WO2008029528A1 - Dispositif de roulement et son procédé de fabrication - Google Patents

Dispositif de roulement et son procédé de fabrication Download PDF

Info

Publication number
WO2008029528A1
WO2008029528A1 PCT/JP2007/055212 JP2007055212W WO2008029528A1 WO 2008029528 A1 WO2008029528 A1 WO 2008029528A1 JP 2007055212 W JP2007055212 W JP 2007055212W WO 2008029528 A1 WO2008029528 A1 WO 2008029528A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
bearing
film
bearing device
outer ring
Prior art date
Application number
PCT/JP2007/055212
Other languages
English (en)
French (fr)
Inventor
Keisuke Yokoyama
Kunihiko Sasao
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006241496A external-priority patent/JP2008064182A/ja
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US12/439,207 priority Critical patent/US8246252B2/en
Publication of WO2008029528A1 publication Critical patent/WO2008029528A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7853Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race
    • F16C33/7856Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race with a single sealing lip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof

Definitions

  • the present invention relates to a bearing device including a temperature sensor and a method for manufacturing the same, and more particularly, to an electrical component of an automobile, an alternator intermediate pulley as an engine accessory, an electromagnetic clutch for a car air conditioner, a water pump, a hub unit, and a gas
  • the present invention relates to a bearing device suitable for use in an electromagnetic clutch for a heat pump, a compressor, a linear guide device, a ball screw, and the like, and a manufacturing method thereof.
  • a laminated thermistor is used as a temperature sensor, and wiring from the temperature sensor is led out to the outside through a groove provided in the inner ring.
  • the wiring is drawn out through the groove formed in the inner ring, it is necessary to wind the wiring along the surface of the inner ring, which causes a problem that the length of the wiring becomes long.
  • the force that can be arranged in the back of the bearing is a problem.
  • the present invention has been made in view of the problems of the prior art, and it is intended to provide a bearing device that can measure the temperature at a desired position with a temperature sensor and is excellent in wiring handling. Objective.
  • a first bearing device of the present invention includes a rolling bearing having an outer ring, an inner ring, and a rolling element disposed between the two rings, and a temperature sensor for measuring the temperature inside the rolling bearing.
  • the wiring from the temperature sensor extends to the outside through a through hole formed in a component of the bearing device.
  • the wiring from the temperature sensor extends to the outside through a through hole formed in a component of the bearing device, the temperature is measured with high accuracy. Even when the temperature sensor is placed in an optimal internal location, by forming a through hole in any of the components, the wiring from the temperature sensor to any location can be drawn through the through hole. It becomes possible.
  • a second bearing device of the present invention is a bearing device including a bearing and a temperature sensor.
  • the temperature sensor includes a film-like substrate made of heat-resistant grease, and a film-like shape formed on the substrate.
  • a third bearing device of the present invention includes a rolling bearing having an outer ring, an inner ring, and a rolling element disposed between the outer ring and the inner ring, and a temperature sensor.
  • the temperature sensor comprises a film-shaped substrate made of a heat-resistant resin, a film-shaped temperature sensor part formed on the substrate, and a heat-resistant resin provided to cover the temperature sensor part.
  • the temperature sensor includes a film-like temperature sensor portion formed on the film-like substrate and a wiring attachment portion exposed on the surface of the film-like cover.
  • the temperature sensor since it is thinner and more flexible than conventional chip-type laminated thermistors and can be configured in a small size, there are no restrictions on the mounting position of the temperature sensor. Therefore, since the temperature sensor can be incorporated in any part of the bearing, a bearing device having a temperature sensor with a temperature detection response and improved temperature abnormality detection capability can be realized. Also, since the film-shaped temperature sensor is covered with a cover, there is little risk of deterioration of the temperature sensor, and since the entire temperature sensor is flexible, there is no risk of cracking. Therefore, a durable bearing with a temperature sensor can be realized.
  • the temperature sensor is attached to a recess formed on a rolling surface of a fixed-side race. Moreover, it is preferable that the temperature sensor is attached in the vicinity of the rolling surface of the fixed-side track ring.
  • a seal attached to the fixed-side raceway ring may be provided, and the temperature sensor may be attached to the seal.
  • the seal may include a cored bar part and an elastic part, and the temperature sensor may be attached to the cored bar part or the elastic part.
  • a fixed-side raceway is provided with a wiring lead-out portion that leads to the outside through a wire that is electrically connected to the wiring mounting portion.
  • the wiring lead-out portion include a through hole formed from the inner surface to the side surface of the stationary raceway, a through hole formed in the stationary raceway, a groove formed on the outer surface of the stationary raceway, and a fixed raceway. A groove formed on the inner surface of the ring, a through hole formed in the seal, a groove formed in the seal, etc.
  • the substrate and the cover are preferably made of a polyimide resin.
  • a method for producing a bearing device comprising a bearing and a temperature sensor according to the present invention comprises forming a number of film-like temperature sensor parts on a film made of heat-resistant resin by a semiconductor production process, and forming the film on the heat-resistant film.
  • a part of the temperature sensor part is covered with another film made of grease, and the part corresponding to a part of each temperature sensor part is removed by a semiconductor manufacturing process.
  • a plurality of temperature sensor portions on a film and a wiring attachment portion exposed on another film covering the temperature sensor portions are formed by a semiconductor manufacturing process, respectively.
  • a large number of temperature sensors can be obtained by cutting another film for each temperature sensor, so it is thinner and more flexible than conventional chip-type laminated thermistors, and small-sized temperature sensors can be easily mass-produced. .
  • the manufacturing cost of the bearing device including the temperature sensor can be reduced, and the bearing device including the temperature sensor can be provided at a low cost.
  • the wiring attachment portion it is preferable to form the wiring attachment portion, attach electric wiring to the wiring attachment portion, and then perform the cutting. Also, another film is preferably adhesive.
  • FIG. 1 is an axial sectional view of a bearing device according to a first embodiment.
  • FIG. 2 is an enlarged view showing a sensor pattern P of the temperature sensor TS of FIG.
  • FIG. 3 is a diagram showing a result of simulating a temperature rise when the bearing device of FIG. 1 is operated in Example 1.
  • FIG. 4 is a cross-sectional view of a main part showing a main part of a bearing with a temperature sensor according to a second embodiment.
  • FIG. 5A is a plan view showing a temperature sensor portion formed on the film substrate of the temperature sensor of FIG.
  • FIG. 5B is a plan view showing a film cover provided on the film substrate of FIG.
  • FIG. 6 is a view of the temperature sensor in which the electrical wiring is electrically connected to the wiring mounting portion of FIG. 5B, cut along the VI-VI line of FIG. 5B.
  • FIG. 7 is a cross-sectional view of the main part showing the main part of the bearing with the temperature sensor in which the arrangement position of the temperature sensor in FIG. 4 is changed.
  • FIG. 8 is a cross-sectional view of the main part showing the main part of the bearing with the temperature sensor in which the arrangement position of the temperature sensor in FIG. 4 is further changed.
  • FIG. 9 is a cross-sectional view of an essential part for explaining a modification in which the position of the wiring lead-out portion in FIGS. 4 and 7 is changed.
  • FIG. 10 is a schematic view for explaining steps (a) to (i) for manufacturing the temperature sensor of FIGS. 5A, 5B, and 6 in Example 2.
  • FIG. 11 is a plan view of a relatively wide film for explaining a configuration for mass production of temperature sensors in Example 2.
  • FIG. 12 is a graph showing changes in temperature (resistance value) with time measured in Example 2.
  • FIG. 1 is an axial sectional view of a rolling bearing used in the first embodiment.
  • a bearing device (also referred to as a rolling bearing) 10 includes an outer ring 11, an inner ring 12, balls 13 as rolling elements arranged between both wheels 11 and 12, and a cage that holds the balls 13 at equal intervals in the circumferential direction. 14 and disc-shaped seals 15 and 15 for sealing between the two wheels 11 and 12.
  • the ball 13 can be made of a ceramic such as silicon nitride or silicon carbide.
  • the outer ring 11 has a raceway surface 11a and attachment grooves 1 lb and l ib formed in the vicinity of both ends on the inner periphery thereof.
  • the inner ring 12 has a raceway surface 12a and seal grooves 12b and 12b formed near both ends on the outer periphery thereof.
  • the seal 15 is made of a metal plate material having a substantially donut plate shape (SPCC, SECC, or the like) and having a main part other than the collar part and a collar part, and is integrally formed on the inner diameter side of the core metal 15a.
  • Lip part 15b made of vulcanized synthetic rubber (nitrile rubber, acrylic rubber, silicone rubber, fluoro rubber, etc.) and synthetic rubber attached integrally vulcanized to the outer diameter side of the core metal 15a Part 15c.
  • the seal 15 is attached to the outer ring 11 by engaging the outer force attaching groove 11b while elastically deforming the attaching portion 15c. In such a state, the tip of the lip portion 15b is in contact with the seal groove 12b.
  • the seal of the bearing device 10 is not limited to a contact rubber seal, and is not limited to a non-contact rubber seal, a non-contact steel plate, or the like.
  • a temperature sensor TS is formed in a non-contact state with the ball 13. In FIG. 1, the thickness of the temperature sensor TS is exaggerated.
  • the temperature sensor TS is placed on the surface of the member (here, a shallow circumferential groove or recess 11c formed in the raceway surface 11a of the outer ring 11).
  • a high-temperature insulating thin film M such as DLC (diamond-like carbon) with a thickness of ⁇ m is formed.
  • a fine sensor pattern P is formed with a silver coating by an inkjet method.
  • the temperature sensor TS can be disposed on the outer ring 11 without using an adhesive or the like.
  • the temperature sensor wiring may also be turned in the same way.
  • the sensor pattern P is formed, for example, by discharging a dispersion liquid in which silver ultrafine particles are dispersed in an independent state onto the high-temperature insulating thin film M as ink from a fine nozzle. Since the ejected ink is evaporated by baking or being left in a low vacuum gas, a strong silver coating can be obtained.
  • a conductive thin film can be formed by using fine particles such as gold, copper, and aluminum as well as silver.
  • the formation of the thin film by the ink jet method is described in detail in, for example, Japanese Patent Application Laid-Open No. 2003-209341, and will not be described below.
  • the sensor pattern P may be formed by a method other than the ink jet method.
  • FIG. 2 is an enlarged view showing a sensor pattern P of the temperature sensor TS of FIG.
  • the wiring connected to the outside is connected to the terminal portions TSb and TSb at both ends of the winding pattern line TSa.
  • Pattern P has a fine shape with an overall width of 200 ⁇ m and a line width of about 30 ⁇ m.
  • the length of the pattern line TSa changes and its resistance value changes, so the temperature can be adjusted by detecting the change in the current applied by the external force. It can measure with high accuracy.
  • FIG. 1 when the temperature sensor TS is disposed at a position A in the raceway surface 11a of the outer ring 11, a hole 1 Id that penetrates the outer ring 11 in the radial direction is formed, and a wiring R connected to the temperature sensor TS is provided. It can be led to the outside in the radial direction through the hole l id.
  • the wiring R may not be drawn out in the radial direction of the bearing 10.
  • an axial groove l ie can be formed on the outer periphery of the outer ring 11, and the wiring Q connected to the temperature sensor TS can be pulled out to the outside in the axial direction through the hole l id and the groove l ie.
  • an axial hole 1 If that intersects the hole id is formed inside, and the wiring P connected to the temperature sensor TS is routed through the hole 11d and the hole 1 If.
  • the side force of the outer ring 11 can be pulled out to the outside in the axial direction.
  • the wiring force from the temperature sensor TS is penetrated in the outer ring 11. Since it extends to the outside through the id, etc., high-precision measurement can be performed by placing the temperature sensor TS at the optimal internal location for measuring the temperature, and the outer ring 11 has a hole. By forming 1 Id etc., it becomes possible to project the wiring bow I from the temperature sensor TS to any place such as the side of the bearing through the hole 1 Id etc.
  • the temperature sensor TS can be arranged at a position B on the inner peripheral surface other than the raceway surface 11a of the outer ring 11.
  • an axial force groove 1 lg may be further formed in the axial direction at the bottom of the mounting groove l ib, and the wiring S connected to the temperature sensor TS may be pulled out to the outside in the axial direction via the groove 1 lg. it can.
  • the temperature sensor TS can be disposed at a position C on the inner surface of the core 15a of the seal 15. In such a case, a hole 15d penetrating the seal 15 in the axial direction can be formed, and the wiring T connected to the temperature sensor TS can be drawn out to the outside in the axial direction through the hole 15d.
  • Example 1 the present invention will be described more specifically with reference to Example 1, but the present invention is not limited to this Example.
  • the inventors attached the temperature sensor TS manufactured by the above method to the raceway surface 11a (position A) of the outer ring 11 as shown in Fig. 1 as Example 1, and as Fig. 1 as Comparative Example 1. As shown by the broken line, it was attached to the outer peripheral surface (position ⁇ ′) of the outer ring 11, and the temperature rise when the bearing device was operated was simulated. The results are shown in Fig. 3. The specifications used for the simulation are as follows.
  • the temperature sensor TS is disposed inside the bearing device 10 as in the embodiment as compared with the case where the temperature sensor TS is disposed outside the bearing device 10 as in Comparative Example 1. It can be seen that the temperature change of the bearing device can be measured with good response. Since the temperature sensor TS of the present embodiment has the conductive thin film P patterned by the ink jet method on the insulating thin film M formed on the surface of the outer ring 11 which is a component of the bearing 10, the force sensor TS The conductive thin film P allows the bearing temperature to be measured with high accuracy and response. Therefore, through temperature measurement with good response, it is possible to accurately predict a failure occurring in the bearing device in which an abnormal temperature rise appears as a sign. Note that the sensor is not limited to the temperature sensor described above, and various sensors such as a laminated thermistor may be used.
  • FIG. 4 is a cross-sectional view of the main part showing the main part of the bearing with the temperature sensor of the second embodiment.
  • a bearing device also referred to as a temperature sensor bearing or bearing
  • a bearing device 20 includes an inner ring 21 having a rolling surface 21a on the outer peripheral surface, an outer ring 22 having a rolling surface 22a on the inner peripheral surface, and an outer ring.
  • a plurality of balls 24 which are rolling elements arranged between the inner ring 22 and the inner ring 21, a cage 23 for holding the balls 24 at equal positions, and a temperature sensor 100 for detecting the bearing temperature. And comprising.
  • the bearing 20 is a rolling bearing with a seal in the case of inner ring rotation, and includes seals 30 and 33 on both sides.
  • the seal 30 is composed of a ring-shaped core 31 having a flange on the outer periphery and an elastic body 32 formed by integrally vulcanizing synthetic rubber on the outer side.
  • An annular main portion 34 composed of an elastic body 32 other than the flange portion and an outer elastic body 32 thereof, and an outer ring 22 formed of a flange portion of the cored bar 31 and an outer elastic body thereof, and locked in a retaining groove 25 on the inner peripheral surface. It is divided into a crimping portion 35 and a lip portion 36 which also has elastic body force on the inner peripheral side of the core metal 31 and contacts the receiving groove 26 on the outer peripheral surface of the inner ring 5.
  • the seal 30 With the lip portion 36 in contact with the receiving groove 26 on the outer peripheral surface of the inner ring 21, the seal 30 is pushed into the retaining groove 25 on the inner peripheral surface of the outer ring 22 while elastically deforming the calorie tightening portion 35.
  • the bearing 20 is disposed between the outer ring 22 and the inner ring 21.
  • the seal 33 has the same structure as the seal 30 and is similarly disposed between the outer ring 22 and the inner ring 21.
  • Typical materials for such seals 30, 33 are steel plates such as SPCC and SECC as the core metal, and -tolyl rubber, acrylic rubber, silicone rubber, fluoro rubber, etc. as the elastic body forming the lip etc. These synthetic rubbers are used.
  • the seals 30 and 33 are not limited to contact rubber seals as shown in FIG. 4, but may be non-contact rubber seals or non-contact steel plates.
  • the outer ring 22 on the fixed side is provided with a recess 27 for the temperature sensor 100 on the rolling surface 22a, and a through hole P penetrating from the recess 27 on the inner peripheral surface of the outer ring 22 to the side surface of the outer ring 22 is provided. It is provided as a wiring lead-out part.
  • the temperature sensor 100 is attached to a recess 27 provided in the rolling surface 22a of the outer ring 22 on the fixed side. At the same time, the pair of electric wires 110 extending from the temperature sensor 100 are also led out to the outside through the through hole P.
  • the temperature sensor 100 can be fitted into the recess 27 or attached with a heat resistant adhesive.
  • FIG. 5A is a plan view showing a temperature sensor portion formed on the film substrate of the temperature sensor
  • FIG. 5B is a plan view showing a film cover provided on the film substrate
  • Fig. 6 is a view of the temperature sensor in which the electrical wiring is electrically connected to the wiring mounting portion of Fig. 5B, cut along the VI-VI line of Fig. 5B.
  • the temperature sensor 100 is formed on a film substrate 120 made of polyimide resin (PI) having heat resistance and flexibility, and the film substrate 120.
  • a film-like temperature sensor unit 130 that also has platinum and the like, and a film cover 140 made of the same kind of polyimide resin disposed so as to cover the film substrate 120 on which the temperature sensor unit 130 is formed.
  • the rectangular shape is small, the thickness is small, and the structure is small and flexible.
  • the film-shaped temperature sensor unit 130 is also configured to have a belt-like portion force having an overall width a and a width b, and the belt-like portion having the width b ensures a long overall belt-like length. It is folded at multiple places.
  • a pair of wiring attachment portions 150 and 150 are provided wider than the width b at both ends of a band-shaped portion having a width b positioned below the left and right ends of the film-like temperature sensor portion 130 in the drawing.
  • holes 160 are formed as shown in FIG. 5B at positions corresponding to the pair of wiring attachment portions 150 and 150 in FIG. 5A, as shown in FIG. 5B.
  • a pair of wiring attachment portions 150 and 150 are exposed on the surface of the film cover 140.
  • a pair of electrical wirings 110 are electrically connected to the pair of wiring attachment portions 150, 150.
  • the pair of electrical wirings 110 are connected to a temperature measurement device, and temperature measurement is performed based on the resistance value of the temperature sensor unit 130 that varies with temperature changes.
  • the temperature sensor 100 is also configured with the film-shaped temperature sensor portion 130 formed on the film substrate 120 and the wiring mounting portion 150 exposed on the surface of the film cover 140, a conventional chip is formed. Since it is thinner and more flexible than a mold laminated thermistor and is compact, there are no restrictions on the mounting position of the temperature sensor 100. Therefore, the temperature sensor 100 is The bearing 20 with a temperature sensor shown in Fig. 4 can be incorporated into the recess 27 formed on the rolling surface 22a of the outer ring 22 inside the bearing. Abnormality detectability can be improved.
  • the film-shaped temperature sensor unit 130 is covered with the film cover 140, there is little risk of deterioration of the temperature sensor 100. Also, since the temperature sensor 100 as a whole is a flexible structure, there is no risk of cracking. . For this reason, a durable bearing with a temperature sensor can be realized.
  • FIG. 7 is a cross-sectional view of the main part showing the main part of the bearing with the temperature sensor in which the arrangement position of the temperature sensor of FIG. 4 is changed.
  • FIG. 8 is a cross-sectional view of the main part showing the main part of the bearing with the temperature sensor in which the arrangement position of the temperature sensor in FIG. 4 is further changed.
  • the temperature sensor bearings 20A and 20B shown in FIGS. 7 and 8 have the same basic configuration as the temperature sensor bearing 20 shown in FIG. .
  • the temperature sensor-equipped bearing 20A has the temperature sensor 100 attached to the inner peripheral surface 22b of the outer ring 22 on the fixed side and in the vicinity of the rolling surface 22a.
  • a through hole S penetrating from the inner peripheral surface 22b of the outer ring 22 to the side surface of the outer ring 22 is provided as a wiring lead-out portion.
  • the temperature sensor 100 is attached in the vicinity of the rolling surface 22a of the outer ring 22, and a pair of electric wires 110 extending from the temperature sensor 100 is also led to the outside through the through hole S. .
  • a temperature sensor bearing 20 B shown in FIG. 8 is obtained by attaching the temperature sensor 100 to the inner surface 31 a of the core 31 of the seal 33.
  • the seal 33 is provided with a through hole T penetrating the metal core 31 and the elastic body 32 as a wiring lead-out portion.
  • the temperature sensor 100 is attached to the inner surface 31a of the core 31 of the seal 33, and a pair of electrical wires 110 extending from the temperature sensor 100 passes through the through-hole S of the seal 33 and seal 3
  • FIG. 9 is a cross-sectional view of a main part for explaining a modification in which the position of the wiring lead-out portion in FIGS. 4 and 7 is changed.
  • the through hole R as the wiring lead-out portion shown in FIG. 9 extends upward from the concave portion 27 formed in the rolling surface 22a of the outer ring 22 in FIG. 4 and penetrates to the outer peripheral surface 22c of the outer ring 22. To do.
  • the pair of electrical wires 11 can be led out to the outer peripheral surface 22c of the outer ring 22 through the through hole R.
  • a groove Q may be formed to extend to the outer peripheral surface 22 c of the outer ring 22 to the side surface of the outer ring 22 so as to be connected to the through hole R.
  • the electrical wiring 11 led out from the through hole R can be led out to the side surface of the outer ring 22 through the groove Q.
  • the through-hole U as the wiring lead-out portion in FIG. 9 extends upward from the inner peripheral surface 22b in the vicinity of the rolling surface 22a of the outer ring 22 in FIG. 4 to the outer peripheral surface 22c of the outer ring 22. It penetrates.
  • the temperature sensor 100 is attached to the inner peripheral surface 22b in the vicinity of the rolling surface 22a of the outer ring 22 as shown in FIG. 7, the pair of electric wires 11 can be led out to the outer peripheral surface 22c of the outer ring 22 through the through hole U.
  • the temperature sensor 100 is thin, small and flexible, and the mounting position of the temperature sensor 100 is limited. Therefore, it can be incorporated into any part of the bearing and can be mounted at a desired position inside the bearing. For this reason, it is possible to improve the predictability in which it is possible to predict in advance that a malfunction caused by temperature abnormality will occur in a bearing that has a quick temperature detection response.
  • the temperature sensor has excellent durability because it is free from cracks, has little deterioration, and the life of the temperature sensor itself is extended. Furthermore, it can be easily formed in batches by using a semiconductor manufacturing process. It is possible to provide a bearing with a temperature sensor at a low cost because it is small, has excellent mass productivity, and can reduce manufacturing costs.
  • FIGS. 10 (a) to 10 (i) are schematic diagrams for explaining steps (a) to (i) for manufacturing the temperature sensor of FIGS. 5A, 5B, and 6 in the present embodiment. .
  • a platinum film 43 having a thickness of about 250 nm was then formed by sputtering (d), and then using a lift-off method with acetone as shown in Fig. 10 (e).
  • the residual photoresist on the film substrate 12 was removed (e).
  • the platinum film 43 in FIG. 10 (e) forms the temperature sensor unit 130 in FIG. 5A.
  • an adhesive film (Pyralax manufactured by DuPont) is used to adhere and cover the film substrate 120 with the same kind of PI film 140.
  • This film cover 1 40 was spin coated with photoresist 44 and pre-beta (f).
  • FIG. 10 (g) exposure was performed from the direction n using a mask 45 subjected to patterning corresponding to the hole 160 in FIG. 6 (g).
  • FIG. 10 (g) development and rinsing were performed to form a pattern corresponding to the pattern of the mask 45 on the photoresist 44 (h).
  • the PI film 140 was etched using an etching agent (TPE3000 manufactured by Toray Engineering Co., Ltd.), and then the residual photoresist was removed with acetone (i ). 6 is formed in the film cover 140, and the wiring mounting portion 150 of the temperature sensor unit 130 is exposed to the film cover 140 as shown in FIG. 5B.
  • TPE3000 manufactured by Toray Engineering Co., Ltd.
  • the electric wiring 110 was attached to the wiring attachment portion 150, and then cut into individual temperature sensors.
  • a large number of temperature sensors 100 are formed on a relatively wide PI film F through the semiconductor manufacturing processes shown in FIGS. 10 (a) to 10 (i). Therefore, by cutting along the vertical and horizontal cutting lines m and n, a large number of temperature sensors 100 can be easily mass-produced, and the manufacturing cost can be reduced.
  • the temperature sensor 100 manufactured as described above has the entire width &: 200 of the temperature sensor unit 130 in FIG. 5A! ! 1, strip width!). ; ⁇ !!!, temperature sensor 100 width: 250 111, length Y: 250 m, thickness Z: Fig. 6 thickness Z: 75 ⁇ m, but this is just an example, if necessary Can be changed.
  • the temperature sensor 100 manufactured as described above was attached to the position A (concave portion 27) similar to the bearing 20 of FIG. As in Comparative Example 2, the temperature sensor 100 was similarly attached to the position A of the outer peripheral surface 22c of the outer ring 22 of the bearing 20 as shown by the broken line in FIG. 4, and the temperatures at the positions A and A ′ were measured.
  • the measurement conditions are as follows.
  • FIG. 12 shows the temperature (resistance value) change with time measured as described above.
  • the temperature sensor at position A in Example 2 incorporated in the rolling surface 22a of the outer ring 22 of the bearing in FIG. 4 is measured at position A ′ on the outer surface of the bearing in Comparative Example 2.
  • the response is very fast and accurate temperature can be obtained quickly.
  • the present invention should not be construed as being limited to the above-described embodiment, but can be appropriately modified and improved. is there.
  • the inner ring of the rolling bearing is the rotating side, but the outer ring may be the rotating side.
  • each of the above temperature sensors also has a thermocouple type force made of a dissimilar metal thin film. Make up.
  • the bearing device according to the present invention can measure the temperature at the desired position of the bearing with the temperature sensor and has excellent wiring performance, and the temperature sensor mounting position is not limited and is durable. Therefore, it is useful for improving the detection of temperature abnormality.

Description

明 細 書
軸受装置及びその製造方法
技術分野
[0001] 本発明は、温度センサを備える軸受装置及びその製造方法に関し、特に、自動車 の電装部品、エンジン補機であるオルタネータゃ中間プーリ、カーエアコン用電磁ク ラッチ、水ポンプ、ハブユニット、ガスヒートポンプ用電磁クラッチ、コンプレッサ、リニ ァガイド装置、ボールねじ等に用いられると好適な軸受装置及びその製造方法に関 する。
背景技術
[0002] 従来、回転部品を支持する軸受装置は、一度組み込まれると定期的な検査が行わ れないケースが多ぐかかる場合、温度異常に起因する不具合が発生したときに初め て内部を検査することが多力つた。また鉄道車両や風車等の軸受の場合は、一定期 間使用した後に、軸受装置やその他の部分について分解し検査が行われる。したが つて、温度異常に起因する不具合を事前に予測することが難し力つた。これに対し、 温度センサを軸受装置に取り付けて温度変化を測定することで、致命的な不具合が 発生する前に軸受の異常を発見しょうとする試みがある(下記特許文献 1参照)。 特許文献 1 :特開 2002— 130263号公報
発明の開示
[0003] 特許文献 1に記載の技術によれば、温度センサとして積層サーミスタを用いており、 それからの配線は、内輪に設けられた溝を介して外部へと引き出されている。しかる に、内輪に形成した溝を介して配線を引き出す場合、内輪の表面に沿って這わせる 必要があり、配線の長さが長くなるという問題がある。又、薄形の温度センサであれば 、軸受内部の奥に配置することも可能である力 そこからどのようにして配線を引き出 すかが問題となっている。
[0004] また、上述したように、従来の方法であると温度異常に起因する不具合が生じるま で異常を検知することが難しぐまた、特許文献 1のように、積層サーミスタを温度セン サに用いると、複雑な形状に加工することが困難であり、取付位置が限定され、また、 サーミスタ本体はセラミック力 なるため強い衝撃に対して割れが発生するおそれが あり、更には、製造工程が多くなり、コストがかかり一般用の軸受まで応用することが 難しかった。
[0005] 本発明は、力かる従来技術の問題点に鑑みてなされたものであり、温度センサで所 望の位置の温度を測定でき且つ配線の取り回し性に優れた軸受装置を提供すること を目的とする。
[0006] 本発明は、更に、温度センサの取付位置に制約がなく耐久性がありかつ温度異常 の検知性を向上できる軸受装置及びその製造方法を提供することを目的とする。
[0007] 本発明の第 1の軸受装置は、外輪と、内輪と、両輪間に配置された転動体とを有す る転がり軸受と、前記転がり軸受の内部の温度を測定する温度センサとを有する軸 受装置において、前記温度センサからの配線は、前記軸受装置の構成部品に形成 された貫通孔を通して外部に延在して 、ることを特徴とする。
[0008] 第 1の軸受装置によれば、前記温度センサからの配線が、前記軸受装置の構成部 品に形成された貫通孔を通して外部に延在しているので、温度を高精度に測定する のに最適な内部の場所に前記温度センサを配置した場合でも、いずれかの構成部 品に貫通孔を形成することで、前記温度センサより前記貫通孔を介して任意の場所 への配線を引き出すことが可能となる。
[0009] 本発明の第 2の軸受装置は、軸受と温度センサとを備える軸受装置において、前 記温度センサは、耐熱性榭脂からなるフィルム状の基板と、前記基板に形成された 膜状の温度センサ部と、前記温度センサ部を覆うように設けられた耐熱性榭脂からな るフィルム状のカバーと、前記温度センサ部の一部が前記カバーの表面に露出する 配線取付部と、を有し、軸受部分に接するように取り付けられたことを特徴とする。
[0010] 本発明の第 3の軸受装置は、外輪と、内輪と、前記外輪と前記内輪との間に配置さ れた転動体と、を有する転がり軸受と、温度センサと、を備える軸受装置において、 前記温度センサは、耐熱性榭脂からなるフィルム状の基板と、前記基板に形成され た膜状の温度センサ部と、前記温度センサ部を覆うように設けられた耐熱性榭脂から なるフィルム状のカバーと、前記温度センサ部の一部が前記カバーの表面に露出す る配線取付部と、を有し、前記基板または前記カバーが軸受部分に接するように取り 付けられることを特徴とする。
[0011] 第 2及び第 3の軸受装置によれば、温度センサは、フィルム状の基板に形成した膜 状の温度センサ部とフィルム状のカバーの表面に露出する配線取付部とから構成さ れ、従来のチップ型積層サーミスタよりも薄く可撓性があり、かつ、小型に構成可能で あるので、温度センサの取付位置に制約がなくなる。従って、温度センサを軸受のい かなる部分にも組み込み可能であるため、温度検知のレスポンスがよぐ温度異常の 検知性が向上した温度センサを備える軸受装置を実現できる。また、膜状の温度セ ンサ部をカバーで覆うので、温度センサの劣化のおそれが少なぐまた、温度センサ 全体が可撓性のある構造なので、割れのおそれもない。このため、耐久性のある温 度センサ付き軸受を実現できる。
[0012] 上記第 3の軸受装置において前記温度センサは、固定側の軌道輪の転走面に形 成した凹部に取り付けられることが好ましい。また、前記温度センサは、固定側の軌 道輪の転走面の近傍に取り付けられることが好ましい。
また、固定側の軌道輪に取り付けられたシールを備え、前記シールに前記温度セン サが取り付けられるようにしてもよい。この場合、前記シールが芯金部と弾性部とを備 え、前記芯金部または前記弾性部に前記温度センサが取り付けられてもよ 、。
[0013] また、前記配線取付部に電気接続された配線を通して外部に導出する配線導出部 を固定側の軌道輪に備えることが好ましい。この配線導出部としては、例えば、固定 側の軌道輪の内面から側面に形成した貫通孔、固定側の軌道輪に形成した貫通孔 、固定側の軌道輪外面に形成した溝、固定側の軌道輪内面に形成した溝、シール に形成した貫通孔、シールに形成した溝等であってよ!、。
[0014] 上記第 2または第 3の軸受装置において、前記基板及び前記カバーはポリイミド榭 脂からなることが好ましぐ耐熱性を充分に得ることができる。
本発明の軸受と温度センサとを備える軸受装置を製造する方法は、耐熱性榭脂か らなるフィルムに多数の膜状の温度センサ部を半導体製造プロセスにより形成し、前 記フィルムを耐熱性榭脂からなる別のフィルムで覆 ヽ、前記別のフィルムにお!/、て前 記各温度センサ部の一部に対応する部分を半導体製造プロセスにより除去すること で前記温度センサ部の一部が前記カバーの表面に露出する配線取付部を形成し、 前記フィルム及び前記別のフィルムを前記温度センサ部毎にカットし、前記温度セン サを得てから、前記軸受部分に取り付けることを特徴とする。
[0015] 軸受装置の製造方法によれば、フィルム上の多数の温度センサ部と、その上を覆う 別のフィルムに露出する配線取付部と、を半導体製造プロセスによりそれぞれ形成し てから、フィルム及び別のフィルムを温度センサ部毎にカットして温度センサを多数得 ることができるので、従来のチップ型積層サーミスタよりも薄く可撓性があり、かつ、小 型の温度センサを容易に量産できる。このため、温度センサを備える軸受装置の製 造コストを低減でき、温度センサを備える軸受装置を安価に提供できる。
[0016] 上記軸受装置の製造方法にお!、て、前記配線取付部を形成してから、前記配線 取付部に電気配線を取り付け、その後、上記カットを行うことが好ましい。また、別の フィルムは接着性であることが好まし 、。
図面の簡単な説明
[0017] [図 1]第 1の実施の形態に力かる軸受装置の軸線方向断面図である。
[図 2]図 1の温度センサ TSのセンサパターン Pを示す拡大図である。
[図 3]実施例 1において図 1の軸受装置を動作させたときの温度上昇をシミュレーショ ンした結果を示す図である。
[図 4]第 2の実施の形態の温度センサ付き軸受の要部を示す要部断面図である。
[図 5A]図 4の温度センサのフィルム基板の上に形成した温度センサ部を示す平面図 である。
[図 5B]図 4のフィルム基板の上に設けたフィルムカバーを示す平面図である。
[図 6]図 5Bの配線取付部に電気配線を電気接続した温度センサを図 5Bの VI-VI線 に沿って切断してみた図である。
[図 7]図 4の温度センサの配置位置を変えた温度センサ付き軸受の要部を示す要部 断面図である。
[図 8]図 4の温度センサの配置位置を更に変えた温度センサ付き軸受の要部を示す 要部断面図である。
[図 9]図 4,図 7の配線導出部の位置を変えた変形例を説明するための要部断面図 である。 [図 10]実施例 2において図 5A、図 5B、図 6の温度センサを製造するための工程 (a) 乃至 (i)を説明するための概略図である。
[図 11]実施例 2において温度センサを量産する構成を説明するための比較的広めの フィルムの平面図である。
[図 12]実施例 2で測定した時間による温度 (抵抗値)変化を示すグラフである。
発明を実施するための最良の形態
[0018] 次に、本発明の実施の形態について図面を参照して説明する。
[0019] 〈第 1の実施の形態〉
図 1は、第 1の実施の形態に用いる転がり軸受の軸線方向断面図である。軸受装置 (転がり軸受ともいう) 10は、外輪 11と、内輪 12と、両輪 11, 12間に配置された転動 体としての玉 13と、玉 13を周方向に等間隔に保持する保持器 14と、両輪 11, 12間 を密封する円盤状のシール 15, 15とを有する。玉 13は、窒化珪素や炭化珪素等の セラミック製とすることちできる。
[0020] 外輪 11は、その内周において、軌道面 11aと、両端近傍に形成された取り付け溝 1 lb、 l ibを有する。内輪 12は、その外周において、軌道面 12aと、両端近傍に形成 されたシール溝 12b、 12bを有する。
[0021] シール 15は、略ドーナツ板状の金属板材 (SPCCや SECC等)からなり鈎部以外の 主部と鈎部とを備えた芯金 15aと、芯金 15aの内径側に一体的に加硫成形された合 成ゴム(二トリルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム等)製のリップ部 15bと 、芯金 15aの外径側に一体的に加硫成形された合成ゴム製の取り付け部 15cと、を 有する。シール 15は、取り付け部 15cを弾性変形させながら、外方力 取り付け溝 11 bに係合させることで、外輪 11に取り付けられる。かかる状態で、リップ部 15bの先端 はシール溝 12bに接触している。なお、軸受装置 10のシールは、接触ゴムシールに 限らず、非接触ゴムシール、非接触鋼板など限定されない。外輪 11の軌道面 11aの 中央には、温度センサ TSが玉 13に非接触の状態で形成されている。図 1において、 温度センサ TSの厚さは誇張して示されて 、る。
[0022] 温度センサ TSの製造方法にっ 、て説明する。まず、温度センサを配置した 、部材 の表面 (ここでは外輪 11の軌道面 11aに形成された浅い周溝又はくぼみ 11c)に、 1 μ m厚の DLC (ダイヤモンドライクカーボン)などの耐高温絶縁性薄膜 Mを形成する 。その上に、インクジェット方式により銀被膜で微細なセンサパターン Pを形成する。 その後、センサパターン Pを焼成することで温度センサ TSを、接着剤等を用いること なく外輪 11上に配置することができる。実装場所によっては、温度センサの配線をも 同様にノターニングしてもょ 、。
[0023] センサパターン Pは、例えば銀の超微粒子が独立状態で分散している分散液を、 微細ノズルよりインクとして耐高温絶縁性薄膜 M上に吐出することによって形成され る。吐出されたインクは、焼成または低真空ガス中に放置することで蒸発することから 、強い銀被膜を得ることができる。銀に限らず、金や銅、アルミなどの微粒子を用いる ことで、導電性薄膜を形成できる。尚、インクジェット方式による薄膜の形成について は、例えば特開 2003— 209341号公報に詳細に記載されているので、以下説明し ない。又、センサパターン Pは、インクジェット方式以外の方法で形成されても良い。
[0024] 図 2は、図 1の温度センサ TSのセンサパターン Pを示す拡大図である。外部に接続 される配線は、曲がりくねったパターン線 TSaの両端にある端子部 TSb、 TSbに接続 される。パターン Pは、全体の幅が 200 μ mで、線幅が 30 μ m程度の微細な形状で ある。センサパターン Pを形成した部位が熱膨張により変形した場合、パターン線 TS aの長さが変化し、その抵抗値が変化するため、外部力 流した電流の変化を検出す ることで、温度を精度良く測定できる。
[0025] 図 1において、温度センサ TSを外輪 11の軌道面 11a内の位置 Aに配置する場合、 外輪 11を半径方向に貫通する孔 1 Idを形成し、温度センサ TSに接続した配線 Rを 孔 l idを通して半径方向外部へと導き出すようにできる。尚、例えば外輪 11が不図 示の円筒部内に配置されるような場合、配線 Rを軸受 10の半径方向に引き出せない ことがある。かかる場合、外輪 11の外周に軸線方向の溝 l ieを形成し、温度センサ T Sに接続した配線 Qを孔 l idと溝 l ieとを介して軸線方向外部に引き出すこともでき る。或いは、外輪 11の側面から穿孔することにより、内部で孔 l idに交差する軸線方 向の孔 1 Ifを形成し、温度センサ TSに接続した配線 Pを孔 11 dと孔 1 Ifとを介して、 外輪 11の側面力 軸線方向外部に引き出すこともできる。
[0026] 本実施の形態によれば、温度センサ TSからの配線力 外輪 11に形成された貫通 する孔 l id等を通して外部に延在しているので、温度を測定するのに最適な内部の 場所に温度センサ TSを配置することで高精度な測定を行うことができ、更に外輪 11 に孔 1 Id等を形成することで、温度センサ TSより孔 1 Id等を介して軸受の側面など 任意の場所への配線の弓 Iき出しが可能となる。
[0027] 本実施の形態の変形例として、温度センサ TSを、外輪 11の軌道面 11a以外の内 周面における位置 Bに配置することもできる。かかる場合、取り付け溝 l ibの底に、更 に軸線方向に向力ゝぅ溝 1 lgを形成し、温度センサ TSに接続した配線 Sを溝 1 lgを介 して軸線方向外部に引き出すこともできる。又、本実施の形態の別な変形例として、 温度センサ TSを、シール 15の芯金 15aの内側面における位置 Cに配置することもで きる。かかる場合、シール 15を軸線方向に貫通する孔 15dを形成し、温度センサ TS に接続した配線 Tを孔 15dを介して軸線方向外部に引き出すこともできる。
[0028] 〈実施例 1〉
次に、本発明を実施例 1により更に具体的に説明するが、本発明は本実施例に限 定されるものではない。
[0029] 本発明者らは、上記方法により作製された温度センサ TSを、実施例 1として図 1の ように外輪 11の軌道面 11a (位置 A)に取り付けると共に、比較例 1として図 1の破線 のように外輪 11の外周面 (位置 Α' )に取り付けて、軸受装置を動作させたときの温度 上昇をシミュレーションした。その結果を図 3に示す。なお、シミュレーションに用いた 仕様は、以下の通りである。
軸受:日本精ェ (株)製の 6203 (呼び番号)単列深溝玉軸受
回転数: 10, OOOmin— 1
回転時間: 1時間
[0030] 図 3から明らかなように、比較例 1のように温度センサ TSを軸受装置 10の外部に配 置した場合と比較して、実施例のように温度センサ TSを軸受装置 10の内部に配置 すると、軸受装置の温度変化をレスポンス良く測定できることがわかる。本実施の形 態の温度センサ TSは、軸受 10の構成部品である外輪 11の表面に形成された絶縁 性薄膜 M上に、インクジェット方式によりパターユングされた導電性薄膜 Pを有するの で、力かる導電性薄膜 Pにより精度良く且つレスポンス良く軸受の温度を測定できる。 従って、レスポンスの良い温度測定を通じて、異常な温度上昇が予兆として現れる軸 受装置に生じる不具合を精度良く予測することが可能となる。 なお、上述の温度セ ンサに限らず、例えば積層サーミスタ等種々のセンサを用いてもよい。
[0031] 〈第 2の実施の形態〉
図 4は第 2の実施の形態の温度センサ付き軸受の要部を示す要部断面図である 。図 4に示すように、軸受装置 (温度センサ付き軸受、軸受ともいう) 20は、外周面に 転走面 21aを有する内輪 21と、内周面に転走面 22aを有する外輪 22と、外輪 22と内 輪 21との間に配置された転動体である複数の玉 24と、複数の玉 24を均等位置に保 持するための保持器 23と、軸受温度を検知するための温度センサ 100と、を備える。
[0032] 軸受 20は、内輪回転の場合のシールの付いた転がり軸受であり、両側にシール 30 , 33を備える。シール 30は、外周に鈎部を有するリング状の芯金 31と、その外側に 合成ゴムを一体に加硫成形してなる弾性体 32と、から構成され、その機能上から、芯 金 31の鈎部以外とその外側の弾性体 32とからなる円環状の主部 34と、芯金 31の鈎 部とその外側の弾性体とからなり外輪 22内周面の止め溝 25に係止される加締部 35 と、芯金 31の内周側の弾性体力もなり内輪 5の外周面の受け溝 26に接触されるリツ プ部 36と、に分けられる。
[0033] シール 30は、リップ部 36を内輪 21の外周面の受け溝 26に接触させた状態で、カロ 締部 35を弾性変形させながら外輪 22の内周面の止め溝 25に押し込むことによって 、軸受 20の外輪 22と内輪 21との間に配設される。シール 33もシール 30と同じ構造 であり、同様に外輪 22と内輪 21との間に配設される。このようなシール 30, 33の一 般的な材料は、芯金としては SPCCや SECCなどの鋼板が使用され、リップ等を形成 する弾性体としては-トリルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム等の合成ゴ ムが使用される。なお、シール 30, 33は、図 4のような接触ゴムシールに限らず、非 接触ゴムシール、非接触鋼板などであってもよい。
[0034] 固定側の外輪 22には、転走面 22aに温度センサ 100のための凹部 27を設け、外 輪 22の内周面の凹部 27から外輪 22の側面へと貫通する貫通孔 Pを配線導出部とし て設けている。
[0035] 温度センサ 100は、固定側の外輪 22の転走面 22aに設けた凹部 27に取り付けら れるとともに、温度センサ 100から延びる一対の電気配線 110が貫通孔 Pを通して外 輪 22の側面力も外部へと導出される。なお、温度センサ 100は凹部 27に嵌め込み や耐熱性接着剤で取り付けることができる。
[0036] 上述の温度センサ 100について図 5A,図 5B,図 6を参照して説明する。図 5Aは 温度センサのフィルム基板の上に形成した温度センサ部を示す平面図であり、図 5B はフィルム基板の上に設けたフィルムカバーを示す平面図である。図 6は、図 5Bの配 線取付部に電気配線を電気接続した温度センサを図 5Bの VI-VI線に沿って切断し てみた図である。
[0037] 図 5A,図 5B,図 6のように、温度センサ 100は、耐熱性及び可撓性を有するポリイ ミド榭脂(PI)からなるフィルム基板 120と、フィルム基板 120上に形成された白金等 力もなる膜状の温度センサ部 130と、温度センサ部 130が形成されたフィルム基板 1 20を覆うように配置された同種のポリイミド榭脂からなるフィルムカバー 140と、を備え 、全体として平面が矩形状で小型の厚さが薄くかつ可撓性のある小型の構成となつ ている。
[0038] 膜状の温度センサ部 130は、図 5Aのように、全体の幅 aでかつ幅 bの帯状部力も構 成され、幅 bの帯状部は全体の帯状長さを長く確保するために複数箇所で折り返さ れて 、る。膜状の温度センサ部 130の図の左右端下側に位置する幅 bの帯状部の 両端に、一対の配線取付部 150, 150が幅 bよりも広幅に設けられている。
[0039] フィルム基板 120を覆うフィルムカバー 140には、図 5Aの一対の配線取付部 150, 150に対応する位置に、図 6のように孔 160が形成されることで、図 5Bのように一対 の配線取付部 150, 150がフィルムカバー 140の表面に露出している。一対の配線 取付部 150, 150に、一対の電気配線 110が電気接続される。
[0040] なお、一対の電気配線 110は温度測定装置に接続され、温度変化により変化する 温度センサ部 130の抵抗値に基づ 、て温度測定が行われる。
[0041] 上述のように、温度センサ 100は、フィルム基板 120に形成した膜状の温度センサ 部 130とフィルムカバー 140の表面に露出する配線取付部 150と力も構成されるた め、従来のチップ型積層サーミスタよりも薄く可撓性があり、かつ、小型であるので、 温度センサ 100の取付位置に制約がなくなる。従って、温度センサ 100を軸受のい 力なる部分にも組み込み可能であり、図 4の温度センサ付き軸受 20では、軸受内部 の外輪 22の転走面 22aに形成した凹部 27に組み込むことで、温度検知のレスポン スが良好となり、温度異常の検知性を向上できる。
[0042] また、膜状の温度センサ部 130をフィルムカバー 140で覆うので、温度センサ 100 の劣化のおそれが少なぐまた、温度センサ 100全体が可撓性のある構造なので、 割れのおそれもない。このため、耐久性のある温度センサ付き軸受を実現できる。
[0043] 次に、図 4の温度センサの配置位置を変えた温度センサ付き軸受ニ例について図 7,図 8を参照して説明する。図 7は図 4の温度センサの配置位置を変えた温度セン サ付き軸受の要部を示す要部断面図である。図 8は図 4の温度センサの配置位置を 更に変えた温度センサ付き軸受の要部を示す要部断面図である。
[0044] 図 7,図 8に示す温度センサ付き軸受 20A, 20Bは図 1の温度センサ付き軸受 20と 基本構成が同一であるので、同じ部分には同じ符号を付し、その説明を省略する。
[0045] 図 7に示すように、温度センサ付き軸受 20Aは、温度センサ 100を固定側の外輪 2 2の内周面 22bであって転走面 22aの近傍に取り付けたものである。外輪 22の内周 面 22bから外輪 22の側面へと貫通する貫通孔 Sを配線導出部として設けている。
[0046] 温度センサ 100は、外輪 22の転走面 22aの近傍に取り付けられるとともに、温度セ ンサ 100から延びる一対の電気配線 110が貫通孔 Sを通して外輪 22の側面力も外 部へと導出される。
[0047] 図 7の温度センサ付き軸受 20Aによれば、図 4の温度センサ付き軸受 20と同様の 作用効果を奏し、温度検知のレスポンスが良好となり、温度異常の検知性を向上でき
、また、耐久性のある温度センサ付き軸受を実現できる。
[0048] 図 8に示す温度センサ付き軸受 20Bは、温度センサ 100をシール 33の芯金 31の 内面 31aに取り付けたものである。シール 33には、芯金 31と弾性体 32を貫通する貫 通孔 Tを配線導出部として設けて 、る。
[0049] 温度センサ 100は、シール 33の芯金 31の内面 31aに取り付けられるとともに、温度 センサ 100から延びる一対の電気配線 110がシール 33の貫通孔 Sを通してシール 3
3の主部 34へと導出される。
[0050] 図 8の温度センサ付き軸受 20Bによれば、図 4の温度センサ付き軸受 20と同様の 作用効果を奏し、温度検知のレスポンスが良好となり、温度異常の検知性を向上でき 、また、耐久性のある温度センサ付き軸受を実現できる。
[0051] 次に、図 4,図 7の配線導出部の位置を変えた変形例について図 9を参照して説明 する。図 9は、図 4,図 7の配線導出部の位置を変えた変形例を説明するための要部 断面図である。
[0052] 図 9に示す配線導出部としての貫通孔 Rは、図 4の外輪 22の転走面 22aに形成さ れた凹部 27から図の上方に延びて外輪 22の外周面 22cへと貫通するものである。 図 4のように凹部 27に温度センサ 100を取り付けた場合、一対の電気配線 11を貫通 孔 Rを通して外輪 22の外周面 22cへと導出できる。
[0053] また、図 9のように、貫通孔 Rに連結するように配線導出部として溝 Qを外輪 22の外 周面 22cに外輪 22の側面まで延びるように形成してもよい。貫通孔 Rから導出された 電気配線 11を溝 Qを通して外輪 22の側面へと導出できる。
[0054] また、図 9の配線導出部としての貫通孔 Uは、図 4の外輪 22の転走面 22aの近傍の 内周面 22bから図の上方に延びて外輪 22の外周面 22cへと貫通するものである。図 7のように外輪 22の転走面 22aの近傍の内周面 22bに温度センサ 100を取り付けた 場合、一対の電気配線 11を貫通孔 Uを通して外輪 22の外周面 22cへと導出できる。
[0055] 以上のように、図 4〜図 8の温度センサ付き軸受 20, 20A, 20Bによれば、温度セ ンサ 100が薄く小型で可撓性を有し、温度センサ 100の取り付け位置が限定されな いので、軸受のいかなる部分にも組み込むことが可能であり、所望の軸受内部位置 に取り付けることができる。このため、温度検知のレスポンスが速ぐ軸受において温 度異常に起因する不具合が生じることを事前に予測できる予測可能性が向上する。
[0056] また、温度センサは、割れが生じなく劣化が少なくて耐久性に優れるため、温度セ ンサ自体の寿命が長くなり、更に、半導体製造工程を利用することにより一括形成で き容易に量産可能であり、小形で量産性に優れて製造コストを低減できるため、温度 センサ付き軸受を低コストで提供可能となる。
[0057] 〈実施例 2〉
次に、本発明を実施例 2により更に具体的に説明するが、本発明は本実施例に限 定されるものではない。 [0058] 図 5A,図 5B,図 6と同様の温度センサを次の半導体製造工程と同様の工程により 製造した。図 10 (a)乃至図 10 (i)を参照して説明する。図 10 (a)乃至図 10 (i)は、本 実施例において図 5A,図 5B,図 6の温度センサを製造するための工程 (a)乃至 (i) を説明するための概略図である。
[0059] 図 10 (a)のように、フィルム PI (東レ ·デュポン (株)製カプトン)力 なるフィルム基板
120上に厚さ約 2 μ mのフォトレジスト(東京応化(株)製 OFPR800LB) 41をスピンコ ートにより塗布し、 90°Cで 2分間プレベータ処理を行った (a)。
[0060] 図 10 (b)のように、その後、図 5Aのような温度センサ部 130のパターユングを行つ たマスク 42を用いて方向 sから露光(ユニオン光学 (株)製 EMA-400)した(b)。
[0061] 次に、図 10 (c)のように、現像液 (東京応化 (株)製 MND3)を用いて現像し、最後に 超純水で 60秒間リンスした。これ〖こより、フォトレジスト 41にマスク 42のパターンに対 応したパターンを形成した (c)。
[0062] 図 10 (d)のように、その後、スパッタリング法にて厚さ約 250nmの白金膜 43を形成 してから(d)、図 10 (e)のように、アセトンによりリフトオフ法を用いてフィルム基板 12 上の残留フォトレジストを除去した(e)。図 10 (e)の白金膜 43が図 5Aの温度センサ 部 130を構成する。
[0063] 次に、図 10 (f)のように、接着剤フィルム (デュポン (株)製パイララックス)を用いて 同種の PIフィルム 140でフィルム基板 120に接着してカバーし、このフィルムカバー 1 40にフォトレジスト 44をスピンコートし、プレベータした(f)。
[0064] 次に、図 10 (g)のように、図 6の孔 160に対応したパター-ングを行ったマスク 45を 用いて方向 nから露光した (g)。次に、図 10 (g)のように、現像し、リンスを行うことによ り、フォトレジスト 44にマスク 45のパターンに対応したパターンを形成した(h)。
[0065] 次に、図 10 (i)のように、 PIフィルム 140をエッチング剤(東レエンジニアリング (株) 製 TPE3000)を用いてエッチングし、その後、アセトンにて残留フォトレジストを除去し た(i)。これにより、フィルムカバー 140に図 6の孔 160を形成し、図 5Bのように、温度 センサ部 130の配線取付部 150がフィルムカバー 140に露出する。
[0066] その後、図 6のように、配線取付部 150に電気配線 110を取り付けてから、個別の 温度センサにカットした。 [0067] 例えば、図 11のように、比較的広めの PIフィルム Fに、上述の図 10 (a)乃至図 10 (i )のような半導体製造工程を経て多数の温度センサ 100を形成してから、縦横の切断 線 m, nに沿ってカットすることで、多数の温度センサ 100を簡単に量産することがで き、製造コストを低減できる。
[0068] 上述のようにして製造された温度センサ 100は、図 5Aの温度センサ部 130の全体 幅& : 200 !!1、帯状部の幅!) 。;^ !!!、温度センサ100の幅 :250 111、長さ Y: 25 0 m、図 6の厚さ Z: 75 μ mの寸法であつたが、この寸法は一例であり、必要に応じ て変えることができる。
[0069] 上述のようにして製造された温度センサ 100を実施例 2として図 4の軸受 20と同様 の位置 A (凹部 27)に接着で取り付けた。比較例 2として同様に温度センサ 100を図 4の破線で示すように軸受 20の外輪 22の外周面 22cの位置 A,に接着で取り付け、 位置 A, A'の温度をそれぞれ測定した。
[0070] 測定条件は以下の通りである。
軸受:日本精ェ (株)製の 6203 (呼び番号)単列深溝玉軸受
回転数: 10, OOOrpm
回転時間: 1時間
[0071] 上記のように測定した時間による温度 (抵抗値)変化を図 12に示す。図 12から分か るように、図 4の軸受の外輪 22の転走面 22aに組み込んだ実施例 2の位置 Aの温度 センサの方が、比較例 2の軸受の外面の位置 A'で測定した場合に比べて非常にレ スポンスが速く正確な温度を迅速に得ることができる。
[0072] 以上のように本発明を実施するための最良の形態について説明した力 本発明は 上記実施の形態に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であるこ とはもちろんである。例えば、図 1,図 4,図 7,図 8では、転がり軸受の内輪を回転側 としたが、外輪を回転側としてもよぐこの場合は、固定側の内輪に温度センサを同様 に取り付け、配線導出部を設けることで同様の作用効果を得ることができる。
[0073] また、図 1,図 4,図 7,図 8の軸受は単列深溝玉軸受であった力 本発明はこれに 限定されず、他の種類の転がり軸受であってもよぐ更に、軸受一般に適用できること は勿論である。また、上述の各温度センサは異種金属薄膜からなる熱電対タイプ力も 構成してちょい。
産業上の利用分野
以上のように、本発明に力かる軸受装置は、温度センサで軸受の所望の位置の温 度を測定できかつ配線の取り回し性に優れており、また、温度センサの取付位置に 制約がなく耐久性がありかつ温度異常の検知性を向上できるものとして有用である。

Claims

請求の範囲
[1] 外輪と、内輪と、両輪間に配置された転動体とを有する転がり軸受と、前記転がり軸 受の内部の温度を測定する温度センサとを有する軸受装置において、前記温度セン サからの配線は、前記軸受装置の構成部品に形成された貫通孔を通して外部に延 在して 、ることを特徴とする軸受装置。
[2] 前記貫通孔は前記外輪または前記内輪に形成されている請求の範囲第 1項に記 載の軸受装置。
[3] 前記軸受装置はシールを含み、前記貫通孔は前記シールに形成されている請求 の範囲第 1項または第 2項に記載の軸受装置。
[4] 前記温度センサは前記外輪または前記内輪の軌道面、前記軌道面の近傍部、ま たは前記シールに配置されている請求の範囲第 1項乃至第 3項のいずれかに記載 の軸受装置。
[5] 軸受と温度センサとを備える軸受装置において、前記温度センサは、耐熱性榭脂 からなるフィルム状の基板と、前記基板に形成された膜状の温度センサ部と、前記温 度センサ部を覆うように設けられた耐熱性榭脂からなるフィルム状のカバーと、前記 温度センサ部の一部が前記カバーの表面に露出する配線取付部と、を有し、軸受部 分に接するように取り付けられたことを特徴とする軸受装置。
[6] 外輪と、内輪と、前記外輪と前記内輪との間に配置された転動体と、を有する転がり 軸受と、温度センサと、を備える軸受装置において、前記温度センサは、耐熱性榭脂 からなるフィルム状の基板と、前記基板に形成された膜状の温度センサ部と、前記温 度センサ部を覆うように設けられた耐熱性榭脂からなるフィルム状のカバーと、前記 温度センサ部の一部が前記カバーの表面に露出する配線取付部と、を有し、軸受部 分に接するように取り付けられたことを特徴とする軸受装置。
[7] 前記温度センサは、固定側の軌道輪に形成した凹部に取り付けられた請求の範囲 第 6項に記載の軸受装置。
[8] 前記温度センサは、固定側の軌道輪の近傍に取り付けられた請求の範囲第 6項ま たは第 7項の 、ずれかに記載の軸受装置。
[9] 前記転がり軸受が固定側の軌道輪に取り付けられたシールを備え、前記シールに 前記温度センサが取り付けられた請求の範囲第 6項乃至第 8項のいずれかに記載の 軸受装置。
[10] 前記シールが芯金部と弾性部とを備え、前記芯金部または前記弾性部に前記温 度センサが取り付けられた請求の範囲第 9項に記載の軸受装置。
[11] 前記配線取付部に電気接続された電気配線を通して外部に導出する配線導出部 を固定側の軌道輪に備える請求の範囲第 6項乃至第 10項のいずれかに記載の軸 受装置。
[12] 前記基板及び前記カバーはポリイミド榭脂からなる請求の範囲第 5項乃至第 11項 の!、ずれかに記載の軸受装置。
[13] 軸受と温度センサとを備える軸受装置を製造する方法にお!ヽて、耐熱性榭脂から なるフィルムに多数の膜状の温度センサ部を半導体製造プロセスにより形成し、前記 フィルムを耐熱性榭脂からなる別のフィルムで覆 ヽ、前記別のフィルムにお 、て前記 各温度センサ部の一部に対応する部分を半導体製造プロセスにより除去することで 前記温度センサ部の一部が前記カバーの表面に露出する配線取付部を形成し、前 記フィルム及び前記別のフィルムを前記温度センサ部毎にカットし、前記温度センサ を得てから、前記軸受部分に取り付けることを特徴とする軸受装置の製造方法。
PCT/JP2007/055212 2006-09-06 2007-03-15 Dispositif de roulement et son procédé de fabrication WO2008029528A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/439,207 US8246252B2 (en) 2006-09-06 2007-03-15 Bearing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006241496A JP2008064182A (ja) 2006-09-06 2006-09-06 軸受装置
JP2006-241496 2006-09-06
JP2006340754 2006-12-19
JP2006-340754 2006-12-19

Publications (1)

Publication Number Publication Date
WO2008029528A1 true WO2008029528A1 (fr) 2008-03-13

Family

ID=39156973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055212 WO2008029528A1 (fr) 2006-09-06 2007-03-15 Dispositif de roulement et son procédé de fabrication

Country Status (2)

Country Link
US (1) US8246252B2 (ja)
WO (1) WO2008029528A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL216098B1 (pl) * 2010-02-26 2014-02-28 Kusznierewicz Mateusz Marina Lozysko toczne
EP2918845B2 (en) * 2014-03-11 2022-01-12 Skf Magnetic Mechatronics Rotary machine and method for manufacturing a rotary machine
FR3028901B1 (fr) * 2014-11-26 2017-04-14 Skf Ab Roulement instrumente et procede de fabrication d'un tel roulement instrumente
CN108225616A (zh) * 2017-12-13 2018-06-29 苏州长风航空电子有限公司 一种燃滑油温度传感器高温振动试验装置及试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118622A (ja) * 1997-10-17 1999-04-30 Nippon Seiko Kk 回転体装置
JP2002206528A (ja) * 2000-11-06 2002-07-26 Nsk Ltd センサ付き転がり軸受
JP2002351254A (ja) * 2001-05-29 2002-12-06 Canon Inc 定着装置
JP2003113835A (ja) * 2001-10-05 2003-04-18 Koyo Seiko Co Ltd 転がり軸受
JP2005043336A (ja) * 2003-07-04 2005-02-17 Ntn Corp 荷重センサ内蔵車輪用軸受

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395783A1 (de) * 1989-05-05 1990-11-07 Gmn Georg Müller Nürnberg Ag Sensorlager zur Erfassung von Drehzahl und/oder Verdrehwinkel
GB2295207B (en) * 1994-11-08 1998-04-08 Torrington Co Bearing with a sensor arrangement for obtaining an indication of various parameters within the housing of the bearing
US5952587A (en) * 1998-08-06 1999-09-14 The Torrington Company Imbedded bearing life and load monitor
DE10017572B4 (de) * 2000-04-10 2008-04-17 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Wälzlager mit fernabfragbaren Erfassungseinheiten
JP2002130263A (ja) * 2000-10-31 2002-05-09 Ntn Corp 温度センサ付き軸受
EP1203960B2 (en) * 2000-11-06 2018-02-07 Nsk Ltd Rolling bearing device and ring with sensor for the rolling bearing device
JP4034968B2 (ja) 2002-01-16 2008-01-16 株式会社アルバック 絶縁基板上に導電パターンを形成する方法
JP2004003601A (ja) * 2002-04-23 2004-01-08 Nsk Ltd センサ付転がり軸受ユニット
WO2004072747A1 (ja) * 2003-02-14 2004-08-26 Ntn Corporation Icタグを用いた機械部品ならびにその品質管理方法および異常検査システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118622A (ja) * 1997-10-17 1999-04-30 Nippon Seiko Kk 回転体装置
JP2002206528A (ja) * 2000-11-06 2002-07-26 Nsk Ltd センサ付き転がり軸受
JP2002351254A (ja) * 2001-05-29 2002-12-06 Canon Inc 定着装置
JP2003113835A (ja) * 2001-10-05 2003-04-18 Koyo Seiko Co Ltd 転がり軸受
JP2005043336A (ja) * 2003-07-04 2005-02-17 Ntn Corp 荷重センサ内蔵車輪用軸受

Also Published As

Publication number Publication date
US8246252B2 (en) 2012-08-21
US20100002974A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP2007286002A (ja) 軸受装置
US8313240B2 (en) Sensorized bearing unit
WO2008029528A1 (fr) Dispositif de roulement et son procédé de fabrication
JP2008185339A (ja) 軸受状態検査装置および軸受状態検査方法
WO2007122922A1 (ja) 軸受装置及びその製造方法
WO2008007478A1 (en) Bearing device
US9134159B2 (en) Air mass meter
JP2008175383A (ja) センサ付き転動装置及びその製造方法
JP2008064183A (ja) 軸受装置
JP2009191898A (ja) センサ付き軸受及びその製造方法
CN105841737B (zh) 压力和温度确定装置、包括该装置的压力和温度传感器,以及用于制造该装置的方法
JP2008215568A (ja) 転がり軸受及びその製造方法
JP2009029180A (ja) タイヤ
JP2008026102A (ja) 軸受装置
JP2008196956A (ja) センサ付き軸受及びその製造方法
JP2008025690A (ja) 軸受装置
JP4759972B2 (ja) センサ付軸受装置
JP2008164585A (ja) 絶縁転がり軸受用試験装置
JP2008064182A (ja) 軸受装置
JP2008089407A (ja) 絶縁転がり軸受用試験装置
JP2008082797A (ja) 軸受装置
JP2003065835A (ja) センサ付軸受装置
JP2008025691A (ja) 軸受装置
JP2007240491A (ja) 軸受状態検査装置
JP2002349556A (ja) 回転センサ付き軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12439207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738662

Country of ref document: EP

Kind code of ref document: A1