WO2008038426A1 - Brûleur, et équipement de combustion et chaudière comprenant un brûleur - Google Patents

Brûleur, et équipement de combustion et chaudière comprenant un brûleur Download PDF

Info

Publication number
WO2008038426A1
WO2008038426A1 PCT/JP2007/056311 JP2007056311W WO2008038426A1 WO 2008038426 A1 WO2008038426 A1 WO 2008038426A1 JP 2007056311 W JP2007056311 W JP 2007056311W WO 2008038426 A1 WO2008038426 A1 WO 2008038426A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
containing fluid
furnace
supply nozzle
fluid supply
Prior art date
Application number
PCT/JP2007/056311
Other languages
English (en)
French (fr)
Inventor
Kenji Kiyama
Akira Baba
Takanori Yano
Osamu Okada
Hirofumi Okazaki
Kouji Kuramashi
Original Assignee
Babcock-Hitachi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock-Hitachi Kabushiki Kaisha filed Critical Babcock-Hitachi Kabushiki Kaisha
Priority to CN2007800437454A priority Critical patent/CN101542202B/zh
Priority to KR1020097008407A priority patent/KR101285447B1/ko
Priority to EP07739749.5A priority patent/EP2068077A4/en
Priority to JP2008536284A priority patent/JP4896143B2/ja
Priority to AU2007301377A priority patent/AU2007301377B2/en
Priority to CA2664769A priority patent/CA2664769C/en
Priority to US12/442,745 priority patent/US20100064986A1/en
Publication of WO2008038426A1 publication Critical patent/WO2008038426A1/ja
Priority to US14/139,975 priority patent/US20140116359A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/005Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1869Hot gas water tube boilers not provided for in F22B1/1807 - F22B1/1861
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/26Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent helically, i.e. coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices

Definitions

  • the present invention relates to a burner, a combustion apparatus including the burner, and a boiler, and more particularly to the burner capable of efficient low nitrogen oxide (NOx) combustion.
  • NOx nitrogen oxide
  • FIG. 28 shows an example of a solid fuel (pulverized coal, biomass fuel, etc.) panner for which the prior art is also available.
  • FIG. 28 (a) is a side sectional view of the panner
  • FIG. 28 (b) is a front view of the panner as viewed from the furnace (4) side.
  • This solid fuel panner supplies a fuel-containing fluid in which a fuel-containing fluid (11) containing solid fuel and transport primary air is defined by defining a fuel-containing fluid flow path that flows toward the furnace (4).
  • a nozzle (12) and a combustion air sleeve (15) provided on the outer periphery of the fuel-containing fluid supply nozzle (12), and the air in the wind box (3) is defined by the sleeve (15).
  • the secondary air (13) and the tertiary air (14) are supplied through the combustion air flow path.
  • a flame holder (17) is provided at the tip of the fuel-containing fluid supply nozzle (12), and the fuel can be ignited from the vicinity of the panner by the effect of the circulating vortex formed in the wake.
  • the tip of the combustion air sleeve (15) is located at the position facing the burner throat (16) provided on the wall of the furnace, and the tip of the sleeve (15) extends to the outside of the burner.
  • a plate (15a) is provided, and the tertiary air (14) is spread to the outside by the combustion air guide plate (15a), delaying the mixing of air into the flame center and reducing the air in a reducing atmosphere condition.
  • Combustion acceleration at the plant suppresses the formation of nitrogen oxides (NOx) in the combustion gas.
  • NOx nitrogen oxides
  • Fig. 1 (c) shows a cross-sectional view of the fuel-containing fluid supply nozzle (12) in the above-described prior art in the direction along the jet flow of the fuel-containing fluid (11), and Fig. 1 (d) shows the cross-sectional view.
  • the outlet of the fuel-containing fluid supply nozzle (12) As shown in the front view of the outlet of the fuel-containing fluid supply nozzle (12) of the panner (c) as seen from the furnace (4) side, in the prior art Pana, the outlet of the fuel-containing fluid supply nozzle (12) The cross section of the part has a shape close to a circle.
  • Fig. 29 (a) shows a cross-sectional view of the fuel-containing fluid supply nozzle (12) in the conventional parner in the direction along the jet flow of the fuel-containing fluid (11), and Fig. 29 (b) shows the fuel-containing fluid (11).
  • the fuel containing fluid ejected from the fuel containing fluid supply nozzle (12) into the furnace (4) A fuel ignition position (33) is formed.
  • Fig. 30 schematically shows the behavior of flame propagation in the furnace (4) in the cross-sectional direction along the jet flow of the fuel-containing fluid (11) of the fuel-containing fluid supply nozzle (12) in the conventional PANA. is there.
  • An ignition region (32) is formed around the conical non-ignition region (31).
  • the cross-sectional wrench shown in FIGS. 28 to 30 is often used in a so-called counter-combustion system in which each is disposed on a pair of opposed furnace walls.
  • the outlet force of a plurality of fuel-containing fluid supply nozzles (12) along the furnace wall causes the fuel to burn while jetting the fuel-containing fluid in the direction of turning in the furnace (4).
  • the outlet shape of the cross section of the fuel-containing fluid supply nozzle (12) (the cross section perpendicular to the fuel-containing fluid flow) is often square or close to a square and is often rectangular.
  • the outlet shape of the cross section of the fuel-containing fluid supply nozzle (12) (cross section orthogonal to the fuel-containing fluid flow) is a rectangular shape having a long diameter portion and a short diameter portion, an elliptical shape, or a substantially elliptical shape.
  • Patent Documents 1 to 3 below disclose the PANA.
  • Patent Document 1 Japanese Patent Publication No.59-500981
  • Patent Document 2 JP-A-8-226615
  • Patent Document 3 Japanese Patent Laid-Open No. 11-281009
  • the cross section of the outlet of the fuel-containing fluid supply nozzle (12) of the PANA has a circular or nearly square shape, and as shown in Fig. 30, the fuel-containing fluid jet in the furnace (4) Flames ignited outside of may require a considerable distance to propagate to the center of the fuel-containing fluid jet.
  • the distance at which the ignited flame in the direction of the jet of the fuel-containing fluid (11) from the fuel-containing fluid supply nozzle (12) propagates to the center of the fuel jet That is, the unignited distance LI ′ shown in FIG. 30 becomes longer as the diameter or peripheral portion of the fuel-containing fluid supply nozzle (12) becomes larger, and the unignited region (31) is expanded.
  • Increasing the capacity of the pruner is an effective technique for reducing costs and improving operability.
  • the diameter of the fuel-containing fluid supply nozzle (12) increases as the capacity of the pruner increases.
  • the length of the outer diameter portion becomes longer, the unignited region (31) is expanded, and there is a problem that causes an increase in NO X and a decrease in combustion efficiency. This problem was caused by the large ignition distance on the surface of the fuel-containing fluid jet surface (32) force to the center of the fuel-containing fluid jet.
  • the outlet shape of the cross section of the fuel-containing fluid supply nozzle (12) described in Patent Documents 1 to 3 is a rectangular shape having a combined force of the long diameter portion and the short diameter portion, etc.
  • the non-ignition area (31) due to the increase in the Pana capacity resulting in an increase in NOx and a decrease in combustion efficiency.
  • the subject of the present invention is to increase the non-ignition area while increasing the capacity compared to the conventional one, and to prevent the NOx concentration in the combustion gas from increasing and the combustion efficiency from decreasing, and the It is providing the combustion apparatus and boiler provided with.
  • the invention according to claim 1 is provided on the wall surface of the furnace (4) from the connection portion (10a) of the fuel-containing fluid transport channel (10) for transporting the solid fuel and the fuel-containing fluid (11) of the fuel transport medium.
  • the fuel-containing fluid supply nozzle (12) has a fluid (from the connecting portion (10a) of the fluid transport channel (10) toward an outlet provided on the wall surface of the furnace (4).
  • the Pana was gradually expanded.
  • the invention according to claim 2 is characterized in that the fuel-containing fluid supply nozzle (12) is orthogonal to the flow of the fluid (11) from the connection portion (10a) to the outlet portion of the fluid transport channel (10).
  • the panner according to claim 1, having a configuration in which the size of the major axis of the cross section is gradually increased along the flow direction of the fluid (11), and the size of the minor axis is unchanged.
  • the invention according to claim 3 is characterized in that the fuel-containing fluid supply nozzle (12) is orthogonal to the flow of the fluid (11) from the connection portion (10a) to the outlet portion of the fluid conveyance flow path (10).
  • the size of the long diameter portion of the cross section is gradually increased along the flow direction of the fluid (11), and the size of the short diameter portion is gradually reduced along the flow direction of the fluid (11).
  • the invention of claim 4 is characterized in that the fuel-containing fluid supply nozzle (12) has a fuel-containing fluid guide plate (19) that divides the flow of the fuel-containing fluid (11) into a plurality thereof. 1 to 3!
  • the invention according to claim 5 is characterized in that the fuel-containing fluid guide plate (19) has a central axis in the flow direction of the fluid (11) in the fuel-containing fluid supply nozzle (12) in the furnace (4).
  • the invention according to claim 7 is characterized in that the fuel-containing fluid direction changing guide plate (21) passes through a line in which the central axis of the fuel-containing fluid supply nozzle (12) extends into the furnace (4).
  • the invention according to claim 8 is characterized in that the guide plate (21) for changing the direction of fuel-containing fluid has a center axis of the fuel-containing fluid supply nozzle (12) for a part of the fuel-containing fluid (11) as a furnace. (4) Is arranged parallel to the plane parallel to the longest diameter of the long diameter portion of the nozzle (12). For other fuel-containing fluids (11), the fuel-containing fluid supply nozzle (12) The panner according to claim 6, which is arranged with an inclination angle with respect to a plane parallel to the longest diameter of the long diameter portion of the nozzle (12) passing through a line extending in the furnace (4) in the central axis of the nozzle (12). is there
  • the invention according to claim 9 is characterized in that the fuel-containing fluid supply nozzle (12) is partitioned into a plurality of flow paths by the fuel-containing fluid guide plate (19), and a central axis of each flow path. Pass through a line extending the central axis of the fuel-containing fluid supply nozzle (12) into the furnace (4), and at different inclination angles with respect to a plane parallel to the longest diameter of the long diameter portion of the outlet of the nozzle (12).
  • the panner according to claim 4 which is provided on a wall surface of the furnace (4).
  • the fuel-containing fluid dividing plate (22) capable of dividing the outlet part into a plurality of parts is provided at the outlet part of the fuel-containing fluid supply nozzle (12). This is the panner described in
  • the invention according to claim 11 is the invention according to any one of claims 1 to 5, wherein a flame holder (17) having an L-shaped cross section is provided at an outlet of the fuel-containing fluid supply nozzle (12). Pana.
  • the invention according to claim 12 is characterized in that a guide plate (17a) is provided at the tip of the L-shaped flame holder (17) for changing the blowing direction of the combustion air around the flame holder (17) to the outside.
  • a guide plate (17a) is provided at the tip of the L-shaped flame holder (17) for changing the blowing direction of the combustion air around the flame holder (17) to the outside.
  • the invention according to claim 13 is characterized in that the ejection direction of the combustion air outside the one or more combustion air supply nozzles (15) disposed on the outer peripheral portion of the nozzle (12) is set to the fuel ejection direction.
  • the invention according to claim 14 is a concentrator (23) in which the flow path of the fuel-containing fluid (11) is once narrowed in the fuel-containing fluid supply nozzle (12) and then the flow path is expanded again.
  • the invention according to claim 15 is characterized in that a fluid distribution plate (24) for evenly distributing fuel in the nozzle (12) is provided at an inlet of the fuel-containing fluid supply nozzle (12).
  • the invention according to claim 16 is characterized in that a nozzle (41, 44) for ejecting liquid fuel or gaseous fuel as auxiliary fuel is provided in the vicinity of the fluid (11) ejected from the fuel-containing fluid supply nozzle (12).
  • a plurality of stages of the panners described in claims 1 to 16 are arranged in the vertical direction on the two furnace walls facing each other, and the plurality of spanners provided in each stage are arranged horizontally on the same furnace wall.
  • the combustion devices are arranged symmetrically in the wall surface area divided into two at the center of the width in the direction.
  • a plurality of stages of the panners of claims 1 to 16 are arranged on two opposing furnace walls in the vertical direction, and a plurality of the transformers provided on each stage of the same furnace wall are arranged.
  • the horizontal adjacent panners have the same structure.
  • the invention according to claim 19 is a boiler having a furnace wall configured by spirally winding a water wall pipe (25) inclined obliquely with respect to the horizontal, and the longitudinal direction of the water wall pipe (25).
  • the invention according to claim 20 is a boiler having a furnace wall composed of a group of water wall pipes (25) extending in a vertical direction, and has a rectangular shape along the longitudinal direction of the water wall pipe (25).
  • An elliptical or substantially elliptical opening (26) is provided in the furnace wall, and the boiler according to any one of claims 1 to 16 is attached to the opening (26).
  • an increase in the flow rate of the fuel-containing fluid (11) from the fuel-containing fluid connection portion (10a) toward the outlet of the fuel-containing fluid supply nozzle (12) is suppressed. It is possible to minimize pressure loss and suppress wear of the components in the fuel-containing fluid supply nozzle (12).
  • the flow of the fuel-containing fluid (11) is divided into a plurality of parts by the fuel-containing fluid guide plate (19) inside the fuel-containing fluid supply nozzle (12). Therefore, the fuel-containing fluid (11) is evenly supplied from the fuel-containing fluid connection (10a) toward the outlet of the fuel-containing fluid supply nozzle (12) in the direction in which the nozzle (12) expands, reducing NOx,
  • the improvement in combustion efficiency, the suppression of the increase in flow velocity, the minimization of pressure loss, and the effect of suppressing the wear of component parts are even better than the invention of claim 3.
  • the dispersion of the fuel-containing fluid jet flow (20) in the furnace (4) is promoted, and the combustion in the furnace (4) downstream portion is promoted.
  • the fuel-containing fluid guide plate (19) passes along a line in which the central axis of the fuel-containing fluid supply nozzle (12) extends into the furnace (4), and the nozzle ( 12) are arranged in mutually opposite directions with respect to a plane parallel to the longest diameter of the long diameter portion, so that the fuel-containing fluid (11) is divided into two or more groups in the furnace (4).
  • the fuel-containing fluid jet stream (20) is grouped with a simple structure, and the dispersion of the fuel-containing fluid jet stream (20) in the furnace (4) is promoted, and the furnace (4 ) Has the effect of promoting combustion in the wake part.
  • the four fuel-containing fluid jets (20) formed by the fuel-containing fluid supply nozzle (12) and the fuel-containing fluid plan inner plate (19) are divided into two groups. (20a, 20b), for example, the fuel-containing fluid jet flow (20a) near the furnace side wall is a straight flow, and the fuel-containing fluid jet flow (20b) is inclined horizontally without being near the furnace side wall.
  • the fuel-containing fluid (11) is supplied from the fuel-containing fluid supply nozzle (12) to the furnace (4) with different inclination angles with respect to the horizontal direction or the vertical direction. Because the direction of the fuel-containing fluid jet flow (20) can be changed without using parts in the fuel-containing fluid supply nozzle (12) where solid fuel such as pulverized coal directly collides It is effective for suppressing wear of parts.
  • the fuel-containing fluid ejected flow (20) is divided by the fuel-containing fluid dividing plate (22), the surface area is increased, and the radiation heat reception in the furnace (4) is increased.
  • a negative pressure region is formed on the downstream side of the fluid divider plate (22), and the surrounding hot gas flows into the negative pressure region, contributing to early ignition of the fuel. Combustion is promoted, which effectively reduces NOx concentration in combustion gas and improves combustion efficiency.
  • the flame holder (17) by providing the L-shaped flame holder (17) at the outlet of the fuel-containing fluid supply nozzle (12), the flame holder (17) A circulating vortex is formed in the flow, and the high-temperature combustion gas is pulled back to the vicinity of the flame holder (17). This contributes to early ignition of the fuel, and combustion in the reduction region near the burner is promoted. Effectively reduces NOx concentration and improves combustion efficiency.
  • the secondary air is spread outward by the secondary air plan inner plate (17a) at the tip of the L-shaped flame holder (17), and the flame holder ( 17)
  • the circulatory vortex in the wake becomes larger and the recirculation amount of the high-temperature combustion gas increases, so that the ignition of the fuel is further accelerated compared with the invention of claim 11 and the fuel in the reduction region near the panner Combustion is promoted, which effectively reduces NOx concentration in combustion gas and improves combustion efficiency.
  • the combustion air guide plate (15a) that extends the combustion air jet direction outside the combustion air supply nozzle (15) outward with respect to the fuel-containing fluid jet direction is provided.
  • the combustion air spreads outside and the reduction area at the center of the flame is expanded, which effectively reduces NOx concentration in combustion gases and improves combustion efficiency.
  • the fuel near the flame holder (17) is concentrated by the concentrator (23), contributing to the early ignition of the fuel, and in the reduction region near the panner. Combustion is promoted, which effectively reduces NOx concentration in combustion gas and improves combustion efficiency.
  • the fuel distribution fluid supply nozzle (24) is provided by the fluid distribution plate (24).
  • the fuel concentration at the inlet of 12) is made uniform, and the fuel concentration flowing into each flow path partitioned by the fuel-containing fluid guide plate (19) is suppressed to promote NOx reduction and combustion efficiency improvement It is effective to do.
  • the fuel-containing fluid (11) containing the solid fuel can be reliably ignited.
  • a plurality of stages of the panners of claims 1 to 16 are arranged in the vertical direction on the opposing furnace walls of the opposed combustion type furnace (4), and each stage The two burners are arranged symmetrically in the wall area divided by the center of the horizontal width of the same furnace wall, so that the direction of the fluid jet flow (20a, 20b) The left and right balance of the flow and combustion state in the furnace (4) can be maintained well.
  • a plurality of stages of the panners of claims 1 to 16 are arranged in the vertical direction on the two opposing furnace walls of the opposed combustion type furnace (4), and the same furnace wall
  • the opening (26) is formed by arranging the longitudinal direction of the water wall pipe (25) and the longitudinal direction of the long diameter part of the opening (26). Therefore, it is economical because the number of spiral water wall pipes (25) required for this purpose can be reduced, and a boiler with less water wall pipes (25) can be formed and bent. It becomes possible to minimize the number of the spiral water wall pipes (25) necessary for forming the opening (26), thereby improving the economy.
  • the distribution of the fuel-containing fluid (11) is made uniform in the horizontal (width) direction of the furnace, and the actual residence time in the furnace This is even longer and has the effect of reducing NOx concentration in combustion gas and improving combustion efficiency.
  • the rectangular opening (26) is installed along the arrangement of the water wall pipe (25) in the vertical direction on the furnace wall, the water wall pipe (25 ) And the longitudinal direction of the long diameter part of the opening (26) are aligned so that the water wall pipe (25) is processed and bent.
  • a boiler with fewer parts can be built and it is economical.
  • FIG. 1 shows the ignition position (33) in the furnace 4 when the fuel-containing fluid supply nozzle (12) of the PANA according to this embodiment shown in Fig. L (a) and Fig. 1 (b) is used.
  • Fig. 1 (a) shows a cross-sectional view of the fuel-containing fluid (11) in the fuel-containing fluid supply nozzle (12) of the panner of this embodiment in the jet flow direction
  • Fig. 1 (b) shows Fig. 1 (a Fig. 1 (c) shows the front view of the outlet of the fuel supply fluid supply nozzle (12) in the furnace (4), looking at the furnace (4) side force.
  • Fig. 1 (d) shows a front view of the outlet of the fuel-containing fluid supply nozzle (12) of the conventional PANA from the furnace (4) side.
  • the fuel-containing fluid (11) is obtained by reducing the length of the short side by making the shape of the outlet portion of the fuel-containing fluid supply nozzle (12) of the panner rectangular.
  • distance L2 '(Fig. 1 (d)) Greatly reduced.
  • Fig. 2 shows the ignition position (33) force in the jet flow direction of the fuel-containing fluid (11) from the fuel-containing fluid supply nozzle (12) in this embodiment.
  • Ignition distance) L1 (Fig. 2 (a)) is a cross-sectional view of the fuel-containing fluid supply nozzle (12) of PANA showing that the non-ignition distance L1 '(Fig. 2 (b)) of the prior art is reduced. It is.
  • the cross section of the fuel-containing fluid (11) up to the center of the jet flow of the fuel-containing fluid (11) The ignition position in the direction orthogonal to the rectangular jet flow (33)
  • the force distance L2 is reduced compared to the conventional distance L2 ', so that the unignited distance L1 becomes the conventional unignited distance L1'. Compared to a significant reduction.
  • FIG. 3 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 3 (a) shows a cross-sectional arrow view (in the arrow view of the BB line cross section in Fig. 3 (b)) in a direction parallel to the longest diameter of the long diameter portion of the outlet section through the central axis of the panner.
  • Fig. 3 (b) shows an arrow view of the cross section along line AA in Fig. 3 (a)
  • Fig. 3 (c) shows a front view of the outlet of the burner as seen from the furnace (4) side. .
  • the cylindrical fuel-containing fluid flow path (10) is connected to a fuel-containing fluid supply nozzle (12) having a rectangular cross section via a circular cross-section connection portion (10a), and the fuel-containing fluid supply nozzle (12)
  • the furnace (4) has a structure sufficient to form a jet flow with a rectangular cross section. Even after the fuel-containing fluid (11) is charged into the furnace (4), the fuel-containing fluid (11) spreads along the jet flow direction, and the cross-sectional area of the jet flow of the fuel-containing fluid (11) increases. Since the flow velocity decreases, it effectively works to further reduce the unignited distance L1 shown in Fig. 2.
  • a combustion air sleeve (15) having a rectangular cross section and a burner throat (16) having a rectangular cross section are disposed around the fuel-containing fluid supply nozzle (12).
  • FIG. 4 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 4 (a) shows a cross-sectional arrow view (in the arrow view of the BB line cross section in Fig. 4 (b)) in the direction parallel to the longest diameter of the long diameter portion of the outlet section through the central axis of the panner.
  • Fig. 4 (b) shows an arrow view of the cross section along line A-A in Fig. 4 (a)
  • Fig. 4 (c) shows a front view of the burner outlet viewed from the furnace (4) side. .
  • the pan shown in FIG. 4 has an elliptical cross-sectional shape in a direction perpendicular to the jet flow of the fuel-containing fluid (11) of the panner, and the other configuration is the same as the parner shown in FIG. is there.
  • the cross-sectional shape in the vertical direction of the PANA (direction perpendicular to the jet flow of the fuel-containing fluid (11)) is a rectangular shape in FIG. 3, and an elliptical shape in FIG.
  • the same effect as described above can be obtained even if a similar shape such as an arc-shaped short side or a wide diamond shape is employed.
  • FIG. 5 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Figure 5 (a) shows the center axis of the PANA.
  • Fig. 5 (b) the cross-sectional arrow view in the direction parallel to the longest diameter of the long diameter portion of the exit section is shown (Fig. 5 (b) arrow B-B cross section).
  • Fig. 5 (c) Shows a front view of the outlet of the burner viewed from the furnace (4) side.
  • the fuel-containing fluid supply nozzle (12) has a major axis in the flow direction of the fuel-containing fluid (11) from the fuel-containing fluid connection (1 Oa) toward the outlet. Although the size of the minor axis portion is gradually reduced along the flow direction of the fuel-containing fluid (11), the other configurations are the same as the PANANER shown in FIG. is there.
  • the feature of the PANA structure shown in FIG. 5 is that it is possible to suppress an increase in the flow rate of the fuel-containing fluid (11) from the fuel-containing fluid connection portion (10a) toward the outlet portion of the fuel-containing fluid supply nozzle (12). It is possible to minimize pressure loss and suppress wear of components in the fuel-containing fluid supply nozzle (12).
  • FIG. 6 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 6 (a) shows a cross-sectional arrow view (in the arrow view of line B-B in Fig. 6 (b)) in a direction parallel to the longest diameter of the long diameter portion of the outlet section through the central axis of the panner.
  • Fig. 6 (b) shows an arrow view of the cross section along line AA in Fig. 6 (a)
  • Fig. 6 (c) shows a front view of the outlet of the burner as seen from the furnace (4) side. .
  • the fuel-containing fluid (11) flowing through the fuel-containing fluid supply nozzle (12) is evenly distributed in the direction in which the fuel-containing fluid supply nozzle (12) expands along the jet flow direction.
  • the fuel-containing fluid guide plate (19) is arranged so as to be supplied, and the other configuration is the same as the parner shown in FIG. In this example, three fuel-containing fluid guide plates (19) are installed, and the fuel-containing fluid (11) is uniformly spread according to the spread of the fuel-containing fluid supply nozzle (12).
  • the guide plate (19) is placed on the central axis, and the planer plates (19) on both sides sandwiching the guide plate (19) are arranged at angles ⁇ and j8 with respect to the vertical cross section passing through the central axis.
  • the fuel-containing fluid connection portion (10a) The fuel-containing fluid (11) is expanded in accordance with the spread of the fuel-containing fluid supply nozzle (12) toward the outlet of the containing fluid supply nozzle (12) and can be burned without imbalance. .
  • the fuel-containing fluid (11) is expanded in a manner that suppresses the local increase in flow velocity, minimizes pressure loss, and suppresses the wear of components as shown in FIG. And get better.
  • FIG. 7 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 7 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet section through the central axis of the panner
  • Fig. 7 (b) shows a cross section along line B-B in Fig. 7 (a).
  • Fig. 7 (c) shows an arrow view of the AA line cross section of Fig. 7 (a).
  • the panner shown in FIG. 7 is configured so that the fuel-containing fluid (11) flowing in the fuel-containing fluid supply nozzle (12) flows in the flow direction in the same manner as the panner shown in FIG.
  • the fuel-containing fluid guide plate (19) is arranged so as to be supplied evenly in the direction of expansion of the fuel-containing fluid, and the outlet on the line extending toward the furnace (4) through the central axis of the fuel-containing fluid supply nozzle (12)
  • a fuel-containing fluid direction changing guide plate (21b) that changes the flow of fluid (11) upward is installed at the outlet of the burner.
  • the four fuel-containing fluid jets 20 (20a, 20b) formed by the fuel-containing fluid supply nozzle (12) and the fuel-containing fluid guide plate (19) 21b) forms a fuel-containing fluid jet flow (20a) that is inclined downward and a fuel-containing fluid jet flow (20b) that is inclined upward.
  • 7 has the effect of promoting the dispersion of the fuel-containing fluid jet stream (20) in the furnace (4) and the combustion in the furnace (4) downstream part.
  • FIG. 8 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 8 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the panner
  • Fig. 8 (b) shows a cross section along line B-B in Fig. 8 (a).
  • Fig. 8 (c) shows an arrow view of the AA line cross section of Fig. 8 (a).
  • the panner shown in FIG. 8 is configured so that the fuel-containing fluid (11) flowing through the fuel-containing fluid supply nozzle (12) flows in the fuel-containing fluid supply nozzle (12) along the flow direction in the same manner as the panner shown in FIG.
  • the fuel-containing fluid guide plate (19) is arranged so that the fuel is evenly supplied in the expanding direction of the fuel-containing fluid, and the outlet on the line extending toward the furnace (4) passes through the central axis of the fuel-containing fluid supply nozzle (12).
  • Fuel-containing fluid supply nozzle (12) and fuel-containing fluid guide plate ( 19) and the four fuel-containing fluid jets (20a, 20b) are moved in the straight direction by installing the fuel-containing fluid direction changing guide plates (21a, 21b).
  • the fuel-containing fluid jet (20b) is an upward jet.
  • the fuel-containing fluid jet flow near the water wall on the side wall side of the furnace (4) is made a straight flow, and not on the water wall on the side wall side of the furnace (4)!
  • the fuel-containing fluid jet flow (20) is dispersed in the furnace (4) to promote the furnace (4) wake This maintains the effect of promoting combustion in the furnace and prevents the ash from adhering by suppressing the inflow of flame near the furnace (4) side wall.
  • FIG. 9 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 9 (a) shows a cross-sectional arrow view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the burner
  • Fig. 9 (b) shows a perspective view of the burner
  • Fig. 9 ( Fig. 9 (a) shows an arrow view of the section A-A in Fig. 9 (a)
  • Fig. 9 (d) shows an arrow view of the section BB in Fig. 9 (a).
  • the panner shown in FIG. 9 is similar to the panner shown in FIG. 7 in that the fuel-containing fluid supply nozzle (12) flows in the fuel-containing fluid supply nozzle (12) along the flow direction.
  • the fuel-containing fluid guide plate (19) is arranged so that it is evenly supplied in the expanding direction.
  • the shape of the front face of the inlet of the fuel-containing fluid nozzle (12) is a parallelogram, and one side surface (12a) of the fuel-containing fluid nozzle (12) is inclined upward along the flow direction and the other side surface. (12b) is arranged diagonally downward along the flow direction, and the fuel-containing fluid supply nozzle (12) Speak.
  • a portion of the fuel-containing fluid supply nozzle (12) close to the side surface (12a) forms an obliquely upward fuel-containing fluid ejection flow (20a) as shown in FIG.
  • an obliquely downward fuel-containing fluid jet (20d) is formed as shown in Fig. 9 (d).
  • the two flow channels in the center, where the fuel-containing fluid supply nozzle (12) is partitioned by the fuel-containing fluid guide plate (19), also have a jet direction in the middle of the fuel-containing fluid jet flow (20a) and the center line. Fluid jet (20b) and fuel-containing fluid jet (20d) and jet between the center line A fuel-containing fluid jet flow (20c) having a direction is formed.
  • FIG. 10 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 10 (a) shows a cross-sectional arrow view (in the arrow view of the B-B cross section in Fig. 10 (b)) in the direction parallel to the longest diameter of the long diameter portion of the outlet section through the central axis of the panner.
  • Fig. 10 (b) shows an arrow view of the cross section along line AA in Fig. 10 (a)
  • Fig. 10 (c) shows a front view of the outlet of the PANA as viewed from the furnace (4) side.
  • a fuel-containing fluid dividing plate (22) that is partially shielded perpendicular to the flow of the fuel-containing fluid (11) is installed.
  • the fuel-containing fluid jet (20) is divided into four parts as shown in FIG. 11 by the fuel-containing fluid divider plate (22).
  • the division increases the surface area of the fuel-containing fluid jet (20) and increases the radiation heat reception in the furnace (4), and the negative pressure region (22a) is located on the downstream side of the fuel-containing fluid dividing plate (22).
  • the surrounding hot gas flows into the negative pressure region as shown by the arrow in the figure.
  • the increase in radiation heat tl and the inflow of high-temperature gas into the negative pressure region both contribute to early ignition of the fuel, which promotes combustion in the reduction region near the burner, reduces the NOx concentration of combustion gas, and combustion Effectively improves efficiency.
  • FIG. 12 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 12 (a) shows a cross-sectional arrow view (in the arrow view of the B-B line cross section in Fig. 12 (b)) in a direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the panner.
  • Fig. 12 (b) shows an arrow view of the cross section along line AA in Fig. 12 (a)
  • Fig. 12 (c) shows a front view of the outlet of the PANA from the furnace (4) side.
  • a fuel-containing fluid that is an outlet portion of the fuel-containing fluid nozzle (12) and that partially blocks the flow at the outlet portion of the fuel-containing fluid guide plate (19) perpendicular to the flow of the fuel-containing fluid (11)
  • a dividing plate (22) is installed.
  • the fuel-containing fluid guide plate (19) supplies the fuel-containing fluid (11) evenly in the fuel-containing fluid supply nozzle (12), thus realizing more effective reduction of NOx and improvement of combustion efficiency. .
  • FIG. 13 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Figure 13 (a) is a cross-sectional view in the direction parallel to the longest diameter of the outlet long section through the central axis of the panner (B-B in Figure 13 (b)).
  • Fig. 13 (b) shows an arrow view of the A-A cross section of Fig. 13 (a), and
  • Fig. 13 (c) shows the outlet of the panner in the furnace (4) The front view seen from the side is shown.
  • a flame holder (17) having an L-shaped cross section is installed at the outlet of the fuel-containing fluid nozzle (12).
  • a circulatory vortex (not shown) is formed in the wake of the flame holder (17) and draws high-temperature combustion gas back to the vicinity of the flame holder (17). This contributes to early ignition of the fuel and near the burner. Combustion in the reduction region of the gas is promoted, which effectively reduces NOx concentration in combustion gas and improves combustion efficiency.
  • FIG. 14 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 14 (a) shows a cross-sectional arrow view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion (arrow view of the B-B cross section in Fig. 14 (b)) passing through the central axis of the panner.
  • Fig. 14 (b) shows a cross-sectional view taken along the line AA in Fig. 14 (a)
  • Fig. 14 (c) shows a front view of the outlet of the PANA from the furnace (4) side.
  • a secondary air guide plate (17a) is provided at the tip of an L-shaped flame stabilizer (17) shown in FIG. 14 so as to spread the secondary air ejection direction outward.
  • the circulatory vortex (not shown) in the wake of the flame holder (17) increases, increasing the amount of high-temperature combustion gas recirculation and fuel. This further accelerates ignition and promotes combustion in the reduction region near the burner, effectively reducing NOx concentration of combustion gases and improving combustion efficiency.
  • FIG. 15 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 15 (a) shows a cross-sectional view (in the direction of the line B-B in Fig. 15 (b)) in the direction parallel to the longest diameter of the long diameter part of the outlet part through the central axis of the panner.
  • Fig. 15 (b) shows an arrow view of the cross section along line AA in Fig. 15 (a)
  • Fig. 15 (c) shows a front view of the outlet portion of the PANA from the furnace (4) side.
  • a tertiary air guide plate (15a) is installed at the tip of the secondary air sleeve (15) to expand the direction of ejection of the tertiary air to the outside.
  • the expansion of the tertiary air to the outside expands the reduction area at the center of the flame, effectively reducing NOx concentration and improving combustion efficiency.
  • FIG. 16 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 16 (a) shows a cross-sectional view (in the direction of the arrow line BB in Fig. 16 (b)) in a direction parallel to the longest diameter of the long diameter part of the outlet part through the central axis of the panner.
  • Figure 16 (b) shows an arrow view of the cross section along the line AA in Figure 16 (a).
  • 6 (c) shows a front view of the outlet of the PANA as seen from the furnace (4) side.
  • the PANA shown in FIG. 16 is a fuel containing fluid that combines a triangular prism shape whose cross-sectional area gradually increases from the upstream side in the fuel-containing fluid supply nozzle (12) and a reverse triangular prism shape whose cross-sectional area gradually decreases on the downstream side.
  • a fluid concentrator (23) is installed.
  • the fuel-containing fluid concentrator (23) concentrates the fuel near the flame holder (17), contributes to early ignition of the fuel, promotes combustion in the reduction region near the burner, and NOx concentration of the combustion gas This effectively works to reduce combustion and improve combustion efficiency.
  • FIG. 17 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Fig. 17 (a) shows a cross-sectional view (in the direction of the arrow line B-B in Fig. 17 (b)) in a direction parallel to the longest diameter of the long diameter part of the outlet part through the central axis of the panner.
  • Fig. 17 (b) shows a cross-sectional view taken along the line AA in Fig. 17 (a)
  • Fig. 17 (c) shows a front view of the outlet of the PANA from the furnace (4) side.
  • the fuel-containing fluid in which the upstream side of the fuel-containing fluid supply nozzle (12) has a triangular columnar shape with a gradually expanding cross section, a square columnar shape in the middle, and a downstream side with a reverse triangular columnar shape with a gradually decreasing cross-sectional area.
  • a concentrator (23 ') is installed. In this configuration, by reducing the angle change around the concentrator (23 ′), separation is suppressed, the fuel concentration effect is enhanced, the NO X reduction effect is increased, and the combustion efficiency is improved.
  • FIG. 16 and FIG. 17 show an effective configuration example of the concentrator (23, 23 ′), but the same effect can be obtained by using a concentrator having a similar structure such as a triangular prism. can get.
  • FIG. 18 shows an example of the structure of a panner according to an embodiment of the present invention.
  • Figure 18 (a) is a cross-sectional view parallel to the surface of the fuel-containing fluid supply nozzle (12) formed through the long side of the outlet part of the nozzle (12) (see line B-B in Figure 18 (b)).
  • Fig. 18 (b) shows a cross-sectional view taken along the line A-A in Fig. 18 (a).
  • Fig. 18 (c) is a front view of the outlet of the PANA as seen from the furnace (4) side. Indicates.
  • a weir-like fluid distribution plate (24) is provided at the inlet of the fuel-containing fluid supply nozzle (12).
  • the fuel-containing fluid (11) once collides with the upstream side of the weir-like fluid distribution plate (24) and is evenly distributed in the long side direction of the fuel-containing fluid supply nozzle (12). It is evenly guided to the four flow paths partitioned by the fuel-containing fluid guide plate (19) in the fluid supply nozzle (12), and is supplied to the furnace (4) while maintaining an equal state.
  • FIG. 19 shows an example in which the oil supply nozzle (41) is installed at the center of the fuel-containing fluid supply nozzle (12).
  • Fig. 19 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter part of the outlet part (arrow view of the cross section along line BB in Fig. 19 (b)) passing through the central axis of the panner.
  • Fig. 19 (b) shows a cross-sectional view taken along the line AA in Fig. 19 (a)
  • Fig. 19 (c) shows a front view of the outlet of the panner from the furnace (4) side.
  • FIG. 20 shows an example in which a gas ejection part connected from the gas introduction pipe (42) to the gas supply nozzle (44) via the horizontal pipe (43) is installed around the flame holder (17).
  • Fig. 20 (a) is a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the panner (view of the cross section along line BB in Fig. 20 (b)).
  • Fig. 20 (b) shows a cross-sectional view taken along the line A-A in Fig. 20 (a)
  • Fig. 20 (c) shows a front view of the outlet of the PANA from the furnace (4) side. Show.
  • the PANA structure shown in Fig. 21 is a fuel-containing fluid supply nozzle (12) having a rectangular cross-sectional shape perpendicular to the flow of the fuel-containing fluid (11) flowing in the fuel-containing fluid supply nozzle (12) of the PANA.
  • Furnace (4) When viewed from the front side, the fuel-containing fluid supply nozzle (12) shown in FIG. 21 is a plane perpendicular to the furnace wall surface in the upward and downward directions on the long side of the nozzle (12). In contrast, the fuel-containing fluid jets (20a, 20b) are formed inclining to the opposite side in the horizontal direction. The formation of the fuel-containing fluid jet is achieved by applying the PANA structure shown in Fig. 7 or Fig. 9.
  • FIG. 22 is a fuel-containing fluid supply nozzle (12) having a rectangular cross-sectional shape perpendicular to the flow of the fuel-containing fluid (11) flowing through the fuel-containing fluid supply nozzle (12). (4) Side view of the fuel-containing fluid supply nozzle (12) in front view (Fig. 22 (a)) and plan view (Fig. 22 (b)) ).
  • Furnace (4) Front side force As seen from the fuel-containing fluid supply nozzle (12) shown in FIG. 22, a plane perpendicular to the furnace wall surface in the upward and downward directions on the long side of the nozzle (12) On the other hand, one is inclined in the horizontal direction to form a fuel-containing fluid jet (20b), and the other is perpendicular to the furnace wall to form a fuel-containing fluid jet (20c).
  • the formation of this fuel-containing fluid jet is achieved by applying the PANA structure shown in Fig. 8.
  • FIG. 23 shows an example in which a number of fuel-containing fluid supply nozzles (12) shown in FIG. 21 are arranged on three furnace walls in three rows in the vertical direction and in four rows in the horizontal direction.
  • a nozzle (12) that forms a jet (20a, 20b) is arranged in the same direction as the fuel-containing fluid supply nozzle (12) shown in Fig. 21, and in the left half of the furnace wall
  • the fuel-containing fluid supply nozzle (12) shown in FIG. 21 and the nozzle (12) for forming the jet flow (20a, 20b) are arranged at the mirror surface target position.
  • the nozzle (12) The direction of the fuel-containing fluid jet (20a, 20b) need not be as shown.
  • the fuel-containing fluid supply nozzles (12) are arranged on one furnace wall surface in three rows in the vertical direction and in four rows in the horizontal direction.
  • Furnace (4) A burner with a fuel-containing fluid jet flow (20c) and an inclined fuel-containing fluid jet flow (20b) is arranged near the water wall on the side wall, and the fuel containing the fuel is inclined on both sides near the center.
  • the fluid jets (20a, 20b) By arranging the fluid jets (20a, 20b), the fuel-containing fluid jets (20a, 20b) are promoted to disperse in the furnace (4), and combustion in the furnace (4) is promoted.
  • (4) has the effect of suppressing the inflow of flame near the side wall and preventing ash adhesion.
  • the fuel-containing fluid supply nozzles (1 2) forming the fuel-containing fluid jets (20a, 20b) shown in FIG. 21 are all the same as the fuel-containing fluid nozzles (12) of all the furnace walls. ) Is shown.
  • this example particularly in a small-volume furnace (4), by avoiding collision of fuel-containing fluid jets (20a, 20b), local concentration of fuel is suppressed, and NOx concentration in the combustion gas is reduced. This arrangement is effective for improving combustion efficiency.
  • the burner structures shown in Figs. 21 to 25 can be optimally selected according to the conditions of the furnace dimensions, the arrangement of the furnace, etc., to achieve optimum combustion characteristics.
  • FIG. 26 shows a plan view of a furnace wall of a boiler in which a panner according to an embodiment of the present invention is arranged.
  • a boiler having a spiral water wall pipe (25) on the furnace wall is provided with a rectangular opening (26) along the arrangement of the water wall pipe 25 oblique to the horizontal.
  • Various panners described in the embodiments of the present invention are attached. Minimizing the number of water wall pipes (25) required to form the opening (26) by providing an opening (26) along the snail-shaped water wall pipe (25) Can be made and the economy is improved
  • the combustion apparatus has a feature that the combustion space can be effectively utilized because the fuel-containing fluid ejection flow (20) spreads in the furnace (4).
  • the fuel-containing fluid jet flow (20a, 20b) spreads in the horizontal (width) direction of the furnace (4), so the distribution of the fuel-containing fluid (11) in the horizontal (width) direction of the furnace It is uniformized and the actual residence time in the furnace becomes even longer, which effectively reduces NOx concentration in combustion gas and improves combustion efficiency.
  • FIG. 27 shows a plan view of a furnace wall of a boiler in which a panner according to an embodiment of the present invention is arranged.
  • a boiler having a water wall pipe (25) extending vertically in the furnace wall is provided with a rectangular opening (26) along the arrangement of the water wall pipe (25).
  • the above-described panner of each embodiment is attached.
  • FIG. 1 is an explanatory diagram of an ignition region of a Pana outlet according to the present invention and a prior art.
  • FIG. 2 is an explanatory diagram of an unloaded region at the outlet of the present invention and the conventional system.
  • FIG. 3 An example of the structure of a panner according to an embodiment of the present invention is shown (Fig. 3 (a) passes through the central axis of the panner.
  • Fig. 3 (b) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter part of the outlet part.
  • Fig. 3 (c) shows a front view of the outlet of the PANA from the furnace side. ).
  • FIG. 4 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 4 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • (b) shows a cross-sectional view taken along line AA in FIG. 4 (a)
  • FIG. 4 (c) shows a front view of the outlet of the PANA from the furnace side.
  • FIG. 5 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 5 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 5 (b) shows a cross-sectional view taken along the line AA in Fig. 5 (a)
  • Fig. 5 (c) shows a front view of the outlet of the PANA from the furnace side.
  • FIG. 6 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 6 (a) is a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 6 (b) shows a cross-sectional view taken along line AA in Fig. 6 (a)
  • Fig. 6 (c) shows a front view of the outlet of the PANA from the furnace side.
  • FIG. 7 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 7 (a) shows a cross-sectional view in a direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 7 (b) shows an arrow view of the cross section along line BB in Fig. 7 (a)
  • Fig. 7 (c) shows an arrow view of the cross section along line A-A in Fig. 7 (a).
  • FIG. 8 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 8 (a) shows a cross-sectional arrow view in a direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 8 (b) shows an arrow view of the section B-B in Fig. 8 (a)
  • Fig. 8 (c) shows an arrow view of the section A-A in Fig. 8 (a).
  • FIG. 9 An example of the structure of a panner according to an embodiment of the present invention is shown (FIG. Fig. 9 (b) shows a perspective view of the panner, and Fig. 9 (c) shows a BB line in Fig. 9 (a). An arrow view of the cross section is shown, and Fig. 9 (d) shows an arrow view of the cross section along the line AA in Fig. 9 (a). ) 0
  • FIG. 10 An example of the structure of a panner according to an embodiment of the present invention is shown (FIG. 10 (a) is parallel to the longest diameter of the long diameter portion of the outlet portion on the line passing through the central axis of the parner and extending toward the furnace.
  • Fig. 10 (b) shows an arrow view of the AA line cross section of Fig. 10 (a), and Fig. 10 (c) shows the outlet of the burner from the furnace side. )
  • FIG. 10 An illustration of the effect of the invention shown in FIG. 10 is shown.
  • FIG. 12 shows an example of the structure of the burner of the embodiment of the invention shown in FIG. 10
  • FIG. 12 (a) shows the longest diameter of the long diameter portion of the outlet portion on the line passing through the central axis of the burner and extending toward the furnace.
  • Fig. 12 (b) shows a cross-sectional view along the line A-A in Fig. 12 (a), and
  • Fig. 12 (c) shows the outlet of the PANA at the furnace side.
  • FIG. 13 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 13 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 13 (b) shows Fig. 1.
  • FIG. 3 (a) shows a cross-sectional view taken along the line AA
  • FIG. 13 (c) shows a front view of the outlet of the PANA from the furnace side. ).
  • FIG. 14 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 14 (a) shows a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 14 (b) shows Fig. 1.
  • FIG. 4 (a) shows a cross-sectional view of the AA line cross section
  • Fig. 14 (c) shows a front view of the outlet of the PANA from the furnace side. ).
  • FIG. 15 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 15 (a) shows a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Figure 1 in Fig. 15 (b) shows a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • FIG. 5 (a) shows a cross-sectional view taken along the line AA
  • Fig. 15 (c) shows a front view of the outlet of the PANA from the furnace side. ).
  • FIG. 16 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 16 (a) shows a cross-sectional view in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • FIG. 6 (a) shows a cross-sectional view taken along the line AA
  • Fig. 16 (c) shows a front view of the outlet of the PANA from the furnace side.
  • FIG. 17 shows an example of the structure of a panner according to an embodiment of the present invention
  • FIG. 17 (a) shows a cross-sectional view taken in the direction parallel to the longest diameter of the long diameter portion of the outlet portion through the central axis of the parner.
  • Fig. 17 (b) shows a cross-sectional view taken along the line AA in Fig. 17 (a)
  • Fig. 17 (c) shows a front view of the outlet of the PANA from the furnace (4) side. ).
  • FIG. 18 (a) is a cross-sectional view parallel to the fuel-containing fluid supply nozzle surface formed through the long side of the outlet (see FIG. 18).
  • Fig. 18 (b) shows a cross-sectional view along the line A-A in Fig. 18 (a), and
  • Fig. 18 (c) shows the furnace outlet at the burner outlet.
  • a front view from the side is shown.
  • FIG. 19 shows an example in which an oil supply nozzle is installed at the center of a fuel-containing fluid supply nozzle.
  • FIG. 19 shows an example in which an oil supply nozzle is installed at the center of a fuel-containing fluid supply nozzle. * 20] An example of installing a gas supply nozzle around the flame holder is shown.
  • FIG. 21 A front view (Fig. 21 (a)) and a plan view (Fig. 21 (b)) of the fuel-containing fluid supply nozzle are shown.
  • FIG. 22 (a) and a plan view (FIG. 22 (b)) of the fuel-containing fluid supply nozzle for other configurations are shown.
  • FIG. 24 shows an example in which many fuel-containing fluid supply nozzles shown in FIGS. 21 and 22 are arranged in three rows in the vertical direction and in four rows in the horizontal direction on one furnace wall surface.
  • FIG. 21 Another embodiment in which many of the fuel-containing fluid supply nozzles shown in FIG. 21 are arranged in three rows in the vertical direction and in four rows in the horizontal direction on one furnace wall surface is shown.
  • FIG. 26 is a plan view of a furnace wall of a boiler in which a panner according to an embodiment of the present invention is arranged.
  • FIG. 27 is a plan view of a furnace wall of a boiler in which a panner according to an embodiment of the present invention is arranged. ⁇ 28] shows an example of a conventional technology also solid fuel PANA (Fig 28 (a) is a side sectional view of the PANA, FIG. 28 (b) is a front view of the PANA from the furnace.) 0
  • FIG. 29 shows a cross-sectional view of the fuel-containing fluid supply nozzle of the conventional PANA in the direction along the flow of the fuel-containing fluid
  • FIG. 29 (b) shows the outlet of the fuel-containing fluid supply nozzle. The front view which looked at the part from the furnace side is shown.
  • Non-ignition area 32 Ignition area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

明 細 書
パーナ、パーナを備えた燃焼装置及びボイラ
技術分野
[0001] 本発明は、パーナ、該パーナを備えた燃焼装置、及びボイラに関し、特に、効率の 良い低窒素酸ィ匕物 (NOx)燃焼が可能な前記パーナに関する。
背景技術
[0002] 図 28に従来技術力もなる固体燃料 (微粉炭、バイオマス燃料など)用パーナの例を 示す。図 28 (a)はパーナの側断面図、図 28 (b)は該パーナを火炉 (4)側から見た正 面図である。この固体燃料用パーナは固体燃料と搬送用一次空気とを含む燃料含 有流体(11)が火炉 (4)に向カゝつて流れる燃料含有流体流路を画定して ヽる燃料含 有流体供給ノズル ( 12)と、該燃料含有流体供給ノズル ( 12)の外周に設けられた燃 焼用空気スリーブ(15)とを備え、風箱(3)内の空気が前記スリーブ(15)により画定 された燃焼用空気流路を通して、二次空気(13)及び三次空気(14)として供給され る。燃料含有流体供給ノズル(12)の先端には保炎器(17)が設けられており、その 後流に形成される循環渦の効果でパーナ近傍からの燃料の着火を可能としている。
[0003] 燃焼用空気スリーブ(15)の先端は、火炉壁面に設けられたバーナスロート(16)に 臨む位置にあり、該スリーブ(15)の先端にはパーナの外側に広がる燃焼用空気案 内板(15a)が設けられており、三次空気(14)は該燃焼用空気案内板(15a)により外 側に広げられ、火炎中心部への空気の混合を遅らせ、空気不足の還元雰囲気条件 下での燃焼促進により、燃焼ガス中の窒素酸ィ匕物 (NOx)の生成を抑制している。
[0004] 図 1 (c)に前記従来技術のパーナにおける燃料含有流体供給ノズル ( 12)の燃料 含有流体(11)の噴出流に沿った方向の断面図を示し、図 1 (d)に図 1 (c)のパーナ の燃料含有流体供給ノズル( 12)の出口部を火炉 (4)側から見た正面図を示すよう に、従来技術のパーナでは、燃料含有流体供給ノズル(12)の出口部の断面は円形 に近い形状を有している。燃料含有流体(11)が火炉 (4)内に投入されると、火炉 (4 )内の輻射による加熱や保炎器 (17)の後流の循環渦の働きで燃料含有流体供給ノ ズル( 12)の出口近傍で燃料に着火される。 [0005] 図 29 (a)に従来技術のパーナにおける燃料含有流体供給ノズル(12)の燃料含有 流体(11)の噴出流に沿った方向の断面図を示し、図 29 (b)に該燃料含有流体供給 ノズル( 12)の出口部を火炉 (4)側カゝら見た正面図を示すように、燃料含有流体供給 ノズル(12)から火炉 (4)内に噴出する燃料含有流体中の燃料の着火位置(33)が 形成される。燃料含有流体(11)の噴流の表面で燃料が着火した後、形成される火 炎は次第に燃料含有流体(11)の噴流の中心部に向力つて伝播する。図 30は従来 技術のパーナにおける燃料含有流体供給ノズル(12)の燃料含有流体(11)の噴出 流に沿った断面方向の火炉 (4)内の火炎伝播の挙動を模式的に示したものである。 円錐形状の未着火領域 (31)の周りに着火領域 (32)が形成される。
[0006] 上記図 28〜図 30に示す断面円形のパーナは、対向する一対の火炉壁にそれぞ れ配置される、いわゆる対向燃焼方式に用いられることが多い。一方、火炉壁面に沿 つて複数の燃料含有流体供給ノズル(12)の出口力 火炉 (4)内に旋回を与える方 向に前記燃料含有流体を噴出させながら燃料を燃焼させる、 V、わゆるタンジェンシャ ル燃焼においては、燃料含有流体供給ノズル(12)の横断面 (燃料含有流体流れに 直交する断面)の出口形状を正方形または正方形に近!、矩形とすることが多 、。
[0007] また、前記燃料含有流体供給ノズル ( 12)の横断面 (燃料含有流体流れに直交す る断面)の出口形状を長径部と短径部を有する矩形状、楕円形状又は略楕円形状と するパーナは下記特許文献 1〜 3に開示されている。
特許文献 1:特表昭 59 - 500981号公報
特許文献 2:特開平 8— 226615号公報
特許文献 3:特開平 11― 281009号公報
発明の開示
発明が解決しょうとする課題
[0008] 一般にパーナの燃料含有流体供給ノズル(12)の出口部の断面は円形又は正方 形に近い形状をしており、図 30に示すように、火炉 (4)内において燃料含有流体噴 流の外側で着火した火炎が燃料含有流体噴流の中心部まで伝播するにはかなりの 距離を必要とする場合がある。燃料含有流体供給ノズル (12)からの燃料含有流体( 11)の噴出流方向における着火した火炎が燃料噴流の中心部まで伝播する距離、 すなわち、図 30に示す未着火距離 LI 'は、燃料含有流体供給ノズル(12)の直径又 は周辺部が大きくなるほど長くなり、未着火領域 (31)が拡大する。パーナ近傍の還 元領域で燃焼を促進することが、燃焼ガス中での NOx発生を抑制する上で重要であ る力 未着火領域(31)の拡大は、この NOx濃度の抑制の特性を阻害することになる 。また、未着火領域 (31)の拡大は着火後の燃焼時間が短くなることを意味し、燃焼 効率低下の要因ともなる。
[0009] パーナ容量の増加 (パーナ本数の低減)はコスト低減と運用性向上のために有効 な手法であるが、従来技術においては、パーナ容量が増加すると燃料含有流体供給 ノズル(12)の直径又は外径部の長さが長くなり、未着火領域 (31)が拡大して、 NO Xの増加と燃焼効率の低下の原因となる問題点があった。この問題は、燃料含有流 体噴流表面の着火領域 (32)力 燃料含有流体噴流の中心部までの距離が大き!/、 ことが原因であった。また、前記特許文献 1〜3記載の燃料含有流体供給ノズル(12 )の横断面 (燃料含有流体流れに直交する断面)の出口形状を長径部と短径部の組 み合わせ力 なる矩形状などとした発明では、パーナ容量の増加により未着火領域( 31)が拡大して、 NOxの増加と燃焼効率の低下が生じることに対する対策について は何ら触れられてない。
[0010] 本発明の課題は容量を従来より増力!]させながら、未着火領域の拡大を抑え、燃焼 ガス中の NOx濃度の増加防止と燃焼効率低下防止を図った固体燃料用パーナ、該 パーナを備えた燃焼装置及びボイラを提供することである。
課題を解決するための手段
[0011] 上記本発明の課題は次の解決手段で解決される。
請求項 1記載の発明は、固体燃料と該燃料搬送用媒体の燃料含有流体 (11)を搬 送する燃料含有流体搬送流路(10)の接続部(10a)から火炉 (4)壁面に設けた出口 部に向けて前記流体 (11)を供給する燃料含有流体供給ノズル ( 12)と、該燃料含有 流体供給ノズル ( 12)の外周部に一以上の燃焼用空気を供給する空気供給ノズル ( 15)を有するパーナにおいて、前記燃料含有流体供給ノズル(12)は、前記流体搬 送流路(10)の接続部(10a)から火炉 (4)の壁面に設けた出口部に向けて流体( 11 )の流れに直交する断面を長径部と短径部を有する矩形状、楕円形状又は略楕円 形状とし、前記流体搬送流路(10)の接続部(10a)から出口部に向けて流体(11)の 流れに直交する断面の長径部の大きさを流体(11)の流れ方向に沿って次第に拡大 させたパーナである。
[0012] 請求項 2記載の発明は、前記燃料含有流体供給ノズル(12)が、前記流体搬送流 路(10)の接続部(10a)から出口部に向けて流体(11)の流れに直交する断面の長 径部の大きさが流体(11)の流れ方向に沿って次第に拡大し、短径部の大きさが不 変である構成を有する請求項 1記載のパーナである。
[0013] 請求項 3記載の発明は、前記燃料含有流体供給ノズル(12)が、前記流体搬送流 路(10)の接続部(10a)から出口部に向けて流体(11)の流れに直交する断面の長 径部の大きさが流体(11)の流れ方向に沿って次第に拡大し、短径部の大きさが流 体(11)の流れ方向に沿って次第に縮小した構成を有する請求項 1記載のパーナで ある。
[0014] 請求項 4記載の発明は、前記燃料含有流体供給ノズル(12)が、その内部に燃料 含有流体(11)の流れを複数に分割する燃料含有流体案内板( 19)を有する請求項 1〜3の!、ずれかに記載のパーナである。
[0015] 請求項 5記載の発明は、前記燃料含有流体案内板(19)が、燃料含有流体供給ノ ズル ( 12)内の流体(11)の流れ方向の中心軸を火炉 (4)内に延長した線上を通り、 該ノズル(12)の短径部の最短径に平行な平面に対して複数の異なる傾斜角度で配 置した請求項 4記載のパーナである。
[0016] 請求項 6記載の発明は、前記燃料含有流体供給ノズル( 12)が、その出口内部に 燃料含有流体(11)の噴出流れ方向を強制的に変更する燃料含有流体向き変更用 案内板( 21 )を有する請求項 1〜 5の 、ずれかに記載のパーナである。
[0017] 請求項 7記載の発明は、前記燃料含有流体向き変更用案内板 (21)が、燃料含有 流体供給ノズル(12)の中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)の 長径部の最長径に平行な平面に対して、互 、に異なる複数の向きに配置される請求 項 6記載のパーナである。
[0018] 請求項 8記載の発明は、前記燃料含有流体向き変更用案内板 (21)が、一部の燃 料含有流体(11)については燃料含有流体供給ノズル(12)の中心軸を火炉 (4)内 に延長した線上を通り、該ノズル(12)の長径部の最長径に平行な平面に対して平 行に配置され、その他の燃料含有流体(11)については燃料含有流体供給ノズル(1 2)の中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)の長径部の最長径 に平行な平面に対して傾斜角度を持たせて配置される請求項 6記載のパーナである
[0019] 請求項 9記載の発明は、前記燃料含有流体供給ノズル(12)が、前記燃料含有流 体案内板(19)で複数個の流路に仕切られて、前記各流路の中心軸が燃料含有流 体供給ノズル(12)の中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)出口 の長径部の最長径に平行な平面に対して互いに異なる傾斜角度で火炉 (4)の壁面 に設けられて 、る請求項 4記載のパーナである。
[0020] 請求項 10記載の発明は、前記燃料含有流体供給ノズル(12)の出口部に、該出口 部を複数に分割可能な燃料含有流体分割板 (22)を設けた請求項 1〜9の ヽずれか に記載のパーナである。
[0021] 請求項 11記載の発明は、前記燃料含有流体供給ノズル( 12)の出口部に断面 L字 型の保炎器( 17)を設けた請求項 1〜: LOの 、ずれかに記載のパーナである。
[0022] 請求項 12記載の発明は、前記 L字型の保炎器(17)の先端に、該保炎器(17)周 囲の燃焼用空気の噴出方向を外側に変える案内板(17a)を設けた請求項 11記載 のパーナである。
[0023] 請求項 13記載の発明は、該ノズル(12)の外周部に配置される一以上の燃焼用空 気供給ノズル(15)の外側の燃焼用空気の噴出方向を燃料噴出方向に対して外側 に広げる燃焼用空気案内板( 15a)を前記燃料含有流体供給ノズル( 12)の先端に 設けた請求項 1〜 12の 、ずれかに記載のパーナである。
[0024] 請求項 14記載の発明は、前記燃料含有流体供給ノズル(12)の内部に、燃料含有 流体(11)の流路を一旦狭くした後、再び流路を拡大する濃縮器 (23)を設けた請求 項 1〜13のいずれかに記載のパーナである。
[0025] 請求項 15記載の発明は、前記燃料含有流体供給ノズル( 12)の入口部に、該ノズ ル(12)内で燃料を均等に分配する流体分配板(24)を設けた請求項 1〜14のいず れかに記載のパーナである。 [0026] 請求項 16記載の発明は、前記燃料含有流体供給ノズル(12)から噴出する流体(1 1)の近傍に補助燃料である液体燃料又は気体燃料を噴出するノズル (41、 44)を燃 料含有流体供給ノズル ( 12)近傍に設けた請求項 1〜 15の ヽずれかに記載のバー ナである。
[0027] 請求項 17記載の発明は、請求項 1〜16記載のパーナを対向する 2つの火炉壁に それぞれ上下方向に複数段配置し、各段に設けられる複数のパーナは同一火炉壁 の水平方向の幅の中央部で二分した壁面領域にそれぞれ対称的に配置する燃焼 装置である。
[0028] 請求項 18記載の発明は、請求項 1〜16記載のパーナを対向する 2つの火炉壁に それぞれ上下方向に複数段配置し、同一火炉壁の各段に設けられる複数のパーナ の中で水平方向の隣接するパーナ同士は同一構造のパーナとする燃焼装置である
[0029] 請求項 19記載の発明は、水平に対して斜め向きの水壁管(25)をスパイラル状に 巻き付けて構成される火炉壁を備えたボイラにおいて、前記水壁管(25)の長手方向 に沿って矩形状、楕円形状又は略楕円形状の開口部(26)を火炉壁に設け、請求項 1〜16のいずれかに記載のパーナを前記開口部(26)に取り付けるボイラである。
[0030] 請求項 20記載の発明は、鉛直方向に伸びた水壁管(25)群から構成される火炉壁 を備えたボイラにおいて、前記水壁管(25)の長手方向に沿って矩形状、楕円形状 又は略楕円形状の開口部(26)を火炉壁に設け、請求項 1〜16のいずれかに記載 のパーナを前記開口部(26)に取り付けるボイラである。
発明の効果
[0031] 請求項 1記載の発明によれば、パーナ容量が増力!]しても未着火領域の拡大を抑え ることが可能となり、燃料含有流体 (11)が火炉 (4)内に投入された後も燃料含有流 体(11)は幅方向に広がり、燃料含有流体(11)の噴出流の断面積が拡大して流速 が低下するので、未着火距離を従来技術に比較して縮小させるのに有効であり、ま た、燃料含有流体 (11)が火炉 (4)内で広がるため、燃焼空間を有効に活用できると ともに、実質の炉内滞留時間が長くなり、燃焼ガス中の NOx濃度の低減と燃焼効率 向上の効果がある。 [0032] 請求項 2記載の発明によれば、短径部の大きさが不変であるため、構造の簡素化 に有効である。また、燃料含有流体供給ノズル(12)の上流側流速を高く出来るので 、着火しやすい燃料の場合などにおいて、逆火防止にも有効である。
[0033] 請求項 3記載の発明によれば、燃料含有流体接続部(10a)から燃料含有流体供 給ノズル( 12)の出口部に向けての燃料含有流体(11)の流速の増加を抑制でき、圧 力損失の最小化及び燃料含有流体供給ノズル (12)内の構成部品の摩耗抑制が図 れる。
[0034] 請求項 4、 5記載の発明によれば、燃料含有流体供給ノズル ( 12)の内部の燃料含 有流体案内板(19)により燃料含有流体(11)の流れが複数に分割されるので、燃料 含有流体接続部(10a)から燃料含有流体供給ノズル( 12)の出口部に向けて燃料 含有流体(11)がノズル(12)の拡大する方向に均等に供給され、 NOxの低減、燃焼 効率の向上、流速増加の抑制、圧力損失の最小化、及び構成部品の摩耗抑制効果 が請求項 3記載の発明より、一層良くなる。
[0035] 請求項 6記載の発明によれば、燃料含有流体噴出流(20)の火炉 (4)内での分散 が促進され、火炉 (4)後流部での燃焼が促進される効果を有する。
[0036] 請求項 7記載の発明によれば、燃料含有流体案内板(19)は、燃料含有流体供給 ノズル(12)の中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)の長径部の 最長径に平行な平面に対して互 ヽに相反する向きにそれぞれ配置されて 、るので、 2つ以上のグループに分けて燃料含有流体(11)を火炉 (4)内に噴出させることがで き、簡素な構造で燃料含有流体噴出流 (20)のグループ分けを行い、燃料含有流体 噴出流(20)の火炉 (4)内での分散が促進され、火炉 (4)の後流部での燃焼が促進 される効果を有する。
[0037] 請求項 8記載の発明によれば、燃料含有流体供給ノズル(12)と燃料含有流体案 内板(19)とで形成された 4つの燃料含有流体噴出流(20)を 2つのグループ(20a、 20b)に分けて、例えば、火炉側壁寄りの燃料含有流体噴出流(20a)を直進流とし、 火炉側壁寄りでな 、燃料含有流体噴出流(20b)を水平方向に傾斜を与えて噴出さ せることで、燃料の分散による火炉後流部での燃焼促進を維持しつつ、火炉側壁近 傍への火炎流入を抑えて灰付着を防止する効果がある。 [0038] 請求項 9記載の発明によれば、燃料含有流体供給ノズル(12)から水平方向又は 鉛直方向に対して互 、に異なる傾斜角度を持って燃料含有流体(11)を火炉 (4)内 に噴出させることができ、微粉炭などの固体燃料が直接衝突する燃料含有流体供給 ノズル(12)内の部品を用いることなく燃料含有流体噴出流(20)の向きを変化させる ことが出来るので、部品の摩耗抑制に有効である。
[0039] 請求項 10記載の発明によれば、燃料含有流体分割板 (22)によって燃料含有流 体噴出流 (20)が分割され、表面積が拡大して火炉 (4)内の輻射受熱が増大するとと もに、流体分割板 (22)の後流側に負圧領域が形成されて周囲の高温ガスが負圧領 域に流れ込み、燃料への早期着火に寄与し、パーナ近傍の還元領域での燃焼が促 進されて、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用する。
[0040] 請求項 11記載の発明によれば、燃料含有流体供給ノズル( 12)の出口部に断面 L 字型の保炎器 (17)を設けたことにより、保炎器 (17)の後流には循環渦が形成され て高温の燃焼ガスを保炎器(17)の近傍に引き戻すため、燃料への早期着火に寄与 し、パーナ近傍の還元領域での燃焼が促進されて、燃焼ガスの NOx濃度の低減と 燃焼効率向上に有効に作用する。
[0041] 請求項 12記載の発明によれば、断面 L字型の保炎器(17)の先端の二次空気案 内板(17a)により、二次空気が外側に広がり、保炎器(17)の後流の循環渦が大きく なり、高温の燃焼ガスの再循環量が増加し、請求項 11記載の発明に比較して燃料 への着火をさらに早めて、パーナ近傍の還元領域での燃焼が促進され、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用する。
[0042] 請求項 13記載の発明によれば、燃焼用空気供給ノズル(15)の外側の燃焼用空気 噴出向きを燃料含有流体噴出方向に対して外側に広げる燃焼用空気案内板(15a) を設けたことによって燃焼用空気が外側に広がり、火炎中心部の還元領域が拡大さ れ、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用する。
[0043] 請求項 14記載の発明によれば、濃縮器 (23)により保炎器(17)近傍の燃料が濃 縮され、燃料への早期着火に寄与して、パーナ近傍の還元領域での燃焼が促進さ れ、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用する。
[0044] 請求項 15記載の発明によれば、流体分配板 (24)により燃料含有流体供給ノズル( 12)の入口部での燃料濃度が一様化され、燃料含有流体案内板(19)で仕切られた 各流路へ流入する燃料濃度のアンバランスを抑制して NOx低減と燃焼効率向上を 促進するのに効果的である。
[0045] 請求項 16記載の発明によれは、液体燃料又は気体燃料をパーナ出口に噴出する ので、固体燃料を含む燃料含有流体(11)の着火を確実に行うことができる。
[0046] 請求項 17記載の発明によれば、対向燃焼方式の火炉 (4)の対向する火炉壁にそ れぞれ上下方向に請求項 1〜16記載のパーナを複数段配置し、各段の複数のバー ナは同一火炉壁の水平方向の幅の中央部で二分した壁面領域にそれぞれ対称的 に配置することにより、流体噴出流(20a, 20b)の向きを一つの火炉壁面で左右対 称的に配置することができ、火炉 (4)内の流動及び燃焼状態の左右バランスを良好 に維持できる。
[0047] 請求項 18記載の発明によれば、対向燃焼方式の火炉 (4)の対向する 2つの火炉 壁に請求項 1〜16記載のパーナをそれぞれ上下方向に複数段配置し、同一火炉壁 の各段に設けられる複数のパーナの中で水平方向の隣接するパーナ同士は同一構 造のパーナとすることにより、特に容積の小さな火炉 (4)において、燃料含有流体噴 出流(20a, 20b)の衝突を避けることで、燃料の局所的集中を抑えて、燃焼ガス中の NOx濃度の低減及び燃焼効率向上効果がある。
[0048] 請求項 19記載の発明によれば、水壁管(25)の長手方向と開口部(26)の長径部 の長手方向を揃えて配置することにより、開口部(26)を形成するために必要なスパ ィラル状の水壁管(25)の員数を少なくし、また水壁管(25)の加工、曲がり部を少な くしたボイラが構築でき、経済的である。開口部(26)を形成するために必要なスノ ィ ラル状の水壁管(25)の員数を最小限にすることが可能となり、経済性が向上する。 また、火炉 (4)の水平 (幅)方向に燃料含有流体(11)が広がるため、火炉水平 (幅) 方向で燃料含有流体 (11)の分布が均一化され、実質の炉内滞留時間がさらに長く なり、燃焼ガス中の NOx濃度の低減と燃焼効率向上効果がある。
[0049] 請求項 20記載の発明によれば、火炉壁に垂直方向の水壁管(25)のアレンジに沿 つて矩形状の開口部(26)が設置されているので、水壁管(25)の長手方向と開口部 (26)の長径部の長手方向を揃えて配置することにより、水壁管(25)の加工、曲がり 部を少なくしたボイラが構築でき、経済的である。
発明を実施するための最良の形態
[0050] 本発明の実施例を図面と共に説明する。
図 1及び図 2を用いて、本発明の基本的概念を説明する。図 1は、図 l (a)、図 1 (b) に示す本実施例によるパーナの燃料含有流体供給ノズル(12)を用いた場合の火炉 4内での着火位置(33)を図 1 (c)、図 1 (d)に示す従来技術と比較して示したもので ある。なお、図 1 (a)に本実施例のパーナの燃料含有流体供給ノズル(12)の燃料含 有流体(11)の噴出流方向の断面図を示し、図 1 (b)に図 1 (a)のパーナの燃料含有 流体供給ノズル(12)の出口部を火炉 (4)側力 見た正面図を示し、図 1 (c)に従来 技術のパーナの燃料含有流体供給ノズル(12)の燃料含有流体の噴出流方向の断 面図を示し、図 1 (d)に従来技術のパーナの燃料含有流体供給ノズル(12)の出口 部を火炉 (4)側から見た正面図を示す。
[0051] 図 1 (d)に示すように、従来技術ではパーナの燃料含有流体供給ノズル(12)から 噴出する燃料含有流体(11)の断面円形噴出流の周隨こリング状の着火位置 (33) が存在する。これに対し、本実施例においては図 1 (b)に示すように、パーナの燃料 含有流体供給ノズル(12)力 噴出する燃料含有流体(11)の断面矩形噴出流の周 囲に着火位置 (33)が存在する。
[0052] 本実施例にお!、ては、パーナの燃料含有流体供給ノズル(12)の出口部の形状を 矩形状にして短辺の長さを縮小したことにより、燃料含有流体(11)の火炉 (4)内の 噴出流中心部までの燃料含有流体(11)の断面矩形噴出流に直交する方向の着火 位置 (33)からの距離 L2 (図 1 (b) )は、従来技術の燃料含有流体 (11)の噴出流中 心部までの燃料含有流体(11)の断面円形噴出流に直交する方向の着火位置 (33) 力もの距離 L2' (図 1 (d) )に比較して大幅に縮小される。
[0053] 図 2は本実施例における燃料含有流体供給ノズル(12)からの燃料含有流体(11) の噴出流方向における着火位置(33)力 火炎が燃料噴流の中心部まで伝播する 距離 (未着火距離) L1 (図 2 (a) )が従来技術の未着火距離 L1 ' (図 2 (b) )と比較して 縮小することを示すパーナの燃料含有流体供給ノズル(12)の各断面図である。本 実施例では燃料含有流体(11)の噴出流中心部までの燃料含有流体(11)の断面 矩形噴出流に直交する方向の着火位置 (33)力 の距離 L2が従来技術の距離 L2' に比較して縮小されたことに伴い、前記未着火距離 L1は従来技術の未着火距離 L1 'に比較して大幅に縮小される。
[0054] 図 3には本発明の一実施例のパーナの構造例を示す。図 3 (a)はパーナの中心軸 を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 3 (b)の B— B線断 面の矢視図)を示し、図 3 (b)に図 3 (a)の A— A線断面の矢視図を示し、図 3 (c)はバ ーナの出口部を火炉 (4)側から見た正面図を示す。
[0055] 円筒状の燃料含有流体流路(10)は矩形断面を持つ燃料含有流体供給ノズル(1 2)に断面円形接続部(10a)を介して接続され、燃料含有流体供給ノズル(12)から 火炉 (4)内に断面矩形状の噴出流を形成するのに十分な構成となっている。燃料含 有流体(11)が火炉 (4)内に投入された後も燃料含有流体(11)は噴出流れ方向に 沿って広がり、燃料含有流体(11)の噴出流の断面積が拡大して流速が低下するの で、図 2に示す未着火距離 L1をさらに縮小させるのに有効に作用する。また、燃料 含有流体(11)が火炉 (4)内で広がるため、燃焼空間を有効に活用できるとともに、 実質の炉内滞留時間が長くなり、燃焼ガス中の NOx濃度の低減と燃焼効率向上に 有効に作用する。燃料含有流体供給ノズル ( 12)の周囲には断面矩形状の燃焼用 空気スリーブ( 15)及び断面矩形状のバーナスロート ( 16)が配置されて 、る。
[0056] 図 4には本発明の一実施例のパーナの構造例を示す。図 4 (a)はパーナの中心軸 を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 4 (b)の B— B線断 面の矢視図)を示し、図 4 (b)に図 4 (a)の A— A線断面の矢視図を示し、図 4 (c)はバ ーナの出口部を火炉 (4)側から見た正面図を示す。
[0057] 図 4に示すパーナは、パーナの燃料含有流体(11)の噴出流に直交する方向の断 面形状を楕円状にしたものであり、その他の構成は図 3に示すパーナと同じである。
[0058] パーナの鉛直方向 (燃料含有流体(11)の噴出流に直交する方向)の断面形状とし て、図 3では矩形状、図 4では楕円状の代表的な形状を示したが、矩形の短辺が円 弧状のものや、幅広の菱形状などの類似な形状を採用しても、上述と同様の効果が 得られる。
[0059] 図 5に本発明の一実施例のパーナの構造例を示す。図 5 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 5 (b)の B— B線断 面の矢視図)を示し、図 5 (b)に図 5 (a)の A— A線断面の矢視図を示し、図 5 (c)はバ ーナの出口部を火炉 (4)側から見た正面図を示す。
[0060] 図 5に示すパーナは、燃料含有流体供給ノズル ( 12)が燃料含有流体接続部( 1 Oa )から出口部に向けて長径部の大きさが燃料含有流体( 11 )の流れ方向に沿って次 第に拡大されるが、短径部の大きさは燃料含有流体(11)の流れ方向に沿って次第 に縮小されるものであり、その他の構成は図 3に示すパーナと同じである。
[0061] 図 5に示すパーナ構造の特徴は、燃料含有流体接続部(10a)から燃料含有流体 供給ノズル( 12)の出口部に向けての燃料含有流体(11)の流速の増加を抑制でき、 圧力損失の最小化及び燃料含有流体供給ノズル (12)内の構成部品の摩耗抑制が 図れる。
[0062] 図 6に本発明の一実施例のパーナの構造例を示す。図 6 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 6 (b)の B— B線断 面の矢視図)を示し、図 6 (b)に図 6 (a)の A— A線断面の矢視図を示し、図 6 (c)はバ ーナの出口部を火炉 (4)側から見た正面図を示す。
[0063] 図 6に示すパーナは、燃料含有流体供給ノズル(12)内を流れる燃料含有流体(1 1)が噴出流れ方向に沿って燃料含有流体供給ノズル(12)の拡大する方向に均等 に供給されるように燃料含有流体案内板(19)を配置したものであり、その他の構成 は図 5に示すパーナと同じである。本例では燃料含有流体案内板(19)は 3枚設置さ れており、燃料含有流体供給ノズル(12)の広がりに応じて燃料含有流体(11)に一 様に広がりを持たせるため、中央の案内板(19)は中心軸上に、これを挟む両側の案 内板( 19)は中心軸を通る鉛直断面に対して角度 α、 j8を持つて配置されて!、る。
[0064] 燃料含有流体案内板(19)により燃料含有流体供給ノズル(12)内を流れる燃料含 有流体(11)の流れが複数に分割されるので、燃料含有流体接続部(10a)から燃料 含有流体供給ノズル( 12)の出口部に向けての燃料含有流体供給ノズル( 12)の広 力^に応じて燃料含有流体(11)がー様に広げられ、アンバランスなく燃焼させること ができる。また、燃料含有流体(11)がー様に広げられることにより、流速の局所的な 増加の抑制、圧力損失の最小化及び構成部品の摩耗抑制効果が図 5に示す構成よ り、一層良くなる。
[0065] 図 7に本発明の一実施例のパーナの構造例を示す。図 7 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 7 (b)に図 7 ( a)の B— B線断面の矢視図を、図 7 (c)に図 7 (a)の A— A線断面の矢視図を示す。
[0066] 図 7に示すパーナは、図 6に示すパーナと同様に燃料含有流体供給ノズル(12)内 を流れる燃料含有流体( 11 )が、流れ方向に沿って燃料含有流体供給ノズル( 12)の 拡大する方向に均等に供給されるように燃料含有流体案内板(19)を配置し、燃料 含有流体供給ノズル(12)の中心軸を通り、火炉 (4)に向けて延長した線上の出口部 の長径部の最長径に平行な平面に対して、図 7 (a)の A— A線断面においては流体 (11)の流れを下向きに変える燃料含有流体向き変更用案内板 (21a)を、図 7 (a)の B— B線断面においては流体(11)の流れを上向きに変える燃料含有流体向き変更 用案内板( 21 b)をパーナ出口部に設置して ヽる。燃料含有流体供給ノズル( 12)と 燃料含有流体案内板(19)とで形成された 4つの燃料含有流体噴出流 20 (20a、 20 b)は、上記燃料含有流体向き変更用案内板 (21a、 21b)によって、下斜め向きの燃 料含有流体噴出流(20a)と、上斜め向きの燃料含有流体噴出流(20b)が形成され る。図 7に示すパーナ構成により、燃料含有流体噴出流 (20)の火炉 (4)内での分散 が促進され、火炉 (4)後流部での燃焼が促進される効果を有する。
[0067] 図 8に本発明の一実施例のパーナの構造例を示す。図 8 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 8 (b)に図 8 ( a)の B— B線断面の矢視図を、図 8 (c)に図 8 (a)の A— A線断面の矢視図を示す。
[0068] 図 8に示すパーナは、図 7に示すパーナと同様に燃料含有流体供給ノズル(12)内 を流れる燃料含有流体( 11 )が、流れ方向に沿って燃料含有流体供給ノズル( 12)の 拡大する方向に均等に供給されるように燃料含有流体案内板(19)を配置し、燃料 含有流体供給ノズル(12)の中心軸を通り、火炉 (4)に向けて延長した線上の出口部 の長径部の最長径に平行な平面に対して、 A— A線断面においては流体 11の流れ の向きを整流して直進させる燃料含有流体向き変更用案内板 (21a)を設置し、 B— B線断面においては流体(11)の流れを上向きに変える燃料含有流体向き変更用案 内板 (21b)を設置して!/、る。燃料含有流体供給ノズル (12)と燃料含有流体案内板( 19)とで形成された 4つの燃料含有流体噴出流(20a、 20b)は、上記燃料含有流体 向き変更用案内板 (21a、 21b)の設置によって、燃料含有流体噴出流(20a)は直進 方向、燃料含有流体噴出流(20b)は上向きの噴流となる。
[0069] 整流して直進させる燃料含有流体向き変更用案内板 (21a)を設置せず、向きを変 える上記案内板 (21b)のみを設置した場合も同様の燃料含有流体噴出流(20a、 20 b)が形成される。
[0070] 図 8に示すパーナ構成により、例えば、火炉 (4)の側壁側の水壁寄りの燃料含有流 体噴出流を直進流とし、火炉 (4)の側壁側の水壁寄りでな!、燃料含有流体噴出流を 火炉中心側に対して斜め向きの流れとすることで、燃料含有流体噴出流(20)の火 炉 (4)内での分散を促進して火炉 (4)後流部での燃焼が促進される効果を維持し、 且つ火炉 (4)側壁近傍への火炎流入を抑えて灰付着を防止する効果がある。
[0071] 図 9に本発明の一実施例のパーナの構造例を示す。図 9 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 9 (b)にバー ナの斜視図を示し、図 9 (c)に図 9 (a)の A— A線断面の矢視図を示し、図 9 (d)に図 9 (a)の B— B線断面の矢視図を示す。
[0072] 図 9に示すパーナは、図 7に示すパーナと同様に燃料含有流体供給ノズル(12)内 を流れる燃料含有流体(11)が流れ方向に沿って燃料含有流体供給ノズル(12)の 拡大する方向に均等に供給されるように燃料含有流体案内板(19)を配置して ヽる。 燃料含有流体ノズル(12)の入り口部正面の形状は平行四辺形であり、燃料含有流 体ノズル(12)の片方の側面(12a)は流れ方向に沿って斜め上に向かって、他方の 側面(12b)は流れ方向に沿って斜め下に向かって配置され、燃料含有流体供給ノ ズル( 12)出
Figure imgf000016_0001
ヽる。
[0073] 本構成により、燃料含有流体供給ノズル(12)の側面(12a)に近い部分では図 9 (c )に示すように斜め上向きの燃料含有流体噴出流(20a)を形成し、側面(12b)に近 い部分では図 9 (d)に示すように斜め下向きの燃料含有流体噴出流(20d)を形成す る。燃料含有流体供給ノズル (12)が燃料含有流体案内板 ( 19)で仕切られた中央 2 つの流路カもは、燃料含有流体噴出流(20a)と中心線の中間に噴出方向を有する 燃料含有流体噴出流 (20b)と、燃料含有流体噴出流 (20d)と中心線の中間に噴出 方向を有する燃料含有流体噴出流(20c)を形成する。
[0074] 図 9のパーナ構成の効果は図 7に示すパーナと同等であるが、燃料含有流体(11) の噴出方向を変化させるのに燃料含有流体向き変更用案内板(21)を用いていない ので、当該案内板 (21)で懸念される磨耗の問題が発生しない。
[0075] 図 10には本発明の一実施例のパーナの構造例を示す。図 10 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 10 (b)の B— B 線断面の矢視図)を示し、図 10 (b)に図 10 (a)の A— A線断面の矢視図を示し、図 1 0 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0076] 燃料含有流体ノズル( 12)の出口部に燃料含有流体(11)の流れに直交して部分 的に流れを遮蔽する燃料含有流体分割板 (22)が設置されている。燃料含有流体分 割板(22)によって燃料含有流体噴出流(20)は図 11に示すように 4つに分割される 。分割によって、燃料含有流体噴出流(20)の表面積が拡大して火炉 (4)内の輻射 受熱が増大するとともに、燃料含有流体分割板 (22)の後流側に負圧領域 (22a)が 形成されて図中矢印で示して ヽるように周囲の高温ガスが負圧領域に流れ込む。輻 射受熱の増力 tlと負圧領域への高温ガスの流入は、ともに燃料への早期着火に寄与 し、パーナ近傍の還元領域での燃焼が促進されて、燃焼ガスの NOx濃度の低減と 燃焼効率向上に有効に作用する。
[0077] 図 12には本発明の一実施例のパーナの構造例を示す。図 12 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 12 (b)の B— B 線断面の矢視図)を示し、図 12 (b)に図 12 (a)の A— A線断面の矢視図を示し、図 1 2 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0078] 燃料含有流体ノズル( 12)の出口部であって燃料含有流体案内板( 19)の出口部 に燃料含有流体(11)の流れに直交して部分的に流れを遮蔽する燃料含有流体分 割板 (22)が設置されている。燃料含有流体案内板 (19)によって、燃料含有流体供 給ノズル(12)内で燃料含有流体(11)が均等に供給されるので、より効果的に NOx の低減と燃焼効率の向上が実現する。
[0079] 図 13には本発明の一実施例のパーナの構造例を示す。図 13 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 13 (b)の B—B 線断面の矢視図)を示し、図 13 (b)に図 13 (a)の A— A線断面の矢視図を示し、図 1 3 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0080] 燃料含有流体ノズル( 12)の出口部に断面 L字型の保炎器( 17)が設置されて 、る 。保炎器(17)の後流には循環渦(図示せず)が形成されて高温の燃焼ガスを保炎器 (17)の近傍に引き戻すため、燃料への早期着火に寄与し、パーナ近傍の還元領域 での燃焼が促進されて、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用 する。
[0081] 図 14には本発明の一実施例のパーナの構造例を示す。図 14 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 14 (b)の B— B 線断面の矢視図)を示し、図 14 (b)に図 14 (a)の A— A線断面の矢視図を示し、図 1 4 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0082] 図 14に示す断面 L字型の保炎器(17)の先端に二次空気の噴出方向を外側に広 げる二次空気案内板(17a)が設置されている。案内板(17a)によって二次空気が外 側に広がることにより保炎器(17)の後流の循環渦(図示せず)が大きくなり、高温の 燃焼ガスの再循環量が増加し、燃料への着火をさらに早めて、パーナ近傍の還元領 域での燃焼が促進され、燃焼ガスの NOx濃度の低減と燃焼効率向上に有効に作用 する。
[0083] 図 15には本発明の一実施例のパーナの構造例を示す。図 15 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 15 (b)の B—B 線断面の矢視図)を示し、図 15 (b)に図 15 (a)の A— A線断面の矢視図を示し、図 1 5 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0084] 図 15に示すパーナでは、二次空気用スリーブ(15)の先端に三次空気の噴出方向 を外側に広げる三次空気案内板(15a)が設置されている。三次空気が外側に広が ることにより火炎中心部の還元領域が拡大され、 NOx濃度の低減と燃焼効率向上に 有効に作用する。
[0085] 図 16には本発明の一実施例のパーナの構造例を示す。図 16 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 16 (b)の B—B 線断面の矢視図)を示し、図 16 (b)に図 16 (a)の A— A線断面の矢視図を示し、図 1 6 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0086] 図 16に示すパーナは、燃料含有流体供給ノズル(12)の内部に上流側から断面積 が次第に広がる三角柱状で下流側では断面積が次第に狭まる逆向きの三角柱状を 組み合わせた燃料含有流体濃縮器 (23)が設置されて ヽる。燃料含有流体濃縮器 ( 23)により保炎器(17)近傍の燃料が濃縮され、燃料への早期着火に寄与して、バー ナ近傍の還元領域での燃焼が促進され、燃焼ガスの NOx濃度の低減と燃焼効率向 上に有効に作用する。
[0087] 図 17には本発明の一実施例のパーナの構造例を示す。図 17 (a)はパーナの中心 軸を通り、出口部の長径部の最長径に平行な方向の断面矢視図(図 17 (b)の B— B 線断面の矢視図)を示し、図 17 (b)に図 17 (a)の A— A線断面の矢視図を示し、図 1 7 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0088] 燃料含有流体供給ノズル(12)の内部に上流側は断面が次第に広がる三角柱状で 、中間に四角柱状、下流側は断面積が次第に狭まる逆向きの三角柱状を組み合わ せた燃料含有流体濃縮器 (23' )が設置されている。本構成では、濃縮器 (23' )周り の角度変化を小さくすることで剥離が抑えられ、燃料の濃縮効果が増進されて、 NO X低減効果が高まると共に燃焼効率が向上する。
[0089] 図 16、図 17には濃縮器(23、 23' )の効果的な構成例を示しているが、例えば三 角柱など類似の構造を有する濃縮器を用いても、同様の効果が得られる。
[0090] 図 18には本発明の一実施例のパーナの構造例を示す。図 18 (a)は、ノズル(12) の出口部の長辺を通って形成される燃料含有流体供給ノズル(12)面に平行な断面 矢視図(図 18 (b)の B— B線断面)を示し、図 18 (b)に図 18 (a)の A— A線断面の矢 視図を示し、図 18 (c)はパーナの出口部を火炉 (4)側から見た正面図を示す。
[0091] 図 18には燃料含有流体供給ノズル( 12)の入口部に堰 (せき)状の流体分配板 (2 4)が設けられて 、る。燃料含有流体( 11)は堰 (せき)状の流体分配板 (24)の上流 側に一旦衝突して、燃料含有流体供給ノズル( 12)の長辺方向に均等に分散された 後、燃料含有流体供給ノズル(12)内の燃料含有流体案内板(19)で仕切られた 4つ の流路に均等に導かれ、均等な状態を維持して火炉 (4)に供給される。
[0092] 図 19は燃料含有流体供給ノズル( 12)の中心部に油供給ノズル (41 )を設置した例 を示す。図 19 (a)はパーナの中心軸を通り、出口部の長径部の最長径に平行な方 向の断面矢視図(図 19 (b)の B— B線断面の矢視図)を示し、図 19 (b)に図 19 (a)の A— A線断面の矢視図を示し、図 19 (c)はパーナの出口部を火炉 (4)側から見た正 面図を示す。
[0093] 図 20は保炎器(17)の周囲にガス導入管 (42)から水平管 (43)を経由してガス供 給ノズル (44)に繋がるガス噴出部を設置した例を示す。
[0094] 図 20 (a)はパーナの中心軸を通り、出口部の長径部の最長径に平行な方向の断 面矢視図(図 20 (b)の B— B線断面の矢視図)を示し、図 20 (b)に図 20 (a)の A— A 線断面の矢視図を示し、図 20 (c)はパーナの出口部を火炉 (4)側から見た正面図を 示す。
[0095] 図 21に示すパーナ構造は該パーナの燃料含有流体供給ノズル(12)内を流れる 燃料含有流体(11)の流れに直交する断面形状が矩形である燃料含有流体供給ノ ズル ( 12)の長辺側を上下方向に向けて配置した場合の火炉 (4)側力 見た燃料含 有流体供給ノズル(12)の正面図(図 21 (a) )と平面図(図 21 (b) )を示す。
[0096] 火炉 (4)正面側から見て図 21に示す燃料含有流体供給ノズル(12)からは、該ノズ ル( 12)の長辺側の上方向と下方向で火炉壁面に直交する平面に対して左右互!、 に水平方向の反対側に傾斜して燃料含有流体噴出流(20a、 20b)が形成される。本 燃料含有流体噴出流の形成は図 7又は図 9のパーナ構造を適用することで達成され る。
[0097] 図 22に示すパーナ構造は該パーナの燃料含有流体供給ノズル(12)内を流れる 燃料含有流体(11)の流れに直交する断面形状が矩形である燃料含有流体供給ノ ズル ( 12)の長辺側を上下方向に向けて配置した場合の火炉 (4)側力 見た燃料含 有流体供給ノズル(12)の正面図(図 22 (a) )と平面図(図 22 (b) )を示す。
[0098] 火炉 (4)正面側力 見て図 22に示す燃料含有流体供給ノズル(12)からは、該ノズ ル(12)の長辺側の上方向と下方向で火炉壁面に直交する平面に対して片方は水 平方向に傾斜して燃料含有流体噴出流(20b)を形成し、他方は火炉壁面に直交し て燃料含有流体噴出流(20c)を形成する。本燃料含有流体噴出流の形成は図 8の パーナ構造を適用することで達成される。 [0099] 図 23には、図 21に示す燃料含有流体供給ノズル(12)がーつの火炉壁面に上下 方向に 3段と水平方向に 4列に多数配置された例を示す。一つの火炉壁の右半分に は図 21に示す燃料含有流体供給ノズル(12)と同じ向きに噴出流(20a、 20b)を形 成するノズル(12)を配置し、火炉壁の左半分には図 21に示す燃料含有流体供給ノ ズル ( 12)と鏡面対象位置に噴出流(20a、 20b)を形成するノズル ( 12)を配置して いる。燃料含有流体噴出流(20a、 20b)の向きを一つの火炉壁面で左右対称的に 配置することにより、火炉 (4)内の流動及び燃焼状態の左右バランスを良好に維持 できる特徴がある。
なお、一つの火炉壁の左右半分に分けて配置される燃料含有流体供給ノズル(12 )からの噴出流(20a、 20b)が鏡面対象位置に形成される構成であれば、ノズル(12 )からの燃料含有流体噴出流(20a、 20b)の向きが図示の通りである必要はない。
[0100] 図 24には、燃料含有流体供給ノズル(12)がーつの火炉壁面に上下方向に 3段と 水平方向に 4列配置されて ヽるが、左右の両端列には図 22に示す燃料含有流体供 給ノズル(12)が鏡面対象に配置され、中央 2列には図 21に示す燃料含有流体供給 ノズル(12)が鏡面対象に配置された例を示す。火炉 (4)側壁の水壁寄りには直進 する燃料含有流体噴出流(20c)と傾斜した燃料含有流体噴出流(20b)を持つバー ナを配列し、中央寄りには両側に傾斜した燃料含有流体噴出流(20a、 20b)を配列 することにより、燃料含有流体噴出流(20a、 20b)の火炉 (4)内での分散を促進して 火炉 (4)後流部での燃焼が促進される効果を維持し、且つ火炉 (4)側壁近傍への火 炎流入を抑えて灰付着を防止する効果がある。
[0101] 図 25には一つの火炉壁の全パーナの燃料含有流体ノズル(12)として全て同じ図 21に示す燃料含有流体噴出流(20a、 20b)を形成する燃料含有流体供給ノズル( 1 2)を配置している例を示している。本実施例は、特に容積の小さな火炉 (4)において 、燃料含有流体噴出流 (20a、 20b)の衝突を避けることで、燃料の局所的集中を抑 えて、燃焼ガス中の NOx濃度の低減及び燃焼効率向上に有効な配置である。
[0102] 上記図 21〜図 25のパーナ構造は火炉の寸法やパーナ配置などの条件に応じて 適正に選択することにより、最適な燃焼特性を実現することが出来る。
[0103] 図 26には本発明の一実施例のパーナを配置したボイラの火炉壁の平面図を示す 。図 26には火炉壁にスパイラル状の水壁管(25)を有するボイラにおいて、水平に対 して斜めの水壁管 25のアレンジに沿って矩形状の開口部(26)が設置されており、 本発明の前記各実施例で説明した各種のパーナが取り付けられる。スノィラル状の 水壁管(25)に沿って開口部(26)を設けることにより、該開口部(26)を形成するた めに必要な水壁管(25)の員数を最小限にすることが可能となり、経済性が向上する
[0104] 前述のように、本発明の各実施例からなる燃焼装置は、燃料含有流体噴出流 (20) が火炉 (4)内で広がるため、燃焼空間を有効に活用できる特徴を有するが、図 26の 構成とすることにより、火炉 (4)の水平 (幅)方向に燃料含有流体噴出流(20a、 20b) が広がるため、火炉水平 (幅)方向で燃料含有流体(11)の分布が均一化され、実質 の炉内滞留時間がさらに長くなり、燃焼ガス中の NOx濃度の低減と燃焼効率向上に 有効に作用する。
[0105] 図 27に本発明の一実施例のパーナを配置したボイラの火炉壁の平面図を示す。
図 27には火炉壁に鉛直方向に伸びる水壁管(25)を有するボイラにおいて、水壁管 (25)のアレンジに沿って矩形状の開口部(26)が設置されており、本発明力 なる前 記各実施例のパーナが取り付けられる。水壁管(25)に沿って開口部(26)を設ける ことにより、開口部(26)を形成するために必要な水壁管(25)の員数を最小限にする ことが可能となり、経済性が向上する。
[0106] 本構成において、火炉水平 (幅)方向にも混合流体の分散を促進するために、図 7 〜図 9に示すパーナで燃料含有流体噴出流( 20a、 20b)の方向が互いに違う方向 を向くような構成にすることで、火炉 (4)内の全体の燃料含有流体(11)の分散が促 進され、 NOx低減と燃焼効率向上に有効に作用する。
[0107] 一般的にパーナでは補助燃料として油やガスが用いられるが、本発明の実施例の パーナの一部にこれら燃料の供給ノズルを設置しても、本発明の実施例のパーナの 特徴や効果は維持される。
産業上の利用可能性
[0108] バーナ大容量ィ匕の傾向にもコスト低減を図りながら燃焼性能を低下させないで対 応可能なパーナ構造として将来産業上の利用可能性が高い。 図面の簡単な説明
[図 1]本発明と従来技術のパーナ出口の着火領域の説明図である。
[図 2]本発明と従来技術のパーナ出口の未着荷領域の説明図である。
[図 3]本発明の一実施例のパーナの構造例を示す(図 3 (a)はパーナの中心軸を通り
、出口部の長径部の最長径に平行な方向の断面図を示し、図 3 (b)に図 3 (a)の A—
A線断面の矢視図を示し、図 3 (c)はパーナの出口部を火炉側から見た正面図を示 す。)。
[図 4]発明の一実施例のパーナの構造例を示す(図 4 (a)はパーナの中心軸を通り、 出口部の長径部の最長径に平行な方向の断面図を示し、図 4 (b)に図 4 (a)の A— A 線断面の矢視図を示し、図 4 (c)はパーナの出口部を火炉側から見た正面図を示す 。)。
[図 5]本発明の一実施例のパーナの構造例を示す(図 5 (a)はパーナの中心軸を通り 、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 5 (b)に図 5 (a)の A— A線断面の矢視図を示し、図 5 (c)はパーナの出口部を火炉側から見た正面図 を示す。)。
[図 6]本発明の一実施例のパーナの構造例を示す(図 6 (a)はパーナの中心軸を通り 、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 6 (b)に図 6 (a)の A— A線断面の矢視図を示し、図 6 (c)はパーナの出口部を火炉側から見た正面図 を示す。)。
[図 7]本発明の一実施例のパーナの構造例を示す(図 7 (a)はパーナの中心軸を通り 、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 7 (b)に図 7 (a)の B— B線断面の矢視図を示し、図 7 (c)に図 7 (a)の A— A線断面の矢視図を示す。 )
[図 8]本発明の一実施例のパーナの構造例を示す(図 8 (a)はパーナの中心軸を通り 、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 8 (b)に図 8 (a)の B— B線断面の矢視図を示し、図 8 (c)に図 8 (a)の A— A線断面の矢視図を示す。 )
[図 9]本発明の一実施例のパーナの構造例を示す(図 9 (a)はパーナの中心軸を通り 、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 9 (b)にパーナの 斜視図を示し、図 9 (c)に図 9 (a)の B— B線断面の矢視図を示し、図 9 (d)に図 9 (a) の A— A線断面の矢視図を示す。 )0
[図 10]本発明の一実施例のパーナの構造例を示す(図 10 (a)はパーナの中心軸を 通り、火炉に向けて延長した線上の出口部の長径部の最長径に平行な方向の断面 矢視図を示し、図 10 (b)に図 10 (a)の A— A線断面の矢視図を示し、図 10 (c)にバ ーナの出口部を火炉側から見た正面図示す。 ) o
圆 11]図 10に記載の発明による効果の説明図を示す。
[図 12]図 10に示す発明の一実施例のパーナの構造例を示す(図 12 (a)はパーナの 中心軸を通り、火炉に向けて延長した線上の出口部の長径部の最長径に平行な方 向の断面矢視図を示し、図 12 (b)に図 12 (a)の A— A線断面の矢視図を示し、図 12 (c)にパーナの出口部を火炉側から見た正面図示す。 ) o
[図 13]本発明の一実施例のパーナの構造例を示す(図 13 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 13 (b)に図 1
3 (a)の A— A線断面の矢視図を示し、図 13 (c)はパーナの出口部を火炉側から見 た正面図を示す。)。
[図 14]本発明の一実施例のパーナの構造例を示す(図 14 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 14 (b)に図 1
4 (a)の A— A線断面の矢視図を示し、図 14 (c)はパーナの出口部を火炉側から見 た正面図を示す。)。
[図 15]本発明の一実施例のパーナの構造例を示す(図 15 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 15 (b)に図 1
5 (a)の A— A線断面の矢視図を示し、図 15 (c)はパーナの出口部を火炉側から見 た正面図を示す。)。
[図 16]本発明の一実施例のパーナの構造例を示す(図 16 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 16 (b)に図 1
6 (a)の A— A線断面の矢視図を示し、図 16 (c)はパーナの出口部を火炉側から見 た正面図を示す。)。 [図 17]本発明の一実施例のパーナの構造例を示す(図 17 (a)はパーナの中心軸を 通り、出口部の長径部の最長径に平行な方向の断面矢視図を示し、図 17 (b)に図 1 7 (a)の A— A線断面の矢視図を示し、図 17 (c)はパーナの出口部を火炉 (4)側から 見た正面図を示す。)。
圆 18]本発明の一実施例のパーナの構造例を示す(図 18 (a)は、出口部の長辺を 通って形成される燃料含有流体供給ノズル面に平行な断面矢視図(図 18 (b)の B— B線断面)を示し、図 18 (b)に図 18 (a)の A— A線断面の矢視図を、図 18 (c)はバー ナの出口部を火炉側から見た正面図を示す。 ) o
[図 19]燃料含有流体供給ノズルの中心部に油供給ノズルを設置した例を示す。 圆 20]保炎器の周囲にガス供給ノズルを設置した例を示す。
圆 21]燃料含有流体供給ノズルの正面図(図 21 (a) )と平面図(図 21 (b) )を示す。 圆 22]他の構成に対する燃料含有流体供給ノズルの正面図(図 22 (a) )と平面図(図 22 (b) )を示す。
圆 23]図 21に示す燃料含有流体供給ノズルの多数が一つの火炉壁面に上下方向 に 3段と水平方向に 4列配置された例を示す。
[図 24]図 21及び図 22に示す燃料含有流体供給ノズルの多数が一つの火炉壁面に 上下方向に 3段と水平方向に 4列配置された例を示す。
圆 25]図 21に示す燃料含有流体供給ノズルの多数が一つの火炉壁面に上下方向 に 3段と水平方向に 4列配置された他の実施例を示す。
[図 26]本発明の一実施例のパーナを配置したボイラの火炉壁の平面図を示す。
[図 27]本発明の一実施例のパーナを配置したボイラの火炉壁の平面図を示す。 圆 28]従来技術力もなる固体燃料用パーナの例を示す(図 28 (a)はパーナの側断面 図、図 28 (b)は該パーナを火炉内から見た正面図である。 )0
[図 29]図 29 (a)に従来技術のパーナの燃料含有流体供給ノズルの燃料含有流体の 噴出流に沿った方向の断面図を示し、図 29 (b)に燃料含有流体供給ノズルの出口 部を火炉側から見た正面図を示す。
圆 30]従来技術のパーナの燃料含有流体供給ノズルの燃料含有流体の噴出流に沿 つた断面方向の火炉内の火炎伝播の挙動を模式的に示す。 符号の説明
3 風箱 4 火炉
10 燃料含有流体流路 10a 燃料含有流体接続部 11 燃料含有流体 12 燃料含有流体供給ノズル 13 二次空気 14 三次空気
15 燃焼用空気スリーブ 15a 三次空気案内板 16 バーナスロート 17 保炎器
17a 二次空気案内板 19 燃料含有流体案内板
20, 20a, 20b, 20c, 20d 燃料含有流体噴出
21a, 21b 燃料含有流体向き変更用案内板
22 燃料含有流体分割板 22a 負圧領域
23, 23, 濃縮器 24 流体分配板
25 水壁管 26 開口部
31 未着火領域 32 着火領域
33 着火位置 41 油供給ノズル
42 ガス導入管 43 水平管
44 ガス供給ノズル
L1 未着火距離
L2 着火位置力 混合流体噴出流中心部までの距離

Claims

請求の範囲
[1] 固体燃料と該燃料搬送用媒体の燃料含有流体 (11)を搬送する流体搬送流路(10 )の接続部(10a)から火炉 (4)の壁面に設けた出口部に向けて前記流体( 11 )を供 給する燃料含有流体供給ノズル ( 12)と、該燃料含有流体供給ノズル ( 12)の外周部 に一以上の燃焼用空気を供給する空気供給ノズル ( 15)を有するパーナにお 、て、 前記燃料含有流体供給ノズル(12)は、前記流体搬送流路(10)の接続部(10a) 力 火炉 (4)の壁面に設けた出口部に向けて流体(11)の流れに直交する断面を長 径部と短径部を有する矩形状、楕円形状又は略楕円形状とし、前記流体搬送流路( 10)の接続部( 10a)から出口部に向けて流体(11)の流れに直交する断面の長径部 の大きさを流体(11)の流れ方向に沿って次第に拡大させたことを特徴とするパーナ
[2] 前記燃料含有流体供給ノズル(12)は、前記流体搬送流路(10)の接続部(10a) 力 出口部に向けて流体 (11)の流れに直交する断面の長径部の大きさが流体( 11 )の流れ方向に沿って次第に拡大し、短径部の大きさが不変である構成を有すること を特徴とする請求項 1記載のパーナ。
[3] 前記燃料含有流体供給ノズル(12)は、前記流体搬送流路(10)の接続部(10a) 力 出口部に向けて流体 (11)の流れに直交する断面の長径部の大きさが流体( 11 )の流れ方向に沿って次第に拡大し、短径部の大きさが流体(11)の流れ方向に沿つ て次第に縮小した構成を有することを特徴とする請求項 1記載のパーナ。
[4] 前記燃料含有流体供給ノズル( 12)は、その内部に燃料含有流体(11)の流れを 複数に分割する燃料含有流体案内板(19)を有することを特徴とする請求項 1〜3の いずれかに記載のパーナ。
[5] 前記燃料含有流体案内板(19)は、燃料含有流体供給ノズル(12)内の流体(11) の流れ方向の中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)の短径部の 最短径に平行な平面に対して複数の異なる傾斜角度で配置したことを特徴とする請 求項 4記載のパーナ。
[6] 前記燃料含有流体供給ノズル( 12)は、その出口内部に燃料含有流体( 11)の流 れ方向を強制的に変更する燃料含有流体向き変更用案内板 (21)を有することを特 徴とする請求項 1〜5のいずれかに記載のパーナ。
[7] 前記燃料含有流体向き変更用案内板 (21)は、燃料含有流体供給ノズル(12)の 中心軸を火炉 (4)内に延長した線上を通り、該ノズル(12)の長径部の最長径に平行 な平面に対して、互いに異なる複数の向きに配置されることを特徴とする請求項 6記 載のパーナ。
[8] 前記燃料含有流体向き変更用案内板 (21)は、一部の燃料含有流体(11)につい ては燃料含有流体供給ノズル(12)の中心軸を火炉 (4)内に延長した線上を通り、該 ノズル(12)の長径部の最長径に平行な平面に対して平行に配置され、その他の燃 料含有流体(11)については燃料含有流体供給ノズル(12)の中心軸を火炉 (4)内 に延長した線上を通り、該ノズル(12)の長径部の最長径に平行な平面に対して傾 斜角度を持たせて配置されることを特徴とする請求項 6記載のパーナ。
[9] 前記燃料含有流体供給ノズル(12)は、前記燃料含有流体案内板(19)で複数個 の流路に仕切られて、前記各流路の中心軸が燃料含有流体供給ノズル(12)の中心 軸を火炉 (4)内に延長した線上を通り、該ノズル(12)出口の長径部の最長径に平行 な平面に対して互いに異なる傾斜角度で火炉 (4)の壁面に設けられていることを特 徴とする請求項 4記載のパーナ。
[10] 前記燃料含有流体供給ノズル(12)の出口部に、該出口部を複数に分割可能な燃 料含有流体分割板(22)を設けたことを特徴とする請求項 1〜9の ヽずれかに記載の パーナ。
[11] 前記燃料含有流体供給ノズル ( 12)の出口部に断面 L字型の保炎器 ( 17)を設けた ことを特徴とする請求項 1〜10のいずれかに記載のパーナ。
[12] 前記 L字型の保炎器 (17)の先端に、該保炎器 (17)周囲の燃焼用空気の噴出方 向を外側に変える案内板(17a)を設けたことを特徴とする請求項 11記載のパーナ。
[13] 前記燃料含有流体供給ノズル ( 12)の先端に、該ノズル ( 12)の外周部に配置され る一以上の燃焼用空気供給ノズル(15)の外側の燃焼用空気の噴出方向を燃料噴 出方向に対して外側に広げる燃焼用空気案内板 (15a)を設けたことを特徴とする請 求項 1〜12のいずれかに記載のパーナ。
[14] 前記燃料含有流体供給ノズル( 12)の内部に、燃料含有流体(11)の流路を一旦 狭くした後、再び流路を拡大する濃縮器 (23)を設けたことを特徴とする請求項 1〜1 3の!、ずれかに記載のパーナ。
[15] 前記燃料含有流体供給ノズル(12)の入口部に、該ノズル(12)内で燃料を均等に 分配する流体分配板 (24)を設けたことを特徴とする請求項 1〜14の ヽずれかに記 載のパーナ。
[16] 前記燃料含有流体供給ノズル(12)カゝら噴出する流体(11)の近傍に補助燃料であ る液体燃料又は気体燃料を噴出するためのノズル (41、 44)を燃料含有流体供給ノ ズル ( 12)近傍に設けたことを特徴とする請求項 1〜 15の 、ずれか〖こ記載のパーナ。
[17] 請求項 1〜16記載のパーナを対向する 2つの火炉壁にそれぞれ上下方向に複数 段配置し、各段に設けられる複数のパーナは同一火炉壁の水平方向の幅の中央部 で二分した壁面領域にそれぞれ対称的に配置することを特徴とする燃焼装置。
[18] 請求項 1〜16記載のパーナを対向する 2つの火炉壁にそれぞれ上下方向に複数 段配置し、同一火炉壁の各段に設けられる複数のパーナの中で水平方向の隣接す るパーナ同士は同一構造のパーナとすることを特徴とする燃焼装置。
[19] 水平に対して斜め向きの水壁管(25)をスパイラル状に巻き付けて構成される火炉 壁を備えたボイラにおいて、
前記水壁管(25)の長手方向に沿って矩形状、楕円形状又は略楕円形状の開口 部(26)を火炉壁に設け、請求項 1〜16の 、ずれかに記載のパーナを前記開口部( 26)に取り付けることを特徴とするボイラ。
[20] 鉛直方向に伸びた水壁管(25)群力 構成される火炉壁を備えたボイラにおいて、 前記水壁管(25)の長手方向に沿って矩形状、楕円形状又は略楕円形状の開口 部(26)を火炉壁に設け、請求項 1〜16の 、ずれかに記載のパーナを前記開口部( 26)に取り付けることを特徴とするボイラ。
PCT/JP2007/056311 2006-09-27 2007-03-27 Brûleur, et équipement de combustion et chaudière comprenant un brûleur WO2008038426A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2007800437454A CN101542202B (zh) 2006-09-27 2007-03-27 喷烧器、备有喷烧器的燃烧装置及锅炉
KR1020097008407A KR101285447B1 (ko) 2006-09-27 2007-03-27 버너, 버너를 구비한 연소장치 및 보일러
EP07739749.5A EP2068077A4 (en) 2006-09-27 2007-03-27 BURNER AND BURNER CONTAINING (R) COMBUSTION DEVICE AND BOILER
JP2008536284A JP4896143B2 (ja) 2006-09-27 2007-03-27 バーナ、バーナを備えた燃焼装置及びボイラ
AU2007301377A AU2007301377B2 (en) 2006-09-27 2007-03-27 Burner, and combustion equipment and boiler comprising burner
CA2664769A CA2664769C (en) 2006-09-27 2007-03-27 Burner, and combustion equipment and boiler comprising burner
US12/442,745 US20100064986A1 (en) 2006-09-27 2007-03-27 Burner, and combustion equipment and boiler comprising burner
US14/139,975 US20140116359A1 (en) 2006-09-27 2013-12-24 Burner, and combustion equipment and boiler comprising burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-263336 2006-09-27
JP2006263336 2006-09-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/442,745 A-371-Of-International US20100064986A1 (en) 2006-09-27 2007-03-27 Burner, and combustion equipment and boiler comprising burner
US14/139,975 Division US20140116359A1 (en) 2006-09-27 2013-12-24 Burner, and combustion equipment and boiler comprising burner

Publications (1)

Publication Number Publication Date
WO2008038426A1 true WO2008038426A1 (fr) 2008-04-03

Family

ID=39229869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056311 WO2008038426A1 (fr) 2006-09-27 2007-03-27 Brûleur, et équipement de combustion et chaudière comprenant un brûleur

Country Status (8)

Country Link
US (2) US20100064986A1 (ja)
EP (1) EP2068077A4 (ja)
JP (1) JP4896143B2 (ja)
KR (1) KR101285447B1 (ja)
CN (1) CN101542202B (ja)
AU (1) AU2007301377B2 (ja)
CA (1) CA2664769C (ja)
WO (1) WO2008038426A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014367A (ja) * 2008-07-04 2010-01-21 Central Res Inst Of Electric Power Ind 粉体の気流搬送装置及びこれを有するガス化設備
US20120152158A1 (en) * 2009-12-17 2012-06-21 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
WO2012098848A1 (ja) 2011-01-21 2012-07-26 バブコック日立株式会社 固体燃料バーナおよび前記バーナを用いる燃焼装置
JP2012202618A (ja) * 2011-03-25 2012-10-22 Ube Industries Ltd セメント焼成用バーナ
JP2013224822A (ja) * 2013-08-05 2013-10-31 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ
WO2014027609A1 (ja) 2012-08-14 2014-02-20 バブコック日立株式会社 固体燃料バーナ
JPWO2016158079A1 (ja) * 2015-03-31 2017-10-19 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
JP2018132278A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
WO2018150701A1 (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2019052838A (ja) * 2017-07-31 2019-04-04 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 2つの流路を備える石炭ノズルアセンブリ
US10458645B2 (en) 2015-03-31 2019-10-29 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler provided with same
JP6704541B1 (ja) * 2019-08-14 2020-06-03 太平洋セメント株式会社 可燃性廃棄物吹込装置及びその運転方法
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079794A (ja) * 2007-09-25 2009-04-16 Babcock Hitachi Kk 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
JP5190509B2 (ja) * 2008-04-10 2013-04-24 バブコック日立株式会社 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法
CN102221199A (zh) * 2011-03-11 2011-10-19 中国电力企业联合会科技开发服务中心 循环流化床锅炉低风压改进及运行方法
MX344736B (es) * 2011-04-01 2017-01-04 Mitsubishi Heavy Ind Ltd Quemador de combustión, quemador de combustión de combustible sólido, hervidor de combustión de combustible sólido, hervidor y método para poner en operación el hervidor.
JP5886031B2 (ja) * 2011-12-26 2016-03-16 川崎重工業株式会社 バイオマス燃料燃焼方法
WO2014027611A1 (ja) * 2012-08-14 2014-02-20 バブコック日立株式会社 固体燃料バーナと該固体燃料バーナを備えた燃焼装置の運転方法
CA2909146A1 (en) * 2013-04-11 2014-10-16 Babcock & Wilcox Power Generation Group, Inc. Dual phase fuel feeder for boilers
MX2018012055A (es) * 2016-05-11 2019-01-10 Dynamis Engenharia E Comercio Ltda Metodo para incrementar la eficiencia en quemadores y quemador.
PL3438533T3 (pl) * 2017-07-31 2021-07-12 General Electric Technology Gmbh Zespół dyszy pyłowej dla aparatu wytwrzającego parę
CN109405276B (zh) * 2018-09-30 2021-07-27 农业部规划设计研究院 一种秸秆捆烧锅炉清洁供暖系统
DE102019103659B4 (de) * 2019-02-13 2023-11-30 Bystronic Laser Ag Gasführung, Laserschneidkopf und Laserschneidmaschine
US11608981B1 (en) * 2021-08-31 2023-03-21 R-V Industries, Inc. Nozzle for feeding combustion media into a furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500981A (ja) 1982-07-12 1984-05-31 コンバツシヨン エンヂニアリング,インコ−ポレ−テツド. 粉炭バ−ナのための改良されたノズルチツプ
JPH08200616A (ja) * 1995-01-30 1996-08-06 Mitsubishi Heavy Ind Ltd 微粉状燃料燃焼バーナ
JPH08226615A (ja) 1995-02-22 1996-09-03 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH11281009A (ja) 1998-03-26 1999-10-15 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JPH11287433A (ja) * 1998-04-02 1999-10-19 Mitsubishi Heavy Ind Ltd 微粉炭セパレータ装置
JP2000130710A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 微粉炭燃焼バーナ
JP2000234704A (ja) * 1999-02-16 2000-08-29 Babcock Hitachi Kk 微粉炭燃焼装置
JP2000314508A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 微粉炭バーナ及び微粉炭バーナを用いた燃焼装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634054A (en) * 1983-04-22 1987-01-06 Combustion Engineering, Inc. Split nozzle tip for pulverized coal burner
JP2740201B2 (ja) 1988-09-05 1998-04-15 バブコツク日立株式会社 微粉炭バーナ
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
GB9322016D0 (en) * 1993-10-26 1993-12-15 Rolls Royce Power Eng Improvements in or relating to solid fuel burners
US5392720A (en) * 1994-06-07 1995-02-28 Riley Stoker Corporation Flame retaining nozzle tip
CA2151308C (en) * 1994-06-17 1999-06-08 Hideaki Ohta Pulverized fuel combustion burner
US5545031A (en) * 1994-12-30 1996-08-13 Combustion Tec, Inc. Method and apparatus for injecting fuel and oxidant into a combustion burner
CN2253800Y (zh) * 1995-08-18 1997-05-07 哈尔滨锅炉有限责任公司 浓缩式自稳煤粉燃烧器
JP3344694B2 (ja) * 1997-07-24 2002-11-11 株式会社日立製作所 微粉炭燃焼バーナ
CN2319694Y (zh) * 1997-10-17 1999-05-19 清华大学 可调式浓淡煤粉燃烧器
CA2625463C (en) * 2001-11-16 2011-03-08 Hitachi, Ltd. Solid fuel burner, burning method using the same, combustion apparatus and method of operating the combustion apparatus
US20060000467A1 (en) * 2004-06-30 2006-01-05 Hibshman Joell R Ii Gas cooking burner with enhanced air entrainment and system and method incorporating same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500981A (ja) 1982-07-12 1984-05-31 コンバツシヨン エンヂニアリング,インコ−ポレ−テツド. 粉炭バ−ナのための改良されたノズルチツプ
JPH08200616A (ja) * 1995-01-30 1996-08-06 Mitsubishi Heavy Ind Ltd 微粉状燃料燃焼バーナ
JPH08226615A (ja) 1995-02-22 1996-09-03 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH11281009A (ja) 1998-03-26 1999-10-15 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JPH11287433A (ja) * 1998-04-02 1999-10-19 Mitsubishi Heavy Ind Ltd 微粉炭セパレータ装置
JP2000130710A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 微粉炭燃焼バーナ
JP2000234704A (ja) * 1999-02-16 2000-08-29 Babcock Hitachi Kk 微粉炭燃焼装置
JP2000314508A (ja) * 1999-04-28 2000-11-14 Hitachi Ltd 微粉炭バーナ及び微粉炭バーナを用いた燃焼装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014367A (ja) * 2008-07-04 2010-01-21 Central Res Inst Of Electric Power Ind 粉体の気流搬送装置及びこれを有するガス化設備
US10281142B2 (en) * 2009-12-17 2019-05-07 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US20120152158A1 (en) * 2009-12-17 2012-06-21 Mitsubishi Heavy Industries, Ltd. Solid-fuel-fired burner and solid-fuel-fired boiler
US9869469B2 (en) 2009-12-22 2018-01-16 Mitsubishi Heavy Industries, Ltd. Combustion burner and boiler including the same
WO2012098848A1 (ja) 2011-01-21 2012-07-26 バブコック日立株式会社 固体燃料バーナおよび前記バーナを用いる燃焼装置
JP2012202618A (ja) * 2011-03-25 2012-10-22 Ube Industries Ltd セメント焼成用バーナ
WO2014027609A1 (ja) 2012-08-14 2014-02-20 バブコック日立株式会社 固体燃料バーナ
JP2014055759A (ja) * 2012-08-14 2014-03-27 Babcock-Hitachi Co Ltd 固体燃料バーナを備えた燃焼装置
US9599335B2 (en) 2012-08-14 2017-03-21 Mitsubishi Hitachi Power Systems, Ltd. Solid-fuel burner
JP2013224822A (ja) * 2013-08-05 2013-10-31 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ
US10458645B2 (en) 2015-03-31 2019-10-29 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler provided with same
JPWO2016158079A1 (ja) * 2015-03-31 2017-10-19 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
US10591154B2 (en) 2015-03-31 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same
WO2018150701A1 (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2018132277A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2018132278A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2019052838A (ja) * 2017-07-31 2019-04-04 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 2つの流路を備える石炭ノズルアセンブリ
JP6704541B1 (ja) * 2019-08-14 2020-06-03 太平洋セメント株式会社 可燃性廃棄物吹込装置及びその運転方法
CN112166289A (zh) * 2019-08-14 2021-01-01 太平洋水泥株式会社 可燃性废弃物吹入装置及其运转方法
WO2021029032A1 (ja) * 2019-08-14 2021-02-18 太平洋セメント株式会社 可燃性廃棄物吹込装置及びその運転方法
US11029025B2 (en) 2019-08-14 2021-06-08 Taiheiyo Cement Corporation Combustible waste injection device and method for operating the same

Also Published As

Publication number Publication date
KR20090080506A (ko) 2009-07-24
US20140116359A1 (en) 2014-05-01
CN101542202A (zh) 2009-09-23
CA2664769C (en) 2013-03-19
KR101285447B1 (ko) 2013-07-12
JP4896143B2 (ja) 2012-03-14
AU2007301377B2 (en) 2011-02-03
US20100064986A1 (en) 2010-03-18
JPWO2008038426A1 (ja) 2010-01-28
CA2664769A1 (en) 2008-04-03
AU2007301377A1 (en) 2008-04-03
EP2068077A4 (en) 2016-10-12
EP2068077A1 (en) 2009-06-10
CN101542202B (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2008038426A1 (fr) Brûleur, et équipement de combustion et chaudière comprenant un brûleur
KR100330675B1 (ko) 미분탄버너
JP5867742B2 (ja) 固体燃料バーナを備えた燃焼装置
WO2001044720A1 (fr) Distributeur de fluide, dispositif a bruleur, moteur de turbine a gaz, et systeme cogenerateur
EP0933592A2 (en) Pulverized coal combustion burner and combustion method thereby
JP2011058775A (ja) ガスタービン燃焼器
JPH07260106A (ja) 微粉炭燃焼バーナ及び微粉炭燃焼装置
JP2008292138A (ja) 燃焼装置及びバーナの燃焼方法
US10865983B2 (en) Inlet assembly
JP2001000849A (ja) 予混合装置
JP5386230B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
JPH0926112A (ja) 微粉炭バーナ
JP3924089B2 (ja) 微粉炭バーナ及び微粉炭バーナを用いた燃焼装置
EP2781834B1 (en) Oil-fired burner, solid fuel-fired burner unit and solid fuel-fired boiler
JP3643461B2 (ja) 微粉炭燃焼バーナおよびその燃焼方法
JP2005024136A (ja) 燃焼装置
JP5797238B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
JPH09170714A (ja) 微粉炭焚バーナ
KR101494993B1 (ko) 고체 연료 버너
JP2010270990A (ja) 燃料バーナ及び旋回燃焼ボイラ
JP2016109349A (ja) 固体燃料バーナ及び固体燃料バーナを備えたボイラ
JPH08200616A (ja) 微粉状燃料燃焼バーナ
JP5344898B2 (ja) 旋回燃焼ボイラ
GB2600186A (en) Reverse-jet pulverized coal burner with preheating on annular wall
JP2020112283A (ja) 燃焼装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043745.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739749

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008536284

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007301377

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12442745

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2664769

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2007739749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007739749

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007301377

Country of ref document: AU

Date of ref document: 20070327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097008407

Country of ref document: KR

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)