WO2008023583A1 - Dispositif de transmission spatiale optique utilisant un capteur d'image - Google Patents

Dispositif de transmission spatiale optique utilisant un capteur d'image Download PDF

Info

Publication number
WO2008023583A1
WO2008023583A1 PCT/JP2007/065731 JP2007065731W WO2008023583A1 WO 2008023583 A1 WO2008023583 A1 WO 2008023583A1 JP 2007065731 W JP2007065731 W JP 2007065731W WO 2008023583 A1 WO2008023583 A1 WO 2008023583A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
pixels
pixel
image sensor
Prior art date
Application number
PCT/JP2007/065731
Other languages
English (en)
French (fr)
Inventor
Tsutomu Niiho
Hiroyuki Sasai
Mariko Nakaso
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008530858A priority Critical patent/JP4981053B2/ja
Priority to US12/373,852 priority patent/US8311414B2/en
Priority to CN200780026867.2A priority patent/CN101490985B/zh
Publication of WO2008023583A1 publication Critical patent/WO2008023583A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Definitions

  • the present invention relates to an optical space transmission apparatus that enables high-speed optical space transmission using an image sensor.
  • the optical space transmission method is used as a part of communication between buildings and wiring in a building because high-speed data transmission can be realized without using an optical fiber.
  • the optical space transmission method can separate and transmit a plurality of optical signals from each other, and therefore does not require a light source and a wavelength filter having different wavelengths unlike the wavelength multiplexing method in optical fiber communication. Because of these characteristics, the optical space transmission system can use lasers that are not wavelength-selected and LEDs with a broad emission spectrum as light sources. As a result, the optical space transmission method can realize high-speed data transmission at low cost.
  • FIG. 13 shows a configuration of a conventional optical space transmission device 300 described in Patent Document 1.
  • the optical space transmission device 300 includes a transmission device 301 and a reception device 302.
  • the transmission device 301 includes a serial / parallel conversion unit (hereinafter referred to as an S—P conversion unit) 303 that converts input serial format data into parallel format data (hereinafter referred to as an S—P conversion), and a plurality of units.
  • a light emitting unit 304 formed of a light source.
  • the receiving device 302 includes a lens 305, a PD array unit 306 in which a plurality of photodiodes (hereinafter referred to as PD and! /) Are arranged in a matrix, and input parallel format data into serial format data. It includes a parallel-serial conversion unit (hereinafter referred to as PS conversion unit and! /) 307 for conversion (hereinafter referred to as PS conversion).
  • PS conversion unit and! / parallel-serial conversion unit
  • the S—P converter 303 performs S—P conversion on the input transmission data.
  • the light emitting unit 304 has S
  • the parallel data is composed of a plurality of data (hereinafter referred to as parallel data).
  • the light emitting unit 304 inputs each parallel data to a corresponding light source, and emits an optical signal from each light source.
  • the lens 305 transmits the optical signal emitted from the light source of the light emitting unit 304 to the PD array unit 3 Focus on 06.
  • the PD array unit 306 converts an optical signal irradiated to each PD into an electrical signal (hereinafter referred to as photoelectric conversion).
  • each PD in the PD array unit 306 outputs an electrical signal that has been subjected to photoelectric conversion. Therefore, the output of the PD array unit 306 is a plurality of parallel data.
  • the PS conversion unit 307 performs PS conversion on a plurality of input parallel data, and reproduces serial data.
  • the optical space transmission device 300 enables high-speed transmission by converting serial data into parallel data and performing optical space transmission.
  • the optical space transmission device 300 using a PD array has the following problems. First, since the PS conversion is necessary in the receiving apparatus 302, the receiving apparatus 302 needs to be provided with the PS converting unit 307. As a result, the circuit scale increases. Next, when the number of PDs constituting the PD array unit 306 is equal to the number of light sources constituting the light emitting unit 304, it is necessary to make the light sources and the PDs have a one-to-one correspondence. There is a problem that adjustment is required.
  • the optical space transmission device 400 has a configuration in which the reception device 302 is replaced with a reception device 401 with respect to the optical space transmission device 300.
  • the receiving apparatus 401 includes an XY address image sensor (hereinafter simply referred to as an image sensor) 402.
  • the XY address image sensor is an image sensor that sequentially reads out the signals of the specified pixels by sequentially specifying the pixels from which the signals are read out by the address in the X direction and the address in the Y direction. is there .
  • the optical space transmission device 400 has a configuration in which the PD array unit 306 and the PS conversion unit 307 are replaced with an XY address image sensor 402 with respect to the optical space transmission device 300.
  • the receiving device 401 does not include the lens 305, but the receiving device 401 may include the lens 305.
  • the optical signal emitted from each light source of the light emitting unit 304 is applied to a pixel region in which a plurality of pixels of the image sensor 402 are arranged in a matrix.
  • the image sensor 402 reproduces serial transmission data by sequentially reading the light reception signal from each pixel.
  • the optical space transmission device 400 since the optical space transmission device 400 includes the image sensor 402 and does not need to include the PS conversion unit 307, an increase in circuit scale can be suppressed.
  • the optical space transmission device 400 can relax strict optical axis adjustment by increasing the number of pixels of the image sensor 402 irradiated with the optical signal and enlarging the area of the pixel region that is the light receiving region. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-292107
  • the image sensor 402 is normally used for imaging.
  • the image sensor 402 reads out the signals of each pixel in order, and reads out the signals of all the pixels to read out one image.
  • FIG. 15 is a diagram for explaining the operation in which the image sensor 402 reads the signal of each pixel.
  • the image sensor 402 includes a vertical scanning circuit 403, a horizontal scanning circuit 404, pixels # 1 to 16, and an output signal line 405.
  • the number of pixels is an example.
  • the image sensor 402 selects each pixel one by one by the vertical scanning circuit 403 and the horizontal scanning circuit 404 and sequentially reads out the signal of the selected pixel to the output signal line 405.
  • the image sensor 402 outputs the optical signal irradiated to the pixel area as one image signal. For this reason, it takes a relatively long time to read out all the pixel signals. That is, the reading speed of the image sensor 402 included in the receiving device 401 is slow in proportion to the number of pixels. As a result, as the number of pixels increases, there is a problem that the transmission speed of the optical space transmission device 400 is greatly reduced.
  • the reading speed of the image sensor 402 can be increased by reducing the number of pixels.
  • the optical axis adjustment becomes difficult because the area of the light receiving region (pixel region) is reduced. If the area of the light receiving region (pixel region) remains constant and the number of pixels is reduced, the optical axis can be easily adjusted, while the area of each pixel increases. This increases the parasitic capacitance of each pixel and reduces the signal readout speed per unit pixel. I will give you.
  • an object of the present invention is to realize high-speed communication by improving the signal reading speed of the image sensor in an optical space transmission device in which strict optical axis adjustment is relaxed using an image sensor.
  • the optical space transmission device of the present invention includes a transmission device and a reception device, and the transmission device includes a first light emitting unit having a light source that emits one optical signal, and receives the signal.
  • the device has a pixel area consisting of a plurality of pixels, and receives an optical signal in the pixel area.
  • the classification information classifies the pixels to which the optical signal is irradiated among the plurality of pixels into a pixel group.
  • the first light emitting unit emits a setting light signal for performing initial setting by causing the light source to emit light before starting the emission of the optical signal, and an XY address system image
  • the sensor receives the set optical signal in the pixel area, and the classification unit extracts a group of pixels having a reception level of the set optical signal equal to or higher than a predetermined threshold from the plurality of pixels, and classifies the classification information.
  • control unit does not read out signals of pixels other than the pixel group among the plurality of pixels.
  • the receiving device may further include a storage unit that stores classification information, and the control unit may read the classification information stored in the storage unit and control the XY address type image sensor.
  • the receiving device further includes a transmitting unit that transmits a signal requesting data transmission to the transmitting device, and the transmitting device transmits a signal requesting transmission of data transmitted from the transmitting unit. You may further provide the receiving part which receives.
  • the transmission unit emits an optical signal requesting the transmission apparatus to transmit data.
  • the second light emitting unit may emit an optical signal for requesting data transmission at a predetermined timing when the storage unit completes storing the classification information.
  • the receiving unit is a light receiving unit that receives an optical signal requesting transmission of data emitted from the second light emitting unit and converts it into an electrical signal
  • the first light emitting unit is a light receiving unit.
  • An optical signal may be input from the terminal to start emitting an optical signal.
  • the first light emitting unit further includes a pilot light source that emits a pilot light signal for correcting an optical axis shift, and the XY address type image sensor further transmits the pilot light signal to the pixel region.
  • the classification unit may further detect a change in position of a pixel to which the pilot light signal is irradiated among the plurality of pixels, and the control unit may further correct the deviation of the optical axis according to the change in position. .
  • the classification unit may further detect a change in the position of the pixel irradiated with the optical signal, and the control unit may further correct the deviation of the optical axis in accordance with the change in position.
  • the receiving device includes a correction image sensor for correcting the optical axis shift, and a beam splitter that divides the optical signal and irradiates the correction image sensor and the XY address type image sensor.
  • the correction image sensor further receives the optical signal in a pixel area composed of a plurality of pixels, and the classification unit further detects a change in the position of the pixel irradiated with the optical signal of the correction image sensor, and the control unit Further, the optical axis deviation may be corrected according to the position change.
  • the transmission device includes a first light-emitting unit having a plurality of light sources that emit a plurality of optical signals, and the reception device has a pixel region composed of a plurality of pixels, and the plurality of optical signals are converted into pixels.
  • XY address type image sensor that receives in a region and a pixel that is irradiated with each of a plurality of optical signals among a plurality of pixels is grouped into each pixel group, and a plurality of pixels that correspond to a plurality of optical signals
  • a classification unit that generates classification information to be classified into groups
  • a control unit that controls the XY address type image sensor according to the classification information and simultaneously reads out signals of pixels belonging to a plurality of pixel groups for each pixel group. May be.
  • the first light emitting unit emits a plurality of setting light signals for performing initial setting by sequentially emitting a plurality of light sources before starting to emit a plurality of light signals.
  • the XY address type image sensor receives a plurality of set light signals in order in the pixel area
  • the classification unit receives a plurality of set light signals each time the plurality of set light signals are received in order. Extracting pixels whose level is greater than or equal to a predetermined threshold into one group Create class information.
  • the first light emitting unit further emits all of the plurality of light sources simultaneously and emits a plurality of pixel limiting setting light signals simultaneously before emitting the plurality of setting light signals in order.
  • the classification unit may create classification information only for pixels that have received a plurality of pixel limiting setting optical signals.
  • the one light emitting unit emits a plurality of setting light signals for performing initial setting by simultaneously causing the plurality of light sources to emit light with different light intensities before starting emission of the plurality of optical signals.
  • the XY address system image sensor simultaneously receives a plurality of setting light signals in the pixel area, and the classification unit groups the pixels that have received the plurality of setting light signals into groups according to the reception level. You can create classification information! /
  • the first light emitting unit may convert light sources included in each of the plurality of light source groups obtained by dividing the plurality of light sources into light sources having different light intensities before starting emission of the plurality of optical signals.
  • a plurality of setting light signals for initial setting are simultaneously emitted for each light source group, and the XY address type image sensor outputs a plurality of setting light signals for each light source group in the pixel area.
  • the classification unit groups the pixels that have received the plurality of setting light signals according to the reception level, thereby obtaining the classification information. You may create it.
  • the first light emitting unit further emits all of the plurality of light sources at the same time and simultaneously outputs the plurality of pixel limiting setting light signals before simultaneously emitting the plurality of setting light signals for each light source group.
  • the classification unit may generate classification information for only pixels that have received a plurality of pixel limiting setting optical signals.
  • control unit does not read out signals of pixels other than a plurality of pixel groups among the plurality of pixels.
  • the classification unit may further detect a change in the position of a pixel irradiated with at least one of the plurality of optical signals, and the control unit may further correct the deviation of the optical axis in accordance with the change in position.
  • the receiving device divides at least one of the plurality of optical signals for correcting the deviation of the optical axis, and irradiates the image sensor for correction and the XY address type image sensor. And a correction image sensor. At least one of the optical signals is received in a pixel area composed of a plurality of pixels, and the classification unit further detects and controls a change in the position of a pixel irradiated with at least one of the plurality of optical signals of the correction image sensor. The unit may further correct the deviation of the optical axis according to the position change.
  • FIG. 1 is a diagram illustrating a configuration example of an optical space transmission device 100 according to a first embodiment of the present invention.
  • FIG. 2 is a diagram specifically showing the first light emitting unit 103 and the image sensor 105 of the present invention.
  • FIG. 3 is a diagram for explaining the operation of the optical space transmission device 100 of the present invention.
  • FIG. 4 is a flowchart for explaining in detail the initial setting operation (step S01 to step S06) explained in FIG.
  • FIG. 5 is a diagram for explaining the concept of pixel classification and pixel grouping performed by the classification unit 106 of the present invention.
  • FIG. 6 is a diagram for explaining the operation of the image sensor 105 for reading the signal of each pixel in step S09 of FIG.
  • FIG. 7 is a diagram showing a configuration example of an optical space transmission device 200 according to the second embodiment of the present invention.
  • FIG. 8 is a diagram specifically showing the first light emitting unit 203 and the image sensor 105 of the present invention.
  • FIG. 9 is a diagram for explaining the concept of pixel classification and pixel grouping performed by the classification unit 106 of the present invention.
  • FIG. 10 is a diagram for explaining an operation in which the image sensor 105 reads the signal of each pixel in step S09 of FIG.
  • FIG. 11 is a diagram showing a part of the pixel area of the image sensor 105 of the present invention.
  • FIG. 12 is a diagram for explaining a configuration example when the receiving apparatus 102 of the present invention includes a dedicated image sensor for detecting a combined optical signal.
  • FIG. 13 is a diagram showing a configuration of a conventional optical space transmission device 300 described in Patent Document 1.
  • FIG. 13 is a diagram showing a configuration of a conventional optical space transmission device 300 described in Patent Document 1.
  • FIG. 14 is a diagram showing a configuration of a conventional optical space transmission device 400. As shown in FIG. 14
  • FIG. 15 is a diagram for explaining an operation in which an image sensor 402 of a conventional optical space transmission device 400 reads a signal of each pixel.
  • FIG. 1 is a diagram illustrating a configuration example of an optical space transmission device 100 according to the first embodiment.
  • the optical space transmission device 100 includes a transmission device 101 and a reception device 102.
  • the transmission device 101 includes a first light emitting unit 103 and a light receiving unit 104.
  • the receiving apparatus 102 includes an X-Y address type image sensor (hereinafter simply referred to as an image sensor) 105, a classification unit 106, a storage unit 107, a control unit 108, and a second light emitting unit 109. .
  • an image sensor hereinafter simply referred to as an image sensor
  • FIG. 2 is a diagram specifically showing the first light emitting unit 103 and the image sensor 105.
  • the first light emitting unit 103 is composed of one light source 103-1.
  • the image sensor 105 has a pixel area composed of a plurality of pixels.
  • the image sensor 105 will be described as having 16 pixels.
  • FIG. 3 is a diagram for explaining the operation of the optical space transmission device 100.
  • the optical space transmission device 100 performs an initial setting operation (step S01 to step S06) and a data transmission operation (step S07 to step S09) executed after the initial setting operation.
  • the first light emitting unit 103 causes the light source 103-1 to emit light (step S01).
  • the first light emitting unit 103 irradiates the image sensor 105 with a setting light signal for initial setting of data transmission (see FIG. 2).
  • the image sensor 105 receives the setting light signal in a pixel region in which a plurality of pixels are arranged in a matrix (step S02).
  • the image sensor 105 outputs the electrical signals of the pixels in order.
  • the classification unit 106 performs pixel classification and pixel grouping processing, which will be described in detail later, based on the electrical signal of each pixel output from the image sensor 105 (step S 03), and the classification information that is the processing result is obtained. Output.
  • the storage unit 107 stores the classification information (step S04), and outputs a signal S2 indicating the completion of the storage process to the second light emitting unit 109 in parallel with the storage process.
  • the second light emitting unit 109 converts the signal S2 from an electrical signal to an optical signal (hereinafter referred to as electro-optical conversion), and radiates the signal S2 toward the light receiving unit 104 of the transmission device 101 as a data transmission request signal (step S05).
  • the light receiving unit 104 receives the data transmission request signal (step S06).
  • the light receiving unit 104 receives the data transmission request signal.
  • a data transmission start signal S3 is output to the first light emitting unit 103.
  • the first light emitting unit 103 irradiates the image sensor 105 with a data optical signal obtained by electro-optically converting the transmission data S1 using the light source 103-1 (step S07).
  • the image sensor 105 receives the data optical signal in the pixel area (step S08).
  • the pixel irradiated with the data light signal is equal to the pixel irradiated with the setting light signal in step S02.
  • the control unit 108 uses the classification information stored in the storage unit 107 to control the operation of the image sensor 105 by a method described in detail later, and reads out the electrical signal of each pixel (step S09). As a result, the image sensor 105 reproduces the transmission data S1.
  • FIG. 4 is a flowchart for explaining in detail the initial setting operation (step S01 to step S06) described in FIG. Note that steps S01, S02, S04, and SO5 shown in FIG. 4 are the same as steps S01, S02, S04, and S05 shown in FIG. 3, respectively. Steps S03— ;! to S03-6 shown in FIG. 4 are steps constituting step S03 shown in FIG.
  • FIG. 5 is a diagram for explaining the concept of pixel classification and pixel grouping performed by the classification unit 106.
  • FIG. 5 shows an image sensor 105 in which pixels # 1 to well 16 are arranged as an example. Also, as an example, the case where the set light signal emitted from the light source 103-1 of the first light emitting unit 103 is mainly applied to the pixels # 6, # 7, # 10, and # 11 is shown. Yes.
  • the light source 103-1 of the first light emitting unit 103 emits light (step S01), and is applied to the set optical signal power S image sensor 105 (see FIG. 2).
  • the image sensor 105 receives the setting light signal (step S02).
  • the setting light signal is mainly emitted to the pixels # 6, # 7, # 10, and # 11 of the image sensor 105.
  • the classification unit 106 determines whether or not the number of the pixel # 1 to be classified is larger than the number of the final pixel # 16 (Step S03-1). Since the number of pixel # 1 to be classified is not larger than the number of the last pixel well 16, the process proceeds to step S03-2. Next, the classification unit 106 extracts the received power level (Pr) of the pixel # 1 from the output of the image sensor 105 (Step S 03— 2). Next, the classification unit 106 determines whether or not the extracted received power level (P) is equal to or higher than a predetermined threshold (step S03-3). Since the setting light signal is not irradiated to pixel # 1 (see FIG.
  • step S03-5 it is determined that Pr is not equal to or greater than the predetermined threshold value, and the process proceeds to step S03-5.
  • the classification unit 106 adds 1 to the number of the pixel # 1, sets the next pixel to be classified as the pixel # 2 (step S03-5), and returns to step S03-1.
  • pixel # 2 to well 5 are almost irradiated with the set optical signal! /, So! / (See FIG. 5), so that the received power level of pixel # 2 to well 5 (Pr to Pr) Are determined not to exceed the predetermined threshold.
  • the classification unit 106 determines whether the number of the pixel # 6 to be classified is larger! / Than the number of the final pixel # 16 (step S03-1). Since the number of the pixel # 6 to be classified is not larger than the number of the last pixel well 16, the process proceeds to step S03-2. Next, the classification unit 106 extracts the received power level (Pr) of the pixel well 6 from the output of the image sensor 105 (scanning).
  • Step S03— 2 the classification unit 106 determines that the extracted received power level (Pr) is a predetermined threshold.
  • step S03-3 It is determined whether or not the value is greater than or equal to the value (step S03-3). Since the set light signal is irradiated to pixel # 6 (see Fig. 5), it is determined that Pr is equal to or greater than a predetermined threshold value, and the step
  • step S03 Move to 4.
  • the classification unit 106 holds the position of the pixel # 6 in the pixel region (step S03-4).
  • the classification unit 106 adds 1 to the number 6 of the pixel # 6 to obtain the pixel # 7 to be classified (step S03-5), and returns to step S03-1.
  • the setting light signal is irradiated to the pixel # 7 (see FIG. 5)
  • it is determined that the received power level (Pr) of the pixel # 7 is equal to or higher than a predetermined threshold, and the pixel in the pixel region The # 7 position is retained.
  • steps S03-1 to S03-5 are repeated for pixels # 8 to well 16 as pixels to be classified, and in step S03-5, the pixel to be classified is changed to pixel well 17 (actually Pixel # 17 does not exist), and the process returns to step S03-1.
  • the classification unit 106 holds the positions of the pixels # 6, # 7, # 10, and # 11 in the pixel region. That is, in steps S03-1 to S03-5, pixels having a received power level equal to or higher than a predetermined threshold are classified (extracted), and the position of the pixel in the pixel area is held in the classification unit 106.
  • the classification unit 106 determines whether or not the number of the pixel # 17 to be classified is larger than the number of the final pixel # 16 (Step S03-1). Since the number of the pixel # 17 to be classified is larger than the number of the final pixel # 16, the process proceeds to Step S03-6.
  • the classification unit 106 groups the positions of each pixel in the held pixel area in association with the continuity between the positions. Specifically, the classification unit 106 sets a plurality of pixel positions that are adjacent to each other and have consecutive positional relationships as one group among the pixel positions held in the pixel area. More specifically, as shown in FIG.
  • the classification unit 106 sets the positions of pixels # 6, # 7, # 10, and # 11, which are adjacent to each other and have a continuous positional relationship, as one gnole. .
  • the classification unit 106 can group pixels (pixels # 6, # 7, # 10, and # 11) that receive the same optical signal (step S03-6). Then, the classification unit 106 creates classification information indicating the grouped pixels. Note that the classification unit 106 does not consider the continuity between the pixel positions described above in step S03-6, and simply holds and stores each pixel position as one group.
  • Storage unit 107 performs classification information storage processing! /, (Step S04), and outputs signal S2 indicating the timing of completion of the storage processing to second light emitting unit 109 in parallel with the storage processing.
  • the second light emitting unit 109 performs electro-optical conversion on the signal S2, and radiates the signal S2 toward the light receiving unit 104 of the transmission device 101 as a data transmission request signal (step S05).
  • the light receiving unit 104 receives the data transmission request signal (not shown in FIG. 4).
  • the error rate when a binary optical signal is received is expressed by the following equation 1 using the complementary error function (erfc), and is expressed by the force S.
  • I is the light receiving current of the pixel when the optical signal is illuminated, and I is the pixel when the optical signal is not illuminated
  • is the thermal noise current.
  • the identification current level is (I I) / 2
  • the data transmission rate is 100 MHz
  • the photoelectric conversion efficiency is 0.5
  • the extinction ratio is 6 dB
  • the noise current density is In this case, from equation 1, as the received power level to meet the error rate 10- 12 (threshold), - 24. 3dBm is obtained.
  • Equation 2 the error rate
  • the received power level (threshold) that satisfies Equation 3 can be set. Note that the photocurrent (I, I) of each pixel irradiated with the optical signal cannot be detected.
  • the received power level (threshold) may be set by the method using Equation 1.
  • FIG. 6 is a diagram for explaining the operation in which the image sensor 105 reads the signal of each pixel in step S09 of FIG.
  • the image sensor 105 includes a vertical scanning circuit 120, a horizontal scanning circuit 121, pixels # 1 to well 16, and an output signal line 122.
  • pixels other than pixels # 6, # 7, # 10, and # 11 are indicated by hatching. is doing.
  • the control unit 108 reads out the classification information (information indicating the grouped pixels) stored in the storage unit 107, and controls the pixel signal reading operation of the image sensor 105 according to the classification information. More specific description will be given below.
  • the control unit 108 reads out classification information indicating that the pixels # 6, # 7, # 10 and # 11 stored in the storage unit 107 are one group.
  • the control unit 108 controls the vertical scanning circuit 120 and the horizontal scanning circuit 121 of the image sensor 105 according to the read classification information, and simultaneously reads the signals of the pixels # 6, # 7, # 10, and # 11, The readout signals of each pixel are added together and output to the output signal line 122 at the same time. Pixel signals other than pixels # 6, # 7, # 10 and # 11 are not read.
  • the control unit 108 reads out the signals of the pixels to which the optical signal is irradiated in accordance with the classification information, while not reading out the signals of the pixels to which the signal is not irradiated.
  • the image sensor 402 provided in the conventional optical space transmission device 400 reads out the signals of all the pixels in order for each pixel, whereas the control unit 108 detects the pixels to which the image sensor 105 is irradiated with the optical signal. Only signals are read at once. Accordingly, when the control unit 108 includes the image sensor including 16 pixels described as an example, the reading operation can be shortened from 16 times to once.
  • the optical space transmission device 100 specifies pixels that receive an optical signal by the initial setting operation, and identifies pixels that receive the same optical signal. To In the data transmission operation, the optical space transmission device 100 simultaneously reads the signals of the grouped pixels. As a result, the optical space transmission device 100 relaxes the strict optical axis adjustment in the same way as the conventional space optical transmission device 400, while significantly reducing the signal reading speed of the image sensor compared to the conventional optical space transmission device 400. Improve the power and realize high-speed communication with power S.
  • the transmission request signal is fed back to the transmission apparatus 101 by optical space transmission.
  • the feedback of the transmission request signal is not limited to that by optical space transmission, but may be other means as long as the transmission request signal can be transmitted from the receiving apparatus 102 to the transmitting apparatus 101.
  • the receiving device 102 transmits A transmitting unit that transmits a request signal is provided instead of the second light emitting unit 109, and the transmitting apparatus 101 includes a receiving unit that receives the transmission request signal instead of the light receiving unit 104.
  • the transmission apparatus 101 may start data transmission at the timing when the classification information is stored in the storage unit 107 before the reception apparatus 102.
  • the light receiving unit 104 and the second light emitting unit 109 are not necessary (see FIG. 1).
  • the storage unit 107 outputs the signal S2 indicating the timing at which the storage unit 107 completes the storage of the classification information to the second light emitting unit 109 has been described.
  • the classification unit 106 or the control unit 108 may output the signal S2 to the second light emitting unit 109.
  • the modulation method performed by the first light emitting unit 103 may be a direct modulation method or an external modulation method.
  • the image sensor 105 including one output signal line has been described.
  • an image sensor having a plurality of output signal lines may be used.
  • each pixel of the image sensor includes a signal accumulation period for accumulating signals and a signal readout period for reading the accumulated signals. That is, each pixel cannot accumulate signals during the signal readout period. Because of this, by transmitting optical signals along a plurality of optical axes, the signals of a certain group of pixels are collectively read out to other groups of pixels during the period of signal readout (signal readout period). A signal can be accumulated.
  • the transmission side when data communication is performed, transmission of an optical signal along a plurality of optical axes can avoid a decrease in transmission speed caused by a signal readout period.
  • the transmission side when performing data communication, sequentially irradiates the image sensor with the optical signals constituting each optical axis, and the reception side outputs the signal of each group of pixels. Must be read in order for each group.
  • FIG. 7 is a diagram illustrating a configuration example of an optical space transmission device 200 according to the second embodiment.
  • the optical space transmission device 200 is the optical space transmission device 100 (FIG. 1) of the first embodiment.
  • the transmission apparatus 101 is replaced with the transmission apparatus 201.
  • the transmission device 201 has a configuration in which the first light emitting unit 103 is replaced with the first light emitting unit 203 with respect to the transmission device 101 of the optical space transmission device 100.
  • the same components as those of the optical space transmission device 100 are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 8 is a diagram specifically showing the first light emitting unit 203 and the image sensor 105.
  • the first light emitting unit 203 includes an SP conversion unit (not shown) and four light sources 203-1, 203-2, 203-3, and 203-4.
  • the image sensor 105 has a pixel area composed of a plurality of pixel forces. The optical signals along the four optical axes emitted from the four photons 203-1, 203-2, 203-3, and 203-4 are respectively applied to the pixel area of the image sensor 105 without overlapping each other.
  • the image sensor 105 will be described as having 64 pixels.
  • FIG. 9 is a diagram for explaining the concept of pixel classification and pixel grouping performed by the classification unit 106.
  • pixels # 1 to 64 are arranged in the pixel region of the image sensor 105.
  • FIG. 9 shows that the setting light signal A, which is the setting light signal emitted from the light source 203-1 of the first light emitting unit 203, is mainly emitted to the pixels # 10, # 11, # 18, and # 19.
  • Setting light signal B which is the setting light signal emitted from light source 203-2, is applied to pixels # 14, # 15, # 22, and # 23, and is the setting light signal emitted from light source 203-3.
  • the optical signal C is mainly emitted to the pixels # 42, # 43, # 50 and # 51
  • the setting optical signal D which is the setting optical signal emitted from the light source 203-4 is mainly the pixels # 46, # 47, # 54 and well 55 are shown.
  • Transmitting apparatus 201 causes only light source 203-1 to emit light (step S01).
  • the pixel region of the image sensor 105 is irradiated only with the setting light signal A shown in FIG.
  • the image sensor 10 5 receives the irradiated set light signal A by the pixels # 10, # 11, # 18, and # 19 (step S02).
  • the classification unit 106 repeats the operations from Step S03—Step 1 to Step S03 5, and holds the pixel positions of pixels # 10, # 11, # 18, and # 19. To do.
  • the classification unit 106 groups the pixels # 10, # 11, # 18, and # 19 that receive the set light signal A as one group (hereinafter referred to as group A) based on the held pixel positions. (Step S03-6). Next, the classification unit 106 creates classification information indicating the group A. The storage unit 107 stores the created classification information (step S04).
  • the transmitting apparatus 201 causes only the light source 203-2 to emit light (step S01).
  • the pixel region of the image sensor 105 is irradiated only with the setting light signal B shown in FIG.
  • the image sensor 105 receives the irradiated set light signal B by the pixels # 14, # 15, # 22, and # 23 (step S02).
  • the classification unit 106 repeats the operations of step S03-1 to step S03-5 to hold the pixel positions of pixels # 14, # 15, # 22, and # 23.
  • the classification unit 106 groups the pixels # 14, # 15, # 22, and # 23 that receive the set light signal B into one group (hereinafter referred to as group B) based on the held pixel positions. (Step S03-6).
  • the classification unit 106 creates classification information indicating the group B.
  • the storage unit 107 stores the created classification information (step S04).
  • step S05 and step S06 are performed, and the initial setting operation is completed.
  • the classification information indicating the groups A to D includes light reception order information indicating the order of receiving the set light signals A to D, respectively.
  • the order in which the transmission apparatus 201 causes the light sources 203— ;! to 203-4 to emit light is the same as that in the data transmission operation described later. This is equivalent to the order in which the lights are emitted. That is, the light reception order information indicates the order in which the pixels of each group receive the optical signals in the data transmission operation.
  • the storage unit 107 of the receiving apparatus 102 stores a group of pixels that receive a plurality of optical signals, and at the same time, in a data transmission operation.
  • the light receiving order information indicating the order in which the pixels of each group receive the optical signals can be stored.
  • the first light emitting unit 203 of the transmission apparatus 201 converts the serial transmission data S1 into parallel transmission data by the SP conversion unit, and inputs the parallel transmission data to the corresponding light sources.
  • the first light emitting unit 203 causes each light source to emit light in accordance with parallel transmission data (see FIG. 8).
  • the first light emitting unit 203 causes each light source to emit light with a J jet of the light source 203-1, the photogen 203-2, the photogen 203-3, and the photogen 203-4. Is irradiated to the image sensor 105 (step S07).
  • the optical signal emitted and emitted from the light source 203-1 is referred to as an optical signal A
  • the optical signal emitted and emitted from the light source 203-2 is referred to as an optical signal B
  • the light source 203-3 emits light.
  • the optical signal to be emitted is referred to as an optical signal C
  • the optical signal emitted from the light source 203-4 is referred to as an optical signal D.
  • the pixels irradiated with the optical signal A, the optical signal B, the optical signal C, and the optical signal D are respectively set light signal A, setting light signal B, setting light signal C, and It is equal to the pixel irradiated with the set light signal D (see Fig. 9). That is, it is assumed that the positional relationship between the first light emitting unit 203 and the image sensor 105 does not change between the initial setting operation and the data transmission operation.
  • the image sensor 105 sequentially receives the optical signal A, the optical signal B, the optical signal C, and the optical signal D in the pixel region (step S08).
  • FIG. 10 is a diagram for explaining the operation in which the image sensor 105 reads the signal of each pixel in step S09 of FIG.
  • the image sensor 105 includes a vertical scanning circuit 120, a horizontal scanning circuit 121, pixels # 1 to 64, and an output signal line 122.
  • pixels # 10, # 11, # 18 and # 19 belonging to Gnolepe A, pixels # 14, # 15, # 22 and # 23 belonging to Gnolepe B, and pixels # 42 and # 43 belonging to Group C , # 50 and # 51 and pixels # 46, # 47, # 54 and # 55 belonging to group D are shown in the areas surrounded by bold lines, respectively. Pixels not included in groups A to D are indicated by diagonal lines.
  • the control unit 108 reads out the classification information stored in the storage unit 107.
  • the class information is information indicating the pixels of the groups A to D and information indicating the order in which the light signals A to D are irradiated to the pixels of the groups A to D, respectively.
  • the control unit 108 controls the vertical scanning circuit 120 and the horizontal scanning circuit 121 of the image sensor 105 according to the classification information, and sequentially reads out the signals of the pixels of the groups A to D in order for each group. (Step S09). More specific description will be given below.
  • the control unit 108 simultaneously reads the signals of the group A pixels that have received the optical signal A, adds the read signals of the respective pixels, and outputs them to the output signal line 122.
  • control unit 108 simultaneously reads the signals of the group B pixels that have received the optical signal B, adds the read signals of the respective pixels, and outputs them to the output signal line 122. Similarly, the control unit 108 simultaneously reads out the signals of the pixels in group C and outputs them to the output signal line 122, and then simultaneously reads out the signals of the pixels in group D and outputs them to the output signal line 122. In this manner, the control unit 108 sequentially reads the signals of the pixels in the groups A to D that sequentially receive the optical signals A to D, respectively. Signals of pixels other than the pixels in groups A to D are not read out.
  • the control unit 108 sequentially reads the signals of the pixels of each gnole for each gnole according to the classification information, but does not read the signals of the pixels not irradiated with the optical signal. . Accordingly, the control unit 108 can shorten the reading operation from 64 times to 4 times in the case of the image sensor including 64 pixels described as an example. Further, the control unit 108 sequentially reads out the signals of the pixels in the groups A to D that receive the optical signals A to D irradiated in order. Thus, the control unit 108 can always cause any one of the optical signals A to D to be received by any of the pixels in the groups A to D. As a result, the control unit 108 can avoid a decrease in transmission speed caused by the signal readout period of the pixel signal.
  • the optical space transmission device 200 according to the second embodiment relaxes strict optical axis adjustment in the same manner as the optical space transmission device 100 according to the first embodiment. High-speed communication can be realized as compared with the optical space transmission device 100.
  • an array type light source may be used as the plurality of light sources included in the first light emitting unit 203.
  • the initial setting operation is! /
  • the first method a method that informs the receiving side of the light emission sequence during the data transmission operation by sequentially reading out the signals of all pixels for each time (hereinafter referred to as all scans).
  • all scans a method that informs the receiving side of the light emission sequence during the data transmission operation by sequentially reading out the signals of all pixels for each time.
  • the first method since the number of all scans increases in proportion to the number of light sources (the number of optical signals), the initial setting operation requires a relatively long time.
  • second to fourth methods will be briefly described.
  • the second method is a method in which all light sources emit light at the same time, and all scanning is performed only once.
  • each light source emits a set light signal having a light intensity corresponding to the light emission order during the data transmission operation.
  • the receiving side is notified of the light emission sequence during the data transmission operation by the light intensity of the received setting optical signal.
  • the receiving side sets a plurality of threshold values for the reception level, and determines the light intensity of the received set optical signal.
  • the second method does not require a long time for the initial setting operation.
  • the second method when the number of light sources is large (the number of set light signals is large), the difference in light intensity between the set light signals is small. As a result, the S / N ratio required for determining the light emission order is reduced, so that the probability of erroneous determination of the light emission order on the receiving side increases.
  • the third method is a method in which the first method and the second method are used in combination. For example, when there are four light sources, the second method is performed for two light sources (first light source group), and then the second method is performed for the other two light sources (second light source group). It is a method to execute. According to the third method, it is possible to shorten the time required for the initial setting operation while improving the certainty of the light emission order determination performed on the receiving side.
  • the pixel region is irradiated with a setting light signal for pixel limitation for limiting all pixels to be classified by simultaneously emitting light from all light sources.
  • This is a method to scan once. This identifies (limits) the pixels (classification target pixels) that receive the set light signal.
  • the first to third methods are performed only for the specified pixel. According to the fourth method, since the target pixels for all scans used in the first to third methods can be limited, the time required for the initial setting operation is shortened compared to the first to third methods. can do.
  • the positional relationship between the transmission device and the reception device does not change.
  • the explanation was given on the assumption.
  • in the third embodiment in the optical space transmission devices of the first and second embodiments, accurate data communication is performed even if the positional relationship between the transmission device and the reception device changes and the optical axis is shifted.
  • a configuration that can be used will be described.
  • the optical space transmission device 200 according to the second embodiment will be described as an example.
  • the transmission device 201 further includes a pie-shaped light source that is a light source for optical axis correction.
  • the pilot light source may be provided in the first light emitting unit 203.
  • the pilot light source irradiates the pixel region of the image sensor 105 with a pilot optical signal that is an optical signal for optical axis correction.
  • FIG. 11 is a diagram showing a part of the pixel area of the image sensor 105. In FIG. 11, as an example, the pilot light signals are irradiated to the pixels # 23, # 24, # 33, and # 34. As shown in FIG.
  • the classification unit 106 of the receiving apparatus 102 groups pixels # 23, # 24, # 33, and # 34 irradiated with the pilot light signal as one group (hereinafter referred to as group E). Further, the classification unit 106 of the receiving apparatus 102 divides the pixels surrounding the group E pixels into four parts, and groups the pixels into groups F (pixels # 12, # 13, # 22), and groups G ( Pixel # 14, # 15, # 25), group H (pixel # 35, # 44, # 45) and group 1 (pixel # 32, # 42, # 43).
  • the pixels of Group F to Group I are pixels that detect the deviation of the optical axis.
  • the classification unit 106 of the receiving apparatus 102 periodically reads out the signals of the pixels of Group F to Group I for each group. As a result, the classification unit 106 of the receiving apparatus 102 can periodically detect changes in the signal level of the pixels of the Gnolepe F to Gnolepe I, and thus can detect the deviation direction and deviation distance of the optical axis. it can. For example, when the signal level of the pixel in group F is greatly increased, the classification unit 106 of the receiving apparatus 102 can detect that the optical axis has greatly shifted from the group E to the group F (see FIG. 11). . Then, the control unit 108 of the receiving device 102 corrects the optical axis by changing a pixel (see FIG. 10) that receives an optical signal for data communication according to the detected deviation of the optical axis. As a result, the receiving apparatus 102 can accurately receive an optical signal even when the optical axis is shifted.
  • the positional relationship between the transmission device and the reception device changes and the optical axis shifts.
  • the receiving apparatus 102 changes the pixel that receives the optical signal for data transmission in accordance with the detected deviation of the optical axis.
  • the receiving apparatus 102 may move the image sensor 105 without changing the pixels that receive light, or may move a lens (not shown) that collects an optical signal on the image sensor 105.
  • the transmission device 101 may move the light source.
  • the pixels surrounding the group E pixels are divided into four, and four optical axis deviation detection pixel groups are set.
  • two or more pixel groups for detecting the optical axis deviation may be set according to the desired detection accuracy of the optical axis deviation.
  • transmitting apparatus 201 includes one pilot light source.
  • transmission apparatus 201 may include a plurality of pilot light sources. As a result, even if one pilot optical signal cannot be normally received by the receiving apparatus 102, another pilot optical signal can be received, so that the correction of the optical axis deviation can be made more stable. Can be done
  • a pilot light source for optical axis correction is provided in the transmission device 201, and a no-lot optical signal is emitted.
  • an optical signal emitted from the light source 203-1 for data transmission may be used as a pilot optical signal without providing a pilot light source for optical axis correction.
  • OOK ON / OFF Keying
  • the light emission power of the light source 203-1 for data transmission is 0.
  • the receiving apparatus 102 cannot obtain an optical signal for optical axis correction. Therefore, when the optical signal emitted from the light source 203-1 for data transmission is also used as the pilot optical signal, for example, it is preferable to perform modulation so that the light source emits light even when there is no transmission data! /.
  • receiving apparatus 102 includes a dedicated image sensor (hereinafter referred to as an optical axis correction image sensor) that detects an optical signal that is also used as a pilot optical signal (hereinafter referred to as a pilot optical signal). May be.
  • the optical axis correction image sensor is not limited to the XY address type image sensor.
  • FIG. 12 is a diagram for describing a configuration example in the case where the receiving apparatus 102 includes an optical axis correction image sensor. As shown in FIG. 12, the receiving device 102 divides the optical axis correction image sensor 205 and the incident pilot-use optical signal. And an optical axis correcting image sensor 205 and a beam splitter 206 for irradiating the image sensor 105.
  • the receiving apparatus 102 can detect one pilot combined optical signal with the optical axis correcting image sensor 205 while receiving the plurality of optical signals with the image sensor 105, for example. As a result, the receiving apparatus 102 can quickly read the combined optical signal by the optical axis correcting image sensor 205 without waiting for the reading of a plurality of optical signals. As a result, high-speed optical axis correction is possible and industrial applicability
  • the present invention can be used for an optical space transmission device that uses an image sensor to relax strict optical axis adjustment, and is particularly useful when high-speed communication is realized by improving the data reading speed from the image sensor. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Image Input (AREA)

Description

明 細 書
イメージセンサを用いた光空間伝送装置
技術分野
[0001] 本発明は、イメージセンサを用いて高速な光空間伝送を可能にする光空間伝送装 置に関する。
背景技術
[0002] 光空間伝送方式は、光ファイバを用いないで高速なデータ伝送を実現できるため、 ビル間の通信や、建物内の配線の一部として利用されている。また、光空間伝送方 式は、複数の光信号を互いに空間的に分離して伝送できるので、光ファイバ通信に おける波長多重方式のように異なる波長の光源及び波長フィルタを必要としない。こ のような特徴を有するため、光空間伝送方式は、波長選別をされていないレーザ及 び発光スペクトラムの広い LED等を光源として用いることができる。この結果として、 光空間伝送方式は、高速なデータ伝送を低コストで実現できる。
[0003] 図 13に、特許文献 1に記載された従来の光空間伝送装置 300の構成を示す。図 1 3に示す通り、光空間伝送装置 300は、送信装置 301と受信装置 302とを備える。送 信装置 301は、入力されたシリアル形式のデータをパラレル形式のデータに変換 (以 下、 S— P変換という)するシリアル パラレル変換部(以下、 S— P変換部という) 303 と、複数の光源で成る発光部 304とを含む。受信装置 302は、レンズ 305と、複数の フォトダイオード(以下、 PDと!/、う)がマトリクス状に整列して成る PDアレイ部 306と、 入力されたパラレル形式のデータをシリアル形式のデータに変換 (以下、 P— S変換 とレ、う)するパラレル—シリアル変換部(以下、 P— S変換部と!/、う) 307とを含む。
[0004] S— P変換部 303は、入力された伝送データを S— P変換する。発光部 304には、 S
P変換されたパラレル形式のデータが入力される。ここで、パラレル形式のデータ は、複数のデータ(以下、パラレルデータという)で構成されている。発光部 304は、 各パラレルデータを対応する光源に入力し、各光源から光信号を射出する。図 13で は、 4つのパラレルデータ力 s、 4つの光源にそれぞれ入力され、 4つの光信号が射出 されている。レンズ 305は、発光部 304の光源から射出された光信号を PDアレイ部 3 06に集光する。 PDアレイ部 306は、各 PDに照射された光信号を電気信号に変換( 以下、光電変換という)する。ここで、 PDアレイ部 306の PDは、それぞれ、光電変換 した電気信号を出力する。このことから、 PDアレイ部 306の出力は、複数のパラレル データとなる。 P— S変換部 307は、入力された複数のパラレルデータを P— S変換し 、シリアル形式のデータを再生する。
[0005] 以上に説明した通り、光空間伝送装置 300は、シリアル形式のデータをパラレル形 式のデータに変換して光空間伝送を行うことによって、高速伝送を可能としている。
[0006] しかしながら、 PDアレイを用いた光空間伝送装置 300には、以下の問題がある。ま ず、受信装置 302において P— S変換が必要となるために、受信装置 302に P— S変 換部 307を備える必要があり、この結果として回路規模が増大するという問題である。 次に、 PDアレイ部 306を構成する PDの数と発光部 304を構成する光源の数とが等 しい場合、光源と PDとを 1対 1で対応させる必要があるために、厳密な光軸調整が必 要となるという問題がある。
[0007] これらの問題を解消する装置として、図 14に示す従来の光空間伝送装置 400が考 えられる。図 14に示す通り、光空間伝送装置 400は、光空間伝送装置 300に対して 、受信装置 302を受信装置 401に置換えた構成である。受信装置 401は、 X— Yアド レスイメージセンサ(以下、単に、イメージセンサという) 402を含む。ここで、 X— Yァ ドレスイメージセンサとは、信号を読出す画素を X方向のアドレスと Y方向のアドレスと で順次特定して、特定された画素の信号を順次読出す方式のイメージセンサである 。つまり、光空間伝送装置 400は、光空間伝送装置 300に対して、 PDアレイ部 306 及び P— S変換部 307を X—Yアドレスイメージセンサ 402に置換えた構成である。な お、図 14では、受信装置 401がレンズ 305を含んでいないが、受信装置 401はレン ズ 305を含んでもよい。
[0008] 次に、光空間伝送装置 400の動作を説明する。なお、送信装置 301の動作説明は 、既に行ったので省略する。発光部 304の各光源から射出された光信号は、イメージ センサ 402の複数の画素がマトリクス状に配列された画素領域に照射される。ィメー ジセンサ 402は、各画素から受光信号を順次読出すことによって、シリアル形式の伝 送データを再生する。 [0009] 以上に説明した通り、光空間伝送装置 400は、イメージセンサ 402を備えることによ つて P— S変換部 307を備える必要がないので、回路規模の増大を抑制できる。また 、光空間伝送装置 400は、光信号が照射されるイメージセンサ 402の画素数を増や して、受光領域である画素領域の面積を拡大することによって、厳密な光軸調整を緩 和できる。
特許文献 1 :特開 2001— 292107号公報
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、上述した従来の光空間伝送装置 400には、以下の課題がある。ィメ ージセンサ 402は、通常、撮像用として使用されるものである。そして、イメージセン サ 402は、各画素の信号を順番に読出し、また、全ての画素の信号を読出して 1枚の 画像を読出す動作を行う。図 15は、イメージセンサ 402が各画素の信号を読出す動 作を説明するための図である。図 15に示す通り、イメージセンサ 402は、垂直走査回 路 403と、水平走査回路 404と、画素 # 1〜井 16と、出力信号線 405とを備える。な お、画素の数量は一例である。イメージセンサ 402は、垂直走査回路 403及び水平 走査回路 404によって各画素を 1つずつ選択して、選択した画素の信号を出力信号 線 405に順次読出す。より具体的には、全ての画素 # 1〜井 16が順番に選択されて 、全ての画素 # 1〜井 16の信号が出力信号線 405に順次読出される。この動作によ つて、イメージセンサ 402は、画素領域に照射された光信号を 1枚の画像信号として 出力する。このため、全ての画素の信号が 1通り読出されるには、比較的長い時間を 必要とする。つまり、受信装置 401が備えるイメージセンサ 402の読出し速度は、画 素数に比例して遅くなる。この結果として、画素数が多くなるに伴って、光空間伝送 装置 400の伝送速度が非常に低下するという課題がある。
[0011] また、画素数を少なくすることでイメージセンサ 402の読出し速度を上げることもでき る。しかし、各画素の面積が一定の場合には、受光領域 (画素領域)の面積が縮小す るために光軸調整が困難となる。また、受光領域 (画素領域)の面積は一定のままで 画素数を少なくすると、光軸調整が容易になる一方で、各画素の面積は拡大する。こ のことから、各画素の寄生容量が増加して、単位画素あたりの信号読出し速度が低 下する。
[0012] それ故に、本発明の目的は、イメージセンサを用いて厳密な光軸調整を緩和した 光空間伝送装置において、イメージセンサの信号読出し速度を向上させて高速通信 を実現することである。
課題を解決するための手段
[0013] 本発明は、送信装置から受信装置に光信号を伝送する光空間伝送装置に向けら れている。そして、上記目的を達成させるため、本発明の光空間伝送装置は、送信 装置と受信装置とを備え、送信装置は、 1つの光信号を射出する光源を有する第 1の 発光部を備え、受信装置は、複数の画素から成る画素領域を有し、光信号を画素領 域で受信する XYアドレス方式イメージセンサと、複数の画素のうち光信号が照射さ れる画素を画素グループに分類する分類情報を作成する分類部と、分類情報に従 つて、 XYアドレス方式イメージセンサを制御して、画素グループに属する画素の信 号を同時に読み出す制御部とを備える。
[0014] また、好ましくは、第 1の発光部は、光信号の射出を開始する前に、光源を発光させ ることで、初期設定を行うための設定光信号を射出し、 XYアドレス方式イメージセン サは、画素領域で設定光信号を受信し、分類部は、複数の画素のうち設定光信号の 受信レベルが所定の閾値以上である画素を抽出してグループとすることで、分類情 報を作成する。
[0015] また、好ましくは、制御部は、複数の画素のうち画素グループを除く画素の信号は、 読み出さない。
[0016] また、受信装置は、分類情報を記憶する記憶部を更に備え、制御部は、記憶部に 記憶された分類情報を読み出して XYアドレス方式イメージセンサを制御してもよい。
[0017] また、受信装置は、送信装置に対して、データの伝送を要求する信号を送信する 送信部を更に備え、送信装置は、送信部から送信されたデータの伝送を要求する信 号を受信する受信部を更に備えてもよい。
[0018] また、送信部は、送信装置に対してデータの伝送を要求する光信号を射出する第
2の発光部であり、第 2の発光部は、記憶部が分類情報の記憶を完了する所定のタイ ミングで、データの伝送を要求する光信号を射出してもよレ、。 [0019] また、受信部は、第 2の発光部から射出されたデータの伝送を要求する光信号を受 信して電気信号に変換する受光部であり、第 1の発光部は、受光部から電気信号を 入力されて、光信号の射出を開始してもよい。
[0020] また、第 1の発光部は、更に、光軸のずれを補正するためのパイロット光信号を射 出するパイロット光源を備え、 XYアドレス方式イメージセンサは、更に、パイロット光 信号を画素領域で受信し、分類部は、更に、複数の画素のうちパイロット光信号が照 射される画素の位置変化を検出し、制御部は、更に、位置変化に従って光軸のずれ を補正してもよい。
[0021] また、分類部は、更に、光信号が照射される画素の位置変化を検出し、制御部は、 更に、位置変化に従って光軸のずれを補正してもよい。
[0022] また、受信装置は、光軸のずれを補正するための補正用イメージセンサと、光信号 を分割し、補正用イメージセンサと XYアドレス方式イメージセンサとに照射させるビ 一ムスプリッタとを更に備え、補正用イメージセンサは、光信号を複数の画素で成る 画素領域で受信し、分類部は、更に、補正用イメージセンサの光信号が照射される 画素の位置変化を検出し、制御部は、更に、位置変化に従って光軸のずれを補正し てもよい。
[0023] また、送信装置は、複数の光信号を射出する複数の光源を有する第 1の発光部を 備え、受信装置は、複数の画素から成る画素領域を有し、複数の光信号を画素領域 で受信する XYアドレス方式イメージセンサと、複数の画素のうち複数の光信号のそ れぞれが照射される画素をそれぞれの画素グループにまとめて、複数の光信号に対 応する複数の画素グループに分類する分類情報を作成する分類部と、分類情報に 従って、 XYアドレス方式イメージセンサを制御して、複数の画素グループに属する 画素の信号を、画素グループ毎に同時に読み出す制御部とを備えてもよい。
[0024] また、好ましくは、第 1の発光部は、複数の光信号の射出を開始する前に、複数の 光源を順番に発光させることで、初期設定を行うための複数の設定光信号を順番に 射出し、 XYアドレス方式イメージセンサは、画素領域で複数の設定光信号を順番に 受信し、分類部は、複数の設定光信号が順番に受信される毎に、複数の画素のうち 受信レベルが所定の閾値以上である画素を抽出して 1つのグループとすることで、分 類情報を作成する。
[0025] また、第 1の発光部は、更に、複数の設定光信号を順番に射出する前に、複数の 光源の全てを同時に発光させて複数の画素限定用設定光信号を同時に射出し、分 類部は、複数の画素限定用設定光信号を受信した画素のみを対象として、分類情 報を作成してもよい。
[0026] また、 1の発光部は、複数の光信号の射出を開始する前に、複数の光源を互いに 異なる光強度で同時に発光させることで、初期設定を行うための複数の設定光信号 を同時に射出し、 XYアドレス方式イメージセンサは、画素領域で複数の設定光信号 を同時に受信し、分類部は、複数の設定光信号を受信した画素を、受信レベルに応 じてグループとすることで、分類情報を作成してもよ!/、。
[0027] また、第 1の発光部は、複数の光信号の射出を開始する前に、複数の光源を分割 して成る複数の光源群のそれぞれに含まれる光源を、互いに異なる光強度で光源群 毎に同時に発光させることで、光源群毎に、初期設定を行うための複数の設定光信 号を同時に射出し、 XYアドレス方式イメージセンサは、画素領域で光源群毎の複数 の設定光信号を同時に受信し、分類部は、光源群毎の複数の設定光信号が受信さ れる度に、複数の設定光信号を受信した画素を、受信レベルに応じてグループとす ることで、分類情報を作成してもよい。
[0028] また、第 1の発光部は、更に、光源群毎の複数の設定光信号を同時に射出する前 に、複数の光源の全てを同時に発光させて複数の画素限定用設定光信号を同時に 射出し、分類部は、複数の画素限定用設定光信号を受信した画素のみを対象として 、分類情報を作成してもよい。
[0029] また、好ましくは、制御部は、複数の画素のうち複数の画素グループを除く画素の 信号は、読み出さない。
[0030] また、分類部は、更に、複数の光信号の少なくとも 1つが照射される画素の位置変 化を検出し、制御部は、更に、位置変化に従って光軸のずれを補正してもよい。
[0031] また、受信装置は、光軸のずれを補正するための補正用イメージセンサと、複数の 光信号の少なくとも 1つを分割し、補正用イメージセンサと XYアドレス方式イメージセ ンサとに照射させるビームスプリッタとを更に備え、補正用イメージセンサは、複数の 光信号の少なくとも 1つを複数の画素で成る画素領域で受信し、分類部は、更に、補 正用イメージセンサの複数の光信号の少なくとも 1つが照射される画素の位置変化を 検出し、制御部は、更に、位置変化に従って光軸のずれを補正してもよい。
発明の効果
[0032] 上記のように、本発明によれば、イメージセンサを用いて厳密な光軸調整を緩和し た光空間伝送装置において、イメージセンサの信号読出し速度を向上させて高速通 信を実現することができる。
図面の簡単な説明
[0033] [図 1]図 1は、本発明の第 1の実施形態に係る光空間伝送装置 100の構成例を示す 図である。
[図 2]図 2は、本発明の第 1の発光部 103とイメージセンサ 105とを具体的に示した図 である。
[図 3]図 3は、本発明の光空間伝送装置 100の動作について説明するための図であ
[図 4]図 4は、図 3で説明した初期設定動作 (ステップ S01〜ステップ S06)を詳細に 説明するためのフローチャートである。
[図 5]図 5は、本発明の分類部 106が行う画素の分類及び画素のグループ化の概念 を説明するための図である。
[図 6]図 6は、図 3のステップ S09において、イメージセンサ 105が各画素の信号を読 出す動作を説明するための図である。
[図 7]図 7は、本発明の第 2の実施形態に係る光空間伝送装置 200の構成例を示す 図である。
[図 8]図 8は、本発明の第 1の発光部 203とイメージセンサ 105とを具体的に示した図 である。
[図 9]図 9は、本発明の分類部 106が行う画素の分類及び画素のグループ化の概念 を説明するための図である。
[図 10]図 10は、図 3のステップ S09において、イメージセンサ 105が各画素の信号を 読出す動作を説明するための図である。 [図 11]図 11は、本発明のイメージセンサ 105の画素領域の一部分を示す図である。
[図 12]図 12は、本発明の受信装置 102が、ノ ィロット兼用光信号を検出する専用の イメージセンサを備える場合の構成例について説明するための図である。
園 13]図 13は、特許文献 1に記載された従来の光空間伝送装置 300の構成を示す 図である。
園 14]図 14は、従来の光空間伝送装置 400の構成を示す図である。
[図 15]図 15は、従来の光空間伝送装置 400のイメージセンサ 402が各画素の信号 を読出す動作を説明するための図である。
符号の説明
10- 1— 10-4, 103- 1 , 203- 1— 203-4 光源
100、 200、 300、 400 光空間伝送装置
皿、 301 送信装置
102、 201、 302、 401 受信装置
103、 109、 203、 304 発光部
104 受光部
105、 205、 402 ィメージセンサ
106 分類部
107 記憶部
108 制御部
120、 403 垂直走査回路
121、 404 水平走査回路
122、 405 出力信号線
206 ビームスプリッタ
303 S— P変換部
305 レンズ
306 PDアレイ部
307 P— S変換部 # 1 〜井 64 画素
発明を実施するための最良の形態 [0035] (第 1の実施形態)
図 1は、第 1の実施形態に係る光空間伝送装置 100の構成例を示す図である。図 1 に示す通り、光空間伝送装置 100は、送信装置 101と受信装置 102とを備える。送 信装置 101は、第 1の発光部 103と受光部 104とを含む。受信装置 102は、 X—Yァ ドレス方式のイメージセンサ(以下、単に、イメージセンサという) 105と、分類部 106と 、記憶部 107と、制御部 108と、第 2の発光部 109とを含む。
[0036] 図 2は、第 1の発光部 103とイメージセンサ 105とを具体的に示した図である。図 2 に示す通り、第 1の発光部 103は、 1つの光源 103— 1により構成される。イメージセ ンサ 105は、複数の画素から成る画素領域を有する。以下では、一例として、ィメー ジセンサ 105は 16個の画素を有するものとして説明を行う。
[0037] 図 3は、光空間伝送装置 100の動作について説明するための図である。以下では 、図 1〜図 3を参照して、光空間伝送装置 100の動作の概要について説明する。光 空間伝送装置 100は、初期設定動作 (ステップ S01〜ステップ S06)と、当該初期設 定動作後に実行されるデータ伝送動作 (ステップ S07〜ステップ S09)とを行う。
[0038] まず、初期設定動作について説明する。第 1の発光部 103は、光源 103— 1を発光 させる(ステップ S01)。このことによって、第 1の発光部 103は、イメージセンサ 105に 、データ伝送の初期設定を行うための設定光信号を照射する(図 2を参照)。イメージ センサ 105は、複数の画素がマトリクス状に配列された画素領域で設定光信号を受 光する(ステップ S02)。そして、イメージセンサ 105は、各画素の電気信号を順番に 出力する。分類部 106は、イメージセンサ 105から出力された各画素の電気信号を 基に、後に詳しく説明する画素の分類及び画素のグループ化処理を行い (ステップ S 03)、当該処理結果である分類情報を出力する。記憶部 107は、分類情報の記憶処 理を行い(ステップ S04)、当該記憶処理と並行して当該記憶処理が完了するタイミン グを示す信号 S2を第 2の発光部 109に出力する。第 2の発光部 109は、信号 S2を 電気信号から光信号に変換 (以下、電光変換という)し、データ送信要求信号として 送信装置 101の受光部 104に向けて放射する(ステップ S05)。受光部 104は、デー タ送信要求信号を受光する(ステップ S06)。
[0039] 次に、データ伝送動作について説明する。受光部 104は、データ送信要求信号を 受光すると、データ送信開始信号 S3を第 1の発光部 103に出力する。第 1の発光部 103は、データ送信開始信号 S3を入力されると、伝送データ S1を光源 103— 1を用 いて電光変換したデータ光信号を、イメージセンサ 105に照射する(ステップ S07)。 イメージセンサ 105は、画素領域でデータ光信号を受光する(ステップ S08)。ここで 、データ光信号が照射される画素と、ステップ S02で設定光信号が照射された画素と は等しいものとする。すなわち、第 1の発光部 103とイメージセンサ 105との位置関係 は、初期設定動作時とデータ伝送動作時とで変化しないものとする。制御部 108は、 記憶部 107に記憶された分類情報を用いて、後に詳しく説明する方法でイメージセ ンサ 105の動作を制御して、各画素の電気信号を読出させる(ステップ S09)。このこ とによって、イメージセンサ 105は、伝送データ S 1を再生する。
[0040] 図 4は、図 3で説明した初期設定動作 (ステップ S01〜ステップ S06)を詳細に説明 するためのフローチャートである。なお、図 4に示すステップ S01、 S02、 S04及び SO 5は、それぞれ、図 3に示すステップ S01、 S02、 S04及び S05と同じである。また、図 4に示すステップ S03— ;!〜 S03— 6は、図 3に示すステップ S03を構成するステップ である。図 5は、分類部 106が行う画素の分類及び画素のグループ化の概念を説明 するための図である。図 5は、一例として、画素 # 1〜井 16が配列されたイメージセン サ 105を表している。また、一例として、第 1の発光部 103の光源 103— 1から射出さ れた設定光信号が、主に画素 # 6、 # 7、 # 10及び # 11に照射されている場合を表 している。
[0041] 以下では、図 4及び図 5を参照して初期設定動作について詳細に説明する。まず、 第 1の発光部 103の光源 103— 1が発光し (ステップ S01)、設定光信号力 Sイメージセ ンサ 105に照射される(図 2を参照)。イメージセンサ 105は、設定光信号を受光する (ステップ S02)。以下では、一例として、図 5に示す様に、イメージセンサ 105の画素 # 6, # 7、 # 10及び # 11に設定光信号が主に照射される場合について説明する。
[0042] 分類部 106は、最終の画素 # 16の番号よりも分類対象の画素 # 1の番号が大きい か否かを判断する (ステップ S03— 1)。最終の画素井 16の番号よりも分類対象の画 素 # 1の番号は大きくないので、ステップ S03— 2に移る。次に、分類部 106は、ィメ ージセンサ 105の出力から画素 # 1の受信電力レベル(Pr )を抽出する(ステップ S 03— 2)。次に、分類部 106は、抽出した受信電力レベル (P )が所定の閾値以上 であるか否かを判断する(ステップ S03— 3)。画素 # 1には設定光信号が照射されて いないので(図 5を参照)、 Pr は所定の閾値以上ではないと判断され、ステップ S03 —5に移る。次に、分類部 106は、画素 # 1の番号に 1を加えて次の分類対象の画素 を画素 # 2とし (ステップ S03— 5)、ステップ S03— 1に戻る。以下同様に、画素 # 2 〜井 5には設定光信号が殆ど照射されて!/、な!/、ので(図 5を参照)、画素 # 2〜井 5 の受信電力レベル (Pr 〜Pr )は、いずれも所定の閾値以上ではないと判断されて
2 5
、ステップ S03— 1に戻る。
[0043] 次に、分類部 106は、最終の画素 # 16の番号よりも分類対象の画素 # 6の番号が 大き!/、か否かを判断する(ステップ S03— 1)。最終の画素井 16の番号よりも分類対 象の画素 # 6の番号は大きくないので、ステップ S03— 2に移る。次に、分類部 106 は、イメージセンサ 105の出力から画素井 6の受信電力レベル (Pr )を抽出する(ス
6
テツプ S03— 2)。次に、分類部 106は、抽出した受信電力レベル (Pr )が所定の閾
6
値以上であるか否かを判断する(ステップ S03— 3)。画素 # 6には設定光信号が照 射されているので(図 5を参照)、 Pr は所定の閾値以上であると判断され、ステップ
6
S03— 4に移る。次に、分類部 106は、画素領域における画素 # 6の位置を保持する (ステップ S03— 4)。次に、分類部 106は、画素 # 6の番号 6に 1を加えて分類対象 の画素 # 7とし(ステップ S03— 5)、ステップ S03— 1に戻る。同様に、画素 # 7には 設定光信号が照射されているので(図 5を参照)、画素 # 7の受信電力レベル (Pr ) は所定の閾値以上であると判断されて、画素領域における画素 # 7の位置は保持さ れる。
[0044] 以下同様に、画素 # 8〜井 16までを分類対象の画素としてステップ S03— 1〜ステ ップ S03— 5が繰り返され、ステップ S03— 5で分類対象の画素が画素井 17 (実際に は画素 # 17は存在しない)となり、ステップ S03— 1に戻る。この結果として、分類部 1 06は、画素領域における画素 # 6、 # 7、 # 10及び # 11の位置を保持する。つまり 、ステップ S03— 1〜ステップ S03— 5によって、所定の閾値以上の受信電力レベル の画素が分類 (抽出)され、当該画素の画素領域における位置が分類部 106に保持 される。 [0045] 次に、分類部 106は、最終の画素 # 16の番号よりも分類対象の画素 # 17の番号 が大きいか否かを判断する(ステップ S03— 1)。最終の画素 # 16の番号よりも分類 対象の画素 # 17の番号が大きいので、ステップ S03— 6に移る。次に、分類部 106 は、保持している画素領域における各画素の位置を、位置間の連続性を基準に関連 づけてグループとする。具体的には、分類部 106は、画素領域において、保持してい る各画素位置のうち、隣接することで連続する位置関係を有する複数の画素位置を 1つのグループとする。より具体的には、図 5に示す通り、分類部 106は、隣接するこ とで連続する位置関係を有する画素 # 6、 # 7、 # 10及び # 11の位置を 1つのグノレ ープとする。このことによって、分類部 106は、同一の光信号を受光する画素(画素 # 6、 # 7、 # 10及び # 11)をグループ化することができる(ステップ S03— 6)。そし て、分類部 106は、グループ化した画素を示す分類情報を作成する。なお、分類部 1 06は、ステップ S03— 6において、上記した画素の位置間の連続性は考慮せず、単 に、保持してレ、る各画素位置を 1つのグループとしてもよレ、。
[0046] 記憶部 107は、分類情報の記憶処理を行!/、 (ステップ S04)、当該記憶処理と並行 して当該記憶処理が完了するタイミングを示す信号 S2を第 2の発光部 109に出力す る。第 2の発光部 109は、信号 S2を電光変換し、データ送信要求信号として送信装 置 101の受光部 104に向けて放射する(ステップ S05)。受光部 104は、データ送信 要求信号を受光する(図 4に図示せず)。
[0047] ここで、図 4のステップ S03— 3で用いる受信電力レベルの閾値の設定方法の例に ついて、説明する。一例として、誤り率 10— 12を満たす受信電力レベル(閾値)を設 定する。なお、以下では、単位画素あたりの受光電力が小さぐ雑音成分として熱雑 音が支配的な場合 (ショット雑音及び光源の相対強度雑音等が無視できる場合)を仮 疋 。
[0048] まず、 1つの画素のみで光信号を受信する場合について考える。一般に、 2値の光 信号を受光した場合の誤り率は、相補誤差関数 (erfc)を用いて、以下の式 1で表す こと力 Sでさる。
Figure imgf000014_0001
ここで、 I は光信号照射時の画素の受光電流であり、 I は光信号非照射時の画素
1 0
の受光電流であり、 σは熱雑音電流である。識別電流レベルは(I I ) /2とする
1 0
。また、データ伝送速度は 100MHzとし、光電変換効率は 0. 5とし、消光比は 6dBと し、雑音電流密度は
Figure imgf000015_0001
この場合には、式 1より、誤り率 10— 12を 満たす受信電力レベル(閾値)として、 - 24. 3dBmが得られる。
[0049] 次に、本実施形態のようにグループ化された複数の画素によって、光信号を受信 する場合について考える。この場合、グループ化された画素の数を kとし、式 1を拡張 すると、誤り率は以下の式 2で表すことができる。
[数 2] 誤 :率
-? " 2^2 k σ ここで、 σは、画素毎に発生する熱雑音電流であり、全ての画素において等しいとす る。また、 I 及び I は、それぞれ、画素領域の座標(I, j)での光信号照射時の画
lij Oij
素の受光電流及び光信号非照射時の画素の受光電流である。この場合には、式 2よ り、誤り率 10— 12を満たすためには、以下の式 3を満たす必要がある。
國 ......... ' -14.07
■ σ
このことから、光信号が照射される各画素の受光電流 (I , 1 )が検出できれば、グ
lij Oij
ループ化する画素を選択することによって、式 3を満たす受信電力レベル(閾値)を 設定できる。なお、光信号が照射される各画素の受光電流 (I , I )が検出できず
lij Oij
、また kが決定できない場合には、式 1を用いた方法によって受信電力レベル(閾値) を設定すればよい。
[0050] 図 6は、図 3のステップ S09において、イメージセンサ 105が各画素の信号を読出 す動作を説明するための図である。図 6に示す通り、イメージセンサ 105は、垂直走 查回路 120と、水平走査回路 121と、画素 # 1〜井 16と、出力信号線 122とを備える 。なお、説明の便宜のため、画素 # 6、 # 7、 # 10及び # 11を除く画素は、斜線で示 している。
[0051] 制御部 108は、記憶部 107に記憶されている分類情報(グループ化された画素を 示す情報)を読出して、当該分類情報に従って、イメージセンサ 105の画素信号読 出し動作を制御する。以下、より具体的に説明する。制御部 108は、記憶部 107に記 憶されている、画素 # 6、 # 7、 # 10及び # 11が 1つのグループであることを示す分 類情報を読出す。次に、制御部 108は、読出した分類情報に従って、イメージセンサ 105の垂直走査回路 120及び水平走査回路 121を制御して、画素 # 6、 # 7、 # 10 及び # 11の信号を同時に読出し、読出した各画素の信号を足し合わせて出力信号 線 122に同時に出力する。画素 # 6、 # 7、 # 10及び # 11を除く画素の信号は、読 出されない。
[0052] このように、制御部 108は、分類情報に従って、光信号が照射される画素の信号を 一括して読出し、一方で、信号が照射されない画素の信号は読出さない。つまり、従 来の光空間伝送装置 400が備えるイメージセンサ 402は全画素の信号を画素毎に 順番に読出すのに対して、制御部 108は、イメージセンサ 105に光信号が照射され る画素の信号のみを一括して読出させる。このことによって、制御部 108は、一例とし て説明した 16個の画素を備えるイメージセンサを備える場合には、読出し動作を 16 回から 1回に短縮することができる。
[0053] 以上に説明した通り、第 1の実施形態に係る光空間伝送装置 100は、初期設定動 作によって、光信号を受信する画素を特定し、同一の光信号を受信する画素をグノレ ープ化する。そして、データ伝送動作において、光空間伝送装置 100は、グループ 化された画素の信号を同時に読出す。このことによって、光空間伝送装置 100は、従 来の光空間伝送装置 400と同様に厳密な光軸調整を緩和しつつ、従来の光空間伝 送装置 400よりも大幅にイメージセンサの信号読出し速度を向上させて、高速通信を 実現すること力 Sでさる。
[0054] なお、第 1の実施形態では、送信要求信号の送信装置 101へのフィードバックを光 空間伝送によって行った。しかし、送信要求信号のフィードバックは、光空間伝送に よるものに限定されるものではなぐ受信装置 102から送信装置 101へ送信要求信 号の伝送ができれば、他の手段でもよい。この場合、例えば、受信装置 102は送信 要求信号を送信する送信部を第 2の発光部 109の代わりに備え、送信装置 101は送 信要求信号を受信する受信部を受光部 104に代わりに備えることとなる。
[0055] また、第 1の実施形態では、送信装置 101は、送信要求信号を受信した後にデー タ送信を開始する例について説明した。しかし、送信装置 101は、受信装置 102に ぉレ、て分類情報が記憶部 107に記憶されるタイミングで、データ送信を開始してもよ い。この場合には、受光部 104及び第 2の発光部 109は不要となる(図 1を参照)。
[0056] また、第 1の実施形態では、記憶部 107が分類情報の記憶を完了するタイミングを 示す信号 S2を、記憶部 107が第 2の発光部 109に出力する例を説明した。しかし、 信号 S2は、分類部 106又は制御部 108が第 2の発光部 109に出力してもよい。
[0057] また、第 1の実施形態において、第 1の発光部 103で行う変調方式は、直接変調方 式でもよいし、外部変調方式でもよい。
[0058] また、第 1の実施形態では、 1つの出力信号線を備えるイメージセンサ 105につい て説明した。しかし、複数の出力信号線を備えるイメージセンサを用いてもよい。
[0059] (第 2の実施形態)
第 1の実施形態では 1本の光軸に沿って光信号を伝送する場合について説明した 、第 2の実施形態では、複数本の光軸に沿って光信号を伝送する場合について説 明する。ここで、イメージセンサの各画素の動作期間には、信号を蓄積する信号蓄積 期間と、蓄積した信号を読出す信号読出し期間とがある。すなわち、各画素は、信号 読出し期間には、信号を蓄積できない。このこと力、ら、複数本の光軸に沿って光信号 を伝送することによって、或るグループの画素の信号を一括して読出す期間 (信号読 出し期間)に、他のグループの画素に信号を蓄積することができる。つまり、第 2の実 施形態によれば、データ通信を行うに際して、複数本の光軸に沿って光信号を伝送 することで、信号読出し期間によって生じる伝送速度の低下を回避できる。その一方 で、第 2の実施形態では、データ通信を行うに際して、送信側において、各光軸を構 成する光信号を順番にイメージセンサに照射し、受信側において、各グループの画 素の信号をグループ毎に順番に読出す必要がある。
[0060] 図 7は、第 2の実施形態に係る光空間伝送装置 200の構成例を示す図である。図 7 に示す通り、光空間伝送装置 200は、第 1の実施形態の光空間伝送装置 100 (図 1 を参照)に対して、送信装置 101を送信装置 201に置換えた構成である。送信装置 2 01は、光空間伝送装置 100の送信装置 101に対して、第 1の発光部 103を第 1の発 光部 203に置換えた構成である。なお、光空間伝送装置 200の構成要素において、 光空間伝送装置 100の構成要素と同一の構成要素については、同一の参照符号を 付し、重複する説明は省略する。
[0061] 図 8は、第 1の発光部 203とイメージセンサ 105とを具体的に示した図である。図 8 に示す通り、第 1の発光部 203は、 S— P変換部(図示せず)と、 4つの光源 203— 1、 203— 2、 203— 3及び 203— 4とにより構成される。イメージセンサ 105は、複数の画 素力、ら成る画素領域を有する。 4つの光原 203— 1、 203— 2、 203— 3及び 203— 4 から射出される 4本の光軸に沿った光信号は、それぞれ、イメージセンサ 105の画素 領域に互いに重なることなく照射される。以下では、一例として、イメージセンサ 105 は 64個の画素を有するものとして説明を行う。
[0062] 図 9は、分類部 106が行う画素の分類及び画素のグループ化の概念を説明するた めの図である。図 9に示す通り、イメージセンサ 105の画素領域には、画素 #1〜井 6 4が配列されている。また、図 9は、第 1の発光部 203の光源 203— 1から射出された 設定光信号である設定光信号 Aが主に画素 #10、 #11, #18及び #19に照射さ れ、光源 203— 2から射出された設定光信号である設定光信号 Bが主に画素 #14、 #15, #22及び #23に照射され、光源 203— 3から射出された設定光信号である 設定光信号 Cが主に画素 #42、 #43、 #50及び #51に照射され、光源 203— 4か ら射出された設定光信号である設定光信号 Dが主に画素 #46、 #47、 #54及び井 55に照射される場合を表している。
[0063] 以下では、第 1の実施形態の説明で用いた図 3及び図 4を流用して、光空間伝送 装置 200の動作について説明する。まず、初期設定動作について説明する。送信装 置 201は、光源 203— 1のみを発光させる(ステップ S01)。この時、イメージセンサ 1 05の画素領域には、図 9に示す設定光信号 Aのみが照射される。イメージセンサ 10 5は、図 9に示す通り、照射された設定光信号 Aを画素 #10、 #11, #18及び #19 によって受光する(ステップ S02)。分類部 106は、ステップ S03— 1〜ステップ S03 5の動作を繰り返し行って、画素 #10、 #11, #18及び #19の画素位置を保持 する。次に、分類部 106は、保持した画素位置を基に、設定光信号 Aを受光する画 素 # 10、 # 11 , # 18及び # 19を 1つのグループ(以下、グループ Aという)としてグ ループ化する(ステップ S03— 6)。次に、分類部 106は、グループ Aを示す分類情報 を作成する。記憶部 107は、作成された分類情報を記憶する (ステップ S04)。
[0064] 次に、送信装置 201は、光源 203— 2のみを発光させる(ステップ S01)。この時、ィ メージセンサ 105の画素領域には、図 9に示す設定光信号 Bのみが照射される。ィメ ージセンサ 105は、図 9に示す通り、照射された設定光信号 Bを画素 # 14、 # 15, # 22及び # 23によって受光する(ステップ S02)。分類部 106は、ステップ S03— 1 〜ステップ S03— 5の動作を繰り返し行って、画素 # 14、 # 15, # 22及び # 23の画 素位置を保持する。次に、分類部 106は、保持した画素位置を基に、設定光信号 B を受光する画素 # 14、 # 15、 # 22及び # 23を 1つのグループ(以下、グループ Bと いう)としてグループ化する(ステップ S03— 6)。次に、分類部 106は、グループ Bを 示す分類情報を作成する。記憶部 107は、作成された分類情報を記憶する (ステツ プ S04)。
[0065] 以下同様に、光源 203— 3のみを発光させてステップ S01〜ステップ S04の動作が 行われ、その後に、光源 203— 4のみを発光させてステップ S01〜ステップ S04の動 作が行われる。このことによって、記憶部 107は、設定光信号 Cを受光する画素 # 42 、 # 43、 # 50及び # 51で成るグループ Cを示す分類情報と、設定光信号 Dを受光 する画素 # 46、 # 47、 # 54及び # 55で成るグループ Dを示す分類情報とを記憶す る。次に、ステップ S05及びステップ S06の動作が行われて、初期設定動作は終了 する。
[0066] ここで、グループ A〜Dを示す分類情報には、それぞれ、設定光信号 A〜Dを受光 した順番を示す受光順序情報が含まれる。また、上記した初期設定動作において、 送信装置 201が光源 203—;!〜 203— 4を発光させた順番は、後に説明するデータ 伝送動作において、送信装置 201が光源 203—;!〜 203— 4を発光させる順番と等 しい。つまり、受光順序情報は、データ伝送動作において、各グループの画素が光 信号を受信する順番を示す。このことによって、受信装置 102の記憶部 107は、複数 の光信号を受信する画素のグループを記憶すると同時に、データ伝送動作において 、各グループの画素が光信号を受信する順番を示す受光順序情報を記憶することが できる。
[0067] 次に、図 3を参照して、データ伝送動作について説明する。送信装置 201の第 1の 発光部 203は、 S— P変換部によってシリアル形式の伝送データ S1をパラレル形式 の伝送データに変換し、当該パラレル形式の伝送データをそれぞれ対応する光源に 入力する。次に、第 1の発光部 203は、パラレル形式の伝送データに従って、各光源 を発光させる(図 8を参照)。この際に、第 1の発光部 203は、各光源を、光源 203— 1 、光原 203— 2、光原 203— 3、光原 203— 4の J噴序で発光させることによって、光信 号をイメージセンサ 105に照射する(ステップ S07)。
[0068] ここで、光源 203— 1が発光して照射する光信号を光信号 Aとし、光源 203— 2が発 光して照射する光信号を光信号 Bとし、光源 203— 3が発光して照射する光信号を光 信号 Cとし、光源 203— 4が発光して照射する光信号を光信号 Dとする。この様にす ると、光信号 A、光信号 B、光信号 C及び光信号 Dが照射される画素は、それぞれ、 初期設定動作時に設定光信号 A、設定光信号 B、設定光信号 C及び設定光信号 D が照射される画素と等しくなる(図 9を参照)。すなわち、第 1の発光部 203とイメージ センサ 105との位置関係は、初期設定動作時とデータ伝送動作時とで変化しないも のとする。
[0069] 次に、イメージセンサ 105は、画素領域で光信号 A、光信号 B、光信号 C及び光信 号 Dを順番に受光する(ステップ S08)。
[0070] 図 10は、図 3のステップ S09において、イメージセンサ 105が各画素の信号を読出 す動作を説明するための図である。図 10に示す通り、イメージセンサ 105は、垂直走 查回路 120と、水平走査回路 121と、画素 # 1〜井 64と、出力信号線 122とを備える 。ここで、グノレープ Aに属する画素 # 10、 # 11 , # 18及び # 19と、グノレープ Bに属 する画素 # 14、 # 15, # 22及び # 23と、グループ Cに属する画素 # 42、 # 43、 # 50及び # 51と、グループ Dに属する画素 # 46、 # 47、 # 54及び # 55とは、それぞ れ、太線で囲んだ領域に示す。また、グループ A〜Dに含まれない画素は、斜線で 示している。
[0071] 次に、制御部 108は、記憶部 107に記憶されている分類情報を読出す。ここで、分 類情報は、グループ A〜Dの画素を示す情報、及びグループ A〜Dの画素にそれぞ れ光信号 A〜Dが照射される順番を示す情報である。次に、制御部 108は、分類情 報に従って、イメージセンサ 105の垂直走査回路 120及び水平走査回路 121を制御 して、グループ A〜Dの画素の信号をグループ毎に順番に一括して読出す (ステップ S09)。以下に、より具体的に説明する。制御部 108は、光信号 Aを受光したグルー プ Aの画素の信号を同時に読出し、読出した各画素の信号を足し合わせて出力信 号線 122に出力する。その後、制御部 108は、光信号 Bを受光したグループ Bの画 素の信号を同時に読出し、読出した各画素の信号を足し合わせて出力信号線 122 に出力する。以下同様に、制御部 108は、グループ Cの画素の信号を同時に読出し て出力信号線 122に出力した後に、グループ Dの画素の信号を同時に読出して出 力信号線 122に出力する。この様に、制御部 108は、光信号 A〜Dを順次受光した グループ A〜Dの画素の信号をそれぞれ一括して順次読出す。なお、グループ A〜 Dの画素を除く画素の信号は、読出されない。
[0072] このように、制御部 108は、分類情報に従って、各グノレープの画素の信号をグノレ一 プ毎に順次一括して読出し、一方で、光信号が照射されない画素の信号は読出さな い。このことによって、制御部 108は、一例として説明した 64個の画素を備えるィメー ジセンサの場合は、読出し動作を 64回から 4回に短縮することができる。更に、制御 部 108は、順番に照射される光信号 A〜Dを受信するグループ A〜Dの画素の信号 を、順番に読出す。このことによって、制御部 108は、常に光信号 A〜Dのいずれか をグループ A〜Dの画素のいずれかに受信させることができる。この結果として、制御 部 108は、画素信号の信号読出し期間によって生じる伝送速度の低下を回避できる
[0073] 以上に説明した通り、第 2の実施形態に係る光空間伝送装置 200は、第 1の実施 形態に係る光空間伝送装置 100と同様に厳密な光軸調整を緩和しつつ、更に、光 空間伝送装置 100よりも高速通信を実現することができる。
[0074] なお、第 2の実施形態において、第 1の発光部 203に含まれる複数の光源として、 アレイ型光源を用いてもょレ、。
[0075] また、以上では、初期設定動作にお!/、て、光源を順番に発光させて、光源の発光 毎に全ての画素の信号を順次読出す(以下、全スキャンという)ことによって、データ 伝送動作時の光源の発光順序を受信側に通知する方法(以下、第 1の方法という)を 説明した。しかし、第 1の方法では、光源の数 (光信号の数)に比例して全スキャンの 回数が増加するので、初期設定動作に比較的長時間を必要とする。以下では、初期 設定方法の他の例(第 2〜第 4の方法)について、簡単に説明する。
[0076] 第 2の方法は、全光源を同時に発光させて、一度だけ全スキャンする方法である。
この時、各光源は、それぞれ、データ伝送動作時の発光順序に対応した光強度の設 定光信号を射出する。第 2の方法では、受信側は、受信する設定光信号の光強度に よって、データ伝送動作時の光源の発光順序を通知される。この場合、受信側は、例 えば、受信レベルについての複数の閾値を設けて、受信する設定光信号の光強度 を判別する。このことによって、第 2の方法では、初期設定動作に長い時間を必要と しない。一方で、第 2の方法では、光源の数が多い (設定光信号の数が多い)場合に は、各設定光信号間の光強度差が小さくなる。この結果として、発光順序の判別に必 要な S/N比は小さくなるので、受信側で、発光順序の判別を誤る確率が高まる。
[0077] 第 3の方法は、第 1の方法と第 2の方法とを併用した方法である。例えば、 4つの光 源がある場合において、 2つの光源(第 1の光源群)について第 2の方法を実行し、次 に、他の 2つの光源(第 2の光源群)について第 2の方法を実行する方法である。第 3 の方法によれば、受信側で行う発光順序判別の確実性を高めつつ、初期設定動作 に必要とする時間を短縮できる。
[0078] 第 4の方法は、第 1〜第 3の方法を行う前に、全光源を同時に発光させて分類対象 の画素を限定するための画素限定用設定光信号を画素領域に照射して、一度全ス キャンする方法である。このことで、設定光信号を受光する画素 (分類対象の画素)が 特定(限定)される。その後、第 4の方法では、特定した画素のみを対象として第 1〜 第 3の方法を実施する。第 4の方法によれば、第 1〜第 3の方法で用いる全スキャン の対象画素を限定することができるので、第 1〜第 3の方法よりも初期設定動作に必 要とする時間を短縮することができる。
[0079] (第 3の実施形態)
第 1及び第 2の実施形態では、送信装置と受信装置との位置関係が変化しないこと を前提に説明を行った。第 3の実施形態では、第 1及び第 2の実施形態の光空間伝 送装置において、送信装置と受信装置との位置関係が変化して光軸がずれても正 確にデータ通信を行うことができる構成について、説明する。なお、以下では、一例と して、第 2の実施形態の光空間伝送装置 200を対象として、説明を行う。
[0080] 第 3の実施形態において、送信装置 201は、更に、光軸補正用の光源であるパイ口 ット光源を備える。なお、パイロット光源は、第 1の発光部 203に備えられてもよい。パ ィロット光源は、光軸補正用の光信号であるパイロット光信号を、イメージセンサ 105 の画素領域に照射する。図 11は、イメージセンサ 105の画素領域の一部分を示す図 である。図 11では、一例として、画素 # 23、 # 24、 # 33及び # 34にパイロット光信 号が照射されている。図 11に示す通り、受信装置 102の分類部 106は、パイロット光 信号が照射される画素 # 23、 # 24、 # 33及び # 34を 1つのグループとする(以下、 グループ Eという)。また、受信装置 102の分類部 106は、グループ Eの画素を取り囲 む画素を四分割して、それぞれの画素のグループを、グループ F (画素 # 12、 # 13 、 # 22)、グループ G (画素 # 14、 # 15、 # 25)、グループ H (画素 # 35、 # 44、 # 45)及びグループ 1 (画素 # 32、 # 42、 # 43)とする。ここで、グループ F〜グループ I の画素は、光軸のずれを検出する画素である。
[0081] 受信装置 102の分類部 106は、グループ F〜グループ Iの画素の信号を定期的に グループ毎に読出す。このことによって、受信装置 102の分類部 106は、定期的にグ ノレープ F〜グノレープ Iの画素の信号レべノレの変化を検出できるので、光軸のずれ方 向及びずれ距離を検出することができる。例えば、グループ Fの画素の信号レベルが 大きく上がった場合には、受信装置 102の分類部 106は、グループ Eからグループ F の方向に光軸が大きくずれたことを検出できる(図 11を参照)。そして、受信装置 102 の制御部 108は、検出した光軸のずれに応じて、データ通信を行うための光信号を 受光する画素(図 10を参照)を変更して光軸を補正する。この結果として、受信装置 102は、光軸がずれた場合でも、光信号を正確に受信することができる。
[0082] 以上に説明した通り、第 3の実施形態によれば、第 1及び第 2の実施形態の光空間 伝送装置において、送信装置と受信装置との位置関係が変化して光軸がずれても 光軸を補正して正確にデータ通信を行うことができる。 [0083] なお、以上では、受信装置 102は、検出した光軸のずれに応じて、データ伝送を行 うための光信号を受光する画素を変更した。しかし、受信装置 102は、受光する画素 を変更せず、イメージセンサ 105を移動させてもよいし、イメージセンサ 105に光信号 を集光させるレンズ (図示せず)を移動させてもよい。また、送信装置 101が、光源を 移動させてもよい。
[0084] また、以上では、グループ Eの画素を取り囲む画素を四分割して、 4つの光軸ずれ 検出用の画素グループを設定した。しかし、光軸ずれ検出用の画素グループは、所 望の光軸ずれの検出精度に応じて、 2つ以上設定されればよい。
[0085] また、以上では、送信装置 201は、 1つのパイロット光源を備えた。しかし、送信装 置 201は、複数のパイロット光源を備えてもよい。このことによって、受信装置 102に おいて、 1つのパイロット光信号を正常に受信できない場合であっても、他のパイロッ ト光信号を受信することができるので、光軸ずれの補正をより安定して行うことができ
[0086] また、以上では、光軸補正用のパイロット光源を送信装置 201に設けて、ノ ィロット 光信号を射出した。しかし、光軸補正用のパイロット光源を設けないで、データ伝送 用の光源 203— 1等(図 8を参照)が射出する光信号をパイロット光信号として兼用し てもよい。ここで、一般に、データ伝送に用いられる光変調方式には、 OOK (ON/ OFF Keying)が用いられるので、伝送データが無い期間には、データ伝送用の光 源 203— 1等の発光パワーは 0となる。この時には、受信装置 102では光軸補正のた めの光信号が得られない。従って、データ伝送用の光源 203— 1等が射出する光信 号をパイロット光信号として兼用する場合には、例えば、伝送データが無い期間にも 光源が発光するように変調を行うことが好まし!/、。
[0087] また、受信装置 102は、パイロット光信号として兼用される光信号 (以下、ノ イロット 兼用光信号という)を検出する専用のイメージセンサ(以下、光軸補正用イメージセン サという)を備えてもよい。なお、光軸補正用イメージセンサは、 XYアドレス方式ィメ ージセンサには限られない。図 12は、受信装置 102が、光軸補正用イメージセンサ を備える場合の構成例について説明するための図である。図 12に示す通り、受信装 置 102は、光軸補正用イメージセンサ 205と、入射するパイロット兼用光信号を分割 して光軸補正用イメージセンサ 205及びイメージセンサ 105に照射させるビームスプ リツタ 206とを更に備える。このことから、受信装置 102は、例えば、複数の光信号を イメージセンサ 105によって受信しつつ、 1つのパイロット兼用光信号を光軸補正用ィ メージセンサ 205によって検出できる。このことによって、受信装置 102は、ノ ィロット 兼用光信号を、光軸補正用イメージセンサ 205によって、複数の光信号の読出しを 待つことなく素早く読出すことができる。この結果として、高速な光軸補正が可能とな 産業上の利用可能性
本発明は、イメージセンサを用いて厳密な光軸調整を緩和した光空間伝送装置等 に利用可能であり、特に、イメージセンサからのデータ読出し速度を向上させて高速 通信を実現させる場合等に有用である。

Claims

請求の範囲
[1] 送信装置から受信装置に光信号を伝送する光空間伝送装置であって、
前記送信装置は、 1つの光信号を射出する光源を有する第 1の発光部を備え、 前記受信装置は、
複数の画素から成る画素領域を有し、前記光信号を前記画素領域で受信する X Yアドレス方式イメージセンサと、
前記複数の画素のうち前記光信号が照射される画素を画素グループに分類する 分類情報を作成する分類部と、
前記分類情報に従って、前記 XYアドレス方式イメージセンサを制御して、前記画 素グループに属する画素の信号を同時に読み出す制御部とを備えることを特徴とす る、光空間伝送装置。
[2] 前記第 1の発光部は、前記光信号の射出を開始する前に、前記光源を発光させる ことで、初期設定を行うための設定光信号を射出し、
前記 XYアドレス方式イメージセンサは、前記画素領域で前記設定光信号を受信し 前記分類部は、前記複数の画素のうち前記設定光信号の受信レベルが所定の閾 値以上である画素を抽出してグループとすることで、前記分類情報を作成することを 特徴とする、請求項 1に記載の光空間伝送装置。
[3] 前記制御部は、前記複数の画素のうち前記画素グループを除く画素の信号は、読 み出さないことを特徴とする、請求項 1に記載の光空間伝送装置。
[4] 前記受信装置は、前記分類情報を記憶する記憶部を更に備え、
前記制御部は、前記記憶部に記憶された前記分類情報を読み出して前記 XYアド レス方式イメージセンサを制御することを特徴とする、請求項 1に記載の光空間伝送 装置。
[5] 前記受信装置は、前記送信装置に対して、データの伝送を要求する信号を送信す る送信部を更に備え、
前記送信装置は、前記送信部から送信された前記データの伝送を要求する信号を 受信する受信部を更に備えることを特徴とする、請求項 4に記載の光空間伝送装置。
[6] 前記送信部は、前記送信装置に対して前記データの伝送を要求する光信号を射 出する第 2の発光部であり、
前記第 2の発光部は、前記記憶部が前記分類情報の記憶を完了する所定のタイミ ングで、前記データの伝送を要求する光信号を射出することを特徴とする、請求項 5 に記載の光空間伝送装置。
[7] 前記受信部は、前記第 2の発光部から射出された前記データの伝送を要求する光 信号を受信して電気信号に変換する受光部であり、
前記第 1の発光部は、前記受光部から前記電気信号を入力されて、前記光信号の 射出を開始することを特徴とする、請求項 6に記載の光空間伝送装置。
[8] 前記第 1の発光部は、更に、光軸のずれを補正するためのパイロット光信号を射出 するパイロット光源を備え、
前記 XYアドレス方式イメージセンサは、更に、前記パイロット光信号を前記画素領 域で受信し、
前記分類部は、更に、前記複数の画素のうち前記パイロット光信号が照射される画 素の位置変化を検出し、
前記制御部は、更に、前記位置変化に従って前記光軸のずれを補正することを特 徴とする、請求項 1に記載の光空間伝送装置。
[9] 前記分類部は、更に、前記光信号が照射される画素の位置変化を検出し、
前記制御部は、更に、前記位置変化に従って光軸のずれを補正することを特徴と する、請求項 1に記載の光空間伝送装置。
[10] 前記受信装置は、
光軸のずれを補正するための補正用イメージセンサと、
前記光信号を分割し、前記補正用イメージセンサと前記 XYアドレス方式イメージ センサとに照射させるビームスプリッタとを更に備え、
前記補正用イメージセンサは、前記光信号を複数の画素で成る画素領域で受信し 前記分類部は、更に、前記補正用イメージセンサの前記光信号が照射される画素 の位置変化を検出し、 前記制御部は、更に、前記位置変化に従って前記光軸のずれを補正することを特 徴とする、請求項 1に記載の光空間伝送装置。
[11] 送信装置から受信装置に光信号を伝送する光空間伝送装置であって、
前記送信装置は、複数の光信号を射出する複数の光源を有する第 1の発光部を備 え、
前記受信装置は、
複数の画素から成る画素領域を有し、前記複数の光信号を前記画素領域で受信 する XYアドレス方式イメージセンサと、
前記複数の画素のうち前記複数の光信号のそれぞれが照射される画素をそれぞ れの画素グループにまとめて、前記複数の光信号に対応する複数の画素グループ に分類する分類情報を作成する分類部と、
前記分類情報に従って、前記 XYアドレス方式イメージセンサを制御して、前記複 数の画素グループに属する画素の信号を、画素グループ毎に同時に読み出す制御 部とを備えることを特徴とする、光空間伝送装置。
[12] 前記第 1の発光部は、前記複数の光信号の射出を開始する前に、前記複数の光 源を順番に発光させることで、初期設定を行うための複数の設定光信号を順番に射 出し、
前記 XYアドレス方式イメージセンサは、前記画素領域で前記複数の設定光信号を 順番に受信し、
前記分類部は、前記複数の設定光信号が順番に受信される毎に、前記複数の画 素のうち受信レベルが所定の閾値以上である画素を抽出して 1つのグループとするこ とで、前記分類情報を作成することを特徴とする、請求項 11に記載の光空間伝送装 置。
[13] 前記第 1の発光部は、更に、前記複数の設定光信号を順番に射出する前に、前記 複数の光源の全てを同時に発光させて複数の画素限定用設定光信号を同時に射 出し、
前記分類部は、前記複数の画素限定用設定光信号を受信した画素のみを対象と して、前記分類情報を作成することを特徴とする、請求項 12に記載の光空間伝送装 置。
[14] 前記第 1の発光部は、前記複数の光信号の射出を開始する前に、前記複数の光 源を互いに異なる光強度で同時に発光させることで、初期設定を行うための複数の 設定光信号を同時に射出し、
前記 XYアドレス方式イメージセンサは、前記画素領域で前記複数の設定光信号を 同時に受信し、
前記分類部は、前記複数の設定光信号を受信した画素を、受信レベルに応じてグ ループとすることで、前記分類情報を作成することを特徴とする、請求項 11に記載の 光空間伝送装置。
[15] 前記第 1の発光部は、前記複数の光信号の射出を開始する前に、前記複数の光 源を分割して成る複数の光源群のそれぞれに含まれる光源を、互いに異なる光強度 で前記光源群毎に同時に発光させることで、前記光源群毎に、初期設定を行うため の複数の設定光信号を同時に射出し、
前記 XYアドレス方式イメージセンサは、前記画素領域で前記光源群毎の前記複 数の設定光信号を同時に受信し、
前記分類部は、前記光源群毎の前記複数の設定光信号が受信される度に、前記 複数の設定光信号を受信した画素を、受信レベルに応じてグループとすることで、前 記分類情報を作成することを特徴とする、請求項 11に記載の光空間伝送装置。
[16] 前記第 1の発光部は、更に、前記光源群毎の複数の設定光信号を同時に射出す る前に、前記複数の光源の全てを同時に発光させて複数の画素限定用設定光信号 を同時に射出し、
前記分類部は、前記複数の画素限定用設定光信号を受信した画素のみを対象と して、前記分類情報を作成することを特徴とする、請求項 15に記載の光空間伝送装 置。
[17] 前記制御部は、前記複数の画素のうち前記複数の画素グループを除く画素の信号 は、読み出さないことを特徴とする、請求項 11に記載の光空間伝送装置。
[18] 前記受信装置は、前記分類情報を記憶する記憶部を更に備え、
前記制御部は、前記記憶部に記憶された前記分類情報を読み出して前記 XYアド レス方式イメージセンサを制御することを特徴とする、請求項 11に記載の光空間伝 送装置。
[19] 前記受信装置は、前記送信装置に対して、データの伝送を要求する信号を送信す る送信部を更に備え、
前記送信装置は、前記送信部から送信された前記データの伝送を要求する信号を 受信する受信部を更に備えることを特徴とする、請求項 18に記載の光空間伝送装置
[20] 前記送信部は、前記送信装置に対して前記データの伝送を要求する光信号を射 出する第 2の発光部であり、
前記第 2の発光部は、前記記憶部が前記分類情報の記憶を完了する所定のタイミ ングで、前記データの伝送を要求する光信号を射出することを特徴とする、請求項 1
9に記載の光空間伝送装置。
[21] 前記受信部は、前記第 2の発光部から射出された前記データの伝送を要求する光 信号を受信して電気信号に変換する受光部であり、
前記第 1の発光部は、前記受光部から前記電気信号を入力されて、前記光信号の 射出を開始することを特徴とする、請求項 20に記載の光空間伝送装置。
[22] 前記第 1の発光部は、更に、光軸のずれを補正するためのパイロット光信号を射出 するパイロット光源を備え、
前記 XYアドレス方式イメージセンサは、更に、前記パイロット光信号を前記画素領 域で受信し、
前記分類部は、更に、前記複数の画素のうち前記パイロット光信号が照射される画 素の位置変化を検出し、
前記制御部は、更に、前記位置変化に従って前記光軸のずれを補正することを特 徴とする、請求項 11に記載の光空間伝送装置。
[23] 前記分類部は、更に、前記複数の光信号の少なくとも 1つが照射される画素の位置 変化を検出し、
前記制御部は、更に、前記位置変化に従って光軸のずれを補正することを特徴と する、請求項 11に記載の光空間伝送装置。 前記受信装置は、
光軸のずれを補正するための補正用イメージセンサと、
前記複数の光信号の少なくとも 1つを分割し、前記補正用イメージセンサと前記 X Yアドレス方式イメージセンサとに照射させるビームスプリッタとを更に備え、
前記補正用イメージセンサは、前記複数の光信号の少なくとも 1つを複数の画素で 成る画素領域で受信し、
前記分類部は、更に、前記補正用イメージセンサの前記複数の光信号の少なくとも
1つが照射される画素の位置変化を検出し、
前記制御部は、更に、前記位置変化に従って前記光軸のずれを補正することを特 徴とする、請求項 11に記載の光空間伝送装置。
PCT/JP2007/065731 2006-08-21 2007-08-10 Dispositif de transmission spatiale optique utilisant un capteur d'image WO2008023583A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008530858A JP4981053B2 (ja) 2006-08-21 2007-08-10 イメージセンサを用いた光空間伝送装置
US12/373,852 US8311414B2 (en) 2006-08-21 2007-08-10 Optical space transfer apparatus using image sensor
CN200780026867.2A CN101490985B (zh) 2006-08-21 2007-08-10 采用了图像传感器的光空间传输装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-224288 2006-08-21
JP2006224288 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023583A1 true WO2008023583A1 (fr) 2008-02-28

Family

ID=39106669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065731 WO2008023583A1 (fr) 2006-08-21 2007-08-10 Dispositif de transmission spatiale optique utilisant un capteur d'image

Country Status (4)

Country Link
US (1) US8311414B2 (ja)
JP (1) JP4981053B2 (ja)
CN (1) CN101490985B (ja)
WO (1) WO2008023583A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533030A (ja) * 2011-11-04 2014-12-08 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ エジンバラ 通信装置及び方法
JP2015118322A (ja) * 2013-12-19 2015-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 光接続装置、情報処理装置及びデータ伝送方法
WO2022004106A1 (ja) * 2020-07-01 2022-01-06 日本電気株式会社 受光装置および通信装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936893B1 (fr) * 2008-10-06 2010-11-19 Astrium Sas Ensemble d'emission-reception optique avec controle de la direction d'emission
US8747930B2 (en) * 2009-06-29 2014-06-10 Aurora Algae, Inc. Siliceous particles
US8797437B2 (en) * 2010-05-28 2014-08-05 Hamamatsu Photonics K.K. Solid-state imaging device
KR20130116439A (ko) * 2012-03-22 2013-10-24 영남대학교 산학협력단 다 파장 광원 array와 카메라를 이용하여 광 신호를 송수신하기 위한 방법 및 장치
US8988574B2 (en) 2012-12-27 2015-03-24 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information using bright line image
US8922666B2 (en) 2012-12-27 2014-12-30 Panasonic Intellectual Property Corporation Of America Information communication method
US10530486B2 (en) 2012-12-27 2020-01-07 Panasonic Intellectual Property Corporation Of America Transmitting method, transmitting apparatus, and program
US10523876B2 (en) 2012-12-27 2019-12-31 Panasonic Intellectual Property Corporation Of America Information communication method
US9088360B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
SG10201502498PA (en) 2012-12-27 2015-05-28 Panasonic Ip Corp America Information communication method
US9085927B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9087349B2 (en) 2012-12-27 2015-07-21 Panasonic Intellectual Property Corporation Of America Information communication method
US9608725B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Information processing program, reception program, and information processing apparatus
US9646568B2 (en) 2012-12-27 2017-05-09 Panasonic Intellectual Property Corporation Of America Display method
US9560284B2 (en) 2012-12-27 2017-01-31 Panasonic Intellectual Property Corporation Of America Information communication method for obtaining information specified by striped pattern of bright lines
US10303945B2 (en) 2012-12-27 2019-05-28 Panasonic Intellectual Property Corporation Of America Display method and display apparatus
US10951310B2 (en) 2012-12-27 2021-03-16 Panasonic Intellectual Property Corporation Of America Communication method, communication device, and transmitter
WO2014103329A1 (ja) * 2012-12-27 2014-07-03 パナソニック株式会社 可視光通信信号表示方法及び表示装置
US9608727B2 (en) 2012-12-27 2017-03-28 Panasonic Intellectual Property Corporation Of America Switched pixel visible light transmitting method, apparatus and program
US9247180B2 (en) 2012-12-27 2016-01-26 Panasonic Intellectual Property Corporation Of America Video display method using visible light communication image including stripe patterns having different pitches
US9800332B2 (en) * 2013-12-27 2017-10-24 Space Photonics, Inc. Acquisition, tracking, and pointing apparatus for free space optical communications with moving focal plane array
CN104378163A (zh) * 2014-11-14 2015-02-25 北京智谷睿拓技术服务有限公司 可见光信号接收控制方法、控制装置及接收设备
CN104378164B (zh) * 2014-11-17 2018-12-25 北京智谷睿拓技术服务有限公司 可见光信号接收控制方法、控制装置及接收设备
CN104393931B (zh) * 2014-11-17 2018-12-25 北京智谷睿拓技术服务有限公司 可见光信号接收控制方法、控制装置及接收设备
WO2018221472A1 (ja) * 2017-06-01 2018-12-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 受信装置および受信方法
US10348404B1 (en) * 2018-05-09 2019-07-09 Ford Global Technologies, Llc Visible light communication system with pixel alignment for high data rate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204641A (ja) * 1995-01-31 1996-08-09 Mitsubishi Cable Ind Ltd 情報の空間伝送方法およびその装置
JPH1022918A (ja) * 1996-07-02 1998-01-23 Honda Motor Co Ltd 光通信用受信機
JP2007068108A (ja) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd 光空間伝送装置
JP2007082098A (ja) * 2005-09-16 2007-03-29 Nakagawa Kenkyusho:Kk 送信データ割り当て方法および光通信システム
JP6095658B2 (ja) * 2011-07-11 2017-03-15 インターベンショナル オートノミックス コーポレーション 神経変調療法のためのシステムおよび方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262871A (en) * 1989-11-13 1993-11-16 Rutgers, The State University Multiple resolution image sensor
JP2732172B2 (ja) 1992-09-16 1998-03-25 ローム株式会社 映像表示装置
US5592320A (en) * 1994-08-15 1997-01-07 Hughes Aircraft Company Satellite communications system
JPH11305892A (ja) 1998-04-23 1999-11-05 Oki Electric Ind Co Ltd データ伝送システムおよびその制御方法
US6763195B1 (en) * 2000-01-13 2004-07-13 Lightpointe Communications, Inc. Hybrid wireless optical and radio frequency communication link
JP2001292107A (ja) * 2000-04-06 2001-10-19 Sony Corp 受信装置、送信装置、および通信システム
US7391975B2 (en) * 2002-04-29 2008-06-24 Texas Instruments Incorporated Method of synchronizing servo timing in an optical wireless link
CN1240992C (zh) * 2004-07-13 2006-02-08 深圳大学 基于空间正交条纹投影的多分辨三维数字成像方法
CN1753506A (zh) * 2005-10-07 2006-03-29 南京大学 Cmos图像实时增强预处理实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204641A (ja) * 1995-01-31 1996-08-09 Mitsubishi Cable Ind Ltd 情報の空間伝送方法およびその装置
JPH1022918A (ja) * 1996-07-02 1998-01-23 Honda Motor Co Ltd 光通信用受信機
JP2007068108A (ja) * 2005-09-02 2007-03-15 Matsushita Electric Ind Co Ltd 光空間伝送装置
JP2007082098A (ja) * 2005-09-16 2007-03-29 Nakagawa Kenkyusho:Kk 送信データ割り当て方法および光通信システム
JP6095658B2 (ja) * 2011-07-11 2017-03-15 インターベンショナル オートノミックス コーポレーション 神経変調療法のためのシステムおよび方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533030A (ja) * 2011-11-04 2014-12-08 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ エジンバラ 通信装置及び方法
US10396894B2 (en) 2011-11-04 2019-08-27 The University Court Of The University Of Edinburgh Communication apparatus and method
JP2015118322A (ja) * 2013-12-19 2015-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 光接続装置、情報処理装置及びデータ伝送方法
US9696538B2 (en) 2013-12-19 2017-07-04 International Business Machines Corporation Optical interconnect device, information processing device and data transmission method
WO2022004106A1 (ja) * 2020-07-01 2022-01-06 日本電気株式会社 受光装置および通信装置

Also Published As

Publication number Publication date
JPWO2008023583A1 (ja) 2010-01-07
CN101490985B (zh) 2012-04-25
JP4981053B2 (ja) 2012-07-18
US8311414B2 (en) 2012-11-13
US20090317088A1 (en) 2009-12-24
CN101490985A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2008023583A1 (fr) Dispositif de transmission spatiale optique utilisant un capteur d'image
US6925261B2 (en) Receiving apparatus, transmitting apparatus, and communication system
CN106657969B (zh) 用于获得图像的装置和方法
WO2007032276A1 (ja) 送信データ割り当て方法および光通信システム
US10263710B2 (en) Electronic device associated with a photovoltaic module to optimise the throughput of a bidirectional VLC transmission
CN112821957B (zh) 一种信号调制方法、解调方法及光通信系统
KR20220163939A (ko) 터치식 이미지 센서
KR20110071704A (ko) 화상을 독취하는 장치 및 방법
CN110954917A (zh) 一种深度测量装置和深度测量方法
CN107800914B (zh) 光源单元、图像处理装置以及图像处理系统
JP2020153715A (ja) 測距装置および測距方法
JPWO2016152013A1 (ja) 画像読取装置
CN109644246B (zh) 摄像元件以及摄像系统
CN211826516U (zh) 一种深度测量装置
CN109246367B (zh) 一种红外辐射场景转换系统和方法
CN116897306A (zh) 距离测量装置及其控制方法和距离测量系统
US8355184B2 (en) Image reading device, image forming device, and image reading method
EP4193493B1 (en) A receiving system for high speed and large coverage optical wireless communication
US7767955B2 (en) Image detecting apparatus having an illumination system and a sensing system
CN115280180A (zh) 距离测量装置及距离测量方法
JP2017220738A (ja) 光通信システム、光受信機、及び信号光の像位置調整方法
Kagawa et al. Dynamic reconfiguration of differential pixel output for CMOS imager dedicated to WDM-SDM indoor optical wireless LAN
RU2339183C1 (ru) Система телевидения
JPWO2014037979A1 (ja) 撮像装置、内視鏡装置および撮像装置の制御方法
JP2006238040A (ja) 画像読取装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026867.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12373852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008530858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792376

Country of ref document: EP

Kind code of ref document: A1