WO2008038700A1 - Appareil générateur de plasma de type à rayon élargi - Google Patents

Appareil générateur de plasma de type à rayon élargi Download PDF

Info

Publication number
WO2008038700A1
WO2008038700A1 PCT/JP2007/068777 JP2007068777W WO2008038700A1 WO 2008038700 A1 WO2008038700 A1 WO 2008038700A1 JP 2007068777 W JP2007068777 W JP 2007068777W WO 2008038700 A1 WO2008038700 A1 WO 2008038700A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
tube
diameter
magnetic field
droplet
Prior art date
Application number
PCT/JP2007/068777
Other languages
English (en)
French (fr)
Inventor
Yuichi Shiina
Original Assignee
Ferrotec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferrotec Corporation filed Critical Ferrotec Corporation
Priority to CN2007800359760A priority Critical patent/CN101518161B/zh
Priority to US12/311,258 priority patent/US20100018859A1/en
Priority to EP07828523.6A priority patent/EP2068602B1/en
Publication of WO2008038700A1 publication Critical patent/WO2008038700A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge

Definitions

  • the present invention relates to cathode material particles (hereinafter referred to as "droplets") produced as a by-product from a cathode when a plasma is generated by performing a vacuum arc discharge in an arc discharge section set in a vacuum atmosphere.
  • the present invention relates to a plasma generation apparatus equipped with a droplet removing unit that removes and! /, U).
  • a surface property of a solid is improved by forming a thin film on the surface of a solid material or implanting ions in a plasma.
  • Films formed using plasma containing metal ions and non-metal ions enhance the wear resistance and corrosion resistance of solid surfaces and are useful as protective films, optical thin films, transparent conductive films, etc. .
  • a carbon film using carbon plasma has a high utility value as a diamond-like carbon film (called a DLC film) made of an amorphous mixed crystal having a diamond structure and a graphite structure.
  • the vacuum arc plasma is a plasma formed by an arc discharge generated between the cathode and the anode, the cathode material evaporates from the cathode spot existing on the cathode surface, and is formed by the cathode evaporation material.
  • a reactive gas or / and an inert gas noble gas and! /
  • the reactive gas or / and the inert gas are ionized at the same time.
  • surface treatment can be performed by forming a thin film on a solid surface or implanting ions.
  • This magnetic filter method transports vacuum arc plasma to a processing section through a curved droplet collecting duct. According to this method, the generated droplets are attached and trapped (collected) on the inner wall of the duct, and a! / ⁇ plasma flow containing almost no droplets is obtained at the duct outlet. In addition, a bending magnetic field is formed by a magnet arranged along the duct, and the plasma flow is bent by the bending magnetic field, so that the plasma is efficiently guided to the plasma processing unit.
  • Patent Document 1 discloses a plasma processing apparatus having a droplet collecting portion.
  • FIG. 13 is a schematic configuration diagram of a conventional plasma processing apparatus.
  • the plasma generator 102 is connected to a power source 110 for generating electric sparks and vacuum arc discharge, and is provided with plasma stabilizing magnetic field generators 116a and 116b for stabilizing the plasma 109!
  • the plasma 109 is guided from the plasma generation unit 102 to the plasma heating unit 112, and the workpiece 114 disposed in the plasma processing unit 112 is surface-treated by the plasma 109. Further, a reactive gas is introduced as necessary by the gas introduction system Gt connected to the plasma processing unit 112, and the reaction gas and the plasma flow are exhausted by the gas exhaust system Gh.
  • the plasma 109 emitted from the plasma generation unit 102 is bent in a direction not facing the plasma generation unit 102 by the magnetic field and flows into the plasma processing unit 112.
  • a droplet collecting unit 120 for collecting cathode material fine particles (droplets) 118 by-produced from the cathode when the plasma 109 is generated is disposed. Accordingly, the droplet 118 that is not affected by the magnetic field travels to and is collected by the droplet collection unit 120, and the droplet 118 is prevented from entering the plasma processing unit 112.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-8893
  • Non-Patent Document 1 PJ Martin, RP Netterfield and TJ Kinder, Thin Solid Films 193/1 94 (1990) 77 Disclosure of the invention
  • the droplet 118 that is not affected by the magnetic field is charged by the force S collected by the droplet collecting unit 120, the interaction with the plasma 109, and the like.
  • the charged droplets to which the was applied were guided to the plasma processing unit 112 by a magnetic field.
  • droplets having a small particle size that are not collected by the droplet collection unit 120 were guided to the plasma processing unit 112 along with the plasma flow! Therefore, charged droplets and minute droplets that are not collected but mixed into the plasma flow adhere to the surface of the object to be processed, so that the thin film formation and surface modification uniformity on the surface of the object to be processed Is lost and the surface properties of the object to be treated are reduced!
  • Non-Patent Document 1 the plasma flow is bent by the bending magnetic field, and the plasma is efficiently moved to the plasma processing portion. It was not possible to prevent charged droplets and minute droplets mixed into the plasma from being processed into the plasma processing part without being removed and colliding or adhering to the surface of the workpiece.
  • an object of the present invention is to efficiently remove droplets mixed in plasma generated in a plasma generation apparatus, and to construct a droplet removal unit simply and inexpensively. It is an object of the present invention to provide a plasma generating apparatus capable of improving surface treatment accuracy such as film formation by plasma.
  • the present invention has been proposed in order to solve the above-mentioned problems, and is a first form of the present invention.
  • the plasma generation unit includes a plasma generation unit that generates plasma by performing a vacuum arc discharge in a vacuum atmosphere, and a plasma traveling path in which the plasma generated by the plasma generation unit travels to the plasma processing unit side.
  • a droplet removing unit that removes droplets generated as a by-product from the cathode when a plasma is generated is disposed in the plasma traveling path.
  • the droplet removing unit includes a diameter expanding tube and a plasma of the diameter expanding tube.
  • An introduction-side reduced diameter pipe connected to the introduction-side starting end, a discharge-side reduced diameter pipe connected to the plasma discharge-side end of the diameter-expanded pipe, and a step portion formed at the start end and the end of the diameter-expanded pipe Is a plasma generating apparatus composed of
  • the tube axis of the introduction side reduced diameter tube and / or the discharge side diameter reduced tube is bent to a predetermined degree with respect to the tube axis of the diameter enlarged tube.
  • a plasma generating device in which the introduction side reduced diameter pipe and / or the discharge side reduced diameter pipe are connected to the enlarged diameter pipe by being inclined at an angle.
  • tube axes of the introduction-side reduced diameter tube and the discharge-side reduced diameter tube intersect each other with respect to the expanded diameter tube.
  • the plasma generator is arranged as follows.
  • the plasma traveling path is
  • a straight tube connected to the plasma generation unit, the introduction-side reduced-diameter tube is connected perpendicularly or substantially perpendicular to the straight tube, and a droplet collecting unit is disposed at the end of the straight tube.
  • This is a plasma generation apparatus.
  • the expanded pipe includes an inner peripheral pipe and an outer peripheral pipe, and the inner peripheral pipe is connected to the outer peripheral pipe.
  • This is a plasma generator that can be removed freely.
  • a sixth aspect of the present invention is the plasma generating apparatus according to the fifth aspect, wherein a plurality of droplet collecting plates are implanted on the inner wall of the inner peripheral tube.
  • a seventh aspect of the present invention is the plasma generating apparatus according to the sixth aspect, wherein a surface of the droplet collecting plate is roughened.
  • An eighth aspect of the present invention is the plasma generating apparatus according to the seventh aspect, wherein the droplet collecting plate is disposed obliquely toward the introduction-side reduced diameter tube.
  • a droplet collecting aperture is disposed on the introduction-side reduced diameter tube and the discharge-side reduced diameter tube. This is a plasma generator.
  • a tenth aspect of the present invention is the plasma generating apparatus according to any one of the first to ninth aspects, wherein a plurality of the enlarged diameter tubes are connected via a reduced diameter tube.
  • At least one or more rotating magnetic field applying means for generating a rotating magnetic field in the circumferential direction of the cross-section of the expanded pipe is provided.
  • a rotating magnetic field is applied to the plasma by the rotating magnetic field applying means, the diameter expanding tube is advanced while rotating the plasma, and the droplets are removed by centrifugal force.
  • the rotating magnetic field applying unit includes a plurality of oscillating magnetic field generators that generate an oscillating magnetic field, and these oscillating magnetic field generators are used for phase and vibration.
  • the plasma generating apparatus generates a plurality of oscillating magnetic fields having different directions and synthesizes the rotating magnetic field from these oscillating magnetic fields.
  • At least one aperture having a passage hole at an eccentric position is provided in the diameter expansion pipe, and the diameter expansion pipe is provided.
  • Magnetic field generating means for passing the plasma through the eccentric passage hole of the aperture is disposed on the outer periphery of the aperture.
  • the magnetic field based on the magnetic field generating means causes the plasma to be bent in the diameter expansion tube. It is a plasma generating apparatus configured to pass through one eccentric passage hole, separate the droplet from the plasma during the bending, and remove the droplet by colliding with a wall surface of the aperture.
  • a fourteenth aspect of the present invention in the thirteenth aspect, a plurality of the apertures are provided in the enlarged diameter tube, and the adjacent eccentric passage holes are arranged with their positions shifted from each other.
  • the droplets passing through the eccentric passage hole of the aperture on the start end side with the plasma collide with the wall surface of the next aperture and are removed, and the plasma passes through the eccentric passage of the next aperture.
  • a fifteenth aspect of the present invention is the magnetic field generating means according to the thirteenth or fourteenth aspect. Is composed of an oblique magnetic field generator, and this oblique magnetic field generator forms an oblique magnetic field in a direction oblique from the axial direction of the diameter-expanded tube, and the plasma is radiated by the oblique magnetic field.
  • This is a plasma generation apparatus that is allowed to pass through one eccentric passage hole.
  • a sixteenth aspect of the present invention is the plasma transfer device according to any one of the first to fifteenth aspects, comprising at least the introduction-side reduced diameter tube, the expanded diameter tube, and the discharge-side reduced diameter tube.
  • the duct unit is a plasma generation apparatus that is electrically insulated from the plasma generation unit and the plasma processing unit.
  • a seventeenth aspect of the present invention is the plasma generating apparatus according to any one of the first to sixteenth aspects, wherein a bias voltage is applied to the duct portion.
  • a probe is inserted into the duct part, or the duct part is used as a probe, whereby the physical properties of plasma are obtained.
  • a plasma generator for measuring the amount is a plasma generator for measuring the amount.
  • any one of an effective total length, a diameter, a bend number, and a bend angle of the plasma traveling path, or a sum thereof is a plasma generation device set so that the combination satisfies the droplet reduction conditions.
  • the effective total length is 1600 to 90.
  • a twenty-first aspect of the present invention is the plasma generating apparatus according to the nineteenth aspect, wherein the diameter is set to 200 to 90 mm.
  • a twenty-second aspect of the present invention is the plasma generating apparatus according to the nineteenth aspect, wherein the number of bends is set to 3 to;!.
  • the sum of the bending angles is 150 to
  • a twenty-fourth aspect of the present invention is the plasma generating apparatus according to any one of the first to twenty-third aspects, wherein an arc current value in the plasma generator is adjusted in a range of 140 to 30A.
  • the droplet removing section disposed in the plasma traveling path includes the diameter-enlarging pipe and the introduction-side diameter-reducing pipe connected to the plasma introduction side start end of the diameter-expanding pipe. And a discharge-side reduced diameter pipe connected to the plasma discharge-side end of the diameter-expanded pipe, and a step portion formed at the front end and the end of the diameter-expanded pipe.
  • the plasma flow introduced from the diameter pipe into the diameter expansion pipe is diffused by the diameter expansion action of the plasma traveling path by the diameter expansion pipe.
  • the droplets mixed in the plasma are also diffused into the enlarged diameter pipe, and thus collide with the vicinity of the stepped portion and the inner wall of the enlarged diameter pipe to be attached and recovered. Further, when the plasma flow in the diameter expansion pipe is discharged, the droplets scattered on the inner wall surface side of the diameter expansion pipe collide with the step portion due to the diameter reducing action from the diameter expansion pipe to the discharge side diameter reduction pipe. Adhering / recovering and no re-mixing of droplets without joining the plasma flow. Accordingly, droplets can be sufficiently collected by adhering to the vicinity of the stepped portion and the inner wall of the diameter-expanding tube, and the droplets can be efficiently removed in the plasma traveling path.
  • the droplets can be easily separated from the plasma flow, and the droplet collection effect Will further increase.
  • the droplet removing section can be configured simply and inexpensively by simply forming the diameter-expanding tube in the plasma traveling path, and film formation can be performed using high-purity plasma obtained by improving the droplet removal efficiency. The surface treatment accuracy can be improved, and the uniformity of the film formed on the surface of the workpiece can be remarkably improved.
  • the pipe axis of the introduction-side reduced diameter pipe and / or the discharge-side reduced diameter pipe is inclined with respect to the pipe axis of the enlarged diameter pipe at a predetermined bending angle, Since the introduction-side reduced diameter tube and / or the discharge-side reduced diameter tube are connected to the diameter-expanded tube, the droplet travels straight away from the plasma flow due to the bending of the plasma traveling path, and the inside of the diameter-expanded tube It can adhere to and collect by colliding with the wall surface and / or the inner wall surface of the discharge side reduced diameter tube.
  • the bend can be provided only on the inlet side, only on the outlet side, or on both the inlet side and the outlet side. Therefore, the droplets mixed in the plasma flow can be separated with high efficiency, and the purified plasma flow can be discharged from the discharge-side reduced diameter tube to improve the droplet removal efficiency. .
  • the recovery efficiency of the droplets can be improved compared to when the pipe axes are aligned by decentering the pipe axes of the introduction-side reduced diameter pipe and the enlarged diameter pipe, or by eccentricizing the discharge-side reduced diameter pipe and the expanded diameter pipe axis.
  • the increase of the pipe axes of the introduction-side reduced diameter pipe and the enlarged diameter pipe or by eccentricizing the discharge-side reduced diameter pipe and the expanded diameter pipe axis.
  • the introduction side reduced diameter tube and the discharge side reduced diameter tube are arranged so as to intersect each other with respect to the expanded diameter tube.
  • the plasma flow discharged from the expanded tube collides with the inner wall of the discharge-side reduced tube in the direction intersecting the reduced-diameter tube, and circulates in the discharge-side reduced tube while meandering. Therefore, even after droplets are deposited and collected by colliding with the vicinity of the stepped portion and the inner wall of the diameter expansion pipe, even if droplets mixed near the center of the plasma flow are discharged from the diameter expansion pipe, Since the let goes straight and collides with the inner wall of the discharge-side reduced diameter pipe, adheres and is collected, the drop can be removed more efficiently.
  • the plasma traveling path has a straight tube connected to the plasma generator, and the introduction side reduced diameter tube is perpendicular to the straight tube or Since the droplet collecting part is arranged almost vertically and the end of the straight pipe is disposed, a part of the droplet generated in the plasma generating part goes straight along the straight pipe. It is collected and collected in the droplet collection part. Therefore, a plasma flow from which a part of the droplet is removed flows into the introduction-side reduced diameter pipe connected perpendicularly or substantially perpendicularly to the straight advance pipe due to the bending action of the plasma traveling path. Due to the synergistic effect with the droplet removal by the droplet removal unit in the plasma traveling path according to the present invention, Droplets can be removed with high efficiency.
  • the force S that needs to be cleaned by peeling and collecting the droplets attached to the inner wall, and during the cleaning, the plasma traveling path is decomposed. This may cause the operating efficiency of the system to decrease. Therefore, according to the fifth aspect of the present invention, since the inner peripheral tube is made detachable from the outer peripheral tube in the diameter-expanded tube, the inner peripheral tube contaminated with droplets is replaced as needed. Therefore, the droplet cleaning workability is improved, and the plasma generation process can be performed smoothly without reducing the operation efficiency of the plasma generation apparatus.
  • a large number of droplet collecting plates are formed on the inner surface of the inner peripheral tube, and the inner tube is extracted to facilitate cleaning and repair of the droplet collecting plate.
  • the inner pipe may be electrically connected to the outer pipe, but if the inner pipe is fixed to the outer pipe via an insulating material such as an insulating ring, the inner pipe and the outer pipe are electrically insulated. .
  • the sixth aspect of the present invention since a plurality of droplet collecting plates are planted on the inner wall of the inner peripheral tube, the surface area of the droplet attached in the enlarged diameter tube is increased. Therefore, it is possible to reliably deposit and recover a large amount of scattered droplets and achieve high purity of the plasma flow.
  • the droplet collecting plate is implanted so as to be orthogonal to the tube axis with respect to the inner wall of the inner peripheral tube, the force that has a collecting effect can be obtained according to the eighth embodiment of the present invention. Since the collection plates are arranged obliquely toward the introduction side reduced diameter tube, the drop plate is placed between the droplet collection plates. The re-reflection collection probability of the robot increases and the number of droplets that escape is reduced, and the area for receiving the droplets flowing into the expanded pipe is increased, and the collection efficiency of the droplet collection plate is improved. This can further contribute to the improvement of droplet removal efficiency.
  • the aperture for collecting driplets is disposed in the introduction-side reduced diameter tube and the discharge-side reduced diameter tube. Using an aperture that reduces or deforms the aperture shape by eccentricity, the droplets that travel straight at the beginning and end of the plasma traveling path are collected to contribute to the improvement of droplet removal efficiency.
  • the droplets can be removed in a plurality of stages, and high purity It is possible to generate plasma flow.
  • the droplet collecting efficiency is improved by decentering the pipe shafts of the enlarged pipe and the enlarged pipe.
  • a rotating magnetic field applying means for generating a rotating magnetic field in the circumferential direction of the cross section in the expanded diameter tube in which the plasma mixed with droplets travels is disposed, and the rotating magnetic field applies the Since the droplet mixed plasma proceeds while rotating, the charged droplets and minute droplets can be separated from the droplet mixed plasma by centrifugal force.
  • the droplet mixed plasma proceeds while being bent in the circumferential direction of the cross section of the cylindrical traveling path while rotating, and gradually increases the radius of rotation. Further, when the rotating magnetic field is not applied!
  • the droplet When the region proceeds, the magnetic field in the straight direction applied to the terminal end side or the whole of the expanded tube approaches the central axis of the expanded tube, or the Go straight toward the end of the expanded pipe. Since the droplet has a mass larger than that of the plasma constituent particles, it cannot follow a sudden change in the direction of travel of the plasma flow, and therefore, the droplet can be removed by colliding with the wall surface in the expanded pipe by inertial force. it can. That is, when viewed from the rotary seating system fixed to the rotating magnetic field, the droplet receives a centrifugal force proportional to the rotating magnetic field and the mass, and the centrifugal force causes the droplet to move from the droplet mixed plasma. It can be separated to form a high purity plasma stream.
  • the droplet removing apparatus can form a high-purity thin film on the surface of the object to be processed, and can perform uniform surface modification on the surface of the object to be processed.
  • the path through which the droplet mixed plasma travels can be set to a desired size by adjusting the magnetic field strength, the droplet removing device can be miniaturized.
  • the plasma flow travels in a spiral orbit along the direction of the rectilinear magnetic field due to electromagnetic interaction with the rectilinear magnetic field generated by the rectilinear magnetic field generator on the outer periphery of the expansion tube, the plasma rotates in the direction of the plasma rotation.
  • the centrifugal force acting on the droplet can be increased. Therefore, it is possible to separate and remove the droplets from the droplet mixed plasma with high efficiency.
  • the rotating magnetic field applying means includes a plurality of oscillating magnetic field generators that generate oscillating magnetic fields, and the oscillating magnetic field generators generate a plurality of oscillating magnetic fields having different phases and vibration directions. Since the rotating magnetic field is synthesized from these oscillating magnetic fields, the rotating magnetic field can be controlled with high accuracy.
  • the oscillating magnetic field generator is composed of an electromagnet, and by adjusting the mounting position and applied voltage, the phase, amplitude, frequency and direction of the oscillating magnetic field can be freely adjusted. By combining them, a desired rotating magnetic field can be synthesized.
  • a suitable rotating magnetic field can be applied according to the shape and size of the diameter expansion tube, or the characteristics and state of plasma and droplets, and the rotating direction and strength of the rotating magnetic field can be freely set. I can do it. Therefore, when the plasma flow proceeds while drawing a spiral trajectory along the traveling direction, the rotation direction of the rotating magnetic field can be freely selected according to the swirl direction of the plasma flow.
  • the oscillating magnetic field generators may be arranged as long as a desired rotating magnetic field can be synthesized. If the oscillating magnetic field generators are arranged in a plurality of stages along the plasma advancing direction, the droplets can be more efficiently centrifuged. Can be removed.
  • the rotating magnetic field applying means force is composed of two oscillating magnetic field generators
  • the oscillating magnetic field generator can be arranged so that these oscillating magnetic fields are orthogonal or substantially orthogonal. If the X-axis component and Y-axis component are used, various rotating magnetic fields can be synthesized. And force S.
  • the rotating magnetic field can be easily controlled by the two oscillating magnetic fields, and a stable rotating magnetic field is generated. Can be made. If the amplitudes of the two oscillating magnetic fields are set to be the same, the strength of the rotating magnetic field can be maintained constant, and the droplet mixed plasma can be advanced in a cylindrical traveling path while rotating in a circular shape. . When a plurality of rotating magnetic field applying means are disposed in the cylindrical traveling path along the traveling direction of the droplet mixed plasma, the droplets can be removed over a plurality of stages, and a high-purity plasma flow is achieved. Can be supplied.
  • the plurality of rotating magnetic field applying units can be easily controlled. That is, all the control devices connected to the plurality of rotating magnetic field applying means can be set under the same condition, and the plurality of rotating magnetic fields can be easily adjusted.
  • the oscillating magnetic field generator When the oscillating magnetic field generator is formed of a horseshoe-shaped magnetic body in which a coil is wound, a magnetic field that also generates both end forces of the coil can be applied to the enlarged diameter tube, and the magnetic field is generated by being wound around the magnetic body. Therefore, the oscillating magnetic field can be generated with high efficiency. Therefore, the self-inductance of the coil can be set small, and the maximum frequency of the oscillating magnetic field can be increased. Furthermore, the amount of heat generated from the coil is released by the force S through the horseshoe magnetic material.
  • one or more apertures are provided in the diameter-expanded tube, and a passage hole is provided at an eccentric position of the aperture.
  • the surface of the object to be processed disposed in front of the expanded tube can be processed only with plasma in which droplets are hardly mixed. In this way, the droplets are hardly mixed! / Since the surface of the object to be processed can be processed only with plasma, a high-purity film can be formed on the surface of the object to be processed.
  • the wall surface of the aperture with the droplets attached and the wall surface of the cylindrical traveling path can be easily overhauled, making it easy to remove the attached droplets. Can be done. In this way, the overall structure of the droplet removal apparatus can be simplified, and the apparatus can be easily manufactured at low cost.
  • a plurality of apertures are provided in the diameter-expanded tube, and the positions of the eccentric passage holes of adjacent apertures are shifted from each other. Therefore, the small droplets that have passed through the eccentric passage hole of the first stage aperture along with the plasma, when the plasma passes through the eccentric passage hole, go straight and jump out to the outside. It is removed by colliding with the wall surface of the first aperture. When the plasma passes through the third stage aperture, the small droplet associated with the plasma can be removed.
  • the number of droplets associated with the plasma can be reduced, and the surface of the object to be processed placed in front of the cylindrical traveling path can be made with a plasma with higher purity. Can be processed.
  • the eccentric passage holes of adjacent apertures can be arranged 180 degrees apart in the circumferential direction, and the force S can be arbitrarily selected as an angle of 90 degrees or 60 degrees. Also, the position of the eccentric passage hole of the aperture can be shifted in the radial direction.
  • the magnetic field generating means is constituted by a skew magnetic field generator
  • the magnetic field lines pass through the eccentric passage hole in a curved shape by the skew magnetic field generator.
  • Such an oblique magnetic field is formed. Since the oblique magnetic field is generated by the oblique magnetic field generator, this oblique magnetic field can be adjusted freely according to the eccentric passage hole of the aperture, and the plasma flow is reliably guided to the eccentric passage hole. be able to.
  • the oblique magnetic field generator When the oblique magnetic field generator is formed of an electromagnet or a permanent magnet arranged obliquely on the outer peripheral surface of the cylindrical traveling path, an oblique magnetic field in which magnetic lines of force pass through the eccentric passage hole in a curved shape is formed.
  • a strong oblique magnetic field can be formed by increasing the number of turns of the coil. By simply changing the coil current by changing the number of coil turns, the strength of the magnetic field can be easily controlled. By changing the inclination of the electromagnet, the angle of the oblique magnetic field can be easily changed and adjusted.
  • the electromagnet By using a superconducting magnet (electromagnet with a coil of superconducting wire) as the electromagnet, it is possible to generate a strong magnetic field with almost no energy loss. Further, when the oblique magnetic field is formed by a permanent magnet, the oblique magnetic field at a position matching the eccentric passage hole of the aperture can be formed by adjusting the direction of the permanent magnet. Furthermore, the positions of the N pole and S pole of the permanent magnet arranged on the outer periphery of the expansion tube can be freely selected, and the N pole and S pole of this permanent magnet can be easily attached.
  • the magnetic field lines are curved through the eccentric passage hole. Formed in position.
  • a largely curved plasma flow can be formed, and the droplets can be reliably shielded and removed when passing through the eccentric passage hole.
  • the magnetic fields in the X—X axis direction and the Y—Y axis direction By setting to a predetermined strength, a synthetic magnetic field having a desired direction and strength can be formed. Therefore, it is possible to generate a synthetic magnetic field that guides the plasma to the eccentric passage hole of the aperture. Also, when the two sets of radial magnetic field generators are formed of electromagnets, the direction and strength of the combined magnetic field can be freely controlled by increasing the number of turns of the electromagnetic coil or adjusting the coil current.
  • the duct portion for plasma transfer including at least the introduction-side reduced diameter tube, the enlarged diameter tube, and the discharge-side reduced diameter tube includes the plasma generating portion and the covered portion. It is electrically insulated from the plasma processing unit. That is, the duct portion refers to the entire region of the plasma transfer piping of the present apparatus excluding the plasma generating portion and the plasma processing portion. In many cases, the entire duct portion has electrical conductivity. Yes.
  • the plasma processing part is a processing part for surface-treating a plasma processing object. Electrical insulation is achieved simply by interposing an insulating plate between the start side of the duct part and the plasma generating part and an insulating plate between the end side of the duct part and the plasma processing part. The This electrical insulation makes it possible to electrically float the duct part (plasma transport part).
  • the plasma generating unit is set at a high potential and the plasma processing unit is grounded. Therefore, the duct portion can be kept in a floating state separated from the high potential and GND by the electrical insulation.
  • This electric floating property eliminates the electromagnetic action on the plasma, eliminates the influence on the plasma transfer efficiency, and can suppress the decrease in the plasma amount and the plasma density in the duct portion even if the total length of the data portion is long. A decrease in plasma transfer efficiency can be prevented.
  • the attenuation of plasma can be suppressed by adjusting the bias potential of the data part, and the plasma transport efficiency can be improved. It becomes possible to increase.
  • Duct potential may be + or 1
  • the duct portion also includes an inner peripheral pipe inserted into the enlarged diameter portion. When a bias potential is applied to the enlarged diameter portion, it is preferably applied to the inner peripheral tube in contact with the plasma. In particular, when the inner peripheral tube is electrically insulated from the outer peripheral tube, a bias potential is applied to the inner peripheral tube.
  • the application form is suitably selected such that a bias voltage may be applied between the inner peripheral tube and the outer peripheral tube, or a bias voltage may be applied between the inner peripheral tube and GND.
  • a bias voltage may be applied between the inner peripheral tube and the outer peripheral tube, or a bias voltage may be applied between the inner peripheral tube and GND.
  • + ions are repelled and pushed out in the transport direction
  • electrons are repelled and pushed out in the transport direction.
  • + —Which potential is applied is selected to increase the plasma transfer efficiency.
  • the magnitude of the potential is adjusted in various ways, and a potential strength that increases the plasma transport efficiency is selected.
  • the force of inserting a probe into the duct part or the physical property amount of plasma can be measured using the duct part as a probe.
  • Plasma physical quantities are plasma parameters such as ion density, electron density, plasma transfer rate, and plasma temperature.
  • the number of probes to be inserted can be variously selected, such as one or two.
  • the duct part itself can be used as a probe without inserting the probe.
  • the polarity of the potential applied to the probe or the duct part used as the probe is selected as + or, and the potential intensity thereof is variously adjusted.
  • plasma since plasma has electrical conductivity, a plasma potential is applied to the duct portion in contact with the plasma.
  • the plasma parameter can be measured from the plasma potential applied to the duct part by measuring the voltage between the duct part and GND without applying any external voltage.
  • Probe force In some cases, the output waveform or wave height directly corresponds to the plasma parameter, and the plasma parameter can be derived by a predetermined calculation. Needless to say, the technical means applied in probe measurement can be adjusted according to the state of the plasma.
  • any one or a combination of the effective total length, the diameter, the number of bends, and the sum of the bend angles of the plasma traveling path is set so as to satisfy the drop rate reduction condition. Therefore, the droplet removal effect of the droplet removal unit installed in the plasma traveling path can be further improved.
  • the effective total length which is one of the effective elements, is set to 1600 to 900 mm, so that the droplet removal unit installed in the plasma traveling path drops.
  • the let removal effect can be further improved.
  • the diameter of the droplet which is one of the effective elements, is set to 200 to 90 mm, so that the droplets installed in the plasma traveling path are removed. The effect of removing the droplets at the remaining portion can be further improved.
  • the number of bends which is one of the effective elements, is set to 3 to 1, so that the drop of the droplet removing section installed in the plasma traveling path The let removal effect can be further improved.
  • the droplet installed in the plasma traveling path is set as a sum of the bending angles of 150 to 90 °, which is one of the effective elements. It is possible to further improve the droplet removing effect of the removing portion.
  • the present inventor has found that, apart from the form factor of the effective element, the arc current value in the plasma generation unit can also be an effective element for droplet removal. That is, according to the twenty-fourth aspect of the present invention, the droplet removal of the droplet removal unit installed in the plasma traveling path is adjusted by adjusting the arc current value in the plasma generation unit in the range of 140 to 30A. The effect can be further improved.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a plasma generating apparatus according to the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of an inner peripheral pipe 36 having a droplet collecting plate 38.
  • FIG. 3 is a schematic explanatory diagram of a droplet collecting plate 38 and its structure.
  • FIG. 5 is a graph showing the correlation between the total bend angle ⁇ (°) and arc current value 1 (A) of the plasma traveling path and the droplet removal rate.
  • FIG. 6 is a schematic arrangement configuration diagram of a plurality of expanded pipes.
  • FIG. 7 is a conceptual diagram showing various connection forms of two expanded pipes.
  • FIG. 8 is a schematic configuration diagram of another embodiment of the plasma generating apparatus according to the present invention.
  • FIG. 9 is an explanatory diagram of a rotating magnetic field formed in the diameter expansion tube 3.
  • FIG. 10 is a schematic configuration diagram of still another embodiment of the plasma generating apparatus according to the present invention.
  • FIG. 11 is an explanatory diagram showing a state in which plasma passes through an eccentric passage hole of an aperture disposed in a diameter expansion tube.
  • FIG. 12 is an explanatory view of an aperture having an eccentric passage hole disposed in a diameter expansion pipe. 13] It is a schematic diagram of a conventional machining apparatus. Explanation of symbols
  • both a device provided with a plasma processing part (plasma processing part) for processing an object to be processed or a device without a plasma processing part are included as a plasma generating device.
  • a plasma generation apparatus having a plasma processing unit may be referred to as a plasma processing apparatus.
  • FIG. 1 is a schematic configuration diagram of a plasma generating apparatus according to the present invention.
  • a plasma generating apparatus 1 shown in the figure includes a plasma generating unit 2, a plasma processing unit 12, and a plasma traveling path 5.
  • the plasma traveling path 5 is provided with a droplet removing unit that removes droplets by-produced from the cathode 4 when plasma is generated.
  • the droplet removing portion includes a diameter-expanding pipe 3 that forms a plasma traveling path 5, an introduction-side diameter-reducing pipe 34 that is connected to the plasma introduction side start end of the diameter-expansion pipe 3, and a plasma discharge side of the diameter-expansion pipe 3.
  • the discharge side reduced diameter pipe 39 connected to the end and a stepped portion 40 formed at the start and end of the enlarged pipe 3 are configured.
  • a connecting traveling path 7 is connected to the upstream side of the introduction side reduced diameter pipe 34.
  • a rectilinear tube 41 is disposed in front of the plasma generating unit 2, and the connecting traveling path 7 is provided from the rectilinear tube 41 via a main bent portion 7a having a bending angle ⁇ of 90 °.
  • a drolet travel path 32 is formed in the straight travel pipe 41 in front of the main bent portion 7 a of the connection travel path 7.
  • the expanded diameter pipe 3 and the introduction side reduced diameter pipe 34 are connected so as to intersect with each other via an introduction bent portion 7b.
  • the bending angle ⁇ of the introduction bent portion 7b is 30 °.
  • the expanded pipe 3 includes an inner peripheral pipe 36 and an outer peripheral pipe 35.
  • the inner peripheral pipe 36 is attached in the outer peripheral pipe 35 via an insulating material 46 such as an insulating ring, and the inner peripheral pipe 36. And the outer pipe 35 are electrically insulated.
  • the inner peripheral pipe 36 is configured so as to be separated from the outer peripheral pipe 35 and taken out integrally with the insulating material 46, and is attached to the outer peripheral pipe 35 so as to be freely removable.
  • the plasma generator 2 includes a cathode (force sword) 4, a trigger electrode 6, an anode (anode) 8, an arc power supply 10, a cathode protector 27, and a plasma stabilization magnetic field generator (electromagnetic coil or magnet) 16.
  • the cathode 4 is a supply source of the plasma constituent material, and the forming material is not particularly limited as long as it is a conductive solid.
  • a single metal, an alloy, an inorganic simple substance, an inorganic compound (metal oxide / nitride) or the like is used alone. Alternatively, two or more types can be mixed and used.
  • the cathode protector 27 electrically insulates other than the evaporating cathode surface and prevents the plasma generated between the cathode 4 and the anode 8 from diffusing backward.
  • the material for forming the anode 8 is not particularly limited as long as it does not evaporate even at the plasma temperature and is a non-magnetic material having conductivity.
  • the shape of the anode 8 is not particularly limited as long as it does not block the whole progress of the arc plasma!
  • the plasma stabilizing magnetic field generator 16 is disposed on the outer periphery of the plasma generating unit 2 and stabilizes the plasma.
  • the plasma is further stabilized.
  • the plasma generating unit 2 and the straight tube 41 are electrically isolated by the plasma generating unit side insulating plate 42, and even when a high voltage is applied to the plasma generating unit 2, the front portion from the straight tube 41 is electrically connected. It is in a floating state and is configured so that the plasma is not electrically affected in the plasma path!
  • a processing portion side insulating plate 44 is interposed between the discharge side reduced diameter tube 39 and the plasma processing portion 12.
  • a bias power supply 48 is connected to the inner peripheral tube 36, and the force S can be set to set the inner peripheral tube 36 to a positive potential or to a negative potential.
  • the bias potential of the inner tube 36 is + potential, it has the effect of pushing out positive ions in the plasma in the transport direction, and in the case of potential, it has the effect of pushing out electrons in the plasma in the transport direction.
  • the choice of + is selected in a direction that does not reduce the plasma transfer efficiency, and is determined by the state of the plasma.
  • the potential intensity is also variable, and usually the inner tube 36 is set to + 15V from the viewpoint of transport efficiency.
  • a probe power source 49 is connected to the outer tube 35, and the potential of the duct portion that is in conduction with the outer tube 35 is adjusted. Since the plasma itself has a plasma potential, the potential of the duct portion is a combined potential obtained by superimposing the probe potential and the plasma potential. When an oscilloscope is connected between the duct and GND, the waveform of the composite potential is measured, and the plasma parameters can be measured from the peak value and period. When the probe power supply is not connected, the potential of the duct portion becomes the plasma potential, and it is possible to measure the plasma potential by connecting an oscilloscope between the duct portion and GND. Since the plasma itself has electrical conductivity, the potential of the duct part reflects the plasma potential, so the above contents can be understood.
  • an electric spark is generated between the cathode 4 and the trigger electrode 6, and a vacuum arc is generated between the cathode 4 and the anode 8 to generate plasma.
  • the constituent particles of the plasma include evaporating substances from the cathode 4, charged particles (ions, electrons) originating from the evaporating substances and reaction gases, and molecules in the pre-plasma state and neutral particles of atoms.
  • droplets 18 of submicron to several hundred microns (0.01 to 1000 ⁇ m) size are emitted.
  • the droplet 18 forms a mixed state with the plasma flow, and moves in the plasma traveling path 7 as a droplet mixed plasma 9.
  • the plasma flow introduced into the expansion tube 3 from the introduction-side reduced diameter tube 34 at the droplet removing portion disposed in the plasma progression path 5 is expanded by the expansion tube 3 to expand the plasma progression path. Diffused by radial action.
  • the plasma stream 9b diffuses, but the droplets mixed in the plasma Since it travels straight, it diffuses into the inside of the expansion pipe 3 while colliding with the inner wall surface of the expansion pipe 3. Due to this diffusion, the number of droplets decreases at the center of the plasma flow, and a transition is made to a state in which many droplets are distributed around the outer periphery of the plasma fluid. Due to this distribution change, the droplet 18 collides with the stepped portion 40 and the inner wall surface of the inner peripheral pipe 36 and is attached and collected.
  • the droplets can be sufficiently collected by adhering to the vicinity of the stepped portion 40 and the inner wall of the inner peripheral pipe 36, and the droplets can be efficiently removed in the plasma traveling path 5.
  • the droplet removal part can be configured simply and inexpensively by simply forming the diameter expansion tube 3 in the plasma traveling path 5, and the plasma processing part 12 can produce high purity plasma obtained by improving the droplet removal efficiency.
  • the processing accuracy of the surface treatment such as film formation can be improved, and the surface modification of the surface of the object to be processed can greatly improve the uniformity of the formed film.
  • the inner diameter of the inlet side diameter-reduced pipe 34 and the outlet side diameter-reduced pipe 39 is the same, and the degree of diameter expansion of the inner diameter pipe 36 of the diameter-expanded pipe 3 is about 1.2 to 3 times that of the former. If it is.
  • the inner peripheral pipe 36 is made detachable from the outer peripheral pipe 35 in the diameter expansion pipe 3, the inner peripheral pipe 36 contaminated with the droplet can be exchanged at any time, and the droplet The cleaning workability is improved, and the plasma generation process can be performed smoothly without reducing the operation efficiency of the plasma generation apparatus.
  • the joint surface has an elliptical shape.
  • a bent-type plasma traveling path is formed by the introduction-side reduced diameter tube 34, the discharge-side reduced diameter tube 39, and the expanded diameter tube 3, so that the droplets diffused in the expanded diameter tube 3 can be more efficiently produced.
  • Near the step 40 and the inner wall of the expanded pipe 3 Can adhere and collect. Therefore, the droplets mixed in the plasma flow can be separated with high efficiency, and the highly purified plasma flow can be discharged from the discharge side reduced diameter tube to improve the droplet removal efficiency.
  • the plasma flow discharged from the diameter expansion pipe 3 collides with the inner wall of the diameter reduction pipe 39, and can circulate in the discharge side diameter reduction pipe while meandering. Therefore, compared with the case of the parallel arrangement, after the droplets are deposited and collected by colliding with the vicinity of the stepped portion 40 and the inner wall of the inner peripheral pipe 36, the droplets mixed in the vicinity of the center of the plasma flow Even if the droplet is discharged from the pipe 36, the driplet advances straight, collides with the inner wall 39 of the reduced-side diameter-reduced pipe, and adheres and collects, so that the droplet can be removed with higher efficiency.
  • FIG. 2 is a partially enlarged cross-sectional view of the inner peripheral pipe 36 having the droplet collecting plate 38.
  • a plurality of droplet collecting plates 38 are planted on the inner wall of the inner peripheral pipe 36.
  • the inclination angle ⁇ of the droplet collection plate 38 is set in the range of 15 to 90 °, but empirically 30 to 60 ° is preferable, and in this embodiment ⁇ is set to 45 °. At this inclination angle, the droplets 18 separated from the plasma flow 9b can be reliably attached and recovered while being subjected to multiple reflection as shown in the drawing of the droplet collecting plate 38.
  • FIG. 3 is a partial cross-sectional view of the structure of the droplet collection plate 38
  • (3A) is a partial cross-sectional view thereof
  • (3B) is an external view of one droplet collection plate 38.
  • Droplet collecting plate 38 Therefore, the collection area of the droplet collection plate 38 is increased, and the collection efficiency can be improved. Further, the droplet 18 that collides with the concave portion is securely fixed in the concave portion, and the droplet collecting efficiency is remarkably increased.
  • a line processing or a satin processing For example, a polishing process using abrasive paper is used as the line processing method.
  • the satin processing method uses, for example, blasting with alumina, shots, grids, glass beads, and the like. Fine irregularities can be applied to a narrow surface.
  • the collection surface of the droplet collection plate 38 is inclined by about 45 ° with respect to the inner wall of the inner peripheral pipe 36. Therefore, in a state where the droplet collecting plate 38 is attached to the inner peripheral pipe 36, the collecting surface is arranged obliquely toward the introduction-side reduced diameter pipe 34, so that a drop flowing into the inner peripheral pipe 36 is provided. Increases the area that receives the lett. Therefore, the droplet removal efficiency can be further improved by improving the collection efficiency of the droplet collection plate 38. In addition, by tilting about 45 °, it is possible to prevent the collected droplets from colliding and reflecting on the collecting surface and jumping out of the collecting plate again.
  • a large number of similar droplet collection plates 37 for reduced diameter pipes are also implanted in the introduction side reduced diameter pipe 34 and the discharge side reduced diameter pipe 39!
  • the droplet collecting plate 37 for the reduced diameter tube may be disposed at an appropriate inclination angle similarly to the force of the drop collecting plate 18 that is arranged upright at 90 ° with respect to the inner surface of the reduced diameter tube. Needless to say.
  • the force S in which a large number of droplet collecting plates 33 are disposed also on the inner surfaces of the connection traveling tube 7 and the droplet traveling path 32 is not shown.
  • the inclined arrangement of these droplet collecting plates 33 is the same as described above.
  • a linearly moving tube 32 to which a connecting traveling path 7 is connected is provided with a first magnetic field generator 26 and a bending magnetic field generator 28, and the connecting traveling path 7 and the introduction side reduced diameter tube.
  • second magnetic field generators 30 and 30 are arranged on the outer periphery of 34.
  • a rectilinear magnetic field generator 24 is disposed on the outer periphery of the expanded diameter tube 3
  • a third magnetic field generator 31 is also disposed on the outer periphery of the discharge side reduced diameter tube 39.
  • the first magnetic field generator 26, the second magnetic field generator 30, the third magnetic field generator 31 and the straight magnetic field generator 24 are provided for advancing the plasma.
  • the droplet can be removed with high efficiency by a synergistic effect with the droplet removal by the droplet removal unit provided in the plasma traveling path 5. Further, the droplet collection efficiency can be further increased by arranging the introduction-side reduced diameter pipe 34 and the discharge-side reduced diameter pipe 39 in an inclined manner with respect to the expanded diameter pipe 3.
  • the introduction-side diameter-reduced tube 34 is slightly reduced in diameter relative to the connection traveling path 7, and the force that allows the droplets to be removed by this diameter reducing action is located in the vicinity of the connection portion with the connection progression path 7.
  • An aperture for collecting mouthlets 50 is provided.
  • an aperture 51 for collecting droplets is disposed.
  • a disk-type aperture can be used in which the tube diameter of the plasma traveling path is reduced, or the opening shape is deformed by eccentricity or reduced or eccentricity.
  • the high purity is obtained by removing the droplets by the droplet collecting unit 20 and the droplet removing unit and the apertures 50 and 51 in the plasma traveling path 5
  • the plasma 9a is guided by the magnetic field of the third magnetic field generator 31 disposed in the discharge-side reduced diameter tube 39, is introduced into the plasma processing unit 12, and the surface treatment of the workpiece 14 is performed. . Therefore, uniform surface modification can be performed on the surface of the object to be processed by high-purity plasma, and a high-quality thin film with few defects and impurities can be formed.
  • any one or a combination of the total effective length, diameter, number of bends, and bend angles of the plasma traveling path is used. These form factors are effective factors.
  • (5A) in Fig. 4 and Fig. 5 shows these shapes. The result of having verified the effectiveness about a mode factor is shown. In this verification, the plasma advancing path was formed of a pipe with the same diameter over the entire length.
  • Figure 4 shows the effective total length L (mm), diameter D (mm), number of bends N and droplet of the plasma path.
  • FIG. 5 It is a graph which shows correlation with a removal rate.
  • the vertical axis in Fig. 4 indicates the number of droplets deposited on the workpiece per unit area (2.5inch x 2.5inch).
  • N ⁇ 100 is set as the target value of the surface treatment capability in the plasma processing unit 12, that is, the droplet reduction condition. The target value was set.
  • N / N on the vertical axis in (5A) of Fig. 5 represents the object to be processed in the case of only the straight plasma traveling path.
  • the bending angle is the angle at which the pipe is bent with respect to the plasma flow.
  • the droplet reduction condition can be satisfied by setting the total bending force S 150 to 90 °.
  • the plasma travel path is set such that any one or a combination of the effective total length, diameter, number of bends, and sum of bend angles satisfies the droplet reduction condition.
  • the droplet removal effect of the droplet removal unit installed in the traveling path can be further improved.
  • the total effective length, diameter, number of bends, and bend angle of the plasma traveling path are 1500 mm, 200 mm, 3 (3 by the main bend 7a, the introduction bend 7b, and the discharge bend 7c, respectively. ), 150 ° (90. + 30 ° + 30 °), including the effective elements of the above form factors.
  • the arc current value in the plasma generation unit 2 can also be an effective element for droplet removal.
  • Fig. 5 shows the arc current value in plasma generator 2 with respect to N / N on the vertical axis. Show the relationship. That is, by adjusting the arc current value in the plasma generating unit 2 in the range of 140 to 30 A, the droplet reduction condition can be satisfied as in the form factor of the effective element. Droplet removal efficiency can be further improved by the combined use with such a droplet removal unit.
  • FIG. 6 is an example of the arrangement of a plurality of diameter expansion tubes, and shows a plasma traveling path in which two diameter expansion tubes 200 and 201 are connected in a straight line via a relay diameter reduction tube 202.
  • the introduction-side diameter-reduced pipe 203 is inclined with respect to the diameter-expanded pipe 201, the diameter-expanded pipe 201 is connected to the diameter-expanded pipe 200 via the relay diameter-reduced pipe 202, and the diameter-expanded pipe 200 is further connected to the discharge side.
  • a reduced diameter tube 204 is connected.
  • the effect of removing droplets at the stepped portions formed in the enlarged diameter pipes 200 and 201 is enhanced by decentering so that the pipe axes of the pipes connected to each other do not match.
  • the relay diameter-reduced tube 202 may be formed in a curved shape, and a plasma induction magnetic field generation unit may be provided outside to connect a plurality of diameter-expanded tubes while increasing the degree of bending of the plasma traveling path.
  • FIG. 7 is a conceptual diagram showing various connection forms of two diameter-expanding tubes.
  • (7A) shows the case where the pipe axes of the expanded pipes 200 and 201 are matched. In this case, the plasma flow P proceeds in a straight line, and the droplet D is collected at the stepped portion and the inner peripheral surface of the expanded pipe.
  • (7B) shows a case where the pipe axes of the expanded pipes 200 and 201 are shifted. In this case, the plasma flow P is slightly meandered, and the droplet D is separated from the plasma flow P by this meandering, so that the trapping of the step portion of the droplet D is enhanced.
  • the reduced diameter tube 203 and the discharge side reduced diameter tube 204 are parallel to each other.
  • the plasma flow P meanders in an S shape, and the droplet D is forcibly separated from the plasma flow P by this S meandering.
  • the trapping effect by the stepped portion of the enlarged diameter pipe of the droplet D is enhanced.
  • the pipe axis of the introduction side reduced diameter pipe 203 and the discharge side reduced diameter pipe 204 intersect.
  • the plasma flow P meanders in a curved shape, and the droplet D is separated from the plasma flow P by this curved meander, and the collection effect by the stepped portion of the enlarged diameter pipe of the droplet D is enhanced.
  • the combination of both increases the diversity.
  • the diversity increases further when the number of expanded pipes is three or more, but the criterion for selection is to maximize the droplet collection efficiency and at the same time to suppress the decrease in plasma transfer efficiency.
  • FIG. 8 is a schematic configuration diagram of another embodiment of the plasma generating apparatus according to the present invention.
  • the same reference numerals are used for the same parts as in FIG. 1, and the description is omitted because the operational effects are the same. In the following, the effects of different sign parts will be described.
  • the oscillating magnetic field generators 22 and 22 (see Fig. 9) that generate the oscillating magnetic field B in the axial direction
  • the magnetic field B and the oscillating magnetic field B are arranged so as to be orthogonal.
  • Straight magnetic field B in the Z-axis direction is straight
  • the rotating magnetic field is composed of the oscillating magnetic field B and the oscillating magnetic field B.
  • the rotating magnetic field generating means of the present invention include a combination of the oscillating magnetic field generators 22a and 22a and the oscillating magnetic field generators 22 and 22.
  • a helical magnetic field is formed by combining the rotating magnetic field and the straight magnetic field.
  • the rectilinear magnetic field generator 24 is composed of an electromagnetic coil wound around the outer periphery of the enlarged diameter portion 3. Therefore, the droplet mixed plasma travels while spirally rotating in the cylindrical traveling path by the rotating magnetic field and the straight magnetic field.
  • the droplet 18 is strongly separated from the plasma flow 9b by the centrifugal force based on this rotation, and is efficiently captured by the droplet collection plate 38 and the stepped portion 40. Dosage by tilt angles ⁇ and ⁇
  • centrifugal separation is added in this embodiment, which further enhances the droplet separation efficiency.
  • FIG. 9 is an explanatory diagram of the rotating magnetic field formed in the diameter expansion tube 3.
  • (9A) includes the oscillating magnetic field generator B (t) at time t by the oscillating magnetic field generators 22a and 22a, and the time t by the oscillating magnetic field generators 22 and 22.
  • the synthesized magnetic field B is synthesized from B, and the droplet mixed plasma 9 is
  • a rotating magnetic field B (t) is synthesized from the oscillating magnetic fields B (t) and B (t). That is, time t is t
  • the rotating magnetic field B (t) rotates from B (t) to B (t). Therefore, the oscillating magnetic field generator 22a, 22
  • time notation (t) is omitted and expressed as oscillating magnetic field B, B and rotating magnetic field B.
  • (9B) and (9C) include an oscillating magnetic field B, B, a straight magnetic field B, a rotating magnetic field B, and a synthetic magnetic field B.
  • Magnetic field B rotates at a constant intensity. Therefore, the plasma flow is rotated in a circle while
  • the vector of the rotating magnetic field B rotates in an elliptical shape. Therefore, the plasma flow is in the Y direction
  • the diameter expansion tube 3 advances while rotating in an elliptical shape.
  • the droplets can be efficiently removed by the centrifugal force due to the perfect circle rotation or the elliptical rotation.
  • FIG. 10 is a schematic configuration diagram of still another embodiment of the plasma generating apparatus according to the present invention.
  • two apertures 25 having front and rear apertures 25a at eccentric positions are arranged in the diameter-expanded tube 3.
  • the plasma flow 9b meanders through the expansion tube 3.
  • the plasma flow 9b (also written as P) and the droplet 18 (also written as D) are separated and removed. That is, the small droplet D associated with the plasma P is ejected to the outside and collides with the wall surface of the aperture 25 when the plasma P curves and passes through the eccentric passage hole 25a of the aperture 25.
  • the oblique magnetic field generator includes a rectilinear magnetic field generator 24 disposed on the outer peripheral surface of the diameter expansion tube 3, and radial magnetic field generators 23 and 23a disposed on the outer periphery.
  • the oblique magnetic field is formed by the combination of the linear magnetic field and the radial magnetic field, and the plasma P is guided by this oblique magnetic field and advances in a curved manner through the eccentric passage hole 25a of the aperture 25.
  • an eccentric passage hole 25a is formed on the left side of the aperture 25 on the start side, and an eccentric passage hole 25a is formed on the right side of the aperture 25 on the end side.
  • the radial magnetic field generator 23 on the start side has N poles arranged on the right side of the figure and the S poles arranged on the left side
  • the radial magnetic field generator 23 on the end side has N poles arranged on the left side of the figure.
  • the S pole is placed on the right! / Therefore, a radial magnetic field from the right side to the left side is formed on the start end side of the diameter expansion tube 3, and a radial magnetic field from the left side to the right side is formed on the end side.
  • a left-handed oblique magnetic field is generated on the start end side of the diameter expansion tube 3, and a right-handed oblique magnetic field is generated on the end side.
  • the plasma P is guided to the left side by the oblique magnetic field on the starting end side of the expansion pipe 3 and is bent to the left to pass through the eccentric passage hole 25a of the aperture 25 on the starting end side.
  • it is induced by a rightward oblique magnetic field, and the plasma is bent to the right and passes through the eccentric passage hole 25a of the aperture 25 on the end side.
  • the small droplet D accompanying the plasma P is ejected outward by the curvature of the plasma P and collides with the wall surfaces of the aperture 25 on the start side and the aperture 25 on the end side and is removed. Therefore, the surface of the workpiece 14 of the plasma processing unit 12 can be treated with the high-purity plasma P that does not contain the droplet D.
  • the discharge side reduced diameter tube 39 is provided with a third magnetic field generator 31 for advancing the plasma 9a toward the plasma heating section 12.
  • FIG. 11 is an explanatory view showing a state in which plasma passes through an eccentric passage hole of an aperture disposed in a diameter expansion tube.
  • the aperture arranged in the expanded pipe 3 When the plasma P bends and passes through the 25 eccentric passage holes 25a, the small droplet D accompanying the plasma P jumps outward when the plasma P is bent.
  • the small droplet D that jumps out to the start side collides with the wall surface of the aperture 25 and is removed.
  • the small droplet D that jumps out to the terminal side collides with the wall surface of the terminal-side aperture 25 (not shown) and is removed.
  • FIG. 12 shows an aperture disposed in the expanded pipe
  • (12A) is a perspective view of an aperture 25 having an eccentric passage hole 25a on the left side
  • (12B) has an eccentric passage hole 25a on the right side
  • FIG. 3 is a perspective view of an aperture 25 having the same.
  • an eccentric passage hole 25a is formed on the left side of the aperture 25 arranged on the start end side of the expanded pipe 3
  • a plasma P is formed on the left end of the eccentric passage hole 25a on the start end side. Pass through curved 25a.
  • the aperture 25 arranged on the end side of the expanded pipe 3 has an eccentric passage hole 25a on the right side of the figure, and the plasma P passes through the right side eccentric passage hole 25a on the end side. Curved and passes.
  • meander separation is 3
  • the plasma generating apparatus can provide a droplet removing unit in the plasma traveling path and introduce a high-purity and uniform plasma flow into the plasma processing unit.
  • the droplet removal section can be configured simply and inexpensively by simply forming a diameter expansion tube in the plasma traveling path.
  • a high-purity plasma generated by the plasma generation apparatus according to the present invention a high-purity thin film with significantly fewer defects and impurities on the surface of the solid material is formed in the plasma, or the plasma is irradiated.
  • the surface properties of solids can be uniformly modified without adding defects or impurities.For example, high-quality wear-resistant corrosion-resistant films, protective films, optical thin films, transparent conductive films on solid surfaces, etc. In addition, it can be formed with high precision S.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Description

明 細 書
拡径管型プラズマ生成装置
技術分野
[0001] 本発明は、真空雰囲気下に設定されたアーク放電部で真空アーク放電を行ってプ ラズマを発生させ、プラズマの発生時に陰極から副生する陰極材料粒子(以下、「ド ロップレット」と!/、う)を除去するドロップレット除去部を備えたプラズマ生成装置に関 する。
背景技術
[0002] 一般に、プラズマ中で固体材料の表面に薄膜を形成したり、イオンを注入すること により、固体の表面特性が改善されることが知られている。金属イオンや非金属ィォ ンを含むプラズマを利用して形成した膜は、固体表面の耐磨耗性 ·耐食性を強化し、 保護膜、光学薄膜、透明導電性膜などとして有用なものである。特に、カーボンブラ ズマを利用した炭素膜はダイヤモンド構造とグラフアイト構造のアモルファス混晶から なるダイヤモンドライクカーボン膜 (DLC膜という)として利用価値が高い。
[0003] 金属イオンや非金属イオンを含むプラズマを発生する方法として、真空アークブラ ズマ法がある。真空アークプラズマは、陰極と陽極の間に生起するアーク放電で形成 され、陰極表面上に存在する陰極点から陰極材料が蒸発し、この陰極蒸発物質によ り形成されるプラズマである。また、雰囲気ガスとして反応性ガス又は/及び不活性 ガス(希ガスと!/、う)を導入した場合には、反応性ガス又は/及び不活性ガスも同時 にイオン化される。このようなプラズマを用いて、固体表面への薄膜形成やイオンの 注入を行って表面処理を行うことができる。
[0004] 一般に、真空アーク放電では、陰極点から陰極材料イオン、電子、陰極材料中性 粒子(原子及び分子)といった真空アークプラズマ構成粒子が放出されると同時に、 サブミクロン以下から数百ミクロン(0· 0;!〜 1000 m)の大きさのドロップレットと称さ れる陰極材料微粒子も放出される。しかし、成膜等の表面処理において問題となる のはドロップレットの発生である。このドロップレットが被処理物表面に付着すると、被 処理物表面に形成される薄膜の均一性が失われ、薄膜の欠陥品となる。 [0005] ドロップレットの問題を解決する一方法として、磁気フィルタ法(P.J. Martin, R.P. Ne tterfield and T.J. Kinder, Thin Solid Films 193/194 (1990)77) (非特許文献 1)がある
。この磁気フィルタ法は、真空アークプラズマを湾曲したドロップレット捕集ダクトを通 して処理部に輸送するものである。この方法によれば、発生したドロップレットは、ダク ト内周壁に付着捕獲(捕集)され、ダクト出口ではドロップレットをほとんど含まな!/ヽプ ラズマ流が得られる。また、ダクトに沿って配置された磁石により湾曲磁場を形成し、 この湾曲磁場によりプラズマ流を屈曲させ、プラズマを効率的にプラズマ加工部に誘 導するように構成されている。
[0006] 特開 2002— 8893号公報(特許文献 1)にはドロップレット捕集部を有するプラズマ 加工装置が開示されている。図 13は、従来のプラズマ加工装置の構成概略図である 。プラズマ発生部 102では、陰極 104とトリガ電極 106の間に電気スパークを生起し、 陰極 104と陽極 108の間に真空アークを発生させてプラズマ 109が生成される。プラ ズマ発生部 102には、電気スパーク及び真空アーク放電を発生するための電源 110 が接続され、プラズマ 109を安定化させるプラズマ安定化磁場発生器 116a、 116b が配設されて!/、る。プラズマ 109はプラズマ発生部 102からプラズマ加ェ部 112に誘 導され、プラズマ加工部 112に配置された被処理物 114が前記プラズマ 109により 表面処理される。また、プラズマ加工部 112に接続されるガス導入システム Gtにより 必要に応じて反応性ガスが導入され、ガス排気システム Ghにより反応ガスやプラズ マ流が排気される。
[0007] プラズマ発生部 102から放出されるプラズマ 109は、磁場によりプラズマ発生部 10 2と対面しない方向に屈曲され、プラズマ加工部 112に流入される。プラズマ発生部 102と対面する位置には、プラズマ 109の発生時に陰極から副生される陰極材料微 粒子(ドロップレット) 118が捕集されるドロップレット捕集部 120が配設されている。従 つて、磁場の影響を受けないドロップレット 118がドロップレット捕集部 120に進行して 捕集され、ドロップレット 118がプラズマ加工部 112内に進入することが防止される。 特許文献 1 :特開 2002— 8893号公報
非特許文献 1 : P.J. Martin, R.P. Netterfield and T.J. Kinder, Thin Solid Films 193/1 94 (1990)77 発明の開示
発明が解決しょうとする課題
[0008] 図 13に示した、従来のプラズマ加工装置では、前記磁場の影響を受けないドロッ プレット 118がドロップレット捕集部 120に捕集される力 S、プラズマ 109との相互作用 などにより電荷が付与された帯電ドロップレットが磁場によりプラズマ加工部 112に誘 導される場合があった。更に、ドロップレット捕集部 120に捕集されない、粒径の小さ なドロップレットがプラズマ流に随伴してプラズマ加工部 112に誘導されて!/、た。従つ て、捕集されずにプラズマ流に混入した帯電ドロップレットや微小なドロップレット等の ドロップレットが被処理物表面に付着するため、被処理物表面に対する薄膜形成や 表面改質の均一性が失われ、被処理物の表面特性を低下させると!/、つた問題を生じ ていた。
[0009] また、非特許文献 1に記載の磁気フィルタ法においても、前述のように、湾曲磁場 によりプラズマ流を屈曲させ、プラズマを効率的にプラズマ加工部に移動させるもの であるから、プラズマ流に混入する帯電ドロップレットや微小なドロップレットが除去さ れずにプラズマ加工部に誘導され、被処理物表面に衝突又は付着することを防止で きなかった。
[0010] 最近のプラズマ成膜技術にお!/、ては、種々の材料を用いた成膜が行われて!/、るが 、成膜装置による平滑性等の成膜精度の向上が求められている。上述のように、ドロ ップレット付着が成膜精度に強く影響することから、プラズマ生成装置におけるドロッ プレット除去効率の向上が必要とされている。また、図 13のように、ドロップレット除去 用磁場発生装置等を多く設置すると、装置の複雑化を生じ、しかも装置や成膜処理 費用のコストアップを招来する問題があった。
[0011] 従って、本発明の目的は、プラズマ生成装置において生成されるプラズマに混入 するドロップレットを効率的に除去し、し力、も簡易かつ安価にドロップレット除去部を構 成でき、高純度プラズマによる成膜等の表面処理精度の向上を図ることのできるブラ ズマ生成装置を提供することである。
課題を解決するための手段
[0012] 本発明は、上記課題を解決するために提案されたものであって、本発明の第 1の形 態は、真空雰囲気下で真空アーク放電を行ってプラズマを発生させるプラズマ発生 部と、前記プラズマ発生部により発生されたプラズマが被プラズマ処理部側に進行す るプラズマ進行路とを備えたプラズマ生成装置において、前記プラズマ進行路に、プ ラズマの発生時に陰極から副生するドロップレットを除去するドロップレット除去部を 配置し、このドロップレット除去部は、拡径管と、前記拡径管のプラズマ導入側始端に 連接された導入側縮径管と、前記拡径管のプラズマ排出側終端に連接された排出 側縮径管と、前記拡径管の前記始端及び前記終端に形成された段差部とから構成 されるプラズマ生成装置である。
[0013] 本発明の第 2の形態は、前記第 1の形態において、前記導入側縮径管及び/又は 前記排出側縮径管の管軸を前記拡径管の管軸に対して所定屈曲角で傾斜配置さ せ、前記導入側縮径管及び/又は前記排出側縮径管を前記拡径管に連接したブラ ズマ生成装置である。
[0014] 本発明の第 3の形態は、前記第 1又は第 2の形態において、前記導入側縮径管及 び前記排出側縮径管の管軸が前記拡径管に対して互いに交差するように配置した プラズマ生成装置である。
[0015] 本発明の第 4の形態は、前記第 2又は第 3の形態において、前記プラズマ進行路は
、前記プラズマ発生部に連接された直進管を有し、前記導入側縮径管を前記直進管 に対して垂直又はほぼ垂直に連接し、前記直進管の終端にドロップレット捕集部を 配設したプラズマ生成装置である。
[0016] 本発明の第 5の形態は、前記第 2〜第 4のいずれかの形態において、前記拡径管 は、内周管と外周管からなり、前記内周管を前記外周管に対して揷脱自在にしたプ ラズマ生成装置である。
[0017] 本発明の第 6の形態は、前記第 5の形態において、前記内周管の内壁に複数のド ロップレット捕集板が植設されたプラズマ生成装置である。
[0018] 本発明の第 7の形態は、前記第 6の形態において、前記ドロップレット捕集板の表 面が粗面加工を施されているプラズマ生成装置である。
[0019] 本発明の第 8の形態は、前記第 7の形態において、前記ドロップレット捕集板を前 記導入側縮径管に向けて斜行配置したプラズマ生成装置である。 [0020] 本発明の第 9の形態は、前記第 1〜第 8のいずれかの形態において、前記導入側 縮径管及び前記排出側縮径管にドロップレット捕集用アパーチャ一を配設したブラ ズマ生成装置である。
[0021] 本発明の第 10の形態は、前記第 1〜第 9のいずれかの形態において、複数の前記 拡径管を、縮径管を介して連接したプラズマ生成装置である。
[0022] 本発明の第 11の形態は、前記第 1〜第 10のいずれかの形態において、前記拡径 管の断面周方向に回転磁場を発生させる回転磁場印加手段が少なくとも 1つ以上設 けられ、この回転磁場印加手段により前記プラズマに回転磁場を印加し、前記プラズ マを回転させながら前記拡径管を進行させて前記ドロップレットを遠心力により除去 するプラズマ生成装置である。
[0023] 本発明の第 12の形態は、前記第 11の形態において、前記回転磁場印加手段が 振動磁場を発生させる複数の振動磁場発生器から構成され、これらの振動磁場発生 器により位相及び振動方向が異なる複数の振動磁場を発生させ、これらの振動磁場 から前記回転磁場が合成されるプラズマ生成装置である。
[0024] 本発明の第 13の形態は、前記第 1〜第 10のいずれかの形態において、偏心位置 に通過孔を有するアパーチャ一が前記拡径管内に 1つ以上設けられ、前記拡径管 の外周に前記プラズマを前記アパーチャ一の偏心通過孔に通過させるための磁場 発生手段が配設されており、この磁場発生手段に基づく磁場により、前記プラズマは 前記拡径管内で湾曲して前記アパーチャ一の偏心通過孔を通過し、前記湾曲時に 前記ドロップレットを前記プラズマから分離させ、前記ドロップレットを前記アパーチャ 一の壁面に衝突させて除去するように構成されたプラズマ生成装置である。
[0025] 本発明の第 14の形態は、前記第 13の形態において、前記アパーチャ一は、前記 拡径管内に複数設けられ、隣り合う前記偏心通過孔は、その位置を互いにずらせて 配置されており、始端側のアパーチャ一の偏心通過孔を前記プラズマに随伴して通 過した前記ドロップレットは次のアパーチャ一の壁面に衝突して除去され、前記ブラ ズマは前記次のアパーチャ一の偏心通過孔を通過するように構成されたプラズマ生 成装置である。
[0026] 本発明の第 15の形態は、前記第 13又は 14の形態において、前記磁場発生手段 は、斜行磁場発生器で構成され、この斜行磁場発生器は前記拡径管の軸方向から 斜行した方向に斜行磁場を形成し、この斜行磁場により、前記プラズマを前記ァパー チヤ一の偏心通過孔に通過させるようにしたプラズマ生成装置である。
[0027] 本発明の第 16の形態は、前記第 1〜第 15のいずれかの形態において、前記導入 側縮径管と前記拡径管と前記排出側縮径管を少なくとも含むプラズマ搬送用のダク ト部は、前記プラズマ発生部及び前記被プラズマ処理部と電気的に絶縁されてレ、る プラズマ生成装置である。
[0028] 本発明の第 17の形態は、前記第 1〜第 16のいずれかの形態において、前記ダクト 部にバイアス電圧を印加するプラズマ生成装置である。
[0029] 本発明の第 18の形態は、前記第 1〜第 17のいずれかの形態において、前記ダクト 部内にプローブを揷入するか、又は前記ダクト部をプローブとして利用して、プラズマ の物性量を測定するプラズマ生成装置である。
[0030] 本発明の第 19の形態は、前記第 1〜第 18のいずれかの形態において、前記ブラ ズマ進行路の有効全長、直径、屈曲数及び屈曲角の総和のいずれかひとつ又はそ の組み合わせがドロップレット低減条件を満足するように設定されたプラズマ生成装 置である。
[0031] 本発明の第 20の形態は、前記第 19の形態において、前記有効全長が 1600〜90
Ommで設定されたプラズマ生成装置である。
[0032] 本発明の第 21の形態は、前記第 19の形態において、前記直径が 200〜90mmで 設定されたプラズマ生成装置である。
[0033] 本発明の第 22の形態は、前記第 19の形態において、前記屈曲数が 3〜;!で設定 されたプラズマ生成装置である。
[0034] 本発明の第 23の形態は、前記第 19の形態において、前記屈曲角の総和が 150〜
90° で設定されたプラズマ生成装置である。
[0035] 本発明の第 24の形態は、前記第 1〜第 23のいずれかの形態において、前記ブラ ズマ発生部におけるアーク電流値が 140〜30Aの範囲で調整されたプラズマ生成 装置である。
発明の効果 [0036] 本発明の第 1の形態によれば、前記プラズマ進行路に配置したドロップレット除去 部は、拡径管と、前記拡径管のプラズマ導入側始端に連接された導入側縮径管と、 前記拡径管のプラズマ排出側終端に連接された排出側縮径管と、前記拡径管の前 記始端及び前記終端に形成された段差部とから構成されるので、前記導入側縮径 管より前記拡径管内に導入されたプラズマ流が前記拡径管による前記プラズマ進行 路の拡径作用により拡散される。そのプラズマ流の拡散により、プラズマに混入して いるドロップレットも前記拡径管内に拡散するため、前記段差部付近及び前記拡径 管の内側壁に衝突して付着、回収される。また、前記拡径管内のプラズマ流が排出 されるときには、前記拡径管から前記排出側縮径管への縮径作用により、前記拡径 管内壁面側に飛散したドロップレットが段差部に衝突して付着 ·回収され、プラズマ 流に合流することが無くドロップレットの再混入を防ぐことができる。従って、前記段差 部付近及び前記拡径管の内側壁にドロップレットを付着させて、十分に回収でき、前 記プラズマ進行路においてドロップレットを効率的に除去することができる。また、拡 径管と導入側縮径管及び/又は排出側縮径管の中心軸を合致させずに偏心させて おけば、プラズマ流からドロップレットが分離しやすくなり、ドロップレットの捕集効果が 一層高まる。しかも、前記プラズマ進行路に前記拡径管を形成するだけで、簡易か つ安価にドロップレット除去部を構成でき、更にドロップレット除去効率の向上により 得られる高純度プラズマを用いて成膜等の表面処理精度を向上させ、被処理物表 面の表面改質ゃ形成膜の均一性を格段に向上させることができる。
[0037] 本発明において、前記導入側縮径管及び/又は前記排出側縮径管の管軸を前記 拡径管の管軸に沿って屈曲させずに線状に配置しても、前記拡径管を用いた前記 プラズマ進行路の拡径作用及び縮径作用により、前記拡径管内に拡散されたドロッ ブレットを効率的に回収、除去することが可能である。しかし、本発明の第 2の形態に よれば、前記導入側縮径管及び/又は前記排出側縮径管の管軸を前記拡径管の 管軸に対して所定屈曲角で傾斜配置させ、前記導入側縮径管及び/又は前記排出 側縮径管を前記拡径管に連接したので、プラズマ進行路の屈曲により、ドロップレット は直進してプラズマ流から分離し、前記拡径管の内壁面及び/又は前記排出側縮 径管の内壁面に衝突させて付着、回収できる。前記拡径管の内壁で吸着されずに 反射したものは段差部に衝突して付着回収でき、ドロップレットの効率的な除去が可 能になる。及び/又はの用語により、前記屈曲は導入側のみ、排出側のみ、又は導 入側と排出側の両者に設けることができる。従って、プラズマ流に混入したドロップレ ットを高効率に分離することができ、高純度化されたプラズマ流を前記排出側縮径管 より排出させて、ドロップレット除去効率の向上を図ることができる。また、導入側縮径 管と拡径管の管軸を偏心させたり、排出側縮径管と拡径管の管軸を偏心させることに より、管軸合致させた場合よりドロップレット回収効率が高まることは前述した通りであ
[0038] 前記導入側縮径管及び前記排出側縮径管の管軸方向を互いに平行又はほぼ平 行にする平行配置の場合には、前記拡径管内を流通するプラズマ流の中心付近に 混入したドロップレットを分離できずに前記排出側縮径管を通過させ、被プラズマ処 理部側まで流通させてしまうおそれがある。しかし、本発明の第 3の形態によれば、前 記導入側縮径管及び前記排出側縮径管の管軸が前記拡径管に対して互いに交差 するように配置したので、前記導入側縮径管に対して交差する向きの前記排出側縮 径管内壁に、前記拡径管より排出されたプラズマ流が衝突し、蛇行しながら前記排 出側縮径管内を流通していく。従って、前記段差部付近及び前記拡径管の内側壁 に衝突させてドロップレットを付着、回収した後、プラズマ流の中心付近に混入したド ロップレットが記拡径管より排出されても、ドロップレットが直進して前記排出側縮径 管内壁に衝突し、付着し、回収されるので、より高効率にドロップレットを除去すること ができる。
[0039] 本発明の第 4の形態によれば、前記プラズマ進行路は、前記プラズマ発生部に連 接された直進管を有し、前記導入側縮径管を前記直進管に対して垂直又はほぼ垂 直に連接し、前記直進管の終端にドロップレット捕集部を配設したので、前記プラズ マ発生部において発生されたドロップレットの一部は前記直進管に沿って直進し、前 記ドロップレット捕集部に捕集され回収される。従って、前記直進管に対して垂直又 はほぼ垂直に連接された前記導入側縮径管には、プラズマ進行路の屈曲作用により 、ドロップレットの一部が除去されたプラズマ流が流入するため、本発明に係るプラズ マ進行路におけるドロップレット除去部によるドロップレット除去との相乗効果により、 ドロップレットの高効率除去が可能となる。
[0040] プラズマ進行路にドロップレット除去部を設置する場合には、内壁に付着したドロッ ブレットの剥離回収による清掃を必要とする力 S、清掃時にはプラズマ進行路の分解等 を伴い、プラズマ生成装置の稼動効率が低下するおそれを生じる。そこで、本発明の 第 5の形態によれば、前記拡径管において前記内周管を前記外周管に対して揷脱 自在にしたので、ドロップレットで汚染された前記内周管を随時、交換可能にすること ができ、ドロップレット清掃作業性が向上し、プラズマ生成装置の稼動効率を低下さ せずに、プラズマ生成処理を円滑に行うことができる。前記内周管の内面には多数 のドロップレット捕集板が形成され、内周管を抜き出してドロップレット捕集板の清掃- 修理が容易になる。内周管は外周管と電気的に導通させてもよいが、内周管を絶縁 リング等の絶縁材を介して外周管に固定すれば、内周管と外周管は電気的に絶縁さ れる。
[0041] 本発明の第 6の形態によれば、前記内周管の内壁に複数のドロップレット捕集板が 植設されているので、前記拡径管内でのドロップレット付着表面積を多くして、飛散ド ロップレットを大量かつ確実に付着、回収でき、プラズマ流の高純度化を実現するこ と力 Sできる。
[0042] プラズマ進行路にお!/、て、前記第 6の形態に係るドロップレット捕集板を多数個設 置すれば、ドロップレット除去面積を増大することができる力 進行路形状や内径等 の形態条件によって、設置数に限界を生じるといった課題を生じる。この課題に関し て、本発明者は、鋭意検討した結果、前記ドロップレット捕集板の表面に粗面加工を 施すことにより、この粗面にドロップレットが付着し易くなり、ドロップレットの捕集率の 向上を図ることが出来る点に着目した。即ち、本発明の第 7の形態によれば、前記ド ロップレット捕集板の表面が粗面加工を施されて!/、るので、前記ドロップレット捕集板 の捕集面積の増大と付着強度が増大して、捕集効率が向上しドロップレット除去効率 の向上に寄与することができる。
[0043] 前記ドロップレット捕集板を前記内周管の内壁に対し管軸に直交するように植設し ても捕集効果はある力 本発明の第 8の形態によれば、前記ドロップレット捕集板を 前記導入側縮径管に向けて斜行配置したので、ドロップレット捕集板間でドロップレ ットの再反射捕集確率が増加して逃散するドロップレットが少なくなり、また前記拡径 管内に流入するドロップレットを受ける面積が多くなり、前記ドロップレット捕集板の捕 集効率が向上しドロップレット除去効率の向上により一層寄与することができる。
[0044] 本発明の第 9の形態によれば、前記導入側縮径管及び前記排出側縮径管にドロッ ブレット捕集用アパーチャ一を配設したので、例えば、プラズマ進行路の管径を縮小 し、あるいは偏心により開口形状を変形させるアパーチャ一を用いて、プラズマ進行 路の始端及び終端において直進するドロップレットを捕集してドロップレット除去効率 の向上に寄与する。
[0045] 本発明の第 10の形態によれば、複数の前記拡径管を、縮径管を介して連接したの で、複数段階に亘つてドロップレットを除去することができ、高純度のプラズマ流を生 成すること力 Sできる。この場合に、拡径管と拡径管の管軸を偏心させればドロップレツ ト捕集効率が上がることは前述した通りである。
[0046] 本発明の第 11の形態によれば、ドロップレットが混合したプラズマが進行する拡径 管内の断面周方向に回転磁場を発生させる回転磁場印加手段が配置され、前記回 転磁場により前記ドロップレット混合プラズマが回転しながら進行するから、このドロッ プレット混合プラズマから遠心力により前記帯電ドロップレットや微小なドロップレット を分離することカできる。前記ドロップレット混合プラズマは、回転しながら前記筒状 進行路の断面周方向に屈曲して進行し、徐々に回転半径が拡大する。更に、前記 回転磁場が印加されな!/、領域まで進行すると、前記拡径管の終端側又は全体に印 カロされる直進方向の磁場により、前記拡径管の中心軸に近づくか、又は前記拡径管 の終端に向かって直進する。前記ドロップレットは、プラズマ構成粒子より質量が大き いため、急激なプラズマ流の進行方向の変化に追従できないから、前記ドロップレツ トを慣性力により前記拡径管内の壁面に衝突させて除去することができる。即ち、前 記回転磁場に固定された回転座表系から見れば、前記ドロップレットは回転磁場と質 量に比例する遠心力を受けるから、この遠心力により前記ドロップレットを前記ドロッ ブレット混合プラズマから分離して、高純度のプラズマ流を形成することができる。 また、磁場を増大させることにより、微小なドロップレットを除去することができ、大き な質量を有する帯電ドロップレットも、前記遠心力により高効率に除去することができ る。従って、本発明に係るドロップレット除去装置は、被処理物表面に高純度の薄膜 を形成することができ、前記被処理物表面に均一な表面改質を施すことができる。ま た、前記ドロップレット混合プラズマが進行する経路は、磁場強度を調整することによ り所望の大きさに設定することができるから、ドロップレット除去装置を小型化すること ができる。
更に、拡径管外周の直進磁場発生器による直進磁場との電磁相互作用により、プ ラズマ流が直進磁場の方向に沿って螺旋軌道を描きながら進行するから場合、前記 プラズマの旋回方向に回転する回転磁場を前記ドロップレット混合プラズマに印加す ることにより、前記ドロップレットに作用する遠心力を増大させることができる。従って、 前記ドロップレット混合プラズマから前記ドロップレットを高効率に分離して除去するこ と力 Sできる。
本発明の第 12の形態によれば、前記回転磁場印加手段が振動磁場を発生させる 複数の振動磁場発生器から構成され、これらの振動磁場発生器により位相及び振動 方向が異なる複数の振動磁場を発生させ、これらの振動磁場から前記回転磁場を合 成するから、この回転磁場を高精度に制御することができる。前記振動磁場発生器 は電磁石から構成され、取付け位置と印加電圧を調整することにより、振動磁場の位 相、振幅、振動数及び振動方向を自在に調節することができ、複数の振動磁場を組 み合わせることにより、所望の回転磁場を合成することができる。即ち、前記拡径管の 形状や大きさ、またはプラズマやドロップレットの特性や状態に応じて好適な回転磁 場を印加することができ、回転磁場の回転方向や強度等を自在に設定することがで きる。従って、プラズマ流が進行方向に沿って螺旋軌道を描きながら進行する場合、 前記プラズマ流の旋回方向に応じて回転磁場の回転方向を自在に選択することが できる。また、各振動磁場発生器の配置は、所望の回転磁場が合成可能であれば良 く、振動磁場発生器をプラズマ進行方向に沿って複数段に配置すれば更にドロップ レットを効率的に遠心力で除去できる。
前記回転磁場印加手段力 ¾つの振動磁場発生器から構成される場合、これらの振 動磁場が直交又は略直交するように前記振動磁場発生器が配設できるから、 2つの 振動磁場を、夫々、 X軸成分及び Y軸成分とすれば、種々の回転磁場を合成するこ と力 Sできる。
前記直交又は略直交する 2つの振動磁場の位相差が 90° 又は略 90° に設定さ れる場合、前記 2つの振動磁場により回転磁場を容易に制御することができ、安定し た回転磁場を発生させることができる。前記 2つの振動磁場の振幅を同一に設定す れば、回転磁場の強度を一定に維持することができ、前記ドロップレット混合プラズマ を円形に回転させながら筒状進行路内を進行させることができる。前記ドロップレット 混合プラズマの進行方向に沿って複数の回転磁場印加手段が前記筒状進行路に 配設される場合、複数段に亘つてドロップレットを除去することができ、高純度のブラ ズマ流を供給することができる。
前記複数の回転磁場印加手段により印加される各回転磁場の位相が同位相に設 定されると、簡易に複数の回転磁場印加手段を制御することができる。即ち、前記複 数の回転磁場印加手段に接続される制御装置を全て同条件に設定することができ、 複数の回転磁場を簡易に調整することができる。
前記複数の回転磁場印加手段により印加される各回転磁場の位相が前記ドロップ レット混合プラズマの進行方向に沿って交互に 180° 又は略 180° 異なるように設 定されると、前記ドロップレット混合プラズマが屈曲する方向が交互に逆方向となるか ら、遠心力により分離されるドロップレットの放出方向を交互に反転させることができ、 分離されたドロップレットが前記ドロップレット混合プラズマに再混入することを防止す ること力 Sでさる。
前記振動磁場発生器がコイルを巻回した馬蹄形磁性体から形成される場合、コィ ルの両端力も発生する磁場を拡径管内に印加することができ、前記磁性体に巻回さ れることにより磁場が増強されるから、高効率に振動磁場を発生させることができる。 従って、コイルの自己インダクタンスを小さく設定することができ、振動磁場の最大振 動数を増大させること力できる。更に、コイルから発生する熱量を前記馬蹄形磁性体 を介して放出すること力 Sでさる。
本発明の第 13の形態によれば、拡径管内に 1つ以上のアパーチャ一が設けられ、 このアパーチャ一の偏心位置に通過孔が設けられてレ、る。拡径管の外周に配設され た磁場発生手段によって、磁力線が前記偏心通過孔を湾曲状に通過するような磁場 が形成される。プラズマを構成する +イオンや電子は荷電粒子であるから、このブラ ズマは磁力線に巻き付きながら偏心通過孔を湾曲通過する。プラズマに随伴するド ロップレットは電荷を持ってレ、なレ、ので、プラズマがアパーチャ一の偏心通過孔を湾 曲通過するときにその慣性によって直進し、外側に飛び出してアパーチャ一の壁面 に衝突して除去される。従って、ドロップレットが殆ど混入しないプラズマだけで拡径 管の前方に配置される被処理物の表面を処理することができる。このように、ドロップ レットが殆ど混入しな!/、プラズマだけで被処理物の表面を処理できるから、被処理物 の表面に高純度の被膜を形成することができる。
また、拡径管内にアパーチャ一を配設するだけであるから、ドロップレットが付着し たアパーチャ一の壁面や筒状進行路の壁面を容易にオーバーホールでき、付着し たドロップレットを取り除く作業を簡単に行うことができる。このように、ドロップレット除 去装置全体の構造を簡単化することができ、安価で容易に装置を製作することがで きる。
[0049] 本発明の第 14の形態によれば、拡径管内に複数のアパーチャ一を設け、隣り合う アパーチャ一の偏心通過孔の位置を互いにずらせて配置している。従って、 1段目 のアパーチャ一の偏心通過孔をプラズマに随伴して通過した小さなドロップレットは プラズマが偏心通過孔を湾曲通過するときに、その'慣性によって直進して外側に飛 び出し、 2段目のアパーチャ一の壁面に衝突させて除去される。 3段目のアパーチャ 一をプラズマが湾曲通過するときに、更にプラズマに随伴している小さなドロップレツ トを除去することができる。このようにアパーチャ一を多段に設けることによって、ブラ ズマに随伴するドロップレットを少なくすることができて、筒状進行路の前方に配置さ れる被処理物の表面をより一層純度の高いプラズマで処理することができる。更に、 隣り合うアパーチャ一の偏心通過孔は、周方向に 180度位置をずらして配置すること ができることは勿論である力 90度あるいは 60度等ずらす角度は任意に選択するこ と力 Sできる。また、アパーチャ一の偏心通過孔の位置を径方向にずらして形成するこ とも可能である。
[0050] 本発明の第 15の形態によれば、磁場発生手段が斜行磁場発生器で構成されてい るので、この斜行磁場発生器によって、磁力線が偏心通過孔を湾曲状に通過するよ うな斜行磁場が形成される。斜行磁場発生器で斜行磁場を形成するから、この斜行 磁場をアパーチャ一の偏心通過孔に合わせて、自在に調整することができ、プラズ マ流をこの偏心通過孔に確実に誘導させることができる。
前記斜行磁場発生器が筒状進行路の外周面に斜行配置された電磁石又は永久 磁石で形成される場合、磁力線が偏心通過孔を湾曲状に通過する斜行磁場が形成 される。電磁石で斜行磁場を形成する場合には、コイルの巻数を多くすることによつ て、強力な斜行磁場を形成することができる。コイルの巻数を変えることによってコィ ル電流を可変するだけで、磁場の強さを簡単に大小制御することができる。電磁石の 傾きを変化させることにより、斜行磁場の角度を簡易に変更 ·調整することができる。 前記電磁石として超伝導磁石 (超伝導線をコイルにした電磁石)を用いることにより、 エネルギーの損失がほとんど無ぐ強磁場を発生することができる。また、永久磁石 で斜行磁場を形成する場合には、永久磁石の向きを調整することによって、ァパー チヤ一の偏心通過孔に合致した位置の斜行磁場を形成することができる。更に、拡 径管の外周に配置する永久磁石の N極と S極の位置を自在に選択することができ、 この永久磁石の N極と S極を簡単に取り付けることができる。
直進磁場発生器で発生される直進磁場と径方向磁場発生器で発生される径方向 磁場の合成により斜行磁場を形成すると、この斜行磁場は、磁力線が偏心通過孔を 湾曲状に通過する位置に形成される。径方向磁場を大きくすることによって、大きく 湾曲したプラズマ流を形成でき、偏心通過孔を通過する際にドロップレットを確実に 遮蔽除去できる。前記径方向磁場発生器が、筒状進行路の外周に X— X軸方向と Y Y軸方向に直角又は略直角に 2組配されると、 X— X軸方向と Y— Y軸方向の磁場 を所定の強度に設定することにより、所望の向きと強度を有する合成磁場を形成する ことができる。従って、プラズマをアパーチャ一の偏心通過孔に誘導する合成磁場を 形成すること力できる。また、 2組の径方向磁場発生器が電磁石で形成される場合、 電磁コイルの巻数を増加させるか又はコイル電流を調整することにより、合成磁場の 向き及び強度を自在に制御することができる。従って、アパーチャ一の偏心通過孔の 位置を適宜に設定し、この偏心通過孔の位置に適する合成磁場を容易に形成する こと力 Sでさる。 [0051] 本発明の第 16の形態によれば、前記導入側縮径管と前記拡径管と前記排出側縮 径管を少なくとも含むプラズマ搬送用のダクト部は、前記プラズマ発生部及び前記被 プラズマ処理部と電気的に絶縁される。即ち、ダクト部とは、前記プラズマ発生部及 び前記被プラズマ処理部を除く本装置のプラズマ搬送用配管の全領域を云い、多く の場合、ダクト部の全体が電気的導通性を有している。但し、拡径管の内部に絶縁 材を介して内周管を揷入する場合には、内周管は他のダクト部と電気的に浮動状態 になるが、この場合でも内周管はダクト部を構成する。被プラズマ処理部とは、プラズ 処理物を表面処理する加工部のことである。ダクト部の始端側とプラズマ発生部の間 に絶縁用プレートを介装し、ダクト部の終端側と被プラズマ処理部の間に絶縁用プレ 一トを介装するだけで、電気絶縁が達成される。この電気絶縁により、ダクト部(ブラズ マ搬送部)を電気的に浮動させることが可能になる。通常、プラズマ発生部は高電位 に設定され、被プラズマ処理部は接地されるから、前記電気絶縁により、ダクト部は 高電位及び GNDと離れた浮動状態に保持できる。この電気的浮動性により、プラズ マに対する電磁的作用が消去され、プラズマの搬送効率に対する影響が無くなり、ダ タト部の全長が長くなつてもダクト部におけるプラズマ量及びプラズマ密度の低下を 抑制でき、プラズマ搬送効率の低下を防止できる。
[0052] 本発明の第 17の形態によれば、前記ダクト部にバイアス電圧が印加されるから、ダ タト部のバイアス電位を調整することにより、プラズマの減衰を抑制でき、プラズマ搬 送効率を増加させることが可能になる。ダクト部の電位は +の場合と一の場合がある 。また、拡径部の中に挿入される内周管もダクト部に含まれる。拡径部にバイアス電 位を印加する場合には、プラズマと接触する内周管に印加することが好ましい。特に 、内周管が外周管と電気絶縁されている場合には、内周管にバイアス電位が印加さ れる。内周管と外周管の間にバイアス電圧を印加してもよいし、内周管と GNDの間 にバイアス電圧を印加してもよいなど、印加形態は好適に選択される。 +電位の場合 には、 +イオンは反発して搬送方向に押し出され、 電位の場合には電子が反発し て搬送方向に押し出される。 +—いずれの電位を印加するかは、プラズマ搬送効率 を増加させるように選択される。また電位の大きさも種々に調節され、プラズマ搬送効 率を増加させる電位強度が選択される。 [0053] 本発明の第 18の形態によれば、前記ダクト部内にプローブを揷入する力、、又は前 記ダクト部をプローブとして利用してプラズマの物性量を測定することができる。ブラ ズマ物性量とは、イオン密度、電子密度、プラズマ移動速度、プラズマ温度などのプ ラズマパラメータである。ダクト部内に前記プローブを揷入すると、プラズマ流に擾乱 を起こす場合があり、極力擾乱を起こしにくいプローブの大きさに調整される。揷入さ れるプローブの個数は 1本、 2本など種々に選択できる。この擾乱を避けるために、前 記プローブを揷入せずに、ダクト部自体をプローブとして利用することができる。前記 プローブ又はプローブとして利用されるダクト部に印加される電位の極性は +又は が選択され、その電位強度も種々に調整される。また、プラズマは導通性を有するか ら、このプラズマと接触するダクト部にはプラズマ電位が印加される。従って、外部電 圧を全く印加せずに、ダクト部と GNDの間の電圧を計測することにより、前記ダクト部 に印加されるプラズマ電位からプラズマパラメータを測定することができる。プローブ 力 出力される波形や波高などの値が前記プラズマパラメータと直接対応する場合も あり、また所定の計算によりプラズマパラメータを導出することもできる。プローブ計測 において適用される技術的手段は、プラズマの状態に応じて調節できることは云うま でもない。
[0054] 本発明の完成に至る経緯において、本発明者は、ドロップレット低減条件の目標を 達成するには、前記プラズマ進行路の有効全長、直径、屈曲数及び屈曲角の総和 の!/、ずれかひとつ又はその組み合わせ等の形態因子が有効要素となると!/、う知見を 得た。そこで、本発明の第 19の形態によれば、前記プラズマ進行路の有効全長、直 径、屈曲数及び屈曲角の総和のいずれかひとつ又はその組み合わせがドロップレツ ト低減条件を満足するように設定されているので、前記プラズマ進行路に設置した前 記ドロップレット除去部のドロップレット除去効果を一層向上させることができる。
[0055] 本発明の第 20の形態によれば、前記有効要素のひとつである前記有効全長が 16 00〜900mmで設定されることにより、前記プラズマ進行路に設置した前記ドロップ レット除去部のドロップレット除去効果を一層向上させることができる。
[0056] 本発明の第 21の形態によれば、前記有効要素のひとつである、前記直径が 200〜 90mmで設定されることにより、前記プラズマ進行路に設置した前記ドロップレット除 去部のドロップレット除去効果を一層向上させることができる。
[0057] 本発明の第 22の形態によれば、前記有効要素のひとつである、前記屈曲数が 3〜 1で設定されることにより、前記プラズマ進行路に設置した前記ドロップレット除去部 のドロップレット除去効果を一層向上させることができる。
[0058] 本発明の第 23の形態によれば、前記有効要素のひとつである、前記屈曲角の総 和が 150〜90° で設定されることにより、前記プラズマ進行路に設置した前記ドロッ プレット除去部のドロップレット除去効果を一層向上させることができる。
[0059] 本発明者は、前記有効要素の形態因子とは別に、前記プラズマ発生部におけるァ ーク電流値もドロップレット除去に有効な要素になり得るといった知見を得た。即ち、 本発明の第 24の形態によれば、前記プラズマ発生部におけるアーク電流値が 140 〜30Aの範囲で調整されることにより、前記プラズマ進行路に設置した前記ドロップ レット除去部のドロップレット除去効果を一層向上させることができる。
図面の簡単な説明
[0060] [図 1]本発明に係るプラズマ生成装置の実施例の概略構成図である。
[図 2]ドロップレット捕集板 38を有する内周管 36の部分拡大断面図である。
[図 3]ドロップレット捕集板 38及びその構造体の概略説明図である。
[図 4]プラズマ進行路の有効全長 L (mm)、直径 D (mm)、屈曲数 Nと単位面積当た
B
りの被処理物へのドロップレット付着数との関係を示すグラフである。
[図 5]プラズマ進行路の屈曲角の総和 Θ (° )及びアーク電流値 1 (A)とドロップレット 除去率との相関関係を示すグラフである。
[図 6]複数の拡径管の概略配置構成図である。
[図 7]2個の拡径管の更に多様な接続形態を示す概念図である。
[図 8]本発明に係るプラズマ生成装置の別実施例の概略構成図である。
[図 9]拡径管 3に形成される回転磁場の説明図である。
[図 10]本発明に係るプラズマ生成装置の更に他の実施例の概略構成図である。
[図 11]拡径管内に配設されるアパーチャ一の偏心通過孔をプラズマが通過する状態 を示す説明図である。
[図 12]拡径管内に配設される偏心通過孔を有するアパーチャ一の説明図である。 園 13]従来 マ加工装置の構成概略図である。 符号の説明
Figure imgf000020_0001
'発生部
Figure imgf000020_0002
プラズマ進行路
トリガ電極
連結進行路
主折曲部
導入折曲部
排出折曲部
Figure imgf000020_0003
アーク電源
プラズマ加工部
被処理物
'安定化磁界発生器
アパーチャ一
a 偏心通過孔
第 1磁場発生器
陰極プロテクタ
屈曲磁場発生器
第 2磁場発生器
第 3磁場発生器
ドロップレット進行路
ドロップレット捕集板
導入側縮径管
外周管
内周管
縮径管用ドロップレット捕集板 ドロップレット捕集板
a 粗面
排出側縮径管
段差部
直進管
プラズマ発生部側絶縁プレート 加工部側絶縁プレート 絶縁材
バイアス電源
プローブ電源
アパーチャ一
アパーチャ一
2 プラズマ発生部
4 陰極
6 トリガ電極 108 陽極
109 プラズマ
110 電源
112 プラズマ加工部
114 被処理物
116a プラズマ安定化磁場発生器
116b プラズマ安定化磁場発生器
118 陰極材料微粒子(ドロップレット)
120 ドロップレット捕集部
200 拡径管
201 拡径管
202 中継縮径管
203 導入側縮径管
204 排出側縮径管
発明を実施するための最良の形態
[0062] 以下、本発明に係るプラズマ生成装置の実施形態を添付図面に基づいて詳細に 説明する。本発明において、被処理物を加工するプラズマ加工部(被プラズマ処理 部)を付設した装置又はプラズマ加工部を付設しな!/、装置の両方がプラズマ生成装 置として包含される。プラズマ加工部を有するプラズマ生成装置は、プラズマ加工装 置と称されてもよい。
[0063] 図 1は本発明に係るプラズマ生成装置の概略構成図である。図に示すプラズマ生 成装置 1は、プラズマ発生部 2、プラズマ加工部 12及びプラズマ進行路 5から構成さ れる。プラズマ進行路 5には、プラズマの発生時に陰極 4から副生するドロップレットを 除去するドロップレット除去部が配置されている。このドロップレット除去部は、プラズ マ進行路 5を形成する拡径管 3と、拡径管 3のプラズマ導入側始端に連接された導入 側縮径管 34と、拡径管 3のプラズマ排出側終端に連接された排出側縮径管 39と、拡 径管 3の始端及び終端に形成された段差部 40とから構成される。導入側縮径管 34 の前段には連結進行路 7が連接されている。 [0064] プラズマ発生部 2から前方に直進管 41が配設されており、この直進管 41から 90° の屈曲角 Θ の主折曲部 7aを介して前記連結進行路 7が設けられている。この連結 進行路 7の主折曲部 7aから前方に、前記直進管 41内にドロッレット進行路 32が形成 されている。拡径管 3と導入側縮径管 34とは導入折曲部 7bを介して交差するように 接続され、この実施例では前記導入折曲部 7bの屈曲角 Θ は 30° である。また、排
2
出側縮径管 39と拡径管 3との屈曲角 Θ も 30° に設定され、屈曲角の総和 θ (= Θ
3 1
+ θ + Θ )は 150° になる。拡径管 3は、内周管 36と外周管 35からなる。外周管 3
2 3
5はプラズマ流の進行に関与せず、内周管 36の保護部材であり、内周管 36は、絶縁 リングなどの絶縁材 46を介して外周管 35内に取着され、内周管 36と外周管 35とは 電気的に絶縁されている。内周管 36は絶縁材 46と一体に外周管 35より分離されて 取り出される構成にあり、外周管 35に対して揷脱自在に取り付けられている。
[0065] プラズマ発生部 2は、陰極(力ソード) 4、トリガ電極 6、陽極(アノード) 8、アーク電源 10、陰極プロテクタ 27、プラズマ安定化磁界発生器 (電磁コイル若しくは磁石) 16を 備えている。陰極 4は、プラズマ構成物質の供給源であり、その形成材料は、導電性 を有する固体なら特に限定されず、金属単体、合金、無機単体、無機化合物(金属 酸化物 ·窒化物)等を単独又は 2種以上混合して用いることができる。陰極プロテクタ 27は、蒸発する陰極表面以外を電気絶縁し、陰極 4と陽極 8との間に発生するプラズ マが後方に拡散することを防止するものである。陽極 8の形成材料は、プラズマ温度 でも蒸発せず、非磁性の材料で導電性を有する固体なら特に限定されない。また陽 極 8の形状はアークプラズマの全体の進行を遮るものでなければ、特に限定されな!/、 。更に、プラズマ安定化磁界発生器 16は、プラズマ発生部 2の外周に配置され、ブラ ズマを安定化させる。プラズマに対する印加磁場が互いに逆方向(カスプ形)となるよ うにアーク安定化磁界発生器 16が配置された場合、プラズマはより安定化する。また 、プラズマ発生部 2と直進管 41とはプラズマ発生部側絶縁プレート 42で電気的に絶 縁され、プラズマ発生部 2に高電圧が印加されても、直進管 41から前方部は電気的 に浮動状態にあり、プラズマがプラズマ進行路内で電気的な影響を受けないように構 成されて!/、る。また、排出側縮径管 39とプラズマ加工部 12の間にも加工部側絶縁プ レート 44が介装されている。その結果、直進管 41から排出側縮径管 39までのプラズ マ搬送用のダクト部の全体が、電気的に浮動状態に設定され、搬送されるプラズマ に外部電源(高電圧や GND)の影響がなレ、様に構成されて!/、る。
[0066] 内周管 36にはバイアス電源 48が接続され、内周管 36を +電位に設定したり、—電 位に設定すること力 Sできる。内周管 36のバイアス電位が +電位の場合には、プラズ マ中の +イオンを搬送方向に押し出す効果があり、 電位の場合にはプラズマ中の 電子を搬送方向に押し出す効果がある。 + のいずれを選択するかはプラズマ搬送 効率を低下させない方向に選択され、プラズマの状態で判断される。電位強度も可 変であり、通常は内周管 36を + 15Vに設定することが搬送効率の観点から選ばれて いる。
また、外周管 35にはプローブ電源 49が接続され、外周管 35と導通している前述し たダクト部の電位が調節される。プラズマ自体はプラズマ電位を有しているため、ダク ト部の電位は前記プローブ電位とプラズマ電位が重畳された合成電位になる。ダクト 部と GNDの間にォッシロスコープを接続すると、前記合成電位の波形が測定され、 この波高値や周期などからプラズマパラメータが測定できる。プローブ電源を接続し ない場合には、ダクト部の電位は前記プラズマ電位になり、ダクト部と GNDの間にォ ッシロスコープを接続することによりプラズマ電位を計測することが可能である。プラズ マ自体が導通性を有するから、ダクト部の電位がプラズマ電位を反映することから、 上記内容が理解できる。
[0067] プラズマ発生部 2では、陰極 4とトリガ電極 6の間に電気スパークを生起し、陰極 4と 陽極 8の間に真空アークを発生させてプラズマが生成される。このプラズマの構成粒 子は、前記陰極 4からの蒸発物質、蒸発物質と反応ガスを起源とする荷電粒子 (ィォ ン、電子)と共に、プラズマ前状態の分子、原子の中性粒子を含む。また、プラズマ構 成粒子が放出されると同時に、サブミクロン以下から数百ミクロン(0. 01〜; 1000〃 m )サイズのドロップレット 18が放出される。このドロップレット 18は、プラズマ流との混合 状態を形成し、ドロップレット混合プラズマ 9としてプラズマ進行路 7内を移動する。
[0068] プラズマ進行路 5に配置したドロップレット除去部にお!/、て、導入側縮径管 34より拡 径管 3内に導入されたプラズマ流が拡径管 3によるプラズマ進行路の拡径作用により 拡散される。そのプラズマ流 9bは拡散するが、プラズマに混入しているドロップレット は直進するから拡径管 3の管内壁面に衝突しながら拡径管 3の内部に拡散する。こ の拡散によりプラズマ流の中心部分ではドロップレットが減少し、プラズマ流体の外周 に多くドロップレットが分布する状態に遷移する。この分布変化により、段差部 40付 近及び内周管 36の内壁面にドロップレット 18が衝突して付着、回収される。また、内 周管 36内のプラズマ流が排出されるときには、内周管 36から排出側縮径管 39への 縮径作用により、内周管 36内側壁側に飛散したドロップレットがプラズマ流 9bに合流 して再び混入することを防ぐこと力 Sできる。排出折曲部 7cから飛び出たドロップレット 1 8は直進して排出側縮径管 39の内壁面に衝突して回収される力 S、プラズマ流 9bは磁 場により排出折曲部 7cに沿って湾曲し、ドロップレット 18と分離される。その結果、プ ラズマ流 9bから殆んどのドロップレット 18が分離捕集されるため、プラズマ加工部 12 には純粋なプラズマ 9aが供給されることになる。従って、段差部 40付近及び内周管 36の内側壁にドロップレットを付着させて、十分に回収でき、プラズマ進行路 5にお いてドロップレットを効率的に除去することができる。し力、も、プラズマ進行路 5に拡径 管 3を形成するだけで、簡易かつ安価にドロップレット除去部を構成でき、更にドロッ ブレット除去効率の向上により得られる高純度プラズマをプラズマ加工部 12に導入し て、成膜等の表面処理の加工精度を向上させ、被処理物表面の表面改質ゃ形成膜 の均一性を格段に向上させることができる。導入側縮径管 34及び排出側縮径管 39 の内径は同じであり、これらに対するより拡径管 3の内周管 36の拡径度合いは、前者 に対して約 1. 2〜3倍程度であればよい。
[0069] 拡径管 3において内周管 36を外周管 35に対して揷脱自在にしているので、ドロッ プレットで汚染された内周管 36を随時、交換可能にすることができ、ドロップレット清 掃作業性が向上し、プラズマ生成装置の稼動効率を低下させずに、プラズマ生成処 理を円滑に行うことができる。
[0070] 導入側縮径管 34及び排出側縮径管 39は、それぞれの管軸が拡径管 3の管軸に 対して所定屈曲角(Θ + Θ = 60° )で傾斜配置され、拡径管 3に対するそれぞれ
2 3
の接合面は楕円形状になっている。これにより、導入側縮径管 34、排出側縮径管 39 及び拡径管 3による、屈曲型プラズマ進行路が形成されるので、拡径管 3内で拡散さ れたドロップレットをより効率的に段差部 40付近及び拡径管 3の内側壁に衝突させて 付着、回収できる。従って、プラズマ流に混入したドロップレットを高効率に分離する ことができ、高純度化されたプラズマ流を前記排出側縮径管より排出させて、ドロップ レット除去効率の向上を図ることができる。
[0071] 本実施形態においては、導入側縮径管 34及び排出側縮径管 39の管軸を拡径管 3の始端及び終端に対して同じ向きに連接した平行配置(Θ = 30° 、 Θ = 30° )
2 3 の場合である。また、例えば排出側縮径管 39の管軸を拡径管 3の管軸に対して逆方 向に 30° で傾斜(Θ = - 30° )させれば、導入側縮径管 34及び排出側縮径管 39
3
の管軸を拡径管 3の始端及び終端に対して互いに交差するような交差配置( Θ = 3
2
0。 、 Θ = - 30° )になるので、導入側縮径管 34に対して交差する向きの排出側
3
縮径管 39内壁に、拡径管 3より排出されたプラズマ流が衝突し、蛇行しながら排出側 縮径管内を流通させることができる。従って、前記平行配置の場合に比較して、段差 部 40付近及び内周管 36の内側壁に衝突させてドロップレットを付着、回収した後、 プラズマ流の中心付近に混入したドロップレットが内周管 36より排出されても、ドロッ ブレットが直進して排出側縮径管内壁 39に衝突し、付着回収されるので、より高効率 にドロップレットを除去することができる。
[0072] 図 2はドロップレット捕集板 38を有する内周管 36の部分拡大断面図である。内周管 36の内壁には、複数枚のドロップレット捕集板 38が植設されている。ドロップレット捕 集板 38の傾斜角 αは 15〜90° の範囲で設定されるが、経験的に 30〜60° が好 適であり、この実施例では α =45° に設定されている。この傾斜角では、プラズマ流 9bから分離されたドロップレット 18はドロップレット捕集板 38を図示する様に多重反 射しながら確実に付着回収できる。
[0073] 図 3はドロップレット捕集板 38の構造の一部断面図であり、(3A)はその部分断面 図、(3B)は 1枚のドロップレット捕集板 38の外観図である。複数枚のドロップレット捕 集板 38により内周管 36内でのドロップレット付着表面積を多くして、飛散ドロップレツ トを大量かつ確実に付着、回収すること力 Sできる。プラズマ進行路において、内周管 36の管長による制限によってドロップレット捕集板 38の設置枚数が制約されるので、 ドロップレット除去面積を増大するために、ドロップレット捕集板 38の表面に粗面加工 が施され、無数の凹凸を有した粗面 38aが形成されている。ドロップレット捕集板 38 の表面が粗面 38aになっているから、ドロップレット捕集板 38の捕集面積が増大して 、捕集効率が向上させることができる。また、凹部に衝突したドロップレット 18は凹部 で確実に固着され、ドロップレット捕集効率が格段に増加する。粗面加工 38aには、 筋目加工や梨地加工を使用することができる。筋目加工方法としては、例えば、研磨 紙による研磨処理を用いる。梨地加工方法には、例えば、アルミナ、ショット、グリッド 、ガラスビーズ等によるブラスト処理を用い、特に、圧縮空気等により数ミクロン粒子を 加速してノズル噴射させるマイクロブラスト加工カ、ドロップレット捕集板 38の狭い表 面に微細凹凸加工を施すことができる。
[0074] 前述したようにドロップレット捕集板は重要であるから、ここで再記しておく。ドロップ レット捕集板 38の捕集面は図 3に示すように、内周管 36の内壁に対し約 45° 傾斜し ている。従って、内周管 36にドロップレット捕集板 38を取り付けた状態においては、 捕集面が導入側縮径管 34に向けて斜行配置されるので、内周管 36内に流入するド ロップレットを受ける面積が多くなる。従って、ドロップレット捕集板 38の捕集効率の 向上により、ドロップレット除去効率を一層高めることができる。また、約 45° 傾斜させ ることにより、捕集したドロップレットが捕集面に衝突 ·反射し、再度捕集板より飛び出 すことを防ぐこと力出来る。図 1では、導入側縮径管 34及び排出側縮径管 39にも同 様の縮径管用ドロップレット捕集板 37が多数植設されて!/、る。この縮径管用ドロップ レット捕集板 37は縮径管内面に対し 90° で直立配置されている力 前記ドロップレ ット捕集板 18と同様に適切な傾斜角で傾斜配置してもよいことは云うまでもない。ま た、連結進行管 7及びドロップレット進行路 32の管壁内面にも多数のドロップレット捕 集板 33が配設されている力 S、図示は省略している。これらのドロップレット捕集板 33 の傾斜配置についても上述と同様である。
[0075] 図 1において、連結進行路 7が連結された直進管 32には、第 1磁場発生器 26、屈 曲磁場発生器 28が配設され、また連結進行路 7と導入側縮径管 34の外周には第 2 磁場発生器 30、 30が配設されている。拡径管 3の外周には直進磁場発生器 24が配 置され、排出側縮径管 39の外周にも第 3磁場発生器 31が配置されている。第 1磁場 発生器 26、第 2磁場発生器 30、第 3磁場発生器 31及び直進磁場発生器 24はブラ ズマを前進させるために設けられている。折曲部 7aに斜行配置された屈曲磁場発生 器 28により屈曲磁場が印加され、プラズマ発生部 2から放出されたドロップレット混合 プラズマ 9は、折曲部 7aで屈曲される。このとき、電気的に中性なドロップレット 18は 、屈曲磁場の影響を受けず、慣性力によってドロップレット進行路 32を進行し、ドロッ ブレット進行路 32の終端に設けたドロップレット捕集部 20に捕集される。従って、ドロ ップレット進行路 32に対して、連結進行路 7を介して垂直又はほぼ垂直に連接され た導入側縮径管 34には、プラズマ進行路の屈曲作用により、あら力、じめドロップレット の一部が除去されたプラズマ流を流入させることができるため、上記プラズマ進行路 5に設けたドロップレット除去部によるドロップレット除去との相乗効果により、ドロップ レットの高効率除去が可能となる。また、導入側縮径管 34と排出側縮径管 39を拡径 管 3に対し傾斜配置することで、ドロップレット捕集効率を更に増加させることができる
[0076] 導入側縮径管 34は連結進行路 7に対して僅かに縮径されており、この縮径作用に よってもドロップレットの除去が行われる力 連結進行路 7との連結部付近に口ップレ ット捕集用アパーチャ一 50を配設している。排出側縮径管 39のプラズマ加工部 12 側開口付近には、ドロップレット捕集用アパーチャ一 51を配設している。アパーチャ 一 50、 51には、例えば、プラズマ進行路の管径を縮小し、あるいは偏心、もしくは縮 小'偏心により開口形状を変形させる円板型アパーチャ一を用いることができる。これ らのアパーチャ一 50、 51を設置することにより、プラズマ進行路の始端及び終端に おいて直進するドロップレットを捕集してドロップレット除去効率の向上に寄与する。
[0077] 上記構成に係るプラズマ生成装置 1にお!/、て、ドロップレット捕集部 20及びプラズ マ進行路 5のドロップレット除去部やアパーチャ一 50、 51によりドロップレットが除去 された高純度のプラズマ 9aは、排出側縮径管 39に配設された第 3磁場発生器 31の 磁場により誘導されて進行し、プラズマ加工部 12に導入され、被処理物 14の表面処 理が行われる。従って、高純度プラズマにより被処理物表面に均一な表面改質を施 したり、欠陥や不純物の少ない高品質の薄膜を形成することができる。
[0078] 本発明者の得た知見によれば、ドロップレット低減条件の目標を達成するには、プ ラズマ進行路の有効全長、直径、屈曲数及び屈曲角の総和のいずれかひとつ又は その組み合わせ等の形態因子が有効要素となる。図 4及び図 5の(5A)はこれらの形 態因子についての有効性を検証した結果を示す。この検証においては、プラズマ進 行路を全長に亘り同一径の管路で形成した。
[0079] 図 4はプラズマ進行路の有効全長 L (mm)、直径 D (mm)、屈曲数 Nとドロップレツ
B
ト除去率との相関関係を示すグラフである。図 5の(5A)は、プラズマ進行路の屈曲 角の総和(= θ + θ + Θ )とドロップレット除去率との相関関係を示すグラフである
1 2 3
。図 4における縦軸の Νは、単位面積(2.5inch X 2.5inch)当たりの被処理物へのドロ ップレット付着数を示す。成膜速度が 10A/sec (A = 0. lnm)で、例えば 10nm膜 の形成を行う場合に、 N< 100を、プラズマ加工部 12における表面処理能力の目標 値として、つまりドロップレット低減条件の目標値と設定した。
[0080] 図 4から分かるように、有効全長が 1600〜900mmで設定されることにより、また管 直径が 200〜90mmで設定されることにより、更に屈曲数が 3〜1で設定されることに より、上記ドロップレット低減条件を満足させることができる。
[0081] 図 5の(5A)における縦軸の N/Nは、直進プラズマ進行路のみの場合の被処理
0
物へのドロップレット付着数 Nとの比較を示す。 N/N力 以下であればあるほど、
0 0
プラズマ加工部 12における表面処理能力を高めることができるので、それをドロップ レット低減条件の目標値と設定した。屈曲角はプラズマ流の進行に対しての管路が 屈曲される角度である。図 5の(5A)から分かるように、屈曲角の総和力 S 150〜90° で設定されることにより、上記ドロップレット低減条件を満足させることができる。
[0082] 上記の検証結果から、プラズマ進行路の有効全長、直径、屈曲数及び屈曲角の総 和のいずれかひとつ又はその組み合わせがドロップレット低減条件を満足するように 設定されることにより、プラズマ進行路に設置したドロップレット除去部のドロップレット 除去効果を一層向上させることができる。上記実施形態においては、プラズマ進行 路の有効全長、直径、屈曲数及び屈曲角の総和をそれぞれ、 1500mm, 200mm, 3 (主折曲部 7a、導入折曲部 7b、排出折曲部 7cによる 3箇所)、 150° (90。 + 30 ° + 30° )としており、上記の形態因子の有効要素を包含させている。
[0083] 本発明者の得た知見によれば、上記有効要素の形態因子とは別に、プラズマ発生 部 2におけるアーク電流値もドロップレット除去に有効な要素になり得る。
図 5の(5B)は縦軸の N/Nに対するプラズマ発生部 2におけるアーク電流値との 関係を示す。即ち、プラズマ発生部 2におけるアーク電流値が 140〜30Aの範囲で 調整されることにより、上記有効要素の形態因子と同様に、上記ドロップレット低減条 件を満足させることができ、本実施形態に係るドロップレット除去部との併用により、ド ロップレット除去効率を一層向上させることができる。
[0084] 複数の拡径管を、縮径管を介して連接することにより、ドロップレット除去効率の向 上を図ることができる。
図 6は、複数の拡径管配置の一例であり、直線状に 2個の拡径管 200、 201を中継 縮径管 202を介して連接したプラズマ進行路を示す。導入側縮径管 203は拡径管 2 01に対して傾斜配置され、拡径管 201は中継縮径管 202を介して拡径管 200に連 接され、更に拡径管 200には排出側縮径管 204が連接されている。これらの連接さ れた拡径管 200、 201により、複数段階に亘つてドロップレットを除去することができ、 高純度のプラズマ流を生成することができる。しかも、図示するように、連接される管 路の管軸が合致しないように偏心させて、拡径管 200、 201に形成される段差部に おけるドロップレットの除去効果を高めている。なお、中継縮径管 202を湾曲形成し て、外部にプラズマ誘導磁場発生部を設け、プラズマ進行路をより屈曲度合いを高 めながら複数の拡径管を連接してもよい。
[0085] 図 7は 2個の拡径管の更に多様な接続形態を示す概念図である。 (7A)では、拡径 管 200、 201の管軸を一致させた場合が示される。この場合には、プラズマ流 Pは直 線状に進行し、ドロップレット Dは拡径管の段差部と内周面で捕集される。 (7B)では 、拡径管 200、 201の管軸をずらせた場合が示される。この場合には、プラズマ流 P はやや蛇行し、この蛇行によりドロップレット Dがプラズマ流 Pから分離するため、ドロ ップレット Dの段差部捕集が増強される。 (7C)は、導入側縮径管 203と排出側縮径 管 204を平行配置(Θ =0、 Θ =0)させた場合である。傾斜角 θ 、 Θ は図 1に示
2 3 2 3
されるものと同定義である。この場合には、プラズマ流 Pは直進し、ドロップレット Dは 拡径管の段差部で捕集される。 (7D)では、導入側縮径管 203と排出側縮径管 204 を斜行配置(Θ = - 30° 、 Θ = - 30° )させた場合に相当する。結果的に導入側
2 3
縮径管 203と排出側縮径管 204は平行することになる。この場合には、プラズマ流 P は S字状に蛇行し、この S字蛇行によりドロップレット Dはプラズマ流 Pから強制分離さ れ、ドロップレット Dの拡径管段差部による捕集効果が増強される。 (7E)では、導入 側縮径管 203と排出側縮径管 204を斜行配置(Θ = 30° 、 Θ =— 30° )させた場
2 3
合が示される。この場合には、導入側縮径管 203と排出側縮径管 204の管軸は交差 する。プラズマ流 Pは湾曲状に蛇行し、この湾曲蛇行によりドロップレット Dはプラズマ 流 Pから分離し、ドロップレット Dの拡径管段差部による捕集効果が増強される。 (7A )と(7B)の選択、更に(7C)〜(7E)の選択があり、両者の組合せにより多様性が広 がる。また、拡径管が 3個以上になると更に多様性が増加するが、選択の基準は、ド ロップレットの捕集効率を最大化し、同時にプラズマ搬送効率の低下を最大抑制する ことである。本発明を利用すれば、多種多様に選択の幅を広げることが可能になる。
[0086] 図 8は本発明に係るプラズマ生成装置の別実施例の概略構成図である。図 1と同 一部分には同一符号を使用し、その作用効果は同一であるからその記載を省略する 。以下に、異なる符合部分について、作用効果を説述する。
拡径部 3には、 X軸方向の振動磁場 Bを発生させる振動磁場発生器 22a、 22a及
X
ひ Ύ軸方向の振動磁場 Bを発生させる振動磁場発生器 22、 22 (図 9参照)が、振動
Y
磁場 Bと振動磁場 B が直交するように配設されている。 Z軸方向の直進磁場 Bは直
X Y Z
進磁場発生器 24により形成される。回転磁場は振動磁場 Bと振動磁場 B の合成磁
X Y
場からなり、本発明の回転磁場発生手段の具体例として、振動磁場発生器 22a、 22 a及び振動磁場発生器 22、 22の組合せが挙げられる。前記回転磁場と前記直進磁 場の合成により螺旋磁場が形成される。直進磁場発生器 24は前記拡径部 3の外周 に巻回された電磁コイルから構成される。従って、前記ドロップレット混合プラズマは 、前記回転磁場と直進磁場により前記筒状進行路を螺旋回転しながら進行する。こ の回転に基づく遠心力によりドロップレット 18はプラズマ流 9bから強力に分離され、ド ロップレット捕集板 38及び段差部 40に効率的に捕獲される。傾斜角 θ 、 Θ によるド
2 3 ロップレット分離に加えて、この実施例では遠心力分離が加算され、ドロップレットの 分離効率が一層に増強される。
[0087] 図 9は、拡径管 3に形成される回転磁場の説明図である。 (9A)には、振動磁場発 生器 22a、 22aによる時刻 tの振動磁場 B (t)、振動磁場発生器 22、 22による時刻 t
X
の振動磁場 B (t)及び時刻 tの回転磁場 B (t)の関係を示す。 (9A)では、前記拡径 管におけるプラズマ流が通過する 1つの位置に印加される磁場を示し、直進磁場 B
Z
は定常磁場としている。しかし、前記直進磁場を時間と共に変化させることもできる。 時刻 t = tにおける振動磁場 B (t )及び B (t )から回転磁場 B (t )が合成される。
1 X I Y 1 R 1
[0088] (9B)及び(9C) (時刻表記 (t)を省略)に示すように、前記回転磁場 Bと直進磁場
R
Bから合成磁場 Bが合成され、前記ドロップレット混合プラズマ 9は、合成磁場 Bの方
Z
向に屈曲されて前記拡径管 3を進行する。同様に、(9A)では、時亥 ijt=tにおける
2
振動磁場 B (t )及び B (t )から回転磁場 B (t )が合成される。即ち、時刻 tが t
X 2 Y 2 R 2 1 ら tに進むと、振動磁場 B (t )、 B (t )が振動磁場 B (t )、 B (t )に変化し、前記
2 X I Y 1 X 2 Y 2
回転磁場 B (t)が B (t )から B (t )へ回転する。従って、振動磁場発生器 22a、 22
R R 1 R 2
a、 22、 22に通電する交流電流の位相差、振動数及び電流量を調整し、振動磁場 B (t)、B (t)を制御することにより、所望の回転磁場 B (t)を発生させること力 Sできる。
X Y R
尚、以下では時刻表記 (t)を省略して、振動磁場 B、 B及び回転磁場 Bと表記する
X Y R
[0089] (9B)及び(9C)には、振動磁場 B、 B 、直進磁場 B、回転磁場 Bと合成磁場 Bの
X Y Z R
関係を示す。 (9B)では、振動磁場 Bの振幅 B と振動磁場 B の振幅 B が同じ値に
X X0 Y Y0
設定され、位相差 90° の振動磁場 B、B が同じ振動数で振動することにより、回転
X Y
磁場 Bが一定強度で回転する。従って、前記プラズマ流は、円形に回転しながら前
R
記拡径管 3を進行する。 (9C)では、振幅 B より振幅 B 力 S小さく設定され、(9B)と
X0 Y0
同様に、位相差 90° の振動磁場 B、Bを同じ振動数で振動させることにより、 (9C)
X Y
の回転磁場 B のベクトルは楕円形に回転する。従って、前記プラズマ流は、 Y方向
R
に屈曲される力が小さくなるから、楕円状に回転しながら前記拡径管 3を進行する。 以上のように、本実施例によれば、真円回転や楕円回転による遠心力で、ドロップ レットを効率的に除去できることが実証された。
[0090] 図 10は本発明に係るプラズマ生成装置の更に他の実施例の概略構成図である。
図 1と同一部分には同一符号を使用し、その作用効果は同一であるからその記載を 省略する。以下に、異なる符合部分について、作用効果を説述する。
図 10に示すように、拡径管 3内に、偏心した位置に通過孔 25aを有するアパーチャ 一 25を前後 2っ配設している。大枠で説明すると、プラズマ流 9bが拡径管 3を蛇行し ながら偏心通過孔 25aを通過する際に、プラズマ流 9b (Pとも書かれる)力 ドロップレ ット 18 (Dとも書かれる)が分離除去される。即ち、プラズマ Pに随伴する小さなドロッ プレット Dは、プラズマ Pがアパーチャ一 25の偏心通過孔 25aを湾曲して通過すると きに、外側に飛び出してアパーチャ一 25の壁面に衝突して除去される。
[0091] 斜行磁場発生器は、拡径管 3の外周面に配設される直進磁場発生器 24と、この外 周に配置される径方向磁場発生器 23、 23aから構成される。直進磁場と径方向磁場 の合成により斜行磁場が形成され、この斜行磁場に誘導されて、プラズマ Pはァパー チヤ一 25の偏心通過孔 25aを湾曲して前進することになる。
[0092] 図 10において、始端側のアパーチャ一 25には、左側に偏心通過孔 25aが形成さ れ、終端側のアパーチャ一 25には、右側に偏心通過孔 25aが形成されている。また 、始端側の径方向磁場発生器 23は図の右側に N極が配置され、左側に S極が配置 されており、終端側の径方向磁場発生器 23は図の左側に N極が配置され、右側に S 極が配置されて!/、る。従って、拡径管 3の始端側には右側から左側に向いた径方向 磁場が形成され、終端側には左側から右側に向いた径方向磁場が形成される。これ らの径方向磁場と直進磁場発生器 24による直進磁場の合成により、拡径管 3の始端 側には左寄りの斜行磁場が発生し、終端側には右寄りの斜行磁場が発生する。ブラ ズマ Pは拡径管 3の始端側で左寄りの斜行磁場に誘導されて左向きに湾曲して始端 側のアパーチャ一 25の偏心通過孔 25aを通過する。終端側では右寄りの斜行磁場 に誘導されてプラズマは右向きに湾曲して終端側のアパーチャ一 25の偏心通過孔 2 5aを通過する。
[0093] プラズマ Pに随伴する小さなドロップレット Dはプラズマ Pの湾曲によって外向きに飛 び出して始端側のアパーチャ一 25及び終端側のアパーチャ一 25の壁面に衝突して 除去される。従って、プラズマ加工部 12の被処理物 14の表面は、ドロップレット Dを 含まない純度の高いプラズマ Pで処理することができる。尚、排出側縮径管 39にはプ ラズマ 9aをプラズマ加ェ部 12に向けて前進させるための第 3磁場発生器 31が配置 されている。
[0094] 図 11は拡径管内に配設されるアパーチャ一の偏心通過孔をプラズマが通過する 状態を示す説明図である。図 11に示すように、拡径管 3内に配設されたアパーチャ 一 25の偏心通過孔 25aをプラズマ Pが湾曲して通過する際に、このプラズマ Pに随伴 する小さなドロップレット Dはプラズマ Pの湾曲時に外向きに飛び出す。始端側に飛 び出した小さなドロップレット Dはアパーチャ一 25の壁面に衝突して除去される。終 端側に飛び出した小さなドロップレット Dは図示しない終端側のアパーチャ一 25の壁 面に衝突して除去される。
[0095] 図 12は拡径管内に配設されるアパーチャ一を示し、(12A)は左側に偏心通過孔 2 5aを有するアパーチャ一 25の斜視図、(12B)は右側に偏心通過孔 25aを有するァ パーチヤー 25の斜視図である。 (12A)に示すように、拡径管 3の始端側に配設され るアパーチャ一 25には図の左側に偏心通過孔 25aが形成され、始端側ではプラズ マ Pがこの左側の偏心通過孔 25aを湾曲して通過する。 (12B)に示すように、拡径管 3の終端側に配設されるアパーチャ一 25は図の右側に偏心通過孔 25aが形成され、 終端側ではプラズマ Pがこの右側の偏心通過孔 25aを湾曲して通過する。
前記傾斜角 θ
2、 Θ によるドロップレット分離に加えて、この実施例では蛇行分離が 3
加算され、ドロップレットの分離効率が一層に増強され、ドロップレットを効率的に除 去できることが実証された。
[0096] 本発明は、上記実施形態や変形例に限定されるものではなぐ本発明の技術的思 想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包 含するものであることは云うまでもなレ、。
産業上の利用可能性
[0097] 本発明に係るプラズマ生成装置はプラズマ進行路にドロップレット除去部を設けて 、高純度で均一なプラズマ流を被プラズマ処理部に導入することができる。また、ブラ ズマ進行路に拡径管を形成するだけで、簡易かつ安価にドロップレット除去部を構 成できる。更に、本発明に係るプラズマ生成装置により生成される高純度プラズマを 用いれば、プラズマ中で固体材料の表面に欠陥や不純物が格段に少ない高純度の 薄膜を形成したり、プラズマを照射することにより、固体の表面特性を欠陥や不純物 を付与することなぐ均一に改質することができ、例えば固体表面における耐磨耗性- 耐食性強化膜、保護膜、光学薄膜、透明導電性膜などを高品質かつ高精度に形成 すること力 Sでさる。

Claims

請求の範囲
[1] 真空雰囲気下で真空アーク放電を行ってプラズマを発生させるプラズマ発生部と、 前記プラズマ発生部により発生されたプラズマが被プラズマ処理部側に進行するプ ラズマ進行路とを備えたプラズマ生成装置において、前記プラズマ進行路に、プラズ マの発生時に陰極から副生する陰極材料粒子(以下「ドロップレット」という)を除去す るドロップレット除去部を配置し、このドロップレット除去部は、拡径管と、前記拡径管 のプラズマ導入側始端に連接された導入側縮径管と、前記拡径管のプラズマ排出側 終端に連接された排出側縮径管と、前記拡径管の前記始端及び前記終端に形成さ れた段差部とから構成されることを特徴とするプラズマ生成装置。
[2] 前記導入側縮径管及び/又は前記排出側縮径管の管軸を前記拡径管の管軸に対 して所定屈曲角で傾斜配置させ、前記導入側縮径管及び/又は前記排出側縮径 管を前記拡径管に連接した請求項 1に記載のプラズマ生成装置。
[3] 前記導入側縮径管及び前記排出側縮径管の管軸が前記拡径管に対して互いに交 差するように配置した請求項 1又は 2に記載のプラズマ生成装置。
[4] 前記プラズマ進行路は、前記プラズマ発生部に連接された直進管を有し、前記導入 側縮径管を前記直進管に対して垂直又はほぼ垂直に連接し、前記直進管の終端に ドロップレット捕集部を配設した請求項 2又は 3に記載のプラズマ生成装置。
[5] 前記拡径管は、内周管と外周管からなり、前記内周管を前記外周管に対して揷脱自 在にした請求項 2〜4のいずれかに記載のプラズマ生成装置。
[6] 前記内周管の内壁に複数のドロップレット捕集板が植設された請求項 5に記載のプ ラズマ生成装置。
[7] 前記ドロップレット捕集板の表面が粗面加工を施されている請求項 6に記載のプラズ マ生成装置。
[8] 前記ドロップレット捕集板を前記導入側縮径管に向けて斜行配置した請求項 7に記 載のプラズマ生成装置。
[9] 前記導入側縮径管及び前記排出側縮径管にドロップレット捕集用アパーチャ一を配 設した請求項 1〜8のいずれかに記載のプラズマ生成装置。
[10] 複数の前記拡径管を、縮径管を介して連接した請求項 1〜9のいずれかに記載のプ ラズマ生成装置。
[11] 前記拡径管の断面周方向に回転磁場を発生させる回転磁場印加手段が少なくとも 1 つ以上設けられ、この回転磁場印加手段により前記プラズマに回転磁場を印加し、 前記プラズマを回転させながら前記拡径管を進行させて前記ドロップレットを遠心力 により除去する請求項 1〜; 10のいずれかに記載のプラズマ生成装置。
[12] 前記回転磁場印加手段が振動磁場を発生させる複数の振動磁場発生器から構成さ れ、これらの振動磁場発生器により位相及び振動方向が異なる複数の振動磁場を発 生させ、これらの振動磁場から前記回転磁場が合成される請求項 11に記載のプラズ マ生成装置。
[13] 偏心位置に通過孔を有するアパーチャ一が前記拡径管内に 1つ以上設けられ、前 記拡径管の外周に前記プラズマを前記アパーチャ一の偏心通過孔に通過させるた めの磁場発生手段が配設されており、この磁場発生手段に基づく磁場により、前記 プラズマは前記拡径管内で湾曲して前記アパーチャ一の偏心通過孔を通過し、前 記湾曲時に前記ドロップレットを前記プラズマから分離させ、前記ドロップレットを前 記アパーチャ一の壁面に衝突させて除去するように構成された請求項 1〜; 10のいず れかに記載のプラズマ生成装置。
[14] 前記アパーチャ一は、前記拡径管内に複数設けられ、隣り合う前記偏心通過孔は、 その位置を互いにずらせて配置されており、始端側のアパーチャ一の偏心通過孔を 前記プラズマに随伴して通過した前記ドロップレットは次のアパーチャ一の壁面に衝 突して除去され、前記プラズマは前記次のアパーチャ一の偏心通過孔を通過するよ うに構成された請求項 13に記載のプラズマ生成装置。
[15] 前記磁場発生手段は、斜行磁場発生器で構成され、この斜行磁場発生器は前記拡 径管の軸方向から斜行した方向に斜行磁場を形成し、この斜行磁場により、前記プ ラズマを前記アパーチャ一の偏心通過孔に通過させるようにした請求項 13又 14に 記載のプラズマ生成装置。
[16] 前記導入側縮径管と前記拡径管と前記排出側縮径管を少なくとも含むプラズマ搬送 用のダクト部は、前記プラズマ発生部及び前記被プラズマ処理部と電気的に絶縁さ れて!/、る請求項;!〜 15に記載のプラズマ生成装置。
[17] 前記ダクト部にバイアス電圧を印加する請求項 1〜 16に記載のプラズマ生成装置。
[18] 前記ダクト部内にプローブを揷入する力、、又は前記ダクト部をプローブとして利用して プラズマの物性量を測定する請求項 1〜; 17に記載のプラズマ生成装置。
[19] 前記プラズマ進行路の有効全長、直径、屈曲数及び屈曲角の総和のいずれかひと つ又はその組み合わせがドロップレット低減条件を満足するように設定された請求項
;!〜 18の!/、ずれかに記載のプラズマ生成装置。
[20] 前記有効全長が 1600〜900mmで設定された請求項 19に記載のプラズマ生成装 置。
[21] 前記直径が 200〜90mmで設定された請求項 19に記載のプラズマ生成装置。
[22] 前記屈曲数が 3〜1で設定された請求項 19に記載のプラズマ生成装置。
[23] 前記屈曲角の総和が 150〜90° で設定された請求項 19に記載のプラズマ生成装 置。
[24] 前記プラズマ発生部におけるアーク電流値が 140〜30Aの範囲で調整された請求 項 1〜23のいずれかに記載のプラズマ生成装置。
PCT/JP2007/068777 2006-09-30 2007-09-27 Appareil générateur de plasma de type à rayon élargi WO2008038700A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800359760A CN101518161B (zh) 2006-09-30 2007-09-27 扩径管型等离子体生成装置
US12/311,258 US20100018859A1 (en) 2006-09-30 2007-09-27 Radially enlarged type plasma generating apparatus
EP07828523.6A EP2068602B1 (en) 2006-09-30 2007-09-27 Radially enlarged type plasma generating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006270201A JP4660452B2 (ja) 2006-09-30 2006-09-30 拡径管型プラズマ生成装置
JP2006-270201 2006-09-30

Publications (1)

Publication Number Publication Date
WO2008038700A1 true WO2008038700A1 (fr) 2008-04-03

Family

ID=39230135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068777 WO2008038700A1 (fr) 2006-09-30 2007-09-27 Appareil générateur de plasma de type à rayon élargi

Country Status (5)

Country Link
US (1) US20100018859A1 (ja)
EP (1) EP2068602B1 (ja)
JP (1) JP4660452B2 (ja)
CN (1) CN101518161B (ja)
WO (1) WO2008038700A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001501A (ja) * 2008-06-18 2010-01-07 Fujitsu Ltd 成膜装置
US20100003422A1 (en) * 2008-07-04 2010-01-07 Fujitsu Limited Deposition apparatus, film manufacturing method, and magnetic recording medium manufacturing method
WO2010113544A1 (ja) * 2009-03-31 2010-10-07 株式会社フェローテック 絶縁体介装型プラズマ処理装置
US20100316814A1 (en) * 2009-06-10 2010-12-16 Fujitsu Limited Film deposition apparatus and film deposition method
WO2023195058A1 (ja) * 2022-04-04 2023-10-12 国立大学法人豊橋技術科学大学 成膜装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189784B2 (ja) * 2007-03-30 2013-04-24 株式会社フェローテック プラズマガン周辺を電気的中性にしたプラズマ生成装置
JP4568768B2 (ja) * 2008-03-27 2010-10-27 株式会社フェローテック プラズマ生成装置及びプラズマ処理装置
US7914603B2 (en) * 2008-06-26 2011-03-29 Mks Instruments, Inc. Particle trap for a plasma source
JP5424744B2 (ja) * 2009-07-01 2014-02-26 株式会社フェローテック 分割環状リブ型プラズマ処理装置
US8242469B2 (en) * 2009-07-15 2012-08-14 Axcelis Technologies, Inc. Adjustable louvered plasma electron flood enclosure
JP5606777B2 (ja) * 2010-04-22 2014-10-15 株式会社フェローテック プラズマ流生成方法、プラズマ処理方法、プラズマ発生装置及びプラズマ処理装置
GB201016501D0 (en) * 2010-10-01 2010-11-17 Nanofilm Technologies Internat Pte Ltd Filter for removing macro-particles from a plasma beam
US8541069B2 (en) * 2011-04-11 2013-09-24 United Technologies Corporation Method of guided non-line of sight coating
US10049881B2 (en) * 2011-08-10 2018-08-14 Applied Materials, Inc. Method and apparatus for selective nitridation process
RU2507305C2 (ru) * 2011-09-01 2014-02-20 Национальный Научный Центр "Харьковский Физико-Технический Институт" (Ннц Хфти) Способ транспортировки с фильтрованием от макрочастиц вакуумно-дуговой катодной плазмы и устройство для его осуществления
US20140034484A1 (en) * 2012-07-31 2014-02-06 Andrew E. Fisk Device for the elimination of liquid droplets from a cathodic arc plasma source
JP2015067839A (ja) * 2013-09-26 2015-04-13 キヤノンアネルバ株式会社 成膜装置
CN107083533A (zh) * 2017-05-18 2017-08-22 东莞市汇成真空科技有限公司 一种无液滴多弧蒸发离化源结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194167A (ja) * 1988-09-26 1990-07-31 Kobe Steel Ltd 真空アーク蒸着装置及び方法
JPH07150340A (ja) * 1993-11-29 1995-06-13 Nissin Electric Co Ltd 薄膜形成装置
JPH09190794A (ja) * 1995-12-18 1997-07-22 Eaton Corp イオン注入機の内部領域から汚染粒子を捕捉、除去する方法及び装置
JPH10505633A (ja) * 1994-04-25 1998-06-02 ベイパー テクノロジーズ, インコーポレイテッド 矩形真空アークプラズマ源
JP2002008893A (ja) 2000-06-16 2002-01-11 Ito Kogaku Kogyo Kk プラズマ加工法
JP2002105628A (ja) * 2000-10-03 2002-04-10 Nissin Electric Co Ltd 真空アーク蒸着装置
JP2002294433A (ja) * 2001-03-29 2002-10-09 Nissin Electric Co Ltd 真空アーク蒸着装置
WO2005074334A1 (ja) * 2004-01-28 2005-08-11 Ferrotec Corporation プラズマ生成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371563A (en) * 1980-03-27 1983-02-01 Electro-Plasma, Inc. Fine particle filter system having low pressure drop for gaseous flow systems
US6525326B1 (en) * 2000-09-01 2003-02-25 Axcelis Technologies, Inc. System and method for removing particles entrained in an ion beam
JP4373252B2 (ja) * 2004-03-16 2009-11-25 浩史 滝川 プラズマ生成装置
JP4889957B2 (ja) * 2005-03-25 2012-03-07 株式会社フェローテック プラズマ生成装置におけるドロップレット除去装置及びドロップレット除去方法
JP2006274294A (ja) * 2005-03-28 2006-10-12 Toyohashi Univ Of Technology プラズマ生成装置におけるドロップレット除去装置及びドロップレット除去方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194167A (ja) * 1988-09-26 1990-07-31 Kobe Steel Ltd 真空アーク蒸着装置及び方法
JPH07150340A (ja) * 1993-11-29 1995-06-13 Nissin Electric Co Ltd 薄膜形成装置
JPH10505633A (ja) * 1994-04-25 1998-06-02 ベイパー テクノロジーズ, インコーポレイテッド 矩形真空アークプラズマ源
JPH09190794A (ja) * 1995-12-18 1997-07-22 Eaton Corp イオン注入機の内部領域から汚染粒子を捕捉、除去する方法及び装置
JP2002008893A (ja) 2000-06-16 2002-01-11 Ito Kogaku Kogyo Kk プラズマ加工法
JP2002105628A (ja) * 2000-10-03 2002-04-10 Nissin Electric Co Ltd 真空アーク蒸着装置
JP2002294433A (ja) * 2001-03-29 2002-10-09 Nissin Electric Co Ltd 真空アーク蒸着装置
WO2005074334A1 (ja) * 2004-01-28 2005-08-11 Ferrotec Corporation プラズマ生成装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P.J. MARTIN; R.P. NETTERFIELD; T.J. KINDER, THIN SOLID FILMS, vol. 193/194, 1990, pages 77
See also references of EP2068602A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001501A (ja) * 2008-06-18 2010-01-07 Fujitsu Ltd 成膜装置
US20100003422A1 (en) * 2008-07-04 2010-01-07 Fujitsu Limited Deposition apparatus, film manufacturing method, and magnetic recording medium manufacturing method
WO2010113544A1 (ja) * 2009-03-31 2010-10-07 株式会社フェローテック 絶縁体介装型プラズマ処理装置
JP2010236032A (ja) * 2009-03-31 2010-10-21 Ferrotec Corp 絶縁体介装型プラズマ処理装置
CN102209799A (zh) * 2009-03-31 2011-10-05 日本磁性技术株式会社 绝缘体插装型等离子体处理装置
US8999122B2 (en) 2009-03-31 2015-04-07 Ferrotec Corporation Insulator interposed type plasma processing apparatus
EP2415897A4 (en) * 2009-03-31 2015-10-21 Ferrotec Corp PLASMA PROCESSING DEVICE WITH ISOLATOR CIRCUIT
US20100316814A1 (en) * 2009-06-10 2010-12-16 Fujitsu Limited Film deposition apparatus and film deposition method
CN101925247A (zh) * 2009-06-10 2010-12-22 富士通株式会社 膜沉积装置和膜沉积方法
CN101925247B (zh) * 2009-06-10 2014-04-23 富士通株式会社 膜沉积装置和膜沉积方法
US9920428B2 (en) 2009-06-10 2018-03-20 Fujitsu Limited Film deposition method
WO2023195058A1 (ja) * 2022-04-04 2023-10-12 国立大学法人豊橋技術科学大学 成膜装置

Also Published As

Publication number Publication date
JP2008091184A (ja) 2008-04-17
JP4660452B2 (ja) 2011-03-30
EP2068602A1 (en) 2009-06-10
CN101518161B (zh) 2011-12-28
EP2068602B1 (en) 2016-06-29
US20100018859A1 (en) 2010-01-28
CN101518161A (zh) 2009-08-26
EP2068602A4 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4660452B2 (ja) 拡径管型プラズマ生成装置
JP5189784B2 (ja) プラズマガン周辺を電気的中性にしたプラズマ生成装置
RU2369664C2 (ru) Источник фильтрованной плазмы вакуумной дуги
EP1055013B1 (en) Cathode arc vapor deposition
JP4576467B2 (ja) 絶縁体介装型プラズマ処理装置
WO2006104056A1 (ja) プラズマ生成装置におけるドロップレット除去装置及びドロップレット除去方法
PL179312B1 (pl) Jednostka golaca, sposób nakladania twardej powloki na ostrze i ostrze PL PL PL PL PL PL
WO2006104055A1 (ja) プラズマ生成装置におけるドロップレット除去装置及びドロップレット除去方法
US20070256927A1 (en) Coating Apparatus for the Coating of a Substrate and also Method for Coating
JP5554451B2 (ja) プラズマビームからマクロ粒子を除去するためのフィルタ
JP4568768B2 (ja) プラズマ生成装置及びプラズマ処理装置
JP2011012307A (ja) 陽極壁多分割型プラズマ発生装置及びプラズマ処理装置
US6756596B2 (en) Filtered ion source
US9426875B2 (en) Method for producing plasma flow, method for plasma processing, apparatus for producing plasma, and apparatus for plasma processing
JP4716510B2 (ja) クラスター製造装置及びクラスター製造方法
JP5586078B2 (ja) 静電トラップを具備するプラズマ発生装置及びプラズマ加工装置
JP3744467B2 (ja) 真空アーク蒸着方法及びその装置
JP2577316B2 (ja) 多相交流多電極放電による高密度プラズマを用いた薄膜形成方法とその装置
JP2001011608A (ja) 膜形成装置
JP3057039U (ja) アークイオンメッキユニットの磁場発生装置
JP2003342717A (ja) 真空アーク方式蒸着装置及びこれを用いた成膜方法
Schultrich et al. Vacuum arc with particle filtering
Levchenko et al. Plasma jet interaction with a spherical target in magnetic field
Anders et al. Macroparticle Filters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035976.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12311258

Country of ref document: US

Ref document number: 2007828523

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE