記の染料の混合率を変えて全 10色について行い、合計 300 着の着色レインコートを得た。これらはいずれも染色後に撥水スプレーなどの後加工 を行うことなぐ市場に供給可能な撥水性を有していた。また、この 300着の内訳は、 縫製パターン 3種類、サイズは 5種類計 15種類があり、染色指定色は 10色あり、いず れもバイオーダーにて、週単位にて染色加工依頼があつたが、縫製会社から縫製品 到着後、染色に費やした日数は 2日間にて納入できた。 [0093] Such dyeing was performed for all 10 colors by changing the mixing ratio of the above dyes to obtain a total of 300 colored raincoats. All of these had water repellency that could be supplied to the market without post-processing such as water-repellent spraying after dyeing. In addition, the 300 items are divided into 3 sewing patterns, 5 sizes, and 15 types in total, and 10 colors are designated for dyeing. However, after the arrival of the sewing product from the sewing company, the days spent for dyeing could be delivered in two days.
[0094] これら 10色のレインコートについて、染色濃度を分光測色計により測定し、 K/S値 を求めた。その結果を表 2に示す。  [0094] With respect to these 10 color raincoats, the staining density was measured with a spectrocolorimeter, and the K / S value was determined. The results are shown in Table 2.
[0095] [表 2] ベイジュ カーキ オレンジ 赤 グリーン  [0095] [Table 2] Beige Khaki Orange Red Green
比較例 1 100% 100% 100% 100% 100%  Comparative Example 1 100% 100% 100% 100% 100%
実施例 1 101 .50% 102.00% 101.90% 103.10% 102.30%  Example 1 101.50% 102.00% 101.90% 103.10% 102.30%
糸 i 紺 黒  Thread i 紺 Black
比較例 1 100% 100% 100% 100% 1 00%  Comparative Example 1 100% 100% 100% 100% 1 00%
実施例 1 101.80% 107.30% 103.70% 104.10% 105.00% [0096] (比較例 1) Example 1 101.80% 107.30% 103.70% 104.10% 105.00% [0096] (Comparative Example 1)
実施例 1において、樹脂溶液を付与せず、乾燥、熱処理をしないこと以外は実施例 1と同様の手順により、 10色のレインコートを得て、同様に染色濃度を測定し、 K/S 値を求めた。その結果を表 2に示す。いずれの色においても、樹脂溶液を付与した 後染め用繊維素材の方が、染色濃度が高くなつた。  In Example 1, except that the resin solution was not applied, and drying and heat treatment were not performed, a 10-color raincoat was obtained in the same manner as in Example 1, and the dyeing density was measured in the same manner, and the K / S value was obtained. Asked. The results are shown in Table 2. In all colors, the dyeing density was higher in the post-dyed fiber material to which the resin solution was applied.
[0097] (実施例 2) [Example 2]
繊維素材として、綿ストレッチ織物(タテ綿 100双、ョコ綿 16 +ポリウレタン 70D)を 用い、実施例 1と同様の手順で精練、糊抜き、漂白、シノレケット加工を行い、下記の 混合比である樹脂溶液を繊維素材に付与した。  As the fiber material, cotton stretch fabric (vertical cotton 100 double, horizontal cotton 16 + polyurethane 70D) is used, and scouring, desizing, bleaching, and sino-recket processing are performed in the same procedure as in Example 1, and the following mixing ratio is obtained. A resin solution was applied to the fiber material.
[0098] - SM-Cube HS…… 6重量部 [0098]-SM-Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM-Cube JN…… 2重量部  • SM-Cube JN …… 2 parts by weight
•SM-Cube KK…… 1重量部  • SM-Cube KK ...... 1 part by weight
'水…… 87重量部  'Water …… 87 parts by weight
[0099] この樹脂溶液の付与には、ケミカルマングル付きテンターを用い、ピックアップ率 62 %で繊維素材に付与された。これを 130°Cの環境で 1分かけて乾燥した後、ベーキ ング機にて 155°C、 60秒の熱処理を行った。こうして得られた後染め用繊維素材を 用いて、婦人用レインコートを縫製し、後染め用繊維素材からなる縫製品を得た。  [0099] The resin solution was applied to the fiber material using a tenter with a chemical mangle and a pickup rate of 62%. This was dried in an environment of 130 ° C for 1 minute, and then heat-treated at 155 ° C for 60 seconds in a baking machine. By using the fiber material for post-dyeing thus obtained, a raincoat for ladies was sewn to obtain a sewn product made of the fiber material for post-dyeing.
[0100] このような婦人用レインコート 2000着分について、実施例 1と同様の条件でカーキ とベージュの 2色に染色したところ、 6日間で作業が完了した。いずれも色むら、色ぶ れ、繊維の損傷は見られなかった。このレインコートの染色前と染色後、及び 50回の 洗濯後に行った、撥水性、撥油性の試験結果を表 3に示す。なお、表中「2/3級」と は、 2級と 3級の中間の値であることを示し、以下、同様の表記を用いる。  [0100] When 2000 women's raincoats were dyed in two colors, khaki and beige, under the same conditions as in Example 1, the work was completed in 6 days. In all cases, no color unevenness, color fading, or fiber damage was observed. Table 3 shows the test results of water repellency and oil repellency before and after dyeing this raincoat and after 50 washings. In the table, “Class 2/3” means an intermediate value between Grade 2 and Grade 3, and the same notation is used hereinafter.
[0101] [表 3]  [0101] [Table 3]
Figure imgf000024_0001
Figure imgf000024_0001
[0102] (実施例 3) 繊維素材として麻 100%織物(タテリネン 1/20、ョコリネン 1/20、 100本 X 80本[0102] (Example 3) 100% hemp fabric as textile material (tatelinen 1/20, yokorinen 1/20, 100 x 80)
、平織り、イタリア製)を用いて、実施例 1と同様に精練、糊抜き、漂白、シルケット加 ェを行った後、下記の混合比である樹脂溶液を実施例 1と同様にケミカルマングノレ 付きテンターを用いて繊維素材に付与した。 , Plain weave, made in Italy), and after scouring, desizing, bleaching and mercerizing in the same manner as in Example 1, a resin solution having the following mixing ratio was added to a tenter with a chemical mangrove as in Example 1. Was applied to the fiber material.
[0103] - SM-Cube HS…… 6重量部 [0103]-SM-Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM-Cube JN…… 2重量部  • SM-Cube JN …… 2 parts by weight
•SM-Cube KK…… 0. 75重量部  • SM-Cube KK …… 0.75 parts by weight
•水…… 87. 25重量部  • Water …… 87. 25 parts by weight
[0104] 付与後に、実施例 1と同様の条件で乾燥、熱処理を行い、得られた後染め用繊維 素材を縫製してジャケットを作成した。縫製後、実施例 1と同様の条件で染色を施し、 フィックス処理を行った。このジャケットの染色前と染色後、及び 50回の洗濯後に行 つた、撥水性と撥油性の試験結果を表 4に示す。 [0104] After the application, drying and heat treatment were performed under the same conditions as in Example 1, and the resulting post-dyed fiber material was sewn to create a jacket. After sewing, dyeing was performed under the same conditions as in Example 1, and a fixing process was performed. Table 4 shows the test results of water repellency and oil repellency before and after dyeing this jacket and after 50 washings.
[0105] [表 4] [0105] [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
[0106] (実施例 4) [Example 4]
繊維素材として、テンセル (有機溶剤紡糸法により得られるセルロース繊維) 100% 織物(タテテンセル 20、ョコテンセル 20、 110本 X 70本、村松産業(株)製)を用いて 、 Pad— Steamer方式にて酵素糊抜き、精練後、コールドバッチ法にて過酸化水素 にて漂白を fiつた。  Tencel (cellulose fiber obtained by organic solvent spinning method) 100% woven fabric (Vertical Tencel 20, Yoko Tencel 20, 110 x 70, manufactured by Muramatsu Sangyo Co., Ltd.) as a fiber material, enzyme in Pad-Steamer method After desizing and scouring, it was bleached with hydrogen peroxide by the cold batch method.
[0107] 酵素糊抜き、精練にあたっては、具体的には、リン系有機酸としてネオプロトン AT Oを 40g/L、酵素として PAS600を 60g/L有する混合水溶液により、山東鉄工 (株 )製:水洗.乾燥機付き Pad— Streamer機により、 100°Cの環境で 60秒かけて処理 を行った。また、コールドバッチ法は、具体的には、下記の組成からなる混合水溶液 を用いて、自家製コールドバッチ装置にて、巻き上げ常温環境で 8時間かけて処理 をし、その後水洗、乾燥を行った。 '過酸化水素 · · · · · · 15g/L [0107] For enzyme desizing and scouring, specifically, a mixed aqueous solution containing 40 g / L of neoproton ATO as a phosphorus organic acid and 60 g / L of PAS600 as an enzyme was manufactured by Shandong Tekko Co., Ltd .: Washed with water . Processed for 60 seconds in a 100 ° C environment using a Pad-Streamer with a dryer. In the cold batch method, specifically, a mixed aqueous solution having the following composition was used, and the roll was processed in a home-made cold batch apparatus for 8 hours in a room temperature environment, and then washed and dried. 'Hydrogen peroxide · · · · · · 15g / L
'水酸化ナトリウム…… 5g/L  'Sodium hydroxide ... 5g / L
•安定剤:ネオレート PLC— 7000…… 2g/L  • Stabilizer: Neorate PLC—7000 …… 2g / L
•精練剤:ピッチラン L - 160 · · · · · · 2g/L  • Scouring agent: Pitch Run L-160 · · · · · · · 2g / L
[0108] その後、実施例 3と同様の樹脂溶液を、同様の方法で付与し、乾燥、熱処理を行つ た。  [0108] Thereafter, the same resin solution as in Example 3 was applied in the same manner, followed by drying and heat treatment.
[0109] その後、(株)日阪製作所製高圧液流染色機にて、 85°Cの条件で 60分間かけて、 Remazol Black B Liquid染料(ダイスター社製)を用いて濃度 35%owfで染色 を行った。染色後、 60°Cの条件で 20分間かけて洗浄を行い、実施例 1と同様にフィ ックス処理を行った。染色後乾燥された生地はスレアタリ、白化、シヮの発生がなぐ 従来のテンセルになレ、きれレ、な表面感、手持ち感であった。  [0109] After that, using a high pressure liquid flow dyeing machine manufactured by Nisaka Manufacturing Co., Ltd., dyed with Remazol Black B Liquid dye (manufactured by Dystar) at a concentration of 35% owf for 60 minutes at 85 ° C Went. After dyeing, the plate was washed for 20 minutes at 60 ° C. and fixed in the same manner as in Example 1. The fabric dried after dyeing was free of sleet, whitening, and wrinkle.
[0110] 得られた生地について、 50回の洗濯試験を行った力 S、糸のフィブリル化は殆ど発 生せず、上質の表面を維持していた。また、染色前と染色後、及び 50回の洗濯後に おける、撥水性、撥油性の試験結果を表 5に示す。  [0110] The obtained fabric was subjected to 50 washing tests and the strength S was almost zero, and the surface of the fabric was kept high. Table 5 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after 50 washings.
[0111] [表 5]  [0111] [Table 5]
Figure imgf000026_0001
Figure imgf000026_0001
[0112] また、洗濯試験での色落ち、白化を評価するため、得られた生地の染色濃度を実 施例 1と同様に測定して K/S値を求めた。その結果を表 6に示す。洗濯後も K/S 値は低下せず、色合いを維持することができた。 [0112] Further, in order to evaluate color fading and whitening in the washing test, the dyeing density of the obtained fabric was measured in the same manner as in Example 1 to obtain the K / S value. The results are shown in Table 6. The K / S value did not decrease even after washing, and the color tone could be maintained.
[0113] [表 6]  [0113] [Table 6]
Figure imgf000026_0002
Figure imgf000026_0002
[0114] (比較例 2) [0114] (Comparative Example 2)
実施例 4にお!/、て、樹脂溶液を付与しな!/、こと以外は同様の条件で染色した生地 について、同様に K/S直を求めた。その結果を表 6に示す。実施例 4と違って、洗 濯後に洗濯前と比べて著しレ、色合!/、の低下が見られた。 The fabric dyed under the same conditions as in Example 4, except that no resin solution was applied! / Similarly, K / S straightness was calculated. The results are shown in Table 6. Unlike Example 4, there was a marked decrease in coloration and color! / After washing compared to before washing.
[0115] (実施例 5) [0115] (Example 5)
繊維素材として、綿/ウール交織(タテ綿 40、ョコウール 20、 65本 X 45本 カルゼ Cotton / wool interweaving (40 vertical cotton, 20 horizontal wool, 65 x 45 x Calze)
、中国製生地)に対し、下記の条件で糊抜き '精練、漂白を順に行った。 , Chinese dough) was subjected to desizing and scouring and bleaching under the following conditions.
[0116] <糊抜き,精練〉 [0116] <Desizing, scouring>
•A— 860 (リン系有機酸)…… 4重量部  • A—860 (phosphorus organic acid) …… 4 parts by weight
•サンモール BH— 75 (浸透剤)…… 2重量部  • Sunmall BH—75 (penetrant) …… 2 parts by weight
•PAS600 (酵素)…… 10重量部  • PAS600 (enzyme) …… 10 parts by weight
'ピッチラン L— 160 (精練剤)…… 4重量部  'Pitch Run L—160 (scouring agent) …… 4 parts by weight
上記の条件で Pad— Steamer法にて 60秒間かけて処理した。  The pad-steamer method was applied for 60 seconds under the above conditions.
[0117] <漂白〉 [0117] <Bleaching>
•過酸化水素(35%)…… 10重量部  • Hydrogen peroxide (35%) …… 10 parts by weight
•苛性ソーダ(48%)…… 2重量部  • Caustic soda (48%) …… 2 parts by weight
'クロークス CW— 1 (劣化防止剤)…… 1重量部  'Crooks CW— 1 (deterioration inhibitor) …… 1 part by weight
•ネオレート PLC - 7000 (安定剤) · · · · · · 1重量部  • Neorate PLC-7000 (stabilizer) · · · · · · 1 part by weight
•サンモール BH— 75 (浸透剤)…… 2重量部  • Sunmall BH—75 (penetrant) …… 2 parts by weight
•ラタトーゲン LS (酸化糊抜き剤) · · · · · · 2重量部  • Ratatogen LS (oxidizing paste remover) · · · · · · 2 parts by weight
上記の内容で、コールドブリーチ法にて常温環境で 6時間かけ処理し、その後水洗 With the above contents, treat with cold bleach method at room temperature for 6 hours, then wash with water
、乾燥を行った。 And dried.
[0118] 上記の処理後、実施例 3と同様の樹脂溶液を用い、同様の条件で繊維素材に付与 し、乾燥、熱処理を行った。得られた後染め用繊維素材である生地に、実施例 4と同 様の染色を行った。乾燥後には、綿糸とウール糸の両方ともが反応性染料により同 色に染色され、酸性染料によるシェーディング処理は不要であった。  [0118] After the above treatment, the same resin solution as in Example 3 was used, applied to the fiber material under the same conditions, and dried and heat-treated. The resulting fabric, which is a fiber material for post-dying, was dyed in the same manner as in Example 4. After drying, both the cotton yarn and the wool yarn were dyed in the same color with the reactive dye, and the shading treatment with the acid dye was unnecessary.
[0119] この得られた生地について、染色前と染色後、及び 30回洗濯後における、撥水性 及び撥油性の試験結果を表 7に示す。  [0119] Table 7 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 30 times.
[0120] [表 7] 染色前 染色後 30回後 [0120] [Table 7] Before dyeing After dyeing 30 times
撥水性 3級 2級 2級  Water repellent Grade 3 Grade 2 Grade 2
撥油性 5級 3/4級 3級  Oil repellency Grade 5 Grade 3/4 Grade 3
[0121] また、上記の生地を得るまでの過程において、元の生地、糊抜き精練の後、漂白し た後、樹脂溶液を付与しベーキングした後、染色後、 30回の洗濯後のそれぞれの状 況で、ウールの損傷率を測定し、ウール混紡率(%)に換算した値を表 8に示す。染 色後、及び洗濯後でもウール混紡率の低下はほとんど見られず、繊維の損傷を防い でいることがわかった。 [0121] Further, in the process until obtaining the above-mentioned dough, after the original dough, desizing scouring, bleaching, applying the resin solution and baking, after dyeing, after washing 30 times Table 8 shows the values obtained by measuring the damage rate of wool and converting it to the wool blend rate (%). Even after dyeing and washing, there was almost no decline in the wool blending rate, indicating that fiber damage was prevented.
[0122] [表 8]  [0122] [Table 8]
Figure imgf000028_0001
Figure imgf000028_0001
(実施例 6) (Example 6)
上記繊維素材として、それぞれ糸番手が 10/1、 20/1、 40/1、 60/2である綿 100%生糸(中国製又はタイ製)を用い、これらそれぞれに、力キノキ (株)製: KHS ユニバーサルサイザ機にて下記の組成からなる樹脂溶液を付与した。なお、サイザ 機の糸速度は 260m/分で、樹脂溶液の糸へのピックアップ率は 45— 55%であつ た  100% cotton yarn (made in China or Thailand) with yarn counts of 10/1, 20/1, 40/1 and 60/2 is used as the fiber material. : A resin solution having the following composition was applied using a KHS universal sizer machine. The yarn speed of the sizer machine was 260 m / min, and the pickup rate of resin solution to the yarn was 45-55%.
•SM- Cube us--- •••6重』 部  • SM-Cube us --- • • • 6 layers
•SM- Cube ss- - - .4重 J t部  SM-Cube ss---.4 layer J t
•SM- Cube JN -… ..2重库部  • SM- Cube JN-… ..Double buttock
•SM- Cube ΚΚ· · '… ■:部  • SM- Cube ··· '…
'水 · · · · ' 87重〕 ft部  'Water ...
樹脂溶液を付与した後、糸をサイザ機に併設されている乾燥機にて乾燥後、スチ ームセット機(日空工業 (株)製: SBR— 8)にて 130°Cの条件で 40分間かけて熱処 理を行った。得られた 4種類の糸をそれぞれチーズに巻き替え、チーズ染色機(日阪 製作所 (株)製)にて精練、漂白後、染色を行った。 After applying the resin solution, the yarn is dried in a dryer attached to the sizer machine, and then applied for 40 minutes at 130 ° C in a steam set machine (manufactured by Nippon Air Industries Co., Ltd .: SBR-8). Heat treatment I did it. The four types of yarn obtained were each wound with cheese, scoured and bleached with a cheese dyeing machine (manufactured by Nisaka Seisakusho Co., Ltd.), and dyed.
[0126] 精練は、濃度 2g/Lの浸透剤を用いて、浴比 1: 20、 80°Cの環境で 20分かけて行 つた。また漂白は、下記の成分比である混合水溶液により、浴比 1 : 20, 90°Cの環境 で 40分力、けて fiつた。 [0126] Scouring was carried out using a penetrant with a concentration of 2 g / L in an environment with a bath ratio of 1:20 and 80 ° C over 20 minutes. In addition, bleaching was carried out for 40 minutes in an environment with a bath ratio of 1:20 and 90 ° C with a mixed aqueous solution having the following component ratio.
'過酸化水素…… 50g/L  'Hydrogen peroxide …… 50g / L
'水酸化ナトリウム…… 20g/L  'Sodium hydroxide ... 20g / L
'安定剤:ネオレート PLC— 7000…… 4g/L  'Stabilizer: Neorate PLC—7000 …… 4g / L
•精練剤:ピッチラン L - 160 · · · · · · 2g/L  • Scouring agent: Pitch Run L-160 · · · · · · · 2g / L
[0127] 染色の際の染料は Ciba社製 Cibacron Yellow LS—R、Red LS— B、: Blue [0127] Dye for dyeing is Cibacron Yellow LS-R, Red LS-B, made by Ciba: Blue
LS - 3R をそれぞれ 1. 5%owf、 0. 6%owf、 0. 4%owfの濃度で配合して、浴比LS-3R is blended at the concentration of 1.5% owf, 0.6% owf, 0.4% owf respectively, and the bath ratio
1 : 15、染色温度 85°Cにて 1時間かけて染色を行った。 The dyeing was performed for 1 hour at 1:15 and a dyeing temperature of 85 ° C.
[0128] 染色後、 80°Cの水により 40分間かけてソービングを行い、フィックス処理液を濃度 [0128] After dyeing, perform soaking with water at 80 ° C for 40 minutes to concentrate the fix treatment solution.
2%owfで 40°Cの条件で 20分間かけてフィックス処理を行い、脱水後乾燥をした。以 上により得られたそれぞれの糸の染色後の撥水性、撥油性を測定した結果を表 9に 示す。  Fixing was performed for 20 minutes at 2% owf at 40 ° C, dehydrated and dried. Table 9 shows the results of measuring the water repellency and oil repellency after dyeing of each yarn obtained as described above.
[0129] [表 9] [0129] [Table 9]
Figure imgf000029_0001
Figure imgf000029_0001
[0130] (比較例 3) [0130] (Comparative Example 3)
実施例 6において、樹脂溶液の付与、及びその後の乾燥と熱処理を行わないこと 以外は同様に染色した 4種類の糸について、実施例 6と同様に撥水性、撥油性の試 験を行った。その結果を表 9に示す。  In Example 6, water and oil repellency tests were conducted in the same manner as in Example 6 on four types of yarn that were dyed in the same manner except that the resin solution was not applied and then dried and heat-treated. The results are shown in Table 9.
[0131] (実施例 7) [0131] (Example 7)
実施例 6で得られた、樹脂溶液を付与し、乾燥、熱処理した 4種類の糸をそれぞれ 用いて、編み立て機 (福原 (株)製:丸編み機)により連続編み加工を行い、液流染色 機(日阪製作所 (株)製: Circuler機)により、下記の成分比である混合水溶液により 精練、漂白を行った。 Using each of the four types of yarn obtained by applying the resin solution, drying and heat treatment obtained in Example 6, continuous knitting with a knitting machine (manufactured by Fukuhara Co., Ltd .: circular knitting machine), and liquid dyeing Machine (Nisaka Seisakusho Co., Ltd .: Circuler machine) Scouring and bleaching were performed.
'過酸化水素…… 50g/L  'Hydrogen peroxide …… 50g / L
'水酸化ナトリウム…… 20g/L  'Sodium hydroxide ... 20g / L
'安定剤:ネオレート PLC— 7000…… 4g/L  'Stabilizer: Neorate PLC—7000 …… 4g / L
•精練剤:ピッチラン L - 160 · · · · · · 2g/L  • Scouring agent: Pitch Run L-160 · · · · · · · 2g / L
[0132] その後、同じ液流染色機により、 Cibacron Black LS— N染料(Ciba社製)を用 いて、濃度 8%owf、染色条件は浴比 1 : 15、染色温度 85°Cにて 1時間染色を行った [0132] Then, using the same liquid dyeing machine, using Cibacron Black LS-N dye (Ciba), concentration 8% owf, dyeing condition is bath ratio 1:15, dyeing temperature 85 ° C for 1 hour Stained
Yes
[0133] その後ソービングを行い、ネオフィックス R— 800を濃度 2%owf、 40°Cの条件で 20 分間かけてフィックス処理を行った。乾燥後、染色された編地の撥水性、撥油性を求 め表 10に記した。また、測色して K/S値を求めた結果も表 10に示す。  [0133] After that, sorbing was performed, and Neofix R-800 was fixed for 20 minutes under the conditions of a concentration of 2% owf and 40 ° C. Table 10 shows the water and oil repellency of the dyed knitted fabric after drying. Table 10 also shows the results of K / S values obtained by colorimetry.
[0134] [表 10]  [0134] [Table 10]
Figure imgf000030_0001
Figure imgf000030_0001
[0135] (比較例 4) [0135] (Comparative Example 4)
実施例 7において、樹脂溶液を付与していない 4種類の糸をそれぞれ用いて、同様 の手順により編地を得て、実施例 7と同様に撥水性、撥油性、 K/S値を求めた。そ の結果を表 10に示す。いずれの糸番手でも、樹脂溶液を付与していない糸を用い た比較例 4よりも、樹脂溶液を付与した糸を用いた実施例 7の方が、染色濃度が向上 した。  In Example 7, a knitted fabric was obtained in the same procedure using each of the four types of yarns to which the resin solution was not applied, and the water repellency, oil repellency, and K / S value were determined in the same manner as in Example 7. . The results are shown in Table 10. In any yarn count, the dyeing density was improved in Example 7 using the yarn to which the resin solution was applied, compared to Comparative Example 4 using the yarn to which the resin solution was not applied.
[0136] (実施例 8)  [Example 8]
繊維素材としてポリエステル編み生地(70D、(株)東レ製)を用い、炭酸ナトリウム 力 ¾g/L、かつ精練剤が 2g/Lである混合水溶液により、(株)日阪製作所製液流染 色機を用いて、浴比 1 : 15、 80°Cの環境で 20分かけて精練を行い、その後乾燥した  A polyester knitted fabric (70D, manufactured by Toray Industries, Inc.) is used as the fiber material. By using a mixed aqueous solution of sodium carbonate strength ¾g / L and a scouring agent of 2g / L, the liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. Scouring for 20 minutes in an environment with a bath ratio of 1:15 and 80 ° C, and then dried.
[0137] 精練の後、下記の組成からなる樹脂溶液を生地に付与した。 •SM— Cube HS - - -•••6重』 部 [0137] After scouring, a resin solution having the following composition was applied to the dough. • SM—Cube HS---••• 6 layers
•SM— Cube ss--- .4重 J t部  • SM—Cube ss --- .4 layer J t
•SM— Cube JN -… ..2重库部  • SM—Cube JN -...
•SM— Cube ΚΚ· · '… ■:部  • SM—Cube ΚΚ ·· '…
'水 · · · · ' 87重〕 ft部  'Water ...
[0138] 樹脂溶液の付与にはニット用ケミカルマングル付きピンテンター(京都機械 (株)製) を用い、 Pad— Dry— Bake法にて行った。樹脂溶液のピックアップ率は 48%で、ベ 一キングは 160°Cの条件で 60秒間かけて行った。こうして作られた後染め用繊維素 材である後染め用ポリエステル編み生地を、(株)日阪製作所製:高圧液流染色機を 用いて、浴比 1 : 20、 130°Cの条件で 50分間かけて染色を行い、その後 80°Cの条件 で 20分間かけて還元洗浄を施した。染料は、紀和化学工業 (株)製: KP Black B RN- SF 200を濃度 7. 5%owfで使用した。染色後、 K/S値、撥水性、撥油性、 乾湿摩擦堅牢度 (JIS L— 0849 IITypeによる。)を測定した。その結果を表 11に 示す。  [0138] The resin solution was applied by a pad-dry-bake method using a pin tenter with a knit chemical mangle (manufactured by Kyoto Kikai Co., Ltd.). The pick-up rate of the resin solution was 48%, and baking was performed for 60 seconds at 160 ° C. A polyester knitted fabric for post-dyeing, which is a fiber material for post-dyeing made in this way, was manufactured by Nisaka Manufacturing Co., Ltd. using a high-pressure liquid dyeing machine, with a bath ratio of 1:20 and a temperature of 130 ° C. Dyeing was performed for 1 minute, and then reduction washing was performed at 80 ° C for 20 minutes. The dye used was Kiwa Chemical Industry Co., Ltd .: KP Black B RN-SF 200 at a concentration of 7.5% owf. After dyeing, the K / S value, water repellency, oil repellency, and wet and dry friction fastness (according to JIS L-0849 IIType) were measured. The results are shown in Table 11.
[0139] [表 11]  [0139] [Table 11]
Figure imgf000031_0001
Figure imgf000031_0001
[0140] (比較例 5) [0140] (Comparative Example 5)
実施例 8において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外は 実施例 8と同様の手順により、染色した生地を得た。同様に測定に測定を行った結果 を表 11に示す。  In Example 8, a dyed dough was obtained by the same procedure as in Example 8, except that the resin solution was not applied and drying and baking were not performed. Similarly, Table 11 shows the results of measurements.
[0141] (結果) [0141] (Result)
実施例 8の樹脂溶液による加工は、ポリエステルの高圧染色条件でも繊維素材から 剥がれることなぐ高い染色性を発揮させることができた。また、樹脂溶液を付与しな かった比較例 5に比べて、付与した実施例 8は染色後でも高!/、撥水性と撥油性を発 揮し、摩擦堅牢度も、染色後に別途撥水加工等を行う場合に比べて低下を抑制でき 、撥油性が特に高く油汚れに強いポリエステル素材となった。 The processing with the resin solution of Example 8 was able to exhibit high dyeability without being peeled off from the fiber material even under high pressure dyeing conditions of polyester. In addition, compared with Comparative Example 5 in which no resin solution was applied, Example 8 that was applied exhibited high water repellency and oil repellency even after dyeing. Compared to processing, etc., the decrease can be suppressed. This is a polyester material that is particularly oil-repellent and resistant to oil stains.
[0142] (実施例 9) [0142] (Example 9)
繊維素材として、中国製綿 100%織物(タテ綿 60、ョコ綿 60、サテン)に対し、実施 例 1と同様の手順で精練、糊抜き、漂白、シルケット加工を行い、下記の混合比であ る樹脂溶液を繊維素材に付与した。  As the fiber material, 100% cotton fabric made in China (warp cotton 60, horizontal cotton 60, satin) is scoured, desoldered, bleached and mercerized in the same manner as in Example 1, and the following mixing ratio A resin solution was applied to the fiber material.
'エバファノール HA107 C…… 5重量部  'Evaphanol HA107 C …… 5 parts by weight
•SM— Cube KK…… 1重量部  • SM—Cube KK …… 1 part by weight
•SM— Cube JN-DM…… 4重量部  • SM—Cube JN-DM …… 4 parts by weight
'水…… 90重量部  'Water ... 90 parts by weight
[0143] この樹脂溶液の付与には、ケミカルマングル付きテンター(実施例 1と同じ。)を用い 、ピックアップ率 60%で繊維素材に付与された。これを 120°Cの環境で 1分かけて乾 燥した後、下記の混合比である樹脂溶液を繊維素材に付与した。  [0143] For the application of this resin solution, a tenter with a chemical mangle (same as in Example 1) was used and applied to the fiber material at a pick-up rate of 60%. After drying this in an environment of 120 ° C. over 1 minute, a resin solution having the following mixing ratio was applied to the fiber material.
•SM— Cube HS…… 6重量部  • SM—Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube KK…… 1重量部  • SM—Cube KK …… 1 part by weight
'水…… 89重量部  'Water …… 89 parts by weight
[0144] この樹脂溶液の付与には、ケミカルマングノレ付きテンター(同上)を用い、ピックアツ プ率 55 %で繊維素材に付与された。これを 120°Cの環境で 1分かけて乾燥した後、 ベーキング機(実施例 1と同じ。)にて 160°C、 60秒の熱処理を行った。  [0144] This resin solution was applied to a fiber material at a pick-up rate of 55% using a tenter with a chemical mangore (same as above). This was dried in an environment of 120 ° C. over 1 minute, and then heat-treated at 160 ° C. for 60 seconds in a baking machine (same as in Example 1).
[0145] こうして得られた後染め用繊維素材を (株)日阪製作所製、液流染色機にて、 65°C の条件で 60分間かけて、 Remazol Black B Liquid染料(ダイスター社製)を用 V、て濃度 25%owfで染色を行った。  [0145] Remazol Black B Liquid dye (manufactured by Dystar Co., Ltd.) was applied to the fiber material for post-dying obtained in this way over 60 minutes at 65 ° C using a liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. V and staining were performed at a concentration of 25% owf.
[0146] 染色後、 60°Cの条件で 20分かけて洗浄を行い、実施例 1と同様にフィックス処理 後乾燥を行った。この得られた生地について、染色前、染色後、及び 50回洗濯後に おける撥水性、撥油性の試験結果を表 12に示す。得られた繊維素材を染色した繊 維素材はウレタン樹脂独特の風合いを維持したものとなった。  [0146] After dyeing, washing was performed at 60 ° C for 20 minutes, and after the fixing treatment as in Example 1, drying was performed. Table 12 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 50 times. The resulting fiber material dyed the fiber material maintained the unique texture of urethane resin.
[0147] [表 12] 撥水性 撥油性 [0147] [Table 12] Water and oil repellency
洗濯 洗 /翟  Laundry washing
染色前 染色後 染色前 染色後  Before dyeing After dyeing Before dyeing After dyeing
50回後 50回後  After 50 times After 50 times
比較例 6 1級以下 1級以下 1級以下 1級以下 1級以下 1級以下  Comparative Example 6 Class 1 or less Class 1 or less Class 1 or less Class 1 or less Class 1 or less Class 1 or less
実施例 9 3級 2/3級 2/3級 5級 5級 5級  Example 9 Grade 3 Grade 2/3 Grade 2/3 Grade 5 Grade 5 Grade 5
[0148] (比較例 6) [0148] (Comparative Example 6)
実施例 9において、繊維素材に樹脂溶液を付与しなかったものについて、同様の 測定を行った結果を表 12に示す。この比較例 6と比べて、実施例 9は、染色性が低 下せず、撥水性、撥油性が高いものであることがわかった。  Table 12 shows the results of the same measurement performed on the fiber material in Example 9 where the resin solution was not applied. Compared with Comparative Example 6, it was found that Example 9 did not deteriorate the dyeability and had high water repellency and oil repellency.
[0149] (実施例 10) [Example 10]
繊糸隹素材として、糸帛 100%織物(タテ糸帛 80、ョ 糸帛 80、 200本 xl 70本ツイノレ)を用 い実施例 1と同様な手順で精練、糊抜き、漂白、シルケット加工を行い、下記の混合 比でなる樹脂溶液を繊維素材に付与した。  100% woven fabric (warp yarn 80, yo yarn 80, 200 xl 70 twinoles) is used as the material for the silk cocoon, and scouring, desizing, bleaching and mercerizing are performed in the same manner as in Example 1. The resin solution having the following mixing ratio was applied to the fiber material.
•SM— Cube HS…… 6重量部  • SM—Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube JN-EP…… 3重量部  • SM—Cube JN-EP …… 3 parts by weight
•SM-Cube KK…… 1重量部  • SM-Cube KK ...... 1 part by weight
'水…… 86重量部  'Water ... 86 parts by weight
[0150] この樹脂溶液の付与は、実施例 9と同様の手順及び装置により行った。続いて、得 られた後染め用繊維素材である生地に、実施例 9と同様の染色を行った。染色され た繊維素材は風合いが柔軟で、スレアタリがなぐ均一な染色がなされていた。この 得られた生地について、染色前、染色後の撥水性、撥油性及び生地強度を引裂き 試験にて測定した試験結果を表 13に示す。  [0150] The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, dyeing similar to that in Example 9 was performed on the obtained fabric, which was a fiber material for post-dying. The dyed fiber material had a soft texture and was evenly dyed with no flare. Table 13 shows the test results obtained by measuring the water repellency, oil repellency and fabric strength of the obtained fabric before and after dyeing by a tear test.
[0151] [表 13]  [0151] [Table 13]
Figure imgf000033_0001
Figure imgf000033_0001
[0152] (比較例 7) 実施例 10において、繊維素材に樹脂溶液を付与しなかったものについて、同様の 測定を行った結果を表 13に示す。この比較例 7と比べて、実施例 10の繊維素材は、 染色前、及び染色後のどちらも引裂き強度が大きく改善された。 [0152] (Comparative Example 7) Table 13 shows the results of the same measurement performed on the fiber material in Example 10 where the resin solution was not applied. Compared with Comparative Example 7, the tear strength of the fiber material of Example 10 was greatly improved both before and after dyeing.
[0153] (実施例 11) [Example 10]
繊維素材として、綿 100%織物(タテ綿 50、ョコ綿 40, 120本 xl 10本平織物)を用 い、実施例 1と同様な手順で精練、糊抜き、漂白、シルケット加工を行い、下記混合 比である樹脂溶液を繊維素材に付与した。  100% cotton fabric (50 vertical cotton, 40 horizontal cotton, 120 xl 10 plain fabric) is used as the fiber material, and scouring, desizing, bleaching and mercerizing are performed in the same manner as in Example 1. A resin solution having the following mixing ratio was applied to the fiber material.
•ナイスポール PR— 99…… 5重量部  • Nice pole PR— 99 …… 5 parts by weight
•SM— Cube JN-DM…… 3重量部  • SM—Cube JN-DM …… 3 parts by weight
•SM— Cube KK…… 1重量部  • SM—Cube KK …… 1 part by weight
'水…… 91重量部  'Water ... 91 parts by weight
[0154] この樹脂溶液の付与には、ケミカルマングル付きテンターを用い、ピックアップ率 65 %で繊維素材に付与された。これを 120°Cの環境で 1分かけて乾燥した。その後下 記混合比からなる樹脂溶液を繊維素材に付与した。  [0154] This resin solution was applied to the fiber material using a tenter with chemical mangles at a pickup rate of 65%. This was dried in an environment of 120 ° C for 1 minute. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material.
•SM— Cube HS…… 6重量部  • SM—Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube KK…… 1重量部  • SM—Cube KK …… 1 part by weight
'水…… 89重量部  'Water …… 89 parts by weight
[0155] この樹脂溶液の付与は、実施例 9と同様の手順及び装置により行った。続いて、得 られた後染め用繊維素材に、実施例 9と同様な染色を行った。染色乾燥された繊維 素材は、染色性が良好で、かつスレアタリがなぐポリエステル樹脂独特の風合いが 保たれており、撥水性、撥油性も良好であった。更に生地の強度低下もなかった。こ の得られた生地について染色前、染色後の撥水性、撥油性、及び生地強度を測定 した結果を表 14に示す。  [0155] The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, the obtained post-dying fiber material was dyed in the same manner as in Example 9. The dyed and dried fiber material has good dyeability, maintains the unique texture of polyester resin with no leaching, and has good water and oil repellency. Furthermore, the strength of the dough was not reduced. Table 14 shows the results of measuring the water repellency, oil repellency, and fabric strength before and after dyeing of the obtained fabric.
[0156] [表 14] 染色前 染色後  [0156] [Table 14] Before staining After staining
弓 I裂き強度 (gr) 弓 I裂き強度 (gr)  Bow I tear strength (gr) Bow I tear strength (gr)
撥水性 撥油性 撥水性 撥油性 タテ 3コ タテ 3コ 比較例 8 800 620 1級以下 0 720 580 1級以下 0 実施例 1 1 1 100 880 2/3級 6級 1060 800 2級 5級 [0157] (比較例 8) Water repellency Oil repellency Water repellency Oil repellency Vertical 3 Horizontal Vertical 3 Comparative Example 8 800 620 Grade 1 or lower 0 720 580 Grade 1 or lower 0 Example 1 1 1 100 880 2/3 Grade 6 Grade 1060 800 Grade 2 Grade 5 [0157] (Comparative Example 8)
実施例 11において、繊維素材に樹脂溶液を付与しなかったものについて、同様の 測定を行った結果を表 14に示す。この比較例 8と比べて、実施例 11の繊維素材は、 染色前、及び染色後のどちらにおいても、引裂き強度が大きく改善された。  Table 14 shows the results of the same measurement performed on the fiber material in Example 11 where the resin solution was not applied. Compared to Comparative Example 8, the tear strength of the fiber material of Example 11 was greatly improved both before and after dyeing.
[0158] (実施例 12) [Example 12]
繊維素材として、ジアセテート 100%織物(タテジァセ 30、ョコジァセ 30、平織物、 帝人 (株)製)を用い、実施例 4と同様の手順で Pad— Steamer方式で精練を行い、 下記混合比である樹脂溶液を繊維素材に付与した。  100% diacetate fabric (Tatejiase 30, Yokojiase 30, plain fabric, manufactured by Teijin Ltd.) is used as the fiber material, and scouring is performed using the Pad-Steamer method in the same manner as in Example 4, and the following mixing ratio is obtained. A resin solution was applied to the fiber material.
•SM— Cube HS…… 6重量部  • SM—Cube HS …… 6 parts by weight
•SM-Cube SS…… 3重量部  • SM-Cube SS …… 3 parts by weight
•SM— Cube JN…… 2重量部  • SM—Cube JN …… 2 parts by weight
•SM-Cube KK…… 1重量部  • SM-Cube KK ...... 1 part by weight
'水…… 88重量部  'Water …… 88 parts by weight
[0159] この樹脂溶液の付与は、実施例 9と同様の手順及び装置により行った。続いて、得 られた後染め用繊維素材である生地を、(株)日阪製作所製液流染色機にて、 80°C の条件で 60分力、けて、 pHを 4. 5に設定して、ダイスター社製: Disperse Black Z を用いて濃度 8%owfで染色した。この得られた生地について、染色前及び染色後 の撥水性及び撥油性と、 K/S値とを測定した試験結果を表 15に示す。なお、 K/S 値は下記の比較例 9の値を 100とした相対値で示す。  [0159] The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, the fabric, which is the fiber material for post-dying, was obtained, and the pH was set to 4.5 using a liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. for 60 minutes at 80 ° C. Then, it was stained with a concentration of 8% owf using Disperse Black Z manufactured by Dystar. Table 15 shows the test results obtained by measuring the water and oil repellency before and after dyeing, and the K / S value of the obtained fabric. The K / S value is a relative value with the value of Comparative Example 9 below as 100.
[0160] [表 15]  [0160] [Table 15]
Figure imgf000035_0001
Figure imgf000035_0001
(比較例 9) (Comparative Example 9)
実施例 12において、繊維素材に樹脂溶液を付与しなかったものについて、同様の 測定を行った結果を表 15に示す。この比較例 9と比べて、実施例 12の繊維素材は、 K/S値は僅かに小さいものの、染色前及び染色後のどちらにおいても撥水性、撥 油 1·生が高いものとなった。 [0162] (実施例 13) Table 15 shows the results of the same measurement performed on the fiber material in Example 12 where the resin solution was not applied. Compared with Comparative Example 9, the fiber material of Example 12 had a slightly low K / S value, but had high water repellency and high oil repellency both before and after dyeing. [0162] (Example 13)
繊維素材として、脂肪族ポリアミド系繊維である 6— Nylonl00%編み物(70D、中 国製)を用い、(株)辻井製作所製: Pad— Dryer試験機で下記混合比である樹脂溶 液を繊維素材に付与した。  6-Nylon100% knitted fabric (70D, made in China), which is an aliphatic polyamide fiber, is used as the fiber material. Made by Sakurai Mfg. Co., Ltd. Was granted.
•SM— Cube HS…… 6重量部  • SM—Cube HS …… 6 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube JN…… 2重量部  • SM—Cube JN …… 2 parts by weight
•SM-Cube KK…… 1重量部  • SM-Cube KK ...... 1 part by weight
'水…… 87重量部  'Water …… 87 parts by weight
[0163] ピックアップ率は 58%で、 120°Cの環境で 60秒間かけて乾燥を行った。次に、(株 )島津製作所製べ一キング試験機を用いて、 170°Cの環境で 45秒かけてベーキング を行った。得られた後染め用繊維素材である、後染め用ナイロン編生地を、テキサム 社製試験染色機を用い、浴比 1 : 15、 100°Cの条件で 50分かけて染色を行った。染 料は Erionyl Black AM— R (チノく'スぺシャリティ'ケミカルズ社製)を濃度 5%ow fで使用した。この得られた生地について、染色前及び染色後の撥水性及び撥油性 と、 K/S値とを測定した試験結果を表 16に示す。なお、 K/S値は下記の比較例 1 0を 100とした相対値で示す。  [0163] The pick-up rate was 58%, and drying was performed for 60 seconds in an environment of 120 ° C. Next, it was baked for 45 seconds in a 170 ° C environment using a Shimadzu Baking test machine. The resulting post-dyed nylon knitted fabric, which is a fiber material for post-dyeing, was dyed for 50 minutes under the conditions of a bath ratio of 1:15 and 100 ° C. using a test dyeing machine manufactured by Texam. As a dye, Erionyl Black AM—R (manufactured by Chinoku “Specialty” Chemicals) was used at a concentration of 5% ow f. Table 16 shows the test results obtained by measuring the water and oil repellency before and after dyeing, and the K / S value of the obtained fabric. The K / S value is expressed as a relative value with the following Comparative Example 10 as 100.
[0164] [表 16]  [0164] [Table 16]
Figure imgf000036_0001
Figure imgf000036_0001
[0165] (比較例 10) [0165] (Comparative Example 10)
実施例 13において、繊維素材に樹脂溶液を付与しなかったものについて、同様の 測定を行った結果を表 16に示す。この比較例 10と比べて、実施例 13は撥油性が高 いものとなり、高い染色濃度を得ることができた。  Table 16 shows the results of the same measurement performed on the fiber material in Example 13 where the resin solution was not applied. Compared with Comparative Example 10, Example 13 had high oil repellency, and a high dyeing density could be obtained.
[0166] (実施例 14) [Example 14]
繊維素材として、ポリエステル織物(70D、(株)東レ製)を用い、実施例 8と同様の 精練 ·乾燥を行い、その後、下記混合比である樹脂溶液を繊維素材に付与した。 •SM— Cube HS…… 10重量部 A polyester woven fabric (70D, manufactured by Toray Industries, Inc.) was used as the fiber material, and scouring and drying were performed in the same manner as in Example 8. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material. • SM—Cube HS …… 10 parts by weight
•SM-Cube SS…… 4重量部  • SM-Cube SS …… 4 parts by weight
•SM— Cube KL…… 1. 5重量部  • SM—Cube KL …… 1.5 parts by weight
'水…… 84. 5重量部  'Water …… 84. 5 parts by weight
[0167] 樹脂溶液の付与には、実施例 1と同じケミカルマングル付きテンターを用い、ピック アップ率 55 %で繊維素材に付与された。これを 130°Cの環境で 1分かけて乾燥した 後、実施例 1と同じべ一キング機により 180°C、 60秒の熱処理を行った。こうして得ら れた後染め用繊維素材であるポリエステル織物を、実施例 8と同様の染色条件にて 染色、還元洗浄を施した。染料は、 日本化薬 (株)製: KP Black BRN- SF 200 を濃度 5%owfにて使用した。染色後、 K/S値、撥水性、透湿性を測定した。その 結果を表 17に示す。なお、 K/S値を相対値で表すと、比較例 11を 100とすると実 施列 14は 104. 9となる。  [0167] For the application of the resin solution, the same tenter with chemical mangles as in Example 1 was used, and the fiber solution was applied at a pick-up rate of 55%. This was dried for 1 minute in an environment of 130 ° C, and then heat-treated at 180 ° C for 60 seconds using the same baking machine as in Example 1. The polyester fabric, which is a fiber material for post-dying obtained in this way, was dyed and reduced and washed under the same dyeing conditions as in Example 8. As the dye, Nippon Kayaku Co., Ltd .: KP Black BRN-SF 200 was used at a concentration of 5% owf. After dyeing, K / S value, water repellency and moisture permeability were measured. The results are shown in Table 17. In addition, when the K / S value is expressed in relative values, if Comparative Example 11 is 100, Implementation 14 is 104.9.
[0168] [表 17]
Figure imgf000037_0001
[0168] [Table 17]
Figure imgf000037_0001
[0169] (比較例 11) [0169] (Comparative Example 11)
実施例 14において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外 は、実施例 14と同様の手順により染色した繊維素材を得た。同様に測定を行った結 果を表 17に示す。  In Example 14, a dyed fiber material was obtained by the same procedure as in Example 14 except that the resin solution was not applied and drying and baking were not performed. Table 17 shows the results of similar measurements.
[0170] (結果) [0170] (Result)
実施例 14では、ポリエステル繊維素材の高圧染色条件下でも、合成樹脂が繊維素 材から剥がれ落ちることなぐ高い染色性を発揮することができた。また、撥水性が高 ぐかつ、透湿性も比較例 11よりも良好であった。  In Example 14, even under the high-pressure dyeing condition of the polyester fiber material, it was possible to exhibit high dyeing properties without causing the synthetic resin to peel off from the fiber material. Further, the water repellency was high and the moisture permeability was also better than that of Comparative Example 11.
[0171] (実施例 15) [Example 15]
繊維素材として、ポリエステル複合織物(縦:ポリエステル、横:ポリエステル '綿の混 紡、(株)東レ製)に対して、実施例 14と同様の加工を施し、撥水性、透湿性を測定し た。その結果を表 18に示す。 [0172] [表 18]As a fiber material, a polyester composite fabric (length: polyester, width: polyester 'cotton blend, manufactured by Toray Industries, Inc.) was processed in the same manner as in Example 14 to measure water repellency and moisture permeability. . The results are shown in Table 18. [0172] [Table 18]
Figure imgf000038_0001
Figure imgf000038_0001
[0173] (比較例 12) [0173] (Comparative Example 12)
実施例 15において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外 は実施例 15と同様の手順により染色した繊維素材を得た。同様に測定を行った結果 を表 18に示す。  In Example 15, a dyed fiber material was obtained by the same procedure as in Example 15 except that the resin solution was not applied and drying and baking were not performed. Table 18 shows the results of similar measurements.
[0174] (結果) [0174] (Result)
実施例 14と同様に、実施例 15でも、樹脂溶液を付与しないものよりも、高い撥水性 を発揮するとともに、高い透湿性を両立させることができた。  Similar to Example 14, Example 15 also exhibited higher water repellency and higher moisture permeability than those not provided with the resin solution.
[0175] (実施例 16〜; 18)  [0175] (Examples 16 to 18)
繊維素材として、実施例 14と同じポリエステル織物を用い、同様の手順で精練、乾 燥を行い、下記の表 19に記載の混合比からなるそれぞれの樹脂溶液を繊維素材に 付与した。なお、表中、「SS」iiSM— Cube SSを、「: L」 ίま SM— Cube KLを、「 SRM- 65Jはポリエステル樹脂溶液であるメイ力フィニッシュ SRM— 65を示す。そ れぞれの樹脂溶液の付与には (株)辻井製作所製、 Pad— Dryer試験機を用い、ピ ックアップ率 60 %で繊維素材に付与した。  The same polyester fabric as in Example 14 was used as the fiber material, and scouring and drying were performed in the same procedure, and each resin solution having a mixing ratio shown in Table 19 below was applied to the fiber material. In the table, “SS” iiSM-Cube SS, “: L” ί SM-Cube KL, “SRM-65J” indicates the Mei force finish SRM-65, which is a polyester resin solution. The resin solution was applied to a fiber material at a pick-up rate of 60% using a Pad-Drier tester manufactured by Sakurai Mfg. Co., Ltd.
[0176] [表 19]  [0176] [Table 19]
Figure imgf000038_0002
Figure imgf000038_0002
[0177] 120°Cの環境で乾燥した後、(株)島津製作所製べ一キング試験機で 160°C2分の 熱処理を行った。こうして得られたそれぞれの後染め用繊維素材であるポリエステル 織物を、試験用高圧染色機 (TEXAM社製)を用い、浴比 1: 15にて 130°Cの条件で 60分掛けて、染料として KP Black BRN— SFを用いて濃度 5%owfで染色を行つ た。その後 20分掛けてアルカリ還元洗浄を施した。乾燥後に、それぞれの繊維素材 の撥油性、吸水性、 K/S値を測定した。それぞれの結果を表 19に示す。 [0177] After drying in an environment of 120 ° C, heat treatment was performed at 160 ° C for 2 minutes using a Shimadzu Corporation baking test machine. Polyester fabrics, which are the fiber materials for post-dyeing obtained in this way, are applied as dyes using a test high-pressure dyeing machine (manufactured by TEXAM) for 60 minutes at 130 ° C at a bath ratio of 1:15 Staining was performed with KP Black BRN—SF at a concentration of 5% owf. Thereafter, alkali reduction cleaning was performed for 20 minutes. Each fiber material after drying The oil repellency, water absorption, and K / S value were measured. The results are shown in Table 19.
[0178] (比較例 13) [0178] (Comparative Example 13)
実施例 16において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外 は実施例 16と同様の手順により、染色した繊維素材を得て、同様の測定を行った。 その結果を表 19に示す。  In Example 16, a dyed fiber material was obtained by the same procedure as in Example 16 except that the resin solution was not applied and drying and baking were not performed, and the same measurement was performed. The results are shown in Table 19.
[0179] (結果) [0179] (Result)
吸水性ポリエステルである SRM— 65が増加した実施例 18では、吸水性ポリエステ ルの含有量がより少ない実施例 17や全く含まない実施例 16及び比較例 13と比べて 、吸水性が大きく向上した。このため、ポリエステル樹脂溶液である SRM— 65の含 有量を調整することにより、撥油性、吸水性を調整可能であることが分かった。また、 ポリエステル繊維では従来撥油性及び吸水性を付与してもその後の後染めで低下し In Example 18 in which the SRM-65, which is a water-absorbing polyester, was increased, the water-absorbing property was greatly improved as compared to Example 17 having a lower water-absorbing polyester content, and Example 16 and Comparative Example 13 having no water-absorbing polyester. . Therefore, it was found that oil repellency and water absorption can be adjusted by adjusting the content of SRM-65, which is a polyester resin solution. In addition, with polyester fibers, even if conventional oil repellency and water absorbency are imparted, they will be reduced by subsequent post-dying.
、後染め自体がうまくいかなかったもの力 本願発明に力、かる方法では、後染めにお ける染色濃度を低下させることなぐまた、後染めによって撥油性や吸水性が低下す ることなく fiうことカでさた。 The power of unsuccessful post-dyeing The power of the present invention does not reduce the dyeing density in post-dyeing, and it does not reduce oil repellency or water absorption by post-dyeing. That's it.
[0180] (実施例 19) [0180] (Example 19)
繊維素材として、マイクロデニールポリエステル不織布((株)東レ製)を用い、下記 に記載の混合比からなる樹脂溶液を繊維素材に付与した。樹脂溶液の付与には京 都機械 (株)製ケミカルマングル付きテンターを用い、ピックアップ率 55%で繊維素材 に付与した。これを 120°Cの環境で 2分かけて乾燥した後、同じテンターを用いて、 1 A micro denier polyester nonwoven fabric (manufactured by Toray Industries, Inc.) was used as the fiber material, and a resin solution having the following mixing ratio was applied to the fiber material. The resin solution was applied to a fiber material using a tenter with chemical mangle manufactured by Kyoto Kikai Co., Ltd. at a pickup rate of 55%. After drying this in a 120 ° C environment for 2 minutes, using the same tenter, 1
80°Cで 2分間のベーキング処理を行った。 The baking process was performed at 80 ° C for 2 minutes.
[0181] - SM-CUBE HS…… 10重量部 [0181]-SM-CUBE HS …… 10 parts by weight
•SM— CUBE SS…… 4重量部  • SM—CUBE SS …… 4 parts by weight
•SM— CUBE JN…… 2重量部  • SM—CUBE JN …… 2 parts by weight
•SM-CUBE KK…… 1重量部  • SM-CUBE KK …… 1 part by weight
'水…… 83重量部  'Water …… 83 parts by weight
[0182] 得られた後染め用繊維素材であるポリエステル不織布を、染色機として高圧ドラム 染色機 (TEXAM社製: RD— 830)を用い、染料として日本化薬 (株)製 KP Black BRN— SF200を濃度 25%owfで用いて染色を行った。染色溶液は、染料分散剤 (日華化学(株)製:サンカレト RM340E)を lg/L、酢酸を 0· 5g/L、酢酸ナトリウム を 1. 2g/L含む溶液とした。染色温度は 120°Cで 60分かけて行い、浴比は 1 : 20と した。 [0182] The polyester non-woven fabric, which is the fiber material for post-dying, was obtained by using a high-pressure drum dyeing machine (TEXAM: RD-830) as a dyeing machine and KP Black BRN- SF200 made by Nippon Kayaku Co., Ltd. as a dye. Was stained at a concentration of 25% owf. The dyeing solution is a dye dispersant (Nikka Chemical Co., Ltd. product: Sancareto RM340E) was used as a solution containing lg / L, acetic acid 0.5 g / L, and sodium acetate 1.2 g / L. The dyeing temperature was 120 ° C for 60 minutes, and the bath ratio was 1:20.
[0183] 染色後、 80°Cの水で 20分かけてソービングを行い、それから、還元洗浄を行った。  [0183] After dyeing, soaking was carried out with water at 80 ° C for 20 minutes, and then reduction washing was performed.
還元洗浄の溶液は、還元剤(明成化学 (株)製: MRCパウダー)を 7g/L、洗剤(明 成化学(株)製:ラッコール ST—700)を 5g/L、酢酸を 5cc/L含むものであり、これ を用いて、 80°Cの条件で 20分間かけて洗浄した。  The reducing cleaning solution contains 7g / L of reducing agent (Mensei Chemical Co., Ltd .: MRC powder), 5g / L of detergent (Makisei Chemical Co., Ltd .: Lakkor ST-700), and 5cc / L of acetic acid. This was used and washed at 80 ° C for 20 minutes.
[0184] その後、ソーダ灰を 2g/L含む 60°Cの溶液で 10分かけて中和処理を行い、 60°C の水で 10分間かけて湯洗いをし、最後に 120°Cの環境で 2分間かけて乾燥処理を 行った。こうして得られた染色後の繊維素材について、撥水性及び發油性を測定し た。その結果を表 20に示す (表中「L— 0」と示す。)。また、さらに染色後の繊維素材 について、 JIS L— 0217 103法の洗濯条件で 20回洗濯耐久性試験を行い、その 上で撥水性と發油性の評価を行った。その結果を合わせて表 20に示す (表中「L 2 0」と示す。)。  [0184] After that, neutralize with 60 ° C solution containing 2g / L of soda ash for 10 minutes, rinse with hot water for 10 minutes at 60 ° C water, and finally at 120 ° C environment. And dried for 2 minutes. The dyed fiber material thus obtained was measured for water repellency and oil repellency. The results are shown in Table 20 (shown as “L-0” in the table). Further, the dyed fiber material was subjected to a washing durability test 20 times under the washing conditions of JIS L-0217103 method, and then the water repellency and oil repellency were evaluated. The results are shown together in Table 20 (shown as “L 2 0” in the table).
[0185] [表 20]  [0185] [Table 20]
Figure imgf000040_0001
Figure imgf000040_0001
[0186] (比較例 14) [0186] (Comparative Example 14)
実施例 19において、樹脂溶液を付与せず、乾燥及びべ一キング処理を行わないこ と以外は実施例 19と同様の手順により染色した素材を、染色後、撥水剤(明成化学( 株)製:アサヒガード AG970)を用いて撥水加工した後、実施例 19で用いたテンター により、 105°Cで 2分間かけて乾燥させた。その後、実施例 19と同様の条件で、洗濯 耐久性試験前後の撥水性及び發油性の値を測定した。その結果を表 20に示す。  In Example 19, a material dyed by the same procedure as in Example 19 except that the resin solution was not applied and drying and baking were not performed. After dyeing, a water repellent (Meisei Chemical Co., Ltd.) was used. Manufactured by Asahi Guard AG970) and then dried at 105 ° C. for 2 minutes by the tenter used in Example 19. Thereafter, under the same conditions as in Example 19, water repellency and oil repellency values before and after the washing durability test were measured. The results are shown in Table 20.
[0187] (結果) [0187] (Result)
従来の染色後の撥水加工方法による比較例 14では、洗濯耐久性がほとんど発揮 されず、洗濯後の撥水性及び發油性はほとんど無くなってしまった。しかしこの発明 にかかる樹脂溶液で加工した後染め用繊維素材である実施例 19では、洗濯耐久試 験後も發油性及び撥水性がほとんど低下しなかった。 In Comparative Example 14 using the conventional water-repellent processing method after dyeing, washing durability was hardly exhibited, and water repellency and oil repellency after washing were almost lost. However, in Example 19, which is a fiber material for post-dyeing processed with the resin solution according to the present invention, the washing durability test is performed. Even after the test, the oiliness and water repellency were hardly lowered.

Claims

請求の範囲 The scope of the claims
[1] 水酸基、アミノ基、アミド基、カルボキシル基、及びウレタン基のうち少なくとも 1種の 官能基を有する繊維素材に、その繊維素材の前記官能基と結合する官能基を有し 前記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませて、 前記合成樹脂の分子を前記繊維素材の分子と結合させた、後染め用繊維素材。  [1] A fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group has a functional group that binds to the functional group of the fiber material. A fiber material for post-dyeing, comprising a resin solution containing a synthetic resin as a main component for improving dyeability, wherein molecules of the synthetic resin are combined with molecules of the fiber material.
[2] 形状が、綿、スライバー、フィラメント糸、紡績糸、縫製糸、又はこれらからなる、織物 、編み物、若しくは不織布、又はこれらからなる縫製品である、請求項 1に記載の後 染め用繊維素材。  [2] The fiber for post-dyeing according to claim 1, wherein the shape is cotton, sliver, filament yarn, spun yarn, sewing yarn, or a woven fabric, knitted fabric, or non-woven fabric, or a sewn product comprising the same. Material.
[3] 上記繊維素材が、紙繊維、竹繊維、綿、麻、レーヨン、有機溶剤紡糸法により得ら れるセルロース繊維、銅アンモニアレーヨン、シルク、ウール、ポリエステル、脂肪族 ポリアミド系繊維、芳香族ポリアミド系繊維、ポリウレタン、ジアセテート、トリアセテート 、又はこれらを複数用いた複合繊維からなる、請求項 1又は 2に記載の後染め用繊 維素材。  [3] The fiber material is paper fiber, bamboo fiber, cotton, hemp, rayon, cellulose fiber obtained by organic solvent spinning method, copper ammonia rayon, silk, wool, polyester, aliphatic polyamide fiber, aromatic polyamide The fiber material for post-dyeing according to claim 1 or 2, comprising a base fiber, polyurethane, diacetate, triacetate, or a composite fiber using a plurality of these.
[4] 上記合成樹脂が、パーフルォロアルキル基を有するアタリレート単位と親水性ビニ ルモノマー単位とからなる共重合樹脂を含む、請求項 1乃至 3のいずれかに記載の 後染め用繊維素材。  [4] The post-dyeing fiber material according to any one of claims 1 to 3, wherein the synthetic resin includes a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic vinyl monomer unit. .
[5] 上記合成樹脂が、パーフルォロアルキル基を有するアタリレート樹脂、ポリエステル 樹脂、シリコン樹脂、ウレタン樹脂の少なくとも 1種を含む、請求項 4に記載の後染め 用繊維素材。  [5] The fiber material for post-dyeing according to claim 4, wherein the synthetic resin contains at least one of an acrylate resin having a perfluoroalkyl group, a polyester resin, a silicone resin, and a urethane resin.
[6] 上記樹脂溶液が、上記繊維素材の官能基と上記合成樹脂の官能基とを架橋する 架橋剤を含む、請求項 1乃至 5のいずれかに記載の後染め用繊維素材。  6. The post-dyeing fiber material according to any one of claims 1 to 5, wherein the resin solution includes a crosslinking agent that crosslinks the functional group of the fiber material and the functional group of the synthetic resin.
[7] 上記架橋剤が、複数のイソシァネート基又はウレタン基を有するイソシァネート系化 合物である、請求項 6に記載の後染め用繊維素材。  [7] The fiber material for post-dyeing according to claim 6, wherein the crosslinking agent is an isocyanate compound having a plurality of isocyanate groups or urethane groups.
[8] 上記樹脂溶液を、サイジング機、チーズ加工機、カセ加工機、拡布加工機、ウィン ス機、液流加工機、ロープ加工機、スラッシャー加工機、及びコーティング機のうちの 少なくとも一つを用いて付与させた後、 50°C以上 200°C以下で乾燥処理を行う、請 求項 1乃至 7のいずれかに記載の後染め用繊維素材。  [8] Applying the resin solution to at least one of a sizing machine, a cheese processing machine, a casserole processing machine, a spreading processing machine, a winking machine, a liquid flow processing machine, a rope processing machine, a slasher processing machine, and a coating machine. The fiber material for post-dyeing according to any one of claims 1 to 7, wherein the fiber material is applied and then dried at 50 ° C or higher and 200 ° C or lower.
[9] JIS L 1092に記載の撥水性試験による結果が撥水性 2級以上 5級以下、 AATC CI 18— 2002に記載の撥油性試験の結果が撥油性 2級以上 7級以下、又はそれら の両方の条件を満たす、請求項 1乃至 8のいずれかに記載の後染め用繊維素材。 [9] The results of the water repellency test described in JIS L 1092 indicate that the water repellency is 2nd to 5th, AATC The fiber material for post-dyeing according to any one of claims 1 to 8, wherein the result of the oil repellency test described in CI 18-2002 satisfies the conditions of oil repellency Grade 2 to Grade 7 or both.
[10] 後染めに用いる染料として、反応性染料、直接性染料、酸性染料、分散染料、及 び建染め染料のいずれも使用可能であり、染色にあたって液流染色機、ウィンス染 色機、チーズ加工機、カセ加工機、ドラム染色機、ジッカー染色機、パッドバッチ染色 機、ロープ加工機、スラッシャー加工機のいずれも使用可能である、請求項 1乃至 9 のレ、ずれかに記載の後染め用繊維素材。  [10] Reactive dyes, direct dyes, acid dyes, disperse dyes, and vat dyes can be used as dyes for post-dyeing. Liquid dyeing machines, Wins dyeing machines, cheeses can be used for dyeing. 10. The post-dyeing according to any one of claims 1 to 9, wherein any of a processing machine, a filing machine, a drum dyeing machine, a zicker dyeing machine, a pad batch dyeing machine, a rope processing machine, and a slasher processing machine can be used. Fiber material.
[11] 後染め後を行った後の染色後繊維素材が、 JIS L 1092に記載の撥水性試験に よる結果が撥水性 1級以上 5級以下、 AATCC118— 2002に記載の撥油性試験の 結果が撥油性 2級以上 7級以下、又はそれらの両方の条件を満たす、請求項 1乃至 10のいずれかに記載の後染め用繊維素材。  [11] The fiber material after dyeing after post-dyeing shows that the water repellency test described in JIS L 1092 results in water repellency from 1 to 5 and the oil repellency test described in AATCC118-2002. The fiber material for post-dyeing according to any one of claims 1 to 10, wherein the oil repellency is from 2nd grade to 7th grade, or both of the conditions.
[12] 後染め後を行った後の染色後繊維素材について JIS L 0217 103に記載の 30 回の洗濯を行った後の洗濯後繊維素材力 S、JIS L 1092に記載の撥水性試験によ る結果が撥水性 1級以上 5級以下、 AATCC118— 2002に記載の撥油性試験の結 果が撥油性 2級以上 7級以下、又はそれらの両方の条件を満たす、請求項 1乃至 11 のレ、ずれかに記載の後染め用繊維素材。  [12] Fiber material after dyeing after post-dyeing Fiber material strength after washing S after washing 30 times as described in JIS L 0217 103, water repellency test as described in JIS L 1092 The results of claims 1 to 11, wherein the results of the water repellency are grade 1 to grade 5 and the results of the oil repellency test described in AATCC 118-2002 are grades of oil repellency grade 2 to grade 7 or both. The fiber material for post-dyeing described in the above.
[13] 水酸基、アミノ基、アミド基、カルボキシル基、又はウレタン基の少なくともいずれか を含有する繊維素材に対して、その繊維素材の前記官能基と反応して前記繊維素 材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませる処理加工を 行うことで、前記処理加工後の繊維素材を染色した染色後繊維素材が JIS L 021 7 103に記載の 30回の洗濯を行った後における、 JIS L 1092に記載の撥水性 試験による結果が撥水性 1級以上 5級以下、 AATCC118— 2002に記載の撥油性 試験の結果が撥油性 2級以上 7級以下、又はそれらの両方の条件を満たす、後染め 用繊維素材を得る、後染め用繊維素材の製造方法。  [13] For a fiber material containing at least one of a hydroxyl group, an amino group, an amide group, a carboxyl group, or a urethane group, the fiber material reacts with the functional group to improve the dyeability of the fiber material. The processed fiber material containing a resin solution containing a synthetic resin as a main component was subjected to 30 times of washing described in JIS L 021 7 103 after dyeing the fiber material after the processing. Later, the result of the water repellency test described in JIS L 1092 is the water repellency grade 1 or higher, grade 5 or lower, the oil repellency test result described in AATCC118-2002 is the oil repellency grade 2 or higher, grade 7 or less, or both A method for producing a fiber material for post-dyeing, which obtains a fiber material for post-dyeing that satisfies conditions.
PCT/JP2007/068626 2006-09-28 2007-09-26 Fiber material for piece dyeing WO2008041570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514263A JP4358894B2 (en) 2006-09-28 2007-09-26 Textile material for post dyeing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-265046 2006-09-28
JP2006265046 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008041570A1 true WO2008041570A1 (en) 2008-04-10

Family

ID=39268432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068626 WO2008041570A1 (en) 2006-09-28 2007-09-26 Fiber material for piece dyeing

Country Status (2)

Country Link
JP (2) JP4358894B2 (en)
WO (1) WO2008041570A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222750A (en) * 2009-03-25 2010-10-07 Toray Ind Inc Cellulose fabric structure and method of manufacturing the same
JP2011149125A (en) * 2010-01-21 2011-08-04 Teijin Techno Products Ltd Method for dyeing aramid textile fabric
CN102517754A (en) * 2011-12-22 2012-06-27 杭州福恩纺织有限公司 Dyeing and post-finishing process of woolen bamboo polyester fabrics
CN103541232A (en) * 2013-09-30 2014-01-29 咸阳际华新三零印染有限公司 Nylon camouflage fabric preparation process
CN106521951A (en) * 2016-10-19 2017-03-22 河南工程学院 Bamdal/cotton blended yarn size, preparation method thereof and sizing effect evaluation method
CN110042647A (en) * 2019-04-02 2019-07-23 嘉兴学院 A kind of high whiteness cold bleaching method of cashmere or wool
CN110678601A (en) * 2017-05-24 2020-01-10 仓敷纺绩株式会社 Fiber assembly containing cellulose water-proof fiber, method for producing same, and fiber product
KR102234358B1 (en) * 2020-10-13 2021-04-01 주식회사 한신타올공업 Bamboo fiber with high friction fastness and towel using the same
CN113648732A (en) * 2021-09-15 2021-11-16 国家石油天然气管网集团有限公司 Natural gas filters and uses filter core and filter with multistage filtering capability
WO2022180341A1 (en) * 2021-02-26 2022-09-01 Induo Method for manufacturing a functionalised dyed textile, use of a bleaching solution to increase the durability of a chemical functionalisation on a dyed textile, and dyed textile
FR3120239A1 (en) * 2021-02-26 2022-09-02 Induo METHOD FOR FUNCTIONALIZATION OF A TEXTILE
FR3120240A1 (en) * 2021-02-26 2022-09-02 Induo METHOD FOR MANUFACTURING FUNCTIONALIZED DYED TEXTILE
KR20220126048A (en) * 2021-03-08 2022-09-15 주식회사 비즈링크 Method for improving the friction fastness of towels and fabrics made of bamboo fiber with high friction fastness

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554172B2 (en) * 2010-07-23 2014-07-23 Kbツヅキ株式会社 Processing method of fiber material
CN103321033A (en) * 2013-07-08 2013-09-25 山东天源家纺有限公司 Bamboo fiber yarn bleaching process
CN103439168B (en) * 2013-09-02 2016-01-27 浙江华元纺织品有限公司 A kind of test cloth dye model machine
ITUB20159759A1 (en) * 2015-12-30 2017-06-30 Manifattura Del Seveso S P A PROCESS TO OBTAIN A HIGH-PERFORMANCE CANVAS FOR DIGITAL PRINTING AND RELATED CANVAS
KR102181953B1 (en) * 2016-05-26 2020-11-23 우견윤 m-Aramid Textile Pretreatment method
CN105970379A (en) * 2016-06-06 2016-09-28 灵武市嘉艺科技有限公司 High-count fine-spinning cashmere and bamboo dyer blended yarn and manufacturing method thereof
KR102104702B1 (en) * 2017-07-05 2020-04-24 우견윤 m-Aramid Textile Pretreatment method and Pretreatment Composite for a m-Aramid Textile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240279A (en) * 1991-01-17 1992-08-27 Meisei Kagaku Kogyo Kk Deep color treatment of polyamide-based textile goods
JPH091703A (en) * 1995-06-23 1997-01-07 Shimadzu Corp Manufacture of composite of fiber and film
JP2002105864A (en) * 2000-09-21 2002-04-10 Komatsu Seiren Co Ltd Fabric for piece dyeing
JP2002105865A (en) * 2000-09-21 2002-04-10 Komatsu Seiren Co Ltd Fiber fabric for piece dyeing
JP2004360137A (en) * 2003-06-06 2004-12-24 Meisei Kagaku Kogyo Kk Method for improving color deepness of fiber cloth and dyeing pretreatment agent used therein

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559681B2 (en) * 1987-05-12 1996-12-04 鐘紡株式会社 Standing product and manufacturing method thereof
JPH06313278A (en) * 1993-04-23 1994-11-08 Matsui Shikiso Kagaku Kogyosho:Kk Dyeing method with inorganic pigment and dyed product therefrom
JP2851226B2 (en) * 1993-06-11 1999-01-27 日本石油化学株式会社 How to process fiber or textile products
JPH08109577A (en) * 1994-10-05 1996-04-30 Masumi Kk Creasing of silk fiber fabric
JPH08246346A (en) * 1995-03-16 1996-09-24 Asahi Chem Ind Co Ltd Flame-retardant treatment for polyethylene fiber nonwoven fabric
JP3818457B2 (en) * 1995-07-03 2006-09-06 ミヨシ油脂株式会社 Glass fiber sizing agent
JPH11158773A (en) * 1997-11-27 1999-06-15 Takemoto Oil & Fat Co Ltd Impartment of shape stability to cellulosic fiber fabric
JP2000192371A (en) * 1998-12-22 2000-07-11 Toray Ind Inc Fabric containing cellulosic fiber
JP5256397B2 (en) * 2001-09-28 2013-08-07 シキボウ株式会社 Water-absorbing and oil-repellent antifouling agent, fiber or fiber product treated with the antifouling agent, method for producing the same, and spray container
JP2003239155A (en) * 2001-12-07 2003-08-27 Asahi Kasei Corp Deep color knit fabric
JP2003268674A (en) * 2002-03-08 2003-09-25 Toray Ind Inc Method for producing sized carbon fiber bundle and chopped carbon fiber
JP4265158B2 (en) * 2002-07-03 2009-05-20 東レ株式会社 Method for producing polyamide fiber product
JP4272393B2 (en) * 2002-08-07 2009-06-03 互応化学工業株式会社 Method for producing aqueous flame-retardant polyester resin
JP2004149965A (en) * 2002-10-31 2004-05-27 Saitama Prefecture Method for dyeing ombre pattern such as radiant pattern using ice
JP2005307416A (en) * 2004-04-21 2005-11-04 Shohi Kagaku Kenkyusho:Kk Washable processing method for giving silk fiber material with excellent fabric hand durability
JP2006045708A (en) * 2004-08-03 2006-02-16 Solotex Corp Method for treating fibrous structural material
JP2006152508A (en) * 2004-12-01 2006-06-15 Nisshinbo Ind Inc Stain-proofing fiber structure and its processing method
JP2006193870A (en) * 2005-01-17 2006-07-27 Dabus Co Ltd Method for producing knit denim
JP2006233342A (en) * 2005-02-22 2006-09-07 Miki Riken Kogyo Kk Heat storage microcapsule suitable for fiber treatment and fiber using the same
JP2008075196A (en) * 2006-09-20 2008-04-03 Komatsu Seiren Co Ltd Method for producing water-repellent textile product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240279A (en) * 1991-01-17 1992-08-27 Meisei Kagaku Kogyo Kk Deep color treatment of polyamide-based textile goods
JPH091703A (en) * 1995-06-23 1997-01-07 Shimadzu Corp Manufacture of composite of fiber and film
JP2002105864A (en) * 2000-09-21 2002-04-10 Komatsu Seiren Co Ltd Fabric for piece dyeing
JP2002105865A (en) * 2000-09-21 2002-04-10 Komatsu Seiren Co Ltd Fiber fabric for piece dyeing
JP2004360137A (en) * 2003-06-06 2004-12-24 Meisei Kagaku Kogyo Kk Method for improving color deepness of fiber cloth and dyeing pretreatment agent used therein

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222750A (en) * 2009-03-25 2010-10-07 Toray Ind Inc Cellulose fabric structure and method of manufacturing the same
JP2011149125A (en) * 2010-01-21 2011-08-04 Teijin Techno Products Ltd Method for dyeing aramid textile fabric
CN102517754A (en) * 2011-12-22 2012-06-27 杭州福恩纺织有限公司 Dyeing and post-finishing process of woolen bamboo polyester fabrics
CN103541232A (en) * 2013-09-30 2014-01-29 咸阳际华新三零印染有限公司 Nylon camouflage fabric preparation process
CN103541232B (en) * 2013-09-30 2015-10-07 咸阳际华新三零印染有限公司 A kind of manufacture craft of nylon camouflage fabric preparation
CN106521951A (en) * 2016-10-19 2017-03-22 河南工程学院 Bamdal/cotton blended yarn size, preparation method thereof and sizing effect evaluation method
CN110678601A (en) * 2017-05-24 2020-01-10 仓敷纺绩株式会社 Fiber assembly containing cellulose water-proof fiber, method for producing same, and fiber product
CN110042647B (en) * 2019-04-02 2022-02-18 嘉兴学院 High-whiteness low-temperature bleaching method for cashmere or wool
CN110042647A (en) * 2019-04-02 2019-07-23 嘉兴学院 A kind of high whiteness cold bleaching method of cashmere or wool
KR102234358B1 (en) * 2020-10-13 2021-04-01 주식회사 한신타올공업 Bamboo fiber with high friction fastness and towel using the same
WO2022180341A1 (en) * 2021-02-26 2022-09-01 Induo Method for manufacturing a functionalised dyed textile, use of a bleaching solution to increase the durability of a chemical functionalisation on a dyed textile, and dyed textile
FR3120239A1 (en) * 2021-02-26 2022-09-02 Induo METHOD FOR FUNCTIONALIZATION OF A TEXTILE
FR3120240A1 (en) * 2021-02-26 2022-09-02 Induo METHOD FOR MANUFACTURING FUNCTIONALIZED DYED TEXTILE
KR20220126048A (en) * 2021-03-08 2022-09-15 주식회사 비즈링크 Method for improving the friction fastness of towels and fabrics made of bamboo fiber with high friction fastness
KR102445564B1 (en) 2021-03-08 2022-09-22 주식회사 비즈링크 Method for improving the friction fastness of towels and fabrics made of bamboo fiber with high friction fastness
CN113648732A (en) * 2021-09-15 2021-11-16 国家石油天然气管网集团有限公司 Natural gas filters and uses filter core and filter with multistage filtering capability

Also Published As

Publication number Publication date
JP2009197386A (en) 2009-09-03
JP4926210B2 (en) 2012-05-09
JP4358894B2 (en) 2009-11-04
JPWO2008041570A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4926210B2 (en) Textile processing method
JP5596081B2 (en) Stretch coated fabric and method for producing the same
US20060101585A1 (en) Fluorochemical-containing textile finishes that exhibit wash-durable soil release and moisture wicking properties
KR19980081716A (en) Improved comfortable melamine fabric and method of making the same
WO2015153804A1 (en) Ring dyed materials and method of making the same
RU2746092C1 (en) Lyocell fiber lining
JP5778400B2 (en) Water-absorbing quick-drying fabric
JP2010144279A (en) Patterned denim product and method for producing the same
WO2018216650A1 (en) Fiber assembly including cellulose water-repelent fiber, method for manufacturing same, and fiber product
JP5600270B2 (en) Cellulosic fabric with excellent washing durability
JP4195689B2 (en) Method for producing composite fiber product comprising cotton and regenerated cellulose fiber
WO1998023809A1 (en) Fibrous products and their production
JP2014169523A (en) Sewn product made of animal hair fiber
JP2009007680A (en) Denim fabric and method for preventing discoloration of the fabric
JP2007190323A (en) Towel handkerchief and its manufacturing method
US20040116015A1 (en) Fluorochemical-containing textile finishes that exhibit wash-durable soil release and moisture wicking properties
KR102463941B1 (en) Manufacturing method of water-repellent blended fabric
JP4195679B2 (en) Method for producing a cotton fiber product having a smooth surface
JP2004176238A (en) Cellulosic fiber structure furnished with high color fastness and processing method
US20240133114A1 (en) Method for manufacturing a functionalised dyed textile, use of a bleaching solution to increase the durability of a chemical functionalisation on a dyed textile, and dyed textile
JP3770786B2 (en) Textile fabric for post dyeing
JP2677139B2 (en) Manufacturing method of color jeans stitched garments
JPH02175975A (en) Shrink and fluff proofing method for pineapple fiber-containing fibrous structure
JP5660747B2 (en) Sewing products made of animal hair fibers
JP3770785B2 (en) Manufacturing method for fiber fabric products

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008514263

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828399

Country of ref document: EP

Kind code of ref document: A1