WO2008031382A1 - Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems - Google Patents

Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems Download PDF

Info

Publication number
WO2008031382A1
WO2008031382A1 PCT/DE2007/001366 DE2007001366W WO2008031382A1 WO 2008031382 A1 WO2008031382 A1 WO 2008031382A1 DE 2007001366 W DE2007001366 W DE 2007001366W WO 2008031382 A1 WO2008031382 A1 WO 2008031382A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
starting
cell system
supplied
Prior art date
Application number
PCT/DE2007/001366
Other languages
English (en)
French (fr)
Inventor
Stefan Käding
Norbert GÜNTHER
Henry Rosin
Original Assignee
Enerday Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday Gmbh filed Critical Enerday Gmbh
Priority to EP07801204A priority Critical patent/EP2062317A1/de
Priority to EA200970220A priority patent/EA200970220A1/ru
Priority to AU2007295724A priority patent/AU2007295724A1/en
Priority to JP2009527684A priority patent/JP2010503952A/ja
Priority to CA002662378A priority patent/CA2662378A1/en
Priority to US12/440,217 priority patent/US20100040917A1/en
Publication of WO2008031382A1 publication Critical patent/WO2008031382A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for starting a fuel cell system with a reformer and a fuel cell stack, wherein the reformer during a first start phase oxygen and fuel with a first the
  • the invention relates to a fuel cell system with a reformer and a fuel cell stack, wherein
  • the reformer during a first start phase oxygen and fuel with a first air-fuel ratio characterizing air ratio A 1 can be supplied, wherein the reformer during a second start phase oxygen and fuel with a second, the fuel-air ratio
  • SOFC fuel cell systems (“Solid Oxide Fuel Cell”) have operating temperatures above 800 ° C. These must be achieved in a start-up phase.
  • the required heat energy is made available to the fuel cell stack by the hot gases flowing out of the reformer and by preheated cathode feed air.
  • the reformer provides a high heat yield available, if this is operated as a burner, that is, in particular with a fuel-air ratio characterizing air ratio ⁇ , which is above 1 ( ⁇ > 1). If a certain temperature is reached, so that there is a system that is fundamentally functional with regard to power generation, then the reformer is switched to the reforming mode, that is, to an air ratio below 1, for example 0.4 or below.
  • the change in the air ratio can be effected, for example, by supplying additional fuel via a secondary fuel feed.
  • Such a system with a secondary fuel supply is disclosed, for example, in DE 103 59 205 A1.
  • the invention has for its object to provide a method for starting a fuel cell system and such a fuel cell system available, so that • a reliable and virtually delay-free monitoring of the transition between the starting phases of a fuel cell system is achieved.
  • the invention is based on the generic method in that the transition from the first start phase to the second start phase is monitored by detecting an electrical voltage supplied by the fuel cell stack.
  • the electrical voltage supplied by the fuel cell stack depends largely on whether the reformer works in the manner of a burner or whether the reforming operation has already been successfully initiated. By providing a reduced air ratio, which is characteristic of the reforming operation, the cell voltage increases abruptly. If this increase is recognized, then the transition to the second start phase, which is already being reformed, was successful. Otherwise, the transition failed.
  • electrical voltage for the monitoring of the starting phase the voltage supplied by the entire fuel cell stack be used. Alternatively, a single cell voltage or the voltages supplied by certain groups of fuel cells may serve the purpose of monitoring.
  • the transition from the first start phase to the second start phase is initiated as a function of a temperature.
  • an SOFC fuel cell stack can deliver a voltage that is critically dependent on the air ratio of the mixture fed to the reformer. Consequently, it is useful to limit the voltage-dependent monitoring of the starting process to temperatures above, for example, 300 ° C. This is useful anyway, as below these temperatures another burner operation is beneficial.
  • the invention is further developed in a particularly advantageous manner in that a proper transition from the first to the second start phase is detected when the electrical voltage supplied by the fuel cell stack exceeds a predetermined voltage value.
  • the absolute value of the voltage supplied by the fuel cell stack can thus be used as a criterion for the monitoring according to the invention.
  • a proper transition from the first to the second start phase is detected when the voltage supplied by the fuel cell stack increases by a predetermined voltage value.
  • the difference between the voltage supplied by the fuel cell stack during the first starting phase and the second starting phase can thus be used as a characteristic variable in the monitoring.
  • the predetermined voltage value is determined on the basis of empirically determined values.
  • the predetermined voltage value is fixed on the basis of a theoretically determined fuel cell voltage. According to the Nernst equation
  • the invention is based on the generic fuel cell system in that the transition from the first starting phase to the second starting phase can be monitored by detecting an electrical voltage supplied by the fuel cell stack.
  • the advantages and peculiarities of the method according to the invention are also realized in the context of a fuel cell system. This also applies to the following particularly preferred embodiments of the fuel cell system according to the invention.
  • the fuel cell system has an electronic has control to monitor its launch.
  • an electronic controller is preferably equipped with a memory. It either serves the sole control of the fuel cell system, or takes over control functions of components outside of the fuel cell system, for example in a vehicle.
  • the electronic control can be integrated into another control of a motor vehicle, for example a so-called on-board computer.
  • FIG. 1 is a schematic representation of a fuel cell system
  • Figure 2 shows a temperature-time course and a dependent air-time course
  • FIG. 3 shows a flow chart for explaining a method according to the invention.
  • FIG. 1 shows a schematic representation of a fuel cell system.
  • the fuel cell system comprises a fuel supply device 26, that is to say in particular a fuel pump, and an air feed 28, that is to say in particular a blower, which are coupled on the input side to a reformer 10.
  • the reformer 10 is coupled to the anode side of a fuel cell stack 12.
  • the cathode side of the fuel cell stack 12 is connected to an air supply device 30, that is to say in particular a blower, in connection.
  • the fuel cell stack 12 is equipped with a temperature sensor 24.
  • the fuel cell stack 12 is connected to an afterburner 32, which likewise communicates with an air supply device 34, that is to say in particular a blower.
  • An electronic controller 20 is provided with a memory 22 which is in communication with sensors of the system, that is in particular the temperature sensor 24 of the fuel cell stack 12 for the reception of signals.
  • the controller 20 is further connected to the fuel supply device 26 and the air supply lines 28, 30, 34 in connection to control their operation or influence in the context of a scheme.
  • the controller is suitable for detecting the voltage of individual cells and / or the total voltage of the fuel cell stack 12.
  • the fuel pump 26 and the air blower 28 convey fuel 14 and air 16 into the reformer 10.
  • a hydrogen-rich reformate 18 is produced in the reformer, which is fed to the anode side 12 of the fuel cell stack.
  • the cathode side of the fuel cell stack 12 is supplied with cathode feed air via the blower 30. This cathode feed is usefully preheated.
  • the depleted in the fuel cell stack 12 reformate 36 is supplied to an afterburner 32, which is also supplied with air through the blower 34 for carrying out the preferably residue-free combustion.
  • the afterburner 32 exits exhaust gas 38.
  • the thermal energy of the exhaust gas 38 can be reintroduced into the heat balance of the exhaust gas 38
  • Fuel cell system can be coupled, for example, to preheat the promoted via the blower 30 cathode feed.
  • the air ratio ⁇ with which the reformer 10 is operated, depending on the temperature sensor 24 measured by the temperature of the fuel cell stack 12 by influencing the fuel pump 26 and / or the air blower 28 via the controller 20 is set .
  • the adjustment is made so that non-critical air-temperature combinations are adjusted, in particular with regard to the deposition of soot in the Brennstoffzellensta- pel 12 and the oxidation of the anode material in the fuel cell stack 12, since at low temperatures and low air ratios, excessive soot formation, while At high temperatures and high air ratios undesirable oxidation of the fuel cell anode may occur.
  • FIG. 2 shows a temperature-time profile and a dependent air-fuel time curve.
  • the temperature T stack is based on an initial temperature value, for example, the room temperature, and then increases rapidly to temperatures in the range of 500 0 C, and then approach the operating temperature of the fuel cell stack of about 850 0 C.
  • the air value values ⁇ which are to be set at certain temperatures T stack , are usefully stored in a control in the form of a table.
  • Tg t ack can also be an empirically determined temperature Tstack be deposited in a memory of a controller as a function of time.
  • a switchover between the burner operation and the reforming operation takes place at approximately 300 ° C.
  • This switching can be done by abruptly lowering the air ratio or, as shown in Figure 2, gradual or continuous reduction of the air ratio. If a corresponding jump is registered in the voltage supplied by the fuel cell stack, then it can be assumed that the second starting phase has been properly initiated and thus ultimately also the reforming process. In the absence of such a voltage jump, the transition into the reforming process has failed.
  • FIG. 3 shows a flow chart for explaining a method according to the invention.
  • step S02 Burner operated (step SOl) during this first start phase, it is checked in step S02 whether the temperature of the system, for example, the temperature of the fuel cell stack, above a threshold temperature T 3 . If this is not the case, then the first start phase is continued according to step SO1. However, if the threshold temperature T s is exceeded, the fuel cell system is brought into the second start phase (step S03). whether this has been successful is checked in step S04, namely by comparing the cell voltage U with a threshold voltage U s . If the cell voltage exceeds the threshold voltage U s , it follows that the second starting phase, that is, the reforming operation, has been successfully initiated (step S05).
  • step S06 If the value exceeds the value determined in step S04 If, however, the voltage was not applied to the threshold voltage U s , an unsuccessful initiation of the second starting phase, that is to say of the reforming operation, is determined according to step S06. This error can be reacted in various ways, for example by switching off the system, restarting the system, outputting an error message or the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Starten eines Brennstoffzellensystems mit einem Reformer (10) und einem Brennstoffzellenstapel (12), wobei dem Reformer während einer ersten Startphase Sauerstoff und Brennstoff mit einer ersten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ1 zugeführt werden, wobei dem Reformer während einer zweiten Startphase Sauerstoff und Brennstoff mit einer zweiten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ2 zugeführt werden, wobei die erste Luftzahl λ1 größer ist als die zweite Luftzahl λ2 (λ1 > λ2) und wobei dem Brennstoffzellenstapel während der ersten und der zweiten Startphase in dem Reformer erzeugtes Reformat (18) zugeführt wird. Erfindungsgemäß ist vorgesehen, dass der Übergang von der ersten Startphase in die zweite Startphase durch das Erfassen einer von dem Brennstoffzellenstapel (12) gelieferten elektrischen Spannung überwacht wird. Die Erfindung betrifft weiterhin ein Brennstoffzellensystem.

Description

BRENNSTOFFZELLENSYSTEM UND VERFAHREN ZUM STARTEN EINES BRENNSTOFFZELLENSYSTEMS
Die Erfindung betrifft ein Verfahren zum Starten eines Brennstoffzellensystems mit einem Reformer und einem Brennstoffzellenstapel, wobei dem Reformer während einer ersten Startphase Sauerstoff und Brennstoff mit einer ersten das
10 Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λi zugeführt werden, wobei dem Reformer während einer zweiten Startphase Sauerstoff und Brennstoff mit einer zweiten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ2 zugeführt werden, wobei die erste Luftzahl A1 größer ist als
15 die zweite Luftzahl λ2 (λi > λ2) und wobei dem Brennstoffzellenstapel während der ersten und der zweiten Startphase in dem Reformer erzeugtes Reformat (18) zugeführt wird. Weiterhin betrifft die Erfindung ein BrennstoffZeilensystem mit einem Reformer und einem Brennstoffzellenstapel, wobei
20 dem Reformer während einer ersten Startphase Sauerstoff und Brennstoff mit einer ersten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl A1 zuführbar sind, wobei dem Reformer während einer zweiten Startphase Sauerstoff und Brennstoff mit einer zweiten das Brennstoff-Luft-Verhältnis
25 kennzeichnenden Luftzahl X2 zuführbar sind, wobei die erste Luftzahl λi größer ist als die zweite Luftzahl A2 (A1 > A2) und wobei dem Brennstoffzellenstapel während der ersten und der zweiten Startphase in dem Reformer erzeugtes Reformat (18) zuführbar ist.
30
In gattungsgemäßen BrennstoffZellensystemen wird in einem Brennstoffzellenstapel elektrische Energie erzeugt. Zu diesem Zweck wird dem Brennstoffzellenstapel Luft und ein was- serstoffreiches Reformat zugeführt, wobei letzteres in einem Reformer aus Brennstoff und Oxidationsmittel, insbesondere Luft, erzeugt wird. Um eine möglichst große Ausbeute an H2 zu erzielen, arbeiten die Reformer bei Luftzahlen, welche das Brennstoff-Luft-Verhältnis kennzeichnen, von 0,4 oder darunter.
SOFC-Brennstoffzellensysteme ("Solid Oxide Fuel Cell") haben Betriebstemperaturen oberhalb von 800° C. Diese müssen in einer Startphase erreicht werden. Die erforderliche Wärmeenergie wird durch die aus dem Reformer ausströmenden heißen Gase sowie durch vorgewärmte Kathodenzuluft dem Brennstoffzellenstapel zur Verfügung gestellt. Der Reformer stellt eine hohe Wärmeausbeute zur Verfügung, wenn dieser als Brenner betrieben wird, das heißt insbesondere mit einer das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ, die Oberhalb von 1 liegt (λ > 1) . Ist eine gewisse Temperatur erreicht, so dass ein im Hinblick auf die Stromerzeugung prinzipiell funktionsfähiges System vorliegt, so wird der Reformer in die Reformierungsbetriebsart umgeschaltet, das heißt auf eine Luftzahl unterhalb von 1, beispielsweise 0,4 oder darunter. Die Änderung der Luftzahl kann beispielsweise dadurch erfolgen, dass zusätzlicher Brennstoff über eine sekundäre BrennstoffZuführung zuge- führt wird. Ein solches System mit einer sekundären Brenn- εtoffzufuhr ist beispielsweise in der DE 103 59 205 Al offenbart .
Um nun den Startprozess des BrennstoffZellensystems zu überwachen, ist es möglich, die Nachbrennertemperatur zu erfassen. Diese steigt an, wenn in den Nachbrenner ein hoher Anteil an oxidationsfähigen Gasen einströmt, was naturgemäß während der Reformierung im Vergleich zur Brennerbetriebsart vermehrt der Fall ist. Allerdings ist eine derar- tige Überwachung mit Zeitverzögerungen behaftet, insbesondere bedingt durch die Strömungswege der Gase durch das System und die Geschwindigkeit des Zündvorganges des Nachbrenners .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Starten eines BrennstoffZeilensystems sowie ein solches Brennstoffzellensystem zur Verfügung zu stellen, so dass • eine zuverlässige und praktisch verzögerungsfreie Überwa- chung des Überganges zwischen den Startphasen eines BrennstoffZeilensystems erreicht wird.
Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst.
Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Die Erfindung baut auf dem gattungsgemäßen Verfahren da- durch auf, dass der Übergang von der ersten Startphase in die zweite Startphase durch das Erfassen einer von dem Brennstoffzellenstapel gelieferten elektrischen Spannung überwacht wird. Die von dem Brennstoffzellenstapel gelieferte elektrische Spannung hängt maßgeblich davon ab, ob der Reformer nach Art eines Brenners arbeitet oder ob bereits der Reformierungsbetrieb erfolgreich eingeleitet wurde. Mit Bereitstellung einer erniedrigten Luftzahl, die für den Reformierungsbetrieb charakteristisch ist, steigt die Zellenspannung schlagartig an. Wird dieser Anstieg erkannt, so war der Übergang in die zweite Startphase, in der bereits eine Reformierung stattfindet, erfolgreich. Andernfalls ist der Übergang fehlgeschlagen. Als elektrische Spannung für die Überwachung der Startphase kann die von dem gesamten Brennstoffzellenstapel gelieferte Spannung verwendet werden. Alternativ können eine Einzelzellenspannung oder die von bestimmten Gruppen von Brennstoffzellen gelieferten Spannungen dem Überwachungszweck dienen.
Nützlicherweise ist vorgesehen, dass der Übergang von der ersten Startphase in die zweite Startphase in Abhängigkeit einer Temperatur veranlasst wird. Bei Systemtemperaturen oberhalb von 300 0C kann ein SOFC-Brennstoffzellenstapel eine Spannung liefern, die maßgeblich von der Luftzahl des dem Reformer zugeführten Gemisches abhängt. Folglich ist es nützlich, die spannungsabhängige Überwachung des Startprozesses auf Temperaturen oberhalb von beispielsweise von 300 0C zu begrenzen. Dies ist ohnehin nützlich, da unterhalb dieser Temperaturen ein weiterer Brennerbetrieb von Vorteil ist.
Die Erfindung ist in besonders vorteilhafter Weise dadurch weitergebildet, dass ein ordnungsgemäßer Übergang von der ersten in die zweite Startphase dann festgestellt wird, wenn die von dem Brennstoffzellenstapel gelieferte elektrische Spannung einen vorbestimmten Spannungswert übersteigt . Der Absolutwert der von dem Brennstoffzellenstapel gelieferten Spannung kann somit als Kriterium für die erfindungsgemäße Überwachung herangezogen werden.
Alternativ oder zusätzlich kann vorgesehen sein, dass ein ordnungsgemäßer Übergang von der ersten in die zweite Startphase dann festgestellt wird, wenn die von dem Brennstoffzellenstapel gelieferte elektrische Spannung um einen vorbestimmten Spannungswert ansteigt. Die Differenz zwischen der vom Brennstoffzellenstapel während der ersten Startphase und der zweiten Startphase gelieferten Spannung kann somit als charakteristische Größe bei der Ü- berwachung verwendet werden. Es kann vorgesehen sein, dass der vorbestimmte Spannungs- wert auf der Grundlage empirisch ermittelter Werte festliegt .
Alternativ oder zusätzlich kann vorgesehen sein, dass der vorbestimmte Spannungswert auf der Grundlage einer theoretisch ermittelten BrennstoffZellenspannung festliegt. Gemäß der Nernstschen Gleichung
U„„ = In- zF 0,206
hängt' die Zellenspannung Ueq maßgeblich von der Sauerstoff- konzentration φ0 ab. (R: Universelle Gaskonstante; T: Abso- lute Temperatur; z: Äquivalentzahl; F: Faraday-Konstante; φ0 .- Sauerstoffanteil .) Unter Ausnutzung der genannten theoretischen Beziehung lässt sich somit die erfolgreiche Einleitung des Reformierungsprozesses überwachen.
Die Erfindung baut auf dem gattungsgemäßen Brennstoffzel- lensystem dadurch auf, dass der Übergang von der ersten Startphase in die zweite Startphase durch das Erfassen einer von dem Brennstoffzellenstapel gelieferten elektrischen Spannung überwachbar ist. Auf diese Weise werden die Vor- teile und Besonderheiten des erfindungsgemäßen Verfahrens auch im Rahmen eines Brennstoffzellensystems realisiert. Dies gilt auch für die nachfolgend angegebenen besonders bevorzugten Ausführungsformen des erfindungsgemäßen Brennstoffzellensystems .
Dieses ist in besonders vorteilhafter Weise dadurch weitergebildet, dass das Brennstoffzellensystem eine elektroni- sehe Steuerung zum Überwachen seines Starts aufweist. Eine solche elektronische Steuerung ist vorzugsweise mit einem Speicher ausgestattet . Sie dient entweder der alleinigen Steuerung des Brennstoffzellensystems, oder sie übernimmt Steuerungsfunktionen von Komponenten außerhalb des Brennstoffzellensystems, beispielsweise in einem Fahrzeug. Ebenfalls kann die elektronische Steuerung in eine sonstige Steuerung eines Kraftfahrzeugs integriert sein, beispielsweise einen so genannten Bordrechner.
Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand besonders bevorzugter Ausführungsformen beispielhaft erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung eines Brennstoff- zellensystems;
Figur 2 einen Temperatur-Zeit-Verlauf und einen davon abhängigen Luftzahl-Zeit-Verlauf;
Figur 3 ein Flussdiagramm zur Erläuterung eines erfindungsgemäßen Verfahrens .
Figur 1 zeigt eine schematische Darstellung eines Brennstoffzellensystems . Das Brennstoffzellensystem umfasst eine Brennstoffzuführeinrichtung 26, das heißt insbesondere eine Brennstoffpumpe, und eine LuftZuführung 28, das heißt ins- besondere ein Gebläse, die eingangsseitig an einen Reformer 10 gekoppelt sind. Ausgangsseitig ist der Reformer 10 mit der Anodenseite eines Brennstoffzellenstapels 12 gekoppelt. Die Kathodenseite des Brennstoffzellenstapels 12 steht mit einer Luftzuführeinrichtung 30, das heißt insbesondere ei- nem Gebläse, in Verbindung. Der Brennstoffzellenstapel 12 ist mit einem Temperatursensor 24 ausgestattet. Ausgangsei- tig steht der Brennstoffzellenstapel 12 mit einem Nachbrenner 32 in Verbindung, der ebenfalls mit einer Luftzufuhr- einrichtung 34, das heißt insbesondere einem Gebläse, in Verbindung steht. Es ist eine elektronische Steuerung 20 mit einem Speicher 22 vorgesehen, die mit Sensoren des Systems, das heißt insbesondere dem Temperatursensor 24 des Brennstoffzellenstapels 12 für den Empfang von Signalen in Verbindung steht. Die Steuerung 20 steht weiterhin mit der Brennstoffzuführeinrichtung 26 sowie den LuftZuführungen 28, 30, 34 in Verbindung, um deren Betrieb zu steuern beziehungsweise im Rahmen einer Regelung zu beeinflussen. Die Steuerung ist geeignet, die Spannung einzelner Zellen und/oder die GesamtSpannung des Brennstoffzellenstapels 12 zu erfassen.
Im Betrieb des Systems fördern die Brennstoffpumpe 26 und das Luftgebläse 28 Brennstoff 14 und Luft 16 in den Refor- mer 10. Im Reformer entsteht ein wasserstoffreiches Refor- mat 18, das der Anodenseite 12 des Brennstoffzellenstapels zugeführt wird. Der Kathodenseite des Brennstoffzellenstapels 12 wird Kathodenzuluft über das Gebläse 30 zugeführt. Diese Kathodenzuluft ist nützlicherweise vorgewärmt. Das im Brennstoffzellenstapel 12 abgereicherte Reformat 36 wird einem Nachbrenner 32 zugeführt, dem ebenfalls Luft durch das Gebläse 34 zur Durchführung der vorzugsweise rückstandsfreien Verbrennung zugeführt wird. Den Nachbrenner 32 verlässt Abgas 38. Nützlicherweise kann die thermische E- nergie des Abgases 38 wieder in den Wärmehaushalt des
Brennstoffzellensystems eingekoppelt werden, beispielsweise zur Vorwärmung der über das Gebläse 30 geförderten Kathodenzuluft. Im Startbetrieb des Brennstoffzellensystems kann vorgesehen sein, dass die Luftzahl λ, mit welcher der Reformer 10 betrieben wird, in Abhängigkeit der durch den Temperatursensor 24 gemessenen Temperatur des Brennstoffzellenstapels 12 mittels Beeinflussung der Brennstoffpumpe 26 und/oder des Luftgebläses 28 über die Steuerung 20 eingestellt wird. Die Einstellung erfolgt so, dass unkritische Luftzahl-Temperatur-Kombinationen eingestellt werden, insbesondere im Hinblick auf die Ablagerung von Ruß im Brennstoffzellensta- pel 12 sowie die Oxidation des Anodenmaterials im Brennstoffzellenstapel 12, da bei niedrigen Temperaturen und niedrigen Luftzahlen eine übermäßige Rußbildung vorliegt, während bei hohen Temperaturen und hohen Luftzahlen eine unerwünschte Oxidation der Brennstoffzellenanode auftreten kann.
Figur 2 zeigt einen Temperatur-Zeit-Verlauf und einen davon abhängigen Luftzahl-Zeit-Verlauf . Hier ist ein beispielhafter Temperaturverlauf des Brennstoffzellenstapels gegen die Zeit aufgetragen. Die Temperatur Tstack geht von einem Anfangstemperaturwert, beispielsweise der Raumtemperatur, aus, und steigt dann rasch auf Temperaturen im Bereich von 500 0C an, um sich dann der Betriebstemperatur des Brennstoffzellenstapels von ca. 850 0C anzunähern. In Abhängig- keit davon wird die Luftzahl λ des Reformers eingestellt, nämlich ausgehend von λ = 1,4 und dann absteigend bis zu einem Wert von λ = 0,4. Die Variation der Luftzahl λ rαuss nicht, wie dargestellt, stufenweise erfolgen. Auch ein kontinuierlicher Verlauf der Luftzahl ist praktikabel. Die Luftzahlwerte λ, die bei bestimmten Temperaturen Tstack einzustellen sind, sind nützlicherweise in einer Steuerung in Form einer Tabelle hinterlegt. Neben der gemessenen Temperatur Tgtack kann auch eine empirisch ermittelte Temperatur Tstack in Abhängigkeit der Zeit in einem Speicher einer Steuerung hinterlegt sein.
Erfindungsgemäß ist vorgesehen, dass eine Umschaltung zwi- sehen dem Brennerbetrieb und dem Reformierungsbetrieb, das heißt der ersten Startphase und der zweiten Startphase, bei ca. 300 0C erfolgt. Diese Umschaltung kann durch schlagartige Erniedrigung der Luftzahl oder, wie in Figur 2 dargestellt, stufenweise oder kontinuierliche Absenkung der Luftzahl erfolgen. Wird nun ein entsprechender Sprung in der von dem Brennstoffzellenstapel gelieferten Spannung registriert, so kann von einem ordnungsgemäßen Einleiten der zweiten Startphase und somit letztlich auch des Reformie- rungsprozesses ausgegangen werden. Beim Ausbleiben eines solchen SpannungsSprunges ist der Übergang in den Reformie- rungsprozess fehlgeschlagen.
Figur 3 zeigt ein Flussdiagramm zur Erläuterung eines erfindungsgemäßen Verfahrens . Nach dem Start des Systems wird der Reformer in einer ersten Startphase nach Art eines
Brenners betrieben (Schritt SOl) während dieser ersten Startphase wird in Schritt S02 geprüft, ob die Temperatur des Systems, beispielsweise die Temperatur des Brennstoff- zellenstapels, oberhalb einer Schwellentemperatur T3 liegt. Ist dies nicht der Fall, so wird die erste Startphase gemäß Schritt SOl fortgesetzt. Ist die Schwellentemperatur Ts jedoch überschritten, so wird das Brennstoffzellensystem in die zweite Startphase gebracht (Schritt S03). ob dies gelungen ist, wird in Schritt S04 überprüft, indem nämlich die Zellenspannung U mit einer Schwellenspannung Us verglichen wird. Übersteigt die Zellenspannung die Schwellenspannung Us, so folgt hieraus, dass die zweite Startphase, das heißt der Reformierungsbetrieb, erfolgreich eingeleitet wurde (Schritt S05) . Übersteigt die in Schritt S04 ermit- telte Spannung jedoch die Schwellenspannung Us nicht, so wird gemäß Schritt S06 ein nicht erfolgreiches Einleiten der zweiten Startphase, das heißt des Reformierungsbetrie- bes festgestellt. Auf diesen Fehler kann in verschiedener Weise reagiert werden, beispielsweise durch Abschalten des Systems, Neustart des Systems, Ausgeben einer Fehlermeldung oder dergleichen.
Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein.
Bezugszeichenliste
10 Reformer
12 Brennstoffzellenstapel
14 Brennstoff
16 Luft
18 Reformat
20 Steuerung
22 Speicher
24 Temperatursensor
26 Brennstoffzuführeinrichtung
28 Gebläse
30 Gebläse
32 Nachbrenner
34 Gebläse
36 Reformat
38 Abgas

Claims

ANSPRÜCHE
1. Verfahren zum Starten eines BrennstoffZellensystems mit einem Reformer (10) und einem Brennstoffzellenstapel
(12),
- wobei dem Reformer während einer ersten Startphase Sauerstoff und Brennstoff mit einer ersten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λi zugeführt werden,
- wobei dem Reformer während einer zweiten Startphase Sauerstoff und Brennstoff mit einer zweiten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ2 zugeführt werden,
- wobei die erste Luftzahl A1 größer ist als die zweite Luftzahl λ2 (A1 > A2) und
wobei dem Brennstoffzellenstapel während der ersten und der zweiten Startphase in dem Reformer erzeugtes Reformat (18) zugeführt wird,
dadurch gekennzeichnet, dass der Übergang von der ersten Startphase in die zweite Startphase durch das Erfassen einer von dem Brennstoffzellenstapel (12) gelieferten elekt- rischen Spannung überwacht wird.
2. Verfahren zum Starten eines Brennstoffzellensystems nach Anspruch 1, dadurch gekennzeichnet, dass der Übergang von der ersten Startphase in die zweite Startphase in Abhängigkeit einer Temperatur veranlasst wird.
3. Verfahren zum Starten eines Brennstoffzellensystems nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein ordnungsgemäßer Übergang von der ersten in die zweite Startphase dann festgestellt wird, wenn die von dem Brennstoffzellenstapel gelieferte elektrische Spannung einen vorbestimmten Spannungswert übersteigt.
4. Verfahren zum Starten eines Brennstoffzellensystems nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein ordnungsgemäßer Übergang von der ersten in die zweite Startphase dann festgestellt wird, wenn die von dem Brenn- stoffzellenstapel gelieferte elektrische Spannung um einen vorbestimmten Spannungswert ansteigt.
5. Verfahren zum Starten eines Brennstoffzellensystems nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der vorbestimmte Spannungswert auf der Grundlage empirisch ermittelter Werte festliegt.
6. Verfahren zum Starten eines Brennstoffzellensystems nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der vorbestimmte Spannungswert auf der Grundlage einer theoretisch ermittelten BrennstoffZellenspannung festliegt.
7. Verfahren zum Starten eines Brennstoffzellensystems nach Anspruch 6, dadurch gekennzeichnet, dass der vorbe- stimmte Spannungswert unter Einbeziehung der aktuellen
Luftzahl theoretisch ermittelt wird.
8. Brennstoffzellensystem mit einem Reformer (10) und einem Brennstoffzellenstapel (12) , wobei dem Reformer während einer ersten Startphase Sauerstoff und Brennstoff mit einer ersten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl X1 zuführbar sind,
wobei dem Reformer während einer zweiten Startphase Sauerstoff und Brennstoff mit einer zweiten das Brennstoff-Luft-Verhältnis kennzeichnenden Luftzahl λ2 zuführbar sind,
wobei die erste Luftzahl λi größer ist als die zweite Luftzahl λ2 (A1 > λ2) und
- wobei dem Brennstoffzellenstapel während der ersten und der zweiten Startphase in dem Reformer erzeugtes Reformat (18) zuführbar ist,
dadurch gekennzeichnet, dass der Übergang von der ersten Startphase in die zweite Startphase durch das Erfassen einer von dem Brennstoffzellenstapel (12) gelieferten elektrischen Spannung überwachbar ist.
9. BrennstoffZeilensystem nach Anspruch 7, dadurch ge- kennzeichnet, dass das BrennstoffZeilensystem eine elektronische Steuerung (20) zum Überwachen seines Starts aufweist .
PCT/DE2007/001366 2006-09-15 2007-08-01 Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems WO2008031382A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07801204A EP2062317A1 (de) 2006-09-15 2007-08-01 Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems
EA200970220A EA200970220A1 (ru) 2006-09-15 2007-08-01 Система топливных элементов и способ запуска этой системы
AU2007295724A AU2007295724A1 (en) 2006-09-15 2007-08-01 Fuel cell system and method for starting a fuel cell system
JP2009527684A JP2010503952A (ja) 2006-09-15 2007-08-01 燃料電池システムおよび燃料電池システムを始動する方法
CA002662378A CA2662378A1 (en) 2006-09-15 2007-08-01 Fuel cell system and method for starting a fuel cell system
US12/440,217 US20100040917A1 (en) 2006-09-15 2007-08-01 Fuel cell system and method of starting a fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043349.1 2006-09-15
DE102006043349A DE102006043349A1 (de) 2006-09-15 2006-09-15 Brennstoffzellensystem und Verfahren zum Starten eines Brennstoffzellensystems

Publications (1)

Publication Number Publication Date
WO2008031382A1 true WO2008031382A1 (de) 2008-03-20

Family

ID=38723013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001366 WO2008031382A1 (de) 2006-09-15 2007-08-01 Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems

Country Status (9)

Country Link
US (1) US20100040917A1 (de)
EP (1) EP2062317A1 (de)
JP (1) JP2010503952A (de)
CN (1) CN101589497A (de)
AU (1) AU2007295724A1 (de)
CA (1) CA2662378A1 (de)
DE (1) DE102006043349A1 (de)
EA (1) EA200970220A1 (de)
WO (1) WO2008031382A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021100954A1 (de) 2021-01-19 2022-07-21 Schaeffler Technologies AG & Co. KG Testsystem und Verfahren zum Einfahren und Testen von Brennstoffzellen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066487A1 (en) * 1999-05-03 2000-11-09 Nuvera Fuel Cells Autothermal reforming system with integrated shift beds, preferential oxidation reactor, auxiliary reactor, and system controls
US20020150532A1 (en) * 2001-02-15 2002-10-17 Grieve Malcolm James Reformer system process
WO2003021696A2 (de) * 2001-09-02 2003-03-13 Webasto Thermosysteme Gmbh System zum erzeugen elektrischer energie und verfahren zum betreiben eines systems zum erzeugen elektrischer energie
US20040043343A1 (en) * 2001-11-16 2004-03-04 Motohisa Kamijo Fuel reforming system and control therefor
US20050089732A1 (en) * 2002-02-08 2005-04-28 Takashi Aoyama Fuel reforming system and fuel cell system having same
DE102004001310A1 (de) * 2004-01-07 2005-08-11 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb einer Anlage zur Wasserdampfreformierung eines Kohlenwasserstoffgases

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985474A (en) * 1998-08-26 1999-11-16 Plug Power, L.L.C. Integrated full processor, furnace, and fuel cell system for providing heat and electrical power to a building
US6893756B2 (en) * 2002-04-30 2005-05-17 General Motors Corporation Lambda sensing with a fuel cell stack
US7147945B2 (en) * 2002-09-16 2006-12-12 Utc Fuel Cells, Llc System for determining a gas composition within a shut down fuel cell power plant and method of operation
DE10358933A1 (de) * 2003-12-12 2005-07-28 Webasto Ag Bestimmung des Lambdawertes von Reformat
DE10359205B4 (de) * 2003-12-17 2007-09-06 Webasto Ag Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066487A1 (en) * 1999-05-03 2000-11-09 Nuvera Fuel Cells Autothermal reforming system with integrated shift beds, preferential oxidation reactor, auxiliary reactor, and system controls
US20020150532A1 (en) * 2001-02-15 2002-10-17 Grieve Malcolm James Reformer system process
WO2003021696A2 (de) * 2001-09-02 2003-03-13 Webasto Thermosysteme Gmbh System zum erzeugen elektrischer energie und verfahren zum betreiben eines systems zum erzeugen elektrischer energie
US20040043343A1 (en) * 2001-11-16 2004-03-04 Motohisa Kamijo Fuel reforming system and control therefor
US20050089732A1 (en) * 2002-02-08 2005-04-28 Takashi Aoyama Fuel reforming system and fuel cell system having same
DE102004001310A1 (de) * 2004-01-07 2005-08-11 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb einer Anlage zur Wasserdampfreformierung eines Kohlenwasserstoffgases

Also Published As

Publication number Publication date
CA2662378A1 (en) 2008-03-20
JP2010503952A (ja) 2010-02-04
CN101589497A (zh) 2009-11-25
EP2062317A1 (de) 2009-05-27
AU2007295724A1 (en) 2008-03-20
US20100040917A1 (en) 2010-02-18
EA200970220A1 (ru) 2009-08-28
DE102006043349A1 (de) 2008-03-27

Similar Documents

Publication Publication Date Title
DE112005002853B4 (de) Brennstoffzellenenergiesystem und Verfahren
EP0790657B1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems
DE102016203792B4 (de) Brennstoffzellenmodul
DE112008003533T5 (de) Brennstoffzellensystem
DE102012023438B4 (de) Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem für die Durchführung des Verfahrens
EP1153452B1 (de) Vorrichtung und verfahren zur leistungsregelung eines brennstoffzellenstacks
AT521065A1 (de) Brennstoffzellensystem und Verfahren zum Aufheizen eines Brennstoffzellensystems
DE10142578A1 (de) System zum Erzeugen elektrischer Energie und Verfahren zum Betreiben eines Systems zum Erzeugen elektrischer Energie
DE102010042034A1 (de) Betriebsverfahren für ein Brennstoffzellensystem
DE102016123106B4 (de) Brennstoffzellenvorrichtung
EP1947723B1 (de) Energiebereitstellungssystem
WO2011089082A2 (de) Verfahren zum betrieb einer kraft-wärme-kopplungsanlage
WO2008031382A1 (de) Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems
EP2062315A1 (de) Brennstoffzellensystem und verfahren zum starten eines brennstoffzellensystems
EP3676898B1 (de) Verfahren zum schutz von einzelzellen, brennstoffzellensystem und kraftfahrzeug
WO2008000217A1 (de) Brennstoffzellensystem
EP2424021B1 (de) Brennstoffzellenanlage
DE10257212A1 (de) Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
EP1986262B1 (de) Kalibrierverfahren für eine Brennstoffzellensteuerung
EP2800190B1 (de) Verfahren und Regelvorrichtung zum Betreiben einer Brennstoffzelle oder eines Brennstoffzellenstapels
EP1542304A2 (de) Bestimmung des Lambdawertes von Reformat
DE102012201632B4 (de) Verfahren zum Betreiben eines Brennstoffzellensystems
EP1311015B1 (de) Brennstoffzellenanlage und Verfahren zum Betrieb dieser Anlage
DE10258496A1 (de) Verfahren zur Regelung der Brennstoffzufuhr zu einem Brennstoffzellensystem
EP3609007A2 (de) Brennstoffzellensystem und verfahren zum betreiben dieses systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033972.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2662378

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007801204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12440217

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009527684

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1385/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007295724

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200970220

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2007295724

Country of ref document: AU

Date of ref document: 20070801

Kind code of ref document: A