JP2006233342A - Heat storage microcapsule suitable for fiber treatment and fiber using the same - Google Patents

Heat storage microcapsule suitable for fiber treatment and fiber using the same Download PDF

Info

Publication number
JP2006233342A
JP2006233342A JP2005045534A JP2005045534A JP2006233342A JP 2006233342 A JP2006233342 A JP 2006233342A JP 2005045534 A JP2005045534 A JP 2005045534A JP 2005045534 A JP2005045534 A JP 2005045534A JP 2006233342 A JP2006233342 A JP 2006233342A
Authority
JP
Japan
Prior art keywords
microcapsule
heat storage
fiber
resin
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005045534A
Other languages
Japanese (ja)
Inventor
Masato Kakumoto
正人 角元
Takaharu Tsujimoto
隆治 辻本
Kazushiro Nakagawa
和城 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miki Riken Kogyo KK
Original Assignee
Miki Riken Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miki Riken Kogyo KK filed Critical Miki Riken Kogyo KK
Priority to JP2005045534A priority Critical patent/JP2006233342A/en
Publication of JP2006233342A publication Critical patent/JP2006233342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide microcapsule stably processable, excellent in endurance and not causing problems of whitening even in deeply colored fabric and further to provide an excellent fiber product produced by using the microcapsule. <P>SOLUTION: In the microcapsule containing a paraffin-based hydrocarbon compound accompanying a phase change as a heat storage material, volume average particle diameter of the microcapsule is ≤5 μm and further, the wall material of the microcapsule is formed of a polyurethane resin or a polyurethaneurea resin or polyurea resin obtained by reaction of a polyvalent isocyanate with a polyhydric alcohol and/or a polyvalent amine and/or water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は繊維に蓄熱性を付与する繊維加工において安定に加工でき、耐久性に優れた繊維処理剤に関する。詳しくは相変化を伴うパラフィン系炭化水素化合物を内包したマイクロカプセルを用いた繊維処理剤および処理された繊維に関するものである。 The present invention relates to a fiber treatment agent that can be stably processed in fiber processing for imparting heat storage properties to fibers and has excellent durability. Specifically, the present invention relates to a fiber treatment agent using microcapsules encapsulating a paraffinic hydrocarbon compound accompanied by a phase change and a treated fiber.

生活空間の温度をより快適な温度域とするために繊維製品に蓄熱性を付与する試みが多く提案されている。蓄熱性を有する繊維の製造方法としては相変化を有する蓄熱材をマイクロカプセルとしバインダーと混合し布にコーティングする方法(特許文献1参照)、合成繊維などの紡糸段階で蓄熱材または蓄熱材を含むマイクロカプセルを繊維中に保持させる方法(特許文献2、3参照)が提案されている。 Many attempts have been made to impart heat storage properties to textile products in order to make the temperature of the living space more comfortable. As a method for producing a fiber having heat storage properties, a method of coating a cloth by mixing a heat storage material having a phase change as a microcapsule with a binder (see Patent Document 1), and including a heat storage material or a heat storage material in a spinning stage of synthetic fibers or the like A method of holding microcapsules in fibers has been proposed (see Patent Documents 2 and 3).

しかしながら特許文献1に記載されているコーティングによる加工方法は生地の伸縮によりコーティング層が剥離する、必要とされるバインダーにより風合いが劣化するといった欠点を有している。また特許文献2、3記載の紡糸段階で蓄熱材または蓄熱材を含むマイクロカプセルを繊維中に保持させる場合には糸強度、染色堅牢度の低下などが起こり十分な蓄熱材を練り込めない、また紡糸径はマイクロカプセルの粒子径に対し十分な太さを必要とし風合いが粗雑になるという欠点を有しており、さらにこれら紡糸段階で行われる方法は綿など天然繊維には適応することは出来ない。また一般的な後加工であるパッディング法はマングルロールでの圧力により蓄熱材を有するマイクロカプセルが破壊されてしまい、液流染色機やマイヤ−染色機で行われる浸漬処理法においても機械的安定性が悪いという現状があった。また比較的強固なマイクロカプセルとして知られるメラミン−ホルムアルデヒド樹脂を壁材として用いたマイクロカプセルはホルムアルデヒドを基布に残留させ、さらに濃色布に付着させるとマイクロカプセルの付着により基布の色調が白く変化(白化)するという欠点が見られ、繊維加工に適するより優れた蓄熱用マイクロカプセルの開発が望まれていた。
特表平10−502137号公報 特公平5−55607号公報 特開平6−200417号公報 特開昭61−192785号公報 特開2004−189843号公報 特開昭52−13508号公報 特開平6−362号公報
However, the processing method by coating described in Patent Document 1 has a drawback that the coating layer is peeled off due to expansion and contraction of the fabric, and the texture is deteriorated by a required binder. In addition, when the heat storage material or the microcapsules containing the heat storage material are held in the fiber at the spinning stage described in Patent Documents 2 and 3, the yarn strength and dyeing fastness are lowered, and sufficient heat storage material cannot be kneaded. The spinning diameter requires a sufficient thickness with respect to the particle size of the microcapsules and has a disadvantage that the texture becomes rough. Further, the method carried out at the spinning stage cannot be applied to natural fibers such as cotton. Absent. In addition, the padding method, which is a general post-processing, destroys the microcapsules having the heat storage material due to the pressure in the mangle roll, and is mechanically stable even in the immersion treatment method performed in a liquid dyeing machine or a Myer dyeing machine. There was the present condition that the nature was bad. In addition, microcapsules using melamine-formaldehyde resin, which is known as a relatively strong microcapsule, as the wall material, leave formaldehyde on the base fabric, and when attached to a dark fabric, the color of the base fabric becomes white due to the adhesion of the microcapsules. The drawback of changing (whitening) was seen, and the development of better microcapsules for heat storage suitable for fiber processing has been desired.
Japanese National Patent Publication No. 10-502137 Japanese Patent Publication No. 5-55607 JP-A-6-200417 JP-A-61-192785 JP 2004-189843 A Japanese Patent Laid-Open No. 52-13508 JP-A-6-362

本発明の目的は繊維に蓄熱性を付与する繊維加工において、安定に加工でき耐久性に優れ、濃色布においても白化の問題が発生しないマイクロカプセルを提供することであり、更には当該マイクロカプセルを用いて製造された、優れた繊維製品を提供することにある。 An object of the present invention is to provide a microcapsule that can be stably processed and has excellent durability in fiber processing that imparts heat storage properties to fibers, and that does not cause whitening problems even in a dark-colored cloth. It is in providing the outstanding textiles manufactured using this.

本発明者らは、上記課題を解決するため鋭意検討した結果、蓄熱材としてパラフィン系炭化水素化合物を含有するマイクロカプセルの体積平均粒子径を5μm以下とし、更には当該マイクロカプセルの壁材をポリウレタン樹脂またはポリウレタンウレア樹脂またはポリウレア樹脂で形成させることによりマイクロカプセルが破壊されず濃色布での白化が起こらない繊維処理剤が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have determined that the volume average particle diameter of a microcapsule containing a paraffinic hydrocarbon compound as a heat storage material is 5 μm or less, and the wall material of the microcapsule is polyurethane. The present invention has been completed by finding that a fiber treatment agent can be obtained by forming a resin, polyurethane urea resin or polyurea resin without destroying the microcapsules and causing whitening on a dark cloth.

即ち、本発明の第1は、蓄熱材として相変化を伴うパラフィン系炭化水素化合物を内包したマイクロカプセルにおいて当該マイクロカプセルの体積平均粒子径が5μm以下であることを特徴とするマイクロカプセルに関するものである。 That is, the first aspect of the present invention relates to a microcapsule having a volume average particle diameter of 5 μm or less in a microcapsule enclosing a paraffinic hydrocarbon compound accompanying a phase change as a heat storage material. is there.

本発明の第2は、上記第1の発明において前記マイクロカプセルの壁材が多価イソシアネートと多価アルコール及びまたは多価アミン及びまたは水との反応により得られるポリウレタン樹脂またはポリウレタンウレア樹脂またはポリウレア樹脂で形成されたマイクロカプセルに関するものである。 According to a second aspect of the present invention, there is provided a polyurethane resin, a polyurethane urea resin or a polyurea resin in which the wall material of the microcapsule is obtained by reacting a polyvalent isocyanate with a polyhydric alcohol and / or a polyvalent amine and / or water in the first invention. It relates to a microcapsule formed in (1).

本発明の第3は、上記第2の発明において蓄熱材として相変化を伴うパラフィン系炭化水素化合物がn−パラフィンであることを特徴としたマイクロカプセルに関するものである。 A third aspect of the present invention relates to a microcapsule characterized in that the paraffinic hydrocarbon compound accompanying phase change is n-paraffin as the heat storage material in the second aspect of the present invention.

本発明の第4は、上記発明第1または第2または第3の発明のいずれかのマイクロカプセルを付着させた繊維に関するものである。 4th of this invention is related with the fiber which attached the microcapsule of any one of said 1st, 2nd or 3rd invention.

蓄熱材として相変化を伴うパラフィン系炭化水素化合物を内包したマイクロカプセルにおいて当該マイクロカプセルの体積平均粒子径が5μm以下とすることにより繊維加工中にマイクロカプセルが破壊されることなく繊維に加工が出来、さらに洗濯に対しても破壊がなく耐久性が著しく向上した繊維が得られることが判明した。 Microcapsules containing paraffinic hydrocarbon compounds with phase change as heat storage materials can be processed into fibers without breaking the microcapsules during fiber processing by making the volume average particle diameter of the microcapsules 5 μm or less. Furthermore, it has been found that a fiber having a significantly improved durability without breakage can be obtained.

本発明で対象となる繊維製品とは糸、織物、編物、不織布、植毛布などであり、またこれら繊維製品から加工された衣料、寝具、カーペット、カーテン、壁紙、自動車内装材など一般繊維製品を示す。 The textile products targeted by the present invention are yarns, woven fabrics, knitted fabrics, nonwoven fabrics, flocked fabrics, etc., and general textile products such as clothing, bedding, carpets, curtains, wallpaper, and automobile interior materials processed from these textile products. Show.

また繊維を構成する組成は綿、麻などの天然セルロース繊維、ウール絹などの天然タンパク繊維、ナイロン,ポリエステルなどの合成繊維、レーヨンなどの再生繊維を示しこれらが混紡、混織されているものでも良い。 The composition of the fibers includes natural cellulose fibers such as cotton and hemp, natural protein fibers such as wool silk, synthetic fibers such as nylon and polyester, and regenerated fibers such as rayon, which are blended and woven. good.

本発明に用いられる蓄熱材として相変化を伴うパラフィン系炭化水素化合物とはデカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンエイコサン、ドコサン、トリコサン、パラフィンワックス類などの融点が−20度から70度程度までの直鎖または分岐のあるパラフィン類であり、より好ましくは直鎖のn−パラフィンが良い。これらは単独または混合物で使用され必要に応じ過冷却防止剤、酸化防止剤、また黒鉛などの熱吸収剤などを添加することができる。 Paraffinic hydrocarbon compounds with phase change as the heat storage material used in the present invention are decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosan, heneicosane, docosane, tricosane, paraffin waxes Such a straight-chain or branched paraffin having a melting point of about -20 degrees to about 70 degrees, more preferably a straight-chain n-paraffin. These may be used alone or in a mixture, and a supercooling inhibitor, an antioxidant, or a heat absorbent such as graphite may be added as necessary.

本発明で用いられる当該マイクロカプセルを製造する方法は既知の方法(特許文献4、5参照)などで行えば良く疎水性芯物質をマイクロカプセル化する方法であれば適応できる。たとえばポリウレタン樹脂またはポリウレタンウレア樹脂またはポリウレア樹脂皮膜を有するマイクロカプセルは一般に多価イソシアネート化合物と疎水性の相変化を伴う化合物を混合分散しておき水溶媒中に乳化分散させ、皮膜を形成させる方法が一般的であり、ポリビニルアルコール類を用いる方法(特許文献6参照)、多価アミンを混合して反応させる方法(特許文献7参照)など種々の方法を用いることができ体積平均粒子径が5μm以下となるように攪拌条件を設定すればよい。 The method for producing the microcapsule used in the present invention may be performed by a known method (see Patent Documents 4 and 5), and any method can be applied as long as it is a method for microencapsulating a hydrophobic core substance. For example, a microcapsule having a polyurethane resin, a polyurethane urea resin or a polyurea resin film is generally formed by mixing and dispersing a polyisocyanate compound and a compound with a hydrophobic phase change, and emulsifying and dispersing in a water solvent to form a film. Generally, various methods such as a method using polyvinyl alcohols (see Patent Document 6) and a method in which a polyvalent amine is mixed and reacted (see Patent Document 7) can be used, and the volume average particle diameter is 5 μm or less. What is necessary is just to set stirring conditions so that it may become.

上記ポリウレタン樹脂またはポリウレタンウレア樹脂またはポリウレア樹脂皮膜を有するマイクロカプセルの場合、原料として使用されるポリイソシアネートは芳香族、脂肪族のポリイソシアネートであるトリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、さらにこれらの2量体、3量体、トリメチロールプロパンなどのポリオールと付加したものなどが挙げられ単独または混合して用いられる。 In the case of microcapsules having the above polyurethane resin or polyurethane urea resin or polyurea resin film, the polyisocyanate used as a raw material is aromatic, aliphatic polyisocyanate tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, Hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and those added with polyols such as dimers, trimers and trimethylolpropane can be used alone or in combination.

また使用されるポリイソシアネートと反応する多価アルコールを併用することが望ましくあらかじめ蓄熱材と混合しておくか、乳化時に水系溶媒中に添加して使用される。 In addition, it is desirable to use a polyhydric alcohol that reacts with the polyisocyanate to be used in advance, or it is mixed in advance with a heat storage material or added to an aqueous solvent during emulsification.

これら多価アルコールとしてはポリエーテルポリオール、ポリエステルポリオール、エチレングリコール、プロピレングリコール、1、6−ヘキサンジオール、トリメチロールプロパン、ひまし油、ポリビニルアルコール、水酸基を有するアクリル樹脂など低分子から高分子までの水酸基を複数有する化合物が例示される。 Examples of these polyhydric alcohols include polyether polyols, polyester polyols, ethylene glycol, propylene glycol, 1,6-hexanediol, trimethylolpropane, castor oil, polyvinyl alcohol, and acrylic resins having a hydroxyl group, from low molecules to high molecules. The compound which has two or more is illustrated.

さらに鎖延長やポリウレア樹脂とするために多価アミンを反応させても良い。多価アミンとしてはエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、フェニレンジアミン、トリレンジアミン、ジフェニルジアミン、ピペラジン、イソホロンジアミン、ジエチレントリアミン、ポリビニルアミンなど低分子から高分子までのアミノ基を複数有する化合物が例示される。 Furthermore, a polyvalent amine may be reacted in order to obtain chain extension or polyurea resin. Examples of the polyvalent amine include compounds having a plurality of amino groups from low to high molecular weight, such as ethylenediamine, propylenediamine, hexamethylenediamine, phenylenediamine, tolylenediamine, diphenyldiamine, piperazine, isophoronediamine, diethylenetriamine, and polyvinylamine. The

本発明に用いられるマイクロカプセルにおいて芯物質の蓄熱材と壁材樹脂の組成比は蓄熱材を100重量部として壁材は5から100重量部となる割合が良く、より好ましくは10から80重量部である。壁材がこれより少ないとカプセルの強度が弱く蓄熱材が溶出しこれより多いとマイクロカプセル化が難しくなる。 In the microcapsule used in the present invention, the composition ratio between the heat storage material of the core material and the wall material resin is such that the heat storage material is 100 parts by weight and the wall material is 5 to 100 parts by weight, more preferably 10 to 80 parts by weight. It is. If the wall material is less than this, the strength of the capsule is weak and the heat storage material is eluted, and if it is more than this, microencapsulation becomes difficult.

本発明において蓄熱材として使用されるパラフィン系炭化水素化合物の繊維への付着量は繊維重量に対して0.2重量%以上あれば良くこれより少ないと効果が発揮されず、好ましくは0.5重量%以上である。付着量はより多い方が効果的であるが基材の厚み、重み、硬さが増し用途によっては使用できなくなる。 In the present invention, the amount of the paraffinic hydrocarbon compound used as the heat storage material to the fiber should be 0.2% by weight or more with respect to the fiber weight, and if it is less than this, the effect is not exerted, preferably 0.5 % By weight or more. A larger amount of adhesion is more effective, but the thickness, weight, and hardness of the base material increase and cannot be used depending on the application.

次に上述のマイクロカプセルによる繊維処理について説明する。上述のマイクロカプセルは通常、水分散液として作成される。このマイクロカプセルの水分散液はパッディングによる連続加工、コーティング加工、浸漬処理法のいずれの方法でも使用できるものであり、この際種々の風合い調整剤、柔軟剤、染料固着剤、撥水剤、グリオキザール樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、シリコーンアクリル樹脂、シリコーンウレタン樹脂、帯電防止剤、消泡剤、浸透剤、増粘剤など繊維加工に必要な助剤を併用し加工を行うことができる。パッディングによる連続加工の場合、当該マイクロカプセルを含む処理浴に生地を浸漬しマイクロカプセルを付着させ余分な液をマングルロールで絞り取り乾燥を行うのが一般的である。またコーティング加工ではナイフコーターやロールコーターを用い適当な粘度に調整した当該マイクロカプセルを含むコーティング液を作成しコーティングし乾燥する。また浸漬処理法では染色機などの浸漬浴中で付着させ脱水後乾燥を行う。 Next, fiber processing using the above-described microcapsules will be described. The above-described microcapsules are usually prepared as an aqueous dispersion. This aqueous dispersion of microcapsules can be used in any of continuous processing by padding, coating processing, and dipping treatment methods. At this time, various texture adjusting agents, softeners, dye fixing agents, water repellents, Glyoxal resin, acrylic resin, urethane resin, silicone resin, silicone acrylic resin, silicone urethane resin, antistatic agent, antifoaming agent, penetrating agent, thickener, etc. it can. In the case of continuous processing by padding, it is common to immerse the dough in a treatment bath containing the microcapsules, attach the microcapsules, squeeze excess liquid with a mangle roll, and perform drying. In the coating process, a coating solution containing the microcapsules adjusted to an appropriate viscosity using a knife coater or a roll coater is prepared, coated and dried. In the immersion treatment method, the particles are attached in an immersion bath such as a dyeing machine and dried after dehydration.

以下、実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。なおマイクロカプセルの粒子径は体積標準での平均粒子径で表記し、測定はレーザー回折式粒度分布測定装置(SALD−3100島津製作所社製)を使用した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this. The particle size of the microcapsules is expressed as an average particle size in volume standard, and a laser diffraction particle size distribution measuring device (SALD-3100 manufactured by Shimadzu Corporation) was used for measurement.

実施例1
蓄熱材としてオクタデカン300重量部に多価イソシアネート90重量部(住友バイエル社製スミジュールN−3200HDIビューレット型ポリイソシアネート)を40度で混合分散し油相混合物を得た。別に5重量%ポリビニルアルコール水溶液610重量部(クラレ社製PVA−217)を40度としてオートホモミキサー(特殊機化社製)(以下ホモミキサー)で攪拌を行い油相混合物を添加し回転数11000回転1時間の乳化を行った。攪拌を緩め50度で6時間反応を行い平均粒子径3.7μmのマイクロカプセル分散液を得た。
Example 1
An oil phase mixture was obtained by mixing and dispersing 90 parts by weight of polyisocyanate (Sumijoule N-3200 HDI burette type polyisocyanate manufactured by Sumitomo Bayer) at 300 degrees in 300 parts by weight of octadecane as a heat storage material. Separately, 610 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution (PVA-217 manufactured by Kuraray Co., Ltd.) was set to 40 degrees, and the mixture was stirred with an auto homomixer (manufactured by Tokushu Kika Co., Ltd.) (hereinafter referred to as homomixer). Emulsification for 1 hour was carried out. The stirring was loosened and the reaction was carried out at 50 ° C. for 6 hours to obtain a microcapsule dispersion having an average particle size of 3.7 μm.

実施例2
蓄熱材としてオクタデカン300重量部に多価イソシアネート100重量部(日本ポリウレタン社製コロネートHLヘキサメチレンジイソシアネートとトリメチロールプロパンの付加物)を40度で混合分散し油相混合物を得た。別に5重量%ポリビニルアルコール水溶液550重量部(クラレ社製PVA−217)を40度としてホモミキサーで攪拌を行った。ここに油相混合物を添加し回転数11000回転1時間の乳化を行った。ここで攪拌を緩めることなく5重量%ジエチレントリアミン水溶液50重量部を加えさらに攪拌を30分間行った。この後攪拌を緩め50度に昇温し6時間反応を行い平均粒子径3.5μmのマイクロカプセル分散液を得た。
Example 2
As a heat storage material, 300 parts by weight of octadecane and 100 parts by weight of polyisocyanate (adduct of coronate HL hexamethylene diisocyanate and trimethylolpropane manufactured by Nippon Polyurethane) were mixed and dispersed at 40 degrees to obtain an oil phase mixture. Separately, 550 parts by weight of a 5% by weight aqueous polyvinyl alcohol solution (PVA-217 manufactured by Kuraray Co., Ltd.) was set to 40 ° C., and the mixture was stirred with a homomixer. The oil phase mixture was added thereto and emulsified for 1 hour at 11,000 rotations. Here, 50 parts by weight of 5% by weight diethylenetriamine aqueous solution was added without further stirring, and stirring was further performed for 30 minutes. Thereafter, the stirring was loosened, the temperature was raised to 50 ° C., and the reaction was performed for 6 hours to obtain a microcapsule dispersion having an average particle size of 3.5 μm.

比較例1
ホモミキサーでの攪拌を回転数2000回転10分間とした以外は実施例1と同様に処理し平均粒子径12.4μmのマイクロカプセル分散液を得た。
Comparative Example 1
A microcapsule dispersion having an average particle size of 12.4 μm was obtained in the same manner as in Example 1 except that stirring with a homomixer was performed at 2000 rpm for 10 minutes.

比較例2
ホモミキサーでの攪拌を回転数2000回転10分間とした以外は実施例2と同様に処理し平均粒子径8.5μmのマイクロカプセル分散液を得た。
Comparative Example 2
A microcapsule dispersion having an average particle size of 8.5 μm was obtained in the same manner as in Example 2 except that the stirring with the homomixer was changed to 2000 rpm for 10 minutes.

比較例3
10重量%pH5に調整したスチレン−マレイン酸重合物のナトリウム塩水溶液375重量部に40度でオクタデカン300重量部を加えホモミキサーで回転数11000回転30分間の乳化を行った。次に水79重量部にメラミン粉末37.5重量部と37重量%ホルムアルデヒド溶液49重量部を混合しpH9に調整し攪拌しながら80度に昇温し、メラミンとホルムアルデヒドを反応させメラミン−ホルムアルデヒド初期縮合物を得た。このメラミン−ホルムアルデヒド初期縮合物を前述の乳化物に添加し70度2時間反応させさらに水160重量部を加えマイクロカプセル分散液を得た。得られたマイクロカプセルの平均粒子径は5.4μmであった。
Comparative Example 3
300 parts by weight of octadecane was added at 40 ° C. to 375 parts by weight of an aqueous sodium salt solution of a styrene-maleic acid polymer adjusted to 10% by weight of pH 5, and emulsification was carried out with a homomixer at 11,000 rpm for 30 minutes. Next, 37.5 parts by weight of melamine powder and 49 parts by weight of a 37% by weight formaldehyde solution were mixed with 79 parts by weight of water, adjusted to pH 9, heated to 80 ° C. with stirring, and reacted with melamine and formaldehyde to initially react with melamine-formaldehyde. A condensate was obtained. This melamine-formaldehyde initial condensate was added to the above-mentioned emulsion and reacted at 70 ° C. for 2 hours, and further 160 parts by weight of water was added to obtain a microcapsule dispersion. The average particle size of the obtained microcapsules was 5.4 μm.

(繊維加工試験)
#40綿ブロード布にマイクロカプセル配合液をパッディングし絞りマングルで絞り率85%に処理液を絞り取り100度2分間乾燥を行い加工布を得た。処理液と加工布を表1に示す。洗濯はJIS L−0217 103法で行い吊り干し乾燥を行った。
(Fiber processing test)
A # 40 cotton broad cloth was padded with the microcapsule compounded liquid, and the treated liquid was squeezed to a squeezing ratio of 85% with a squeezing mangle and dried at 100 degrees for 2 minutes to obtain a processed cloth. Table 1 shows the treatment liquid and the work cloth. Laundry was performed by the JIS L-0217 103 method and dried by hanging.

Figure 2006233342
Figure 2006233342

(繊維の蓄熱性評価試験)
蓄熱性測定は次の条件で行った。各試験布を10cm×6cmの大きさで8枚切りとり、これを全て重ね測定試料とした。4枚目と5枚目の間に温度センサーを挟み18度恒温室に放置し一定温度とし、これを初期温度とした。この後温度センサーをつけた試料布を37度恒温槽中に移動させ加熱を開始した。温度が約35度まで上昇し一定となった後18度恒温室で放冷した。温度測定はサーモプリンタAP−320(安立計器社製)を用いた。
(Fiber thermal storage evaluation test)
The heat storage property was measured under the following conditions. Eight test cloths having a size of 10 cm × 6 cm were cut out, and all of them were used as overlapping measurement samples. A temperature sensor was sandwiched between the 4th and 5th sheets and left in a constant temperature room at 18 ° C. to obtain a constant temperature. Thereafter, the sample cloth provided with a temperature sensor was moved into a 37 ° C. constant temperature bath to start heating. After the temperature rose to about 35 degrees and became constant, it was allowed to cool in a constant temperature room at 18 degrees. Thermo printer AP-320 (manufactured by Anritsu Keiki Co., Ltd.) was used for temperature measurement.

加工布1の測定結果を図1に示す。加工布1は26度付近で未加工布よりも温度上昇が遅くなることが観察された。さらに35度まで上昇した試料を放冷したところ25度付近から温度低下が遅くなることが見られた。さらにこの加工布は固着バインダーを用いていなかったが洗濯後の布も同様な結果が得られ耐洗濯性が認められた。 The measurement result of the work cloth 1 is shown in FIG. It was observed that the temperature of the processed cloth 1 was slower than that of the unprocessed cloth at around 26 degrees. Furthermore, when the sample which rose to 35 degree | times was allowed to cool, it was seen that the temperature fall became slow from about 25 degree | times. Furthermore, although this processed cloth did not use a fixed binder, the same result was obtained for the cloth after washing, and washing resistance was recognized.

加工布1と同様に加工布2〜5を測定した。加温時と冷却時に現れた未加工布との最大温度差を表2に示した。 Similarly to the work cloth 1, the work cloths 2 to 5 were measured. Table 2 shows the maximum temperature difference between the untreated fabric that appeared during heating and cooling.

Figure 2006233342
Figure 2006233342

加工布3、4、5は初期の蓄熱蓄冷性は認められたが洗濯により効果は消失した。マイクロカプセルの粒子径が大きいと繊維間の摩擦などにより破壊が進む為洗濯後に効果が消失したものと考えられる。また加工布5は白色粒子状の粉末の付着が見られ耐久性も見られなかった。 In the processed cloths 3, 4, and 5, the initial heat storage and cold storage properties were recognized, but the effect disappeared by washing. If the particle size of the microcapsules is large, it is considered that the effect disappears after washing because the destruction proceeds due to friction between the fibers. In addition, the processed cloth 5 showed white particle-like powder adhesion and no durability.

また家庭用ジュサーミキサーを用いて処理液1〜5の安定性を調べた。
処理液を40度とし100mlをジューサーミキサーで10秒攪拌し攪拌後に繊維加工試験を行った。加工試験では#40綿ブロード黒色布を用いた。この結果を表3に示す。
Moreover, the stability of the processing liquids 1-5 was investigated using the home juicer mixer.
The treatment liquid was set at 40 degrees, and 100 ml was stirred with a juicer mixer for 10 seconds, and a fiber processing test was conducted after stirring. In the processing test, # 40 cotton broad black cloth was used. The results are shown in Table 3.

Figure 2006233342
Figure 2006233342

また連続加工に対するマイクロカプセル分散液の安定性を確認するため繊維加工試験を5分間連続加工を行いマングルロール(絞りロール)での機械的安定性を確認した。この結果を表4に示す。 Further, in order to confirm the stability of the microcapsule dispersion with respect to the continuous processing, the fiber processing test was continuously performed for 5 minutes to confirm the mechanical stability with a mangle roll (drawing roll). The results are shown in Table 4.

Figure 2006233342
Figure 2006233342

結果、処理液3,4では約5分後にマングルロールへの凝集物の付着が見られた。処理液1,2では全く見られなかった。処理液5で加工した布は白い粉末が付着した。またJIS L−1041アセチルアセトン法により加工布のホルムアルデヒドを測定した。この結果、加工布5は220ppmの残留ホルムアルデヒドが認められた。その他の加工布にホルムアルデヒドは認められなかった。 As a result, in the treatment liquids 3 and 4, adhesion of aggregates to mangle roll was observed after about 5 minutes. It was not seen at all in the treatment liquids 1 and 2. A white powder adhered to the cloth processed with the treatment liquid 5. Moreover, the formaldehyde of the work cloth was measured by the JIS L-1041 acetylacetone method. As a result, the processed fabric 5 was found to have 220 ppm of residual formaldehyde. Formaldehyde was not observed in other processed fabrics.

加工布1の測定結果を示す。The measurement result of the work cloth 1 is shown.

Claims (4)

蓄熱材として相変化を伴うパラフィン系炭化水素化合物を内包したマイクロカプセルにおいて当該マイクロカプセルの体積平均粒子径が5μm以下であることを特徴とするマイクロカプセル。 A microcapsule containing a paraffinic hydrocarbon compound accompanied by a phase change as a heat storage material, wherein the volume average particle size of the microcapsule is 5 μm or less. 当該マイクロカプセルの壁材が多価イソシアネートと多価アルコール及びまたは多価アミン及びまたは水との反応により得られるポリウレタン樹脂またはポリウレタンウレア樹脂またはポリウレア樹脂で形成された請求項1記載のマイクロカプセル。 The microcapsule according to claim 1, wherein the wall material of the microcapsule is formed of a polyurethane resin, a polyurethane urea resin, or a polyurea resin obtained by a reaction between a polyvalent isocyanate and a polyhydric alcohol and / or a polyvalent amine and / or water. 蓄熱材として相変化を伴うパラフィン系炭化水素化合物がn−パラフィンである請求項2記載のマイクロカプセル。 The microcapsule according to claim 2, wherein the paraffinic hydrocarbon compound accompanying phase change as the heat storage material is n-paraffin. 請求項1または2または3のいずれかに記載のマイクロカプセルを付着させた繊維。
A fiber to which the microcapsule according to claim 1 is attached.
JP2005045534A 2005-02-22 2005-02-22 Heat storage microcapsule suitable for fiber treatment and fiber using the same Pending JP2006233342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045534A JP2006233342A (en) 2005-02-22 2005-02-22 Heat storage microcapsule suitable for fiber treatment and fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045534A JP2006233342A (en) 2005-02-22 2005-02-22 Heat storage microcapsule suitable for fiber treatment and fiber using the same

Publications (1)

Publication Number Publication Date
JP2006233342A true JP2006233342A (en) 2006-09-07

Family

ID=37041319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045534A Pending JP2006233342A (en) 2005-02-22 2005-02-22 Heat storage microcapsule suitable for fiber treatment and fiber using the same

Country Status (1)

Country Link
JP (1) JP2006233342A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284517A (en) * 2006-04-14 2007-11-01 Mitsubishi Paper Mills Ltd Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solid product
JPWO2008041570A1 (en) * 2006-09-28 2010-02-04 宮本 博 Textile material for post dyeing
CN101109151B (en) * 2007-08-08 2010-09-29 深圳清华大学研究院 Method of preparing block polyurethane microcapsule composite finishing agent
CN102733192A (en) * 2012-04-09 2012-10-17 福建众和股份有限公司 Finishing technology of nano-grade phase-change microcapsule heat-accumulation temperature-adjustment intelligent textile fabric printed cloth
KR101206692B1 (en) 2010-12-06 2012-11-29 김경현 Manufacturing method of functional fabric
CN103987826A (en) * 2011-12-16 2014-08-13 荷兰联合利华有限公司 Fabric treatment
JP2017515661A (en) * 2014-04-29 2017-06-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing microcapsules
JP2017133115A (en) * 2016-01-25 2017-08-03 帝人株式会社 Heat storage flame retardant fabric, manufacturing method therefor and fiber product
CN109837068A (en) * 2019-01-16 2019-06-04 浙江理工大学 A kind of preparation method of cross-linking type phase-changing and temperature-regulating functional agent
CN112759797A (en) * 2020-12-29 2021-05-07 武汉肯达科讯科技有限公司 Heat-conducting insulating filler, heat-conducting insulating material and preparation method thereof
KR20210141558A (en) 2019-04-25 2021-11-23 후지필름 가부시키가이샤 heat storage member
CN114687076A (en) * 2022-03-15 2022-07-01 冠和卫生用品有限公司 Temperature-adjusting non-woven fabric and preparation method thereof
JP2022103413A (en) * 2018-11-26 2022-07-07 富士フイルム株式会社 Heat storage sheet, heat storage member, and electronic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284517A (en) * 2006-04-14 2007-11-01 Mitsubishi Paper Mills Ltd Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solid product
JPWO2008041570A1 (en) * 2006-09-28 2010-02-04 宮本 博 Textile material for post dyeing
CN101109151B (en) * 2007-08-08 2010-09-29 深圳清华大学研究院 Method of preparing block polyurethane microcapsule composite finishing agent
KR101206692B1 (en) 2010-12-06 2012-11-29 김경현 Manufacturing method of functional fabric
CN103987826A (en) * 2011-12-16 2014-08-13 荷兰联合利华有限公司 Fabric treatment
CN102733192A (en) * 2012-04-09 2012-10-17 福建众和股份有限公司 Finishing technology of nano-grade phase-change microcapsule heat-accumulation temperature-adjustment intelligent textile fabric printed cloth
JP2017515661A (en) * 2014-04-29 2017-06-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing microcapsules
JP2017133115A (en) * 2016-01-25 2017-08-03 帝人株式会社 Heat storage flame retardant fabric, manufacturing method therefor and fiber product
JP2022103413A (en) * 2018-11-26 2022-07-07 富士フイルム株式会社 Heat storage sheet, heat storage member, and electronic device
CN109837068A (en) * 2019-01-16 2019-06-04 浙江理工大学 A kind of preparation method of cross-linking type phase-changing and temperature-regulating functional agent
CN109837068B (en) * 2019-01-16 2021-06-11 浙江理工大学 Preparation method of crosslinking type phase-change temperature-regulating functional agent
KR20210141558A (en) 2019-04-25 2021-11-23 후지필름 가부시키가이샤 heat storage member
CN112759797A (en) * 2020-12-29 2021-05-07 武汉肯达科讯科技有限公司 Heat-conducting insulating filler, heat-conducting insulating material and preparation method thereof
CN114687076A (en) * 2022-03-15 2022-07-01 冠和卫生用品有限公司 Temperature-adjusting non-woven fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006233342A (en) Heat storage microcapsule suitable for fiber treatment and fiber using the same
CN109153908A (en) Water repellent inorganic agent and its manufacturing method
CN100591839C (en) Binder systems for microcapsule treatments to fibers, fabrics and garments
EP1056901B1 (en) Method of imparting long-lasting antimicrobial properties to a fabric; fibers, textile or fabric so obtained
AU2003289798B2 (en) Method for encapsulating phase transitional paraffin compounds using melamine-formaldehyde and microcapsule resulting therefrom
EP3368207A1 (en) Encapsulation
US6814882B2 (en) Fabric coating composition with latent heat effect and a method for fabricating the same
US20090278074A1 (en) Stable Suspensions Containing Microcapsules and Methods for Preparation Thereof
US20180242665A1 (en) Moisture Wicking and Cooling Capsules Having an Outer Shell Comprising a Siloxane and Methods for Making Same
FALAHI et al. Preparation of phase-change material microcapsules with paraffin or camel fat cores: application to fabrics
JP2005248415A (en) Method for producing artificial leather having high light-resistant fastness
Liu et al. Preparation of microencapsulated phase change materials by the sol-gel process and its application on textiles
Karaszewska et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer
JP2004533561A (en) Synthetic suede leather and manufacturing method thereof
JP3047951B2 (en) Manufacturing method of artificial leather with good soft abrasion resistance
AU605958B2 (en) Method of altering the surface of a solid synthetic polymer
TWI623658B (en) Composite fabrics
JP4833824B2 (en) Method for improving resistance to abrasion by surface fastener of polyester fiber fabric, and method for producing vehicle interior material
JP4813951B2 (en) Antibacterial fiber structure and method for producing the same
Özsevinç et al. Polyurethane shell medicinal lavender release microcapsules for textile materials: An environmentally friendly preparation
TW201829867A (en) Bi-elastic down-proof non-woven insert
JP2003328298A (en) Sheet having heat storage property and thread using the same and fabric using the same
CN101027445A (en) Printed synthetic suede leather and process for preparing the same
KR20020078220A (en) Method for preparing microcapsules containing phase change materials and articles including microcapsules prepared therefrom
KR100405138B1 (en) Producing method of coated fabric changing its color according to temperature variation and having excellent washing resistance, and the coated fabric produced by the method