WO2008035649A1 - Inertia force sensor - Google Patents

Inertia force sensor Download PDF

Info

Publication number
WO2008035649A1
WO2008035649A1 PCT/JP2007/068035 JP2007068035W WO2008035649A1 WO 2008035649 A1 WO2008035649 A1 WO 2008035649A1 JP 2007068035 W JP2007068035 W JP 2007068035W WO 2008035649 A1 WO2008035649 A1 WO 2008035649A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sensing
output
unit
arm
Prior art date
Application number
PCT/JP2007/068035
Other languages
English (en)
French (fr)
Inventor
Takeshi Uemura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800299280A priority Critical patent/CN101501448B/zh
Priority to EP07828236.5A priority patent/EP2037217B1/en
Priority to US12/376,985 priority patent/US8074517B2/en
Publication of WO2008035649A1 publication Critical patent/WO2008035649A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors

Definitions

  • the present invention relates to an inertial force sensor that detects an inertial force used for various electronic devices such as attitude control and navigation of a moving body such as an aircraft, an automobile, a robot, a ship, and a vehicle.
  • Inertial force sensors include angular velocity sensors and acceleration sensors.
  • an angular velocity sensor has detection elements of various shapes such as a sound shape, an H shape, and a T shape.
  • the detection element is vibrated to electrically detect the distortion of the detection element caused by the occurrence of Coriolica.
  • the angular velocity is detected.
  • the acceleration sensor has a detection element in which a weight part is connected, and detects acceleration by electrically detecting a strain of the detection element accompanying the movement of the weight part.
  • a sensing electrode unit composed of an upper electrode and a lower electrode with a piezoelectric material interposed is arranged on the detection element, and the current output from the sensing electrode unit due to the strain of the detection element is detected. Based on this, angular velocity and acceleration are detected.
  • a plurality of inertial force sensors such as an angular velocity sensor and an acceleration sensor are used for an attitude control device or a navigation device of a moving body such as a vehicle corresponding to the inertial force or detection axis to be detected.
  • Patent Document 1 is known as prior art document information related to the invention of this application.
  • the distortion of the detection element is very small, and the current output from the sensing electrode section is also very small.
  • the detection sensitivity is low! /, And! /, And there are problems!
  • Patent Document 1 JP 2005-249395 A
  • the sensing unit includes a sensing electrode unit including an upper electrode and a lower electrode with a piezoelectric body interposed therebetween, and the detection circuit unit outputs an output value output from the upper electrode of the sensing electrode unit, and the sensing electrode Under the department
  • the inertia force applied to the flexible body is detected based on the value obtained by adding the output values output from the partial electrodes.
  • the flexible body is based on a value approximately twice as large as the conventional value obtained by adding the output value output from the upper electrode of the sensing electrode unit and the output value output from the lower electrode of the sensing electrode unit. Since the added inertia is detected, the detection sensitivity can be improved.
  • FIG. 1 is a perspective view of a detection element of an angular velocity sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an operation state diagram of the detection element of the angular velocity sensor according to one embodiment of the present invention.
  • FIG. 4 is a circuit block diagram showing angular velocity sensor drive processing and angular velocity detection processing in an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of angular velocity detection processing of the angular velocity sensor according to one embodiment of the present invention.
  • FIG. 6 is a circuit diagram of angular velocity detection processing of the angular velocity sensor according to one embodiment of the present invention.
  • FIG. 7 is a circuit diagram of angular velocity detection processing of the angular velocity sensor according to one embodiment of the present invention.
  • FIG. 8 is a circuit block diagram showing the angular velocity sensor drive processing and angular velocity detection processing in another embodiment of the present invention.
  • FIG. 1 is a perspective view of a detection element in an embodiment of the present invention of an angular velocity sensor which is one of inertial force sensors.
  • 2 is a cross-sectional view taken along the line AA in FIG. Figure 3 shows the operating state of the same detection element.
  • the angular velocity sensor includes a detection element 1 made of a flexible body that detects angular velocity.
  • the detection element 1 has a first arm 2 and a second arm 4 which are orthogonally formed and connected in an orthogonal direction. Furthermore, a support portion 6 for connecting and supporting the two first arms 2 and the four second arms 4 is provided.
  • the 3rd arm 10 has the 3rd arm 10 connected perpendicularly
  • the first arm 2 and the third arm 10 are collectively referred to as a fixing arm 8. At this time, the two first arms 2 and the support portion 6 are arranged on substantially the same straight line.
  • shape As a variation of the above, the fixed portions 9 may be connected to each other, and the third arm 10 may have a rectangular frame shape.
  • the second arm 4 is provided with a facing portion 16 bent 180 degrees, and a weight portion 11 is connected to the tip portion thereof.
  • the weight 11 has a recess 12.
  • the first driving unit 17 and the second driving unit 18 for driving and vibrating the weight unit 11 are provided on the support unit 6 side of one of the two second arms 4 facing each other.
  • a first sensing part 19 and a second sensing part 20 for sensing the distortion of the second arm 4 are provided on the support part 6 side of the other two second arms 4 facing each other.
  • the first drive unit 17 and the second drive unit 18 are electrode units for driving the weight units 11 of the two second arms 4, and the first and second arms 4 are connected to the first arm 2.
  • the drive electrode portions 17a and 17b are arranged to face each other, and the third and fourth drive electrode portions 18a and 18b are arranged to face each other on the second arm 4.
  • These first to fourth drive electrode portions 17a, 17b, 18a, 18b are composed of a lower electrode 14 and an upper electrode 15 with a piezoelectric body 13 interposed, as shown in FIG.
  • the first sensing unit 19 and the second sensing unit 20 are electrode units for sensing the distortion of the two second arms 4, and the first and second sensing electrode units 19a are connected to one second arm 4.
  • 19b are arranged opposite to each other, and the third and fourth sensing electrode portions 20a, 20b are arranged oppositely to the other second arm 4.
  • These first to fourth sensing electrode portions 19a, 19b, 20a, and 20b interpose a piezoelectric body 13 as shown in FIG. 2 in the same manner as the first to fourth drive electrode portions 17a, 17b, 18a, and 18b.
  • the lower electrode 14 and the upper electrode 15 are formed.
  • a lower electrode 14 made of Pt is formed on the second arm 4 formed by high frequency sputtering, and a piezoelectric body 13 having PZT force is formed on the upper portion of the lower electrode 14 by high frequency sputtering, and a piezoelectric body made of PZT.
  • An upper electrode 15 made of Au is formed on top of 13 by vapor deposition.
  • FIG. 3 is an operation state diagram of the detection element 1.
  • the first to fourth drives When an AC voltage having a resonance frequency is applied to the electrode portions 17a, 17b, 18a, and 18b, the second arm 4 where the first driving portion 17 and the second driving portion 18 are arranged starts from The second arm 4 is driven to vibrate, and accordingly, the weight 11 is also driven to vibrate in the opposite direction of the second arm 4 (the D direction indicated by the solid arrow and the dotted arrow).
  • the driving vibration direction in the detection element 1 is the X-axis direction.
  • the resonance timing in the direction D in FIG. 3 due to drive vibration is such that all four second arms swing in the direction of the solid line in a certain moment, and all four second arms in the diagram at different moments. Shake in the direction of the dotted line.
  • the second arm 4 expands and contracts in the opposite direction to the case where angular velocity occurs counterclockwise (CCW) about the Z axis. Since the first to fourth sensing electrode portions 19a, 19b, 20a, 20b sense this expansion / contraction, the angular velocity is similarly detected.
  • the distortion that occurs when angular velocities occur around the Z-axis and Y-axis similarly applies to the second arm 4 provided with the first to fourth drive electrode portions 17a, 17b, 18a, and 18b. Therefore, the first to fourth sensing electrode portions 19a, 19b, 20a, 20b are connected to the first to fourth drive electrode portions 17a, 17b, 18a, 18 It is also possible to arrange on the second arm 4 provided with b.
  • FIG. 4 is a circuit block diagram of the detection circuit unit showing the angular velocity sensor drive processing and angular velocity detection processing of the present embodiment.
  • a drive voltage is applied from the drive processing circuit 30 to the first drive unit 17 and the second drive unit 18.
  • the first to fourth drive electrode portions 17a, 17b, 18a, 18b and the first to fourth desensitized electrode electrodes 19a, 19b, 20a, 20b have upper electrodes 15 under normal conditions where no angular velocity is generated.
  • the polarity of the lower electrode 14 is shown within the dotted line surrounded by Pd.
  • the polarities of the upper electrode 15 and the lower electrode 14 when the angular velocity is generated are shown in dotted lines surrounded by Pc.
  • the polarity of the lower electrode 14 is symmetric with respect to the polarity of the upper electrode 15. In such a polarity relationship, the polarity of the upper electrode 15 and the polarity of the lower electrode 14 alternately repeat positive and negative according to the AC signal input to the first to fourth drive electrode portions 17a, 17b, 18a, 18b.
  • the angular velocity is detected by the detection circuit unit.
  • the first and second sensing electrode portions 19a and 19b of the first sensing portion 19 and the third and fourth sensing electrode portions 20a and 20b of the second sensing portion 20 are used. Is processed as follows.
  • the third added value includes the output values output from the lower electrode 14 of the second drive electrode unit 17b of the first drive unit 17 and the lower electrode 14 of the second drive electrode unit 18b of the second drive unit 18. to add.
  • Figure 4 shows an example of a current addition circuit.
  • the polarity repeats alternately between the positive and negative electrodes due to the expansion and contraction of the second arm 4, so when the polarities are opposite, the output is processed as follows.
  • the fourth added value includes the output value output from the lower electrode 14 of the second drive electrode unit 17b of the first drive unit 17 and the lower electrode 14 of the second drive electrode unit 18b of the second drive unit 18. to add.
  • the resonance timing in the direction D in FIG. 3 due to the drive vibration is such that all four second arms swing in the direction of the solid line in a certain moment, and four resonances in different moments.
  • the second arm showed all examples that swing in the direction of the dotted line in the figure, but other driving vibrations can also be applied.
  • the resonance timing in the direction D in FIG. 3 due to the drive vibration is such that, at a certain moment, the upper two second arms all swing in the direction of the solid line in the figure and the lower two second arms
  • the resonance timing is such that the upper two second arms swing in the direction of the line, and the upper two second arms swing in the direction of the dotted line and the lower two second arms all touch the solid line at different moments. As with this embodiment, it can be sensed with high accuracy.
  • the angular velocity is detected based on both the output value output from the lower electrode 14 and the upper electrode 15 with the piezoelectric body 13 interposed, as illustrated in FIGS.
  • the force S can be detected as a voltage.
  • Figure 5 shows an example of the circuit configuration when the reference voltage of the differential amplifier that determines the voltage output value is grounded, that is, zero volts.
  • Fig. 6 shows an example of the circuit configuration when the reference voltage of the differential amplifier that determines the voltage output value is a certain reference voltage.
  • Fig. 7 shows an example of a combination of an actual amplifier and resistor to obtain the constant reference voltage shown in Fig. 6.
  • FIG. 8 is another circuit block diagram of the detection circuit unit of the angular velocity sensor driving process and the angular velocity detection process.
  • a drive voltage is applied from the drive processing circuit 30 to the first drive unit 17 and the second drive unit 18.
  • the upper electrode 15 and the lower electrode in the normal state where no angular velocity is generated in the first to fourth drive electrode portions 17a, 17b, 18a, 18b and the first to fourth sensing electrode portions 19a, 19b, 20a, 20b.
  • the polarity of 14 is shown within the dotted line surrounded by Pd.
  • the polarity of the upper electrode 15 and the polarity of the lower electrode 14 when the angular velocity is generated are shown within a dotted line surrounded by Pc.
  • the polarity of the upper electrode 15 and the polarity of the lower electrode 14 alternately repeat positive and negative according to the AC signal input to the first to fourth drive electrode portions 17a, 17b, 18a, 18b.
  • the angular velocity is detected by the detection circuit unit.
  • the first and second sensing electrode portions 19a and 19b of the first sensing portion 19 and the third and fourth sensing electrode portions 20a and 20b of the second sensing portion 20 are detected.
  • the output of is processed as follows.
  • a differential amplification value of an addition value obtained by adding the first addition value and the third addition value and an addition value obtained by adding the second addition value and the fourth addition value is detected.
  • the third added value includes the output values output from the upper electrode 15 of the first drive electrode unit 17a of the first drive unit 17 and the lower electrode 14 of the second drive electrode unit 17b of the first drive unit 17. to add.
  • each addition other than (5) above illustrates a circuit for adding current.
  • the polarity repeats alternately between the positive electrode and the negative electrode due to the expansion and contraction of the second arm 4. Therefore, when the polarity is reversed, the following process is performed.
  • a differential amplification value of the addition value obtained by adding the first addition value and the second addition value and the addition value obtained by adding the second addition value and the fourth addition value is detected.
  • the fourth added value is the output value output from the upper electrode 15 of the first drive electrode portion 17a of the first drive portion 17 and the lower electrode 14 of the second drive electrode portion 17b of the first drive portion 17. to add.
  • the angular velocity is detected by the above-described configuration with the piezoelectric body 13 interposed as shown in FIGS.
  • the detection is based on both the output from the lower electrode 14 and the upper electrode 15.
  • the output value output from the upper electrode 15 of the first to fourth sensing electrode portions 19a, 19b, 20a, 20b and the first to fourth sensing electrode portions 19a, 19b, 20a, 20b Since the angular velocity applied to the detection element 1 made of a flexible body is detected based on the output value output from the lower electrode 14, the current output from the first to fourth sensing electrode portions 19a, 19b, 20a, 20b Even if is very small, detection sensitivity can be improved.
  • an output doubled as a current value can be obtained by connecting the two outputs as they are and inputting them into the amplifier.
  • the output value is doubled by connecting the two negative outputs in the same way.
  • the output is doubled with a simple connection.
  • the method of doubling the output can be realized even if it is not a method by direct connection. Adding only the magnitude of the absolute value of the output from the positive electrode and the output from the negative electrode can be easily realized by devising the circuit in the subsequent stage.
  • the inertial force sensor according to the present invention can improve detection sensitivity even when the current output from the sensing electrode section is very small, and can be applied to various electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

明 細 書
慣性力センサ
技術分野
[0001] 本発明は、航空機、自動車、ロボット、船舶、車両等の移動体の姿勢制御やナビゲ ーシヨン等、各種電子機器に用いる慣性力を検出する慣性力センサに関するもので ある。
背景技術
[0002] 以下、従来の慣性力センサについて説明する。慣性力センサとしては、角速度セン サゃ加速度センサ等がある。一般に、角速度センサは、音さ形状や H形状や T形状 等、各種の形状の検出素子を有し、この検出素子を振動させて、コリオリカの発生に 伴う検出素子の歪を電気的に感知し角速度を検出するものである。加速度センサは 、錘部を連結した検出素子を有し、錘部の可動に伴う検出素子の歪を電気的に感知 し加速度を検出するものである。歪を感知するためには、例えば、圧電体を介在させ た上部電極と下部電極とからなる感知電極部を検出素子に配置し、検出素子の歪に 伴って感知電極部から出力される電流に基づき角速度や加速度を検出する。
[0003] このような角速度センサや加速度センサ等の複数の慣性力センサを、検出したい慣 性力や検出軸に対応させて、車両等の移動体の姿勢制御装置やナビゲーシヨン装 置等に用いている。なお、この出願の発明に関連する先行技術文献情報としては、 例えば、特許文献 1が知られている。このような従来の慣性力センサでは、感知電極 部から出力される電流に基づき角速度や加速度を検出するときは、検出素子の歪は 非常に微小であり、感知電極部から出力される電流も非常に微小であり、検出感度 が低!/、と!/、う問題点を有して!/、た。
特許文献 1 :特開 2005— 249395号公報
発明の開示
[0004] 本発明においては、検出感度を向上させた慣性力センサを提供する。本発明は、 感知部は、圧電体を介在させた上部電極と下部電極とからなる感知電極部を有し、 検出回路部は、感知電極部の上部電極から出力される出力値と、感知電極部の下 部電極から出力される出力値を加算した値に基づいて、可撓体に加わる慣性カを検 出する構成である。この構成により、感知電極部の上部電極から出力される出力値と 、感知電極部の下部電極から出力される出力値を加算した従来の約二倍の大きさの 値に基づいて可撓体に加わる慣性カを検知するので、検出感度を向上させることが できる。
図面の簡単な説明
[0005] [図 1]図 1は本発明の一実施の形態における角速度センサの検出素子の斜視図であ [図 2]図 2は図 1の A— A断面図である。
[図 3]図 3は本発明の一実施の形態における角速度センサの検出素子の動作状態図 である。
[図 4]図 4は本発明の一実施の形態における角速度センサの駆動処理および角速度 検出処理を示す回路ブロック図である。
[図 5]図 5は本発明の一実施の形態における角速度センサの角速度検出処理の回路 図である。
[図 6]図 6は本発明の一実施の形態における角速度センサの角速度検出処理の回路 図である。
[図 7]図 7は本発明の一実施の形態における角速度センサの角速度検出処理の回路 図である。
[図 8]図 8は本発明の他の実施の形態における角速度センサの駆動処理および角速 度検出処理を示す回路ブロック図である。
符号の説明
[0006] 1 検出素子
2 第 1アーム
4 第 2アーム
6 支持部
8 固定用アーム
10 第 3アーム 11 錘部
12 凹部
13 圧電体
14 下部電極
15 上部電極
17 第 1駆動部
17a 第 1駆動電極部
17b 第 2駆動電極部
18 第 2駆動部
18a 第 3駆動電極部
18b 第 4駆動電極部
19 第 1感知部
19a 第 1感知電極部
19b 第 2感知電極部
20 第 2感知部
20a 第 3感知電極部
20b 第 4感知電極部
発明を実施するための最良の形態
(実施の形態 1)
図 1は'慣性力センサの一つである角速度センサの本発明の一つの実施の形態に おける検出素子の斜視図である。図 2は図 1の A— A断面図である。図 3は同検出素 子の動作状態図である。角速度センサは、角速度を検出する可撓体からなる検出素 子 1を備えている。図 1において、この検出素子 1は、直交方向に連結して形成した 直交する第 1アーム 2と第 2アーム 4とを有している。更に、 2つの第 1アーム 2と 4つの 第 2アーム 4とを連結支持する支持部 6を有している。更に、第 1アーム 2に垂直に接 続し、その端部を実装基板(図示せず)に固定された第 3アーム 10を有している。第 1 アーム 2と第 3アーム 10とを合わせて、固定用アーム 8と呼ぶことにする。この際、二 つの第 1アーム 2と支持部 6とはほぼ同一直線上に配置されている。なお、更に形状 のバリエーションとして、固定部 9どうしを互いに連結して、第 3アーム 10を四角の枠 体形状にしてもよい。
[0008] また、第 2アーム 4には 180度折り曲げた対向部 16を設け、その先端部には錘部 1 1を連結している。この錘部 11は凹部 12を有する。
[0009] 4つの第 2アーム 4の内、互いに対向する一方の 2つの第 2アーム 4の支持部 6側に は錘部 11を駆動振動させる第 1駆動部 17、第 2駆動部 18を設けるとともに、互いに 対向する他方の 2つの第 2アーム 4の支持部 6側には第 2アーム 4の歪を感知する第 1感知部 19、第 2感知部 20を設けている。
[0010] この第 1駆動部 17および第 2駆動部 18は、 2つの第 2アーム 4の錘部 11を駆動させ るための電極部であり、一方の第 2アーム 4に第 1、第 2駆動電極部 17a、 17bを対向 配置させ、他方の第 2アーム 4に第 3、第 4駆動電極部 18a、 18bを対向配置させて 形成している。これら第 1〜第 4駆動電極部 17a、 17b、 18a, 18bは、図 2に示すよう に、圧電体 13を介在させた下部電極 14と上部電極 15とからなる。
[0011] 第 1感知部 19および第 2感知部 20は、 2つの第 2アーム 4の歪を感知させるための 電極部であり、一方の第 2アーム 4に第 1、第 2感知電極部 19a、 19bを対向配置させ 、他方の第 2アーム 4に第 3、第 4感知電極部 20a、 20bを対向配置させて形成してい る。これら第 1〜第 4感知電極部 19a、 19b、 20a、 20bは、第 1〜第 4駆動電極部 17 a、 17b、 18a, 18bと同様に、図 2に示すように、圧電体 13を介在させた下部電極 14 と上部電極 15とからなる。
[0012] 上記の第 1〜第 4駆動電極部 17a、 17b、 18a、 18bおよび第 1〜第 4感知電極部 1 9a、 19b、 20a, 20bは、図 2に示すように、シリコン基板力、らなる第 2アーム 4の上に P tからなる下部電極 14を高周波スパッタにて形成し、この下部電極 14の上部に PZT 力もなる圧電体 13を高周波スパッタにて形成し、 PZTからなる圧電体 13の上部に A uからなる上部電極 15を蒸着にて形成し作成する。
[0013] 図 3は同検出素子 1の動作状態図である。互いに直交した X軸、 Y軸、 Z軸におい て、検出素子 1の第 1アーム 2を X軸方向に配置して、第 2アーム 4を Y軸方向に配置 した場合、第 1〜第 4駆動電極部 17a、 17b, 18a, 18bに共振周波数の交流電圧を 印加すると、第 1駆動部 17および第 2駆動部 18が配置された第 2アーム 4を起点に 第 2アーム 4が駆動振動し、それに伴って錘部 11も第 2アーム 4の対向方向(実線の 矢印と点線の矢印で記した D方向)に駆動振動する。また、 4つの第 2アーム 4および 4つの錘部 11の全てが同調して第 2アーム 4の対向方向に駆動振動する。この検出 素子 1における駆動振動方向は X軸方向となる。本実施例では、駆動振動による図 3 の D方向の共振のタイミングは、或る瞬間は 4つの第 2アームは全て図の実線の方向 に振れ、異なる瞬間では 4つの第 2アームは全て図の点線の方向に振れる。
[0014] このとき、例えば、 Z軸の左回り(CCW)に角速度が生じた場合は、錘部 11の駆動 振動と同調して、錘部 11に対して駆動振動方向と直交した方向(実線の矢印で記し た C方向)にコリオリカが発生するので、第 2アーム 4に Z軸の左回りの角速度に起因 した歪を発生させることができる。この検出素子 1のコリオリ方向は Y軸方向となる。
[0015] 実線の矢印で記したコリオリ方向(C方向)にコリオリカが発生した場合は、第 1〜第 4感知電極部 19a、 19b、 20a, 20bが設けられた第 2アーム 4において、第 1感知電 極部 19aと第 3感知電極部 20aが第 2アーム 4の縮みを感知するとともに第 2感知電 極部 19bと第 4感知電極部 20bが第 2アーム 4の伸びを感知する。点線の矢印で記し たコリオリ方向にコリオリカが発生した場合は、その逆方向の伸び縮みを感知する。
[0016] そして、感知した伸び縮みに応じて、第 1〜第 4感知電極部 19a、 19b、 20a、 20b に電荷が発生し電流が出力され、この出力電流に基づき角速度が検出される。
[0017] 一方、 Z軸の右回り(CW)に角速度が生じた場合は、 Z軸の左回り(CCW)に角速 度が生じた場合とは正反対に、第 2アーム 4が伸び縮みし、この伸び縮みを第 1〜第 4感知電極部 19a、 19b、 20a、 20bが感知するので、同様に角速度が検出される。
[0018] また、 Y軸周りに角速度が生じた場合も、錘部 11の駆動振動と同調して、錘部 11に 対して駆動振動方向と直交した方向(Z軸方向)にコリオリカが発生するので、第 2ァ ーム 4に Y軸周りの角速度に起因した歪を発生させ、第 2アーム 4の伸び縮みを第 1 〜第 4感知電極部 19a、 19b、 20a、 20bが感知することにより、角速度が検出される
[0019] なお、 Z軸、 Y軸周りに角速度が生じた場合に発生する歪は、第 1〜第 4駆動電極 部 17a、 17b、 18a、 18bが設けられた第 2アーム 4にも同様に発生するので、第 1〜 第 4感知電極部 19a、 19b, 20a, 20bを第 1〜第 4駆動電極部 17a、 17b、 18a, 18 bが設けられた第 2アーム 4に配置することも可能である。
[0020] 次に、第 1〜第 4感知電極部 19a、 19b, 20a, 20bの感知について具体的に説明 する。
[0021] 図 4は、本実施の形態の角速度センサの駆動処理および角速度検出処理を示す 検出回路部の回路ブロック図である。図 4において、駆動処理回路 30から駆動用電 圧が第 1駆動部 17および第 2駆動部 18に付加される。第 1〜第 4駆動電極部 17a、 1 7b、 18a, 18bと、第 1〜第 4感失ロ電極き 19a、 19b、 20a, 20bには、角速度カ発生 していない通常時における上部電極 15、下部電極 14の極性を Pdで囲んだ点線内 に示す。また、角速度が発生している角速度発生時における上部電極 15と下部電 極 14の極性を Pcで囲んだ点線内に示す。下部電極 14の極性は上部電極 15の極 性とは対称極性となる。このような極性関係において、第 1〜第 4駆動電極部 17a、 1 7b、 18a、 18bに入力される交流信号に応じて、上部電極 15の極性および下部電極 14の極性が正負を交互に繰り返し、検出回路部によって角速度を検出するものであ
[0022] 角速度発生時の角速度を検出する際は、第 1感知部 19の第 1、第 2感知電極部 19 a、 19bおよび第 2感知部 20の第 3、第 4感知電極部 20a、 20bの出力を次のように処 理する。
(1)互いに正極となる第 2感知電極部 19bの上部電極 15と第 4感知電極部 20bの上 部電極 15から出力された出力値を加算し第 1加算値とする。
(2)互いに負極となる第 1感知電極部 19aの上部電極 15と第 3感知電極部 20aの上 部電極 15から出力された出力値を加算し第 2加算値とする。
(3)互いに正極となる第 1感知電極部 19aの下部電極 14と第 3感知電極部 20aの下 部電極 14から出力された出力値を加算し第 3加算値とする。図 4では電流加算の回 路を例示する。
(4)互いに負極となる第 2感知電極部 19bの下部電極 14と第 4感知電極部 20bの下 部電極 14から出力された出力値を加算し第 4加算値とする。図 4では電流加算の回 路を例示する。
(5)第 1加算値と第 2加算値との差動増幅値 S 1および第 3加算値と第 4加算値との差 動増幅値 S2を検出する。
(6)第 3加算値には、第 1駆動部 17の第 2駆動電極部 17bの下部電極 14と第 2駆動 部 18の第 2駆動電極部 18bの下部電極 14から出力された出力値を加算する。図 4 では電流加算の回路を例示する。
(7)第 4加算値には、第 1駆動部 17の第 1駆動電極部 17aの下部電極 14と第 3駆動 電極部 18aの下部電極 14から出力された出力値を加算する。図 4では電流加算の 回路を例示する。
[0023] 更なる処理として、第 2アーム 4の伸縮に起因して極性は正極と負極を交互に繰り 返すので、極性が反対になった場合は、次のように出力を処理する。
(1)互いに正極となる第 1感知電極部 19aの上部電極 15と第 3感知電極部 20aの上 部電極 15から出力された出力値を加算し第 1加算値とする。
(2)互いに負極となる第 2感知電極部 19bの上部電極 15と第 4感知電極部 20bの上 部電極 15から出力された出力値を加算し第 2加算値とする。
(3)互いに正極となる第 2感知電極部 19bの下部電極 14と第 4感知電極部 20bの下 部電極 14から出力された出力値を加算し第 3加算値とする。
(4)互いに負極となる第 1感知電極部 19aの下部電極 14と第 3感知電極部 20aの下 部電極 14から出力された出力値を加算し第 4加算値とする。
(5)第 1加算値と第 2加算値との差動増幅値および第 3加算値と第 4加算値との差動 増幅値を検出する。
(6)第 3加算値には、第 1駆動部 17の第 1駆動電極部 17aの下部電極 14と第 3駆動 電極部 18aの下部電極 14から出力された出力値を加算する。
(7)第 4加算値には、第 1駆動部 17の第 2駆動電極部 17bの下部電極 14と第 2駆動 部 18の第 2駆動電極部 18bの下部電極 14から出力された出力値を加算する。
[0024] なお、本実施例では、駆動振動による図 3の D方向の共振のタイミングは、或る瞬間 は四個の第 2アームは全て図の実線の方向に振れ、異なる瞬間では四個の第 2ァー ムは全て図の点線の方向に振れる例を示したが、別の駆動振動についても、応用可 能である。即ち、駆動振動による図 3の D方向の共振のタイミングは、或る瞬間は上の 二個の第 2アームは全て図の実線の方向に振れると共に下の二個の第 2アームは点 線の方向に振れ、異なる瞬間では上の二個の第 2アームは全て図の点線の方向に 振れると共に下の二個の第 2アームは全て実線の方向に触れるような共振のタイミン グにしても、本実施例と同様に精度良く感知することが可能である。
[0025] 上記構成による角速度の検出は、図 5〜図 7に例示するように、圧電体 13を介在さ せた下部電極 14と上部電極 15から出力される出力値の両方に基づいて信号 Sを電 圧として検出すること力 Sできる。図 5は電圧出力値を決定する差動増幅器の基準電圧 が接地、即ちゼロボルトのときの回路構成例である。図 6は電圧出力値を決定する差 動増幅器の基準電圧がある一定基準電圧であるのときの回路構成例である。図 7は 、図 6に示す一定の基準電圧を得る為の実際のアンプと抵抗の組み合わせ例である
[0026] (実施の形態 2)
図 8は、同角速度センサの駆動処理および角速度検出処理の検出回路部の他の 回路ブロック図である。図 8において、駆動処理回路 30から駆動用電圧が第 1駆動 部 17および第 2駆動部 18に付加される。第 1〜第 4駆動電極部 17a、 17b, 18a, 18 bと、第 1〜第 4感知電極部 19a、 19b、 20a、 20bに、角速度が発生していない通常 時における上部電極 15と下部電極 14の極性を Pdで囲んだ点線内に示す。また、角 速度が発生している角速度発生時における上部電極 15の極性と下部電極 14の極 性を Pcで囲んだ点線内に示す。このような極性関係において、第 1〜第 4駆動電極 部 17a、 17b、 18a、 18bに入力される交流信号に応じて、上部電極 15の極性および 下部電極 14の極性が正負を交互に繰り返し、検出回路部によって角速度を検出す るものである。
[0027] 角速度発生時に、角速度を検出する際は、第 1感知部 19の第 1、第 2感知電極部 1 9a、 19bおよび第 2感知部 20の第 3、第 4感知電極部 20a、 20bの出力を次のように 処理する。
(1)第 1感知部 19の互いに正極となる第 2感知電極部 19bの上部電極 15と第 1感知 電極部 19aの下部電極 14から出力された出力値を加算し第 1加算値とする。
(2)第 1感知部 19の互いに負極となる第 1感知電極部 19aの上部電極 15と第 2感知 電極部 19bの下部電極 14から出力された出力値を加算し第 2加算値とする。 (3)第 2感知部 20の互いに正極となる第 4感知電極部 20bの上部電極 15と第 3感知 電極部 20aの下部電極 14から出力された出力値を加算し第 3加算値とする。
(4)第 2感知部 20の互いに負極となる第 3感知電極部 20aの上部電極 15と第 4感知 電極部 20bの下部電極 14から出力された出力値を加算し第 4加算値とする。
(5)第 1加算値と第 3加算値とを加算した加算値と、第 2加算値と第 4加算値とを加算 した加算値との差動増幅値を検出する。
(6)第 3加算値には、第 1駆動部 17の第 1駆動電極部 17aの上部電極 15と第 1駆動 部 17の第 2駆動電極部 17bの下部電極 14から出力された出力値を加算する。
(7)第 2加算値には、第 2駆動部 18の第 3駆動電極部 18aの下部電極 14と第 4駆動 電極部 18bの上部電極 15から出力された出力値を加算している。
[0028] なお、図 8では、上記(5)以外の各加算は、電流を加算する回路を例示している。
[0029] 更なる処理として、第 2アーム 4の伸縮に起因して極性は正極と負極を交互に繰り 返すので、極性が反対になった場合は次のように処理する。
(1)第 1感知部 19の互いに正極となる第 1感知電極部 19aの上部電極 15と第 2感知 電極部 19bの下部電極 14から出力された出力値を加算し第 1加算値とする。
(2)第 1感知部 19の互いに負極となる第 2感知電極部 19bの上部電極 15と第 1感知 電極部 19aの下部電極 14から出力された出力値を加算し第 2加算値とする。
(3)第 2感知部 20の互いに正極となる第 3感知電極部 20aの上部電極 15と第 4感知 電極部 20bの下部電極 14から出力された出力値を加算し第 3加算値とする。
(4)第 2感知部 20の互いに負極となる第 4感知電極部 20bの上部電極 15と第 3感知 電極部 20aの下部電極 14から出力された出力値を加算した第 4加算値とする。
(5)第 1加算値と第 2加算値とを加算した加算値と、第 2加算値と第 4加算値とを加算 した加算値との差動増幅値を検出する。
(6)第 4加算値には、第 1駆動部 17の第 1駆動電極部 17aの上部電極 15と第 1駆動 部 17の第 2駆動電極部 17bの下部電極 14から出力された出力値を加算する。
(7)第 1加算値には、第 2駆動部 18の第 3駆動電極部 18aの下部電極 14と第 4駆動 電極部 18bの上部電極 15から出力された出力値を加算する。
[0030] 上記構成による角速度の検出は、図 5〜図 7に示すように、圧電体 13を介在させた 下部電極 14と上部電極 15から出力される出力 の両方に基づいて検出しているも のである。
[0031] 上記構成により、第 1〜第 4感知電極部 19a、 19b, 20a, 20bの上部電極 15から 出力される出力値と、第 1〜第 4感知電極部 19a、 19b、 20a、 20bの下部電極 14か ら出力される出力値に基づいて、可撓体からなる検出素子 1に加わる角速度を検出 するので、第 1〜第 4感知電極部 19a、 19b、 20a、 20bから出力される電流が非常に 微小であっても、検出感度を向上させることができる。
[0032] なお、加算値については、互いに正極となる出力同士では、そのまま二つの出力を 結線してアンプに入力することで、電流値として倍加された出力を得ることが出来る。 互いに負極となる二つの出力同士でも同様にそのまま結線することで出力値が倍加 される。このように、電流方向が同じなら、簡単な結線で出力が倍加される。しかし、 出力を倍加する方法は、直接結線することによる方法でなくても実現できる。正極か らの出力と負極からの出力とでも、その出力の絶対値の大きさだけを加算することは 後段の回路を工夫することで容易に実現できる。
[0033] また、前記では入力された'慣性力に対する出力の正負符号と出力を倍増する方法 について述べたが出力には不要な信号成分が重畳される場合があり、このような場 合は不要信号成分の正負符号が逆で、絶対値が略同一である出力を加算すること で不要信号成分を相殺することが出来る。不要信号成分の正負符号が同じ場合は 減算することで同様に相殺することが出来る。
産業上の利用可能性
[0034] 本発明に係る慣性力センサは、感知電極部から出力される電流が非常に微小であ つても検出感度を向上させることができ、各種電子機器に適用できるものである。

Claims

請求の範囲
[1] 可撓体に配置され前記可撓体の歪を感知する複数の感知部を有する検出素子と、 前記感知部に接続され前記可撓体に加わる慣性力を検出する検出回路部を備え、 前記感知部は、圧電体を介在させた上部電極と下部電極とからなる感知電極部を有 し、
前記検出回路部は、二つの前記感知電極部の上部電極または下部電極から出力さ れる二つの出力値の加算値に基づいて、前記可撓体に加わる慣性力を検出する、 慣性力センサ。
[2] 前記二つの出力値の加算値が、互いに正極または互いに負極となる二つの前記感 知電極部の上部電極または下部電極から出力される二つの出力電流の加算によつ て得られる請求項 1に記載の慣性力センサ。
[3] 前記可撓体に配置され前記可撓体を駆動振動させる駆動部を設け、
前記駆動部は、圧電体を介在させた上部電極と下部電極とからなる駆動電極部を有 し、
前記検出回路部は、二つの前記感知電極部の上部電極または下部電極から出力さ れる二つの出力値の加算値と、前記駆動電極部の上部電極または下部電極から出 力される出力値と、の加算値に基づいて、前記可撓体に加わる慣性力を検出する請 求項 1に記載の'慣性力センサ。
[4] 前記出力値の加算値が、互いに正極または互いに負極となる前記感知電極部の上 部電極または下部電極から、または前記駆動電極部の上部電極または下部電極か ら出力される出力電流の加算によって得られる請求項 3に記載の慣性力センサ。
[5] 前記可撓体は複数の第 2アームを有し、一つの前記第 2アームには第 1感知部を配 置し、他の前記第 2アームには第 2感知部を配置しており、
前記第 1感知部および前記第 2感知部は各々 2つの感知電極部を有し、
4つの前記感知電極部の内、
互いに正極の 2つの上部電極から出力された出力値を加算した加算値と、 互いに負極の 2つの上部電極から出力された出力値を加算した加算値と、 互いに正極の 2つの下部電極から出力された出力値を加算した加算値と、 互いに負極の 2つの下部電極から出力された出力値を加算した加算値に基づいて、 前記可撓体に加わる慣性力を検出する請求項 1に記載の慣性力センサ。
前記可撓体は複数の第 2アームを有し、一つの前記第 2アームには第 1感知部を配 置し、他の前記第 2アームには第 2感知部を配置しており、
前記第 1感知部および前記第 2感知部は各々 2つの感知電極部を配置し、 前記第 1感知部の 2つの前記感知電極部の内、
前記第 1感知部の互いに正極の上部電極と下部電極から出力された出力値を加算 した加算値と、
前記第 1感知部の互いに負極の上部電極と下部電極から出力された出力値を加算 した加算値と、
前記第 2感知部の 2つの前記感知電極部の内、
前記第 2感知部の互いに正極の上部電極と下部電極から出力された出力値を加算 した加算値と、
前記第 2感知部の互いに負極の上部電極と下部電極から出力された出力値を加算 した加算値に基づ!/、て、前記可撓体に加わる慣性力を検出する請求項 1に記載の 慣性力センサ。
前記第 2アームを二つ平行に設け、一方の前記第 2アームに前記第 1感知部を設け るとともに他方の前記第 2アームに前記第 2感知部を設けた請求項 5または請求項 6 に記載の慣性力センサ。
前記可撓体に第 2アームを二つ平行に設け、一方の前記第 2アームに前記第 1感知 部を設けるとともに他方の前記第 2アームに前記第 2感知部を設け、前記第 2アーム に共通の支持部を設け、前記一方の第 2アームとおよび他方の第 2アームと支持部 に関して反対側に更に他の第 2アームを設け、前記更に他の第 2アームに前記駆動 部を設けた請求項 3に記載の'慣性力センサ。
PCT/JP2007/068035 2006-09-22 2007-09-18 Inertia force sensor WO2008035649A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800299280A CN101501448B (zh) 2006-09-22 2007-09-18 惯性力传感器
EP07828236.5A EP2037217B1 (en) 2006-09-22 2007-09-18 Inertia force sensor
US12/376,985 US8074517B2 (en) 2006-09-22 2007-09-18 Inertia force sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006256654A JP2008076265A (ja) 2006-09-22 2006-09-22 慣性力センサ
JP2006-256654 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035649A1 true WO2008035649A1 (en) 2008-03-27

Family

ID=39200475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068035 WO2008035649A1 (en) 2006-09-22 2007-09-18 Inertia force sensor

Country Status (5)

Country Link
US (1) US8074517B2 (ja)
EP (1) EP2037217B1 (ja)
JP (1) JP2008076265A (ja)
CN (1) CN101501448B (ja)
WO (1) WO2008035649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073576A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 角速度センサ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008035683A1 (ja) * 2006-09-21 2010-01-28 パナソニック株式会社 角速度センサ
US8201449B2 (en) * 2006-11-14 2012-06-19 Panasonic Corporation Sensor
EP2113744A4 (en) * 2007-02-20 2013-04-17 Panasonic Corp DEGREE OF INERT AND SENSOR FOR DETECTING VENTILATION POWER
WO2011161958A1 (ja) * 2010-06-25 2011-12-29 パナソニック株式会社 慣性力検出素子とそれを用いた慣性力センサ
WO2012090452A1 (ja) 2010-12-28 2012-07-05 パナソニック株式会社 角速度センサ
WO2013061558A1 (ja) * 2011-10-24 2013-05-02 パナソニック株式会社 角速度センサとそれに用いられる検出素子
WO2020203011A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 角速度センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170279A (ja) 1996-12-10 1998-06-26 Murata Mfg Co Ltd 振動ジャイロ
JP2000131077A (ja) * 1998-10-29 2000-05-12 Sony Corp 角速度センサ
JP2005249395A (ja) 2004-03-01 2005-09-15 Matsushita Electric Ind Co Ltd 角速度センサ
JP2005249646A (ja) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd 角速度センサ用音叉型振動子、この振動子を用いた角速度センサ及びこの角速度センサを用いた自動車

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654663A (en) * 1981-11-16 1987-03-31 Piezoelectric Technology Investors, Ltd. Angular rate sensor system
JPH0894362A (ja) * 1994-09-20 1996-04-12 Yoshiro Tomikawa 振動型ジャイロスコープ
JP3549590B2 (ja) * 1994-09-28 2004-08-04 和廣 岡田 加速度・角速度センサ
JPH1114373A (ja) * 1997-06-27 1999-01-22 Ngk Insulators Ltd 振動型ジャイロスコープ
JP4004129B2 (ja) * 1998-02-09 2007-11-07 マイクロストーン株式会社 運動センサ
JP3972790B2 (ja) * 2001-11-27 2007-09-05 松下電器産業株式会社 薄膜微小機械式共振子および薄膜微小機械式共振子ジャイロ
US7164179B2 (en) * 2002-08-07 2007-01-16 Matsushita Electric Industrial Co., Ltd. Angular-velocity sensor
JP4134136B2 (ja) * 2005-10-04 2008-08-13 和廣 岡田 角速度センサ
WO2008023566A1 (fr) * 2006-08-21 2008-02-28 Panasonic Corporation Capteur de vitesse angulaire
WO2008129865A1 (ja) * 2007-04-13 2008-10-30 Panasonic Corporation 慣性力センサ
JP5319122B2 (ja) * 2008-01-21 2013-10-16 日立オートモティブシステムズ株式会社 慣性センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170279A (ja) 1996-12-10 1998-06-26 Murata Mfg Co Ltd 振動ジャイロ
JP2000131077A (ja) * 1998-10-29 2000-05-12 Sony Corp 角速度センサ
JP2005249395A (ja) 2004-03-01 2005-09-15 Matsushita Electric Ind Co Ltd 角速度センサ
JP2005249646A (ja) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd 角速度センサ用音叉型振動子、この振動子を用いた角速度センサ及びこの角速度センサを用いた自動車
EP1696205A1 (en) 2004-03-05 2006-08-30 Matsushita Electric Industries Co., Ltd. Tuning fork vibrator for angular velocity sensor, angular velocity sensor using the vibrator, and vehicle using the angular velocity sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037217A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073576A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 角速度センサ

Also Published As

Publication number Publication date
CN101501448B (zh) 2013-01-02
EP2037217A4 (en) 2013-01-02
JP2008076265A (ja) 2008-04-03
US20100199761A1 (en) 2010-08-12
CN101501448A (zh) 2009-08-05
EP2037217A1 (en) 2009-03-18
EP2037217B1 (en) 2018-03-07
US8074517B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
JP5205725B2 (ja) 角速度センサ
JP5206409B2 (ja) 角速度センサ
JP5205970B2 (ja) 慣性力センサ
JP4929918B2 (ja) 複合センサ
WO2008035649A1 (en) Inertia force sensor
EP2000769B1 (en) Inertia force sensor
JP2009222475A (ja) 複合センサ
JP4687085B2 (ja) 複合センサ
JP2008190972A (ja) 角速度センサ
JP2007256234A (ja) 慣性力センサ
JP2008122263A (ja) 角速度センサ
JP4858215B2 (ja) 複合センサ
JP5125138B2 (ja) 複合センサ
JP2006226802A (ja) 複合センサ
JP2007198778A (ja) 慣性力センサ
JP2008046056A (ja) 角速度センサ
JP2008232704A (ja) 慣性力センサ
JP2008122262A (ja) 角速度センサ
JP2007198779A (ja) 慣性力センサ
JP2008261771A (ja) 慣性力センサ
JP2007198776A (ja) 慣性力センサ
JP2007198775A (ja) 慣性力センサ
JP2009250955A (ja) 慣性力センサ
JP2008232703A (ja) 慣性力センサ
JP2008209253A (ja) 角速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029928.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007828236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12376985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE