JP4926210B2 - Textile processing method - Google Patents
Textile processing method Download PDFInfo
- Publication number
- JP4926210B2 JP4926210B2 JP2009139361A JP2009139361A JP4926210B2 JP 4926210 B2 JP4926210 B2 JP 4926210B2 JP 2009139361 A JP2009139361 A JP 2009139361A JP 2009139361 A JP2009139361 A JP 2009139361A JP 4926210 B2 JP4926210 B2 JP 4926210B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber material
- dyeing
- weight
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004753 textile Substances 0.000 title claims description 7
- 238000003672 processing method Methods 0.000 title claims description 5
- 239000002657 fibrous material Substances 0.000 claims description 202
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 134
- 229920005989 resin Polymers 0.000 claims description 113
- 239000011347 resin Substances 0.000 claims description 113
- 239000003921 oil Substances 0.000 claims description 82
- 229920003002 synthetic resin Polymers 0.000 claims description 71
- 239000000057 synthetic resin Substances 0.000 claims description 71
- 239000000835 fiber Substances 0.000 claims description 52
- 238000012545 processing Methods 0.000 claims description 40
- 229920006026 co-polymeric resin Polymers 0.000 claims description 35
- 230000000694 effects Effects 0.000 claims description 33
- 238000001035 drying Methods 0.000 claims description 31
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 24
- 239000004925 Acrylic resin Substances 0.000 claims description 22
- 239000003431 cross linking reagent Substances 0.000 claims description 20
- 125000000524 functional group Chemical group 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000178 monomer Substances 0.000 claims description 12
- 229920002050 silicone resin Polymers 0.000 claims description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 11
- 229920002554 vinyl polymer Polymers 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000004480 active ingredient Substances 0.000 claims description 6
- 125000003368 amide group Chemical group 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 238000004132 cross linking Methods 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 2
- 238000002791 soaking Methods 0.000 claims 1
- 238000004043 dyeing Methods 0.000 description 170
- 239000000243 solution Substances 0.000 description 91
- 238000000034 method Methods 0.000 description 75
- 239000004744 fabric Substances 0.000 description 59
- 238000005406 washing Methods 0.000 description 49
- 238000012360 testing method Methods 0.000 description 37
- 229920000742 Cotton Polymers 0.000 description 35
- 238000009991 scouring Methods 0.000 description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 229920000728 polyester Polymers 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 27
- 239000000975 dye Substances 0.000 description 27
- 239000005871 repellent Substances 0.000 description 26
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- 238000004061 bleaching Methods 0.000 description 18
- 238000009990 desizing Methods 0.000 description 18
- 238000002156 mixing Methods 0.000 description 16
- 239000002759 woven fabric Substances 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 230000035699 permeability Effects 0.000 description 15
- 229920001225 polyester resin Polymers 0.000 description 15
- 239000004645 polyester resin Substances 0.000 description 15
- 238000009958 sewing Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 239000007788 liquid Substances 0.000 description 12
- 229920000297 Rayon Polymers 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000002964 rayon Substances 0.000 description 11
- 210000002268 wool Anatomy 0.000 description 11
- 239000012948 isocyanate Substances 0.000 description 10
- 235000011121 sodium hydroxide Nutrition 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 229920002994 synthetic fiber Polymers 0.000 description 10
- 239000012209 synthetic fiber Substances 0.000 description 10
- 229920003043 Cellulose fiber Polymers 0.000 description 9
- 239000003513 alkali Substances 0.000 description 9
- 239000004745 nonwoven fabric Substances 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- -1 etc. Substances 0.000 description 8
- 230000002940 repellent Effects 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 150000002513 isocyanates Chemical class 0.000 description 7
- 229920001778 nylon Polymers 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 244000025254 Cannabis sativa Species 0.000 description 6
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 6
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 229920000433 Lyocell Polymers 0.000 description 6
- 235000009120 camo Nutrition 0.000 description 6
- 235000005607 chanvre indien Nutrition 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 6
- 239000011487 hemp Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000004513 sizing Methods 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 210000004243 sweat Anatomy 0.000 description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 239000004953 Aliphatic polyamide Substances 0.000 description 3
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 101000895818 Homo sapiens Chorionic somatomammotropin hormone 1 Proteins 0.000 description 3
- 101000956228 Homo sapiens Chorionic somatomammotropin hormone 2 Proteins 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 229920003231 aliphatic polyamide Polymers 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 238000005517 mercerization Methods 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 230000009528 severe injury Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 3
- 230000002087 whitening effect Effects 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000000980 acid dye Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- OBFQBDOLCADBTP-UHFFFAOYSA-N aminosilicon Chemical compound [Si]N OBFQBDOLCADBTP-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 239000000985 reactive dye Substances 0.000 description 2
- HFIYIRIMGZMCPC-YOLJWEMLSA-J remazole black-GR Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(\N=N\C=3C=CC(=CC=3)S(=O)(=O)CCOS([O-])(=O)=O)C(O)=C2C(N)=C1\N=N\C1=CC=C(S(=O)(=O)CCOS([O-])(=O)=O)C=C1 HFIYIRIMGZMCPC-YOLJWEMLSA-J 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- OWNRRUFOJXFKCU-UHFFFAOYSA-N Bromadiolone Chemical compound C=1C=C(C=2C=CC(Br)=CC=2)C=CC=1C(O)CC(C=1C(OC2=CC=CC=C2C=1O)=O)C1=CC=CC=C1 OWNRRUFOJXFKCU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 240000001624 Espostoa lanata Species 0.000 description 1
- 235000009161 Espostoa lanata Nutrition 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000617482 Kiwa Species 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 235000012012 Paullinia yoco Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000981 basic dye Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- JZZIHCLFHIXETF-UHFFFAOYSA-N dimethylsilicon Chemical compound C[Si]C JZZIHCLFHIXETF-UHFFFAOYSA-N 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 238000009975 hank dyeing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000000984 vat dye Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/52—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
- D06P1/54—Substances with reactive groups together with crosslinking agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
- D06M15/277—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof containing fluorine
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/52—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
- D06P1/5207—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- D06P1/525—Polymers of unsaturated carboxylic acids or functional derivatives thereof
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Coloring (AREA)
Description
この発明は、繊維素材に撥水性を持たせた上で、後染め染色性を向上させる加工方法に関する。 The present invention relates to a processing method for improving post-dyeing dyeability while imparting water repellency to a fiber material .
従来の繊維製品で用いられている、撥水機能加工、撥油機能加工、柔軟加工、汚れ防止加工、抗ピリング加工等の耐久性の高い加工は、糸、編物、織物、不織布などを染色した後、樹脂加工を施されて、その後縫製することで、衣服、鞄、帽子、スポーツ衣料として製品化されている。また、糸においても、染色後に、編物や織物に加工された後で樹脂加工されて製品化されている。 Highly durable processing such as water-repellent functional processing, oil-repellent functional processing, flexible processing, anti-stain processing, and anti-pilling processing used in conventional textile products dyes yarn, knitted fabric, woven fabric, nonwoven fabric, etc. Later, after being processed with resin, it is then commercialized as clothes, bags, hats, and sports clothing by sewing. Also, yarns are processed into resin after being dyed, processed into knitted fabrics and woven fabrics.
このような工程を経て繊維素材を製造する方法は、品質の安定した製品を大量に製造する点では優れている。しかし現在のように、消費者の好みが急速に変化する時代では、製品納期の短期化が最も重要であり、製造者側が色、サイズ、素材、パターンなどの消費者ニーズを掴んでから、糸の製造、織物の製造、染色加工、樹脂加工及び縫製を行うという従来の製造方法によって製造していたのでは、時間がかかりすぎ、消費者の望んでいる商品をタイムリーに市場に供給することは不可能となっている。 The method of manufacturing a fiber material through such a process is excellent in that a product with a stable quality is manufactured in large quantities. However, in today's fast-changing consumer preferences, it is most important to shorten product delivery times. After the manufacturer has grasped consumer needs such as color, size, material, and pattern, Manufacturing, fabric manufacturing, dyeing processing, resin processing, and sewing, it takes too much time and supplies consumers the products they want in a timely manner. Is impossible.
特に流行商品は、店頭に置ける販売期間が短く、消費者の指向を店頭で情報として入手しても、既に色、サイズ、パターンが決定された縫製品を在庫すると、消費者の嗜好にそぐわない物は不良在庫となってしまう。一方で、ニーズを受けて販売期間中に企画の変更を行おうとしても間に合わず、ビジネスチャンスを逃してしまうこととなる。 Especially for fashionable products, the sales period that can be placed at the store is short, and even if consumer orientation is obtained as information at the store, items that do not fit the consumer's preference when sewing products that have already been determined in color, size, and pattern are in stock. Will become a bad stock. On the other hand, if you try to change the plan during the sales period in response to your needs, you will not be in time and you will miss a business opportunity.
このため、製品完成後に染色を行う製品染めを行うことで短納期に対応することが行われているが、特に綿、麻などの植物性繊維やレーヨンなどの再生繊維では、色管理が安定せず、スレアタリやシワが発生したり、染色ムラが起きやすかったりし、また、染色後に耐久性のある撥水加工や撥油加工などを行うことはほとんどできず、行える撥水加工は、染色後の撥水スプレーの塗布程度に限られてしまい、高級な商品にはなりえなかった。また、合成繊維や半合成繊維では、通常の染色や製品染めの後で撥水加工、撥油加工を行うと、摩擦堅牢度が低下し、特にポリエステルのマイクロファイバー素材ではその傾向が著しかった。 For this reason, the product is dyed after the product is completed, so that it is possible to meet the short delivery time. However, the color management is stable especially for plant fibers such as cotton and hemp and regenerated fibers such as rayon. Swelling and wrinkles are likely to occur, dyeing unevenness is likely to occur, and it is almost impossible to perform durable water-repellent or oil-repellent processing after dyeing. It was limited to the application level of water repellent spray, and could not be a high-class product. In addition, with synthetic fibers and semi-synthetic fibers, when water-repellent processing and oil-repellent processing were performed after normal dyeing or product dyeing, the fastness to friction decreased, and this tendency was particularly pronounced with polyester microfiber materials.
これに対して、布帛にした染色していない繊維素材に加工を施し、後染めによって必要な色やデザインの布帛を得ることができる後染め用布帛が特許文献1に記載されている。これは、合成繊維、半合成繊維、再生繊維、天然繊維等からなる繊維製品を予め織物、編物、不織布等の形にしておき、その表面にラミネート法などにより合成樹脂膜を形成して、後染めの染色性を向上させたものである。 On the other hand, Patent Document 1 discloses a post-dyed fabric that can be processed into a fabric material that is not dyed to obtain a fabric having a necessary color and design by post-dying. This is because fiber products made of synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, etc. are pre-shaped into a woven fabric, knitted fabric, non-woven fabric, etc., and a synthetic resin film is formed on the surface by a laminating method. The dyeing property of the dye is improved.
しかしながら、特許文献1の方法では、合成樹脂膜を形成させるため、加工を行う対象が布帛に限られていた。また、合成樹脂膜を貼り合わせるために接着剤を用いる必要があり、得られる繊維製品の撥水性、耐洗濯性等は不十分になってしまうという問題があった。 However, in the method of Patent Document 1, the object to be processed is limited to the fabric in order to form the synthetic resin film. In addition, it is necessary to use an adhesive in order to bond the synthetic resin film, and there is a problem that water repellency, washing resistance and the like of the obtained fiber product are insufficient.
また、染色前に予め撥水剤を使用して撥水加工をしておいたとしても、染色性が低下するだけでなく、染色工程中に撥水剤が脱落してしまい、染色後の繊維素材はほとんど撥水性を有しないものとなってしまった。このため、従来は撥水加工後の後染めは事実上不可能であると考えられていた。逆に、染色後に撥水加工を行う場合には、耐久性を出すためにベーキングを行う必要があるが、この熱によって堅牢度が低下してしまうという問題があった。 In addition, even if the water repellent is used in advance before dyeing, not only the dyeability is deteriorated, but also the water repellent falls off during the dyeing process, and the dyed fiber The material has almost no water repellency. For this reason, it has been conventionally considered that post-dyeing after water-repellent processing is virtually impossible. On the contrary, when water repellent processing is performed after dyeing, it is necessary to perform baking in order to obtain durability, but there is a problem that fastness is reduced by this heat.
さらに、後染めではなく通常の染色を行う場合でも、染色加工時には繊維が傷む場合が多かった。例えば、編み立て用糸は毛羽アレが発生することがあり、また、縫製後の洗濯機洗いによって表面が白化されやすかった。植物性繊維と動物性繊維との複合素材では、染色加工前に必要となる準備加工ではアルカリを使用するが、動物性繊維が受ける損傷が激しいために十分な前処理が出来ないという問題があり、染色加工そのものでも、動物性繊維を損傷させることなく濃色に染色することは困難であった。また、複合繊維であるために、用いる染料は両方の素材に対して効果のあるものでなければならず、結果として染色処理時間が長くなり、繊維素材の損傷をさらに大きくしていた。レーヨンなどの再生繊維でも、染色加工中のスレアタリや強度低下が著しく、また染色後の洗濯試験での損傷が激しいために耐久性のある商品とはなりえなかった。 Furthermore, even when normal dyeing is performed instead of post-dyeing, fibers are often damaged during dyeing. For example, the yarn for knitting may cause fluffing, and the surface is easily whitened by washing with a washing machine after sewing. In the composite material of vegetable fiber and animal fiber, alkali is used in the preparatory processing required before dyeing, but there is a problem that sufficient pretreatment cannot be performed due to severe damage to animal fiber. Even in the dyeing process itself, it was difficult to dye in a dark color without damaging animal fibers. Moreover, since it is a composite fiber, the dye used must be effective for both materials, resulting in a longer dyeing time and further damage to the fiber material. Recycled fibers such as rayon cannot be a durable product due to severe damage and reduced strength during dyeing and severe damage in washing tests after dyeing.
さらにまた、紡績糸のサイジング加工では、織りの際に縦糸が損傷しないように澱粉、PVA、アクリル糊剤を縦糸に塗布するが、その紡績糸を用いて織り上がった生地には、大量の糊剤が付着されているために、染色加工場において、大きな精練糊抜き機を用いて除去する必要があり、大きな設備投資、エネルギー使用、排水処理等の負担が大きなものとなっていた。 Furthermore, in the sizing process of spun yarn, starch, PVA, and acrylic glue are applied to the warp so that the warp is not damaged during weaving. A large amount of glue is applied to the fabric woven using the spun yarn. Since the agent is adhered, it is necessary to remove it using a large scouring desizing machine at the dyeing processing plant, and the burden of large capital investment, energy use, wastewater treatment, etc. has become large.
そして、染色後に樹脂加工する従来の方法で得られた製品でも、洗濯処理において、風合いの劣化、表面の白化現象、ピリングの発生、強度の低下等が起こることが知られていた。このため、洗濯の条件よりもさらに厳しい条件となる染色加工を、撥水性、撥油性、柔軟性を向上させる樹脂加工を行った後に行った場合には、それらの機能を維持させることは難しいと考えられていた。 Also, it has been known that, even in a product obtained by a conventional method in which resin processing is performed after dyeing, texture deterioration, surface whitening, pilling, strength reduction, and the like occur in the washing process. For this reason, it is difficult to maintain these functions when the dyeing process, which is more severe than the washing conditions, is performed after resin processing that improves water repellency, oil repellency, and flexibility. It was thought.
そこでこの発明は、布帛に限らず繊維素材全般に適用することができ、後染めの染色加工を行っても繊維が傷みにくく、かつ、染色後の染色性が高く、さらに必要に応じて、撥水性、撥油性、耐洗濯性が高い後染め用繊維素材を提供することを目的とする。 Therefore, the present invention can be applied not only to fabrics but also to all fiber materials, and even if post-dyeing is performed, the fibers are hardly damaged and have high dyeability after dyeing. An object of the present invention is to provide a fiber material for post-dyeing that is highly water-based, oil-repellent, and wash-resistant.
この発明は、水酸基、アミノ基、アミド基、カルボキシル基、及びウレタン基のうち少なくとも1種の官能基を有する繊維素材に、その繊維素材の前記官能基と結合する官能基を有し、前記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませて、前記合成樹脂の分子を繊維素材の分子と結合させることで、上記の課題を解決したのである。すなわち、繊維素材の官能基に分子として合成樹脂を結合させることにより、合成樹脂があることで染色性を向上させるだけでなく、撥水性や撥油性などを発揮するその合成樹脂が、その後の染色加工などにおいて繊維素材から剥がれにくいようにしたのである。 The present invention provides a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group, having a functional group that binds to the functional group of the fiber material, and the fiber The above-mentioned problem has been solved by including a resin solution mainly composed of a synthetic resin that improves the dyeability of the material, and combining the molecules of the synthetic resin with the molecules of the fiber material. That is, by combining a synthetic resin as a molecule with the functional group of the fiber material, the synthetic resin not only improves the dyeability but also exhibits water repellency and oil repellency. It was made difficult to peel off from the fiber material during processing.
この発明により合成樹脂と結合させる繊維素材の形状は特に限定されるものではなく、具体的には綿、スライバー、フィラメント糸、紡績糸、縫製糸、又はこれらからなる、織物、編み物、若しくは不織布、又はこれらからなる縫製品などに用いることができる。また、上記の官能基を有する繊維素材としては、例えば、紙繊維、竹繊維、綿、麻、レーヨン、有機溶剤紡糸法により得られるセルロース繊維、銅アンモニアレーヨン、シルク、ウール、ポリエステル、脂肪族ポリアミド系繊維、アラミド繊維などの芳香族ポリアミド系繊維、ポリウレタン、ジアセテート、トリアセテート、又はこれらを複数用いた複合繊維が挙げられる。 The shape of the fiber material to be combined with the synthetic resin according to the present invention is not particularly limited. Specifically, cotton, sliver, filament yarn, spun yarn, sewing yarn, or a woven fabric, a knitted fabric, or a nonwoven fabric made of these, Or it can use for the sewing product which consists of these. Examples of the fiber material having the above functional group include paper fiber, bamboo fiber, cotton, hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, copper ammonia rayon, silk, wool, polyester, aliphatic polyamide. Aromatic polyamide fibers such as fiber, aramid fiber, polyurethane, diacetate, triacetate, or composite fiber using a plurality of these.
上記合成樹脂の分子と繊維素材の分子とを結合させる方法としては、それぞれの分子の官能基を結合する架橋剤を上記樹脂溶液に含ませ、この架橋剤によりそれぞれの分子を結合させる方法が挙げられる。このような架橋剤としては、複数のイソシアネート基を有するイソシアネート系化合物を用いることができる。 Examples of the method of bonding the molecule of the synthetic resin and the molecule of the fiber material include a method in which a crosslinking agent that bonds a functional group of each molecule is included in the resin solution, and the molecules are bonded by the crosslinking agent. It is done. As such a crosslinking agent, an isocyanate compound having a plurality of isocyanate groups can be used.
また、特に上記合成樹脂が、パーフルオロアルキル基を有するアクリレート単位と親水性ビニルモノマー単位とからなる共重合樹脂を含むものであると、親水性である部分と疎水性である部分との両方を有するために、空気中ではパーフルオロアルキル基が撥水性・撥油性を発揮して汚れを弾き、水中ではビニル基の親水性末端が表面に出ることで親水性を発揮して汚れを落とす効果を発揮する。また、親水性基があるために、特に染色性や吸湿性を向上させることができる。 In particular, since the synthetic resin includes a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic vinyl monomer unit, it has both a hydrophilic part and a hydrophobic part. In addition, in the air, the perfluoroalkyl group exerts water and oil repellency to repel dirt, and in water, the hydrophilic end of the vinyl group appears on the surface to exert hydrophilicity and remove dirt. . In addition, since there is a hydrophilic group, dyeability and hygroscopicity can be improved.
さらに、上記合成樹脂が上記の共重合樹脂に加えて、親水性基を持たないパーフルオロアルキルアクリレート樹脂、ポリエステル樹脂、シリコン樹脂、ウレタン樹脂などを加えると、それぞれ追加した樹脂に合わせた効果を付与することができる。パーフルオロアルキルアクリレート樹脂であれば撥水性が向上し、シリコン樹脂であれば強度と浴中における柔軟性が向上する。ポリエステル樹脂やウレタン樹脂を含めた場合は、それぞれの樹脂に特徴的な風合いを持った繊維素材とすることができる。 Furthermore, when the above synthetic resin is added to the above copolymer resin, perfluoroalkyl acrylate resin, polyester resin, silicon resin, urethane resin, etc. that do not have a hydrophilic group, the effects that are tailored to the added resin are given. can do. Perfluoroalkyl acrylate resins improve water repellency, and silicon resins improve strength and flexibility in the bath. When a polyester resin or a urethane resin is included, a fiber material having a texture characteristic of each resin can be obtained.
上記の合成樹脂と結合させた後染め用繊維素材は、AATCC118−2002に記載の撥油性試験による撥油性の結果が、少なくとも2級とすることができ、最大で7級まで向上させることが出来る。また、JIS L 1092に記載の撥水性試験による撥水性の結果を、少なくとも2級とすることができ、最大で5級まで向上させることができる。 The fiber material for post-dyeing combined with the above synthetic resin can have an oil repellency result according to the oil repellency test described in AATCC 118-2002 of at least second grade, and can be improved up to seventh grade. . Moreover, the water repellency result according to the water repellency test described in JIS L 1092 can be at least grade 2, and can be improved up to grade 5.
この発明にかかる後染め用繊維素材により、布帛に限らず繊維製品全般について、後染めを可能とすることができる。また、反応する官能基がある繊維であればよいので、多くの繊維素材を後染め可能とすることができ、後染め加工中又は後染め後に生じやすかったスレアタリやシワ、素材の損傷の発生を抑えることができる。これにより、繊維素材からなる製品を製造、出荷するにあたって、縫製拠点に隣接する染色工程で簡易に染色可能となり、市場の動向に合わせて短期間で染色して製品を出荷することができるようになり、販売機会のロスを削減し、売れ残り商品が生じることを抑制できる。 The post-dyeing fiber material according to the present invention enables post-dying not only for fabrics but also for all textile products. In addition, any fiber with a functional group that reacts can be used, so that many fiber materials can be post-dyed, and the occurrence of damage, wrinkles, and material damage that easily occurred during or after post-dyeing. Can be suppressed. As a result, when manufacturing and shipping products made of fiber materials, it is possible to easily dye in the dyeing process adjacent to the sewing base, so that products can be shipped in a short period of time according to market trends. Thus, loss of sales opportunities can be reduced and unsold products can be prevented from being generated.
後染め可能とした繊維素材は、染色性を高めている合成樹脂が繊維素材と分子により結合しているため、耐洗濯性、撥水性や撥油性が高く、表面張力が小さい繊維素材となる。このため、従来は製品染め後に行っていた撥水剤のスプレー塗布などが不要となるため、染色を容易に行うことができる。また、油汚れにも強い繊維素材となる。また、染色性を高めている合成樹脂によって、吸湿性も優れた繊維素材となる。この吸湿性は、撥水性と両立させることもできる。さらに、合成樹脂と結合しているために、繊維素材自体の耐久性が高くなり、従来の繊維素材に比べて染色時に繊維素材が傷みにくくなる。これにより紡績糸の場合には、織り後に糊抜きの負担が大きいサイジング加工を行って糸を保護する必要がなくなる。 The fiber material that can be post-dyed is a fiber material that has high washing resistance, water repellency and oil repellency, and a low surface tension, because the synthetic resin having improved dyeability is bonded to the fiber material by molecules. For this reason, since the spray application of the water repellent etc. which were conventionally performed after product dyeing becomes unnecessary, dyeing | staining can be performed easily. In addition, the fiber material is resistant to oil stains. In addition, the synthetic resin having enhanced dyeability makes the fiber material excellent in hygroscopicity. This hygroscopicity can be compatible with water repellency. Furthermore, since it is combined with a synthetic resin, the durability of the fiber material itself is increased, and the fiber material is less likely to be damaged during dyeing as compared with a conventional fiber material. As a result, in the case of spun yarn, it is not necessary to protect the yarn by carrying out a sizing process that has a large burden of desizing after weaving.
以下、この発明について詳細に説明する。この発明は、水酸基、アミノ基、アミド基、カルボキシル基、及びウレタン基のうち少なくとも1種の官能基を有する繊維素材に、その繊維素材の前記官能基と結合して前記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませて、前記合成樹脂の分子を繊維素材の分子と結合させた、後染め用繊維素材である。なお、ここで染色性を向上させるとは、同等の条件でより濃い染色濃度の製品が得られるようにすることをいい、その染色濃度はたとえば、光の吸収係数Kと散乱係数Sとの比であるK/S値で表される。 The present invention will be described in detail below. The present invention provides a fiber material having at least one functional group among a hydroxyl group, an amino group, an amide group, a carboxyl group, and a urethane group, and combines the functional group of the fiber material with the dyeability of the fiber material. It is a fiber material for post-dyeing in which a resin solution containing a synthetic resin to be improved as a main component is included and molecules of the synthetic resin are combined with molecules of the fiber material. Here, to improve the dyeability means to obtain a product having a higher dye density under the same conditions, and the dye density is, for example, the ratio between the light absorption coefficient K and the scattering coefficient S. It is represented by the K / S value.
この発明で後染め可能とする繊維素材は、形状を特に限定されるものではなく、綿、スライバー、フィラメント糸、紡績糸、縫製糸などの原料や糸、これらからなる織物、編み物、若しくは不織布などの布帛、さらに、これらの布帛と糸とからなる縫製品のいずれの状態に対しても、後染め可能とすることができる。 The fiber material that can be post-dyed in the present invention is not particularly limited in shape, and raw materials and yarns such as cotton, sliver, filament yarn, spun yarn, sewing yarn, woven fabric, knitted fabric, or nonwoven fabric made of these In addition, it is possible to enable post-dyeing on any state of the fabric and the sewing product made of these fabrics and yarns.
上記の繊維素材としては、例えば、紙繊維、竹繊維、綿、麻などの植物性繊維、レーヨン、有機溶剤紡糸法により得られるセルロース繊維、銅アンモニアレーヨンなどの再生繊維、シルク、ウールなどの動物性繊維、ポリエステル、ポリウレタン、脂肪族ポリアミド系繊維(6−ナイロン、6,6−ナイロンを含む。)、芳香族ポリアミド系繊維などの合成繊維、ジアセテート、トリアセテートなどの半合成繊維が挙げられる。なお、有機溶剤紡糸法により得られるセルロース繊維としては、具体的にはテンセル、リヨセル(いずれも登録商標。)が挙げられ、銅アンモニアレーヨンとしては、ベンベルグ、キュプラ(いずれも登録商標。)が挙げられる。 Examples of the fiber material include plant fibers such as paper fiber, bamboo fiber, cotton and hemp, rayon, cellulose fiber obtained by an organic solvent spinning method, regenerated fiber such as copper ammonia rayon, and animals such as silk and wool. Fiber, polyester, polyurethane, aliphatic polyamide fiber (including 6-nylon and 6,6-nylon), synthetic fiber such as aromatic polyamide fiber, and semi-synthetic fiber such as diacetate and triacetate. Specific examples of cellulose fibers obtained by the organic solvent spinning method include tencel and lyocell (both registered trademarks), and examples of copper ammonia rayon include Bemberg and cupra (both registered trademarks). It is done.
これらの繊維素材のうち、植物性繊維や再生繊維、ジアセテートは水酸基を有し、また、ポリエステルも末端に水酸基を有している。ポリアミド系繊維、動物性繊維はアミノ基、カルボキシル基、アミド基を有している。また、ポリエステルの末端にはカルボキシル基があり、ナイロンはアミド基を有している。さらに、ポリウレタン繊維は末端にウレタン基を有している。またトリアセテートは、理論上は水酸基が全てアセチル基に変わっているが、実際には一部の水酸基が残っており、その水酸基が反応する。 Among these fiber materials, vegetable fiber, regenerated fiber, and diacetate have a hydroxyl group, and polyester also has a hydroxyl group at the terminal. Polyamide fibers and animal fibers have amino groups, carboxyl groups, and amide groups. Moreover, the terminal of polyester has a carboxyl group, and nylon has an amide group. Furthermore, the polyurethane fiber has a urethane group at the end. Triacetate theoretically has all hydroxyl groups changed to acetyl groups, but in practice, some hydroxyl groups remain and the hydroxyl groups react.
これらの中でも特にポリエステル繊維は、従来の方法では、染色性だけでなく、透湿性や撥水性を持たせることが困難であったが、この発明にかかる方法で、染色性を向上させる合成樹脂を結合させることで透湿性を容易に持たせることができ、その他の合成樹脂を結合させることで撥水性を付与することも容易にできる。 Among these, polyester fibers, in particular, have been difficult to impart not only dyeability but also moisture permeability and water repellency by conventional methods, but synthetic resins that improve dyeability can be obtained by the method according to the present invention. Moisture permeability can be easily provided by bonding, and water repellency can be easily provided by bonding other synthetic resins.
これらの繊維素材に上記合成樹脂を結合させる前には、精練、漂白、糊抜きなどを行っておくと、上記合成樹脂が結合させやすく、品質が安定するため好ましい。 Prior to bonding the synthetic resin to these fiber materials, scouring, bleaching, desizing and the like are preferably performed because the synthetic resin is easily bonded and the quality is stabilized.
具体的には、精練では繊維素材に付着している夾雑物を除去して、上記合成樹脂が結合しやすくなるようにすることができる。綿には天然ワックスやペクチンなどの天然の夾雑物が含まれており、これらは高濃度アルカリや、洗剤にて高温処理することにより除去することができる。綿/ウールなど、セルロース系と動物性繊維の混紡、交織の場合、アルカリを使用すると動物性繊維が溶解してしまうので、酸性溶液で精練を行う。なお、合成繊維では夾雑物が無いが、工程中に使用される油剤が付着しているため、高温下で洗剤を用いて除去する。 Specifically, in the scouring, impurities attached to the fiber material can be removed so that the synthetic resin can be easily bonded. Cotton contains natural contaminants such as natural wax and pectin, which can be removed by high-temperature treatment with high-concentration alkali or detergent. In the case of blending and union of cellulose and animal fibers such as cotton / wool, animal fibers are dissolved if alkali is used, so scouring with an acidic solution is performed. In addition, although there is no contaminant in synthetic fiber, since the oil agent used in a process has adhered, it removes using detergent at high temperature.
漂白は綿素材を中心に行われる。塩素法と過酸化水素法があり、環境的観点から過酸化水素法を用いると好ましい。この方法は過酸化水素とアルカリとを併用して処理を行うが、ウールなど動物性繊維を含んだ繊維素材の場合は、繊維が溶けるためアルカリの使用量を出来るだけ下げて漂白を行う。 Bleaching is performed mainly on cotton materials. There are a chlorine method and a hydrogen peroxide method, and it is preferable to use the hydrogen peroxide method from an environmental viewpoint. In this method, hydrogen peroxide and an alkali are used in combination, but in the case of a fiber material containing animal fibers such as wool, the fiber is melted and bleaching is performed with the alkali used as low as possible.
糊抜きは、綿糸や綿複合紡績糸(レーヨン、有機溶剤紡糸法により得られるセルロース繊維、麻、も含む。)を織物にする際に経糸が傷むのを防止するために糊剤を付与するサイジング加工を行うが、この糊剤を取り除くことをいう。綿100%の場合は、高濃度のアルカリと酸化糊抜き剤を併用し、高温で長時間処理を行う。レーヨンや有機溶剤紡糸法により得られるセルロース繊維では、高濃度のアルカリを用いて長時間処理するとスキン層が傷みやすいため、アルカリを併用する酸化糊抜き方式ではなく、酵素を用いて糊剤を除去する。綿/ウールなどの場合も、レーヨンなどと同様にアルカリ剤を使用せずに酵素法により糊剤を除去する。なお、ポリエステルなどの合成繊維ではサイジングを行わないため、糊抜きは不要である。また、編物については、サイジングを行わないため糊抜きは不要である。 Desizing is a sizing that gives a glue to prevent warp from being damaged when making cotton fabric or cotton composite spun yarn (including rayon, cellulose fiber and hemp, obtained by organic solvent spinning) into a woven fabric. Processing is to remove the glue. In the case of 100% cotton, a high-concentration alkali and an oxidizing paste remover are used in combination, and the treatment is performed at a high temperature for a long time. Cellulose fibers obtained by rayon and organic solvent spinning methods are susceptible to damage when treated with a high concentration of alkali for a long time, so the paste is removed using an enzyme rather than an oxidized desizing method that uses alkali together. To do. In the case of cotton / wool etc., the paste is removed by an enzymatic method without using an alkaline agent as in the case of rayon. In addition, since sizing is not performed with synthetic fibers such as polyester, desizing is unnecessary. In addition, the knitted fabric does not require sizing, so that desizing is not necessary.
これらの繊維素材の官能基に結合させる上記の合成樹脂としては、パーフルオロアルキル基を有するアクリレート単位と親水性ビニルモノマー単位とからなる共重合樹脂を含むことが好ましい。このうち、親水性ビニルモノマー単位があることにより、染料との親和性が高くなることで、染色性が向上する。このような共重合樹脂としては、それらの単位となるモノマーを単純に混合して共重合させたものでもよいし、それぞれのモノマーを重合させた後で結合させたブロック共重合体であってもよい。 The synthetic resin to be bonded to the functional group of these fiber materials preferably includes a copolymer resin composed of an acrylate unit having a perfluoroalkyl group and a hydrophilic vinyl monomer unit. Among these, the presence of the hydrophilic vinyl monomer unit increases the affinity with the dye, thereby improving the dyeability. Such a copolymer resin may be a copolymer obtained by simply mixing the monomers as the units, or a block copolymer bonded after the respective monomers are polymerized. Good.
パーフルオロアルキル基を有するアクリレート単位は、アクリル酸単位にパーフルオロアルキル基が結合した構造のエステル単位でもよいが、パーフルオロアルキル基とアクリル基との間に、ポリアルキレンエーテル鎖を有する、下記化学式(1)のような構造のエステル単位であると、撥水性等の得られる効果がより優れたものとなる。 The acrylate unit having a perfluoroalkyl group may be an ester unit having a structure in which a perfluoroalkyl group is bonded to an acrylic acid unit, and has a polyalkylene ether chain between the perfluoroalkyl group and the acrylic group, When the ester unit has a structure as in (1), the obtained effect such as water repellency is more excellent.
また、親水性ビニルモノマー単位の例としては、例えばビニルアルコール単位や、アクリル酸エステル単位でエステル部分に親水性基を有するものなどが挙げられる。なお、ビニルアルコール単位を用いる場合には、例えば酢酸ビニルを用いて共重合させた後で、その酢酸ビニル単位を加水分解してビニルアルコール単位とする。 Examples of the hydrophilic vinyl monomer unit include a vinyl alcohol unit and an acrylate ester unit having a hydrophilic group in the ester portion. In the case of using a vinyl alcohol unit, for example, after copolymerization using vinyl acetate, the vinyl acetate unit is hydrolyzed to obtain a vinyl alcohol unit.
上記の共重合樹脂を上記合成樹脂として含み、上記繊維素材と結合させることによって、パーフルオロアルキル基を有するアクリレート単位が疎水性であるために、上記合成樹脂を結合させた繊維素材の撥水性、撥油性を向上させることができる。またそれとともに、親水性ビニルモノマー単位が存在することによって、撥水性を発揮するにも関わらず、染料との親和性がよくなることで染色性を向上させたり、洗剤を吸収しやすくなるために水中で汚れを落としやすくしたり、吸湿性吸水性を向上させる効果が得られる。なお、この共重合樹脂のそれぞれの構成単位の比率にもよるが、この共重合樹脂により得られる撥水性は高いものではなく、この共重合樹脂だけではJIS L 1092に記載の撥水性試験で1級程度となる。より撥水性を高めて汚れを弾く効果等、その他の効果を得るためには、さらに別の合成樹脂を併用する必要がある。 Since the acrylate unit having a perfluoroalkyl group is hydrophobic by including the copolymer resin as the synthetic resin and bonding with the fiber material, the water repellency of the fiber material combined with the synthetic resin, Oil repellency can be improved. At the same time, the presence of the hydrophilic vinyl monomer unit improves water-repellency, but improves the dyeability by improving the affinity with the dye and makes it easier to absorb the detergent. The effect of making it easy to remove dirt and improving hygroscopic water absorption is obtained. Although depending on the ratio of the respective structural units of this copolymer resin, the water repellency obtained by this copolymer resin is not high, and this copolymer resin alone is 1 in the water repellency test described in JIS L 1092. It becomes a grade. In order to obtain other effects such as the effect of improving water repellency and repelling dirt, it is necessary to use another synthetic resin in combination.
また、上記の合成樹脂として上記共重合樹脂と併用可能な樹脂は、例えば、シリコン樹脂、ウレタン樹脂、ポリエステル樹脂、パーフルオロアルキルアクリレート樹脂が挙げられ、これらを単独で用いてもよいし、複数の樹脂を併用しても良い。 Examples of the resin that can be used in combination with the copolymer resin as the synthetic resin include a silicon resin, a urethane resin, a polyester resin, and a perfluoroalkyl acrylate resin. These may be used alone, or a plurality of resins may be used. A resin may be used in combination.
この中でも特に、上記の合成樹脂としてシリコン樹脂を含むと、シリコン樹脂が架橋剤により繊維素材に分子結合することで、耐久柔軟効果が発揮されるので好ましい。特に、綿、有機溶剤紡糸法により得られるセルロース繊維などは、濡れると非常に風合いが剛直になるが、シリコンの柔軟効果により、濡れた場合でも繊維を非常に柔軟にする。この効果が、染色中や洗濯中に本来ならば硬くなる綿素材をより柔軟にして、繊維素材の強度低下、スレアタリを発生しにくくなる。このようなシリコン樹脂としては、アミノシリコン、エポキシシリコン、ジメチルシリコン等が挙げられる。 Among these, it is particularly preferable to include a silicone resin as the above synthetic resin because the silicone resin is molecularly bonded to the fiber material by a crosslinking agent, thereby exhibiting a durable softening effect. In particular, cotton and cellulose fibers obtained by an organic solvent spinning method have a very stiff texture when wet, but the softening effect of silicon makes the fiber very soft even when wet. This effect makes the cotton material that would otherwise be hard during dyeing or washing more flexible, making it less likely to reduce the strength of the fiber material and cause it to flare. Examples of such a silicon resin include amino silicon, epoxy silicon, and dimethyl silicon.
また、上記合成樹脂がパーフルオロアルキル基を有するアクリレート樹脂を含むと、繊維素材に結合させて得られる後染め用繊維素材の撥水性が向上する効果が高い。このアクリレート樹脂も、パーフルオロアルキル基とアクリル基との間に、ポリアルキレンエーテル鎖を有するものであると、得られる撥水性効果がより優れたものとなる。ただし、上記アクリレート樹脂を有して撥水性を発揮させても、上記共重合樹脂と併用することで、得られる後染め用繊維素材の吸湿性や吸水性を維持することができる。 Moreover, when the synthetic resin contains an acrylate resin having a perfluoroalkyl group, the effect of improving the water repellency of the post-dyed fiber material obtained by bonding to the fiber material is high. If this acrylate resin also has a polyalkylene ether chain between the perfluoroalkyl group and the acrylic group, the resulting water-repellent effect will be more excellent. However, even if it has the acrylate resin and exhibits water repellency, the hygroscopicity and water absorption of the resulting post-dyed fiber material can be maintained by using it together with the copolymer resin.
さらに、上記合成樹脂がウレタン樹脂やポリエステル樹脂を含むと、繊維素材に結合させて得られる後染め用繊維素材の風合いや触感を調整することができる。また、上記合成樹脂が吸水性ポリエステル樹脂を含み、撥水性の向上効果のある樹脂の含有量が無視できる程度であると、得られる後染め用繊維素材の吸水性を向上させることが出来る。その際に、上記共重合樹脂と併用すると、吸水性がありかつ撥油性を有する後染め用繊維素材を得ることができる。 Furthermore, when the synthetic resin contains a urethane resin or a polyester resin, it is possible to adjust the texture and feel of the post-dyed fiber material obtained by bonding to the fiber material. Further, if the synthetic resin contains a water-absorbing polyester resin and the content of the resin having an effect of improving water repellency is negligible, the water-absorbing property of the resulting post-dyed fiber material can be improved. At that time, when used in combination with the copolymer resin, it is possible to obtain a fiber material for post-dying having water absorption and oil repellency.
これらの上記合成樹脂を添加することで、繊維素材が有するピリング、フィビリル、引き裂きに対する弱さなど、様々な問題を解決することが出来る。例えば、合成繊維の短繊維ワタを乾燥状態で摩擦すると静電気や物理的力によってワタ球となってしまうピリングを抑制するためには、上記共重合樹脂や上記シリコン樹脂、ポリエステル樹脂を添加するとよい。上記シリコン樹脂は素材を柔らかくして物理的力を緩和し、上記共重合樹脂は素材の公定水分率を上げて静電気発生を弱め、ポリエステル樹脂は静電気発生を抑制することで、ピリングを抑制する作用を発揮する。 By adding these synthetic resins, various problems such as pilling, fibrill, and weakness against tearing of the fiber material can be solved. For example, the copolymer resin, the silicon resin, or the polyester resin may be added in order to suppress pilling that forms cotton balls due to static electricity or physical force when the synthetic short fiber cotton is rubbed in a dry state. The silicone resin softens the material to relieve physical force, the copolymer resin increases the official moisture content of the material to weaken static electricity generation, and the polyester resin suppresses pilling by suppressing static electricity generation. Demonstrate.
また、セルロース繊維が水中で揉まれたり、乾燥状態でも物理的な力によって発生する、非結晶部分が破壊されて微毛化されるフィビリルに対しては、上記シリコン樹脂を添加すると、繊維素材が柔軟化して、非結晶部分の破壊を抑制することができる。 In addition, for fibrils where cellulose fibers are squeezed in water or are generated by physical force even in a dry state, and the amorphous portion is destroyed and become fine hair, adding the silicone resin described above, the fiber material becomes It can be softened and the destruction of the amorphous portion can be suppressed.
さらに、合成繊維に比べて、綿の細番手やレーヨン、麻などのセルロース系繊維が弱い、対引き裂き試験に対しては、上記と同様に上記シリコン樹脂を加えることで、強くすることができる。 Furthermore, compared with synthetic fibers, cellulose fibers such as cotton counts, rayon and hemp are weak and can be strengthened by adding the silicone resin in the same manner as described above.
上記樹脂溶液にこれらの合成樹脂を混合して用いる場合の、それぞれの好ましい濃度は以下の通りである。上記共重合樹脂を含む場合は、上記樹脂溶液中のその有効成分は、素材などにもよるが、1重量%以上であると好ましく、2重量%以上であるとより好ましい。1重量%未満であると、この共重合させた樹脂を加えることによる効果がほとんど望めなくなってしまう。この含有量が多いほど、得られる後染め用繊維素材が高い撥油性を発揮する。後述する撥油性を3級程度とするためには、2重量%程度の上記共重合樹脂を含んでいるとよく、撥油性を5級程度とするには4重量%程度の上記共重合樹脂を含んでいるとよい。一方で、6重量%以下であると好ましい。6重量%を超えてもよいが、製造コストが高いものであるので、使用量は少ないことが好ましい。ただし、上記合成樹脂がシリコン樹脂を含む場合には、シリコン樹脂が上記共重合樹脂による効果を阻害するため、上記共重合樹脂が6重量%程度含まれることが好ましい。また、上記合成樹脂がこの共重合樹脂と吸水性ポリエステル樹脂のみである場合には、撥水性を向上させずに撥油性を向上させつつ、かつ吸水性を向上させることができる。 In the case where these synthetic resins are mixed and used in the resin solution, preferred concentrations thereof are as follows. When the copolymer resin is included, the active ingredient in the resin solution is preferably 1% by weight or more, more preferably 2% by weight or more, although it depends on the raw material. If it is less than 1% by weight, the effect of adding the copolymerized resin is hardly expected. The higher the content, the higher the oil repellency of the resulting post-dyed fiber material. In order to make the oil repellency, which will be described later, about 3rd grade, it is preferable to contain about 2% by weight of the above-mentioned copolymer resin. It is good to include. On the other hand, the content is preferably 6% by weight or less. Although it may exceed 6% by weight, since the production cost is high, the amount used is preferably small. However, when the synthetic resin contains a silicon resin, it is preferable that the copolymer resin is contained in an amount of about 6% by weight because the silicon resin inhibits the effect of the copolymer resin. Further, when the synthetic resin is only the copolymer resin and the water-absorbing polyester resin, it is possible to improve water absorption while improving oil repellency without improving water repellency.
上記合成樹脂がパーフルオロアルキル基を有するアクリレート樹脂を含む場合は、上記樹脂溶液中のその有効成分は、0.2重量%以上であると好ましく、0.8重量%以上であるとより好ましい。0.2重量%未満であると、パーフルオロアルキルアクリレート樹脂を加えることによる効果がほとんど望めなくなってしまう。一方で、4重量%以下であると好ましい。4重量%を超えると、風合いがやや硬くなってしまう。ただし、上記共重合樹脂やシリコン樹脂の量が多い場合は、十分な効果を発揮させるために必要な量が多くなる。この場合は、後述する撥水性を4〜5級とするために、上記アクリレート樹脂を12%程度含むとよく、撥水性が3級程度でよいのであれば、上記アクリレート樹脂を6重量%程度含むとよい。なお、撥水性1級程度であれば、上記アクリレート樹脂を含まなくても、上記共重合樹脂だけで実現できる。 When the synthetic resin contains an acrylate resin having a perfluoroalkyl group, the active ingredient in the resin solution is preferably 0.2% by weight or more, and more preferably 0.8% by weight or more. If it is less than 0.2% by weight, the effect of adding the perfluoroalkyl acrylate resin is hardly expected. On the other hand, the content is preferably 4% by weight or less. If it exceeds 4% by weight, the texture becomes slightly hard. However, when the amount of the copolymer resin or the silicon resin is large, the amount necessary for exhibiting a sufficient effect is increased. In this case, in order to make the water repellency described later 4th to 5th, about 12% of the acrylate resin may be included. If the water repellency may be about 3rd, about 6% by weight of the acrylate resin is included. Good. In addition, if it is about water-repellent first grade, even if it does not contain the said acrylate resin, it can implement | achieve only with the said copolymer resin.
上記合成樹脂がシリコン樹脂を含む場合、その有効成分は0.026重量%以上であると好ましく、0.26重量%以上であるとより好ましい。0.026重量%未満であると、シリコン樹脂を加えることによる効果がほとんど望めなくなってしまう。一方で、4重量%以下であると好ましく、2重量%以下であると好ましい。シリコン樹脂は撥水性や撥油性を低下させるため、4重量%を超えると、上記共重合樹脂などにより発揮される撥水性や撥油性の低下が補完しきれなくなってしまう。 When the synthetic resin contains a silicon resin, the active ingredient is preferably 0.026% by weight or more, and more preferably 0.26% by weight or more. If it is less than 0.026% by weight, the effect of adding the silicone resin is hardly expected. On the other hand, it is preferably 4% by weight or less, and preferably 2% by weight or less. Since the silicone resin decreases water repellency and oil repellency, when it exceeds 4% by weight, the decrease in water repellency and oil repellency exhibited by the copolymer resin and the like cannot be complemented.
また、これらの合成樹脂を併用する場合、上記樹脂溶液中に含まれる上記合成樹脂の有効成分の合計量は、15重量%以下が好ましく、10重量%以下であるとより好ましい。15重量%を超えると、調合液の安定性が損なわれる可能性があるためである。 Moreover, when using these synthetic resins together, 15 weight% or less is preferable and the total amount of the active ingredient of the said synthetic resin contained in the said resin solution is more preferable in it being 10 weight% or less. This is because if it exceeds 15% by weight, the stability of the preparation liquid may be impaired.
上記樹脂溶液を上記繊維素材に付与する際に、そのピックアップ率は、10%以上であると好ましく、40%以上であるとより好ましい。ピックアップ率とは、乾燥された未加工の生地重量に対して、溶液に浸漬された後の生地との重量差の比であり、下記式(1)で表される値である。
ピックアップ率(%)=(浸漬後の生地重量−乾燥生地重量)/乾燥生地重量×100……(1)
When the resin solution is applied to the fiber material, the pickup rate is preferably 10% or more, and more preferably 40% or more. The pickup rate is the ratio of the weight difference between the dried raw dough and the dough after being immersed in the solution, and is a value represented by the following formula (1).
Pickup rate (%) = (Dough weight after immersion−Dry weight) / Dry weight × 100 (1)
この値が10%未満であると、上記樹脂溶液中の上記合成樹脂が、上記繊維素材の中に水を媒体として浸透しにくくなってしまい、その分長い浸透時間が必要になってしまうためである。 If this value is less than 10%, the synthetic resin in the resin solution will not easily penetrate into the fiber material using water as a medium, and a longer penetration time will be required. is there.
また、上記樹脂溶液を上記繊維素材に付与する際に、上記繊維素材に対する上記合成樹脂の付与量は、上記共重合樹脂であれば0.6重量%以上であるとよく、パーフルオロアルキル基を有するアクリレート樹脂であれば1.5重量%以上であるとよく、シリコン樹脂であれば0.4重量%以上であるとよい。これらの値以上であれば、十分に合成樹脂を結合させることによる効果を発揮できる。また、後述する架橋剤を含む場合に、架橋剤としてイソシアネートを含む場合には、上記繊維素材に対して0.3重量%以上付与されていると、十分に反応を行うことができる。 In addition, when the resin solution is applied to the fiber material, the amount of the synthetic resin applied to the fiber material may be 0.6% by weight or more in the case of the copolymer resin. If it is an acrylate resin, it may be 1.5% by weight or more, and if it is a silicon resin, it may be 0.4% by weight or more. If it is more than these values, the effect by fully bonding a synthetic resin can be exhibited. Moreover, when it contains the crosslinking agent mentioned later and isocyanate is included as a crosslinking agent, when 0.3 weight% or more is provided with respect to the said fiber raw material, it can fully react.
これらの合成樹脂を上記繊維素材の官能基と結合させる方法としては、例えば、上記合成樹脂の官能基と、上記繊維素材の官能基とを、架橋剤で結合させる方法が挙げられる。この架橋剤は、それぞれの官能基と結合可能な反応基を複数有する化合物である必要があり、例えば、イソシアネート基又はウレタン基を有する、芳香族系ブロックイソシアネートや脂肪族系ブロックイソシアネートなどのイソシアネート系化合物が挙げられる。芳香族系ブロックイソシアネートを用いると、架橋温度が低く反応性が高いため好ましいが、白度が若干変化する場合があり、白度が求められる製品については、反応性がやや劣るものの脂肪族系ブロックイソシアネートを用いると好ましい。なお、イソシアネート基ではなくウレタン基を有するイソシアネート系化合物を架橋剤として用いる場合には、ウレタン基部分を熱解離などでイソシアネート基にした上で架橋反応を起こさせるものである必要がある。 Examples of the method of bonding these synthetic resins to the functional group of the fiber material include a method of bonding the functional group of the synthetic resin and the functional group of the fiber material with a crosslinking agent. This cross-linking agent needs to be a compound having a plurality of reactive groups capable of binding to each functional group. For example, an isocyanate group such as an aromatic block isocyanate or an aliphatic block isocyanate having an isocyanate group or a urethane group. Compounds. Use of an aromatic block isocyanate is preferable because the crosslinking temperature is low and the reactivity is high, but the whiteness may change slightly. For products that require whiteness, the aliphatic block is slightly less reactive. It is preferable to use isocyanate. In addition, when using the isocyanate type compound which has a urethane group instead of an isocyanate group as a crosslinking agent, after making a urethane group part into an isocyanate group by thermal dissociation etc., it is necessary to raise | generate a crosslinking reaction.
このような架橋剤を用いる場合、上記樹脂溶液を上記繊維素材に付与した後、架橋反応を起こさせるための熱処理を行うと好ましい。この熱処理としては、最低限必要な温度は架橋剤の種類により異なるが、140℃以上であると一般に架橋剤が反応しやすいため好ましい。一方で200℃を超えると上記繊維素材が傷んだりするおそれがあるため200℃以下であることが好ましく、180℃以下であるとより好ましい。なお、カルボジイミド、シランカップリング剤を架橋剤として用いると、耐久性が不足してしまう。 In the case of using such a crosslinking agent, it is preferable to perform a heat treatment for causing a crosslinking reaction after the resin solution is applied to the fiber material. As this heat treatment, the minimum necessary temperature varies depending on the type of the crosslinking agent, but it is preferably 140 ° C. or higher because the crosslinking agent generally reacts easily. On the other hand, when the temperature exceeds 200 ° C., the fiber material may be damaged, so that the temperature is preferably 200 ° C. or less, and more preferably 180 ° C. or less. In addition, when carbodiimide and a silane coupling agent are used as a crosslinking agent, durability will be insufficient.
また、このような架橋剤を含む場合、上記樹脂溶液中の架橋剤の濃度は、その有効成分が、0.04重量%以上であると好ましい。0.04重量%未満であると上記繊維素材と上記合成樹脂とを十分に結合できず、染色性等を向上させる効果が不十分になってしまうためである。一方で、4重量%以下であると好ましく、0.5重量%以下であるとより好ましい。4重量%を超えると、かえって染色性が低下してしまい、風合いが悪くなることがある。特に上記のイソシアネート系化合物を用いる場合は、1重量%以下であると好ましい。 When such a crosslinking agent is contained, the concentration of the crosslinking agent in the resin solution is preferably 0.04% by weight or more of the active ingredient. This is because if the amount is less than 0.04% by weight, the fiber material and the synthetic resin cannot be sufficiently bonded, and the effect of improving dyeability and the like becomes insufficient. On the other hand, it is preferably 4% by weight or less, and more preferably 0.5% by weight or less. If it exceeds 4% by weight, the dyeability may be deteriorated and the texture may be deteriorated. In particular, when the above isocyanate compound is used, it is preferably 1% by weight or less.
上記合成樹脂を主成分とし、上記架橋剤等を必要に応じて含む樹脂溶液を上記繊維素材に含ませることで、上記繊維素材の分子と上記合成樹脂の分子とを結合させて、上記繊維素材の染色性を向上させる。なお、主成分とするとは、溶液中の固形分の50重量%以上を占めることをいう。また、溶液の溶媒は特に限定されるものではなく、水を用いることができる。 By combining the fiber material with a resin solution containing the synthetic resin as a main component and optionally containing the cross-linking agent or the like, the fiber material molecule and the synthetic resin molecule are combined to form the fiber material. Improves dyeability. The main component means that the solid content in the solution is 50% by weight or more. Moreover, the solvent of a solution is not specifically limited, Water can be used.
上記樹脂溶液を上記繊維素材に含ませる方法としては、上記繊維素材の表面だけでなく、内部にまで上記樹脂溶液を染みこませることができる方法を用いると、染色性を高める効果にムラが生じにくくなるため好ましい。 As a method of including the resin solution in the fiber material, unevenness occurs in the effect of enhancing the dyeability by using a method capable of impregnating the resin solution not only on the surface of the fiber material but also inside. Since it becomes difficult, it is preferable.
具体的に上記繊維素材に上記樹脂溶液を付与させる際に用いる装置や方法は、上記繊維素材の形状により適切なものを選択する。例えば紡績糸やフィラメント糸では、サイジング機、チーズ加工機、ハンク染色機、カセ加工機、ロープ加工機、スラッシャー加工機などを用いることができる。織物、編物、不織布では、布を広げた状態で拡布加工機(テンター加工機)などを用いて、上記樹脂溶液を浸漬法やコーティング法で付与する方法を用いることができる。ロープ状である場合は、ウインス機、液流染色機、ドラム染色機などで上記樹脂溶液を付与することができる。縫製品の場合は、ドラム染色機、ワッシャー型加工機を用いることができる。このような付与は一回で行っても良いし、二回以上連続して付与してもよい。上記繊維素材によっては様々な生地素材が副資材として使用されているため薬品が均一に浸透するのに時間がかかる場合があるが、二回以上の付与を行うと、そのような上記繊維素材にも十分に浸透させることができる。二回以上行う場合は、上記の付与を連続して行っても良いし、一旦乾燥し熱処理を行ってから再付与してもよい。 Specifically, the apparatus and method used when applying the resin solution to the fiber material is selected appropriately depending on the shape of the fiber material. For example, for spun yarn and filament yarn, a sizing machine, a cheese processing machine, a Hank dyeing machine, a casserole processing machine, a rope processing machine, a slasher processing machine, and the like can be used. For woven fabrics, knitted fabrics, and non-woven fabrics, a method of applying the resin solution by a dipping method or a coating method using a spreading machine (tenter machine) or the like while the cloth is spread can be used. In the case of the rope shape, the resin solution can be applied with a wins machine, a liquid dyeing machine, a drum dyeing machine or the like. In the case of a sewn product, a drum dyeing machine or a washer type processing machine can be used. Such application may be performed once, or may be performed continuously twice or more. Depending on the fiber material, various fabric materials are used as auxiliary materials, so it may take time for the chemicals to penetrate evenly. Can also penetrate sufficiently. When performing twice or more, you may perform said provision continuously or may re-apply after drying once and heat-processing.
これらの装置により上記樹脂溶液を付与させた後、上記繊維素材を乾燥させて水分を飛ばすとともに架橋剤を反応させ、熱処理を行って架橋剤の反応を強固にして、この発明にかかる後染め用繊維素材を得ることができる。 After applying the resin solution with these devices, the fiber material is dried to remove moisture and react with the crosslinking agent, and heat treatment is performed to strengthen the reaction of the crosslinking agent. A fiber material can be obtained.
また、上記樹脂溶液を付与させた後で行う乾燥処理の温度は、50℃以上であると好ましく、130℃以上であるとより好ましい。50℃未満では低温すぎて水の蒸発が遅く、乾燥に時間がかかりすぎてしまうためであり、より高温であるほど乾燥させやすい。一方で、200℃以下であると好ましい。200℃を超えると、乾燥の際に上記繊維素材が熱により傷んでしまう可能性があるためである。ただし、これらの最適な温度や、乾燥処理に要する時間は、乾燥機の熱源や熱処理方法の違いにより変化する。また、繊維素材の形状によっても異なり、例えばコーン状の糸、チーズ状の糸、かせ状の糸の場合は、そうでない糸よりも乾燥熱処理時間は長くなる。具体的には、織物や編物の場合、拡布状加工機械を用いて、160℃前後で、1分程度の乾燥時間で行うとよく、チーズ状、コーン状の糸の場合は、140℃前後で10〜30分程度の乾燥時間で行うとよい。 Moreover, the temperature of the drying process performed after giving the said resin solution is preferable in it being 50 degreeC or more, and it is more preferable in it being 130 degreeC or more. This is because if the temperature is lower than 50 ° C., the temperature is too low and the water evaporates slowly, and it takes a long time to dry. The higher the temperature, the easier the drying. On the other hand, it is preferable that it is 200 degrees C or less. This is because if the temperature exceeds 200 ° C., the fiber material may be damaged by heat during drying. However, the optimum temperature and the time required for the drying process vary depending on the heat source of the dryer and the heat treatment method. Also, it varies depending on the shape of the fiber material. For example, in the case of a corn-like thread, a cheese-like thread, or a skein-shaped thread, the drying heat treatment time is longer than that of the other thread. Specifically, in the case of woven fabrics and knitted fabrics, it may be performed at a temperature of about 160 ° C. and a drying time of about 1 minute using an expansion processing machine. In the case of cheese-like and corn-like yarns, the temperature is about 140 ° C. The drying time is preferably about 10 to 30 minutes.
さらに、上記の乾燥処理後に熱処理を行う際の温度は、130℃以上であると好ましく、一方で、200℃以下であると好ましく、180℃以下であるとより好ましい。また、熱処理の時間は、チーズ状、コーン状の糸である繊維素材であれば10分以上1時間以下が好ましく、織物、編物などの拡布状の繊維素材であれば、20秒以上2分以下であると好ましい。 Furthermore, the temperature at the time of performing the heat treatment after the drying treatment is preferably 130 ° C. or higher, on the other hand, preferably 200 ° C. or lower, and more preferably 180 ° C. or lower. The heat treatment time is preferably 10 minutes or more and 1 hour or less if the fiber material is cheese-like or corn-like yarn, and 20 seconds or more and 2 minutes or less if the fiber material is a woven fabric, knitted fabric, or the like. Is preferable.
このようにして後染め可能としたこの発明にかかる後染め用繊維素材は、結合した上記合成樹脂の分子によって染色性を阻害することなく均一な染色を可能とし、かつ十分な染色濃度を保つことができる。また、合成樹脂が上記繊維素材と一体化しているため、上記繊維素材の物理的な強度低下を抑制するとともに、撥水性や發油性などの効果を発揮する。 The fiber material for post-dyeing according to the present invention, which can be post-dyed in this way, enables uniform dyeing without hindering dyeability by the above-mentioned synthetic resin molecules, and maintains a sufficient dyeing concentration. Can do. In addition, since the synthetic resin is integrated with the fiber material, the physical strength of the fiber material is prevented from being lowered, and effects such as water repellency and oil repellency are exhibited.
上記合成樹脂を単に含浸させただけでは、洗濯や染色の際に繊維素材から脱落してしまい、それぞれの上記合成樹脂により発揮される効果が洗濯や脱色の後には発揮されない、又は著しく低減してしまうという問題点があったが、上記合成樹脂が上記繊維素材と結合することにより、上記合成樹脂が洗濯、染色中でも脱落せず、その後も効果を発揮し続けることができる。 Simply impregnating with the above synthetic resin will cause the fiber material to fall off during washing and dyeing, and the effect exhibited by each of the above synthetic resins will not be exhibited after washing or decoloration, or significantly reduced. However, when the synthetic resin is combined with the fiber material, the synthetic resin does not fall off even during washing and dyeing, and the effect can continue to be exhibited thereafter.
上記合成樹脂に含まれる上記共重合樹脂が、上記繊維素材と結合することにより、洗濯、染色中後でも、十分な發油性を発揮する。また、上記合成樹脂として上記のパーフルオロアルキル基を有する上記アクリレート樹脂が上記繊維素材と結合することにより、洗濯、染色後も十分な撥水性を発揮する。 When the copolymer resin contained in the synthetic resin is combined with the fiber material, sufficient oil repellency is exhibited even after washing and dyeing. In addition, the acrylate resin having the perfluoroalkyl group as the synthetic resin is bonded to the fiber material, thereby exhibiting sufficient water repellency after washing and dyeing.
さらに、上記合成樹脂としてシリコン樹脂を用いた場合には、シリコン樹脂により得られる上記繊維素材の風合いを柔らかにする効果が、洗濯、染色中でも脱落せず、水に浸漬した浴中では乾燥状態よりも上記繊維素材を柔らかくすることができる。これにより上記繊維素材の強度低下やスレアタリを防ぐことができる。この効果は特に、上記繊維素材が濡れると非常に硬くなるセルロース素材である場合に好適に発揮される。 Furthermore, when a silicone resin is used as the synthetic resin, the effect of softening the texture of the fiber material obtained by the silicone resin does not fall off even during washing and dyeing, and in a bath immersed in water, it is more dry. Can also soften the fiber material. Thereby, the strength fall of the said fiber raw material and a thrash can be prevented. This effect is particularly suitably exhibited when the fiber material is a cellulose material that becomes very hard when wet.
この発明にかかる後染め用繊維素材は、撥水性、撥油性が高く、また、表面張力をポリエステルよりも小さくすることができるため、単に染色性に優れるだけではなく、透湿性が高かったり、油汚れにも強い繊維素材として用いることができる。 The fiber material for post-dyeing according to the present invention has high water repellency and oil repellency, and since the surface tension can be made smaller than that of polyester, it is not only excellent in dyeability but also has high moisture permeability, oil It can be used as a fiber material that is resistant to dirt.
具体的には、この発明にかかる後染め用繊維素材は、JIS L 1092に記載の撥水性試験による結果が撥水性2級以上とすることができ、この値を達成する物であると好ましい。1級であると撥水性が不十分であり、十分な撥水性を確保するためには従来行われているように、製品を染めた後で乾燥してから撥水スプレー等により撥水加工を行う必要がある。しかもその場合は撥水性の耐久性がなく、風合いが硬くなり、上記繊維素材がポリエステルなどの合成繊維である場合には摩擦堅牢度が低下するという問題を生じてしまう。なお、等級は最大で5級であり、上記繊維素材がコートである場合以外では4級以上を要求されることは希であるが、5級であってもよい。撥水性が4級又は5級の製品は、使用する薬品の濃度比率を調整することで達成可能である。なお、この発明にかかる後染め用繊維素材は、上記の撥水性を達成しても、染色性に問題を生じない。 Specifically, the post-dyed fiber material according to the present invention can achieve a water repellency grade of 2 or higher as a result of the water repellency test described in JIS L 1092, and is preferably a material that achieves this value. If it is the first grade, the water repellency is insufficient, and in order to ensure sufficient water repellency, as is conventionally done, the product is dyed and dried and then water-repellent with a water-repellent spray etc. There is a need to do. In addition, in that case, there is no durability of water repellency, the texture becomes hard, and when the fiber material is a synthetic fiber such as polyester, there is a problem that the fastness to friction is lowered. The maximum grade is grade 5, and it is rare that grade 4 or higher is required except when the fiber material is a coat, but grade 5 may be used. Products with water repellency of grade 4 or grade 5 can be achieved by adjusting the concentration ratio of the chemicals used. The fiber material for post-dying according to the present invention does not cause a problem in dyeability even if the above water repellency is achieved.
また、この発明にかかる後染め用繊維素材は、AATCC(American Association of Textile Chemists and Colorists、アメリカ繊維化学者・色彩技術者協会を示す。)118−2002に記載の撥油性試験の結果が撥油性1級(表面張力32dyne/cm以下に相当する。)以上とすることができ、この値を達成するものであると好ましく、2級以上であるとより好ましく、3級以上であるとより好ましい。1級ですらないと撥油性が不十分であり、1級に相当する人間の汗油に含まれるオレイン酸が付着してしまうためである。3級(27.3dyne/cm以下に相当する。)を満たすと、n−ヘキサデカン程度の油汚れであれば防止できるのでより好ましい。なお、この発明にかかる後染め用繊維素材は、上記の撥油性を達成しても染色性に問題を生じない。なお、等級は最大で8級であるが、シリコン樹脂の表面張力は24dyne/cmでフッ素樹脂の表面張力が10dyne/cmであるので、これらを併用して使用する場合には、撥油性8級(19.8dyne/cm)を実現することが現実的に難しくなるため、実際には7級以下であるのが現実的である。 The fiber material for post-dyeing according to the present invention has an oil repellency as a result of the oil repellency test described in AATCC (American Association of Textile Chemists and Colorists, American Textile Chemist / Color Engineer Association) 118-2002. It is preferable to achieve the first grade (corresponding to a surface tension of 32 dyne / cm or less) or higher, preferably to achieve this value, more preferably second grade or higher, and more preferably third grade or higher. If it is not first grade, the oil repellency is insufficient and oleic acid contained in human sweat oil corresponding to the first grade is attached. It is more preferable to satisfy the third grade (corresponding to 27.3 dyne / cm or less) because oil contamination of about n-hexadecane can be prevented. The fiber material for post-dying according to the present invention does not cause a problem in dyeability even if the above oil repellency is achieved. The maximum grade is 8th grade, but since the surface tension of silicon resin is 24 dyne / cm and the surface tension of fluororesin is 10 dyne / cm, when these are used in combination, oil repellency grade 8 Since it is practically difficult to realize (19.8 dyne / cm), it is realistic that it is actually 7th grade or less.
さらに、この発明にかかる後染め用繊維素材は、一般的な作成手順によれば表面張力を32dyne/cm以下とすることができる。この値は通常のポリエステル繊維よりも小さく、ほとんどの油よりも小さい値であるので、ほとんどの油汚れはこの発明にかかる後染め用繊維素材の内部に浸透することなく、容易に拭き取ることができる。また、この表面張力は小さいほど好ましい。なお、本発明における結合を行っていない通常のポリエステルの表面張力は45dyne/cm、ナイロンは60dyne/cmであり、これに対して、水の表面張力は70dyne/cmである。 Furthermore, the post-dyed fiber material according to the present invention can have a surface tension of 32 dyne / cm or less according to a general production procedure. Since this value is smaller than ordinary polyester fibers and smaller than most oils, most oil stains can be easily wiped without penetrating into the fiber material for post-dyeing according to the present invention. . Moreover, this surface tension is so preferable that it is small. The surface tension of ordinary polyester not bonded in the present invention is 45 dyne / cm and nylon is 60 dyne / cm, whereas the surface tension of water is 70 dyne / cm.
さらにまた、この発明にかかる後染め用繊維素材は、JIS L 1099A−1に記載の透湿性試験における結果を、加工を行わない繊維素材より向上させることができる。透湿性は染色性とは直接の関係は無いが、透湿性が良好であると得られる後染め用繊維素材を衣服等に用いた際に、汗などを吸収する有益な効果を発揮する。なお、このような良好な透湿性は、上記の撥水性が高くても成立する。吸湿性の対象となる水蒸気は、撥水性の対象となる液体の水よりも小さなものであり、これらは異なる挙動を示すためである。従来の撥水加工を染色後に行うと、撥水加工されていない生地よりも透湿性は低下するが、この発明では逆に透湿性を向上させることができる。 Furthermore, the fiber material for post dyeing concerning this invention can improve the result in the moisture permeability test described in JIS L 1099A-1 more than the fiber material which does not process. Moisture permeability is not directly related to dyeability, but exhibits a beneficial effect of absorbing sweat and the like when a post-dyed fiber material obtained with good moisture permeability is used for clothes or the like. Such good moisture permeability is established even if the water repellency is high. This is because the water vapor that is the object of hygroscopicity is smaller than the liquid water that is the object of water repellency, and these exhibit different behavior. When the conventional water-repellent finish is performed after dyeing, the moisture permeability is lower than that of the fabric not subjected to the water-repellent finish, but in the present invention, the moisture permeability can be improved.
一方、この発明にかかる後染め用繊維素材は、付与する合成樹脂として上記共重合樹脂や吸水性ポリエステル樹脂のみを選択することで、後染め用繊維素材の吸水性を向上することもできる。 On the other hand, the fiber material for post-dying according to the present invention can improve the water absorption of the fiber material for post-dyeing by selecting only the copolymer resin or the water-absorbing polyester resin as the synthetic resin to be imparted.
上記合成樹脂として、パーフルオロアルキル基を有するアクリレート樹脂や上記共重合樹脂が存在すると、上記のように撥油性を向上させる効果が特に高い。また、上記共重合樹脂は、表面張力では上記アクリレート樹脂よりも劣るものの、乾燥状態では親水性であるため油分を弾く効果が高い。さらに、上記共重合樹脂は、染色中や洗濯中などの水中では、親水性であるため洗濯効果を向上させて汚れが落としやすく、また、染色中では染料の吸着性を向上させる効果を有し、吸湿性を高める効果も発揮する。一方、上記アクリレート樹脂は親水基を持たないため、撥水性を向上させる効果が高い。 When the acrylate resin having a perfluoroalkyl group or the copolymer resin is present as the synthetic resin, the effect of improving the oil repellency as described above is particularly high. Moreover, although the said copolymer resin is inferior to the said acrylate resin in surface tension, since it is hydrophilic in a dry state, the effect which repels oil is high. Furthermore, since the copolymer resin is hydrophilic in water such as during dyeing and washing, it improves the washing effect and easily removes dirt, and also has the effect of improving dye adsorption during dyeing. Also, the effect of increasing hygroscopicity is exhibited. On the other hand, since the acrylate resin does not have a hydrophilic group, the effect of improving water repellency is high.
この発明にかかる後染め用繊維素材では、上記の撥水性と撥油性の値の少なくとも一方を容易に達成することができ、特に、上記アクリレート樹脂や、上記共重合樹脂の含有量を調製することで、どちらの値も容易に満たすことが可能である。すなわち、上記アクリレート樹脂により撥水性を向上させるとともに、上記共重合樹脂によって透湿性を高めることができる。これらの合成樹脂を共に繊維素材に結合させることによって、例えば、雨水などを弾くことができる一方で、内部の汗による湿気を外に出すことができる衣服などが実現可能となる。 In the fiber material for post-dyeing according to the present invention, at least one of the water repellency and oil repellency values can be easily achieved, and in particular, the content of the acrylate resin or the copolymer resin can be adjusted. Both values can be easily satisfied. That is, water repellency can be improved by the acrylate resin, and moisture permeability can be improved by the copolymer resin. By combining these synthetic resins with the fiber material, for example, it is possible to play clothes such as rainwater while being able to take out moisture from internal sweat.
この発明にかかる後染め用繊維素材を染色する際には、上記繊維素材の形状に応じて、それらに適した任意の条件下で処理を行うことができ、特に染色手段を限定されるものではない。具体的には、染料としては分散性染料、酸性染料、反応性染料、直接性染料、建染め染料、塩基性染料など、任意のものを用いることができる。 When dyeing the fiber material for post-dyeing according to this invention, depending on the shape of the fiber material, it can be processed under any conditions suitable for them, and the dyeing means is not particularly limited. Absent. Specifically, any dye such as a dispersible dye, an acid dye, a reactive dye, a direct dye, a vat dye, or a basic dye can be used as the dye.
また、染色方法としては、浸染、コールドパッチ染色などの任意の方法を用いることができる。上記繊維素材が紡績糸、フィラメント糸の場合は、カセ加工機、チーズ加工機、ロープ加工機、スラッシャー加工機などを用いるとよく、織物、編物、不織布等の布状の素材は、液流染色機、コールドパッチ染色機などを用いるとよい。また、上記繊維素材がポリエステル以外の編物生地の場合は、ウインスを用いるとよく、織物や不織布の染色ではジッカー染色機やパッヂバッチ染色機を用いるとよい。また、縫製後の繊維素材を染色する場合には、ドラム染色機を用いたり、常圧ワッシャー、高圧ワッシャーなどの張力がかかり難い浸染用の染色機を用いたりすると、縫製した製品の形状が傷みにくいため好ましい。 As a dyeing method, any method such as dip dyeing or cold patch dyeing can be used. When the fiber material is a spun yarn or a filament yarn, a casserole processing machine, a cheese processing machine, a rope processing machine, a slasher processing machine, etc. may be used. Or a cold patch dyeing machine may be used. In addition, when the fiber material is a knitted fabric other than polyester, wins may be used, and for dyeing woven fabrics and nonwoven fabrics, a zicker dyeing machine or a pad batch dyeing machine may be used. In addition, when dyeing textile materials after sewing, the shape of the sewn product may be damaged if a drum dyeing machine is used, or if a dyeing machine for dip dyeing, such as a normal pressure washer or a high pressure washer, is used. It is preferable because it is difficult.
この発明にかかる後染め用繊維素材に後染めを行った染色後繊維素材は、後染め後に十分に乾燥させて行った、JIS L 1092に記載の撥水性試験の結果が、1級以上かつ5級以下の状態を染色後も維持できるものであると好ましい。染色後の撥水性が高いということは、その染色中に上記合成樹脂が脱落しておらず、分子間結合によって上記繊維素材と強固に一体となっており、耐久性が高いことを示すためである。このような値を実現できると、染色後にて従来施行されているような、スプレーによる撥水剤付与は要らなくなり、製品として高品質な、パンツ、ジャケット、コート、カーシート、インテリア素材に適することになる。 The post-dyeing fiber material obtained by post-dying the post-dyeing fiber material according to the present invention has a water repellency test result of JIS L 1092, which is sufficiently dried after post-dying, and has a grade of 5 or higher. It is preferable that the state below grade can be maintained even after dyeing. The high water repellency after dyeing means that the synthetic resin does not fall off during dyeing, and is strongly integrated with the fiber material by intermolecular bonding, indicating high durability. is there. If these values can be achieved, it is not necessary to apply a water repellent by spraying, which has been practiced after dyeing, and the product should be suitable for high-quality pants, jackets, coats, car seats, and interior materials. become.
また、上記染色後繊維素材は、AATCC118−2002に記載の撥油性試験の結果が、2級以上であると好ましく、3級以上であるとより好ましい。1級以下であると、撥油性が不足してしまい、油汚れに対して極端に弱くなってしまう。なお、その基準は、撥油性2級は表面張力29.6dyne/cmで汗油(オレイン酸)の32dyne/cmより小さいので、2級以上の撥油性は最低必要となるためであり。3級以上であれば(27.3dyne/cm)大体の油性汚れに対し有効となるためである。一方で、7級以下であると好ましい。上記と同様に、撥油性の限界のため8級は困難である。 Further, the dyed fiber material has a result of the oil repellency test described in AATCC 118-2002 of preferably 2nd grade or more, and more preferably 3rd grade or more. If it is 1st grade or less, the oil repellency is insufficient and it becomes extremely weak against oil stains. The standard is that oil repellency grade 2 has a surface tension of 29.6 dyne / cm and is less than 32 dyne / cm of sweat oil (oleic acid), so oil repellency of grade 2 or higher is required at a minimum. This is because if it is 3rd grade or higher (27.3 dyne / cm), it is effective against almost oily soil. On the other hand, it is preferable that it is 7th grade or less. As above, Grade 8 is difficult due to the limit of oil repellency.
さらに、上記染色後繊維素材が織物、編物、不織布やそれらの複合素材からなる布状のものである場合には、表面張力が31.5dyne/cm以下であると好ましく、29.6dyne/cm以下であるとより好ましい。31.5dyne/cmを超えると、汗油の成分であるオレイン酸が付着しやすくなるためである。この値は、従来の綿、ポリエステル、ナイロンなどの繊維を加工せずにそのまま染色した際の表面張力よりも小さいために、染色後繊維素材に薬品による加工を行う際には、従来よりも薬品の使用量を削減しても、同等の加工効果を得ることができる。一方で、表面張力は撥油性7級以下であるので、21.4dyne/cm以上であると好ましい。 Furthermore, when the post-dyeing fiber material is a woven fabric, a knitted fabric, a non-woven fabric or a composite material thereof, the surface tension is preferably 31.5 dyne / cm or less, and 29.6 dyne / cm or less. Is more preferable. This is because if it exceeds 31.5 dyne / cm, oleic acid, which is a component of sweat oil, tends to adhere. This value is smaller than the surface tension of conventional cotton, polyester, nylon, and other fibers that are dyed as they are without being processed. Even if the amount of use is reduced, an equivalent processing effect can be obtained. On the other hand, since the surface tension is not more than oil repellency, it is preferably 21.4 dyne / cm or more.
なお、これらの撥水性、撥油性、表面張力の値は、この発明にかかる後染め用繊維素材を用いて通常の染色を行うと、容易に達成可能な値であり、いずれの値も満たしているとより好ましい。特に上記合成樹脂として、パーフルオロアルキル基を有するアクリレート樹脂や、パーフルオロアルキル基を有するアクリレート単位と親水性ビニルモノマー単位とを有する共重合樹脂を用いた場合には、表面張力を29.6dyne/cm以下にすることが容易にできる。これらのようなフッ素含有樹脂は、フィルム状であると表面張力は10dyne/cm程度となり、非常に速い撥油性を発揮するが、上記繊維素材と分子間結合した場合はそこまでの値とはならない。その分、親水性ビニルモノマーと共重合して、水溶性である性質により油成分を弾いて撥油性を高める効果を発揮させるとよい。なお、親水性ビニルモノマーを単独重合しても得られる樹脂の撥水性が1級程度にしかならないため、パーフルオロアルキル基を有するアクリレートとの共重合樹脂を用いると、これらの効果が相互に補完できて好ましい樹脂となる。 Note that these water repellency, oil repellency, and surface tension values are easily achievable when normal dyeing is performed using the post-dyeing fiber material according to the present invention, and all values are satisfied. It is more preferable. In particular, when an acrylate resin having a perfluoroalkyl group or a copolymer resin having an acrylate unit having a perfluoroalkyl group and a hydrophilic vinyl monomer unit is used as the synthetic resin, the surface tension is 29.6 dyne / It can be easily reduced to cm or less. Such a fluorine-containing resin has a surface tension of about 10 dyne / cm when it is in the form of a film, and exhibits very fast oil repellency, but it does not reach that value when it is intermolecularly bonded to the fiber material. . Accordingly, it is preferable to copolymerize with a hydrophilic vinyl monomer to exert an effect of improving oil repellency by repelling the oil component due to its water-soluble property. In addition, since the water repellency of the resin obtained by homopolymerizing the hydrophilic vinyl monomer is only about first grade, these effects complement each other when a copolymer resin with an acrylate having a perfluoroalkyl group is used. This is a preferable resin.
上記染色後繊維素材について、JIS L 0217 103に記載の方法により、洗濯を30回行った後の上記撥水性は1級以上、5級以下であると好ましい。すなわち、洗濯を行っても撥水性の低下を抑制できると好ましい。同様の理由により、洗濯を30回行った後の上記撥油性は、2級以上、かつ7級以下であると好ましい。 With respect to the post-dyed fiber material, the water repellency after washing 30 times by the method described in JIS L 0217 103 is preferably 1st grade or more and 5th grade or less. That is, it is preferable that the decrease in water repellency can be suppressed even after washing. For the same reason, the oil repellency after washing 30 times is preferably 2nd grade or more and 7th grade or less.
なお、この発明にかかる後染め用繊維素材は、そのままでも撥水性、撥油性に優れているが、後染めを行った後にさらに撥水、撥油、堅牢度向上、制菌、制電、消臭などの加工などを行ってもよい。これらの加工時においても、上記合成樹脂と一体化しているために、繊維が傷みにくく、かつ上記の撥水性、撥油性、表面張力等の性質を保持しやすい。すなわち、上記の染色後繊維素材の洗濯前における撥水性、撥油性、表面張力の値を満たすと好ましい。 The post-dyeing fiber material according to the present invention is excellent in water repellency and oil repellency as it is, but after the post-dyeing, further water repellency, oil repellency, fastness improvement, antibacterial, antistatic, extinguishing Processing such as odor may be performed. Even during these processes, since the fibers are integrated with the synthetic resin, the fibers are hardly damaged and the properties such as the water repellency, oil repellency, and surface tension are easily maintained. That is, it is preferable to satisfy the water repellency, oil repellency and surface tension values of the dyed fiber material before washing.
このように、水酸基、アミノ基、アミド基、カルボキシル基、又はウレタン基の少なくともいずれかを含有する繊維素材に対して、その繊維素材の前記官能基と反応して前記繊維素材の染色性を向上させる合成樹脂を主成分とする樹脂溶液を含ませる処理加工を行うことで、洗濯後も繊維素材の撥水性、撥油性、表面張力が上記の条件を満たし、かつ、染色性が高く、洗濯耐久性も高い後染め用繊維素材を製造することができる。 As described above, for a fiber material containing at least one of a hydroxyl group, an amino group, an amide group, a carboxyl group, or a urethane group, the dyeing property of the fiber material is improved by reacting with the functional group of the fiber material. By performing a processing process that includes a resin solution containing a synthetic resin as a main component, the water repellency, oil repellency, and surface tension of the fiber material satisfy the above conditions even after washing, and have high dyeability and durability to washing. It is possible to produce a fiber material for post-dyeing with high properties.
以下、この発明を、実施例を挙げてより具体的に説明する。まず、以下の実施例中で行う試験方法について説明する。
・撥水性試験……JIS L 1092に記載のスプレー法により行う。
・撥油性試験……AATCC 118−2002に記載の方法により行う。
・ウール混紡率試験……JIS L 1030に記載の5%水酸化ナトリウム法において、100℃環境、15分の条件で行う。
・染色濃度試験……K/S測定、光源D65、反射率Rである(株)ミノルタ製分光測色計:SPECTRO PHOTOMETER CM−3700dを用いて、(1−R)2/2R=絶対値として、(絶対値A)/(絶対値St)×100=K/Sを計算して算出した。
・摩擦堅牢度試験……JIS L 0849に記載の方法により行った。
・洗濯耐久性試験……JIS L 0217 103に記載の方法により行った。
・引裂き試験……JIS L 1096 生地の強度を測定する目的でベンジュラム法により行った。
・透湿性試験……JIS L 1099A−1に記載の塩化カルシウム法により行う。
・吸水性試験……JIS L 1096に記載の水滴滴下法により行う。
Hereinafter, the present invention will be described more specifically with reference to examples. First, test methods performed in the following examples will be described.
Water repellency test: Performed by the spray method described in JIS L 1092.
Oil repellency test: Performed by the method described in AATCC 118-2002.
-Wool blend ratio test: Performed in a 5% sodium hydroxide method described in JIS L 1030, at 100 ° C for 15 minutes.
-Dye density test: K / S measurement, light source D65, reflectance R spectrophotometer: Minolta Co., Ltd .: SPECTRO PHOTOMETER CM-3700d, (1-R) 2 / 2R = absolute value , (Absolute value A) / (absolute value St) × 100 = K / S.
・ Friction fastness test: The method described in JIS L 0849 was used.
Washing durability test: The method described in JIS L 0217 103 was used.
・ Tear test: JIS L 1096 The test was conducted by the Benjuram method for the purpose of measuring the strength of the fabric.
-Moisture permeability test: Performed by the calcium chloride method described in JIS L 1099A-1.
Water absorption test: Performed by the water drop method described in JIS L 1096.
次に、用いる薬品について説明する。
<合成樹脂>
・パーフルオロアルキル基を有するアクリレート樹脂(合名会社マキロ製:SM−Cube HS、固形分20%)
・パーフルオロアルキル基を有するアクリレート単位と親水性ビニルモノマー単位を有する共重合樹脂(合名会社マキロ製:SM−Cube SS、固形分20%)
・シリコン樹脂(アミノシリコン、合名会社マキロ製:SM−Cube JN、固形分26%)
・シリコン樹脂(ジメチルシリコン、合名会社マキロ製:SM−Cube JN−DM、固形分38%)
・シリコン樹脂(エポキシシリコン、合名会社マキロ製:SM−Cube JN−EP、固形分36%)
・ポリエステル樹脂(日華化学(株)製:ナイスポールPR−99、固形分10%)
・ポリエステル樹脂(明成化学工業(株)製:メイカフィニッシュSRM−65)
・ポリウレタン樹脂(日華化学(株)製:エバファノールHA−107C、固形分40%)
Next, chemicals to be used will be described.
<Synthetic resin>
An acrylate resin having a perfluoroalkyl group (manufactured by Makio: SM-Cube HS, solid content 20%)
-Copolymer resin having an acrylate unit having a perfluoroalkyl group and a hydrophilic vinyl monomer unit (manufactured by MAKI: SM-Cube SS, solid content 20%)
・ Silicon resin (Aminosilicon, manufactured by MAKIRO, SM-Cube JN, solid content 26%)
・ Silicon resin (dimethylsilicone, manufactured by Makro Co., Ltd .: SM-Cube JN-DM, solid content 38%)
・ Silicon resin (Epoxy silicone, manufactured by MAKI Co., Ltd .: SM-Cube JN-EP, solid content 36%)
・ Polyester resin (manufactured by Nikka Chemical Co., Ltd .: Nicepol PR-99, solid content 10%)
・ Polyester resin (Meisei Chemical Industry Co., Ltd .: Meika Finish SRM-65)
-Polyurethane resin (manufactured by Nikka Chemical Co., Ltd .: Evaphanol HA-107C, solid content 40%)
<架橋剤>
・芳香族系ブロックイソシアネート(合名会社マキロ製:SM−Cube KK、固形分40%)
・脂肪族系イソシアネート(合名会社マキロ製:SM−Cube KL、固形分35%)
<Crosslinking agent>
・ Aromatic block isocyanate (manufactured by MAKIRO: SM-Cube KK, solid content 40%)
・ Aliphatic isocyanate (manufactured by the combined company Makiro: SM-Cube KL, solid content 35%)
<加工処理剤>
・フィックス処理剤(日華化学(株)製:ネオフィックスR800)
・リン系有機酸(日華化学(株)製:ネオプロトンATO)
・酵素(洛東化成(株)製:PAS600)
・精練剤(日華化学(株)製:ピッチランL−160)
・過酸化水素(濃度35重量%)
・水酸化ナトリウム(濃度48重量%)
・劣化防止剤(日華化学(株)製:クロークスCW−1)
・安定剤(日華化学(株)製:ネオレートPLC−7000)
・浸透剤(日華化学(株)製:サンモールBH−75)
・酸化糊抜き剤(洛東化成(株)製:ラクトーゲンLS)
・キレート剤(日華化学(株)製:HNC−100)
<Processing agent>
・ Fix treatment agent (manufactured by Nikka Chemical Co., Ltd .: Neofix R800)
・ Phosphorus organic acid (Nikka Chemical Co., Ltd .: Neoproton ATO)
・ Enzyme (Shinto Kasei Co., Ltd .: PAS600)
・ Scouring agent (Nikka Chemical Co., Ltd .: Pitch Run L-160)
・ Hydrogen peroxide (concentration 35% by weight)
・ Sodium hydroxide (concentration 48% by weight)
Deterioration inhibitor (manufactured by Nikka Chemical Co., Ltd .: Crokes CW-1)
・ Stabilizer (Nikka Chemical Co., Ltd .: Neolate PLC-7000)
・ Penetration agent (Nikka Chemical Co., Ltd .: Sunmall BH-75)
・ Oxidizing paste remover (manufactured by Toto Kasei Co., Ltd .: Lactogen LS)
・ Chelating agent (manufactured by Nikka Chemical Co., Ltd .: HNC-100)
(実施例1)
繊維素材として、大和紡績(株)製:綿100%織物(タテ糸60双糸、ヨコ糸60双糸、ツイル織ベンタイル)に対し、精練・糊抜き・漂白を施した後、水酸化ナトリウムにてシルケット加工を行った。
Example 1
As a fiber material, Daiwa Boseki Co., Ltd .: 100% cotton woven fabric (warp yarn 60 twin yarn, weft yarn 60 twin yarn, twill weave bentile) is subjected to scouring, desizing and bleaching, and then to sodium hydroxide And mercerized.
ここでは酸化糊抜き精練として精練及び糊抜きと、漂白とを連続的に行った。装置としては山東鉄工(株)製:連続毛焼き洗練漂白乾燥機を使用した。酸化糊抜き精練にあたっては、以下のような成分の混合水溶液に生地を連続浸漬し、反応塔にて98℃の環境で30分間スチーミングした。
・酸化糊抜き剤:ラクトーゲンLS……20g/L
・水酸化ナトリウム水溶液(48重量%)……40g/L
・精練剤:ピッチランL−160……3g/L
・キレート剤:HNC−100……2g/L
Here, scouring and desizing and bleaching were continuously performed as scouring for oxidation desizing. As an apparatus, a continuous hair-baking refined bleaching dryer manufactured by Shandong Tekko Co., Ltd. was used. In the scouring without oxide paste, the dough was continuously immersed in a mixed aqueous solution of the following components and steamed in a reaction tower at 98 ° C. for 30 minutes.
・ Oxidizing paste remover: Lactogen LS ... 20g / L
・ Sodium hydroxide aqueous solution (48% by weight) ... 40 g / L
・ Scouring agent: Pitch Run L-160 ... 3g / L
・ Chelating agent: HNC-100 ... 2g / L
また、漂白に当たっては以下のような成分の混合液に生地を連続浸漬し、反応塔にて98℃の環境で40分間スチーミングし、その後連続水洗し、乾燥を行った。
・過酸化水素……20g/L
・精練剤:ピッチランL−160……3g/L
・安定剤:ネオレートPLC−7000……5g/L
・キレート剤:HNC−100……2g/L
・水酸化ナトリウム……pH11〜12となるように投下
In bleaching, the dough was continuously immersed in a mixed solution of the following components, steamed in a reaction tower at 98 ° C. for 40 minutes, then washed with water and dried.
・ Hydrogen peroxide: 20 g / L
・ Scouring agent: Pitch Run L-160 ... 3g / L
・ Stabilizer: Neolate PLC-7000 ... 5g / L
・ Chelating agent: HNC-100 ... 2g / L
・ Sodium hydroxide: Dropped to pH 11-12
次に、水酸化ナトリウム水溶液を用いて、浴温度20〜30℃を維持した状態で、比重濃度24Beでシルケット加工を行った。 Next, using an aqueous sodium hydroxide solution, mercerization was performed at a specific gravity concentration of 24 Be while maintaining a bath temperature of 20 to 30 ° C.
さらに次に下記の構成からなる樹脂溶液を調製し、シルケット加工後の生地に付与した。
・SM−Cube HS……10重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……83重量部
Next, a resin solution having the following constitution was prepared and applied to the dough after mercerization.
・ SM-Cube HS: 10 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 1 part by weight • Water: 83 parts by weight
この樹脂溶液の付与にはケミカルマングル付きテンター(京都機械(株)製:樹脂テンター)にてPad−Dry方式で行った。この際の樹脂溶液のピックアップ率は65%で繊維素材に付与された。付与後を130℃の環境で1分かけて乾燥した後、ベーキング機(京都機械(株)製:樹脂加工機)にて160℃、40秒の熱処理を行った。こうして得られた後染め用繊維素材を表地としてレインコートを縫製し、後染め用繊維素材からなる縫製品を得た。 The resin solution was applied by a Pad-Dry method using a chemical mangled tenter (Kyoto Kikai Co., Ltd .: resin tenter). At this time, the pickup rate of the resin solution was 65%, which was imparted to the fiber material. After the application, the film was dried in an environment of 130 ° C. for 1 minute, and then heat-treated at 160 ° C. for 40 seconds with a baking machine (Kyoto Machine Co., Ltd .: resin processing machine). A raincoat was sewed using the fiber material for post-dyeing thus obtained as a surface material to obtain a sewn product made of the fiber material for post-dyeing.
次に、この縫製品をワッシャータイプ常圧型染色機((有)河合鉄工所製:常圧染色機)により、染料として住友化学(株)製:Sumifix HF Yellow 3R,Red 4B,Blue 3R,Remazol Black B(ダイスター社製)を染める色に合わせた量を選択混合して用いて、80℃の環境で1時間かけて染色し、80℃の環境で30分かけて洗浄を行い、フィックス処理剤を濃度1%owfで40℃の環境で20分間かけてフィックス処理を行い、脱水後タンブラー乾燥機にて乾燥した。 Next, this sewing product was used as a dye by a washer type normal pressure dyeing machine (manufactured by Kawai Iron Works: normal pressure dyeing machine): Sumifix HF Yellow 3R, Red 4B, Blue 3R, Remazol as a dye. Black B (manufactured by Dystar Co., Ltd.) is selected and mixed in an amount that matches the color to be dyed, dyed in an environment of 80 ° C. over 1 hour, washed in an environment of 80 ° C. over 30 minutes, and fixed treatment agent The solution was fixed at a concentration of 1% owf at 40 ° C. for 20 minutes, dehydrated and dried in a tumbler drier.
染色されたレインコートは染色性も良く、スレアタリもなく、自然なシボ感のあるものであった。このレインコートの染色前と染色後、及び50回の洗濯後に行った、撥水性と撥油性の試験結果を表1に示す。 The dyed raincoat had good dyeability, no flareiness, and a natural texture. Table 1 shows the test results of water repellency and oil repellency before and after dyeing of this raincoat and after washing 50 times.
このような染色を、上記の染料の混合率を変えて全10色について行い、合計300着の着色レインコートを得た。これらはいずれも染色後に撥水スプレーなどの後加工を行うことなく、市場に供給可能な撥水性を有していた。また、この300着の内訳は、縫製パターン3種類、サイズは5種類計15種類があり、染色指定色は10色あり、いずれもバイオーダーにて、週単位にて染色加工依頼があったが、縫製会社から縫製品到着後、染色に費やした日数は2日間にて納入できた。 Such dyeing was performed for all 10 colors by changing the mixing ratio of the above dyes to obtain a total of 300 colored raincoats. All of these had water repellency that could be supplied to the market without post-processing such as water repellent spray after dyeing. In addition, the breakdown of 300 clothes includes 3 types of sewing patterns, 5 types, and 15 types in total, and 10 colors are designated for dyeing. After the arrival of the sewing product from the sewing company, the days spent for dyeing could be delivered in 2 days.
これら10色のレインコートについて、染色濃度を分光測色計により測定し、K/S値を求めた。その結果を表2に示す。 For these 10 color raincoats, the dyeing density was measured with a spectrocolorimeter, and the K / S value was determined. The results are shown in Table 2.
(比較例1)
実施例1において、樹脂溶液を付与せず、乾燥、熱処理をしないこと以外は実施例1と同様の手順により、10色のレインコートを得て、同様に染色濃度を測定し、K/S値を求めた。その結果を表2に示す。いずれの色においても、樹脂溶液を付与した後染め用繊維素材の方が、染色濃度が高くなった。
(Comparative Example 1)
In Example 1, except that the resin solution was not applied, and drying and heat treatment were not performed, a 10-color raincoat was obtained by the same procedure as in Example 1, the dyeing density was measured in the same manner, and the K / S value was obtained. Asked. The results are shown in Table 2. In any color, the dyeing density was higher in the post-dyed fiber material to which the resin solution was applied.
(実施例2)
繊維素材として、綿ストレッチ織物(タテ綿100双、ヨコ綿16+ポリウレタン70D)を用い、実施例1と同様の手順で精練、糊抜き、漂白、シルケット加工を行い、下記の混合比である樹脂溶液を繊維素材に付与した。
(Example 2)
As a fiber material, a cotton stretch fabric (100 cotton warp, horizontal cotton 16 + polyurethane 70D) is used, and scouring, desizing, bleaching and mercerizing are performed in the same procedure as in Example 1, and a resin solution having the following mixing ratio: Was added to the fiber material.
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……87重量部
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 1 part by weight • Water: 87 parts by weight
この樹脂溶液の付与には、ケミカルマングル付きテンターを用い、ピックアップ率62%で繊維素材に付与された。これを130℃の環境で1分かけて乾燥した後、ベーキング機にて155℃、60秒の熱処理を行った。こうして得られた後染め用繊維素材を用いて、婦人用レインコートを縫製し、後染め用繊維素材からなる縫製品を得た。 For the application of this resin solution, a tenter with a chemical mangle was used and the fiber material was applied at a pickup rate of 62%. This was dried for 1 minute in an environment of 130 ° C., and then heat-treated at 155 ° C. for 60 seconds in a baking machine. By using the fiber material for post-dyeing thus obtained, a raincoat for ladies was sewn to obtain a sewn product made of the fiber material for post-dyeing.
このような婦人用レインコート2000着分について、実施例1と同様の条件でカーキとベージュの2色に染色したところ、6日間で作業が完了した。いずれも色むら、色ぶれ、繊維の損傷は見られなかった。このレインコートの染色前と染色後、及び50回の洗濯後に行った、撥水性、撥油性の試験結果を表3に示す。なお、表中「2/3級」とは、2級と3級の中間の値であることを示し、以下、同様の表記を用いる。 Such 2000 women's raincoats were dyed in two colors, khaki and beige, under the same conditions as in Example 1. The work was completed in 6 days. Neither color irregularity, color blur, or fiber damage was observed. Table 3 shows the test results of water repellency and oil repellency before and after dyeing of this raincoat and after washing 50 times. In the table, “2/3 class” indicates an intermediate value between the 2nd class and the 3rd class, and the same notation is used hereinafter.
(実施例3)
繊維素材として麻100%織物(タテリネン1/20、ヨコリネン1/20、100本×80本、平織り、イタリア製)を用いて、実施例1と同様に精練、糊抜き、漂白、シルケット加工を行った後、下記の混合比である樹脂溶液を実施例1と同様にケミカルマングル付きテンターを用いて繊維素材に付与した。
(Example 3)
Scouring, desizing, bleaching, and mercerization were performed in the same manner as in Example 1 using 100% hemp fabric (tatelinen 1/20, yokorinen 1/20, 100x80, plain weave, made in Italy) as the fiber material. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material using a tenter with a chemical mangle as in Example 1.
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……0.75重量部
・水……87.25重量部
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 0.75 parts by weight • Water: 87.25 parts by weight Part
付与後に、実施例1と同様の条件で乾燥、熱処理を行い、得られた後染め用繊維素材を縫製してジャケットを作成した。縫製後、実施例1と同様の条件で染色を施し、フィックス処理を行った。このジャケットの染色前と染色後、及び50回の洗濯後に行った、撥水性と撥油性の試験結果を表4に示す。 After the application, drying and heat treatment were performed under the same conditions as in Example 1, and the resulting post-dyed fiber material was sewn to create a jacket. After sewing, dyeing was performed under the same conditions as in Example 1 and a fixing process was performed. Table 4 shows the test results of water repellency and oil repellency before and after dyeing of this jacket and after washing 50 times.
(実施例4)
繊維素材として、テンセル(有機溶剤紡糸法により得られるセルロース繊維)100%織物(タテテンセル20、ヨコテンセル20、110本×70本、村松産業(株)製)を用いて、Pad−Steamer方式にて酵素糊抜き、精練後、コールドバッチ法にて過酸化水素にて漂白を行った。
Example 4
As the fiber material, Tencel (cellulose fiber obtained by organic solvent spinning method) 100% woven fabric (Vertical Tencel 20, Yoko Tencel 20, 110 × 70, manufactured by Muramatsu Sangyo Co., Ltd.), enzyme by Pad-Steamer method After desizing and scouring, bleaching was performed with hydrogen peroxide by a cold batch method.
酵素糊抜き、精練にあたっては、具体的には、リン系有機酸としてネオプロトンATOを40g/L、酵素としてPAS600を60g/L有する混合水溶液により、山東鉄工(株)製:水洗・乾燥機付きPad−Streamer機により、100℃の環境で60秒かけて処理を行った。また、コールドバッチ法は、具体的には、下記の組成からなる混合水溶液を用いて、自家製コールドバッチ装置にて、巻き上げ常温環境で8時間かけて処理をし、その後水洗、乾燥を行った。
・過酸化水素……15g/L
・水酸化ナトリウム……5g/L
・安定剤:ネオレートPLC−7000……2g/L
・精練剤:ピッチランL−160……2g/L
For enzyme desizing and scouring, specifically, a mixed aqueous solution containing 40 g / L of neoproton ATO as a phosphorus organic acid and 60 g / L of PAS600 as an enzyme, manufactured by Shandong Tekko Co., Ltd .: with water washing and drying machine Using a Pad-Streamer machine, the treatment was performed in an environment of 100 ° C. over 60 seconds. Further, in the cold batch method, specifically, using a mixed aqueous solution having the following composition, a roll was processed in a home-made cold batch apparatus for 8 hours in a normal temperature environment, and then washed and dried.
・ Hydrogen peroxide: 15 g / L
・ Sodium hydroxide ... 5g / L
・ Stabilizer: Neolate PLC-7000 ... 2g / L
・ Scouring agent: Pitch Run L-160 2g / L
その後、実施例3と同様の樹脂溶液を、同様の方法で付与し、乾燥、熱処理を行った。 Thereafter, the same resin solution as in Example 3 was applied in the same manner, followed by drying and heat treatment.
その後、(株)日阪製作所製高圧液流染色機にて、85℃の条件で60分間かけて、Remazol Black B Liquid染料(ダイスター社製)を用いて濃度35%owfで染色を行った。染色後、60℃の条件で20分間かけて洗浄を行い、実施例1と同様にフィックス処理を行った。染色後乾燥された生地はスレアタリ、白化、シワの発生がなく、従来のテンセルにないきれいな表面感、手持ち感であった。 Then, it dye | stained with the density | concentration of 35% owf using Remazol Black B Liquid dye (made by a Dystar company) over 60 minutes on 85 degreeC conditions with the high pressure liquid flow dyeing machine made from Nisaka Corporation. After dyeing, washing was performed for 20 minutes at 60 ° C., and fixing treatment was performed in the same manner as in Example 1. The fabric dried after dyeing was free of leaching, whitening, and wrinkles, and had a clean surface feeling and hand-held feeling not found in conventional tencels.
得られた生地について、50回の洗濯試験を行ったが、糸のフィブリル化は殆ど発生せず、上質の表面を維持していた。また、染色前と染色後、及び50回の洗濯後における、撥水性、撥油性の試験結果を表5に示す。 The obtained fabric was subjected to 50 washing tests, but almost no fibrillation of the yarn occurred and maintained a high-quality surface. Table 5 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 50 times.
また、洗濯試験での色落ち、白化を評価するため、得られた生地の染色濃度を実施例1と同様に測定してK/S値を求めた。その結果を表6に示す。洗濯後もK/S値は低下せず、色合いを維持することができた。 Further, in order to evaluate color fading and whitening in the washing test, the dyeing density of the obtained fabric was measured in the same manner as in Example 1 to obtain the K / S value. The results are shown in Table 6. The K / S value did not decrease even after washing, and the color tone could be maintained.
(比較例2)
実施例4において、樹脂溶液を付与しないこと以外は同様の条件で染色した生地について、同様にK/S値を求めた。その結果を表6に示す。実施例4と違って、洗濯後に洗濯前と比べて著しい色合いの低下が見られた。
(Comparative Example 2)
In Example 4, K / S values were similarly determined for fabrics dyed under the same conditions except that the resin solution was not applied. The results are shown in Table 6. Unlike Example 4, there was a marked decrease in color after washing compared to before washing.
(実施例5)
繊維素材として、綿/ウール交織(タテ綿40、ヨコウール20、65本×45本 カルゼ、中国製生地)に対し、下記の条件で糊抜き・精練、漂白を順に行った。
(Example 5)
As a fiber material, paste / scouring and bleaching were sequentially performed under the following conditions on cotton / wool union (warp cotton 40, horizontal wool 20, 65 × 45 Karze, Chinese fabric).
<糊抜き・精練>
・A−860(リン系有機酸)……4重量部
・サンモールBH−75(浸透剤)……2重量部
・PAS600(酵素)……10重量部
・ピッチランL−160(精練剤)……4重量部
上記の条件でPad−Steamer法にて60秒間かけて処理した。
<Desizing / Scouring>
・ A-860 (phosphorus organic acid) ... 4 parts by weight ・ Sunmol BH-75 (penetrant) ... 2 parts by weight-PAS600 (enzyme) ... 10 parts by weight-Pitch run L-160 (scouring agent) ... 4 parts by weight Treated for 60 seconds by the Pad-Steamer method under the above conditions.
<漂白>
・過酸化水素(35%)……10重量部
・苛性ソーダ(48%)……2重量部
・クロークスCW−1(劣化防止剤)……1重量部
・ネオレートPLC−7000(安定剤)……1重量部
・サンモールBH−75(浸透剤)……2重量部
・ラクトーゲンLS(酸化糊抜き剤)……2重量部
上記の内容で、コールドブリーチ法にて常温環境で6時間かけ処理し、その後水洗、乾燥を行った。
<Bleaching>
・ Hydrogen peroxide (35%) …… 10 parts by weight ・ Caustic soda (48%) …… 2 parts by weight ・ Crokes CW-1 (deterioration inhibitor) …… 1 part by weight ・ Neolate PLC-7000 (stabilizer) …… 1 part by weight · Sanmor BH-75 (penetrant) ... 2 parts by weight · lactogen LS (oxidizing paste remover) ... 2 parts by weight The above contents are processed in a cold bleach method in a room temperature environment for 6 hours. Thereafter, washing with water and drying were performed.
上記の処理後、実施例3と同様の樹脂溶液を用い、同様の条件で繊維素材に付与し、乾燥、熱処理を行った。得られた後染め用繊維素材である生地に、実施例4と同様の染色を行った。乾燥後には、綿糸とウール糸の両方ともが反応性染料により同色に染色され、酸性染料によるシェーディング処理は不要であった。 After the above treatment, the same resin solution as in Example 3 was used, applied to the fiber material under the same conditions, dried and heat-treated. Dyeing similar to that of Example 4 was performed on the obtained fabric, which was a fiber material for post-dying. After drying, both the cotton yarn and the wool yarn were dyed in the same color with the reactive dye, and the shading treatment with the acid dye was unnecessary.
この得られた生地について、染色前と染色後、及び30回洗濯後における、撥水性及び撥油性の試験結果を表7に示す。 Table 7 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 30 times.
また、上記の生地を得るまでの過程において、元の生地、糊抜き精練の後、漂白した後、樹脂溶液を付与しベーキングした後、染色後、30回の洗濯後のそれぞれの状況で、ウールの損傷率を測定し、ウール混紡率(%)に換算した値を表8に示す。染色後、及び洗濯後でもウール混紡率の低下はほとんど見られず、繊維の損傷を防いでいることがわかった。 In addition, in the process until obtaining the above fabric, after the original fabric, scouring scouring, bleaching, applying the resin solution and baking, after dyeing and after washing 30 times, wool Table 8 shows the values obtained by measuring the damage rate of the yarn and converting it to the wool blend rate (%). Even after dyeing and after washing, there was almost no decrease in the wool blending rate, indicating that fiber damage was prevented.
(実施例6)
上記繊維素材として、それぞれ糸番手が10/1、20/1、40/1、60/2である綿100%生糸(中国製又はタイ製)を用い、これらそれぞれに、カキノキ(株)製:KHSユニバーサルサイザ機にて下記の組成からなる樹脂溶液を付与した。なお、サイザ機の糸速度は260m/分で、樹脂溶液の糸へのピックアップ率は45−55%であった。
(Example 6)
As the fiber material, 100% cotton raw yarn (made in China or Thailand) having yarn counts of 10/1, 20/1, 40/1, and 60/2, respectively, manufactured by Kakinoki Co., Ltd .: A resin solution having the following composition was applied using a KHS universal sizer machine. The yarn speed of the sizer machine was 260 m / min, and the pickup rate of the resin solution to the yarn was 45-55%.
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……87重量部
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 1 part by weight • Water: 87 parts by weight
樹脂溶液を付与した後、糸をサイザ機に併設されている乾燥機にて乾燥後、スチームセット機(日空工業(株)製:SBR−8)にて130℃の条件で40分間かけて熱処理を行った。得られた4種類の糸をそれぞれチーズに巻き替え、チーズ染色機(日阪製作所(株)製)にて精練、漂白後、染色を行った。 After the resin solution is applied, the yarn is dried with a dryer attached to the sizer machine, and then over a period of 40 minutes at 130 ° C. with a steam set machine (manufactured by Nippon Air Industries Co., Ltd .: SBR-8). Heat treatment was performed. The four types of yarn obtained were each wound with cheese and scoured and bleached with a cheese dyeing machine (manufactured by Nisaka Seisakusho Co., Ltd.), followed by dyeing.
精練は、濃度2g/Lの浸透剤を用いて、浴比1:20、80℃の環境で20分かけて行った。また漂白は、下記の成分比である混合水溶液により、浴比1:20,90℃の環境で40分かけて行った。
・過酸化水素……50g/L
・水酸化ナトリウム……20g/L
・安定剤:ネオレートPLC−7000……4g/L
・精練剤:ピッチランL−160……2g/L
Scouring was carried out using a penetrant with a concentration of 2 g / L in an environment of a bath ratio of 1:20 and 80 ° C. over 20 minutes. Bleaching was performed with a mixed aqueous solution having the following component ratio in an environment of a bath ratio of 1:20 and 90 ° C. over 40 minutes.
・ Hydrogen peroxide: 50 g / L
・ Sodium hydroxide ... 20g / L
・ Stabilizer: Neolate PLC-7000 ... 4g / L
・ Scouring agent: Pitch Run L-160 2g / L
染色の際の染料はCiba社製Cibacron Yellow LS−R、Red LS−B、Blue LS−3R をそれぞれ1.5%owf、0.6%owf、0.4%owfの濃度で配合して、浴比1:15、染色温度85℃にて1時間かけて染色を行った。 As dyes for dyeing, Cibacron Yellow LS-R, Red LS-B, and Blue LS-3R manufactured by Ciba are blended at concentrations of 1.5% owf, 0.6% owf, and 0.4% owf, respectively. Dyeing was performed at a bath ratio of 1:15 and a dyeing temperature of 85 ° C. over 1 hour.
染色後、80℃の水により40分間かけてソーピングを行い、フィックス処理液を濃度2%owfで40℃の条件で20分間かけてフィックス処理を行い、脱水後乾燥をした。以上により得られたそれぞれの糸の染色後の撥水性、撥油性を測定した結果を表9に示す。 After dyeing, soaping was performed with water at 80 ° C. for 40 minutes, and the fix treatment solution was subjected to fix treatment at a concentration of 2% owf at 40 ° C. for 20 minutes, followed by dehydration and drying. Table 9 shows the results of measuring the water repellency and oil repellency after dyeing of each of the yarns obtained as described above.
(比較例3)
実施例6において、樹脂溶液の付与、及びその後の乾燥と熱処理を行わないこと以外は同様に染色した4種類の糸について、実施例6と同様に撥水性、撥油性の試験を行った。その結果を表9に示す。
(Comparative Example 3)
In Example 6, water-repellent and oil-repellent tests were conducted in the same manner as in Example 6 on four types of yarn that were dyed in the same manner except that the resin solution was not applied and the subsequent drying and heat treatment were not performed. The results are shown in Table 9.
(実施例7)
実施例6で得られた、樹脂溶液を付与し、乾燥、熱処理した4種類の糸をそれぞれ用いて、編み立て機(福原(株)製:丸編み機)により連続編み加工を行い、液流染色機(日阪製作所(株)製:Circuler機)により、下記の成分比である混合水溶液により精練、漂白を行った。
・過酸化水素……50g/L
・水酸化ナトリウム……20g/L
・安定剤:ネオレートPLC−7000……4g/L
・精練剤:ピッチランL−160……2g/L
(Example 7)
Using each of the four types of yarn obtained by applying the resin solution obtained in Example 6, dried and heat-treated, continuous knitting is performed by a knitting machine (manufactured by Fukuhara Co., Ltd .: circular knitting machine), and liquid dyeing is performed. Scouring and bleaching were performed with a mixed aqueous solution having the following component ratio by a machine (manufactured by Nisaka Seisakusho Co., Ltd .: Circulator machine).
・ Hydrogen peroxide: 50 g / L
・ Sodium hydroxide ... 20g / L
・ Stabilizer: Neolate PLC-7000 ... 4g / L
・ Scouring agent: Pitch Run L-160 2g / L
その後、同じ液流染色機により、Cibacron Black LS−N染料(Ciba社製)を用いて、濃度8%owf、染色条件は浴比1:15、染色温度85℃にて1時間染色を行った。 Thereafter, using the same liquid dyeing machine, Cibacron Black LS-N dye (manufactured by Ciba) was used, and dyeing was performed for 1 hour at a concentration of 8% owf, a dyeing condition of a bath ratio of 1:15, and a dyeing temperature of 85 ° C. .
その後ソーピングを行い、ネオフィックスR−800を濃度2%owf、40℃の条件で20分間かけてフィックス処理を行った。乾燥後、染色された編地の撥水性、撥油性を求め表10に記した。また、測色してK/S値を求めた結果も表10に示す。 Then, soaping was performed, and Neofix R-800 was subjected to a fix treatment for 20 minutes under the conditions of a concentration of 2% owf and 40 ° C. After drying, the water repellency and oil repellency of the dyed knitted fabric were determined and listed in Table 10. Table 10 also shows the result of K / S value obtained by color measurement.
(比較例4)
実施例7において、樹脂溶液を付与していない4種類の糸をそれぞれ用いて、同様の手順により編地を得て、実施例7と同様に撥水性、撥油性、K/S値を求めた。その結果を表10に示す。いずれの糸番手でも、樹脂溶液を付与していない糸を用いた比較例4よりも、樹脂溶液を付与した糸を用いた実施例7の方が、染色濃度が向上した。
(Comparative Example 4)
In Example 7, a knitted fabric was obtained by the same procedure using four types of yarns to which no resin solution was applied, and the water repellency, oil repellency, and K / S value were determined in the same manner as in Example 7. . The results are shown in Table 10. In any yarn count, the dyeing density was improved in Example 7 using the yarn to which the resin solution was applied, compared to Comparative Example 4 using the yarn to which the resin solution was not applied.
(実施例8)
繊維素材としてポリエステル編み生地(70D、(株)東レ製)を用い、炭酸ナトリウムが2g/L、かつ精練剤が2g/Lである混合水溶液により、(株)日阪製作所製液流染色機を用いて、浴比1:15、80℃の環境で20分かけて精練を行い、その後乾燥した。
(Example 8)
A polyester knitted fabric (70D, manufactured by Toray Industries, Inc.) is used as a fiber material, and a liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. is used with a mixed aqueous solution of 2 g / L sodium carbonate and 2 g / L scouring agent. The scouring was performed in an environment of a bath ratio of 1:15 and 80 ° C. over 20 minutes, and then dried.
精練の後、下記の組成からなる樹脂溶液を生地に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……87重量部
After scouring, a resin solution having the following composition was applied to the dough.
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 1 part by weight • Water: 87 parts by weight
樹脂溶液の付与にはニット用ケミカルマングル付きピンテンター(京都機械(株)製)を用い、Pad−Dry−Bake法にて行った。樹脂溶液のピックアップ率は48%で、ベーキングは160℃の条件で60秒間かけて行った。こうして作られた後染め用繊維素材である後染め用ポリエステル編み生地を、(株)日阪製作所製:高圧液流染色機を用いて、浴比1:20、130℃の条件で50分間かけて染色を行い、その後80℃の条件で20分間かけて還元洗浄を施した。染料は、紀和化学工業(株)製:KP Black BRN−SF 200を濃度7.5%owfで使用した。染色後、K/S値、撥水性、撥油性、乾湿摩擦堅牢度(JIS L−0849 IITypeによる。)を測定した。その結果を表11に示す。 Application of the resin solution was performed by a Pad-Dry-Bake method using a pin tenter with a knit chemical mangle (manufactured by Kyoto Kikai Co., Ltd.). The pick-up rate of the resin solution was 48%, and baking was performed at 160 ° C. for 60 seconds. The polyester knitted fabric for post-dyeing, which is a fiber material for post-dyeing made in this way, was applied for 50 minutes under the conditions of a bath ratio of 1:20 and 130 ° C. using a high-pressure liquid dyeing machine manufactured by Nisaka Manufacturing Co., Ltd. After that, dyeing was performed, and then reduction washing was performed at 80 ° C. for 20 minutes. As the dye, KP Black BRN-SF 200 manufactured by Kiwa Chemical Industry Co., Ltd. was used at a concentration of 7.5% owf. After dyeing, the K / S value, water repellency, oil repellency, and wet and dry friction fastness (according to JIS L-0849 II Type) were measured. The results are shown in Table 11.
(比較例5)
実施例8において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外は実施例8と同様の手順により、染色した生地を得た。同様に測定に測定を行った結果を表11に示す。
(Comparative Example 5)
In Example 8, a dyed fabric was obtained by the same procedure as in Example 8 except that the resin solution was not applied and drying and baking were not performed. Similarly, Table 11 shows the results of measurement.
(結果)
実施例8の樹脂溶液による加工は、ポリエステルの高圧染色条件でも繊維素材から剥がれることなく、高い染色性を発揮させることができた。また、樹脂溶液を付与しなかった比較例5に比べて、付与した実施例8は染色後でも高い撥水性と撥油性を発揮し、摩擦堅牢度も、染色後に別途撥水加工等を行う場合に比べて低下を抑制でき、撥油性が特に高く油汚れに強いポリエステル素材となった。
(result)
Processing with the resin solution of Example 8 was able to exhibit high dyeability without peeling off from the fiber material even under high pressure dyeing conditions of polyester. Further, compared to Comparative Example 5 in which the resin solution was not applied, Example 8 provided exhibited high water repellency and oil repellency even after dyeing, and the fastness to friction was also obtained by separately performing water repellency processing after dyeing. Compared to the above, the polyester resin can suppress the decrease and has a particularly high oil repellency and resistance to oil stains.
(実施例9)
繊維素材として、中国製綿100%織物(タテ綿60、ヨコ綿60、サテン)に対し、実施例1と同様の手順で精練、糊抜き、漂白、シルケット加工を行い、下記の混合比である樹脂溶液を繊維素材に付与した。
・エバファノール HA107 C……5重量部
・SM−Cube KK……1重量部
・SM−Cube JN−DM……4重量部
・水……90重量部
Example 9
As a fiber material, scouring, desizing, bleaching and mercerizing are performed in the same procedure as in Example 1 on 100% cotton fabric made in China (warp cotton 60, weft cotton 60, satin), and the following mixing ratio is obtained. A resin solution was applied to the fiber material.
・ Evaphanol HA107 C ...... 5 parts by weight ・ SM-Cube KK ...... 1 part by weight ・ SM-Cube JN-DM ... 4 parts by weight ・ Water ... 90 parts by weight
この樹脂溶液の付与には、ケミカルマングル付きテンター(実施例1と同じ。)を用い、ピックアップ率60%で繊維素材に付与された。これを120℃の環境で1分かけて乾燥した後、下記の混合比である樹脂溶液を繊維素材に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube KK……1重量部
・水……89重量部
For the application of this resin solution, a tenter with a chemical mangle (same as in Example 1) was used, and it was applied to the fiber material at a pickup rate of 60%. After drying this in an environment of 120 ° C. over 1 minute, a resin solution having the following mixing ratio was applied to the fiber material.
・ SM-Cube HS: 6 parts by weight ・ SM-Cube SS: 4 parts by weight ・ SM-Cube KK: 1 part by weight ・ Water: 89 parts by weight
この樹脂溶液の付与には、ケミカルマングル付きテンター(同上)を用い、ピックアップ率55%で繊維素材に付与された。これを120℃の環境で1分かけて乾燥した後、ベーキング機(実施例1と同じ。)にて160℃、60秒の熱処理を行った。 For the application of this resin solution, a tenter with a chemical mangle (same as above) was used, and the resin solution was applied to the fiber material at a pickup rate of 55%. This was dried for 1 minute in an environment of 120 ° C., and then heat-treated at 160 ° C. for 60 seconds in a baking machine (same as Example 1).
こうして得られた後染め用繊維素材を(株)日阪製作所製、液流染色機にて、65℃の条件で60分間かけて、Remazol Black B Liquid染料(ダイスター社製)を用いて濃度25%owfで染色を行った。 The fiber material for post-dyeing thus obtained was made with a liquid dyeing machine manufactured by Hisaka Seisakusho Co., Ltd. for 60 minutes under the condition of 65 ° C., using Remazol Black B Liquid dye (manufactured by Dystar) at a concentration of 25. Staining was performed with% owf.
染色後、60℃の条件で20分かけて洗浄を行い、実施例1と同様にフィックス処理後乾燥を行った。この得られた生地について、染色前、染色後、及び50回洗濯後における撥水性、撥油性の試験結果を表12に示す。得られた繊維素材を染色した繊維素材はウレタン樹脂独特の風合いを維持したものとなった。 After dyeing, washing was performed for 20 minutes at 60 ° C., and after fixing, drying was performed in the same manner as in Example 1. Table 12 shows the test results of water repellency and oil repellency before dyeing, after dyeing, and after washing 50 times. The fiber material which dyed the obtained fiber material maintained the texture peculiar to urethane resin.
(比較例6)
実施例9において、繊維素材に樹脂溶液を付与しなかったものについて、同様の測定を行った結果を表12に示す。この比較例6と比べて、実施例9は、染色性が低下せず、撥水性、撥油性が高いものであることがわかった。
(Comparative Example 6)
In Example 9, Table 12 shows the results of the same measurement performed on the fiber material that was not applied with the resin solution. Compared to Comparative Example 6, it was found that Example 9 has high water repellency and oil repellency without deterioration in dyeability.
(実施例10)
繊維素材として、綿100%織物(タテ綿80、ヨコ綿80、200本x170本ツイル)を用い実施例1と同様な手順で精練、糊抜き、漂白、シルケット加工を行い、下記の混合比でなる樹脂溶液を繊維素材に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN−EP……3重量部
・SM−Cube KK……1重量部
・水……86重量部
(Example 10)
100% cotton fabric (80 vertical cotton, 80 horizontal cotton, 200 x 170 twill) is used as the fiber material, and scouring, desizing, bleaching and mercerizing are performed in the same procedure as in Example 1, with the following mixing ratio: The resulting resin solution was applied to the fiber material.
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN-EP: 3 parts by weight • SM-Cube KK: 1 part by weight • Water: 86 parts by weight
この樹脂溶液の付与は、実施例9と同様の手順及び装置により行った。続いて、得られた後染め用繊維素材である生地に、実施例9と同様の染色を行った。染色された繊維素材は風合いが柔軟で、スレアタリがなく、均一な染色がなされていた。この得られた生地について、染色前、染色後の撥水性、撥油性及び生地強度を引裂き試験にて測定した試験結果を表13に示す。 The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, dyeing similar to that in Example 9 was performed on the obtained cloth, which was a fiber material for post-dying. The dyed fiber material had a soft texture, no flare, and uniform dyeing. Table 13 shows the test results obtained by measuring the water repellency, oil repellency and fabric strength of the obtained fabric before and after dyeing by a tear test.
(比較例7)
実施例10において、繊維素材に樹脂溶液を付与しなかったものについて、同様の測定を行った結果を表13に示す。この比較例7と比べて、実施例10の繊維素材は、染色前、及び染色後のどちらも引裂き強度が大きく改善された。
(Comparative Example 7)
In Example 10, the result of performing the same measurement for the fiber material not provided with the resin solution is shown in Table 13. Compared with Comparative Example 7, the tear strength of the fiber material of Example 10 was greatly improved both before and after dyeing.
(実施例11)
繊維素材として、綿100%織物(タテ綿50、ヨコ綿40,120本x110本平織物)を用い、実施例1と同様な手順で精練、糊抜き、漂白、シルケット加工を行い、下記混合比である樹脂溶液を繊維素材に付与した。
・ナイスポールPR−99……5重量部
・SM−Cube JN−DM……3重量部
・SM−Cube KK……1重量部
・水……91重量部
(Example 11)
As the fiber material, 100% cotton woven fabric (50 vertical cotton, 40 horizontal cotton, 120 x 110 plain woven fabric) is used, and scouring, desizing, bleaching and mercerizing are performed in the same procedure as in Example 1, and the following mixing ratio A resin solution was applied to the fiber material.
・ Nicepole PR-99 …… 5 parts by weight ・ SM-Cube JN-DM …… 3 parts by weight ・ SM-Cube KK …… 1 part by weight ・ Water …… 91 parts by weight
この樹脂溶液の付与には、ケミカルマングル付きテンターを用い、ピックアップ率65%で繊維素材に付与された。これを120℃の環境で1分かけて乾燥した。その後下記混合比からなる樹脂溶液を繊維素材に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube KK……1重量部
・水……89重量部
For the application of this resin solution, a tenter with a chemical mangle was used and the fiber material was applied at a pickup rate of 65%. This was dried in an environment of 120 ° C. over 1 minute. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material.
・ SM-Cube HS: 6 parts by weight ・ SM-Cube SS: 4 parts by weight ・ SM-Cube KK: 1 part by weight ・ Water: 89 parts by weight
この樹脂溶液の付与は、実施例9と同様の手順及び装置により行った。続いて、得られた後染め用繊維素材に、実施例9と同様な染色を行った。染色乾燥された繊維素材は、染色性が良好で、かつスレアタリがなく、ポリエステル樹脂独特の風合いが保たれており、撥水性、撥油性も良好であった。更に生地の強度低下もなかった。この得られた生地について染色前、染色後の撥水性、撥油性、及び生地強度を測定した結果を表14に示す。 The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Then, the dyeing | staining similar to Example 9 was performed to the obtained fiber material for post dyeing. The dyed and dried fiber material had good dyeability, no flareiness, a texture unique to the polyester resin, and good water and oil repellency. Furthermore, there was no decrease in the strength of the dough. Table 14 shows the results of measuring the water repellency, oil repellency, and fabric strength of the obtained fabric before and after dyeing.
(比較例8)
実施例11において、繊維素材に樹脂溶液を付与しなかったものについて、同様の測定を行った結果を表14に示す。この比較例8と比べて、実施例11の繊維素材は、染色前、及び染色後のどちらにおいても、引裂き強度が大きく改善された。
(Comparative Example 8)
Table 14 shows the results of the same measurement performed on the fiber material not applied with the resin solution in Example 11. Compared to Comparative Example 8, the tear strength of the fiber material of Example 11 was greatly improved both before and after dyeing.
(実施例12)
繊維素材として、ジアセテート100%織物(タテジアセ30、ヨコジアセ30、平織物、帝人(株)製)を用い、実施例4と同様の手順でPad−Steamer方式で精練を行い、下記混合比である樹脂溶液を繊維素材に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……3重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……88重量部
(Example 12)
As a fiber material, 100% diacetate woven fabric (Tatediase 30, Yokodiase 30, plain fabric, manufactured by Teijin Ltd.) is used and scoured by the Pad-Steamer method in the same procedure as in Example 4, and the mixing ratio is as follows. A resin solution was applied to the fiber material.
・ SM-Cube HS: 6 parts by weight ・ SM-Cube SS: 3 parts by weight ・ SM-Cube JN: 2 parts by weight ・ SM-Cube KK: 1 part by weight ・ Water: 88 parts by weight
この樹脂溶液の付与は、実施例9と同様の手順及び装置により行った。続いて、得られた後染め用繊維素材である生地を、(株)日阪製作所製液流染色着にて、80℃の条件で60分かけて、pHを4.5に設定して、ダイスター社製:Disperse Black Zを用いて濃度8%owfで染色した。この得られた生地について、染色前及び染色後の撥水性及び撥油性と、K/S値とを測定した試験結果を表15に示す。なお、K/S値は下記の比較例9の値を100とした相対値で示す。 The application of the resin solution was performed by the same procedure and apparatus as in Example 9. Subsequently, the fabric which is the fiber material for post-dying obtained was set at pH 4.5, over 60 minutes under the condition of 80 ° C. with liquid dyeing made by Nisaka Manufacturing Co., Ltd. Dystar: Disperse Black Z was used to stain at a concentration of 8% owf. Table 15 shows the test results obtained by measuring the water and oil repellency before and after dyeing and the K / S value of the obtained fabric. The K / S value is a relative value with the value of Comparative Example 9 below as 100.
(比較例9)
実施例12において、繊維素材に樹脂溶液を付与しなかったものについて、同様の測定を行った結果を表15に示す。この比較例9と比べて、実施例12の繊維素材は、K/S値は僅かに小さいものの、染色前及び染色後のどちらにおいても撥水性、撥油性が高いものとなった。
(Comparative Example 9)
Table 15 shows the results of the same measurement performed on the fiber material that was not applied with the resin solution in Example 12. Compared with Comparative Example 9, the fiber material of Example 12 had a slightly lower K / S value, but had high water repellency and oil repellency both before and after dyeing.
(実施例13)
繊維素材として、脂肪族ポリアミド系繊維である6−Nylon100%編み物(70D、中国製)を用い、(株)辻井製作所製:Pad−Dryer試験機で下記混合比である樹脂溶液を繊維素材に付与した。
・SM−Cube HS……6重量部
・SM−Cube SS……4重量部
・SM−Cube JN……2重量部
・SM−Cube KK……1重量部
・水……87重量部
(Example 13)
6-Nylon 100% knitted fabric (70D, made in China), which is an aliphatic polyamide fiber, is used as the fiber material, and a resin solution having the following mixing ratio is applied to the fiber material using a Pad-Dryer tester. did.
・ SM-Cube HS: 6 parts by weight • SM-Cube SS: 4 parts by weight • SM-Cube JN: 2 parts by weight • SM-Cube KK: 1 part by weight • Water: 87 parts by weight
ピックアップ率は58%で、120℃の環境で60秒間かけて乾燥を行った。次に、(株)島津製作所製ベーキング試験機を用いて、170℃の環境で45秒かけてベーキングを行った。得られた後染め用繊維素材である、後染め用ナイロン編生地を、テキサム社製試験染色機を用い、浴比1:15、100℃の条件で50分かけて染色を行った。染料はErionyl Black AM−R(チバ・スペシャリティ・ケミカルズ社製)を濃度5%owfで使用した。この得られた生地について、染色前及び染色後の撥水性及び撥油性と、K/S値とを測定した試験結果を表16に示す。なお、K/S値は下記の比較例10を100とした相対値で示す。 The pick-up rate was 58%, and drying was performed for 60 seconds in an environment of 120 ° C. Next, using a Shimadzu Corporation baking tester, baking was performed in an environment of 170 ° C. over 45 seconds. The obtained post-dyed nylon knitted fabric, which is a fiber material for post-dyeing, was dyed for 50 minutes under the conditions of a bath ratio of 1:15 and 100 ° C. using a test dyeing machine manufactured by Texam. As the dye, Erionyl Black AM-R (manufactured by Ciba Specialty Chemicals) was used at a concentration of 5% owf. Table 16 shows the test results obtained by measuring the water and oil repellency before and after dyeing and the K / S value of the obtained fabric. The K / S value is a relative value with the following Comparative Example 10 as 100.
(比較例10)
実施例13において、繊維素材に樹脂溶液を付与しなかったものについて、同様の測定を行った結果を表16に示す。この比較例10と比べて、実施例13は撥油性が高いものとなり、高い染色濃度を得ることができた。
(Comparative Example 10)
Table 16 shows the results of the same measurement performed on the fiber material not applied with the resin solution in Example 13. Compared to Comparative Example 10, Example 13 had higher oil repellency and a high dyeing density could be obtained.
(参考例1)
繊維素材として、ポリエステル織物(70D、(株)東レ製)を用い、実施例8と同様の精練・乾燥を行い、その後、下記混合比である樹脂溶液を繊維素材に付与した。
・SM−Cube HS……10重量部
・SM−Cube SS……4重量部
・SM−Cube KL……1.5重量部
・水……84.5重量部
(Reference Example 1)
A polyester fabric (70D, manufactured by Toray Industries, Inc.) was used as the fiber material, and scouring and drying were performed in the same manner as in Example 8. Thereafter, a resin solution having the following mixing ratio was applied to the fiber material.
・ SM-Cube HS: 10 parts by weight ・ SM-Cube SS: 4 parts by weight ・ SM-Cube KL: 1.5 parts by weight ・ Water: 84.5 parts by weight
樹脂溶液の付与には、実施例1と同じケミカルマングル付きテンターを用い、ピックアップ率55%で繊維素材に付与された。これを130℃の環境で1分かけて乾燥した後、実施例1と同じベーキング機により180℃、60秒の熱処理を行った。こうして得られた後染め用繊維素材であるポリエステル織物を、実施例8と同様の染色条件にて染色、還元洗浄を施した。染料は、日本化薬(株)製:KP Black BRN−SF 200を濃度5%owfにて使用した。染色後、K/S値、撥水性、透湿性を測定した。その結果を表17に示す。なお、K/S値を相対値で表すと、比較例11を100とすると参考例1は104.9となる。 For the application of the resin solution, the same chemical mangled tenter as in Example 1 was used, and the fiber solution was applied at a pickup rate of 55%. This was dried for 1 minute in an environment of 130 ° C., and then heat-treated at 180 ° C. for 60 seconds using the same baking machine as in Example 1. The polyester fabric, which is a fiber material for post-dying obtained in this way, was dyed and subjected to reduction washing under the same dyeing conditions as in Example 8. As the dye, Nippon Kayaku Co., Ltd .: KP Black BRN-SF 200 was used at a concentration of 5% owf. After dyeing, K / S value, water repellency and moisture permeability were measured. The results are shown in Table 17. When the K / S value is expressed as a relative value, if Comparative Example 11 is 100, Reference Example 1 is 104.9.
(比較例11)
参考例1において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外は、参考例1と同様の手順により染色した繊維素材を得た。同様に測定を行った結果を表17に示す。
(Comparative Example 11)
In Reference Example 1, a fiber material dyed by the same procedure as in Reference Example 1 was obtained except that the resin solution was not applied and drying and baking were not performed. Table 17 shows the results of the same measurement.
(結果)
参考例1では、ポリエステル繊維素材の高圧染色条件下でも、合成樹脂が繊維素材から剥がれ落ちることなく、高い染色性を発揮することができた。また、撥水性が高く、かつ、透湿性も比較例11よりも良好であった。
(result)
In Reference Example 1, high dyeability could be exhibited without the synthetic resin being peeled off from the fiber material even under high pressure dyeing conditions of the polyester fiber material. Further, the water repellency was high and the moisture permeability was also better than that of Comparative Example 11.
(参考例2)
繊維素材として、ポリエステル複合織物(縦:ポリエステル、横:ポリエステル・綿の混紡、(株)東レ製)に対して、参考例1と同様の加工を施し、撥水性、透湿性を測定した。その結果を表18に示す。
(Reference Example 2)
As a fiber material, a polyester composite fabric (length: polyester, width: polyester / cotton blend, manufactured by Toray Industries, Inc.) was subjected to the same processing as in Reference Example 1, and water repellency and moisture permeability were measured. The results are shown in Table 18.
(比較例12)
参考例2において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外は参考例2と同様の手順により染色した繊維素材を得た。同様に測定を行った結果を表18に示す。
(Comparative Example 12)
In Reference Example 2, a fiber material dyed by the same procedure as in Reference Example 2 was obtained except that the resin solution was not applied and drying and baking were not performed. Table 18 shows the results of the same measurement.
(結果)
参考例1と同様に、参考例2でも、樹脂溶液を付与しないものよりも、高い撥水性を発揮するとともに、高い透湿性を両立させることができた。
(result)
Similar to Reference Example 1, Reference Example 2 also exhibited higher water repellency and higher moisture permeability than those not provided with the resin solution.
(参考例3〜5)
繊維素材として、参考例1と同じポリエステル織物を用い、同様の手順で精練、乾燥を行い、下記の表19に記載の混合比からなるそれぞれの樹脂溶液を繊維素材に付与した。なお、表中、「SS」はSM−Cube SSを、「KL」はSM−Cube KLを、「SRM−65」はポリエステル樹脂溶液であるメイカフィニッシュSRM−65を示す。それぞれの樹脂溶液の付与には(株)辻井製作所製、Pad−Dryer試験機を用い、ピックアップ率60%で繊維素材に付与した。
(Reference Examples 3-5)
The same polyester fabric as in Reference Example 1 was used as the fiber material, and scouring and drying were performed in the same procedure, and each resin solution having a mixing ratio shown in Table 19 below was applied to the fiber material. In the table, “SS” represents SM-Cube SS, “KL” represents SM-Cube KL, and “SRM-65” represents Meika Finish SRM-65, which is a polyester resin solution. Each resin solution was applied to a fiber material at a pickup rate of 60% using a Pad-Dryer tester manufactured by Sakurai Seisakusho.
120℃の環境で乾燥した後、(株)島津製作所製ベーキング試験機で160℃2分の熱処理を行った。こうして得られたそれぞれの後染め用繊維素材であるポリエステル織物を、試験用高圧染色機(TEXAM社製)を用い、浴比1:15にて130℃の条件で60分掛けて、染料としてKP Black BRN−SFを用いて濃度5%owfで染色を行った。その後20分掛けてアルカリ還元洗浄を施した。乾燥後に、それぞれの繊維素材の撥油性、吸水性、K/S値を測定した。それぞれの結果を表19に示す。 After drying in an environment of 120 ° C., heat treatment was performed at 160 ° C. for 2 minutes with a baking tester manufactured by Shimadzu Corporation. Each of the polyester fabrics, which are the fiber materials for post-dyeing obtained in this way, was subjected to a test high-pressure dyeing machine (manufactured by TEXAM) for 60 minutes at a bath ratio of 1:15 at 130 ° C. Staining was performed using Black BRN-SF at a concentration of 5% owf. Thereafter, alkali reduction cleaning was performed for 20 minutes. After drying, each fiber material was measured for oil repellency, water absorption, and K / S value. Each result is shown in Table 19.
(比較例13)
参考例3において、樹脂溶液を付与せず、乾燥、ベーキングを行わないこと以外は参考例3と同様の手順により、染色した繊維素材を得て、同様の測定を行った。その結果を表19に示す。
(Comparative Example 13)
In Reference Example 3, a dyed fiber material was obtained by the same procedure as in Reference Example 3 except that the resin solution was not applied and drying and baking were not performed, and the same measurement was performed. The results are shown in Table 19.
(結果)
吸水性ポリエステルであるSRM−65が増加した参考例5では、吸水性ポリエステルの含有量がより少ない参考例4や全く含まない参考例3及び比較例13と比べて、吸水性が大きく向上した。このため、ポリエステル樹脂溶液であるSRM−65の含有量を調整することにより、撥油性、吸水性を調整可能であることが分かった。また、ポリエステル繊維では従来撥油性及び吸水性を付与してもその後の後染めで低下し、後染め自体がうまくいかなかったものが、本願発明にかかる方法では、後染めにおける染色濃度を低下させることなく、また、後染めによって撥油性や吸水性が低下することなく行うことができた。
(result)
In Reference Example 5 in which the SRM-65, which is a water-absorbing polyester, increased, the water absorption was greatly improved as compared to Reference Example 4 in which the water-absorbing polyester content was lower, and Reference Example 3 and Comparative Example 13 in which no water-absorbing polyester was contained. For this reason, it turned out that oil repellency and water absorption can be adjusted by adjusting content of SRM-65 which is a polyester resin solution. In addition, polyester fibers that have been used in the conventional dyeing process have been deteriorated by subsequent dyeing even if oil repellency and water absorption have been imparted, and the method according to the present invention reduces the dyeing density in the subsequent dyeing. In addition, the post-dyeing could be carried out without lowering the oil repellency and water absorption.
(実施例14)
繊維素材として、マイクロデニールポリエステル不織布((株)東レ製)を用い、下記に記載の混合比からなる樹脂溶液を繊維素材に付与した。樹脂溶液の付与には京都機械(株)製ケミカルマングル付きテンターを用い、ピックアップ率55%で繊維素材に付与した。これを120℃の環境で2分かけて乾燥した後、同じテンターを用いて、180℃で2分間のベーキング処理を行った。
(Example 14)
A micro denier polyester nonwoven fabric (manufactured by Toray Industries, Inc.) was used as a fiber material, and a resin solution having a mixing ratio described below was applied to the fiber material. The resin solution was applied to a fiber material at a pickup rate of 55% using a tenter with chemical mangle manufactured by Kyoto Machine Co., Ltd. This was dried in an environment of 120 ° C. over 2 minutes, and then baked at 180 ° C. for 2 minutes using the same tenter.
・SM−CUBE HS……10重量部
・SM−CUBE SS……4重量部
・SM−CUBE JN……2重量部
・SM−CUBE KK……1重量部
・水……83重量部
・ SM-CUBE HS: 10 parts by weight • SM-CUBE SS: 4 parts by weight • SM-CUBE JN: 2 parts by weight • SM-CUBE KK: 1 part by weight • Water: 83 parts by weight
得られた後染め用繊維素材であるポリエステル不織布を、染色機として高圧ドラム染色機(TEXAM社製:RD−830)を用い、染料として日本化薬(株)製KP Black BRN−SF200を濃度25%owfで用いて染色を行った。染色溶液は、染料分散剤(日華化学(株)製:サンソルトRM340E)を1g/L、酢酸を0.5g/L、酢酸ナトリウムを1.2g/L含む溶液とした。染色温度は120℃で60分かけて行い、浴比は1:20とした。 The resulting polyester non-woven fabric, which is a fiber material for post-dyeing, was used with a high-pressure drum dyeing machine (manufactured by TEXAM: RD-830) as a dyeing machine and a concentration of 25 KP Black BRN-SF200 manufactured by Nippon Kayaku Co., Ltd. as a dye. Staining was performed using% owf. The dyeing solution was a solution containing 1 g / L of a dye dispersant (manufactured by Nikka Chemical Co., Ltd .: Sun Salt RM340E), 0.5 g / L of acetic acid, and 1.2 g / L of sodium acetate. The dyeing temperature was 120 ° C. over 60 minutes, and the bath ratio was 1:20.
染色後、80℃の水で20分かけてソーピングを行い、それから、還元洗浄を行った。還元洗浄の溶液は、還元剤(明成化学(株)製:MRCパウダー)を7g/L、洗剤(明成化学(株)製:ラッコールST−700)を5g/L、酢酸を5cc/L含むものであり、これを用いて、80℃の条件で20分間かけて洗浄した。 After dyeing, soaping was performed with water at 80 ° C. for 20 minutes, and then reduction cleaning was performed. The reducing cleaning solution contains 7 g / L of a reducing agent (Meisei Chemical Co., Ltd .: MRC powder), 5 g / L of detergent (Maisei Chemical Co., Ltd .: Rakkor ST-700), and 5 cc / L of acetic acid. This was used for washing at 80 ° C. for 20 minutes.
その後、ソーダ灰を2g/L含む60℃の溶液で10分かけて中和処理を行い、60℃の水で10分間かけて湯洗いをし、最後に120℃の環境で2分間かけて乾燥処理を行った。こうして得られた染色後の繊維素材について、撥水性及び發油性を測定した。その結果を表20に示す(表中「L−0」と示す。)。また、さらに染色後の繊維素材について、JIS L−0217 103法の洗濯条件で20回洗濯耐久性試験を行い、その上で撥水性と發油性の評価を行った。その結果を合わせて表20に示す(表中「L−20」と示す。)。 Then, neutralize with a 60 ° C solution containing 2 g / L of soda ash for 10 minutes, wash in 60 ° C water for 10 minutes, and finally dry in an environment of 120 ° C for 2 minutes. Processed. The dyed fiber material thus obtained was measured for water repellency and oil repellency. The results are shown in Table 20 (shown as “L-0” in the table). Further, the dyed fiber material was subjected to a washing durability test 20 times under the washing conditions of JIS L-0217 103 method, and then evaluated for water repellency and oil repellency. The results are shown together in Table 20 (shown as “L-20” in the table).
(比較例14)
実施例14において、樹脂溶液を付与せず、乾燥及びベーキング処理を行わないこと以外は実施例14と同様の手順により染色した素材を、染色後、撥水剤(明成化学(株)製:アサヒガードAG970)を用いて撥水加工した後、実施例14で用いたテンターにより、105℃で2分間かけて乾燥させた。その後、実施例14と同様の条件で、洗濯耐久性試験前後の撥水性及び發油性の値を測定した。その結果を表20に示す。
(Comparative Example 14)
In Example 14, a material dyed by the same procedure as in Example 14 except that the resin solution is not applied and drying and baking are not performed. After dyeing, a water repellent (manufactured by Meisei Chemical Co., Ltd .: Asahi) After water-repellent processing using a guard AG970), the film was dried at 105 ° C. for 2 minutes using the tenter used in Example 14. Thereafter, under the same conditions as in Example 14, water repellency and oil repellency values before and after the washing durability test were measured. The results are shown in Table 20.
(結果)
従来の染色後の撥水加工方法による比較例14では、洗濯耐久性がほとんど発揮されず、洗濯後の撥水性及び發油性はほとんど無くなってしまった。しかしこの発明にかかる樹脂溶液で加工した後染め用繊維素材である実施例14では、洗濯耐久試験後も發油性及び撥水性がほとんど低下しなかった。
(result)
In Comparative Example 14 by the conventional water-repellent processing method after dyeing, washing durability was hardly exhibited, and water repellency and oil repellency after washing were almost lost. However, in Example 14, which is a fiber material for post-dying processed with the resin solution according to the present invention, the oil repellency and water repellency were hardly lowered even after the washing durability test.
Claims (2)
上記繊維素材に対する上記合成樹脂の付与量が、上記共重合樹脂は0.6重量%以上、パーフルオロアルキルアクリレート樹脂は1.5重量%以上、シリコン樹脂は0.4重量%以上である請求項1に記載の加工方法。 The amount of the synthetic resin applied to the fiber material is 0.6% by weight or more for the copolymer resin, 1.5% by weight or more for the perfluoroalkyl acrylate resin, and 0.4% by weight or more for the silicon resin. 2. The processing method according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009139361A JP4926210B2 (en) | 2006-09-28 | 2009-06-10 | Textile processing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006265046 | 2006-09-28 | ||
JP2006265046 | 2006-09-28 | ||
JP2009139361A JP4926210B2 (en) | 2006-09-28 | 2009-06-10 | Textile processing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008514263A Division JP4358894B2 (en) | 2006-09-28 | 2007-09-26 | Textile material for post dyeing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009197386A JP2009197386A (en) | 2009-09-03 |
JP4926210B2 true JP4926210B2 (en) | 2012-05-09 |
Family
ID=39268432
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008514263A Active JP4358894B2 (en) | 2006-09-28 | 2007-09-26 | Textile material for post dyeing |
JP2009139361A Active JP4926210B2 (en) | 2006-09-28 | 2009-06-10 | Textile processing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008514263A Active JP4358894B2 (en) | 2006-09-28 | 2007-09-26 | Textile material for post dyeing |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP4358894B2 (en) |
WO (1) | WO2008041570A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5381215B2 (en) * | 2009-03-25 | 2014-01-08 | 東レ株式会社 | Cellulosic fiber structure and method for producing the same |
JP5650410B2 (en) * | 2010-01-21 | 2015-01-07 | 帝人株式会社 | Method for dyeing aramid fiber fabric |
JP5554172B2 (en) * | 2010-07-23 | 2014-07-23 | Kbツヅキ株式会社 | Processing method of fiber material |
CN102517754B (en) * | 2011-12-22 | 2014-04-16 | 杭州福恩纺织有限公司 | Dyeing and post-finishing process of woolen bamboo polyester fabrics |
CN103321033A (en) * | 2013-07-08 | 2013-09-25 | 山东天源家纺有限公司 | Bamboo fiber yarn bleaching process |
CN103439168B (en) * | 2013-09-02 | 2016-01-27 | 浙江华元纺织品有限公司 | A kind of test cloth dye model machine |
CN103541232B (en) * | 2013-09-30 | 2015-10-07 | 咸阳际华新三零印染有限公司 | A kind of manufacture craft of nylon camouflage fabric preparation |
ITUB20159759A1 (en) * | 2015-12-30 | 2017-06-30 | Manifattura Del Seveso S P A | PROCESS TO OBTAIN A HIGH-PERFORMANCE CANVAS FOR DIGITAL PRINTING AND RELATED CANVAS |
KR102181953B1 (en) * | 2016-05-26 | 2020-11-23 | 우견윤 | m-Aramid Textile Pretreatment method |
CN105970379A (en) * | 2016-06-06 | 2016-09-28 | 灵武市嘉艺科技有限公司 | High-count fine-spinning cashmere and bamboo dyer blended yarn and manufacturing method thereof |
CN106521951A (en) * | 2016-10-19 | 2017-03-22 | 河南工程学院 | Bamdal/cotton blended yarn size, preparation method thereof and sizing effect evaluation method |
JP7011900B2 (en) * | 2017-05-24 | 2022-01-27 | 倉敷紡績株式会社 | Textile products and their manufacturing methods |
KR102104702B1 (en) * | 2017-07-05 | 2020-04-24 | 우견윤 | m-Aramid Textile Pretreatment method and Pretreatment Composite for a m-Aramid Textile |
CN110042647B (en) * | 2019-04-02 | 2022-02-18 | 嘉兴学院 | High-whiteness low-temperature bleaching method for cashmere or wool |
KR102234358B1 (en) * | 2020-10-13 | 2021-04-01 | 주식회사 한신타올공업 | Bamboo fiber with high friction fastness and towel using the same |
FR3120240A1 (en) * | 2021-02-26 | 2022-09-02 | Induo | METHOD FOR MANUFACTURING FUNCTIONALIZED DYED TEXTILE |
US20240229347A9 (en) * | 2021-02-26 | 2024-07-11 | Induo | Method for manufacturing a functionalised dyed textile, use of a bleaching solution to increase the durability of a chemical functionalisation on a dyed textile, and dyed textile |
FR3120239A1 (en) * | 2021-02-26 | 2022-09-02 | Induo | METHOD FOR FUNCTIONALIZATION OF A TEXTILE |
KR102445564B1 (en) * | 2021-03-08 | 2022-09-22 | 주식회사 비즈링크 | Method for improving the friction fastness of towels and fabrics made of bamboo fiber with high friction fastness |
CN113648732B (en) * | 2021-09-15 | 2023-04-18 | 国家石油天然气管网集团有限公司 | Natural gas filters and uses filter core and filter with multistage filtering capability |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2559681B2 (en) * | 1987-05-12 | 1996-12-04 | 鐘紡株式会社 | Standing product and manufacturing method thereof |
JPH04240279A (en) * | 1991-01-17 | 1992-08-27 | Meisei Kagaku Kogyo Kk | Deep color treatment of polyamide-based textile goods |
JPH06313278A (en) * | 1993-04-23 | 1994-11-08 | Matsui Shikiso Kagaku Kogyosho:Kk | Dyeing method with inorganic pigment and dyed product therefrom |
JP2851226B2 (en) * | 1993-06-11 | 1999-01-27 | 日本石油化学株式会社 | How to process fiber or textile products |
JPH08109577A (en) * | 1994-10-05 | 1996-04-30 | Masumi Kk | Creasing of silk fiber fabric |
JPH08246346A (en) * | 1995-03-16 | 1996-09-24 | Asahi Chem Ind Co Ltd | Flame-retardant treatment for polyethylene fiber nonwoven fabric |
JPH091703A (en) * | 1995-06-23 | 1997-01-07 | Shimadzu Corp | Manufacture of composite of fiber and film |
JP3818457B2 (en) * | 1995-07-03 | 2006-09-06 | ミヨシ油脂株式会社 | Glass fiber sizing agent |
JPH11158773A (en) * | 1997-11-27 | 1999-06-15 | Takemoto Oil & Fat Co Ltd | Impartment of shape stability to cellulosic fiber fabric |
JP2000192371A (en) * | 1998-12-22 | 2000-07-11 | Toray Ind Inc | Fabric containing cellulosic fiber |
JP3756051B2 (en) * | 2000-09-21 | 2006-03-15 | 小松精練株式会社 | Textile fabric for post dyeing |
JP3770786B2 (en) * | 2000-09-21 | 2006-04-26 | 小松精練株式会社 | Textile fabric for post dyeing |
JP5256397B2 (en) * | 2001-09-28 | 2013-08-07 | シキボウ株式会社 | Water-absorbing and oil-repellent antifouling agent, fiber or fiber product treated with the antifouling agent, method for producing the same, and spray container |
JP2003239155A (en) * | 2001-12-07 | 2003-08-27 | Asahi Kasei Corp | Deep color knit fabric |
JP2003268674A (en) * | 2002-03-08 | 2003-09-25 | Toray Ind Inc | Method for producing sized carbon fiber bundle and chopped carbon fiber |
JP4265158B2 (en) * | 2002-07-03 | 2009-05-20 | 東レ株式会社 | Method for producing polyamide fiber product |
JP4272393B2 (en) * | 2002-08-07 | 2009-06-03 | 互応化学工業株式会社 | Method for producing aqueous flame-retardant polyester resin |
JP2004149965A (en) * | 2002-10-31 | 2004-05-27 | Saitama Prefecture | Method for dyeing ombre pattern such as radiant pattern using ice |
JP2004360137A (en) * | 2003-06-06 | 2004-12-24 | Meisei Kagaku Kogyo Kk | Method for improving color deepness of fiber cloth and dyeing pretreatment agent used therein |
JP2005307416A (en) * | 2004-04-21 | 2005-11-04 | Shohi Kagaku Kenkyusho:Kk | Washable processing method for giving silk fiber material with excellent fabric hand durability |
JP2006045708A (en) * | 2004-08-03 | 2006-02-16 | Solotex Corp | Method for treating fibrous structural material |
JP2006152508A (en) * | 2004-12-01 | 2006-06-15 | Nisshinbo Ind Inc | Stain-proofing fiber structure and its processing method |
JP2006193870A (en) * | 2005-01-17 | 2006-07-27 | Dabus Co Ltd | Method for producing knit denim |
JP2006233342A (en) * | 2005-02-22 | 2006-09-07 | Miki Riken Kogyo Kk | Heat storage microcapsule suitable for fiber treatment and fiber using the same |
JP2008075196A (en) * | 2006-09-20 | 2008-04-03 | Komatsu Seiren Co Ltd | Method for producing water-repellent textile product |
-
2007
- 2007-09-26 JP JP2008514263A patent/JP4358894B2/en active Active
- 2007-09-26 WO PCT/JP2007/068626 patent/WO2008041570A1/en active Application Filing
-
2009
- 2009-06-10 JP JP2009139361A patent/JP4926210B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009197386A (en) | 2009-09-03 |
WO2008041570A1 (en) | 2008-04-10 |
JPWO2008041570A1 (en) | 2010-02-04 |
JP4358894B2 (en) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4926210B2 (en) | Textile processing method | |
Rippon et al. | Improving the properties of natural fibres by chemical treatments | |
WO2013187360A1 (en) | Stretchable coated fabric and process for producing same | |
US5910622A (en) | Method for treating fibrous cellulosic materials | |
JP5683847B2 (en) | Method for producing sweat stain inhibiting fabric | |
JP7544028B2 (en) | Method for manufacturing water-repellent fiber structure, fiber structure and clothing | |
JP5778400B2 (en) | Water-absorbing quick-drying fabric | |
WO2018216650A1 (en) | Fiber assembly including cellulose water-repelent fiber, method for manufacturing same, and fiber product | |
JP2000256960A (en) | Processing of refined cellulose fiber woven and knitting fabric | |
JP4406277B2 (en) | Intertwisted yarn and method for producing the same, and method for producing knitted fabric using the twisted yarn | |
JP5600270B2 (en) | Cellulosic fabric with excellent washing durability | |
WO1998023809A1 (en) | Fibrous products and their production | |
JP2009007680A (en) | Denim fabric and method for preventing discoloration of the fabric | |
JP4195689B2 (en) | Method for producing composite fiber product comprising cotton and regenerated cellulose fiber | |
CN103184688B (en) | A kind of antifouling textile product and application thereof | |
JP2014169523A (en) | Sewn product made of animal hair fiber | |
JP2008075196A (en) | Method for producing water-repellent textile product | |
JP2004176238A (en) | Cellulosic fiber structure furnished with high color fastness and processing method | |
US20050215145A1 (en) | Liquid resistant articles and method of producing the same | |
KR102463941B1 (en) | Manufacturing method of water-repellent blended fabric | |
JP2677139B2 (en) | Manufacturing method of color jeans stitched garments | |
KR20040011534A (en) | Dyeing and finishing of lyocell fabrics | |
US20240133114A1 (en) | Method for manufacturing a functionalised dyed textile, use of a bleaching solution to increase the durability of a chemical functionalisation on a dyed textile, and dyed textile | |
JP5660747B2 (en) | Sewing products made of animal hair fibers | |
GB2384249A (en) | Dyeing & finishing of regenerated cellulose fabric with controlled fibrillation involving treatment with acid or acid donor then heat in gaseous atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4926210 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |