WO2008029454A1 - Composition aqueuse de revêtement - Google Patents

Composition aqueuse de revêtement Download PDF

Info

Publication number
WO2008029454A1
WO2008029454A1 PCT/JP2006/317631 JP2006317631W WO2008029454A1 WO 2008029454 A1 WO2008029454 A1 WO 2008029454A1 JP 2006317631 W JP2006317631 W JP 2006317631W WO 2008029454 A1 WO2008029454 A1 WO 2008029454A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
parts
cooh group
meth
component
Prior art date
Application number
PCT/JP2006/317631
Other languages
English (en)
French (fr)
Inventor
Akihisa Monden
Yoshimoto Nakajima
Original Assignee
Toyo Ink Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg. Co., Ltd. filed Critical Toyo Ink Mfg. Co., Ltd.
Priority to PCT/JP2006/317631 priority Critical patent/WO2008029454A1/ja
Publication of WO2008029454A1 publication Critical patent/WO2008029454A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/02Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to an aqueous coating composition, and more particularly to an aqueous coating composition suitably used for covering an inner surface of a can containing a beverage or food.
  • BPA is one of the chemical substances suspected of having endocrine disrupting effects
  • elution of BPA into the contents of the can is a problem.
  • emulsion type acrylic resin synthesized by emulsion polymerization as a resin having the same processability and adhesion as the BPA type epoxy resin.
  • the emulsion type acrylic resin synthesized by the emulsion polymerization method is generally known to have a very high molecular weight compared to the acrylic resin synthesized by the solution polymerization method, and the emulsion type acrylic resin has a high molecular weight. It is considered that processability and adhesion can be obtained.
  • the surfactant is contained in the cured coating film. Since this surfactant causes deterioration of the steam sterilization resistance of the cured coating film, at present, the use of emulsion-type acrylic resin synthesized by emulsion polymerization for paints for inner coating of cans has been put into practical use. It has been,
  • Patent Document 1 JP 2002-155234 A.
  • thermosetting aqueous resin dispersion is prepared by preparing an aqueous dispersion (pre-emulsion) in which a mixture of ethylenically unsaturated monomers is dispersed in an aqueous medium, and using the aqueous acrylic polymer. Of radical polymerization of the monomers in the presence of aqueous resin ( Pre-emulsification method). Aqueous rosin is an essential additive to improve the dispersibility of pre-emulsion.
  • the can may be subjected to a steam sterilization process that is harsher than boiling, and the paint for the can is required to have high steam sterilization resistance.
  • the coating film may be whitened or blisters (spot peeling) may occur.
  • An object of the present invention is to form a good emulsion without using a component derived from BPA and substantially not using a surfactant that deteriorates the steam sterilization resistance of a cured coating film after baking.
  • a water-based coating composition that is excellent in steam sterilization resistance, processability, and adhesion, and that can form a wrinkle coating that does not cause a change in the aroma and taste of beverages, and the inner surface of the can with this coating And providing a coated can.
  • the present invention comprises an emulsified component (A) containing an ethylenically unsaturated monomer (A1) and an acrylic copolymer (B1) having a COOH group having a number average molecular weight of 20,000 to 100,000.
  • a polymerization initiator (E) in the presence of the emulsion (M) such as an aqueous solution of a polymer comprising a COO H group-containing component (B), a basic compound (C), and water (D).
  • a composite polymer (F) having a glass transition temperature of 50 to 120 ° C.
  • the present invention relates to a water-based coating composition comprising phenol resin (G) having 0.5 or more methylol groups for one benzene ring.
  • Another aspect of the present invention relates to a coated can whose inner surface is coated with the aqueous paint composition according to the present invention.
  • Yet another aspect of the present invention provides an emulsified component (A) containing an ethylenically unsaturated monomer (A1), an acrylic copolymer (B1) having a COOH group having a number average molecular weight of 20,000 to 100,000.
  • a polymer aqueous solution containing a COOH group-containing component (B), a basic compound (C), and water (D) is added to the emulsion (M) and added to the polymerization initiator (E )
  • the aqueous coating composition according to the present invention can form a coating film excellent in stability, hygiene, steam sterilization resistance, processability, and adhesion, and has a low flavor component adsorption performance. It is possible to form a coating film that does not cause a change in the aroma and taste of the product and has excellent flavor retention of the contents. Therefore, this water-based coating composition is particularly suitable for use as a can inner surface coating.
  • the emulsion of the composite polymer (F) contained in the aqueous coating composition is V, a relatively high molecular weight acrylic copolymer containing a COOH group instead of using a so-called general surfactant.
  • COOH group-containing component (B1) essential component (B) is used as a kind of polymer emulsifier V
  • emulsified component (A) containing ethylenically unsaturated monomer (A1) is pre-emulsified in advance. It is produced by radical polymerization in an aqueous medium, and is produced by a method that should be called a “monomer dropping method”.
  • the resulting composite polymer (F) has a specific glass transition temperature (Tg) in which the polymer to be emulsified (A) is formed and the COOH group-containing component (B) is combined, that is, in an integrated state. ) Polymer. Therefore, the water-based coating composition according to the present invention can be simply expressed as the composite polymer (F) being dispersed in the aqueous medium.
  • the emulsified component (A) is mainly composed of a mixture of ethylenically unsaturated monomers (A1). Is.
  • the mixture is insoluble or hardly soluble in water and is usually subjected to solution polymerization using an organic solvent or emulsion polymerization using a surfactant.
  • such a water-insoluble or hardly-soluble monomer mixture is used in water by using a relatively high molecular weight COOH group-containing component (B) without using a so-called general low molecular weight surfactant. It is characterized by radical polymerization.
  • the emulsified component (A) may be any one of, for example, polyester resin, acrylic-modified polyester resin, cellulosic resin, polybulal alcohol, or a derivative thereof. These components, which may contain components, can also be subjected to radical polymerization as an emulsified component (A) in a state where they are mixed with the monomer (A1).
  • the ethylenically unsaturated monomer (A1) is a component that is emulsified when an acrylic emulsion polymerization is performed using an ethylenically unsaturated monomer or a surfactant used in normal acrylic solution polymerization.
  • the thing similar to an ethylenically unsaturated monomer can be used.
  • Examples of ethylenically unsaturated monomers (A1) include
  • Ethylenically unsaturated monomers having a carboxyl group such as (meth) acrylic acid, (anhydrous) itaconic acid, (anhydrous) maleic acid;
  • Aromatic monomers such as styrene and methylstyrene
  • N-hydroxyalkyl (meth) acrylamides such as N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide;
  • the ethylenically unsaturated monomer (A1) is at least one selected from the group consisting of N-alkoxyalkyl (meth) acrylamide, N-hydroxyalkyl (meth) acrylamide, and (meth) acrylamide. It is preferable to contain the amide monomer. Thereby, a crosslinkable functional group can be introduced into the composite polymer (F) obtained by radical polymerization of the emulsified component (A).
  • the composite polymer By introducing a crosslinkable functional group, the composite polymer has self-crosslinkability, and as a result, the composite polymer causes a cross-linking reaction by a baking process after coating, thereby forming a strong coating film.
  • an ethylenically unsaturated monomer (A1) containing no amide monomer as described above is used as the ethylenically unsaturated monomer (A1), and an acryl copolymer having a COOH group, which will be described later.
  • (B1) which does not contain a crosslinkable functional group derived from an amide monomer as described above, an amide-free composite polymer emulsion can be obtained.
  • the COOH group-containing component (B) contains an acrylate copolymer (B1) having a COOH group having a number average molecular weight of 20,000 to 100,000, and functions as an emulsifier component for the emulsified component (A). Is. Therefore, this may be referred to as an emulsifier component (B).
  • the COOH group-containing component (B) when radically polymerizing the emulsified component (A), forms micelles with droplets of the emulsified component (A) containing the ethylenically unsaturated monomer (A1). Polymerization is initiated with the cal polymerization initiator incorporated in the micelle. That is, the COOH group-containing component (B) provides a place for polymerization in water to the ethylenically unsaturated monomer (A1) that is insoluble or hardly soluble in water.
  • the COOH group-containing component (B) has a polymerization rate, molecular weight, and emulsion particle size. Since it greatly affects the stability of the emulsion and the physical properties of the coating film, it is positioned as one of the most important components for the present invention.
  • the number average molecular weight (measurement method: polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC)) of the acrylic copolymer (B1) having a COOH group is 20,000 to 10 It is important to be 30,000 to 70,000, and more preferably 30,000 to 70,000. If the acrylic copolymer (B1) has a number average molecular weight of less than 10,000, the stability of the composite polymer emulsion obtained by polymerization of the emulsified component (A) is inferior, and the occurrence of bumps is caused by sedimentation of the emulsion. May occur.
  • the steam sterilization resistance of the resulting coating film is poor, and the coating film tends to whiten or blisters.
  • the number average molecular weight exceeds 100,000, the viscosity of the aqueous solution or emulsion of the acrylic copolymer (B1) increases, and the emulsion polymerization itself becomes non-uniform so that a gelled product is easily generated.
  • an emulsifier in emulsion polymerization plays a role of emulsifying a hydrophobic component in an aqueous medium.
  • the emulsifier has a hydrophilic part and a hydrophobic part.
  • the acrylic copolymer (B1) having a COOH group has a COOH group as a hydrophilic portion. That is, the acrylic copolymer (B1) having a COOH group contains an ethylenically unsaturated monomer having a COOH group as a copolymerization component, and the ethylenically unsaturated monomer having a COOH group is copolymerized. It is preferable that at least 10% by weight or more is contained in 100% by weight of the monomer to be used in the case of 20 to 80% by weight.
  • Examples of the ethylenically unsaturated monomer having a COOH group as the copolymer component include (meth) acrylic acid, (anhydrous) itaconic acid, and (anhydrous) maleic acid. These can be used alone or in combination of two or more.
  • the acrylic copolymer (B1) having a COOH group has a hydrophobic portion. Therefore, as a monomer other than the ethylenically unsaturated monomer having a COOH group, which can constitute an acrylic copolymer (B1) having a COOH group, styrene, ⁇ - methylstyrene, benzyl (meth) acrylate, phenoloxyl (meta ) Atarilate, Phenoxypro An ethylenically unsaturated monomer having an aromatic ring such as pill (meth) acrylate, or hexyl (meth) acrylate, ethyl hexyl (meth) acrylate, nor (meth) acrylate
  • an ethylenically unsaturated monomer having an alkyl chain having 6 or more carbon atoms such as decyl (meth) acrylate or lauryl (meth) acrylate is used as a copolymerization component.
  • examples of the monomer other than the ethylenically unsaturated monomer having a COOH group include those similar to the ethylenically unsaturated monomer (A1).
  • an acrylic copolymer (B1) having a COOH group is an amide selected from the group consisting of N-alkoxyalkyl (meth) acrylamide, N-hydroxyalkyl (meth) acrylamide, and (meth) acryl amide
  • This is a copolymer obtained by copolymerization of a monomer containing at least one type of monomer and an ethylenically unsaturated monomer having a COOH group.
  • Amide monomers selected from the group consisting of N-alkoxyalkyl (meth) acrylamides, N-hydroxyalkyl (meth) acrylamides, and (meth) acrylamides can undergo self-crosslinking reactions when forming cured coatings, COOH It can also be cross-linked with the COOH group of the group-containing component (B), phenolic resin described later, and the like. Thereby, the curability of the cured coating film and other physical properties are further improved.
  • the acrylic copolymer (B1) having a COOH group can be obtained by solution polymerization in a solvent by a usual method. If possible, synthesis by polymerization in an aqueous medium, or bulk It may be synthesized by polymerization.
  • the acrylic copolymer (B1) having a COOH group does not have a crosslinking reactive functional group other than the COOH group
  • the acrylic copolymer (B1) is bulk polymerized without using an organic solvent. Can be synthesized.
  • emulsion polymerization is often carried out in the absence of an organic solvent, and even when an organic solvent is present, it is often preferable that the proportion of the organic solvent in the entire system is not so large.
  • the ratio of the organic solvent is large, the polymerization conversion rate may be deteriorated or the physical properties of the coating film may be deteriorated.
  • an acrylic copolymer (B 1) polymerization is used. In many cases, it is necessary to distill off the organic solvent.
  • the acid value of the acrylic copolymer (B1) having a COOH group is preferably 150 to 500 (mgKOH / g) from the viewpoint of emulsifying ability and water resistance of the resulting coating film. 200 More preferred to be ⁇ 45 0 (mgKOH / g)! / ⁇ .
  • the COOH group-containing component (B) includes, in addition to the acrylic copolymer (B1), a polyester resin containing a COOH group, an acrylic-modified polyester resin, a cellulose resin, polyvinyl alcohol, or the like It is also possible to use components that can be dissolved or dispersed in water, such as derivatives.
  • the COOH group-containing component (B) is prepared by using a basic compound (C) and water (D) V, dissolved in water or dispersed in water (that is, an aqueous polymer solution! / Emulsion (M)), and the component to be emulsified (A) is added thereto, but it is preferable that it is dissolved in water.
  • the basic compound (C) is used to neutralize part or all of the COOH group in the COOH group-containing component (B) to obtain an aqueous solution or emulsion of the COOH group-containing component (B). .
  • Examples of the basic compound (C) include organic amine compounds, ammonia, alkali metal hydroxides, and the like. These can be used alone or in combination of two or more.
  • organic amine compounds include monomethylamine, dimethylamine, trimethylamine, monoethylamine, jetylamine, triethylamine, monopropylamine, dipropylamine, monoethanolamine, diethanolamine, triethanolamine, N, N dimethylethanolamine, N, N jetylethanolamine, 2-dimethylamino-2-methyl-1-propanol, 2-amino-2-methyl-1-propanol, N-methyldiethanolamine, N-ethyljetanol And guanine, monoisopropanolamine, diisopropanolamine, and triisopropanolamine.
  • alkali metal hydroxides examples include lithium hydroxide, sodium hydroxide, and lithium hydroxide. Or the like.
  • These basic compounds (C) are preferably used at a neutralization rate of 20 to 70 mol% with respect to 100 mol% of COOH groups in the COOH group-containing component (B).
  • water (D) forms an aqueous solution or emulsion (M) of the polymer together with the COOH group-containing component (B) and the basic compound (C).
  • the water (D) is preferably 100 to 1000 parts by weight, more preferably 200 to 600 parts by weight with respect to 100 parts by weight of the emulsified component (A).
  • a water-soluble solvent may be added for the purpose of assisting emulsification.
  • emulsion polymerization is often carried out in the absence of a solvent, but a water-soluble solvent may supplement the emulsification.
  • Polymerization initiators can be divided into large water-soluble initiators and water-insoluble initiators. Each polymerization initiator initiates radical polymerization of an ethylenically unsaturated monomer to produce a polymer that is a collection of molecules of various degrees of polymerization. Focusing on molecules with a relatively low degree of polymerization, there is a large difference in properties between using a water-soluble initiator and using a water-insoluble initiator.
  • a water-soluble initiator When a water-soluble initiator is used, a functional group having very high hydrophilicity, which has formed an initiator molecule, is introduced at the end of the molecule obtained by polymerization. Therefore, the terminal of the polymer molecule is rich in hydrophilicity.
  • This polymer molecule exhibits a kind of surfactant property. Such a surfactant property appears remarkably in a molecule having a relatively low degree of polymerization contained in the polymer.
  • the coating film formed from the coating containing the composite polymer obtained by using the water-soluble initiator has a surfactant-like property of a molecule having a relatively low degree of polymerization contained in the composite polymer. Therefore, it tends to whiten when retort processing.
  • the water-insoluble initiator does not contain a functional group having high hydrophilicity in the molecule. Therefore, when a water-insoluble initiator is used, the end of the molecule obtained by polymerization does not become hydrophilic, so the polymer molecule does not exhibit surfactant properties. Yes. Therefore, compared with the case where a water-soluble initiator is used, a coating film excellent in retort resistance, specifically, a coating film that is not easily whitened even by a retort treatment can be formed.
  • the influence of the initiator composition on the viscosity is great.
  • a water-soluble initiator molecules with a low degree of polymerization that are rich in surfactant properties are located on the surface of the polymer particles constituting the emulsion, and the molecules with a low degree of polymerization protrude into the liquid medium, High viscosity.
  • a water-insoluble initiator when used, the polymer particles do not exhibit surfactant properties, so an emulsion with a low viscosity can be obtained. Solidification) is possible.
  • the polymerization initiator can be included in the emulsified component (A), can be contained in the reaction tank together with the COOH group-containing component (B), etc., and the emulsified component (A) can be added. It can also be added to the reaction vessel separately during or after the addition.
  • the polymerization initiator may be added intermittently or continuously, or may be added all at once.
  • the addition amount of the polymerization initiator is not particularly limited, and is generally about 0.01 to 5 parts by weight with respect to 100 parts by weight of the total of the emulsified component (A) and the COOH group-containing component (B). is there.
  • Water-insoluble initiators used include ketone peroxides such as cyclohexanone peroxide, 3, 3, 5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, 1 , 1 bis (t butyl peroxy) 3, 3, 5 trimethylcyclohexane, 1,1-bis (t butylperoxy) cyclohexane, 2, 2 bis (t butylperoxy) octane, n-butyl-4,4 bis (t Butylperoxy) valerate, peroxyketals such as 2,2-bis (t-butylperoxy) butane, di-t-butyl peroxide, t-butyltamyl peroxide, ditamyl peroxide, a, ⁇ , monobis (t-butylperoxy-i-propyl ) Benzene, 2,5 dimethyl 2,5 di (t-butylperoxy) hex
  • Etc. are used, and a peroxide-based initiator is preferred. These may be used alone or in combination.
  • the composite polymer (F) in the present invention is formed from the component to be emulsified (A) and the COOH group-containing component (B) which is an emulsifying agent component.
  • the Tg of the formed composite polymer (F) is 50 to 120 ° C, more preferably 50 to 100 ° C, and even more preferably 50 to 80 ° C. . If an aqueous coating composition containing a composite polymer (F) with a Tg of less than 50 ° C is used for the inner coating of beverage cans, etc., the flavor components of the contents will be adsorbed, and the taste and aroma of the contents will be absorbed. This will cause a decrease in flavor retention.
  • the Tg of the composite polymer (F) is determined according to a conventional method from each Tg of the constituent components and the composition ratio.
  • an ethylenically unsaturated monomer (A1) is used as the emulsified component (A) without containing polyester resin, and the acrylic copolymer having a COOH group without containing polyester resin as the emulsifier component (
  • B1 ethylenically unsaturated monomer
  • polyester resin as emulsified component (A) or emulsifier component, obtain it in the same way based on the Tg of polyester resin and the ratio of polyester resin included in the composite polymer. be able to.
  • the Tg of the entire composite polymer (F) becomes 50 to 120 ° C. It is important to control them.
  • the Tg of the polymer that can be formed from the emulsified component (A) considered to mainly constitute the core of the composite polymer is the emulsifier component (B) that is considered to mainly constitute the shell of the composite polymer. Relatively lower than Tg of the cured coating film is preferable in terms of corrosion resistance, workability and adhesion.
  • the Tg of the composite polymer (F) and the polymer composition as a whole is 50 to 120 ° C
  • the Tg of the polymer that can also form the component to be emulsified (A) is 30 to 100 ° C.
  • the Tg of component (B) is preferably 50 to 130 ° C.
  • emulsion polymerization in which a monomer is polymerized using an emulsifier micelle in an aqueous medium cannot be obtained by solution polymerization, based on its unique polymerization mechanism. A high molecular weight polymer can be obtained.
  • the composite polymer (F) has a higher molecular weight than that in the case of simple solution polymerization, although the Tg required from the components and composition constituting them is relatively high at 50 to 120 ° C. It has become.
  • the aqueous coating composition containing the complexed polymer (F) can form a coating film with good processability and low flavor component adsorption.
  • the COOH group-containing component is preferably 5 to 300 parts by weight with respect to 100 parts by weight of the emulsified component (A).
  • the COOH group-containing component (B) When the COOH group-containing component (B) is less than 5 parts by weight relative to 100 parts by weight of the emulsified component (A), the emulsified component (A) and the composite polymer (F) after polymerization are emulsified. There is a tendency. On the other hand, if the COOH group-containing component (B) is more than 300 parts by weight with respect to 100 parts by weight of the emulsified component (A), the processability of the coating film after bake-curing cannot be expected so much for the following reasons. . That is, the emulsified component (A) is a component having a very high molecular weight by radical polymerization, and this contributes to the improvement of the workability of the cured coating film.
  • the COOH group-containing component (B) as an emulsifier component is more than 300 parts by weight, the emulsified component (A) is relatively decreased, and as a result, the processability of the cured coating film cannot be expected to be improved.
  • the emulsion of the composite polymer (F) is, for example,
  • an emulsified component (A) and a polymerization initiator (E) containing an ethylenically unsaturated monomer (A1) are added, and the emulsified component (A) is radically polymerized. thing;
  • Phenolic resin (G) is a constituent component of the water-based paint composition together with the above composite polymer (F), and is a crosslinkable functional group derived from COOH groups, OH groups, amide monomers, etc. in the composite polymer (F). Can react with groups.
  • phenol resin (G) has 0.5 methylol group per benzene ring. It is desirable to contain above. Furthermore, similarly, from the viewpoint of film forming properties, the number of methylol groups per one benzene ring is preferably 2.0 or less.
  • the theoretical functional hydrogen is important when producing phenolic resin.
  • the reasonably functional hydrogen of phenols is the reaction site of phenols that can react with aldehydes. Refers to hydrogen. That is, in phenols, the o-position and p-position are reactive sites for the phenolic hydroxyl group.
  • ortho-cresol, para-cresol, para-phenol, para-anol, 2,3-xylenol, 2,5-xylenol, etc. have two reactive sites in one molecule and have a number of equivalents of 2 It is kind.
  • Phenols, methacresols, 3,5-xylenol, resorcinol, etc. are phenols with 3 reactive sites and 3 equivalents in one molecule.
  • Catechol, quinone, id quinone, etc. are mononuclear phenols with 4 reaction site forces in one molecule and 4 equivalents.
  • Bisphenols are binuclear phenols with an equivalent number of 4 that have reactive sites in one molecule. Examples of bisphenols include bisphenol A, bisphenol F, bisphenol B, bisphenol E, bisphenol 11, and bisphenol S.
  • the phenolic resin (G) may be a phenolic resin that uses any one of these phenols alone, or may be a phenolic resin obtained by using a plurality of these types.
  • the methylol group content of phenolic rosin can be measured by 13C-NMR.
  • 13C-NMR When structural analysis is performed by NNE and DEPT methods of 13C-NMR, the carbon peak of the methylol group appears at about 60 ppm, and the carbon peak derived from the benzene ring appears at about 100 to 150 ppm. Based on their integral ratio, the methylol group content of phenol resin can be determined.
  • the content of methylol groups is largely determined by the number of theoretical functional hydrogens in the monomer. The greater the number of theoretical functional hydrogens, the greater the methylol group content. Another important factor is the molecular weight of sallow. In order to increase the molecular weight, the methylol group must be condensed with another functional group. Therefore, the higher the molecular weight, the lower the methylol group content. In consideration of these, phenol resin (G) having a number average molecular weight (Mn) of about 500 to 2000 using phenols having a theoretical functional hydrogen number of 3 or more is preferred! / ⁇ .
  • aldehydes formaldehyde, acetoaldehyde and the like can be used.
  • the sources of formaldehyde include formalin, formit NB (formaldehyde in n-butanol), formit IB (formaldehyde in isopropanol), paraformal.
  • Dehydr, trioxane and the like can be used.
  • These aldehydes can be used in combination of two or more.
  • acid catalysts such as hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid, and alkali metals such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide are used.
  • Basic catalysts such as hydroxides, alkaline earth metal hydroxides, and ammonia can be used. Of these, alkali metal hydroxides or alkaline earth metal hydroxides are preferred. Two or more kinds of these catalysts can be used in combination. These catalysts are preferably used in an amount of 0.05 mol or more per 1 mol of phenols to be used. S is preferable, and 0.05 to 0.5 monore is preferable! Less than 0.05! Monore!
  • a catalyst such as an alkali metal hydroxide is added as a reaction catalyst to a mixture of 0.75 to 4.0 equivalents of aldehyde to 1 equivalent of the theoretical functional hydrogen of the phenol and the phenol. After reacting at 30 ° C to 100 ° C until the number average molecular weight (Mn) is about 500 to 1500, neutralize with acid, wash the generated salt with water * remove, dehydrate and concentrate As a result, an alkaline resol resin is obtained.
  • Mn number average molecular weight
  • acids used for neutralizing alkali metal hydroxides include hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, acetic acid, formic acid, p-toluenesulfonic acid, benzoic acid, and the like.
  • the aqueous coating composition preferably contains 10 to 40% by weight as a solid content of the composite polymer (F) and the phenol resin (G) in total.
  • aqueous coating composition In addition to the composite polymer (F) emulsion and phenol resin (G) described above, components that can be further contained in the aqueous coating composition as necessary are described below.
  • one or more curing agents such as amino resin, polybulal alcohol, and polybulal alcohol derivatives can be added to the aqueous coating composition. .
  • a lubricant such as wax may be added to the water-based coating composition for the purpose of preventing the coating film from being damaged in the can-making process.
  • waxes examples include animal and vegetable waxes such as carnauba wax, lanolin wax, palm oil, candelilla wax and rice wax, paraffin wax, microcrystalline wax, petroleum wax such as petrolatum, polyolefin wax, Teflon (registered trademark) wax, etc.
  • a synthetic wax or the like is preferably used.
  • a hydrophilic organic solvent can be added to the water-based coating composition for the purpose of improving paintability.
  • hydrophilic organic solvent examples include ethylene glycol monomethyl ether, ethylene glycol noremethyl enoenoate, ethylene glycono monoethylenoate, ethylene glycol monoethyl etherenole, ethylene glycol mono (iso) propyl ether, ethylene Glycol di (iso) propyl ether, ethylene glycol mono (iso) butyl ether, ethylene glycol di (iso) butynoleatenore, ethylene glycol mono-tert butyl etherenole, ethyleneglycolenomonohexenoreatenole, 1, 3 butylene Glyconole 3 monomethyl ether, 3-methoxybutanol, 3-methyl-3-methoxybutanol, polyethylene glycol monomethyl ether, diethylene glycol dimethyl ether, polyethylene Glycolic Monomethinoleetenore, Diethylene Glycoleo Noetinoleete Tenole, Diethylene Gly
  • Alcohols such as methino-leanolone, ethino-leanolone, propino-leanolone, isopropino-leanol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, furfuryl alcohol;
  • Ketones such as methyl ethyl ketone, dimethyl ketone and diacetone alcohol; glycols such as ethylene glycol, diethylene glycol, propylene glycol and dipropylene glycol;
  • Esters or ester alcohols such as ethylene glycol monomethino ethenore acetate, ethylene glycol monomethenoyl acetate monotel acetate, 1-methoxy 2-propyl acetate, propylene glycol monomethyl ether acetate;
  • auxiliary agents such as a hydrophobic organic solvent, a surfactant, and an antifoaming agent can be optionally added to the aqueous coating composition.
  • the aqueous coating composition according to the present invention is suitably used as a coating for inner and outer surfaces of cans containing beverages and foods, and is particularly suitable for coating inner surfaces of cans.
  • it can be used not only for cans but also for general metal materials and metal products.
  • Materials for cans or metal products include aluminum, tin-plated steel, and chromed steel
  • Nickel-treated steel sheets are used. These materials may be subjected to surface treatment such as zirconium treatment or phosphoric acid treatment.
  • spray coating such as air spray, airless spray, electrostatic spray or the like is desirable. However, it can also be applied by roll coater coating, dip coating, or electrodeposition coating.
  • This water-based paint composition forms a film just by volatilizing volatile components after painting.
  • the baking conditions are not particularly limited, but it is generally desirable to bake at a temperature of 150 ° C. to 280 ° C. for 10 seconds to 30 minutes.
  • a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping tank, and nitrogen gas inlet tube was charged with 100 parts of ethylene glycol monobutyl ether and 100 parts of ion-exchanged water, and the temperature was raised to 90 ° C. While maintaining the temperature in the reaction vessel at 90 ° C, 130 parts of methacrylic acid, 26 parts of styrene, 34 parts of ethyl acrylate, 10 parts of N-butoxymethylacrylamide and excess A mixture of 2 parts of acid benzoyl was continuously added dropwise over 4 hours from the dropping tank. After 1 hour and 2 hours from the end of dropping, add 0.2 parts of peroxybenzoyl and continue the reaction for 3 hours from the end of dropping. ) And an acrylic copolymer (B-2) having a solid content of 50% was obtained.
  • a reaction vessel equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube was charged with 108 parts of m-cresol and 365 parts of 37% formalin, and 32 parts of 25% aqueous sodium hydroxide solution while stirring. And reacted at 80 ° C for 3 hours. To this, 300 parts of n-butanol was added and cooled, and then 30 parts of 20% hydrochloric acid was added to neutralize sodium hydroxide. Formaldehyde was 1.5 equivalents per equivalent of theoretical functional hydrogen of m-cresol.
  • the aqueous layer was separated, the phenol resin layer was taken out, washed with water, dehydrated under reduced pressure, and concentrated under reduced pressure to obtain a purified resin solution having a non-volatile content of 35%.
  • the number average molecular weight of phenol resin obtained was 1020, and the number of methylol groups was 0.8 per benzene ring. This is phenol resin (G-1).
  • a reaction vessel equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube was charged with 108 parts of m-cresol and 365 parts of 37% formalin, and 32 parts of 25% aqueous sodium hydroxide solution while stirring. After reacting at 80 ° C. for 3 hours, 300 parts of n-butanol was added and cooled, and then 40 parts of 20% hydrochloric acid was neutralized with vigorous sodium hydroxide. The theory of m-cresol was 1.5 equivalents of formaldehyde to 1 equivalent of functional hydrogen.
  • the aqueous layer was separated, and the phenol resin layer was taken out, washed with water, dehydrated and concentrated to obtain a purified resin solution having a nonvolatile content of 35%.
  • the number average molecular weight of the phenol resin obtained was 1280, and the number of methylol groups was 0.4 per benzene ring. This is phenol resin (G-3).
  • aqueous coating composition 1 having a nonvolatile content of 20% and a theoretical Tg of 54 ° C.
  • Example 2 In the same manner as in Example 1, after obtaining a composite polymer (F-1) emulsion, 109 parts of ion-exchanged water, 50 parts of n-butanol, 50 parts of ethylene glycol monobutyl ether, and 14 parts of phenol resin (G-2) were obtained. After 5 parts were added and filtered through a 5 m filter, the contents were taken out to obtain an aqueous coating composition 3 having a non-volatile content of 20% and a theoretical Tg of 55 ° C.
  • a water-based paint composition 5 having a non-volatile content of 20% and a theoretical Tg of 55 ° C was prepared in the same manner as in Example 2 except that 2,2'-azobisisobuty-t-tolyl was used instead of benzoyl peroxide. Obtained.
  • aqueous coating composition 6 having a non-volatile content of 20% and a theoretical Tg of 60 ° C.
  • Example 2 In the same manner as in Example 1, after obtaining a composite polymer (F-1) emulsion, ion-exchanged water 109 Parts, n-butanol 50 parts, ethylene glycol monobutyl ether 50 parts, phenol resin (G-3) 14. Add 5 parts, filter through a 5 m filter, take out the contents, An aqueous coating composition 8 having a 20% theoretical Tg of 55 ° C. was obtained.
  • test panel After cutting the test panel to 40 x 80 mm, applying the DuPont impact (lZ 2 inches, 500 g, 30 cm) with the coating on the outside (convex), the test panel is immersed in a commercially available sports drink, and the retort kettle At 125 ° C for 30 minutes. Then, it was stored for 3 days at 50 ° C while immersed. After 4 days, it was removed and evaluated for blisters on the flat surface and DuPont impact.
  • DuPont impact lZ 2 inches, 500 g, 30 cm
  • B Blister occurs in the DuPont impact area, less than 5mm
  • Blister occurs in the DuPont impact area, 5mm or more
  • test panel was immersed in water and retorted at 130 ° C for 1 hour in a retort kettle. After cross-cutting the coated surface, cellophane adhesive tape was affixed, and the coated surface was evaluated after peeling strongly.
  • test panel was immersed in water, it was retorted in a retort kettle at 130 ° C for 1 hour, and the appearance of the coating film was visually evaluated.
  • test panel Cut the test panel into a size of 30mm x 50mm, with the coating on the outside, bend it by hand so that the test site has a width of 3 Omm, thickness between these two folded test pieces 0.2 Two pieces of 6mm aluminum plate were sandwiched, and a 1kg load was dropped from a height of 40cm onto the folding part and completely folded.
  • the bent tip of the test piece was immersed in a 1% strength saline solution, and 6.0 V X 6 seconds was passed between the metal part of the test piece that was not immersed in the saline solution and the saline solution. The current value was measured.
  • the coating film in the bent portion is cracked, the underlying metal plate is exposed, and the conductivity is increased, resulting in a high current value.
  • test panel While the test panel was immersed in water, it was retorted at 130 ° C for 1 hour in a retort kettle. Using the treated test panel, the current value was measured in the same manner as above.
  • the cut test panel (2) was placed in a heat-resistant bottle with 500 g of activated carbon-treated tap water, sealed, retorted at 125 ° C for 30 minutes, and then a flavor test was performed. As a comparison for the flavor test, a blank was also processed at the same time without a coated plate.
  • test panel (2) After standing, the test panel (2) was taken out, immediately placed in carbon disulfide and allowed to stand for 1 hour, limonene adsorbed on the coating surface was extracted, and the amount of adsorption g) was measured by gas chromatography.
  • a bottomed cylindrical aluminum can having an inner diameter of about 7.5 cm, a height of about 12 cm, and a capacity of about 350 ml is placed upright, and on the inner surface, each aqueous coating composition obtained in each of the examples and comparative examples lg ( 200 mg) was applied as a solid. After painting, the can was laid down and rolled over for 30 seconds at 60 rpm, and then stood in an oven at 200 ° C for 60 seconds (peak temperature).
  • the paint can with 1% saline solution.
  • the body was the anode, the cathode was inserted into saline, and the current value (also referred to as the initial can ERV) when a voltage of 6 V for 4 seconds was applied was measured. With this can ERV, the uniformity and denseness of the formed coating film can be evaluated.
  • the anode and cathode are reversed, and a voltage of 6 V for 10 seconds (also called reverse energization. This operation gives a weak impact to the coating).
  • the current value when a voltage of 6 V for 4 seconds is applied also called the late can ERV.
  • the can ERV after impact is applied to the coating to evaluate the toughness and film-forming properties of the coating. Can be measured).
  • the coating film forming property was evaluated according to the following four levels.
  • A The current value is OmA or more and less than 1mA.
  • B Current value is 1mA or more and less than 3mA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Description

明 細 書
水性塗料組成物
技術分野
[0001] 本発明は、水性塗料組成物に関し、詳しくは、飲料や食品を収容する缶の内面被 覆に好適に用いられる水性塗料組成物に関する。
背景技術
[0002] 飲料や食品を収容する缶の内面被覆用水性塗料には、従来から、ビスフエノール A (以下、「BPA」と略す。)とェピクロルヒドリンとを原料として合成される BP A型ェポ キシ榭脂をアクリル榭脂で変性し、カルボキシル基などを分子中に導入した水分散 型アクリル変性エポキシ榭脂が主として使用されている。
しかし、 BPAは内分泌攪乱作用を有すると疑われる化学物質の一つであることから 、缶内の内容物への BPAの溶出が問題となっている。
[0003] BP A型エポキシ榭脂以外で、 BPA型エポキシ榭脂と同等の加工性、密着性を持 っ榭脂として、乳化重合法により合成したェマルジヨン型アクリル榭脂がある。乳化重 合法で合成したェマルジヨン型アクリル榭脂は、一般に、溶液重合法で合成したァク リル樹脂と比べ、非常に高分子量になることが知られており、ェマルジヨン型アクリル 榭脂は高分子量になることで、加工性、密着性が得られると考えられる。
しかし、一般に乳化重合法には界面活性剤が用いられるので、硬化塗膜中に界面 活性剤が含まれることとなる。この界面活性剤は、硬化塗膜の耐蒸気殺菌性を悪化さ せる原因となるので、現状では、乳化重合法により合成したェマルジヨン型アクリル榭 脂の缶内面被覆用塗料への使用は、実用化されて 、な 、。
[0004] そこで、耐蒸気殺菌性を悪化させる原因である界面活性剤を用いな!/ヽ、ソープフリ 一型熱硬化性水性樹脂分散体を有効成分とする製缶塗料用水性樹脂組成物が提 案されて!、る(特許文献 1:特開 2002— 155234号公報)。
この熱硬化性水性榭脂分散体は、エチレン系不飽和単量体の混合物を水性媒体 中に分散させた水性分散液 (プレエマルジヨン)を調製し、水性アクリル重合体を用い て、この水性分散液中の単量体を、水性樹脂の存在下でラジカル重合させる方法( プレ乳化法)により得られるものである。水性榭脂は、プレエマルジヨンの分散性を向 上させるための必須添加成分である。
しかし、このプレ乳化法は、いったんプレエマルジヨンを調製しなければならないな ど、その工程が複雑かつ長時間にわたるものとなり、塗料のコストアップの原因となる
[0005] また、その内容物の種類によっては、缶には煮沸よりも過酷な蒸気殺菌工程が施さ れる場合があり、缶用塗料には高度な耐蒸気殺菌性が求められるが、特許文献 1に 開示された水性榭脂組成物を塗装した缶を蒸気殺菌した場合、塗膜が白化したり、 ブリスター(点状剥離)を生じたりする。
[0006] さらに、硬化塗膜の加工性向上の観点から、ガラス転移温度の低い成分で塗膜を 形成することが好まし 、旨、特許文献 1には開示されて 、る。
しかし、ガラス転移温度の低い成分で塗膜を形成すると、硬化塗膜が、飲料物に含 まれる水以外の風味成分を吸着しやすぐ飲料物の香りや味を変えてしまう(風味保 持性が低下する) t\ヽぅ問題がある。
一方、ガラス転移温度の高い成分を使用すると、塗膜の吸着性能は低くなり、香り や味の変化は抑えられる力 ェマルジヨンの安定性が低下して、ブッが発生し易くな るとの問題もある。
発明の開示
[0007] 本発明の課題は、 BPA由来の構成成分を用いず、かつ、焼付け後の硬化塗膜の 耐蒸気殺菌性を悪化させる界面活性剤を実質的に用いずに、良好なェマルジヨンを 形成し、耐蒸気殺菌性、加工性、密着性に優れ、かつ飲料物の香り、味の変化を引 き起こさな ヽ塗膜を形成し得る水性塗料組成物、およびそれを用いて缶内面を被覆 してなる被覆缶を提供することである。
[0008] 本発明は、エチレン性不飽和モノマー (A1)を含有する被乳化成分 (A)を、数平均 分子量 2万〜 10万の COOH基を有するアクリル系共重合体(B1)を含有する COO H基含有成分 (B)、塩基性化合物 (C)、および水 (D)を含有してなるポリマーの水溶 液な 、しェマルジヨン (M)の存在下にお 、て、重合開始剤 (E)を用いてラジカル重 合してなる、ガラス転移温度が 50〜120°Cの複合ィ匕ポリマー(F);および ベンゼン環 1個に対し、 0. 5個以上のメチロール基を有するフエノール榭脂(G);を 含む水性塗料組成物に関する。
[0009] 別の本発明は、上記本発明に係る水性塗料用組成物で缶内面が被覆された被覆 缶に関する。
[0010] さらに別の本発明は、エチレン性不飽和モノマー (A1)を含有する被乳化成分 (A) を、数平均分子量 2万〜 10万の COOH基を有するアクリル系共重合体 (B1)を含有 する COOH基含有成分 (B)、塩基性化合物 (C)、および水 (D)を含有してなるポリ マーの水溶液な 、しェマルジヨン (M)に添カ卩し、重合開始剤 (E)を用いてラジカル 重合することを含む、ガラス転移温度が 50〜120°Cの複合ィ匕ポリマー(F)のェマル ジョンの製造方法に関する。
発明を実施するための最良の形態
[0011] 本発明に係る水性塗料組成物は、安定性、衛生性、耐蒸気殺菌性、加工性、およ び密着性に優れた塗膜を形成できるとともに、風味成分吸着性能が低ぐ飲料物の 香り、味の変化を引き起こさない、内容物の風味保持性に優れた塗膜を形成すること ができる。したがって、この水性塗料組成物は、特に缶内面被覆用としての利用に適 している。
[0012] 水性塗料組成物に含まれる複合化ポリマー (F)のェマルジヨンは、 V、わゆる一般的 な界面活性剤を用いる代わりに、 COOH基を含有する比較的高分子量のアクリル系 共重合体 (B1)を必須とする COOH基含有成分 (B)を一種の高分子乳化剤として用 V、、エチレン性不飽和モノマー (A1)を含有する被乳化成分 (A)を、予めプレ乳化す ることなく、水性媒体中でラジカル重合してなるものであり、「モノマー滴下法」ともいう べき方法により製造される。
得られる複合ィ匕ポリマー (F)は、被乳化成分 (A)力 形成されるポリマーと COOH 基含有成分 (B)とが複合化、つまり一体化した状態にある、特定のガラス転移温度( Tg)のポリマーである。したがって、本発明に係る水性塗料組成物は、この複合化ポ リマー (F)が水性媒体に分散しているものであると簡略ィ匕して表現することができる。
[0013] <被乳化成分 (A) >
被乳化成分 (A)とは、エチレン性不飽和モノマー (A1)の混合物を主たる成分とす るものである。その混合物は水に不溶または難溶であり、通常は、有機溶剤を用いた 溶液重合や、界面活性剤を用いた乳化重合に供される。
本発明では、このような水に不溶または難溶のモノマー混合物を、いわゆる一般的 な低分子量の界面活性剤を用いることなぐ比較的高分子量の COOH基含有成分 ( B)を用いて、水中でラジカル重合させることに特徴がある。
[0014] 被乳化成分 (A)は、エチレン性不飽和モノマー (A1)以外に、例えばポリエステル 榭脂、アクリル変性ポリエステル榭脂、セルロース系榭脂、ポリビュルアルコールある いはその誘導体等の任意の成分を含んでいてもよぐこれらの成分がモノマー (A1) と混合した状態で、被乳化成分 (A)としてラジカル重合に供することもできる。
[0015] エチレン性不飽和モノマー (A1)には、通常のアクリル溶液重合に用いられるェチ レン性不飽和モノマーや、界面活性剤を用いてアクリル乳化重合を行う際に乳化さ れる成分であるエチレン性不飽和モノマーと同様のものを用いることができる。
エチレン性不飽和モノマー(A1)の例としては、
(メタ)アクリル酸、(無水)ィタコン酸、(無水)マレイン酸等のカルボキシル基を有す るエチレン性不飽和モノマー;
メチル (メタ)アタリレート、ェチル (メタ)アタリレート、イソプロピル (メタ)アタリレート、 n—プロピル (メタ)アタリレート、 n—ブチル (メタ)アタリレート、イソブチル (メタ)アタリ レート、 t—ブチル (メタ)アタリレート、へキシル (メタ)アタリレート、ェチルへキシル (メ タ)アタリレート等のアルキル (メタ)アタリレート、 ヒドロキシメチル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 4— ヒドロキシブチル (メタ)アタリレート、ヒドロキシペンチル (メタ)アタリレート、ヒドロキシ へキシル (メタ)アタリレート等の水酸基を有するエチレン性不飽和モノマー;
スチレン、メチルスチレン等の芳香族系モノマー;
N—ヒドロキシメチル (メタ)アクリルアミド、 N—ヒドロキシェチル (メタ)アクリルアミド、 N -ヒドロキシブチル (メタ)アクリルアミド等の N -ヒドロキシアルキル (メタ)アクリルァ ミド;
N—メトキシメチル (メタ)アクリルアミド、 N—エトキシメチル (メタ)アクリルアミド、 N - (n—,イソ)ブトキシメチル (メタ)アクリルアミド、 N—メトキシェチル (メタ)アクリルアミ ド、 N—エトキシェチル (メタ)アクリルアミド、 N— (n—、イソ)ブトキシェチル (メタ)ァク (メタ)アクリルアミド;
等が挙げられる。これらのモノマーは、単独で用いてもよいし、 2種以上を組み合わせ て用いてもよい。
[0016] これらのうち、エチレン性不飽和モノマー(A1)としては、 N—アルコキシアルキル( メタ)アクリルアミド、 N—ヒドロキシアルキル (メタ)アクリルアミド、および (メタ)アクリル アミドカ なる群より選ばれる少なくとも 1種のアミド系モノマーを含有することが好まし い。それにより、被乳化成分 (A)をラジカル重合してなる複合ィ匕ポリマー (F)に、架橋 性官能基を導入することができる。
架橋性官能基を導入することによって、複合化ポリマーは自己架橋性を有し、その 結果、塗装後の焼き付け工程により複合ィ匕ポリマーが架橋反応を引き起こして、強固 な塗膜を形成する。
[0017] 一方、エチレン性不飽和モノマー(A1)として、上記のようなアミド系モノマーを含有 しないエチレン性不飽和モノマー(A1)を用い、かつ、後述する COOH基を有するァ クリル系共重合体 (B1)としても上記のようなアミド系モノマーに由来する架橋性官能 基を含有しないものを用いれば、アマイドフリーの複合ィ匕ポリマーェマルジヨンを得る ことができる。
[0018] < COOH基含有成分(B) >
COOH基含有成分 (B)は、数平均分子量 2万〜 10万の COOH基を有するアタリ ル系共重合体 (B1)を含有し、上記被乳化成分 (A)に対し、乳化剤成分として機能 するものである。したがって、これを乳化剤成分 (B)と記す場合がある。
COOH基含有成分 (B)は、被乳化成分 (A)をラジカル重合する際に、エチレン性 不飽和モノマー (A1)を含有する被乳化成分 (A)を液滴としたミセルを形成し、ラジ カル重合開始剤をミセル内に取り込んだ状態で重合を開始させる。つまり、 COOH 基含有成分 (B)は、水に不溶もしくは難溶のエチレン性不飽和モノマー (A1)に、水 中での重合の場を提供するものである。
従って、 COOH基含有成分 (B)は、重合速度や分子量、ェマルジヨン粒子の大き さ、ェマルジヨンの安定性、塗膜物性等に大きく影響するので、本発明にとって最も 重要な成分の 1つとして位置づけられる。
[0019] COOH基を有するアクリル系共重合体 (B1)の数平均分子量 (測定法:ゲルパーミ ェイシヨンクロマトグラフィー(GPC)により測定した、ポリスチレン換算の数平均分子 量)は、 2万〜 10万であることが重要であり、 2万〜 7万であることがさらに好ましぐ 3 万〜 7万であることが一層好ま 、。このアクリル系共重合体 (B1)の数平均分子量 力^万未満では、被乳化成分 (A)の重合により得られる複合ィ匕ポリマーェマルジヨン の安定性が劣り、ブッの発生ゃェマルジヨンの沈降が発生する恐れがある。さらには 、得られる塗膜の耐蒸気殺菌性が不良となり、塗膜が白化したり、ブリスターが生じた りしやすくなる。一方、この数平均分子量が 10万を超えると、アクリル系共重合体 (B1 )の水溶液ないしェマルジヨンの粘度が高くなり、乳化重合自体が不均一となってゲ ル化物が生成しやすくなる。
[0020] 一般に、乳化重合における乳化剤は、疎水性成分を水性媒体中で乳化する役割 を担う。
そのために、乳化剤は、親水性部分と疎水性部分とを有することが必須である。
COOH基を有するアクリル系共重合体 (B1)は、親水性部分として COOH基を有 している。すなわち、 COOH基を有するアクリル系共重合体 (B1)は、 COOH基を有 するエチレン性不飽和モノマーを共重合成分として含むものであり、この COOH基を 有するエチレン性不飽和モノマーは、共重合に供されるモノマー 100重量%中に少 なくとも 10重量%以上含まれることが好ましぐ 20〜80重量%含まれることがより好ま しい。
[0021] この共重合成分である、 COOH基を有するエチレン性不飽和モノマーとしては、(メ タ)アクリル酸、(無水)ィタコン酸、(無水)マレイン酸が挙げられる。これらは単独で、 または複数種を組み合わせて使用することができる。
[0022] COOH基を有するアクリル系共重合体 (B1)は、疎水性部分を有することも重要で ある。そこで、 COOH基を有するアクリル系共重合体 (B1)を構成し得る、 COOH基 を有するエチレン性不飽和モノマー以外のモノマーとして、スチレン、 α—メチルスチ レン、ベンジル(メタ)アタリレート、フエノキシェチル(メタ)アタリレート、フエノキシプロ ピル (メタ)アタリレートなどの芳香環を有するエチレン性不飽和モノマー、または、へ キシル (メタ)アタリレート、ェチルへキシル (メタ)アタリレート、ノ-ル (メタ)アタリレート
、デシル (メタ)アタリレート、ラウリル (メタ)アタリレートなどの炭素原子数 6以上のアル キル鎖を有するエチレン性不飽和モノマーを共重合成分に有することが好まし 、。さ らに、 COOH基を有するエチレン性不飽和モノマー以外のモノマーとして、前記ェチ レン性不飽和モノマー (A1)と同様のものが例示できる。
[0023] 例えば、 COOH基を有するアクリル系共重合体(B1)は、 N—アルコキシアルキル( メタ)アクリルアミド、 N—ヒドロキシアルキル (メタ)アクリルアミド、および (メタ)アクリル アミドカもなる群より選ばれるアミド系モノマーを少なくとも 1種含有するモノマーと、 C OOH基を有するエチレン性不飽和モノマーとの共重合により得られる共重合体とす ることちでさる。
N—アルコキシアルキル (メタ)アクリルアミド、 N—ヒドロキシアルキル(メタ)アクリル アミド、および (メタ)アクリルアミドからなる群より選ばれるアミド系モノマーは、硬化塗 膜を形成する際に自己架橋反応したり、 COOH基含有成分 (B)の COOH基、後述 するフエノール榭脂等とも架橋したりできる。これにより、硬化塗膜の硬化性、またそ の他の物'性がより向上する。
[0024] COOH基を有するアクリル系共重合体 (B1)は、通常の方法で、溶剤中で溶液重 合によって得ることができ、可能であれば、水性媒体中での重合による合成や、塊状 重合による合成でもよい。
COOH基を有するアクリル系共重合体 (B1)が、 COOH基以外に架橋反応性の官 能基をもたない場合、アクリル系共重合体 (B1)は、有機溶剤を用いずに、塊状重合 によって合成することができる。
[0025] 一般に、乳化重合は有機溶剤の存在しない状態で行うことが多ぐ有機溶剤が存 在しても、系全体中の有機溶剤の割合があまり多くないほうが好ましい場合が多い。 有機溶剤の割合が多い場合、重合の転ィ匕率が悪くなつたり、塗膜の物性が悪くなつ たりする場合がある。
したがって、被乳化成分 (A)をラジカル重合する際に、溶液重合によって得たアタリ ル系共重合体 (B 1 )を乳化剤として用いるためには、アクリル系共重合体 (B 1 )重合 時の有機溶剤を留去しておく必要がある場合が多 、。
有機溶剤を留去する方法は、通常の減圧法を用いた脱溶剤の方法が用いられる。
[0026] COOH基を有するアクリル共重合体 (B1)の酸価は、その乳化力および得られる塗 膜の耐水性の観点から、 150〜500 (mgKOH/g)であることが好ましぐ 200〜45 0 (mgKOH/g)であることがより好まし!/ヽ。
[0027] COOH基含有性分 (B)としては、上記アクリル系共重合体 (B1)以外に、 COOH 基を含有するポリエステル榭脂、アクリル変性ポリエステル榭脂、セルロース系榭脂、 ポリビニルアルコールまたはその誘導体等の、水に溶解または分散可能な成分も用 いることがでさる。
COOH基含有成分 (B)は、後述するように、塩基性化合物 (C)および水 (D)を用 V、て水に溶解した状態や水に分散した状態 (すなわち、ポリマーの水溶液な!/、しエマ ルジョン (M) )とし、そこに被乳化成分 (A)を添加するが、水に溶解した状態にしてお くことが好ましい。
[0028] く塩基性ィ匕合物 (C) >
塩基性化合物(C)は、 COOH基含有成分 (B)中の COOH基の一部または全部を 中和し、 COOH基含有成分 (B)の水溶液またはェマルジヨンを得るために用いられ るものである。
[0029] 塩基性化合物(C)としては、有機アミンィ匕合物、アンモニア、アルカリ金属の水酸化 物等が挙げられる。これらは単独で、または複数種を組み合わせて用いることができ る。
有機アミンィ匕合物の例としては、モノメチルァミン、ジメチルァミン、トリメチルァミン、 モノェチルァミン、ジェチルァミン、トリエチルァミン、モノプロピルァミン、ジプロピル ァミン、モノエタノールァミン、ジエタノールァミン、トリエタノールァミン、 N, N ジメチ ルーエタノールァミン、 N, N ジェチルーエタノールァミン、 2—ジメチルアミノー 2— メチルー 1 プロパノール、 2—アミノー 2—メチルー 1 プロパノール、 N—メチルジ エタノールァミン、 N ェチルジェタノールァニン、モノイソプロパノールァミン、ジイソ プロパノールァミン、トリイソプロパノールァミン等が挙げられる。
アルカリ金属の水酸ィ匕物としては、水酸化リチウム、水酸化ナトリウム、水酸化力リウ ム等が挙げられる。
これら塩基性ィ匕合物(C)は、 COOH基含有成分 (B)中の COOH基 100モル%に 対して、 20〜70モル%の中和率で使用することが好ましい。
[0030] <水(D) >
水 (D)は、複合ィ匕ポリマー (F)を重合する際には、 COOH基含有成分 (B)と塩基 性化合物(C)とともに、ポリマーの水溶液ないしェマルジヨン (M)を形成する。
被乳化成分 (A) 100重量部に対して、水(D)は、 100〜1000重量部であることが 好ましぐ 200〜600重量部であることがより好ましい。
[0031] 複合化ポリマー (F)の合成に際し、乳化を補助する目的で、水溶性の溶剤を加える こともできる。一般に、乳化重合は溶剤の存在しない状態で行うことが多いが、水溶 性の溶剤は、乳化を補う役割をすることがある。
[0032] <重合開始剤 (E) >
重合開始剤 (ラジカル重合開始剤または開始剤)は、大きぐ水溶性開始剤と非水 溶性開始剤とに分けられる。それぞれの重合開始剤は、エチレン性不飽和モノマー のラジカル重合を開始させ、様々な重合度の分子の集合である重合体を生成する。 比較的重合度の小さい分子に着目すると、水溶性開始剤を使用した場合と非水溶 性開始剤を使用した場合とでは、その性質に大きな差が現れてくる。
水溶性開始剤を使用した場合、重合により得られる分子の末端には、開始剤の分 子を形成していた、非常に高い親水性を有する官能基が導入される。そのため、重 合体分子の末端は親水性に富むものとなる。この重合体分子は一種の界面活性剤 的な性質を呈する。このような界面活性剤的な性質は、重合体中に含まれる比較的 重合度の小さい分子に顕著に現れる。その結果、水溶性開始剤を使用して得られる 複合化ポリマーを含有する塗料から形成される塗膜は、複合化ポリマー中に含まれ る比較的重合度の小さい分子の界面活性剤的性質のために、レトルト処理すると白 化し易い。
[0033] これに対して、非水溶性開始剤は、その分子中には高い親水性を有する官能基が 含まれていない。よって、非水溶性開始剤を使用した場合は、重合により得られる分 子の末端は親水性とはならないため、重合体分子は界面活性剤的な性質を呈さな い。そのため、水溶性開始剤を使用する場合に比べて、耐レトルト性に優れる塗膜、 具体的には、レトルト処理しても白化し難い塗膜を形成することができる。
さらに、本発明のようなェマルジヨン構造を取りうる系においては、開始剤組成の粘 度への影響も大きい。水溶性開始剤を用いると、ェマルジヨンを構成する重合体粒子 の表面部に界面活性剤的性質に富む低重合度の分子が位置し、液状媒体である水 に低重合度分子が突き出る形となり、高粘度となる。それに対し、非水溶性開始剤を 用いる場合は、重合体粒子が界面活性剤的な性質を呈しないので、低粘度のエマ ルジョンを得ることができ、低粘度であるためにハイソリッド化 (高固形分化)が可能と なる。
重合開始剤は、被乳化成分 (A)中に含めておくこともできるし、 COOH基含有成 分 (B)等と共に反応槽中に入れておくこともできるし、被乳化成分 (A)を添加する際 または添加した後、別途反応槽中に添加することもできる。重合開始剤は、間欠的滴 下または連続滴下で添加しても良いし、一括して添加しても良い。重合開始剤の添 加量は、特に限定はされず、一般に、被乳化成分 (A)と COOH基含有成分 (B)との 合計 100重量部に対して、 0. 01〜5重量部程度である。
用いられる非水溶性開始剤としては、シクロへキサノンパーオキサイド、 3, 3, 5—ト リメチルシクロへキサノンパーオキサイド、メチルシクロへキサノンパーオキサイド、ァ セチルアセトンパーオキサイド等のケトンパーオキサイド、 1, 1ビス(t ブチルバーオ キシ) 3, 3, 5 トリメチルシクロへキサン、 1, 1—ビス(t ブチルパーォキシ)シクロ へキサン、 2, 2 ビス(t ブチルパーォキシ)オクタン、 n-ブチルー 4, 4 ビス(t ブチルパーォキシ)バレレート、 2, 2—ビス(t ブチルパーォキシ)ブタン等のパー ォキシケタール、ジー t ブチルパーオキサイド、 t ブチルタミルパーオキサイド、ジ タミルパーオキサイド、 a , α,一ビス(t—ブチルパーォキシ—i—プロピル)ベンゼン 、 2, 5 ジメチル 2, 5 ジ(t—ブチルパーォキシ)へキサン、 2, 5 ジメチル 2, 5— ジ(t ブチルパーォキシ)へキシン 3等のジアルキルパーオキサイド、ァセチルバ 一オキサイド、 i-ブチリルパーオキサイド、オタタノィルパーオキサイド、デカノィルパ 一オキサイド、ラウロイルパーオキサイド、 3, 5, 5—トリメチルへキサノィルパーォキ サイド、琥珀酸パーオキサイド、ベンゾィルパーオキサイド、 2, 4ージクロ口べンゾィ ルパーオキサイド等のジァシルバーオキサイド、ジー i プロピルパーォキシジカーボ ネート、ジー 2—ェチルへキシルバーォキシジカーボネート、ジー n プロピルバーオ キシジカーボネート、ビス一(4— tーブチルシクロへキシル)パーォキシジカーボネー ト、ジミリスチノレバーオキシジカーボネート、ジー 2—ェトキシェチノレパーォキシジカー ボネート、ジメトキシ i—プロピルパーォキシジカーボネート、ジ(3—メチルー 3—メ トキシブチノレ)パーォキシジカーボネート、ジァリノレパーォキシジカーボネート等のパ ーォキシジカーボネート、 t ブチルパーォキシアセテート、 t ブチルパーォキシ i ーブチレート、 t ブチルパーォキシビバレート、タミルパーォキシネオデカノエート、 t ブチルパーォキシラウェート、 t ブチルパーォキシベンゾエート、タミルパーォキ シォクテート、 t一へキシルバーォキシビバレート、タミルパーォキシネオへキサノエ一 ト等のパーォキシエステル等の各種過酸ィ匕物系開始剤;
ァゾビス— i—ブチロニトリル、ァゾビスメチルブチロニトリル、ァゾビス— (2, 4 ジメ チルバレ口-トリル)、 2, 2'—ァゾビス一(4—メトキシ一 2, 4 ジメチルバレ口-トリル )、 1, 1,一ァゾビス一(シクロへキサン一 1—カルボ-トリル)、 2, 2,一ァゾビスイソ酪 酸ジメチル等の各種ァゾ系開始剤;
等が用いられ、過酸ィ匕物系開始剤が好ましい。これらは単独で用いられるほか、複数 種を併用してもよい。
[0035] く複合ィ匕ポリマー (F) >
本発明における複合ィ匕ポリマー (F)は、上述したように、被乳化成分 (A)と、乳化 剤成分である COOH基含有成分 (B)とから形成される。
形成される複合化ポリマー(F)の Tgは 50〜120°Cであることが重要であり、 50〜1 00°Cであることがより好ましぐ 50〜80°Cであることが一層好ましい。 Tgが 50°C未満 の複合化ポリマー (F)を含有する水性塗料組成物を飲料缶等の内面被覆に使用す ると、内容物の風味成分を吸着してしまい、内容物の味や香りが変化するという風味 保持性の低下が起こる。他方、 Tgが 120°Cを超える複合化ポリマー (F)を含有する 水性塗料組成物の場合は、塗膜の加工性が劣る傾向にあり、さら〖こ、ェマルジヨンの 安定性が低下して、ブッが発生し易くなるとの問題もある。
[0036] 複合化ポリマー (F)の Tgは、構成成分の各 Tgと組成比とから、常法に従って求め ることができる。例えば、被乳化成分 (A)としてポリエステル榭脂等を含まずエチレン 性不飽和モノマー (A1)のみを使用し、乳化剤成分としてもポリエステル榭脂等を含 まず COOH基を有するアクリル系共重合体 (B1)のみを使用する場合は、アクリル系 共重合体 (B1)を構成する各モノマーおよびエチレン性不飽和モノマー (A1)力もそ れぞれ形成され得る各ホモポリマーの Tgと、それらの各モノマーの組成比から、常法 に従って計算によって求めることができる。
被乳化成分 (A)や乳化剤成分としてポリエスエル榭脂等を含有する場合には、ポリ エステル榭脂等の Tgと、複合化ポリマー中に含まれるポリエステル榭脂等の割合に 基づいて、同様に求めることができる。
[0037] つまり、被乳化成分 (A)、 COOH基含有成分 (B)の各 Tgや組成比を制御すること によって、複合ィ匕ポリマー (F)全体の Tgが 50〜120°Cとなるように制御することが重 要である。
そして、主として複合ィ匕ポリマーのコア部を構成すると考えられる被乳化成分 (A)か ら形成され得るポリマーの Tgは、主として複合ィ匕ポリマーのシェル部を構成すると考 えられる乳化剤成分 (B)の Tgよりも相対的に低いことが、硬化塗膜の耐食性や加工 性、密着性の点で好ましい。具体的には、複合ィ匕ポリマー (F)およびポリマー組成物 全体の Tgが 50〜120°Cであって、被乳化成分 (A)力も形成され得るポリマーの Tg は 30〜100°C、乳化剤成分(B)の Tgは 50〜130°Cであることが好ましい。
[0038] 一般に、水性媒体中の乳化剤ミセルを利用してモノマーを重合する乳化重合は、 その特有の重合機構に基づき、溶液重合では得られな!/、高分子量のポリマーを得る ことができる。
本発明の場合も、複合化ポリマー (F)は、これらを構成する成分、組成等から求め られる Tgが 50〜120°Cと比較的高いにも関わらず、単なる溶液重合の場合よりも高 分子量化している。その結果、この複合化ポリマー (F)を含有する水性塗料組成物 は、加工性が良好で、かつ、風味成分吸着性の少ない塗膜を形成することができると 考察される。
[0039] 複合化ポリマー (F)において、被乳化成分 (A) 100重量部に対し、 COOH基含有 成分 )は 5〜300重量部であることが好ましぐ 10〜200重量部であることがより好 ましぐ 20〜: LOO重量部であることがさらに好ましい。
被乳化成分 (A) 100重量部に対し、 COOH基含有成分 (B)が 5重量部より少ない 場合、被乳化成分 (A)や重合後の複合ィ匕ポリマー (F)が乳化されに《なる傾向に ある。一方、被乳化成分 (A) 100重量部に対して、 COOH基含有成分 (B)が 300重 量部より多い場合、以下の理由から、焼き付け硬化後の塗膜の加工性向上があまり 期待できない。すなわち、被乳化成分 (A)は、ラジカル重合によって非常に高分子 量になる成分であり、これが硬化塗膜の加工性の向上に寄与することとなる。従って 、乳化剤成分たる COOH基含有成分 (B)が 300重量部よりも多くなると、相対的に 被乳化成分 (A)が少なくなり、その結果硬化塗膜の加工性の向上があまり期待でき なくなる。
[0040] 複合化ポリマー(F)のェマルジヨンは、たとえば、
数平均分子量 2万〜 10万の COOH基を有するアクリル系共重合体 (B1)を含有す る COOH基含有成分 (B)、塩基性化合物(C)、および水(D)を含有してなるポリマ 一の水溶液な 、しェマルジヨン(M)を調製すること;
このポリマーの水溶液ないしェマルジヨン(M)に、エチレン性不飽和モノマー(A1) を含有する被乳化成分 (A)および重合開始剤 (E)を添加し、被乳化成分 (A)をラジ カル重合すること;
を含む方法により製造できる。
[0041] くフ ノール榭脂(G) >
フエノール榭脂(G)は、上記複合化ポリマー (F)とともに水性塗料組成物の構成成 分となり、複合化ポリマー (F)中の COOH基、 OH基、アミド系モノマー等に由来する 架橋性官能基と反応し得る。
その反応には、フエノール榭脂のメチロール基が大きく関与しており、塗膜の造膜 性の観点から、フエノール榭脂(G)は、ベンゼン環 1個に対し、メチロール基を 0. 5個 以上含有していることが望ましい。さらには、同様に造膜性の観点から、このベンゼン 環 1個に対するメチロール基の数は、 2. 0個以下であることが好ましい。
[0042] フ ノール榭脂を製造する際には、理論官能性水素が重要になる。ここで、フエノー ル類の理餘官能性水素とは、アルデヒド類が反応し得るフエノール類の反応部位の 水素をいう。すなわち、フエノール類は、フエノール性の水酸基に対して、 o位と p位が 反応部位となる。
従って、オルトクレゾール、パラクレゾール、パラフエ-ルフエノール、パラノ-ルフエ ノール、 2, 3—キシレノール、 2, 5—キシレノール等は、 1分子中に反応部位が 2箇 所ある、当量数が 2のフ ノール類である。
フエノール、メタクレゾール、 3, 5—キシレノール、レゾルシノール等は 1分子中に反 応部位が 3箇所ある、当量数が 3のフエノール類である。
カテコール、ノ、イド口キノン等は 1分子中に反応部位力 S4箇所ある、当量数が 4の一 核体フエノール類である。ビスフエノール類は 1分子中に反応部位力 箇所ある、当 量数が 4の二核体フエノール類である。ビスフエノール類としては、一例を挙げると、 ビスフエノーノレ A、ビスフエノーノレ F、ビスフエノーノレ B、ビスフエノール E、ビスフエノー ル11、ビスフエノール Sなどがある。
フエノール榭脂(G)は、これらのフエノール類のいずれかを単独で用いたフエノー ル榭脂でもよ 、し、これらの複数種を用いて得られたフ ノール榭脂でもよ 、。
[0043] フエノール榭脂のメチロール基含有率は、 13C-NMRによって測定することができ る。 13C- NMRの NNE法および DEPT法で構造解析を行うと、メチロール基の炭素 ピークは約 60ppmに現れ、ベンゼン環に由来する炭素ピークは約 100〜150ppm に現れる。それらの積分比により、フエノール榭脂のメチロール基含有率を求めること ができる。
メチロール基の含有率は、モノマーの理論官能性水素数が大きな要因となり、理論 官能性水素数が多いほど、メチロール基含有量は多くなる。また、榭脂の分子量も要 因のひとつである。分子量を大きくするためには、メチロール基と他の官能基を縮合 させなければならな 、ため、分子量が大き!/、ほどメチロール基含有率は少なくなる。 これらを考慮した場合、理論官能性水素数 3以上のフエノール類を用いた、数平均 分子量(Mn) 500〜2000程度のフエノール榭脂(G)が好まし!/ヽ。
[0044] アルデヒド類としては、ホルムアルデヒド、ァセトアルデヒド等が使用できる。ホルムァ ルデヒドの供給源としては、ホルマリン、ホルミット NB (ホルムアルデヒドの n—ブタノ ール溶液)、ホルミット IB (ホルムアルデヒドのイソプロパノール溶液)、パラホルムアル デヒド、トリオキサンなどを使用することができる。これらのアルデヒド類は、 2種類以上 を併用することちできる。
[0045] フエノール榭脂 (G)製造時の触媒としては、塩酸、硫酸、リン酸、酢酸等の酸触媒 や、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の アルカリ金属の水酸ィ匕物、アルカリ土類金属の水酸化物、アンモニア等の塩基性触 媒を使用することができる。なかでも、アルカリ金属の水酸ィ匕物またはアルカリ土類金 属の水酸化物が好ましい。これらの触媒は、 2種類以上を併用することもできる。 これらの触媒は、使用するフエノール類 1モルに対して、 0. 05モル以上用いること 力 S好ましく、 0. 05〜0. 5モノレ用!/、ること力より好まし!/ヽ。 0. 05モノレよりも少な!/ヽとァ ルデヒド類との反応性が劣り、未反応物が残り、結果として衛生性に劣る恐れがある。 0. 5モルよりも多く用いた場合には、得られるフエノール榭脂の、塗料用の汎用的な 溶剤に対する溶解性が悪くなる傾向があり、塗料組成物として応用する際にフエノー ル榭脂 (G)が析出し易くなる。
[0046] フエノール榭脂 (G)の製造方法の具体例を、以下に示す。
フエノール類と当該フエノール類の理論官能性水素 1当量に対して 0. 75〜4. 0当 量のアルデヒド類の混合液に、反応用触媒として、アルカリ金属の水酸化物等の触 媒を添カ卩し、 30°C〜100°Cで数平均分子量(Mn)が 500〜1500程度になるまで反 応させた後、酸で中和し、生成した塩を水洗 *除去し、脱水および濃縮し、アルカリレ ゾール榭脂を得る。
アルカリ金属の水酸ィ匕物等を中和する際に用いる酸としては、塩酸、硫酸、リン酸、 シユウ酸、酢酸、ギ酸、パラトルエンスルホン酸、安息香酸などが例示できる。
[0047] フエノール榭脂 (G)は複合ィ匕ポリマー (F)に対して、造膜性と加工性の観点から、 榭脂固形分で (G)Z(F) =0. 1/99. 9〜: LOZ90であることが好ましぐさらに榭脂 固形分で(G)Z(F) =0. 1/99. 9〜5Z95であることがより好ましい。
水性塗料組成物は、複合ィ匕ポリマー (F)とフエノール榭脂 (G)を合計で、固形分と して、 10〜40重量%含むことが好ましい。
[0048] 以下に、上記した複合ィ匕ポリマー (F)ェマルジヨン、およびフエノール榭脂(G)以外 に、必要に応じて水性塗料組成物がさらに含むことのできる成分を記載する。 水性塗料組成物には、塗膜の硬化性や密着性を向上させる目的で、アミノ榭脂、 ポリビュルアルコール、ポリビュルアルコールの誘導体等の硬化剤を 1種または 2種 以上添加することができる。
[0049] 水性塗料組成物には、必要に応じて、製缶工程における塗膜の傷つきを防止する 目的で、ワックス等の滑剤を添加することもできる。
ワックスとしては、カルナバワックス、ラノリンワックス、パーム油、キャンデリラワックス 、ライスワックス等の動植物性ワックス、パラフィンワックス、マイクロクリスタリンワックス 、ペトロラタム等の石油系ワックス、ポリオレフインワックス、テフロン (登録商標)ワックス 等の合成ワックス等が好適に用いられる。
[0050] 水性塗料組成物には、塗装性を向上させる目的で、親水性有機溶剤を添加するこ とがでさる。
親水性有機溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコ ーノレジメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、エチレングリコーノレ ジェチノレエーテノレ、エチレングリコールモノ(イソ)プロピルエーテル、エチレングリコ ールジ(イソ)プロピルエーテル、エチレングリコールモノ(イソ)ブチルエーテル、ェチ レングリコールジ(イソ)ブチノレエーテノレ、エチレングリコールモノー tert ブチルエー テノレ、エチレングリコーノレモノへキシノレエーテノレ、 1, 3 ブチレングリコーノレ 3 モ ノメチルエーテル、 3—メトキシブタノール、 3—メチルー 3—メトキシブタノール、ジェ チレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジェ チレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジェ チレングリコールモノ(イソ)プロピルエーテル、ジエチレングリコールジ(イソ)プロピル エーテル、ジエチレングリコーノレモノ(イソ)ブチノレエーテル、ジエチレングリコールジ (イソ)ブチルエーテル、ジエチレングリコールモノへキシルエーテル、ジエチレングリ コールジへキシルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリ コーノレモノメチノレエーテノレ、プロピレングリコーノレモノェチノレエーテノレ、プロピレングリ コーノレモノ(イソ)プロピルエーテル、プロピレングリコールモノ(イソ)ブチルエーテル 、プロピレングリコールジメチノレエーテル、プロピレングリコールジェチノレエ一テル、プ ロピレングリコールジ(イソ)プロピルエーテル、プロピレングリコールジ(イソ)ブチルェ 一テル、ジプロピレングリコーノレモノメチノレエーテル、ジプロピレングリコーノレモノェチ ノレエーテノレ、ジプロピレングリコールモノ(イソ)プロピルエーテル、ジプロピレングリコ ールモノ(イソ)ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピ レングリコールジェチルエーテル、ジエチレングリコールジ(イソ)プロピルエーテル、 ジプロピレングリコールジ (イソ)ブチルエーテル、等の各種エーテルアルコール類ま たはエーテル類;
メチノレアノレコーノレ、ェチノレアノレコーノレ、プロピノレアノレコーノレ、イソプロピノレアノレコー ル、ブチルアルコール、イソブチルアルコール、 sec ブチルアルコール、 tert ブ チルアルコール、フルフリルアルコール等のアルコール類;
メチルェチルケトン、ジメチルケトン、ジアセトンアルコール等のケトン類; エチレングリコーノレ、ジエチレングリコール、プロピレングリコール、ジプロピレングリ コール等のグリコール類;
エチレングリコーノレモノメチノレエーテノレアセテート、エチレングリコーノレモノェチノレエ 一テルアセテート、 1ーメトキシ 2—プロピルアセテート、プロピレングリコールモノメ チルエーテルアセテート等のエステル類またはエステルアルコール類;
等が挙げられ、これらは単独で、または 2種以上を組み合わせて使用できる。
[0051] その他、水性塗料組成物には、塗装性を向上させる目的で、疎水性有機溶剤や、 界面活性剤、消泡剤等の各種助剤を任意に添加することもできる。
[0052] 本発明に係る水性塗料組成物は、飲料や食品を収容する缶の内外面被覆用塗料 として好適に用いられ、特に缶内面被覆用に好適である。しかし、缶のみならず、一 般の金属素材や金属製品等にも広く用いることもできることは言うまでもない。
缶または金属製品等の素材としては、アルミニウム、錫メツキ鋼板、クロム処理鋼板
、ニッケル処理鋼板等が用いられる。これらの素材は、ジルコニウム処理や燐酸処理 等の表面処理が施されて 、てもよ 、。
[0053] 水性塗料組成物の塗装方法としては、エアースプレー、エアレススプレー、静電ス プレー等のスプレー塗装が望ましい。しかし、ロールコーター塗装、浸漬塗装、電着 塗装等でも塗装することができる。
この水性塗料組成物は、塗装した後、揮発成分を揮発させただけでも皮膜を形成 できるが、優れた耐蒸気殺菌性や加工性、密着性を得るためには焼き付け工程をカロ えることが好ましい。焼き付けの条件としては、特に限定はされないが、一般には 150 °C〜280°Cの温度で 10秒〜 30分間焼き付けることが望ましい。
実施例
[0054] 以下に、合成例、比較合成例、実施例、比較例により本発明を説明する。例中、部 とは重量部、%とは重量%をそれぞれ表す。
[0055] 1.配合成分の合成
<合成例 1 > COOH基を有するアクリル系共重合体 (B— 1)およびこれを含むポリ マー水溶液 (M— 1)の合成
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に
、 n—ブタノール 200部を仕込んで、 90°Cまで昇温した。反応容器内の温度を 90°C に保ちながら、メタクリル酸 80部、スチレン 70部、アクリル酸ェチル 40部、 N—ブトキ シメチルアクリルアミド 10部および過酸ィ匕ベンゾィル 2部力もなる混合物を、滴下槽か ら 4時間にわたつて連続滴下した。
滴下終了から 1時間後および 2時間後に過酸ィヒベンゾィル 0. 2部をそれぞれ添カロ し、滴下終了から 3時間にわたって反応を続け、数平均分子量 25000、ガラス転移 温度 75°C、酸価 261 (mgKOHZg)、固形分 50%のアクリル系共重合体 (B— 1)を 得た。
次に、ジメチルエタノールァミン 24. 8部を添加して、 10分間攪拌した後、イオン交 換水 775部を加えて水分散化させた。
その後、減圧下で n—ブタノールとイオン交換水を合計で 400部留去させ、不揮発 分 25%の COOH基を有する水性アクリル共重合体の水溶液 (M— 1)を得た。
[0056] <合成例 2>COOH基を有するアクリル系共重合体 (B— 2)およびこれを含むポリマ 一水溶液 (M— 2)の合成
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、エチレングリコールモノブチルエーテル 100部、イオン交換水 100部を仕込んで、 9 0°Cまで昇温した。反応容器内の温度を 90°Cに保ちながら、メタクリル酸 130部、ス チレン 26部、アクリル酸ェチル 34部、 N—ブトキシメチルアクリルアミド 10部および過 酸ィ匕ベンゾィル 2部からなる混合物を滴下槽カゝら 4時間にわたって連続滴下した。 滴下終了から 1時間後および 2時間後に過酸ィヒベンゾィル 0. 2部をそれぞれ添カロ し、滴下終了から 3時間にわたって反応を続け、数平均分子量 50000、ガラス転移 温度 86°C、酸価 424 (mgKOHZg)、固形分 50%のアクリル系共重合体 (B— 2)を 得た。
次に、ジメチルエタノールァミン 40. 4部を添加して、 10分間攪拌した後、イオン交 換水 359. 6部を加えて水分散化させ、不揮発分 25%の COOH基を有する水性ァ クリル共重合体の水溶液 (M— 2)を得た。
[0057] く合成例 3 >フエノール榭脂 (G- 1)の合成
攪拌機、温度計、還流冷却管、および窒素ガス導入管を備えた反応容器に、 m-ク レゾール 108部、 37%ホルマリン 365部を仕込み、攪拌しながら、 25%水酸化ナトリ ゥム水溶液 32部を添カ卩し、 80°Cで 3時間反応させた。ここに、 n—ブタノールを 300 部加えて冷却した後、 20%塩酸 30部をカ卩え、水酸ィ匕ナトリウムを中和した。 m-クレゾ ールの理論官能性水素 1当量に対するホルムアルデヒドは 1. 5当量であった。 水層を分離し、フエノール榭脂の溶液層を取り出し、水洗を行い、減圧脱水、減圧 濃縮して、不揮発分 35%の精製した榭脂溶液を得た。得られたフエノール榭脂の数 平均分子量は 1020、メチロール基はベンゼン環 1個に対し 0. 8個であった。これを フエノール榭脂(G— 1)とする。
[0058] <合成例 4 >フエノール榭脂(G - 2)の合成
m-タレゾールに代えて石炭酸 93部を用いるようにする他は、上記合成例 3と同様 に合成した。石炭酸の理論官能性水素 1当量に対するホルムアルデヒドは 1. 5当量 であった。得られたフエノール榭脂の数平均分子量は 910、メチロール基はベンゼン 環 1個に対し 1. 1個であった。これをフエノール榭脂(G— 2)とする。
[0059] <比較例用合成例 1 >COOH基を有するアクリル系共重合体 (B— 3)およびこれを 含むポリマー水溶液 (M— 3)の合成
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、 n—ブタノール 200部を仕込んで、 105°Cまで昇温した。反応容器内の温度を 105 °Cに保ちながら、メタクリル酸 76部、スチレン 30部、アクリル酸ェチル 84部、 N—ブト キシメチルアクリルアミド 10部および過酸ィ匕ベンゾィル 4部力もなる混合物を、滴下槽 力も 4時間にわたって連続滴下した。
滴下終了から 1時間後および 2時間後に過酸ィヒベンゾィル 0. 4部をそれぞれ添カロ し、滴下終了から 3時間にわたって反応を続け、数平均分子量 10000、ガラス転移 温度 43°C、酸価 248 (mgKOHZg)、固形分 50%のアクリル系共重合体 (B— 3)を 得た。
次に、ジメチルエタノールァミン 23. 6部を添加して、 10分間攪拌した後、イオン交 換水 776部を加えて水分散化させた。
その後、減圧下で n—ブタノールとイオン交換水を合計で 400部留去させ、不揮発 分 25%の COOH基を有する水性アクリル共重合体水溶液 (M- 3)を得た。
[0060] <比較例用合成例 2 >フエノール榭脂(G— 3)の調製
攪拌機、温度計、還流冷却管、および窒素ガス導入管を備えた反応容器に、 m-ク レゾール 108部、 37%ホルマリン 365部を仕込み、攪拌しながら、 25%水酸化ナトリ ゥム水溶液 32部を添カ卩し、 80°Cで 3時間反応した後、 n—ブタノールを 300部加え 冷却した後、 20%塩酸 40部を力卩ぇ水酸ィ匕ナトリウムを中和した。 m-クレゾ一ルの理 論官能性水素 1当量に対するホルムアルデヒドは 1. 5当量であった。
水層を分離し、フエノール榭脂の溶液層を取り出し、水洗を行い、脱水、濃縮して、 不揮発分 35%の精製した榭脂溶液を得た。得られたフ ノール榭脂の数平均分子 量は 1280、メチロール基はベンゼン環 1個に対し 0. 4個であった。これをフエノール 榭脂 (G— 3)とする。
[0061] 2.水性塗料組成物の製造
[実施例 1]
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、合成例 1で得られた COOH基含有アクリル共重合体 (B— 1)水溶液 (M— 1) 120 部、イオン交換水 95部を仕込み、窒素ガスを導入しつつ、攪拌しながら 90°Cまで昇
¾Lしプ 。
次に、滴下槽 1にスチレン 39. 0部、アタリノレ酸ェチノレ 23. 5部、および N—ブトキシ メチルアクリルアミド 7. 5部を仕込み、滴下槽 2に過酸ィ匕ベンゾィル 0. 2部をトルエン 6部に溶解させたものを仕込み、夫々同時に 3時間かけて、反応容器内の温度を 90 °Cに保ちながら、攪拌下に滴下し、理論 Tgが 54°Cの複合ィ匕ポリマー (F— 1)のエマ ノレジョンを得た。
その後、イオン交換水 109部、 n—ブタノ一ノレ 50部、エチレングリコーノレモノブチノレ エーテル 50部、およびフエノール榭脂(G— 1) 2. 9部添カ卩し、 5 mのフィルターで 濾過して内容物を取り出し、不揮発分が 20%、理論 Tgが 54°Cの水性塗料組成物 1 を得た。
[0062] [実施例 2]
実施例 1と同様にして複合ィ匕ポリマー (F— 1)ェマルジヨンを得た後、イオン交換水 109部、 n—ブタノール 50部、エチレングリコールモノブチルエーテル 50部、フエノー ル榭脂 (G- 1) 14. 5部添カ卩し、 5 μ mのフィルターで濾過して内容物を取り出し、不 揮発分が 20%、理論 Tgが 55°Cの水性塗料組成物 2を得た。
[0063] [実施例 3]
実施例 1と同様に複合ィ匕ポリマー (F— 1)ェマルジヨンを得た後、イオン交換水 109 部、 n—ブタノール 50部、エチレングリコールモノブチルエーテル 50部、フエノール 榭脂(G— 2)を 14. 5部添カ卩し、 5 mのフィルターで濾過して内容物を取り出し、不 揮発分が 20%、理論 Tgが 55°Cの水性塗料組成物 3を得た。
[0064] [実施例 4]
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、合成例 2で得られた COOH基含有アクリル共重合体 (B— 2)水溶液 (M— 2) 120 部、イオン交換水 95部を仕込み、窒素ガスを導入しつつ、攪拌しながら 90°Cまで昇
¾Lしプ 。
次に、滴下槽 1にスチレン 39部、アタリノレ酸ェチノレ 23. 5部、および N—ブトキシメ チルアクリルアミド 7. 5部を仕込み、滴下槽 2に過酸化ベンゾィル 0. 2部をトルエン 6 部に溶解させたものを仕込み、夫々同時に 3時間かけて反応容器内の温度を 90°C にたもちながら、攪拌下に滴下し、理論 Tgが 56°Cの複合ィ匕ポリマー (F— 2)のエマ ノレジョンを得た。
その後、イオン交換水 109部、 n—ブタノ一ノレ 50部、エチレングリコーノレモノブチノレ エーテル 50、フエノール榭脂(G— 1)を 14. 5部添加し、 5 μ mのフィルターで濾過し て内容物を取り出し、不揮発分が 20%、理論 Tgが 57°Cの水性塗料組成物 4を得た
[0065] [実施例 5]
過酸化ベンゾィルの代わりに、 2, 2'—ァゾビスイソブチ口-トリルを用いた以外は、 実施例 2と同様の方法で、不揮発分が 20%、理論 Tgが 55°Cの水性塗料組成物 5を 得た。
[0066] [実施例 6]
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、合成例 1で得られた COOH基含有アクリル共重合体 (B— 1)水溶液 (M— 1) 200 部、イオン交換水 35部を仕込み、窒素ガスを導入しつつ、攪拌しながら 90°Cまで昇
¾Lしプ 。
次に、滴下槽 1にスチレン 27. 8部、アクリル酸ェチル 16. 8部、および N—ブトキシ メチルアクリルアミド 5. 4部を仕込み、滴下槽 2に過酸化ベンゾィル 0. 2部をトルエン 6部に溶解させたものを仕込み、夫々同時に 3時間かけて反応容器内の温度を 90°C にたもちながら、攪拌下に滴下し、理論 Tgが 59°Cの複合ィ匕ポリマー (F— 3)のエマ ノレジョンを得た。
その後、イオン交換水 109部、 n—ブタノ一ノレ 50部、エチレングリコーノレモノブチノレ エーテル 50部、フエノール榭脂(G— 1) 14. 5部添加し、 5 μ mのフィルターで濾過し て内容物を取り出し、不揮発分が 20%、理論 Tgが 60°Cの水性塗料組成物 6を得た
[0067] [比較例 1]
実施例 1と同様に複合ィ匕ポリマー (F— 1)ェマルジヨンを得た後、イオン交換水 109 部、 n—ブタノール 50部、エチレングリコールモノブチルエーテル 50部を添カ卩し、 5 /z mのフィルターで濾過して内容物を取り出し、不揮発分が 20%、理論 Tgが 54°Cの 水性塗料組成物 7を得た。
[0068] [比較例 2]
実施例 1と同様に複合ィ匕ポリマー (F— 1)ェマルジヨンを得た後、イオン交換水 109 部、 n—ブタノール 50部、エチレングリコールモノブチルエーテル 50部、フエノール 榭脂(G— 3) 14. 5部添カ卩し、 5 mのフィルターで濾過して内容物を取り出し、不揮 発分が 20%、理論 Tgが 55°Cの水性塗料組成物 8を得た。
[0069] [比較例 3]
攪拌機、温度計、還流冷却管、滴下槽および窒素ガス導入管を備えた反応容器に 、比較合成例 1で得られた COOH基含有アクリル共重合体 (B— 3)水溶液 (M— 3) 120部、イオン交換水 95部を仕込み、窒素ガスを導入しつつ、攪拌しながら 90°Cま で昇温した。
次に、滴下槽 1にスチレン 39部、アタリノレ酸ェチノレ 23. 5部、および N—ブトキシメ チルアクリルアミド 7. 5部を仕込み、滴下槽 2に過酸化ベンゾィル 0. 2部をトルエン 6 部に溶解させたものを仕込み、夫々同時に 3時間かけて反応容器内の温度を 90°C にたもちながら、攪拌下に滴下し、理論 Tg力 4°Cの複合ィ匕ポリマー (F— 4)のエマ ノレジョンを得た。
その後、イオン交換水 109部、 n—ブタノール 50部、エチレングリコールモノブチル エーテル 50、フエノール榭脂(G— 1)を 14. 5部添加し、 5 μ mのフィルターで濾過し て内容物を取り出し、不揮発分が 20%、理論 Tgが 44°Cの水性塗料組成物 9を得た
[0070] 3.塗膜の評価
実施例 1〜6、比較例 1〜3で得た各水性塗料組成物を用い、厚さ 0. 26mmのァ ルミ板に、乾燥後の膜厚が 5〜6 /ζ πιになるように塗工し、ガスオーブンを用いて雰囲 気温度 200°Cで 3分間焼き付け、評価用テストパネルを得た。
得られた塗膜の性能を、以下のようにして評価した。結果を表 1に示す。
[0071] ぐ塗膜の外観 >
テストパネルの外観を、 目視で評価する。
A:塗膜が平滑で、ブッゃ発泡がな!ヽ。
B :僅かに微細なブッがあるが、実用上、問題ない。
C :塗膜にブッが多ぐ実用上、問題がある。
D :塗膜の全面に、著しくブッがある。 [0072] <硬化性 >
2ポンドハンマーにガーゼを卷 、て MEK (メチルェチルケトン)を含浸させ、テスト パネルの塗膜上を往復させて、下地のアルミが露見するまでの回数を求める。
A: 200回以上
B : 100回以上 200回未満
C : 50回以上 100回未満
D : 50回未満
[0073] <耐食性>
テストパネルを 40 X 80mmに切断し、塗膜を外側(凸型)にしてデュポン衝撃(lZ 2インチ、 500g、 30cm)を加えた後、テストパネルを市販のスポーツ飲料に浸漬した まま、レトルト釜で 125°C、 30分間レトルト処理を行った。その後、浸漬したまま 50°C で 3日間保存した。 4日後に取り出して、平面部およびデュポン衝撃部のブリスターを 評価した。
A:ブリスターの発生なし
B:デュポン衝撃部にブリスター発生、 5mm未満
C:デュポン衝撃部にブリスター発生、 5mm以上
D :平面部にプリスター発生
[0074] <耐レトルト密着性 >
テストパネルを水に浸漬したまま、レトルト釜で 130°C、 1時間レトルト処理を行った 。その塗面にクロスカットをした後、セロハン粘着テープを貼着し、強く剥離したのち の塗面の評価を行った。
A:全く剥離なし
B : 5%未満の剥離あり
C: 5%以上 50%未満の剥離あり
D : 50%以上の剥離あり
[0075] <耐レトルト白化 >
テストパネルを水に浸漬したまま、レトルト釜で 130°C、 1時間レトルト処理を行い、 塗膜の外観を目視で評価した。 A:未処理の塗膜と変化なし
B :ごく薄く白ィ匕
C :やや白化
D :著しく白ィ匕
[0076] <加工性 >
テストパネルを大きさ 30mm X 50mmに切断し、塗膜を外側にして、試験部位が 3 Ommの幅になるように手で予め折り曲げ、この 2つ折りにした試験片の間に厚さ 0. 2 6mmのアルミ板を 2枚はさみ、 1kgの荷重を高さ 40cmから折り曲げ部に落下させて 完全に折り曲げた。
次いで、試験片の折り曲げ先端部を濃度 1%の食塩水中に浸漬させ、試験片の、 食塩水中に浸漬されていない金属部分と、食塩水との間を 6. 0V X 6秒通電した時 の電流値を測定した。
塗膜の加工性が乏しい場合、折り曲げ加工部の塗膜がひび割れて、下地の金属 板が露出して導電性が高まるため、高い電流値が得られる。
A: l. OmA未満
B : l. OmA以上 10mA未満
C: 10mA以上 20mA未満
D : 20mA以上
[0077] <レトルト後の加工性 >
テストパネルを水に浸漬したまま、レトルト釜で 130°C、 1時間レトルト処理を行った 処理したテストパネルを用いて、上記く加工性 >と同様にして、電流値を測定した
A : 10mA未満
B: 10mA以上 20mA未満
C: 20mA以上 50mA未満
D : 50mA以上
[0078] <水フレーバー性 > 各水性塗料組成物を 0. 1mmアルミ箔に両面塗工し、 200°Cで 2分間加熱して硬 化させ(膜厚 5〜6 μ m)、得られたテストパネル(2)を 10cm X 25cm (両面 500cm2) の大きさに切断した。
この切断後のテストパネル(2)を、活性炭処理した水道水 500gとともに耐熱瓶に入 れ、密栓し、 125°Cで 30分間のレトルト処理を行い、その後、風味試験を実施した。 風味試験の比較対照として、塗板を入れな 、ブランクも同時に処理した。
A:無味 (ブランクと同程度)
B :僅かに味がする
C :味がする
D :かなり味がする
[0079] <耐風味吸着性 >
容量 12リットルのデシケ—ター中に、 100mm X 160mmのテストパネル(2)、およ び、 100 μ gのリモネンをジェチルエーテルに溶解したものをテストパネル(2)に触れ ないように入れ、デシケーターの蓋をして密閉し、 25°Cで 24時間静置した。
静置後テストパネル (2)を取り出し、直ちに二硫化炭素中に入れて 1時間放置し、 塗膜面に吸着したリモネンを抽出して、ガスクロマトグラフィーでその吸着量 g)を 測定した。
A : 100;^未満
B: 100 g以上 500 μ g未満
C: 500 g以上 2000 μ g未満
ϋ : 2000 /ζ 8以上
[0080] く塗料造膜性〉
内径約 7. 5cm、高さ約 12cm、容量約 350mlの有底円筒状のアルミニウム製缶を 正立した状態で、その内面に、各実施例および比較例で得た各水性塗料組成物 lg (固形分として 200mg)をスプレー塗装した。塗装後、缶を横に倒し、 60rpmで 30秒 間横転がり搬送した後、正立した状態で、オーブン中、 200°C、 60秒 (ピーク温度)の 焼き付けを行った。
その後、エナメルレーター (通電試験機)を用い、塗装缶に 1%食塩水を満たし、缶 体を陽極とし、食塩水に陰極を挿入し、 6V、 4秒間の電圧をかけた時の電流値 (初期 缶 ERVともいう)を測定した。この缶 ERVによって、形成された塗膜の均一性や緻密 性を評価できる。
さらにその後、陽極と陰極を反対とし、 6V、 10秒間の電圧 (逆通電ともいう。この操 作で塗膜に弱い衝撃を与える。)をかけ、再度、缶体を陽極とし、食塩水に陰極を挿 入し、 6V、 4秒間の電圧をかけた時の電流値 (後期缶 ERVともいう。塗膜に衝撃を与 えた後の缶 ERVで塗膜の強靭さ、造膜性を評価することができる。)を測定した。塗 料造膜性は、次に示す 4段階によって評価した。
A:電流値が OmA以上〜 1mA未満である。
B:電流値が 1mA以上 3mA未満である。
C:電流値が 3mA以上 1 OmA未満である。
D:電流値が 10mA以上である。
[表 1]
Figure imgf000029_0001

Claims

請求の範囲
[1] エチレン性不飽和モノマー (A1)を含有する被乳化成分 (A)を、数平均分子量 2万 〜: LO万の COOH基を有するアクリル系共重合体 (B1)を含有する COOH基含有成 分 (B)、塩基性化合物(C)、および水(D)を含有してなるポリマーの水溶液な 、しェ マルジヨン (M)の存在下にお 、て、重合開始剤 (E)を用いてラジカル重合してなる、 ガラス転移温度が 50〜120°Cの複合ィ匕ポリマー(F);および
ベンゼン環 1個に対し、 0. 5個以上のメチロール基を有するフエノール榭脂(G);を 含有する水性塗料組成物。
[2] エチレン性不飽和モノマー(A1)力 N—アルコキシアルキル (メタ)アクリルアミド、 N—ヒドロキシアルキル (メタ)アクリルアミド、および (メタ)アクリルアミドからなる群より 選ばれる少なくとも 1種のアミド系モノマーを含有する、請求項 1記載の水性塗料組 成物。
[3] COOH基を有するアクリル系共重合体 (B1)力 N—アルコキシアルキル (メタ)ァク リルアミド、 N—ヒドロキシアルキル (メタ)アクリルアミド、および (メタ)アクリルアミドから なる群より選ばれる少なくとも 1種のアミド系モノマーを含むモノマーからなる共重合 体である、請求項 1または 2記載の水性塗料組成物。
[4] COOH基を有するアクリル系共重合体(B1)の酸価が、 150〜500 (mgKOHZg) である、請求項 1〜3の!、ずれか 1項記載の水性塗料組成物。
[5] 重合開始剤 (E)が、非水溶性開始剤である、請求項 1〜4のいずれか 1項記載の水 性塗料組成物。
[6] 缶内面被覆用である、請求項 1〜5のいずれか 1項記載の水性塗料組成物。
[7] 請求項 1〜6の 、ずれか 1項記載の水性塗料組成物で缶内面が被覆された、被覆 缶。
[8] エチレン性不飽和モノマー (A1)を含有する被乳化成分 (A)を、数平均分子量 2 万〜 10万の COOH基を有するアクリル系共重合体 (B1)を含有する COOH基含有 成分 (B)、塩基性化合物(C)、および水(D)を含有してなるポリマーの水溶液な!/、し ェマルジヨン (M)に添加し、重合開始剤 (E)を用いてラジカル重合することを含む、 ガラス転移温度が 50〜120°Cの複合ィ匕ポリマー(F)のェマルジヨンの製造方法。
PCT/JP2006/317631 2006-09-06 2006-09-06 Composition aqueuse de revêtement WO2008029454A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317631 WO2008029454A1 (fr) 2006-09-06 2006-09-06 Composition aqueuse de revêtement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317631 WO2008029454A1 (fr) 2006-09-06 2006-09-06 Composition aqueuse de revêtement

Publications (1)

Publication Number Publication Date
WO2008029454A1 true WO2008029454A1 (fr) 2008-03-13

Family

ID=39156899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317631 WO2008029454A1 (fr) 2006-09-06 2006-09-06 Composition aqueuse de revêtement

Country Status (1)

Country Link
WO (1) WO2008029454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001663B2 (en) 2016-10-17 2021-05-11 Dsm Ip Assets B.V. Aqueous dispersion and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217538A (ja) * 1998-02-04 1999-08-10 Kansai Paint Co Ltd 水性塗料組成物
JP2005179491A (ja) * 2003-12-19 2005-07-07 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2005307065A (ja) * 2004-04-23 2005-11-04 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2006077142A (ja) * 2004-09-10 2006-03-23 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2006249282A (ja) * 2005-03-11 2006-09-21 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217538A (ja) * 1998-02-04 1999-08-10 Kansai Paint Co Ltd 水性塗料組成物
JP2005179491A (ja) * 2003-12-19 2005-07-07 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2005307065A (ja) * 2004-04-23 2005-11-04 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2006077142A (ja) * 2004-09-10 2006-03-23 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物
JP2006249282A (ja) * 2005-03-11 2006-09-21 Toyo Ink Mfg Co Ltd ポリマーエマルジョン含有水性塗料組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001663B2 (en) 2016-10-17 2021-05-11 Dsm Ip Assets B.V. Aqueous dispersion and uses thereof

Similar Documents

Publication Publication Date Title
JP2022043187A (ja) 軽減された風味スカルピング特性を有するラテックスコーティング組成物
JP4661046B2 (ja) ポリマーエマルジョン含有水性塗料組成物
JP2007238698A (ja) ポリマーエマルジョン含有水性塗料組成物
JP2006249282A (ja) ポリマーエマルジョン含有水性塗料組成物
WO2015147180A1 (ja) 水性塗料、水性塗料の製造方法および被覆缶
JP2006077142A (ja) ポリマーエマルジョン含有水性塗料組成物
JP2008297379A (ja) 水性塗料及びその製造方法
JP2006249278A (ja) ポリマーエマルジョン含有水性塗料組成物
WO2008029454A1 (fr) Composition aqueuse de revêtement
JP4591654B2 (ja) 水性塗料組成物及び該塗料組成物の製造方法
JP2012184370A (ja) 水性塗料組成物とその製造方法
JP2006077143A (ja) ポリマーエマルジョン含有水性塗料組成物
JP2008101077A (ja) ポリマーエマルジョン含有水性塗料
JP5347217B2 (ja) ポリマーエマルジョン含有水性塗料
JP5250993B2 (ja) ポリマーエマルジョン含有水性塗料
JP4665425B2 (ja) 水性塗料組成物及びその製法並びに該水性塗料組成物から成る塗膜を有する缶体及び缶蓋
JP2005307065A (ja) ポリマーエマルジョン含有水性塗料組成物
JP2011202039A (ja) 水性塗料
JP2007238700A (ja) ポリマーエマルジョン含有水性塗料組成物
JP2007238699A (ja) ポリマーエマルジョン含有水性塗料組成物
JP4591653B2 (ja) 複合樹脂エマルジョン含有水性塗料組成物
JP5426436B2 (ja) 変性フェノール樹脂及びそれを含む水性塗料組成物
JP2006176696A (ja) 水性塗料組成物及び被覆金属板
JP2005307066A (ja) ポリマーエマルジョン含有水性塗料組成物
JP5266658B2 (ja) ポリマーエマルジョン含有水性塗料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP