WO2008029731A1 - Source d'électrons - Google Patents
Source d'électrons Download PDFInfo
- Publication number
- WO2008029731A1 WO2008029731A1 PCT/JP2007/067008 JP2007067008W WO2008029731A1 WO 2008029731 A1 WO2008029731 A1 WO 2008029731A1 JP 2007067008 W JP2007067008 W JP 2007067008W WO 2008029731 A1 WO2008029731 A1 WO 2008029731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cathode
- electron
- electron source
- insulator
- tungsten
- Prior art date
Links
- 239000012212 insulator Substances 0.000 claims abstract description 32
- 238000010894 electron beam technology Methods 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 20
- 229910052721 tungsten Inorganic materials 0.000 claims description 20
- 239000010937 tungsten Substances 0.000 claims description 20
- 238000009792 diffusion process Methods 0.000 claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 238000003466 welding Methods 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 229910001080 W alloy Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052573 porcelain Inorganic materials 0.000 abstract 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000011247 coating layer Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910017709 Ni Co Inorganic materials 0.000 description 4
- 229910003267 Ni-Co Inorganic materials 0.000 description 4
- 229910003262 Ni‐Co Inorganic materials 0.000 description 4
- 238000005219 brazing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 1
- 229910000568 zirconium hydride Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/14—Solid thermionic cathodes characterised by the material
- H01J1/144—Solid thermionic cathodes characterised by the material with other metal oxides as an emissive material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/065—Construction of guns or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/02—Details
- H01J2237/0216—Means for avoiding or correcting vibration effects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/063—Electron sources
- H01J2237/06308—Thermionic sources
- H01J2237/06316—Schottky emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
Definitions
- the present invention relates to an electron source such as a scanning electron microscope (hereinafter also referred to as SEM), Auger electron spectroscopy, an electron beam exposure machine, and a wafer inspection apparatus.
- SEM scanning electron microscope
- Auger electron spectroscopy Auger electron spectroscopy
- electron beam exposure machine an electron beam exposure machine
- wafer inspection apparatus a wafer inspection apparatus
- Non-Patent Document 1 In recent years, in order to obtain an electron beam with a longer life and higher brightness than a hot cathode, an electron source using a cathode in which a tungsten and single crystal acicular electrode is provided with a coating layer of zirconium and oxygen has been used. (Hereinafter referred to as ZrO / W electron source) (see Non-Patent Document 1).
- a ZrO / W electron source is provided with a diffusion source made of zirconium oxide on a tungsten single crystal needle-like cathode having an axial orientation of 100> orientation and diffusing zirconium and oxygen to form a coating layer (hereinafter, referred to as “a”).
- ZrO coating layer and the work function of the (100) plane of the tandastene single crystal is lowered from 4.5 eV to about 2.8 eV by the ZrO coating layer.
- this ZrO / W electron source only a fine crystal plane corresponding to the (100) plane formed at the tip of the cathode serves as an electron emission region.
- an electron beam having a higher luminance than that of a conventional hot cathode is used. And has a feature of long life. It is also more stable than a cold field emission electron source, operates at a low vacuum, and is easy to use (see Non-Patent Document 2).
- the ZrO / W electron source is a tantasten that emits an electron beam to a predetermined position of a tungsten filament 3 provided on a conductive terminal 4 fixed to an insulator 5.
- a needle-like cathode 1 with a 100> orientation is fixed by welding or the like.
- a part of the cathode 1 is provided with a diffusion source 2 of zirconium and oxygen.
- the surface of the cathode 1 is covered with a ZrO coating layer!
- the cathode 1 Since the cathode 1 is energized and heated by the filament 3 and is generally used at a temperature of about 1800K, the ZrO coating layer on the surface of the cathode 1 is consumed by evaporation. However, since zirconium and oxygen are diffused from the diffusion source 2 and continuously supplied to the surface of the cathode 1, the ZrO coating layer is maintained as a result. [0006]
- the tip of the cathode 1 of the ZrO / W electron source is disposed and used between a suppressor electrode and a bow electrode. A negative high voltage with respect to the extraction electrode is applied to the cathode 1, and a negative voltage of about several hundred volts is applied to the cathode 1 with respect to the cathode 1 to suppress thermionic electrons from the filament 3.
- the ZrO / W electron source has a stable probe current due to its operation at an angular current density of about 0.;! To 0.2mA / sr in length measurement SEM and wafer inspection equipment used at low acceleration voltages. In addition, it is widely used as an electron source that can obtain high-resolution SEM images because it suppresses the spread of energy.
- Non-Patent Document 1 D. Tuggle, J. Vac. Sci. Technol. 16, pl699 (1979)
- Non-Patent Document 2 M. J. Fransen, "On the Electron— Optical Properties of the He ZrO / W Schottky Electron Emitter", ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL. Ill, p91—166, 1999 by Acad emic Press.
- an object of the present invention is to provide an electron source that provides a stable electron beam even when an apparatus using the electron source receives vibration from the outside.
- the gist of the present invention is as follows.
- the cathode is made of a single crystal of molybdenum or tungsten with a 100> orientation, and a part of the cathode has an oxide of an element selected from zirconium, hafnium, titanium, scandium, yttrium, and normodium as a diffusion source.
- the electron source according to any one of (1) to (3).
- the electron source of the present invention has a structure in which an end different from the sharpened electron emitting portion of the rod-shaped cathode joined to the hairpin type filament is fixed to the insulator, the electron source Therefore, even when observing an SEM image at a high magnification, for example, high-resolution electrons can be prevented. The effect that a line can be provided is obtained.
- FIG. 1 is a structural diagram of a conventionally known electron source according to a comparative example.
- FIG. 2 is an example of the structure of an electron source according to the present invention.
- the electron source of the present invention has a specific structure in which the end different from the sharpened electron emitting portion of the rod-shaped cathode is fixed to the insulator, and is externally provided. Since it is not easily affected by vibration, it has the feature of providing a stable electron beam, and can be applied to electron beam utilization devices such as scanning electron microscopes, Auger electron spectroscopy, electron beam exposure machines, and wafer inspection devices.
- electron beam utilization devices such as scanning electron microscopes, Auger electron spectroscopy, electron beam exposure machines, and wafer inspection devices.
- the present invention will be described by taking an electron emission cathode used for an electron microscope, an electron beam exposure machine, a length measurement SEM, etc. as an example, but the present invention is not limited thereto.
- the cathode in the electron source of the present invention is made of a single crystal of molybdenum or tungsten, and a part of the cathode is made of zirconium, hafnium, titanium, scandium, yttrium, and barium. It has an oxide of an element selected from the group as a diffusion source.
- the material of the cathode (sometimes referred to as a chip in the present invention) is preferably tungsten. Further, it is particularly preferable that a part of the cathode has zirconium oxide as a diffusion source. Further, the cathode has a rod-like shape such as a circular shape, an elliptical shape or a rectangular shape, for example, and the diameter of the cross-section (the cross-section is not circular! / Or the equivalent circular diameter in some cases) is preferably 0. 05—0.5 mm, length force ⁇ 10 mm is preferred.
- Examples of the material of the filament include tungsten, molybdenum, and tantalum. Among them, tungsten or an alloy containing tungsten is preferable, and tungsten is particularly preferable.
- the filament is preferably in the form of a needle having rigidity, and the diameter of the cross section is preferably 0.05 to 0.5 mm.
- the length is 0.3 mm as the length connecting the cathode and the insulator. It is preferable that the thickness is ⁇ 0.8 cm.
- the filament is preferably a hairpin shape.
- Examples of the material for the insulator of the present invention include alumina, zirconium, and mica ceramics. Of these, alumina is preferable.
- the insulator is preferably cylindrical, for example, having a diameter of 0.5 to 2.0 cm and a height of 0.5 to 2.0 cm. Also, install on the insulator.
- Fe—Ni—Co alloy is preferable among the forces exemplified by Fe—Ni—Co alloy and titanium.
- the shape of the conductive terminal has a rod shape, and the diameter of the cross section (the cross section is not circular !, the corresponding circular diameter in this case) is preferably 0.05 to 0.5 cm, and the length is 0 ⁇ 2 to 2 ⁇ 0 cm is preferable.
- the metal pin for fixing the filament to the insulator is preferably an Fe—Ni—Co alloy among the forces exemplified by Fe—Ni—Co alloy and titanium.
- the shape of the metal pin has a rod shape, and the cross-sectional diameter (or equivalent circular diameter if the cross-section is not circular) is preferably 0.05 to 0.5 cm and the length is 0.2 to 2. 0cm is preferred.
- silver brazing is preferred as a brazing material when brazing metal pins to an insulator.
- a hairpin filament 3 made of a tungsten or tungsten alloy wire is attached to the conductive terminal 4 fixed to the insulator 5 by welding.
- a needle-like cathode 1 made of a single crystal of ⁇ 100> orientation tungsten that emits an electron beam is bonded and fixed to a predetermined position of the filament 3 by welding or the like.
- the position where the cathode 1 is joined is preferably the hairpin portion of the hairpin filament 3! /.
- the present invention is characterized in that the end 8 different from the electron emission portion of the cathode 1 joined to the filament 3, that is, the opposite end 8 is fixed to the insulator 5.
- the end 8 different from the electron emitting portion of the cathode 1 is fixed to the insulator 5 in this way, the generation of noise due to cathode resonance caused by external vibration can be suppressed to an extremely small level. it can.
- high resolution can be obtained without providing an anti-vibration structure or the like on the outside, and it is possible to achieve high reliability at a low cost. An effect is obtained.
- the metal pin 6 is embedded in the insulator 5 and the embedded portion is fixed by means such as brazing.
- the method of fixing the cathode 1 by welding or the like is preferable in that the cathode 1 can be fixed to the insulator 5 easily and reliably.
- the diameter fixed to the insulator 5 is 0.5 to When a metal pin of 5 mm is used, the metal pin 6 can sufficiently fix the cathode 1 at the central portion of the insulator 5 as shown in FIG.
- the distal end portion for forming the electron emission portion of the cathode 1 is sharpened by electrolytic polishing, as a diffusion source 2 to the central portion side of the cathode 1, for example, to form a zirconium source, then preferably about 10_ 4
- a process of diffusing zirconium and oxygen to the tip of the cathode 1 by heating in the presence of Pa oxygen (hereinafter referred to as oxygen treatment) is performed.
- the extraction electrode on the front surface of the cathode 1, preferably by applying a voltage between the extraction electrode and the cathode 1 in a vacuum of about 10- 7 P a, tip wall of the cathode 1 100>
- An electron emitting portion composed of a crystal plane is formed.
- the cathode 1 may be joined to the filament 3 after the tip part forming the electron emitting part is sharply processed in advance.
- a tungsten filament was fixed to a pair of conductive terminals brazed to an insulator by spot welding. Then, a single crystal tungsten cathode with ⁇ 100> orientation was attached to the filament by spot welding. Furthermore, an end portion different from the electron emission portion of the cathode attached to the filament was fixed to a metal pin brazed and fixed to the central portion of the insulator by spot welding.
- the tip of the cathode was sharpened by electrolytic polishing. Then those in paste form is mixed with acetic Isoamiru is applied to a portion of the cathode to form a diffusion source to pulverizng zirconium hydride, performs an oxygen treatment by heating in the presence of oxygen of about 10_ 4 Pa An electron source with the structure shown in Fig. 2 was obtained.
- the electron source is placed in the SEM sample chamber and installed so that the axial direction of the cathode is the scanning direction, and the position is adjusted so that the side surface near the cathode tip is obtained as an SEM image on the monitor. Went.
- a sound source a speaker equipped with software (Test Tone Generator) that can sweep the frequency in any range, mode, and speed is used. I connected a speaker to the computer. Then, a speaker was fixed in a predetermined position in the vicinity of the outside of the sample chamber containing the produced cathode (electron source).
- the SEM magnification was 50,000 times, and the image manipulation time on the monitor was 80 seconds.
- the sound generation conditions were set so that the frequency range was 1000 force, 4000 Hz, and the range was swept linearly in 80 seconds. Since the image is shifted in the horizontal direction at the corresponding frequency during scanning due to vibration caused by resonance, the amplitude under this condition is set to twice this shift width.
- a resonance test was performed on the electron source having the conventional structure shown in FIG. 1, that is, the electron source manufactured by the same method as in the example except that the cathode was spot welded to a metal pin.
- the electron source of the present invention has a specific structure and is not easily affected by external vibrations. Therefore, the electron source has a feature that can provide a stable electron beam. It can be applied to various electron beam utilization devices such as optical spectroscopy, electron beam exposure machines, and wafer inspection devices, and is very useful in industry. It should be noted that the entire contents of the specification, claims, drawings and abstract of the Japanese Patent Application No. 2006-240100 filed on September 5, 2006 are cited herein, and the specification of the present invention is disclosed. As it is incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Electron Sources, Ion Sources (AREA)
Description
明 細 書
電子源
技術分野
[0001] 本発明は、走査型電子顕微鏡(以下、 SEMともいう)、ォージェ電子分光、電子線 露光機、ウェハ検査装置などの電子源に関する。
背景技術
[0002] 近年、熱陰極よりも長寿命でより高輝度の電子ビームを得るために、タングステン単 結晶の針状電極にジルコニウムと酸素の被覆層を設けた陰極を用いた電子源が用 いられている(以下、 ZrO/W電子源と記す)(非特許文献 1参照)。
[0003] ZrO/W電子源は、軸方位がく 100〉方位からなるタングステン単結晶の針状の 陰極に、酸化ジルコニウムからなる拡散源を設け、ジルコニウム及び酸素を拡散する ことにより被覆層(以下、 ZrO被覆層という)を形成し、該 ZrO被覆層によってタンダス テン単結晶の(100)面の仕事関数を 4. 5eVから約 2. 8eVに低下させたものである 。この ZrO/W電子源は、前記陰極の先端部に形成された(100)面に相当する微 小な結晶面のみが電子放出領域となるので、従来の熱陰極よりも高輝度の電子ビー ムが得られ、しかも長寿命であるという特徴を有する。また冷電界放射電子源よりも安 定で、低い真空度でも動作し、使い易いという特徴を有している(非特許文献 2参照)
[0004] ZrO/W電子源は、図 1に示すように、絶縁碍子 5に固定された導電端子 4に設け られたタングステン製のフィラメント 3の所定の位置に電子ビームを放射するタンダス テンの < 100〉方位の針状の陰極 1が溶接等により固着されている。陰極 1の一部 には、ジルコニウムと酸素の拡散源 2が設けられている。図示していないが陰極 1の 表面は ZrO被覆層で覆われて!/、る。
[0005] 陰極 1はフィラメント 3により通電加熱されて一般に 1800K程度の温度下で使用さ れるので、陰極 1表面の ZrO被覆層は蒸発により消耗する。しかし、拡散源 2よりジル コニゥム及び酸素が拡散することにより、陰極 1の表面に連続的に供給されるので、 結果的に ZrO被覆層が維持される。
[0006] ZrO/W電子源の陰極 1の先端部はサプレッサー電極と弓 |き出し電極の間に配置 され使用される。陰極 1には引き出し電極に対して負の高電圧が印加され、更にサブ レッサー電極には陰極 1に対して数百ボルト程度の負の電圧が印加され、フィラメント 3からの熱電子を抑制する。
[0007] ZrO/W電子源は、低加速電圧で用いられる測長 SEMやウェハ検査装置におい て、 0.;!〜 0. 2mA/sr程度の角電流密度での動作により、プローブ電流が安定し ていて且つエネルギー幅の拡がりが抑えられるため、高分解能の SEM像を得ること ができる電子源として広く用いられて!/、る。
非特許文献 1 : D. Tuggle, J. Vac. Sci. Technol. 16, pl699 (1979)
非特許文献 2 : M. J. Fransen, "On the Electron— Optical Properties of t he ZrO/W Schottky Electron Emitter", ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL. Ill, p91— 166, 1999 by Acad emic Press.
発明の開示
発明が解決しょうとする課題
[0008] 従来、走査型電子顕微鏡により、比較的高倍率で SEM像をみる際、装置周辺から の振動によりノイズが発生し、分解能が得られず、測長などを行うことができない場合 がある。このノイズは、 ZrO/W電子源のタングステンフィラメントが共振周波数により 、振動してレ、ることが原因であることがわかって!/、る。
[0009] 上記電子源に起因する振動を抑制するため、装置の外側に防振構造を設けること により、対処することが試みられている力 完全に共振しないようにするためには、装 置として大力 Sかりなものになってしまうという問題がある。即ち、本発明の目的は、電 子源を用いる装置が外部より振動を受けても、安定した電子線を与える電子源を提 供することである。
課題を解決するための手段
[0010] 本発明は以下の構成を要旨とするものである。
(1)絶縁碍子に設けた一対の導電端子間に張ったフィラメントに、電子放射部となる 尖鋭化した端部を有するロッド状の陰極を接合してなる電子源であって、陰極の電子
放射部とは異なる端部力 絶縁碍子に固定されていることを特徴とする電子源。
(2)陰極の電子放射部とは異なる端部が、絶縁碍子にろう付けされた金属ピンを介し て絶縁碍子に固定されている上記(1)に記載の電子源。
(3)陰極の電子放射部とは異なる端部力 S、前記金属ピンに溶接により固定されてい る上記(2)に記載の電子源。
(4)陰極がモリブデンまたはタングステンのく 100〉方位の単結晶からなり、陰極の 一部にジルコニウム、ハフニウム、チタン、スカンジウム、イットリウム、ノ リウムから選 ばれた元素の酸化物を拡散源として有する上記(1)〜(3)のいずれか一項に記載の 電子源。
(5)ジルコニウムの酸化物を拡散源として有する上記 (4)に記載の電子源。
(6)陰極がタングステンからなる上記 (4)または(5)に記載の電子源。
(7)フィラメントがタングステンまたはタングステン合金からなる上記(1)〜(6)の!/、ず れか一項に記載の電子源。
(8)上記(1 )〜(7)のいずれか一項に記載の電子源を使用した電子線利用装置。 発明の効果
[0011] 本発明の電子源は、ヘアピン型のフィラメントに接合されたロッド状の陰極の尖鋭化 した電子放射部とは異なる端部を絶縁碍子に固定した構造を有しているので、電子 源が実用に供されたときに、周辺からの振動により電子源が共振してノイズを発生す ることが防止されるため、例えば、高倍率で SEM像を観察する場合においても、高 分解能な電子線を提供できるという効果が得られる。
図面の簡単な説明
[0012] [図 1]比較例に係る、従来公知の電子源の構造図。
[図 2]本発明に係る電子源の一例につ!/、ての構造図。
符号の説明
[0013] 1: 陰極
2 : 拡散源
3 : フィラメント
4 : 導電端子
5 : 絶縁碍子
6: 金属ピン
7 : 陰極の電子放射部と異なる端部
発明を実施するための最良の形態
[0014] 本発明の電子源は、上記したようにロッド状の陰極の尖鋭化した電子放射部とは異 なる端部が絶縁碍子に固定されている特定な構造を有していて、外部からの振動の 影響を受けにくいので、安定した電子線を提供できる特徴があり、走査型電子顕微 鏡、ォージェ電子分光、電子線露光機、ウェハ検査装置などの電子線利用装置に適 用できる。以下、電子顕微鏡、電子線露光機、測長 SEM等に用いられる電子放射 陰極を例に本発明を説明するが、本発明はこれに制限されるものではなレ、。
[0015] 即ち、本発明の電子源における陰極はモリブデンまたはタングステンのく 100〉方 位の単結晶からなり、かつ、陰極の一部にジルコニウム、ハフニウム、チタン、スカン ジゥム、イットリウム、及びバリウムからなる群から選ばれた元素の酸化物を拡散源とし て有する。
[0016] 本発明の電子源において、陰極 (本発明ではチップと言う場合がある)の材料はタ ングステンであることが好ましい。また、陰極の一部にジルコニウムの酸化物を拡散源 として有すること力 S特に好ましい。また、陰極は、例えば断面が円形、楕円形、矩形な どのロッド状の形状を有し、その断面の直径(断面が円形でな!/、場合は相当する円 形の直径)が好ましくは 0. 05—0. 5mm、長さ力 〜 10mmが好ましい。
[0017] 上記フィラメントの材料としては、タングステン、モリブデン、タンタルが例示されるが 、なかでもタングステン或いはタングステンを含む合金製であることが好ましぐ特にタ ングステンが好ましい。フィラメントは、好ましくは剛性を有する針状であり、断面の直 径が好ましくは 0. 05-0. 5mmであり、その長さは、陰極と絶縁碍子とを結ぶ長さと して、 0. 3〜0. 8cmであるのが好適である。フィラメントはヘアピン型の形状が好まし い。
[0018] 本発明の絶縁碍子の材料としては、アルミナ、ジルコユア、マイカセラミックスが例 示されるが、なかでも、アルミナが好ましい。絶縁碍子は、例えば、直径が 0. 5〜2. 0 cm、高さが 0. 5〜2. 0cmの円柱状であるのが好適である。また、該絶縁碍子に設
けられる導電端子の材料としては、 Fe— Ni— Co合金、チタンが例示される力 なか でも、 Fe— Ni— Co合金が好ましい。また、該導電端子の形状は、ロッド状を有し、そ の断面の直径(断面が円形でな!、場合は相当する円形の直径)が好ましくは 0. 05 〜0· 5cm、長さが 0· 2〜2· 0cmが好ましい。
[0019] 本発明において、フィラメントを上記絶縁碍子に固定するための金属ピンとしては、 Fe— Ni— Co合金、チタンが例示される力 なかでも、 Fe— Ni— Co合金が好ましい 。また、該金属ピンの形状はロッド状を有し、その断面の直径(断面が円形でない場 合は相当する円形の直径)が好ましくは 0. 05-0. 5cm、長さが 0. 2〜2. 0cmが好 ましい。また、絶縁碍子に金属ピンをろう付けする際の、ろう付けの材料としては、銀 ろうが好ましい。
[0020] 以下、本発明の電子源の具体的な実施態様について図 2を参照しながら説明する
〇
絶縁碍子 5に固定された導電端子 4にタングステン或いはタングステン合金製のヮ ィヤーからなるヘアピン型フィラメント 3を溶接により取り付ける。次にフィラメント 3の所 定の位置に、電子ビームを放射するタングステンの < 100〉方位の単結晶からなる ニードル状の陰極 1を溶接等により接合して固着する。この場合、陰極 1を接合する 位置としては、ヘアピン型フィラメント 3のヘアピン部が好まし!/、。
[0021] 更に、本発明は、フィラメント 3に接合された陰極 1の電子放射部とは異なる端部 8、 すなわち、反対側の端部 8を、絶縁碍子 5に固定することを特徴としている。このよう に陰極 1の電子放射部とは異なる端部 8を絶縁碍子 5に固定する構造を採用すること で、外部からの振動によって生じる陰極の共振によるノイズの発生を極めて小さく抑 えること力 Sできる。その結果、本発明の電子源を用いた装置では、その外側に防振構 造などを設けることなく高分解能が得られ、低いコストで高信頼性を達成することがで きるとレ、う格別の効果が得られる。
[0022] 前記陰極 1の電子放射部とは異なる端部 8を絶縁碍子 5に固定する手段としては、 絶縁碍子 5に埋め込み、埋め込み部をろう付け等の手段で固定された金属ピン 6に 対して、陰極 1を溶接等により固定する方法力 陰極 1を絶縁碍子 5に容易かつ確実 に固定できる点において好ましい。この場合、絶縁碍子 5に固定された直径が 0. 5〜
5mmの金属ピンを使用すると、前記金属ピン 6は図 2に例示するように陰極 1を絶縁 碍子 5の中央部に一個所で十分に固定できる。
[0023] 次に、陰極 1の電子放射部を形成する先端部を電解研磨により尖鋭化し、陰極 1の 中央部側面に拡散源 2として、例えばジルコニウム源を形成し、次いで、好ましくは約 10_4Paの酸素存在下で加熱することにより陰極 1の先端部にまでジルコニウムと酸 素を拡散させる処理 (以下、酸素処理と呼ぶ)を行う。
しかる後に、例えば、引き出し電極を陰極 1の前面に取り付け、好ましくは約 10— 7P aの真空下で引き出し電極と陰極 1との間に電圧を印加することで、陰極 1の先端部 にく 100〉結晶面からなる電子放射部を形成する。上記において、陰極 1は、電子 放射部を形成する先端部を事前に尖鋭に加工してからフィラメント 3に接合してもよい 実施例
[0024] 以下に、実施例及び比較例により本発明を具体的に説明するが、本発明はこれら の実施例に限定されないことはもちろんである。
(実施例)
絶縁碍子にろう付けされた一対の導電端子にタングステン製のフィラメントをスポット 溶接により固定した。そして、く 100〉方位の単結晶タングステン陰極をフィラメント にスポット溶接により取り付けた。さらに、フィラメントに取り付けられた陰極の電子放 射部とは異なる端部を、絶縁碍子中央部にろう付け固定された金属ピンにスポット溶 接により固定した。
[0025] 次に、陰極の先端部を電解研磨により尖鋭化した。次いで水素化ジルコニウムを粉 砕して酢酸イソァミルと混合しペースト状にしたものを陰極の一部に塗布して拡散源 を形成し、約 10_4Paの酸素存在下で加熱して酸素処理を行い、図 2に示す構造の 電子源を得た。
[0026] 前記の電子源を SEMの試料室に入れて、陰極の軸方向が走査方向になるように して設置し、陰極先端近傍の側面がモニター上に SEM像として得られるように位置 調整を行った。音源として、周波数を任意の範囲、モード、スピードでスイープ可能な ソフトウェア(Test Tone Generator)を備えたスピーカーを用い、 PC (パーソナル
コンピュータ)にスピーカーをつないだ。そして、前記作製した陰極(電子源)が入つ た試料室の外側近傍の所定位置 '方向にスピーカーを固定した。
[0027] SEMの倍率を 5万倍とし、モニター上の画像操作時間を 80秒とした。また、音響発 生条件は、周波数範囲を 1000力、ら 4000Hzとして、その範囲をリニアに 80秒でスィ ープする設定とした。共振による振動により、走査中該当する周波数で横方向に画 像がずれるので、このずれ幅の 2倍をこの条件における振幅とした。
[0028] (比較例)
図 1に示す従来構造の電子源、即ち、陰極を金属ピンにスポット溶接すること以外 は実施例と同様の方法で作製した電子源について、実施例と同様に共振試験を実 施した。
[0029] 実施例および比較例を各 n = 3で試験した結果を表 1に示す。表 1に示すように共 振周波数はほぼ同様であつたが、振幅が実施例において著しく抑制されていること が確認された。
[0030] [表 1]
[0031] 本発明の電子源は、特定な構造を有していて、外部からの振動の影響を受けにく いので、安定した電子線を提供できる特徴があり、走査型電子顕微鏡、ォージェ電 子分光、電子線露光機、ウェハ検査装置などいろいろな電子線利用装置に適用でき 、産業上非常に有用である。
なお、 2006年 9月 5曰に出願された曰本特許出願 2006— 240100号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。
Claims
[1] 絶縁碍子に設けた一対の導電端子間に張ったフィラメントに、電子放射部となる尖 鋭化した端部を有するロッド状の陰極を接合してなる電子源であって、陰極の電子放 射部とは異なる端部力 絶縁碍子に固定されていることを特徴とする電子源。
[2] 陰極の電子放射部とは異なる端部が、絶縁碍子にろう付けされた金属ピンを介して 絶縁碍子に固定されて!/、る請求項 1に記載の電子源。
[3] 陰極の電子放射部とは異なる端部が、前記金属ピンに溶接により固定されている 請求項 2に記載の電子源。
[4] 陰極がモリブデンまたはタングステンのく 100〉方位の単結晶からなり、陰極の一 部にジルコニウム、ハフニウム、チタン、スカンジウム、イットリウム、及びバリウムからな る群から選ばれた元素の酸化物を拡散源として有する請求項 1〜3のいずれか一項 に記載の電子源。
[5] ジルコニウムの酸化物を拡散源として有する請求項 4に記載の電子源。
[6] 陰極がタングステンからなる請求項 4または 5に記載の電子源。
[7] フィラメントがタングステンまたはタングステン合金からなる請求項 1〜6のいずれか 一項に記載の電子源。
[8] 請求項 1〜7のいずれか一項に記載の電子源を使用した電子線利用装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/439,413 US7969080B2 (en) | 2006-09-05 | 2007-08-31 | Electron source |
JP2008533135A JP4789122B2 (ja) | 2006-09-05 | 2007-08-31 | 電子源 |
EP07806481A EP2061064A4 (en) | 2006-09-05 | 2007-08-31 | ELECTRON SOURCE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006240100 | 2006-09-05 | ||
JP2006-240100 | 2006-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008029731A1 true WO2008029731A1 (fr) | 2008-03-13 |
Family
ID=39157161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/067008 WO2008029731A1 (fr) | 2006-09-05 | 2007-08-31 | Source d'électrons |
Country Status (4)
Country | Link |
---|---|
US (1) | US7969080B2 (ja) |
EP (1) | EP2061064A4 (ja) |
JP (1) | JP4789122B2 (ja) |
WO (1) | WO2008029731A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011076753A (ja) * | 2009-09-29 | 2011-04-14 | Denki Kagaku Kogyo Kk | 電子源及び電子機器 |
JP5363413B2 (ja) * | 2010-05-10 | 2013-12-11 | 電気化学工業株式会社 | 電子源 |
US8896195B2 (en) * | 2010-10-21 | 2014-11-25 | Hermes Microvision, Inc. | Filament for electron source |
JP6043476B2 (ja) * | 2011-10-12 | 2016-12-14 | 株式会社日立ハイテクノロジーズ | イオン源およびそれを用いたイオンビーム装置 |
US9847208B1 (en) * | 2016-08-10 | 2017-12-19 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Electron beam device, cold field emitter, and method for regeneration of a cold field emitter |
KR102664774B1 (ko) * | 2017-12-13 | 2024-05-10 | 어플라이드 머티리얼즈 이스라엘 리미티드 | 하전 입자 빔 소스 및 하전 입자 빔 소스를 조립하기 위한 방법 |
EP4057318A1 (en) * | 2021-03-12 | 2022-09-14 | FEI Company | Mechanically-stable electron source |
JP2024529342A (ja) * | 2021-07-22 | 2024-08-06 | エーエスエムエル ネザーランズ ビー.ブイ. | 荷電粒子システムにおける電子源を安定させるためのシステム及び装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785775A (ja) * | 1993-08-31 | 1995-03-31 | Samsung Display Devices Co Ltd | 直熱形ディスペンサ陰極構造体 |
JP2001052596A (ja) * | 1999-06-29 | 2001-02-23 | Schlumberger Technologies Inc | 安定化ZrO2リザーバーを有するショットキーエミッタカソード |
JP2003507872A (ja) * | 1999-08-20 | 2003-02-25 | フェイ カンパニ | 寿命が延長されたショットキーエミッター |
JP2006240100A (ja) | 2005-03-03 | 2006-09-14 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2006269431A (ja) * | 2005-03-22 | 2006-10-05 | Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh | 安定化したエミッタおよびエミッタを安定化させる方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55109343A (en) * | 1979-02-16 | 1980-08-22 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Cathode for electron gun |
US5831379A (en) | 1994-01-28 | 1998-11-03 | Samsung Display Devices Co., Ltd. | Directly heated cathode structure |
US6680562B1 (en) * | 1999-08-20 | 2004-01-20 | Fei Company | Schottky emitter having extended life |
-
2007
- 2007-08-31 EP EP07806481A patent/EP2061064A4/en not_active Withdrawn
- 2007-08-31 JP JP2008533135A patent/JP4789122B2/ja not_active Expired - Fee Related
- 2007-08-31 WO PCT/JP2007/067008 patent/WO2008029731A1/ja active Application Filing
- 2007-08-31 US US12/439,413 patent/US7969080B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785775A (ja) * | 1993-08-31 | 1995-03-31 | Samsung Display Devices Co Ltd | 直熱形ディスペンサ陰極構造体 |
JP2001052596A (ja) * | 1999-06-29 | 2001-02-23 | Schlumberger Technologies Inc | 安定化ZrO2リザーバーを有するショットキーエミッタカソード |
JP2003507872A (ja) * | 1999-08-20 | 2003-02-25 | フェイ カンパニ | 寿命が延長されたショットキーエミッター |
JP2006240100A (ja) | 2005-03-03 | 2006-09-14 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2006269431A (ja) * | 2005-03-22 | 2006-10-05 | Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh | 安定化したエミッタおよびエミッタを安定化させる方法 |
Non-Patent Citations (3)
Title |
---|
D. TUGGLE, J. VAC. SCI. TECHNOL., vol. 16, 1979, pages 1699 |
M.J. FRANSEN: "ADVANCES IN IMAGING AND ELECTRON PHYSICS", vol. III, 1999, ACADEMIC PRESS, article "On the Electron-Optical Properties of the ZrO/W Schottky Electron Emitter", pages: 91 - 166 |
See also references of EP2061064A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008029731A1 (ja) | 2010-01-21 |
EP2061064A1 (en) | 2009-05-20 |
US20100019649A1 (en) | 2010-01-28 |
EP2061064A4 (en) | 2011-09-14 |
US7969080B2 (en) | 2011-06-28 |
JP4789122B2 (ja) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008029731A1 (fr) | Source d'électrons | |
JP4782736B2 (ja) | 電子源 | |
WO2008038684A1 (fr) | Source d'électrons | |
JP5011383B2 (ja) | 電子源 | |
TW201218238A (en) | Filament for electron source | |
US11915920B2 (en) | Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same | |
JP4210131B2 (ja) | 電子源及び電子源の使用方法 | |
CN117133616A (zh) | 电子发射器及其制造方法 | |
WO2006075715A1 (ja) | 電子源の製造方法 | |
JP2008091307A (ja) | 電子源 | |
JP5171836B2 (ja) | 電子源及び電子ビーム装置 | |
JP7145533B2 (ja) | エミッタ、それを用いた電子銃および電子機器 | |
JP5363413B2 (ja) | 電子源 | |
JPWO2019107113A1 (ja) | エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法 | |
JP2005032500A (ja) | 冷陰極とそれを用いた電子源及び電子線装置 | |
WO2011040326A1 (ja) | 電子源用ロッド、電子源及び電子機器 | |
JPH0684450A (ja) | 熱電界放射陰極 | |
JPH0684452A (ja) | 熱電界放射陰極 | |
JP2005332677A (ja) | 電子源の製造方法と使用方法 | |
JP4874758B2 (ja) | 電子源 | |
JP2006032195A (ja) | 電子放射源 | |
JP2005207945A (ja) | Ce(セリウム)又はGd(ガドリニウム)のほう化物を含む陰極を用いたX線検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07806481 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007806481 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12439413 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008533135 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |