WO2018221472A1 - 受信装置および受信方法 - Google Patents
受信装置および受信方法 Download PDFInfo
- Publication number
- WO2018221472A1 WO2018221472A1 PCT/JP2018/020427 JP2018020427W WO2018221472A1 WO 2018221472 A1 WO2018221472 A1 WO 2018221472A1 JP 2018020427 W JP2018020427 W JP 2018020427W WO 2018221472 A1 WO2018221472 A1 WO 2018221472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- base station
- terminal
- signal
- ssid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 238
- 230000003287 optical effect Effects 0.000 claims abstract description 363
- 238000003384 imaging method Methods 0.000 claims abstract description 82
- 238000005070 sampling Methods 0.000 claims description 63
- 238000004891 communication Methods 0.000 description 393
- 238000000060 site-specific infrared dichroism spectroscopy Methods 0.000 description 277
- 238000012545 processing Methods 0.000 description 207
- 230000005540 biological transmission Effects 0.000 description 200
- 238000010586 diagram Methods 0.000 description 75
- 238000012937 correction Methods 0.000 description 59
- 230000006870 function Effects 0.000 description 44
- 230000008569 process Effects 0.000 description 24
- 230000000694 effects Effects 0.000 description 22
- 238000001514 detection method Methods 0.000 description 18
- 238000005286 illumination Methods 0.000 description 14
- 238000003909 pattern recognition Methods 0.000 description 13
- 230000033001 locomotion Effects 0.000 description 12
- 239000000969 carrier Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000007405 data analysis Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 6
- 230000004397 blinking Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000013589 supplement Substances 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/116—Visible light communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
Definitions
- the present disclosure relates to a receiving device and a receiving method.
- GPS Global Positioning System
- the terminal is accessed from a wireless LAN (Local Area Network) access point (AP (access point)).
- AP Access point
- the terminal when the terminal does not hold information such as the SSID (serviceifierset identifier) of the access point that the terminal should access, it is appropriate to determine which access point the terminal should connect to from among a plurality of surrounding access points. It is not easy to judge. For this reason, for example, when a terminal connects to an access point in order to obtain information such as its own location, the terminal may connect to an access point having an unsafe SSID, and there is a threat such as information leakage.
- SSID serviceifierset identifier
- one aspect of the present disclosure facilitates providing a receiving device that can safely obtain information used to identify an access point to which a terminal should connect.
- a receiving apparatus includes an image sensor that acquires an image by photographing and N (N is an integer of 2 or more) regions included in the imaging surface of the image sensor. And a receiving unit that receives N different optical signals transmitted from the plurality of light sources in parallel by sampling the plurality of pixels.
- a reception method acquires an image by photographing with an image sensor, and each of N (N is an integer of 2 or more) regions included in the imaging surface of the image sensor is included in the region. By sampling a plurality of pixels, different N optical signals transmitted from a plurality of light sources are received in parallel.
- the terminal can obtain information safely.
- FIG. 1 is a diagram for explaining the principle of line scan sampling.
- FIG. 2 is a diagram illustrating an example of a captured image when the exposure time is long.
- FIG. 3 is a diagram illustrating an example of a captured image when the exposure time is short.
- FIG. 4A is a diagram for explaining 4PPM.
- FIG. 4B is a diagram for explaining the Manchester encoding method.
- FIG. 5 is a diagram illustrating a configuration example of a visible light communication system.
- FIG. 6 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
- FIG. 7 is a diagram illustrating a frame configuration example according to the first embodiment.
- FIG. 8 is a diagram illustrating a positional relationship between the device and the terminal according to the second embodiment.
- FIG. 1 is a diagram for explaining the principle of line scan sampling.
- FIG. 2 is a diagram illustrating an example of a captured image when the exposure time is long.
- FIG. 3 is a diagram illustrating
- FIG. 9 is a diagram illustrating a configuration example of a communication system according to the third embodiment.
- FIG. 10 is a diagram illustrating a display example of the display unit according to the third embodiment.
- FIG. 11 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the first device according to the third embodiment.
- FIG. 12 is a diagram illustrating a frame configuration example of a modulation signal transmitted by the base station according to Embodiment 3.
- FIG. 13 is a flowchart illustrating a processing example in the communication system according to the third embodiment.
- FIG. 14 is a diagram illustrating a display example of the display unit according to the third embodiment.
- FIG. 15 is a diagram illustrating a configuration example of a communication system according to the fourth embodiment.
- FIG. 10 is a diagram illustrating a display example of the display unit according to the third embodiment.
- FIG. 11 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the first device according to the third embodiment.
- FIG. 16 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the first device according to the fourth embodiment.
- FIG. 17 is a diagram illustrating a frame configuration example of a modulation signal transmitted by a radio apparatus of a terminal according to Embodiment 4.
- FIG. 18 is a flowchart illustrating a processing example in the communication system according to the fourth embodiment.
- FIG. 19 is a diagram illustrating a configuration example of a communication system according to the fifth embodiment.
- FIG. 20 is a diagram illustrating a frame configuration example of a modulated signal including the SSID transmitted by the third device according to the fifth embodiment.
- FIG. 21 is a diagram illustrating a frame configuration example of a modulated signal including an encryption key transmitted by the third device according to the fifth embodiment.
- FIG. 22 is a flowchart illustrating a processing example in the communication system according to the fifth embodiment.
- FIG. 23 is a flowchart illustrating another example of processing in the communication system according to Embodiment 5.
- FIG. 24 is a diagram illustrating an example of a space in which the communication system according to Embodiment 5 is arranged.
- FIG. 25 is a diagram illustrating a configuration example of a communication system according to the sixth embodiment.
- FIG. 26 is a flowchart illustrating a processing example in the communication system according to the sixth embodiment.
- FIG. 27 is a diagram illustrating a configuration example of a communication system according to the seventh embodiment.
- FIG. 28 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the fifth device according to Embodiment 7.
- FIG. 29 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the fifth device according to Embodiment 7.
- FIG. 30 is a diagram illustrating a frame configuration example of a modulated signal transmitted by the fifth device according to Embodiment 7.
- FIG. 31 is a diagram illustrating an example of a frame transmission method by the fifth device according to the seventh embodiment.
- FIG. 32 is a diagram illustrating an example of a space in which the communication system according to Embodiment 7 is arranged.
- FIG. 33 is a flowchart illustrating a processing example in the communication system according to the seventh embodiment.
- FIG. 34 is a diagram illustrating a configuration example of a communication device according to the eighth embodiment.
- FIG. 35 is a diagram illustrating another configuration example of the communication apparatus according to the eighth embodiment.
- FIG. 36 is a diagram illustrating a first configuration example of the light receiving device according to the eighth embodiment.
- FIG. 37 is a diagram illustrating a first configuration example of the received light signal processing unit according to the eighth embodiment.
- FIG. 38 is a diagram illustrating a second configuration example of the received light signal processing unit according to the eighth embodiment.
- FIG. 39 is a diagram illustrating an example of control of the image sensor according to the eighth embodiment.
- FIG. 40 is a diagram illustrating a third configuration example of the received light signal processing unit according to the eighth embodiment.
- FIG. 41 is a diagram illustrating a second configuration example of the light receiving device according to the eighth embodiment.
- FIG. 42 is a diagram illustrating an example in which line scan sampling is performed in parallel in a plurality of regions.
- FIG. 43 is a diagram illustrating a physical configuration example of the control unit according to the eighth embodiment.
- FIG. 44 is a diagram illustrating a configuration example of a control unit according to the eighth embodiment.
- FIG. 45 is a diagram illustrating another configuration example of the control unit according to the eighth embodiment.
- FIG. 46 is a first diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 47 is a second diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 48 is a third diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 49 is a fourth diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 50 is a fifth diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 51 is a sixth diagram illustrating communication control based on an acquired image according to the eighth embodiment.
- FIG. 52 is a diagram illustrating a configuration example of another communication system that performs optical communication.
- FIG. 53 is a diagram illustrating a configuration example of a transmission device and a reception device according to the tenth embodiment.
- FIG. 54 is a diagram illustrating a configuration example of a transmission device and a reception device according to the tenth embodiment.
- FIG. 55 is a diagram illustrating an example of a frame configuration of an optical modulation signal according to the tenth embodiment.
- FIG. 56 is a diagram illustrating an example of a reception state in the reception device according to the tenth embodiment.
- FIG. 57 is a diagram illustrating an example of a symbol configuration according to Embodiment 10.
- FIG. 58 is a diagram illustrating another example of a symbol configuration according to Embodiment 10.
- FIG. 59 is a diagram illustrating another example of a reception state in the reception device according to Embodiment 10.
- FIG. 60 is a diagram illustrating another example of a reception state in the reception device according to Embodiment 10.
- FIG. 61 is a diagram showing another example of symbol configuration according to Embodiment 10.
- FIG. 62 is a diagram showing another example of symbol configuration according to Embodiment 10.
- FIG. 63 shows another example of symbol configuration according to Embodiment 11.
- FIG. 64 is a diagram illustrating an example of a configuration of a reception device according to Embodiment 11.
- FIG. 65 is a diagram illustrating another example of a configuration of the receiving apparatus according to the eleventh embodiment.
- FIG. 66 is a diagram illustrating another example of the configuration of the reception apparatus according to Embodiment 11.
- 67 is a diagram illustrating another example of a configuration of a receiving apparatus according to Embodiment 11.
- FIG. 68 is a diagram illustrating an example of a plurality of light sources provided in a vehicle.
- FIG. 69 is a diagram illustrating an example of a plurality of light receiving units provided in a vehicle.
- An image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) sensor is mounted on a smartphone or a digital camera.
- the image captured by the CMOS sensor does not necessarily represent the scenery at exactly the same time.
- CMOS Complementary Metal Oxide Semiconductor
- a shutter operation is performed for each row.
- the amount of light received by the sensor is read out for each line by the rolling shutter method.
- the start and end control of light reception is performed with a time difference for each line by estimating the time required for reading. That is, the image captured by the CMOS sensor has a shape in which a large number of lines with a time lag are overlapped little by little during the exposure period.
- the speed of visible light signal reception is realized based on the method focusing on the characteristics of the CMOS sensor. That is, in the first example of the visible light communication method, by using the fact that the exposure time is slightly different for each line, as shown in FIG. 1, a plurality of images can be obtained from one image (image sensor image). The luminance and color of the light source at the time can be measured for each line, and a signal modulated at a speed higher than the frame rate can be captured.
- this sampling method is referred to as “line scan sampling”, and a column of pixels exposed at the same timing is referred to as an “exposure line”.
- CMOS complementary metal-oxide-semiconductor
- line scan sampling can be realized by a rolling shutter method using a CMOS sensor, a sensor other than a CMOS sensor, such as a CCD (Charge-Coupled Device) sensor, an organic (CMOS)
- CCD Charge-Coupled Device
- CMOS organic
- the blinking does not appear as a striped pattern along the exposure line. This is because, in this setting, the exposure time is sufficiently longer than the blinking cycle of the light source. Therefore, as shown in FIG. 2, the change in luminance due to the blinking of the light source (light emission pattern) is averaged, and the pixel value between the exposure lines is This is because the change becomes smaller and the image becomes almost uniform.
- the length of the exposure period is set slightly longer than the length of the minimum period in which the same light emission state continues, and the difference in the start time of the exposure period between adjacent exposure lines is the minimum period in which the same light emission state continues.
- the setting of the exposure period in the live scan sampling is not limited to this.
- the length of the exposure period may be set shorter than the length of the minimum period in which the same light emission state continues, or set to about twice the length of the minimum period in which the same light emission state continues. May be.
- the optical communication system receiving device has the exposure time start time or end time between the exposure lines temporally adjacent to each other with respect to the sampling rate necessary for receiving and demodulating the optical signal. The difference is set to be equal to or less than the sampling interval corresponding to the sampling rate.
- the optical communication type receiver sets the length of the exposure period to be equal to or less than the sampling interval. However, in an optical communication system receiver, the length of the exposure period may be set to 1.5 times or less of the sampling interval, or may be set to 2 times or less.
- the exposure line is designed to be parallel to the long side direction of the image sensor.
- the frame rate is 30 fps (frames per second)
- at a resolution of 1920 ⁇ 1080, 32400 or more samples are obtained per second
- at a resolution of 3840 ⁇ 2160, 64800 or more samples per second are obtained. Is obtained.
- a global shutter system that provides a shutter function for each pixel shown in Non-Patent Document 2 and Non-Patent Document 3, a method of reading a signal by controlling an exposure period for each pixel, or a non-line shape
- a method in which an exposure period is controlled in units of groups of a plurality of arranged pixels and a signal is read out may be used.
- a method may be used in which signals are read from the same pixel a plurality of times within a period corresponding to one frame at a frame rate used for normal moving image shooting.
- LED Light Emitting Diode
- LEDs are becoming popular as backlight sources for illumination or displays and can be blinked at high speed.
- a light source used as a transmitter for visible light communication is not freely blinked for visible light communication. If the change in luminance due to visible light communication can be recognized by humans, the function of the original light source such as illumination is impaired. For this reason, it is required that the transmission signal be illuminated with a desired brightness so that no flicker is perceived by human eyes.
- 4PPM 4-Pulse Position Modulation
- 4PPM is a method of expressing 2 bits by four combinations of light source and light source.
- 4PPM is more suitable than the Manchester code method as a modulation method for visible light communication.
- the transmitter (light source) generates a modulation signal using a modulation method such as ASK (Amplitude Shift Keying), PSK (Phase Shift Keying), or PAM (Pulse Amplitude Modulation), and turns on the light source. May be irradiated.
- ASK Amplitude Shift Keying
- PSK Phase Shift Keying
- PAM Pulse Amplitude Modulation
- a communication system that performs visible light communication includes at least a transmitter that transmits (irradiates) an optical signal and a receiver that receives (receives) an optical signal.
- a transmitter that transmits (irradiates) an optical signal includes at least a transmitter that transmits (irradiates) an optical signal and a receiver that receives (receives) an optical signal.
- a communication system using light can be configured even in a configuration in which either a variable optical transmitter or a fixed optical transmitter exists.
- the receiver can receive the optical signal from the transmitter, acquire the related information associated with the optical signal, for example, and provide it to the user.
- the communication system applicable to the optical communication demonstrated by the following embodiment is not limited to said system.
- the light emitting unit of the transmitter may perform data transmission using a plurality of light sources.
- the light receiving unit of the receiving device may be a communication method that can use a device that can convert an optical signal such as a photodiode into an electric signal, instead of an image sensor such as a CMOS.
- CMOS complementary metal-oxide-semiconductor
- a communication method using radio waves with frequencies other than visible light such as infrared rays and ultraviolet rays may be used.
- FIG. 6 shows an example of the configuration of device 100 and terminal 150 in the present embodiment.
- the device 100 (corresponding to a transmitter for visible light communication) includes a visible light source such as an LED (Light Emitting Diode), illumination, or a light (collectively also referred to as a light source).
- a visible light source such as an LED (Light Emitting Diode), illumination, or a light (collectively also referred to as a light source).
- the device 100 may be referred to as a “first device”.
- the transmission unit 102 receives, for example, location information or location information 101 as an input. Moreover, the transmission part 102 is good also considering the information 105 regarding time as an input. Moreover, the transmission part 102 is good also considering both the information 101 regarding a place or the information 101 regarding a position, and the information 105 regarding a time as an input.
- Transmitting section 102 receives information 101 relating to location or information 101 relating to position and / or information 105 relating to time, generates (light) modulated signal 103 based on these input signals, and outputs modulated signal 103. .
- the modulated signal 103 is transmitted from the light source 104, for example.
- the location information or the location information 101 may be latitude and / or longitude information of the location / position.
- the information “45 degrees north latitude and 135 degrees east longitude” may be the information about the place or the information 101 about the position.
- the information on the place or the information 101 on the position may be address information.
- the information “Tokyo and Chiyoda-ku XX Town 1-1-1” may be used as the location information or the location information 101.
- the information regarding the place or the information 101 regarding the position may be information such as a building or a facility.
- the information “Tokyo Tower” may be the information 101 related to the location or the information 101 related to the position.
- the information about the place or the information 101 about the position may be information about the place / position unique to the thing installed in the building, facility or the like.
- the information “A-3” may be information about a place or information 101 about a position.
- such an example is not limited to a case in a parking lot.
- information related to “area / seat / store / facility, etc.” in concert facilities, stadiums such as baseball / soccer / tennis, airplanes, airport lounges, railways, stations, etc. is used as location information or location information 101. Also good.
- the example of the information 101 concerning the location or the information 101 concerning the position has been described above. Note that the configuration method of the location information or the location information 101 is not limited to the above-described example.
- a terminal 150 (corresponding to a visible light communication receiver) in FIG. 6 receives the modulated signal 103 transmitted from the first device 100.
- the light receiving unit (light receiver) 151 is an image sensor such as a CMOS (Complementary Metal Metal Oxide Semiconductor) or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the first device 100 and outputs a reception signal 152.
- the reception signal 152 output from the light receiving unit 151 may be a signal including image and moving image information acquired by an image sensor, and performs other photoelectric conversion (converting light to an electrical signal). It may be the output signal of the element.
- the receiving device 151 receives the modulation signal from the light including the modulation signal.
- the above-described method is an example of a method for receiving a modulated signal by a receiving-side apparatus, and the method for receiving a modulated signal is not limited thereto.
- the reception unit 153 receives the received signal 152, performs a process such as demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the received data 154 and analyzes the received data 154, for example, estimates the location / position of the terminal 150 and outputs information 156 including at least the location / position information of the terminal 150.
- Display unit 157 receives information 156 as an input, and displays the location / position of terminal 150 from the location / position information of terminal 150 included in information 156.
- FIG. 7 shows an example of the frame configuration of the modulation signal transmitted by the first device 100.
- the horizontal axis is time.
- the first device 100 transmits a preamble 201, and then transmits a control information symbol 202, a symbol 203 related to location information or position information, and a symbol 204 related to time information.
- the preamble 201 is a symbol for the terminal 150 that receives the modulated signal transmitted by the first device 100 to perform, for example, signal detection, time synchronization, frame synchronization, and the like.
- the control information symbol 202 is, for example, a symbol including data such as a modulation signal configuration method, an error correction coding method used, and a frame configuration method.
- the symbol 203 related to location information or position information is a symbol including the information 101 related to location or information 101 shown in FIG.
- the frame may include symbols other than the symbols 201, 202, and 203.
- the symbol 204 regarding time information may be included.
- the symbol 204 related to time information includes, for example, information 105 related to the time when the first device 100 transmits a modulated signal.
- the configuration of the modulation signal frame transmitted by the first device 100 is not limited to that shown in FIG. 7, and the symbols included in the modulation signal are not limited to the configuration shown in FIG.
- the frame may include symbols including other data / information.
- the terminal 150 that can receive the modulated signal is located far away from the location where the first device 100 exists. Not in. Therefore, when the terminal 150 obtains the location / position information transmitted by the first device 100, the terminal 150 can easily obtain high-accuracy position information (without performing complicated signal processing). .
- the terminal 150 can transmit a modulated signal transmitted by the first device 100 even when it is difficult to receive radio waves from the GPS satellite. By receiving, highly accurate position information can be obtained safely.
- a 1-1 device 301-1 having the same configuration as the first device 100 shown in FIG. 6 transmits a modulated signal.
- a terminal 302 having a configuration similar to that of the terminal 150 shown in FIG. 6 receives the modulated signal transmitted by the 1-1 apparatus 301-1 and, for example, information on the 1-1 location / position, Information on the time of 1-1 is obtained.
- a 1-2 device 301-2 having the same configuration as that of the first device 100 shown in FIG. 6 transmits a modulated signal.
- the terminal 302 receives the modulated signal transmitted by the 1-2 device 301-2, and obtains, for example, information regarding the 1-2 location / position and information regarding the 1-2 time.
- the terminal 302 obtains the 1-1 device 301-1 and 1-2 device in FIG. 8 from the information on the 1-1 location / position and the 1-2 location / position information.
- the distance to 301-2 can be calculated.
- the terminal 302 and the terminal 302 and the first 1-time based on the information on the 1-1 time and the time when the terminal 302 received the modulated signal transmitted by the 1-1 device 301-1.
- the distance to one device 301-1 can be calculated.
- the terminal 302 determines whether the terminal 302 and the first time based on the information about the 1-2 time and, for example, the time when the terminal 302 received the modulated signal transmitted by the 1-2 device 301-2. -2 to the device 301-2 can be calculated.
- the terminal 302 can know the location of the 1-1 device 301-1 from the information on the 1-1 location / position.
- the terminal 302 can determine the position of the 1-2nd device 301-2 from the information regarding the 1-2 location / position.
- the terminal 302 is configured such that “the distance between the 1-1 device 301-1 and the 1-2 device 301-2” and “the 1-1 device 301-1 and the terminal 302 are From “distance” and “distance between the first-second device 301-2 and the terminal 302”, “the first-first device 301-1, the first-second device 301-2 and the terminal 302 are configured. "Triangle to do”.
- the terminal 302 determines that “the position of the first device 301-1”, “the position of the first device 301-2”, “the first device 301-1 and the first device 1-2”. From the triangle formed by the device 301-2 and the terminal 302, the position of the terminal 302 can be calculated and obtained with high accuracy.
- the geodetic survey method for the terminal 302 to obtain the location / position information is not limited to the above description, and the geodetic survey may be performed by any method.
- examples of the geodetic survey method include triangulation, polygonal survey, trilateral survey, and level survey.
- the terminal 302 obtains the information as described above from a plurality of devices 301 including a light source that transmits location information, so that the terminal 302 estimates the position of the terminal 302. Can be performed with high accuracy.
- the terminal 302 when a device 301 having a light source that transmits location information is installed in a place where it is difficult to receive satellite radio waves from GPS, the terminal 302 Even when it is difficult to receive radio waves from other satellites, highly accurate position information can be obtained safely by receiving the modulated signal transmitted by the device 301.
- the terminal 302 receives an example of receiving a modulated signal transmitted from two devices 301.
- the terminal 302 receives a modulated signal transmitted from more than two devices 301. Even if it is, it can be similarly implemented. Note that as the number of devices 301 increases, the terminal 302 has an advantage that the position information can be calculated with high accuracy.
- FIG. 9 shows an example of the configuration of device 400, terminal 450, and base station 470 (or AP (access point)) that communicates with terminal 450 in the present embodiment.
- the device 400 includes, for example, a visible light source such as an LED, illumination, a light source, or a light.
- a visible light source such as an LED, illumination, a light source, or a light.
- the device 400 may be referred to as a “first device”.
- the transmitting unit 102 for example, information on location or information 101 on location, information 401-1 on SSID (service (set identifier) that is an identifier of the base station 470, information 401 on access destination -2 as input. Moreover, the transmission part 102 is good also considering the information 105 regarding time as an input.
- SSID service (set identifier)
- the transmission unit 102 receives as input information about a place or information 101 about a position, information 401-1 about an SSID, information 401-2 about an access destination, and / or information 105 about a time, and based on these input signals , (Optical) modulation signal 103 is generated, and modulation signal 103 is output.
- the modulated signal 103 is transmitted from the light source 104, for example.
- the information 401-1 regarding the SSID is information indicating the SSID of the base station 470 in FIG.
- the first device 400 sends the information to the base station 470 that is a safe access destination for the terminal 450. Access can be provided. As a result, the terminal 450 in FIG. 9 can obtain information from the base station 470 safely.
- the first device 400 can restrict the terminals accessing the base station 470 to terminals located in a space where the optical signal transmitted (irradiated) by the first device 400 can be received.
- the terminal 450 may determine that the notified SSID is the SSID of a safe base station when receiving an optical signal transmitted by a predetermined method. Further, the terminal 450 may separately perform a process of determining whether or not the notified SSID is safe. For example, the first device 400 transmits a predetermined identifier included in the optical signal, and the terminal 450 determines whether the notified SSID is the SSID of a safe base station based on the received identifier. May be.
- the terminal 450 uses the characteristics of visible light without performing the process of determining whether or not the terminal is a safe base station, and the user selects the first device 400 with high safety, and the terminal 450 In 450, an optical signal may be received from the first device 400, and the SSID of the highly secure base station may be acquired.
- FIG. 9 shows only the base station 470, for example, when there is one or more base stations (or APs) other than the base station 470, the terminal 450 is not connected to the first device 400.
- Information is obtained by accessing the base station 470 using the SSID acquired from.
- the information 401-2 related to the access destination is information related to the access destination for obtaining information after the terminal 450 accesses the base station 470. A specific operation example of this embodiment will be described later.
- the information 401-1 related to the SSID and the information 401-2 related to the access destination have been described above.
- the terminal 450 receives the modulated signal 103 transmitted from the first device 400.
- the light receiving unit 151 is an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the first device 400 and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the received data 154 as an input, and estimates the location / position of the terminal 450 from the received data 154, for example. Then, the data analysis unit 155 outputs information 156 including at least the location / position information of the terminal 450, information 451 regarding the SSID, and information 452 regarding the access destination.
- the display unit 157 receives the information 156 including the location / position information of the terminal 450, the information 451 about the SSID, and the information 452 about the access destination, for example, the location / position of the terminal 450, and the wireless device 453 included in the terminal 450 accesses
- the SSID and / or access destination of the communication partner to be displayed is displayed (hereinafter, this display is referred to as “first display”).
- the wireless device 453 receives the information 451 related to the SSID and the information 452 related to the access destination. Then, the wireless device 453 connects to a communication partner using, for example, radio waves based on the information 451 regarding the SSID. In the case of FIG. 9, the wireless device 453 is connected to the base station 470.
- the wireless device 453 generates a modulation signal from data including information related to the access destination based on the information 452 related to the access destination, and transmits the modulation signal to the base station 470 using radio waves, for example. .
- the base station 470 which is the communication partner of the terminal 450 receives the modulated signal transmitted by the wireless device 453 included in the terminal 450.
- the base station 470 performs processing such as demodulation and error correction decoding of the received modulated signal, and outputs received data 471 including access destination information transmitted from the terminal 450. Based on the access destination information, the base station 470 accesses the desired access destination via the network and obtains the desired information 472 from the access destination, for example. Base station 470 receives desired information 472 as an input, generates a modulated signal from desired information 472, and transmits this modulated signal to terminal 450 (wireless apparatus 453) using, for example, radio waves. .
- the wireless device 453 of the terminal 450 receives the modulated signal transmitted from the base station 470, performs processing such as demodulation and error correction decoding, and obtains desired information 472.
- the display unit 157 receives the information 454 including the desired information 472, the information 156 including at least the location / position information of the terminal 450, and the information 451 regarding the SSID, and after the first display, the desired information 472 and at least the terminal 450 are displayed. Based on the information 156 including the location / position information, the map of the location of the terminal 450 is displayed on the map / floor guide / facility information / seat information / store information display.
- FIG. 10 shows an example of specific display on the display unit 157.
- the display in FIG. 10 indicates “3rd floor”.
- A-1, A-2, A-3, A-4, A-21, A-22, A-23, and A-24 indicate the positions of the parking spaces of the car, respectively.
- a-1 and a-2 indicate elevator positions.
- the map information including the parking space and the position of the elevator is an example of the desired information 454 (472).
- the display unit 157 maps and displays the current position of the terminal 450 on a map.
- the current position is information obtained from information 156 including at least the location / position information of the terminal 450.
- FIG. 11 shows an example of the frame configuration of the modulation signal transmitted by the first device 400 shown in FIG.
- the horizontal axis is time.
- symbols that transmit the same information as in FIG. 7 are assigned the same reference numerals, and descriptions thereof are omitted.
- the first device 400 transmits, in addition to the preamble 201, the control information symbol 202, the symbol 203 related to location information or position information, and the symbol 204 related to time information, a symbol 600-1 related to SSID and a symbol 600-2 related to an access destination.
- the symbol 600-1 related to the SSID is a symbol for transmitting the information 401-1 related to the SSID in FIG. 9, and the symbol 600-2 related to the access destination is used to transmit the information 401-2 related to the access destination shown in FIG. Symbol.
- the frame of FIG. 11 may include symbols other than the symbols described in FIG. Also, the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG.
- FIG. 12 shows an example of the frame configuration of the modulated signal transmitted by the base station 470 shown in FIG. In FIG. 12, the horizontal axis represents time.
- the base station 470 transmits, for example, a preamble 701, and then transmits a control information symbol 702 and an information symbol 703.
- the preamble 701 is a symbol for the terminal 450 that receives the modulated signal transmitted by the base station 470 to perform signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like.
- the control information symbol 702 is, for example, a symbol including data such as an error correction coding method, information on a modulation method, and information on a frame configuration used to generate a modulation signal.
- Radio apparatus 453 of terminal 450 performs demodulation of the modulation signal based on the information of control information symbol 702.
- the information symbol 703 is a symbol for transmitting information.
- information symbol 703 is a symbol for transmitting desired information 472 described above.
- the base station 470 illustrated in FIG. 9 may transmit a frame including symbols other than the symbols illustrated in FIG.
- the base station 470 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 703.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 12, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 12, symbols may exist at a plurality of frequencies (a plurality of carriers).
- a method of repeatedly transmitting, for example, the modulation signal having the frame configuration shown in FIG. 11 transmitted by the first device 400 at regular timing is conceivable.
- the some terminal 450 can implement operation
- FIG. 13 is a flowchart illustrating an example of processing performed by the “first device 400”, the “terminal 450”, and the “base station 470” illustrated in FIG. 9 described above.
- first device 400 transmits a modulated signal having the frame configuration shown in FIG. 11 (ST801).
- terminal 450 receives the modulated signal transmitted by first device 400, and performs location / position estimation of terminal 450 (ST802).
- terminal 450 receives the modulated signal transmitted by first device 400 and grasps the SSID of base station 470 accessed by terminal 450 (ST803).
- terminal 450 transmits a modulated signal including data including information 452 related to an access destination for obtaining information such as a map to base station 470 using, for example, radio waves (ST804).
- the base station 470 receives the modulated signal transmitted from the terminal 450, obtains access destination information, accesses the desired access destination via the network, and obtains desired information such as a map (information to be transmitted to the terminal 450). ) Is obtained (ST805).
- base station 470 transmits a modulated signal including desired information such as the obtained map to terminal 450 using radio waves, for example (ST806).
- the terminal 450 receives the modulation signal transmitted from the base station 470 and obtains information such as a map. Then, the terminal 450 performs a display as shown in FIG. 10 based on information such as a map and the location / position information of the terminal 450 that has already been obtained.
- FIG. 14 shows a map of the same place as in FIG. That is, FIG. 14 is a map of the “third floor” as described in FIG.
- A-1, A-2, A-3, A-4, A-21, A-22, A-23, and A-24 indicate parking spaces of vehicles
- a-1, a- Reference numeral 2 denotes an elevator.
- a first device having the same configuration as the first device 400 shown in FIG. 9 is installed at the position of “ ⁇ ” 901-1 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-1 is referred to as a “1-1 device 400”.
- the first-first device 400 has information “A-1” as location information or position information, and transmits information “A-1”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-2 in FIG.
- a first device having the same configuration as that of the first device 400 installed at the position 901-2 is referred to as a “1-2 device 400”.
- the first-second device 400 has information “A-2” as location information or position information, and transmits information “A-2”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-3 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-3 will be referred to as a “first-3 device 400”.
- the first to third devices 400 have information “A-3” as location information or position information, and transmit information “A-3”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-4 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-4 is referred to as a “first-4 device 400”.
- the first-fourth device 400 has information “A-4” as location information or position information, and transmits information “A-4”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-21 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-21 is referred to as a “first-21 device 400”.
- the 1st-21st device 400 has information “A-21” as location information or location information, and transmits information “A-21”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-22 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-22 is referred to as a “first-22 device 400”.
- the 1-22th device 400 has information “A-22” as location information or position information, and transmits information “A-22”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-23 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-23 is referred to as a “first-23th device 400”.
- the device 1-23 has the information “A-23” as the location information or the location information, and transmits the information “A-23”.
- a first device having the same configuration as that of the first device 400 in FIG. 9 is installed at the position of “ ⁇ ” 901-24 in FIG.
- the first device having the same configuration as the first device 400 installed at the position 901-24 is referred to as a “first-24th device 400”.
- the 1-24th device 400 has the information “A-24” as the location information or the location information, and transmits the information “A-24”.
- a base station (or AP) having the same configuration as the base station 470 in FIG. 9 is installed at the position of “ ⁇ ” 902 in FIG.
- a base station (or AP) having the same configuration as that of the base station 470 of FIG. 9 is simply referred to as “base station 470”.
- the SSID of the base station 470 installed at the position 902 is “abcdef”.
- the terminal 450 may access the base station 470 installed at the position 902 in FIG.
- the “1-1st device 400” installed at 901-1 in FIG. 14 transmits “abcdef” as information relating to the SSID (see 401-1 in FIG. 9).
- the “1-2 device 400” installed at 901-2 in FIG. 14 transmits “abcdef” as information relating to the SSID (see 401-1, FIG. 9).
- the “first-3 device 400” installed in 901-3 of FIG. 14 transmits “abcdef” as information on the SSID (see 401-1 of FIG. 9).
- the 1-4th device 400 installed in 901-4 of FIG. 14 transmits “abcdef” as information relating to the SSID (see 401-1 of FIG. 9).
- the 1-21st apparatus 400 installed in 901-21 in FIG. 14 transmits “abcdef” as information on the SSID (see 401-1 in FIG. 9).
- the 1-22nd device 400 installed in 901-22 of FIG. 14 transmits “abcdef” as information relating to the SSID (see 401-1 of FIG. 9).
- the 1st-23rd device 400 installed in 901-23 in FIG. 14 transmits “abcdef” as information on the SSID (see 401-1 in FIG. 9).
- the 1st-24th device 400 installed in 901-24 of FIG. 14 transmits “abcdef” as information on the SSID (see 401-1 of FIG. 9).
- terminal 450 a terminal having the same configuration as the terminal 450 in FIG. 9 exists at the position 903-1 in FIG.
- the terminal 450 receives the modulation signal transmitted by the “first-4 apparatus 400” at the position 901-4 in FIG. 14, and obtains position information “A-4”.
- the terminal 450 receives the modulation signal transmitted by the “first-4 apparatus 400” at the position 901-4 in FIG. 14, and obtains the SSID information “abcdef”.
- the terminal 450 accesses the base station 470 located at 902 in FIG.
- the terminal 450 obtains information such as a map from the base station 470 located at 902 in FIG.
- the terminal 450 displays map information and position information (see, for example, FIG. 10; however, FIG. 10 is merely an example of display).
- terminal 450 a terminal having the same configuration as the terminal 450 in FIG. 9 (hereinafter simply referred to as “terminal 450”) exists at a position 903-2 in FIG.
- the terminal 450 receives the modulation signal transmitted from the “first 22 device 400” at the position 901-22 in FIG. 14, and obtains position information “A-22”.
- the terminal 450 receives the modulation signal transmitted by the “first-4 apparatus 400” at the position 901-22 in FIG. 14, and obtains SSID information “abcdef”.
- the terminal 450 accesses the base station 470 located at 902 in FIG.
- the terminal 450 obtains information such as a map from the base station 470 located at 902 in FIG.
- the terminal 450 displays map information and position information (see, for example, FIG. 10; however, FIG. 10 is merely an example of display).
- the terminal 450 records a map (peripheral information) and position information as shown in FIG. 14 in a storage unit (not shown) provided in the terminal 450, and stores it when a user using the terminal 450 is necessary.
- the information recorded in the section may be taken out. Thereby, the user can utilize a map (peripheral information) and position information more conveniently.
- the terminal 450 that can receive the modulated signal can receive the optical signal from the position of the first device 400. Limited to the range. Therefore, when the terminal 450 receives the location / position information transmitted by the first device 400, the terminal 450 can easily acquire high-accuracy position information (without performing complicated signal processing).
- the terminal 450 transmits a modulation signal transmitted by the first device 400 even in a situation where it is difficult to receive radio waves from the GPS satellite. By receiving, high-accuracy position information can be obtained safely.
- the terminal 450 obtains information by connecting to the base station (or AP) 470, so that the terminal 450 obtains the information safely. be able to.
- the terminal 450 obtains information from the modulated signal of visible light
- the user can easily recognize the first device 400 that has transmitted the modulated signal by visual observation or the like because of the visible light. This is because it is easy to judge whether or not is safe.
- the SSID is acquired from the modulated signal of the radio wave transmitted by the wireless LAN, it is difficult for the user to identify the device that transmitted the radio wave. For this reason, in terms of ensuring the safety of information, visible light communication is more suitable for acquiring an SSID than wireless LAN communication.
- a plurality of signals may be further input to the wireless device 453 of the terminal 450 in FIG.
- a control signal for controlling the wireless device 453, information to be transmitted to the base station 470, and the like may be input to the wireless device 453.
- an operation in which the wireless device 453 starts communication based on the control signal is considered as an example.
- the configuration of the first device is not limited to the configuration of the first device 400 in FIG. 9, and the configuration of the terminal is limited to the configuration of the terminal 450 in FIG.
- the connection destination and configuration of the base station are not limited to the connection destination and configuration of the base station 470 shown in FIG.
- FIG. 9 describes the case where one base station 470 is arranged, there may be a plurality of (secure) base stations (or APs) that can be accessed by the terminal 450.
- the symbol regarding the SSID transmitted by the first device 400 in FIG. 9 may include information indicating the SSID of each of the plurality of base stations (or APs).
- the display unit 157 of the terminal 450 in FIG. 9 includes a list of SSIDs of a plurality of base stations and / or a list of a plurality of access destinations as an access destination display (“first display” described above). Is displayed. 9 may select one or more base stations to be actually wirelessly connected based on the SSID information of a plurality of base stations (or APs) (that is, a plurality of base stations). May be connected at the same time).
- the three base stations 470 are arranged.
- the three base stations 470 are referred to as base station #A, base station #B, and base station #C, respectively.
- the SSID of the base station #A is “abcdef”
- the SSID of the base station #B is “ghijk”
- the SSID of the base station #C is “pqrstu”.
- terminal 450 in FIG. 9 receives symbol 600-1 regarding the SSID, “SSID of base station #A is“ abcdef ””, SSID of base station #B is “ghijk”, “base station #C One or more base stations 470 to be actually wirelessly connected are selected based on the information of the SSID of “pqrstu”.
- FIG. 15 is a diagram illustrating an example of a configuration of a communication system in the present embodiment.
- 15 includes, for example, a device 1000, a terminal 1050, and a base station (or AP) 470 that communicates with the terminal 1050.
- the device 1000 includes, for example, a visible light source such as an LED, illumination, a light source, and a light (hereinafter referred to as the light source 104).
- a visible light source such as an LED
- illumination a light source
- a light hereinafter referred to as the light source 104
- the device 1000 may be referred to as a “second device” in the present embodiment.
- the same reference numerals are given to components that operate in the same manner as the first device 100 shown in FIG.
- the same number is attached
- the communication between the wireless device 453 of the terminal 1050 and the base station 470 shown in FIG. 15 uses radio waves, for example.
- transmission section 102 receives information 1001-1 related to SSID, information 1001-2 related to an encryption key, and data 1002 as input, and (optical) modulation is performed based on these input signals.
- a signal 103 is generated and a modulated signal 103 is output.
- the modulated signal 103 is transmitted from the light source 104, for example.
- the SSID-related information 1001-1 is information indicating the SSID of the base station 470 in FIG.
- base station 470 transmits a modulated signal to terminal 1050 by radio waves and receives a modulated signal from terminal 1050 by radio waves. That is, the second device 1000 can provide the terminal 1050 with access to the base station 470 that is a safe access destination. Accordingly, the terminal 1050 in FIG. 15 can obtain information from the base station 470 safely.
- the second device 1000 can limit the terminals accessing the base station 470 to terminals located in a space where the optical signal transmitted (irradiated) by the second device 1000 can be received.
- the terminal 1050 may determine that the notified SSID is the SSID of a safe base station when receiving an optical signal transmitted by a predetermined method. In addition, the terminal 1050 may separately perform processing for determining whether or not the notified SSID is safe. For example, the second device 1000 transmits a predetermined identifier included in the optical signal, and the terminal 1050 determines whether or not the notified SSID is the SSID of a safe base station based on the received identifier. May be.
- the terminal 1050 receives the SSID acquired from the second device 1000. To access the base station 470 and obtain information.
- the encryption key information 1001-2 is information related to the encryption key necessary for the terminal 1050 to communicate with the base station 470.
- the terminal 1050 can perform encrypted communication with the base station 470 by obtaining information 1001-2 on the encryption key from the second device 1000.
- the information 1001-1 related to the SSID and the information 1001-2 related to the encryption key have been described above.
- the terminal 1050 in FIG. 15 receives the modulation signal transmitted by the second device 1000. Note that in the terminal 1050 of FIG. 15, the same reference numerals are given to components that operate in the same manner as the terminal 150 of FIG. 6 and the terminal 450 of FIG.
- the light receiving unit 151 included in the terminal 1050 is, for example, an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the second device 1000 and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the received data 154, and from the received data 154, for example, the SSID information 1051 of the connection destination base station and the encryption key information for communicating with the connection destination base station. 1052 is output.
- a wireless LAN Local Area Network
- WEP Wi-Fi (registered trademark) Protected Access 2)
- WPA2 Wi-Fi Protected Access 2
- PSK Pre
- -Shared (Key) mode EAP (Extended Authentication Protocol) mode
- EAP Extended Authentication Protocol
- the display unit 157 receives the SSID information 1051 and the encryption key information 1052 as input, and displays, for example, the SSID and encryption key of the communication partner accessed by the wireless device 453 included in the terminal 1050 (this display is performed in this embodiment). (Referred to as “first display”).
- the wireless device 453 receives the SSID information 1051 and the encryption key information 1052 as input, and establishes a connection with the base station 470 (for example, the connection uses radio waves). ).
- the base station 470 transmits a modulated signal using, for example, radio waves.
- the wireless device 453 receives the data 1053 and the control signal 1054 as input, modulates the data 1053 according to the control indicated by the control signal 1054, and transmits the modulated signal by radio waves.
- the base station 470 transmits data (471) to the network and receives data (472) from the network. Thereafter, for example, the base station 470 transmits a modulated signal to the terminal 1050 by radio waves.
- the wireless device 453 included in the terminal 1050 performs processing such as demodulation and error correction decoding on the modulated signal received by the radio wave, and acquires received data 1056.
- the display unit 157 performs display based on the received data 1056.
- FIG. 16 shows an example of the frame configuration of the modulated signal transmitted by the second device 1000 shown in FIG.
- the horizontal axis is time.
- the same symbols as those in FIGS. 7 and 11 are given the same numbers, and the description thereof is omitted.
- the SSID symbol 600-1 is a symbol for transmitting the SSID information 1001-1 in FIG. 15, and the encryption key symbol 1101 is the symbol for transmitting the encryption key information 1001-2 in FIG. is there.
- Data symbol 1102 is a symbol for transmitting data 1002 of FIG.
- the second device 1000 transmits a preamble 201, a control information symbol 202, a symbol 600-1 regarding an SSID, a symbol 1101 regarding an encryption key, and a data symbol 1102. Note that the second device 1000 may transmit a frame including symbols other than the symbols described in FIG. Also, the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
- FIG. 17 shows an example of a frame configuration of a modulated signal transmitted by the wireless device 453 included in the terminal 1050 of FIG.
- the horizontal axis represents time.
- the radio apparatus 453 included in the terminal 1050 transmits a preamble 1201, for example, and then transmits a control information symbol 1202 and an information symbol 1203.
- the preamble 1201 is a symbol used by the base station 470 that receives the modulated signal transmitted by the radio apparatus 453 of the terminal 1050 to perform signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like.
- the control information symbol 1202 is, for example, a symbol including data such as an error correction coding method used to generate a modulation signal, information regarding a modulation method, information regarding a frame configuration, and information regarding a transmission method.
- Base station 470 performs demodulation of the modulated signal and the like based on the information included in control information symbol 1202.
- the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 to transmit data.
- the wireless device 453 of the terminal 1050 may transmit a frame including symbols other than the symbols described in FIG.
- the radio apparatus 453 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 1203.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 17, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 17, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the frame configuration in FIG. 17 may be used.
- the frame configuration of the modulation signal transmitted by the base station 470 in the present embodiment is the same as the frame configuration of FIG. 12 described in the third embodiment. That is, as illustrated in FIG. 12, the base station 470 transmits, for example, a preamble 701, and then transmits a control information symbol 702 and an information symbol 703.
- the preamble 701 is a symbol for the radio apparatus 453 of the terminal 1050 that receives the modulated signal transmitted by the base station 470 to perform, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like.
- the control information symbol 702 is, for example, a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulation signal.
- Radio apparatus 453 of terminal 1050 performs demodulation of the modulated signal based on the information of control information symbol 702.
- the information symbol 703 is a symbol for the base station 470 to transmit data.
- the base station 470 illustrated in FIG. 15 may transmit a frame including symbols other than the symbols illustrated in FIG.
- the base station 470 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 703.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 12, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 12, symbols may exist at a plurality of frequencies (a plurality of carriers).
- a method of repeatedly transmitting, for example, the modulation signal having the frame configuration of FIG. 16 transmitted by the second device 1000 at regular timing is conceivable.
- the some terminal 1050 can implement operation
- FIG. 18 is a flowchart illustrating an example of processing performed by the “second device 1000”, the “terminal 1050”, and the “base station 470” illustrated in FIG.
- the second device 1000 transmits a modulation signal having the frame configuration shown in FIG. 16 (ST1301).
- terminal 1050 receives the modulated signal transmitted by second apparatus 1000, and acquires the SSID of base station 470 accessed by terminal 1050 (ST1302).
- terminal 1050 obtains an encryption key used for communication with base station 470 accessed by terminal 1050 (ST1303).
- terminal 1050 performs radio wave connection with base station 470 (ST1304).
- terminal 1050 receives the response of base station 470, connection with base station 470 is completed (ST1305).
- terminal 1050 transmits connection destination information to base station 470 using radio waves (ST1306).
- the base station 470 obtains information for transmission to the terminal 1050 from the network (ST1307).
- base station 470 transmits the obtained information to terminal 1050 using radio waves, and terminal 1050 obtains information (ST1308).
- the terminal 1050 acquires necessary information from the network via the base station 470 when necessary, for example.
- the terminal 1050 connects to the base station 470 and acquires the information, thereby ensuring the safety.
- Information can be obtained safely via the base station 470. This is because when the terminal 1050 obtains information from the modulated signal of visible light, the user can easily determine whether the information source is safe because of the visible light.
- the terminal 1050 obtains information from the modulated signal of visible light, the user can easily determine whether the information source is safe because of the visible light.
- the SSID is acquired from the modulated signal of the radio wave transmitted by the wireless LAN, it is difficult for the user to identify the device that transmitted the radio wave. For this reason, in terms of ensuring the safety of information, visible light communication is more suitable for acquiring an SSID than wireless LAN communication.
- the second device 1000 transmits the encryption key information.
- the second device 1000 may transmit only information related to the SSID without transmitting the encryption key information.
- the same configuration can be implemented by simply deleting the configuration related to the encryption key from the configurations described above.
- the configuration of the second device is not limited to the configuration of the second device 1000 shown in FIG. 15, and the configuration of the terminal is not limited to the configuration of the terminal 1050 shown in FIG.
- the destination and configuration are not limited to the connection destination and configuration of the base station 470 shown in FIG.
- FIG. 15 illustrates the case where one base station 470 is arranged, there may be a plurality of (safe) base stations (or APs) accessible by the terminal 1050.
- the plurality of base stations and the terminal 1050 transmit and receive modulated signals using radio waves.
- the symbol regarding the SSID transmitted by the second device 1000 in FIG. 15 may include information on the SSID of each of the plurality of base stations (or APs).
- the display unit 157 of the terminal 1050 in FIG. 15 displays a list of SSIDs of a plurality of base stations and / or a list of a plurality of access destinations as display of access destinations.
- the terminal 1050 in FIG. 15 may include information on the encryption key used for connecting to each of the plurality of base stations (or APs). . Then, the terminal 1050 in FIG. 15 may select one or more base stations that are actually wirelessly connected (for example, by radio waves) based on SSID information and encryption key information of a plurality of base stations ( In other words, a plurality of base stations may be connected simultaneously).
- the three base stations 470 are arranged.
- the three base stations 470 are referred to as base station #A, base station #B, and base station #C, respectively.
- the SSID of the base station #A is “abcdef”
- the SSID of the base station #B is “ghijk”
- the SSID of the base station #C is “pqrstu”.
- the encryption key for connecting to the base station #A is “123”
- the encryption key for connecting to the base station #B is “456”
- the encryption key for connecting to the base station #C is “789”.
- the symbol 600-1 regarding the SSID in the frame configuration of FIG. 16 of the modulated signal transmitted by the second device 1000 is “the SSID of the base station #A is“ abcdef ”” and “the SSID of the base station #B is“ ghijk “” and "base station #C have the SSID” pqrstu "”.
- the symbol 1101 related to the encryption key in the frame configuration of FIG. 16 includes “123” as the encryption key for connection with the base station #A and “456” as the encryption key for connection with the base station #B.
- Information including “789 as the encryption key for connecting to the base station #C” is included.
- terminal 1050 in FIG. 15 receives symbol 600-1 regarding the SSID, “SSID of base station #A is“ abcdef ””, “SSID of base station #B is“ ghijk ””, “base station #C The information of the SSID of “pqrstu” is obtained. Also, the terminal 1050 receives the symbol 1101 related to the encryption key, and ““ 123 ”is the encryption key for connecting to the base station #A, and“ 456 ”is the encryption key for connecting to the base station #B. , “Information about encryption key for connection with base station #C“ 789 ”” is obtained. Then, the terminal 1050 selects and connects one or more base stations that are actually wirelessly connected (for example, by radio waves) based on these pieces of information.
- the base station 470 accessed by the terminal 1050 is set by using a light source such as an LED, so that the terminal 1050 transmits a modulation signal for radio transmitted by the terminal 1050.
- a mode for special setting for performing a procedure for wireless communication connection with the base station 470 becomes unnecessary.
- a special setting mode for performing a procedure for connecting wireless communication between the terminal 1050 and the base station 470 is not necessary for the modulation signal transmitted by the base station 470. Therefore, in this embodiment, the data transmission efficiency of wireless communication can be improved.
- the encryption key may be an encryption key for the SSID of the wireless LAN, or may be an encryption key for limiting a connection form, a service form, a network connection range, and the like. That is, an encryption key may be introduced due to some restrictions.
- FIG. 19 is a diagram illustrating an example of a configuration of a communication system in the present embodiment.
- 19 includes, for example, the devices 1400A and 1400B, the terminal 1050, and the base station (or AP) 470 that communicates with the terminal 1050.
- the devices 1400A and 1400B include, for example, a visible light source such as an LED, illumination, a light source, and a light (hereinafter referred to as light sources 1406-1 and 146-2).
- a visible light source such as an LED
- illumination a light source
- a light hereinafter referred to as light sources 1406-1 and 146-2.
- the device 1400A is referred to as a “third device” in the present embodiment
- the device 1400B is referred to as a “fourth device” in the present embodiment.
- the same number is attached
- the same reference numerals as those in FIG. 9 are given to the components that operate in the same manner as the base station 470 shown in FIG.
- communication between the wireless device 453 of the terminal 1050 and the base station 470 illustrated in FIG. 19 uses, for example, radio waves.
- transmission section 1404-1 receives information 1401-1 regarding SSID and data 1402-1 as input, and generates (optical) modulated signal 1405-1 based on these input signals. Then, the modulated signal 1405-1 is output. Then, the modulation signal 1405-1 is transmitted from the light source 1406-1, for example.
- the transmission unit 1404-2 receives the encryption key information 1403-2 and the data 1402-2 as inputs, and based on these input signals, the (optical) modulation signal 1405-2 is obtained. Generate modulated signal 1405-2. Then, the modulation signal 1405-2 is transmitted from, for example, the light source 146-2.
- the information 1401-1 regarding the SSID is information indicating the SSID of the base station 470 in FIG. That is, the third device 1400A can provide the terminal 1050 with access to the base station 470, which is a safe access destination using radio waves. Accordingly, the terminal 1050 in FIG. 19 can obtain information from the base station 470 safely.
- the terminal 1050 may determine that the notified SSID is the SSID of a safe base station when receiving an optical signal transmitted by a predetermined method. In addition, the terminal 1050 may separately perform processing for determining whether or not the notified SSID is safe. For example, the third device 1400A transmits a predetermined identifier included in the optical signal, and the terminal 1050 determines whether the notified SSID is the SSID of a secure base station based on the received identifier. May be.
- the terminal 1050 receives the SSID acquired from the third device 1400A and Information is obtained by accessing the base station 470 using the encryption key obtained from the fourth device 1400B.
- the encryption key information 1403-2 is information related to the encryption key necessary for the terminal 1050 to communicate with the base station 470 by radio waves.
- the terminal 1050 can perform encrypted communication with the base station 470 by obtaining the encryption key information 1403-2 from the fourth device 1400B.
- the terminal 1050 in FIG. 19 receives the modulated signal transmitted by the third device 1400A.
- the light receiving unit 151 included in the terminal 1050 is, for example, an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the third device 1400 ⁇ / b> A and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the reception data 154 and outputs, for example, the SSID information 1051 of the base station that is the connection destination from the reception data.
- the wireless device 453 obtains the SSID information of the base station 470 to which the wireless device 453 is connected by radio waves from the SSID information 1051.
- the terminal 1050 in FIG. 19 receives the modulated signal transmitted by the fourth device 1400B.
- the light receiving unit 151 included in the terminal 1050 is, for example, an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the fourth device 1400B, and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the received data 154 and outputs, from the received data, for example, encryption key information 1052 for performing communication with a base station as a connection destination.
- encryption key information 1052 for performing communication with a base station as a connection destination.
- WEP Wi-Fi Protected Access
- WPA2 Wi-Fi Protected Access 2
- PSK Pre-Shared Key
- EAP Extended Authentication Protocol
- the wireless device 453 included in the terminal 1050 obtains the encryption key information of the base station 470 to which the wireless device 453 is connected from the encryption key information 1052 for communication with the base station to be connected (for example, by radio waves). Will get.
- the display unit 157 receives the SSID information 1051 and the encryption key information 1052 as input, and displays, for example, the SSID and encryption key of the communication partner accessed by the wireless device 453 included in the terminal 1050 (this display is performed in this embodiment). (Referred to as “first display”).
- the wireless device 453 receives the SSID information 1051 and the encryption key information 1052 as input, and establishes a radio wave connection with the base station 470.
- the base station 470 transmits a modulated signal using, for example, radio waves.
- the wireless device 453 receives the data 1053 and the control signal 1054 as input, modulates the data 1053 according to the control indicated by the control signal 1054, and transmits the modulated signal by radio waves.
- the base station 470 transmits data (471) to the network and receives data (472) from the network. Thereafter, for example, the base station 470 transmits a modulated signal to the terminal 1050 by radio waves.
- the wireless device 453 included in the terminal 1050 performs processing such as demodulation and error correction decoding on the modulated signal received by the radio wave, and acquires received data 1056.
- the display unit 157 performs display based on the received data 1056.
- FIG. 20 shows an example of the frame configuration of the modulated signal transmitted by the third device 1400A shown in FIG.
- the horizontal axis represents time.
- the same symbols as those in FIGS. 2, 11, and 16 are denoted by the same reference numerals, and description thereof is omitted.
- the symbol 600-1 regarding the SSID is a symbol for transmitting the information 1401-1 regarding the SSID of FIG.
- Data symbol 1102 is a symbol for transmitting data 1402-1.
- the third device 1400A transmits the preamble 201, the control information symbol 202, the SSID symbol 600-1, and the data symbol 1102. Note that the third device 1400A may transmit a frame including symbols other than the symbols described in FIG. Also, the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
- FIG. 21 shows an example of the frame configuration of the modulated signal transmitted by the fourth device 1400B of FIG.
- the horizontal axis represents time.
- the same symbols as those in FIGS. 7 and 16 are given the same reference numerals, and the description thereof is omitted.
- the encryption key symbol 1101 is a symbol for transmitting the encryption key information 1403-2 of FIG.
- Data symbol 1102 is a symbol for transmitting data 1402-2.
- the fourth device 1400B transmits the preamble 201, the control information symbol 202, the encryption key symbol 1101, and the data symbol 1102. Note that the fourth device 1400B in FIG. 19 may transmit a frame including symbols other than the symbols described in FIG. Also, the frame configuration including the order in which symbols are transmitted is not limited to that shown in FIG.
- the frame configuration of the modulation signal transmitted by the radio apparatus 453 in this embodiment is the same as the frame configuration in FIG. 17 described in the fourth embodiment. That is, as illustrated in FIG. 17, the radio apparatus 453 included in the terminal 1050 transmits, for example, a preamble 1201, and then transmits a control information symbol 1202 and an information symbol 1203.
- the base station (or AP) 470 that receives the modulated signal transmitted by the wireless device 453 of the terminal 1050 in FIG. 19 performs, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like. It is a symbol used to do.
- the control information symbol 1202 is a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulated signal.
- Base station 470 performs demodulation of the modulated signal and the like based on the information included in control information symbol 1202.
- the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 to transmit data.
- the radio apparatus 453 of the terminal 1050 illustrated in FIG. 19 may transmit a frame including symbols other than the symbols illustrated in FIG.
- the radio apparatus 453 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 1203.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 17, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 17, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the frame configuration of the modulation signal transmitted by the base station 470 in the present embodiment is the same as the frame configuration of FIG. 12 described in the third embodiment. That is, as illustrated in FIG. 12, the base station 470 transmits, for example, a preamble 701, and then transmits a control information symbol 702 and an information symbol 703.
- the preamble 701 is a symbol for the radio apparatus 453 of the terminal 1050 of FIG. 19 that receives the modulation signal transmitted by the base station 470, for example, to perform signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like. is there.
- the control information symbol 702 is, for example, a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulation signal.
- the radio apparatus 453 of the terminal 1050 in FIG. 19 performs demodulation of the modulation signal based on the information of the control information symbol 702.
- the information symbol 703 is a symbol for the base station 470 of FIG. 19 to transmit data.
- the base station 470 illustrated in FIG. 19 may transmit a frame including symbols other than the symbols illustrated in FIG.
- the base station 470 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 703.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 12, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 12, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the modulation signal having the frame configuration in FIG. 20 transmitted by the third device 1400A may be transmitted repeatedly at regular timing, for example. Thereby, the some terminal 1050 can implement operation
- the modulation signal having the frame configuration in FIG. 21 transmitted by the fourth device 1400B may be transmitted repeatedly at regular timing, for example. Thereby, the some terminal 1050 can implement operation
- FIG. 22 is a flowchart showing a first example of processing performed by “third device 1400A”, “fourth device 1400B”, “terminal 1050”, and “base station 470” shown in FIG. 22 that operate in the same manner as in FIG. 18 are denoted by the same reference numerals.
- third device 1400A transmits a modulated signal having the frame configuration shown in FIG. 20 (ST1701).
- Terminal 1050 receives the modulated signal transmitted by third apparatus 1400A, and acquires the SSID of base station 470 accessed by terminal 1050 (ST1702).
- fourth apparatus 1400B transmits the modulated signal having the frame configuration shown in FIG. 21 (ST1703).
- terminal 1050 performs radio wave connection with base station 470 (ST1304).
- terminal 1050 receives the response of base station 470, connection with radio wave with base station 470 is completed (ST1305).
- terminal 1050 transmits connection destination information to base station 470 using radio waves (ST1306).
- the base station 470 obtains information for transmission to the terminal 1050 from the network (ST1307).
- base station 470 transmits the obtained information to terminal 1050 using radio waves, and terminal 1050 obtains information (ST1308).
- the terminal 1050 acquires necessary information from the network via the base station 470 when necessary, for example.
- FIG. 23 is a flowchart illustrating a second example of processing performed by “third device 1400A”, “fourth device 1400B”, “terminal 1050”, and “base station 470” shown in FIG. 23 that operate in the same manner as in FIG. 18 are given the same reference numerals.
- fourth device 1400B transmits a modulated signal having the frame configuration shown in FIG. 21 (ST1801).
- terminal 1050 receives the modulated signal transmitted by fourth apparatus 1400B, and obtains an encryption key used for communication with base station 470 accessed by terminal 1050 (ST1802).
- third device 1400A transmits the modulated signal having the frame configuration shown in FIG. 20 (ST1803).
- terminal 1050 receives the modulated signal transmitted by third device 1400A, and acquires the SSID of base station 470 accessed by terminal 1050 (ST1804).
- terminal 1050 performs radio wave connection with base station 470 (ST1304).
- terminal 1050 receives the response of base station 470, connection with radio wave with base station 470 is completed (ST1305).
- terminal 1050 transmits connection destination information to base station 470 using radio waves (ST1306).
- the base station 470 obtains information for transmission to the terminal 1050 from the network (ST1307).
- base station 470 transmits the obtained information to terminal 1050 using radio waves, and terminal 1050 obtains information (ST1308).
- the terminal 1050 acquires necessary information from the network via the base station 470 when necessary, for example.
- the terminal 1050 connects to the base station 470 and acquires information. . That is, since the device from which the terminal 1050 acquires the SSID information is different from the device from which the encryption key information is acquired, the information can be obtained safely via the base station 470 that is guaranteed to be safe. This is because when the terminal 1050 obtains information from the modulated signal of visible light, the user can easily determine whether the information source is safe because of the visible light. On the other hand, for example, when the SSID is acquired from the modulated signal of the radio wave transmitted by the wireless LAN, it is difficult for the user to identify the device that transmitted the radio wave. For this reason, in terms of ensuring the safety of information, visible light communication is more suitable for acquiring an SSID than wireless LAN communication.
- the fourth device 1400B transmits the encryption key information.
- the base station 470 does not perform encrypted communication using the encryption key
- the fourth device 1400B does not transmit the encryption key information
- the third device 1400A only receives the information related to the SSID. It only needs to be sent.
- the same configuration can be implemented by simply deleting the configuration related to the encryption key from the above configuration.
- the terminal 1050 is separated by separating the device (third device 1400A) that transmits information related to the SSID and the device (fourth device 1400B) that transmits information related to the encryption key. Can realize more secure communication with the base station 470.
- the base station 470, the third device 1400A, and the fourth device 1400B are installed in the area # 1 of FIG.
- the third device 1400A is installed in the area # 2.
- the radio wave transmitted by the base station 470 can be received in either area # 1 or area # 2.
- the terminal 1050 existing in the area # 1 where the fourth device 1400B is installed acquires the encryption key of the base station 470 from the fourth device 1400B, and can communicate with the base station 470.
- the base station uses the encryption key acquired from the fourth device 1400B in the area # 1. Communication with station 470 is possible.
- the terminal 1050 connected to the base station 470 in the area # 1 moves to an area other than the area # 1 and the area # 2, and then returns to either the area # 1 or the area # 2. Also in this case, communication with the base station 470 becomes possible using the encryption key acquired from the fourth device 1400B in the area # 1.
- the terminal 1050 that cannot enter the area # 1 cannot obtain the encryption key from the fourth device 1400B.
- the terminal 1050 knows only the SSID of the base station (or AP) 470. Therefore, for example, the terminal 1050 may receive communication with the base station 470 by a service that can be enjoyed by knowing only the SSID of the base station 470.
- the service that can be enjoyed by knowing only the SSID of the base station 470 can be more limited than the service that can be enjoyed when both the SSID and the encryption key are known.
- the terminal 1050 that holds the encryption key before the change is communicated with the base station 470 by changing the encryption key for the terminal 1050 to communicate with the base station 470 (for example, every certain time interval). I can't do that. By performing such an operation, more secure communication can be performed.
- the configuration of the third device and the configuration of the fourth device are not limited to the configuration of the third device 1400A and the fourth device 1400B shown in FIG. 19, and the configuration of the terminal is the terminal shown in FIG.
- the connection destination and configuration of the base station are not limited to the configuration of 1050, and are not limited to the connection destination and configuration of the base station 470 shown in FIG.
- FIG. 19 shows a case where one base station 470 is arranged, there may be a plurality of (secure) base stations (or APs) accessible by the terminal 1050.
- the SSID symbol transmitted by the third device 1400A in FIG. 19 may include information on the SSID of each of the plurality of base stations 470.
- the symbol relating to the encryption key transmitted by the fourth device 1400B in FIG. 19 may include information on the encryption key used for connecting to each of the plurality of base stations.
- the terminal 1050 in FIG. 19 may select one or more base stations to be actually wirelessly connected based on SSID information and encryption key information of a plurality of base stations (that is, a plurality of base stations). May be connected at the same time).
- the three base stations 470 are arranged.
- the three base stations 470 are referred to as base station #A, base station #B, and base station #C, respectively.
- the SSID of the base station #A is “abcdef”
- the SSID of the base station #B is “ghijk”
- the SSID of the base station #C is “pqrstu”.
- the encryption key for connecting to the base station #A is “123”
- the encryption key for connecting to the base station #B is “456”
- the encryption key for connecting to the base station #C is “789”.
- the symbol 600-1 regarding the SSID in the frame configuration of FIG. 20 of the modulated signal transmitted by the third device 1400A is “the SSID of the base station #A is“ abcdef ”” and “the SSID of the base station #B is“ ghijk “” and "base station #C have the SSID” pqrstu "”.
- the symbol 1101 related to the encryption key in the frame configuration of FIG. 21 of the modulated signal transmitted by the fourth device 1400B is “the encryption key for connection with the base station #A is“ 123 ””, “the base station #B and The information includes “456” as the encryption key for connection and “789” as the encryption key for connection with the base station #C.
- the terminal 1050 in FIG. 19 receives the symbol 600-1 regarding the SSID, “SSID of the base station #A is“ abcdef ””, “SSID of the base station #B is“ ghijk ”,“ base station #C The information of the SSID of “pqrstu” is obtained. Also, the terminal 1050 receives the symbol 1101 related to the encryption key, and ““ 123 ”is the encryption key for connecting to the base station #A, and“ 456 ”is the encryption key for connecting to the base station #B. , “Information about encryption key for connection with base station #C“ 789 ”” is obtained. The terminal 1050 selects and connects to a base station to be wirelessly connected (for example, by radio waves) based on these pieces of information.
- the base station 470 accessed by the terminal 1050 is set by using a light source such as an LED, so that the terminal 1050 transmits a modulation signal for radio transmitted by the terminal 1050.
- a mode for special setting for performing a procedure for wireless communication connection with the base station 470 becomes unnecessary.
- a special setting mode for performing a procedure for connecting wireless communication between the terminal 1050 and the base station 470 is not necessary for the modulation signal transmitted by the base station 470. Therefore, in this embodiment, the data transmission efficiency of wireless communication can be improved.
- the encryption key may be an encryption key for the SSID of the wireless LAN, or may be an encryption key for limiting a connection form, a service form, a network connection range, and the like. That is, an encryption key may be introduced due to some restrictions.
- FIG. 25 is a diagram illustrating an example of a configuration of a communication system in the present embodiment.
- the base station 2000 includes, for example, a base station 2000 and a terminal 1050.
- the base station 2000 includes a transmission device 2001 and a wireless device 2002. 25 that operate in the same manner as in FIGS. 6 and 15 are given the same reference numerals. Further, communication between the wireless device 2002 and the wireless device 453 in FIG. 25 uses radio waves, for example.
- the transmission apparatus 2001 of the base station (or AP) 2000 in FIG. 25 includes, for example, a visible light source such as an LED, illumination, a light source, and a light (hereinafter referred to as the light source 104).
- a visible light source such as an LED, illumination, a light source, and a portion related to a light
- the transmission unit 102 receives information 1001-1 related to the SSID, information 1001-2 related to the encryption key, and data 1002, and generates an (optical) modulation signal 103 based on these input signals.
- the signal 103 is output.
- the modulated signal 103 is transmitted from the light source 104, for example.
- the SSID-related information 1001-1 is information indicating the SSID of the radio apparatus 2002 using radio waves of the base station 2000 in FIG. That is, the transmission device 2001 can provide the terminal 1050 with access to the wireless device 2002 that is a secure wireless access destination. Accordingly, the terminal 1050 in FIG. 25 can obtain information from the wireless device 2002 safely.
- the transmission apparatus 2001 can limit the terminals accessing the wireless apparatus 2002 to terminals located in a space where the optical signal transmitted (irradiated) by the transmission apparatus 2001 can be received.
- the terminal 1050 may determine that the notified SSID is the SSID of a safe base station when receiving an optical signal transmitted by a predetermined method. In addition, the terminal 1050 may separately perform processing for determining whether or not the notified SSID is safe.
- the transmission apparatus 2001 includes a predetermined identifier in an optical signal and transmits the optical signal, and the terminal 1050 determines whether the notified SSID is a SSID of a safe base station based on the received identifier. Good.
- the terminal 1050 can also acquire the SSID and encryption key acquired from the transmission apparatus 2001. Is used to access the wireless device 2002 of the base station 2000 to obtain information.
- the information 1001-2 related to the encryption key is information related to the encryption key necessary for the terminal 1050 to communicate with the wireless device 2002.
- the terminal 1050 can perform encrypted communication with the wireless device 2002 by obtaining information 1001-2 on the encryption key from the transmission device 2001.
- the information 1001-1 related to the SSID and the information 1001-2 related to the encryption key have been described above.
- the terminal 1050 in FIG. 25 receives the modulated signal transmitted by the transmission device 2001. Note that in the terminal 1050 of FIG. 25, the same numbers are assigned to components that operate in the same manner as the terminal 150 of FIG. 6 and the terminal 1050 of FIG.
- the light receiving unit 151 included in the terminal 1050 is, for example, an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including a modulation signal transmitted from the transmission device 2001 and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the reception data 154 as an input, and from the reception data, for example, the SSID information 1051 of the wireless device 2002 of the base station 2000 that is the connection destination, and the wireless device 2002 of the base station 2000 that is the connection destination.
- Encryption key information 1052 for communication is output.
- wireless LAN Local Area Network
- WEP Wi-Fi Protected Access
- WPA2 Wi-Fi Protected Access 2
- PSK Pre-Shared Key
- EAP Extended Authentication Protocol
- the display unit 157 receives the SSID information 1051 and the encryption key information 1052 as input, and displays, for example, the SSID and encryption key of the communication partner accessed by the wireless device 453 included in the terminal 1050 (this display is performed in this embodiment). (Referred to as “first display”).
- the wireless device 453 receives the SSID information 1051 and the encryption key information 1052 as input, and establishes a connection with the wireless device 2002 of the base station 2000 (for example, the connection uses radio waves). It shall be).
- the wireless device 2002 of the base station 2000 also communicates with the wireless device 453 included in the terminal 1050, the modulated signal is transmitted using, for example, radio waves.
- the wireless device 453 receives the data 1053 and the control signal 1054 as input, modulates the data 1053 according to the control indicated by the control signal 1054, and transmits the modulated signal by radio waves.
- the wireless device 2002 of the base station 2000 transmits data (471) to the network and receives data from the network (472). Thereafter, for example, the wireless device 2002 of the base station 2000 transmits a modulated signal to the terminal 1050 by radio waves.
- the wireless device 453 included in the terminal 1050 performs processing such as demodulation and error correction decoding on the modulated signal received by the radio wave, and acquires received data 1056.
- the display unit 157 performs display based on the received data 1056.
- the frame configuration of the modulation signal transmitted by the transmission apparatus 2001 of the base station 2000 in this embodiment is the same as the frame configuration of FIG. 16 described in the fourth embodiment. That is, in FIG. 16, a symbol 600-1 relating to the SSID is a symbol for transmitting information 1001-1 relating to the SSID in FIG. 25, and a symbol 1101 relating to the encryption key includes information 1001-2 relating to the encryption key in FIG. This is a symbol for transmission.
- Data symbol 1102 is a symbol for transmitting data 1002 of FIG.
- the transmission apparatus 2001 of the base station 2000 transmits a preamble 201, a control information symbol 202, a symbol 600-1 regarding an SSID, a symbol 1101 regarding an encryption key, and a data symbol 1102.
- the transmission apparatus 2001 of the base station 2000 may transmit a frame including symbols other than the symbols described in FIG.
- the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
- the frame configuration of the modulated signal transmitted by radio apparatus 453 included in terminal 1050 in this embodiment is the same as the frame configuration in FIG. 17 described in Embodiment 4. That is, as illustrated in FIG. 17, the radio apparatus 453 included in the terminal 1050 of FIG. 25 transmits, for example, a preamble 1201, and then transmits a control information symbol 1202 and an information symbol 1203.
- the preamble 1201 is used by the radio apparatus 2002 of the base station 2000 that receives the modulated signal transmitted by the radio apparatus 453, for example, to perform signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like. Symbol.
- the control information symbol 1202 is a symbol including data such as an error correction coding method used by the terminal 1050 to generate a modulated signal, information on the modulation method, information on the frame configuration, information on the transmission method, and the like. . Based on information included in control information symbol 1202, radio apparatus 2002 of base station 2000 performs demodulation of the modulated signal and the like.
- the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 to transmit data.
- the wireless device 453 of the terminal 1050 may transmit a frame including symbols other than the symbols described in FIG.
- the radio apparatus 453 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 1203.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 17, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 17, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the frame configuration of the modulation signal transmitted by radio apparatus 2002 in this embodiment is the same as the frame configuration in FIG. 12 described in Embodiment 3. That is, as illustrated in FIG. 12, the radio apparatus 2002 transmits a preamble 701, and then transmits a control information symbol 702 and an information symbol 703, for example.
- the preamble 701 is a symbol for the radio apparatus 453 of the terminal 1050 that receives the modulated signal transmitted by the radio apparatus 2002 to perform signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, and the like.
- the control information symbol 702 is, for example, a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulation signal.
- Radio apparatus 453 of terminal 1050 performs demodulation of the modulated signal based on the information of control information symbol 702.
- the information symbol 703 is a symbol for the wireless device 2002 to transmit data.
- the radio apparatus 2002 of the base station 2000 illustrated in FIG. 25 may transmit a frame including symbols other than the symbols illustrated in FIG.
- the radio apparatus 2002 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 703.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 12, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 12, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the modulation signal having the frame configuration in FIG. 16 transmitted by the transmission apparatus 2001 may be transmitted repeatedly at regular timing, for example.
- the some terminal 1050 can implement operation
- FIG. 26 is a flowchart illustrating an example of processing performed by “transmission apparatus 2001 of base station 2000”, “terminal 1050”, and “radio apparatus 2002 of base station 2000” illustrated in FIG.
- transmitting apparatus 2001 transmits a modulated signal having the frame configuration shown in FIG. 16 (ST1301).
- Terminal 1050 receives the modulated signal transmitted from transmitting apparatus 2001, and acquires the SSID of base station 2000 (wireless apparatus 2002) accessed by terminal 1050 (ST1302).
- terminal 1050 acquires an encryption key used for communication with base station 2000 (wireless apparatus 2002) accessed by terminal 1050 (ST1303).
- terminal 1050 performs radio wave connection with radio apparatus 2002 of base station 2000 (ST1304).
- terminal 1050 receives the response of radio apparatus 2002 of base station 2000, connection between terminal 1050 and radio apparatus 2002 of base station 2000 is completed (ST1305).
- terminal 1050 transmits connection destination information to radio apparatus 2002 of base station 2000 using radio waves (ST1306).
- the wireless device 2002 of the base station 2000 obtains information for transmission to the terminal 1050 from the network (ST1307).
- radio apparatus 2002 of base station 2000 transmits the obtained information to terminal 1050 using radio waves, and terminal 1050 obtains information (ST1308).
- the terminal 1050 acquires necessary information from the network via the wireless device 2002 of the base station 2000 when necessary.
- the terminal 1050 connects to the wireless device 2002 of the base station 2000 and acquires the information.
- Information can be safely obtained through the base station 2000 whose safety is guaranteed. This is because when the terminal 1050 obtains information from the modulated signal of visible light, the user can easily determine whether the information source is safe because of the visible light.
- the terminal 1050 obtains information from the modulated signal of visible light, the user can easily determine whether the information source is safe because of the visible light.
- the SSID is acquired from the modulated signal of the radio wave transmitted by the wireless LAN, it is difficult for the user to identify the device that transmitted the radio wave. For this reason, in terms of ensuring the safety of information, visible light communication is more suitable for acquiring an SSID than wireless LAN communication.
- the transmission apparatus 2001 transmits encryption key information
- the transmission device 2001 does not transmit information on the encryption key, but transmits only information on the SSID. Also good.
- the same configuration can be achieved by simply deleting the configuration related to the encryption key from the configuration of the transmission apparatus 2001.
- a configuration may be adopted in which the SSID and encryption key of the wireless device 2002 of the base station 2000 can be rewritten.
- the wireless device 2002 receives information 1001-1 related to the SSID and information 1001-2 related to the encryption key.
- the radio apparatus 2002 of the base station 2000 rewrites the SSID and the encryption key with the input information 1001-1 about the SSID and information about the encryption key 1001-2. In this way, the safety of communication between terminal 1050 and radio apparatus 2002 of base station 2000 is further ensured.
- the wireless device 2002 of the base station 2000 has a function for rewriting the SSID and the encryption key. However, a configuration without the function for rewriting both the SSID and the encryption key may be used.
- the configuration of the transmission apparatus is not limited to the configuration of the transmission apparatus 2001 shown in FIG. 25, and the configuration of the terminal is not limited to the configuration of the terminal 1050 shown in FIG. Is not limited to the connection destination and configuration of the wireless device 2002 shown in FIG.
- FIG. 25 describes a case where one base station 2000 is arranged, but there are a plurality of (secure) base station (or AP) 2000 wireless devices 2002 accessible by terminal 1050. It may be. Note that the wireless devices 2002 and the terminals 1050 of the plurality of base stations 2000 transmit and receive modulated signals using radio waves.
- the symbols related to the SSID transmitted by the transmission apparatus 2001 in FIG. 25 may include information on the respective SSIDs of the radio apparatuses 2002 of the plurality of base stations 2000.
- the symbols related to the encryption key transmitted by the transmission apparatus 2001 in FIG. 25 may include information on the encryption key used for connecting to each of the radio apparatuses 2002 of the plurality of base stations 2000. Then, the terminal 1050 in FIG.
- the 25 selects the wireless device 2002 of the base station 2000 to be wirelessly connected (for example, by radio waves) based on the SSID information and the encryption key information of the wireless devices 2002 of the plurality of base stations 2000. (Or may be connected to wireless devices of a plurality of base stations).
- the wireless devices 2002 of the three base stations 2000 are referred to as a wireless device #A, a wireless device #B, and a wireless device #C, respectively.
- the SSID of the wireless device #A is “abcdef”
- the SSID of the wireless device #B is “ghijk”
- the SSID of the wireless device #C is “pqrstu”.
- the encryption key for connecting to the wireless device #A is “123”
- the wireless device for connecting to the wireless device #B is “456”
- the encryption key for connecting to the wireless device #C is “789”.
- the symbol 600-1 relating to the SSID in the frame configuration of FIG. 16 of the modulated signal transmitted by the transmission apparatus 2001 includes “absddef of SSID of radio apparatus #A” and “ghijk” of SSID of radio apparatus #B. ”And“ SSID of the wireless device #C is “pqrstu” ”.
- the symbol 1101 related to the encryption key in the frame configuration of FIG. 16 includes “123” as the encryption key for connection with the wireless device #A and “456” as the encryption key for connection with the wireless device #B.
- Information including “789 as the encryption key for connecting to the wireless device #C” is included.
- the terminal 1050 in FIG. 25 receives the symbol 600-1 regarding the SSID, “SSID of the wireless device #A is“ abcdef ””, “SSID of the wireless device #B is“ ghijk ””, “Wireless device #C The information of the SSID of “pqrstu” is obtained. Also, the terminal 1050 receives the symbol 1101 related to the encryption key, and ““ 123 ”is the encryption key for connecting to the wireless device #A, and“ 456 ”is the encryption key for connecting to the wireless device #B. , Information related to “the encryption key for connecting to the wireless device #C“ 789 ”” is obtained. The terminal 1050 selects and connects to a base station to be wirelessly connected (for example, by radio waves) based on these pieces of information.
- a modulation signal for radio transmitted by the terminal 1050 is set.
- a special setting mode for performing a procedure for wireless communication connection between the terminal 1050 and the base station 2000 becomes unnecessary.
- a special setting mode for performing a procedure for connection of wireless communication between the terminal 1050 and the base station 2000 is not necessary for the modulation signal transmitted by the base station 2000. Therefore, in this embodiment, the data transmission efficiency of wireless communication can be improved.
- the encryption key may be an encryption key for the SSID of the wireless LAN, or may be an encryption key for limiting a connection form, a service form, a network connection range, and the like. That is, an encryption key may be introduced due to some restrictions.
- FIG. 27 is a diagram illustrating an example of a configuration of a communication system in the present embodiment.
- base station (or AP) 470-1 base station # 1
- base station (or AP) 470-2 base station # 2
- Base station (or AP) 470-3 base station # 3
- the device 1000 includes, for example, visible light such as LED, illumination, light source, and light (light source 104).
- the device 1000 is referred to as a “fifth device” in the present embodiment.
- the communication of (base station # 3) uses radio waves, for example.
- the transmission unit 102 receives information 1001-1 related to the SSID, information 1001-2 related to the encryption key, and data 1002 as input, and based on these input signals, the (optical) modulated signal 103 is received. And outputs a modulation signal 103.
- the modulated signal 103 is transmitted from the light source 104, for example.
- the SSID-related information 1001-1 includes, for example, information indicating the SSID of the base station 470-1 (base station # 1), information indicating the SSID of the base station 470-2 (base station # 2), and base It includes information indicating the SSID of station 470-3 (base station # 3).
- base stations 470-1, 470-2, and 470-3 transmit modulated signals by radio waves and receive radio wave modulated signals. That is, the fifth device 1000 can provide the terminal 1050 with access to the base stations 470-1, 470-2 and 470-3 that are safe access destinations. Accordingly, terminal 1050 in FIG. 27 can obtain information from base stations 470-1, 470-2, and 470-3 safely.
- the fifth device 1000 locates the terminal accessing the base stations 470-1, 470-2, and 470-3 in a space where the optical signal transmitted (irradiated) by the fifth device 1000 can be received. Can be limited to the terminal.
- the terminal 1050 may determine that the notified SSID is the SSID of a safe base station when receiving an optical signal transmitted by a predetermined method. In addition, the terminal 1050 may separately perform processing for determining whether or not the notified SSID is safe. For example, the fifth device 1000 transmits a predetermined identifier included in the optical signal, and the terminal 1050 determines whether or not the notified SSID is the SSID of a safe base station based on the received identifier. May be.
- base stations 470-1, 470-2, and 470-3 are shown. However, for example, base stations (or APs) other than the base stations 470-1, 470-2, and 470-3 are provided. May be present.
- the encryption key information 1001-2 is information related to the encryption key necessary for the terminal 1050 to communicate with the base stations 470-1, 470-2, and 470-3.
- the terminal 1050 obtains the encryption key information 1001-2 from the fifth device 1000, thereby “between the terminal 1050 and the base station 470-1” and “between the terminal 1050 and the base station 470-2”.
- “Between terminal 1050 and base station 470-3” enables encrypted communication.
- the information 1001-1 related to the SSID and the information 1001-2 related to the encryption key have been described above.
- the terminal 1050 in FIG. 27 receives the modulated signal transmitted by the fifth device 1000.
- the same numbers are assigned to components that operate in the same manner as the terminal 150 in FIG. 6 and the terminal 450 in FIG.
- the light receiving unit 151 included in the terminal 1050 is, for example, an image sensor such as a CMOS or an organic CMOS.
- the light receiving unit 151 receives light including the modulation signal transmitted from the fifth device 1000 and outputs a reception signal 152.
- the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs demodulation and error correction decoding on the modulated signal included in the received signal 152, and outputs received data 154.
- the data analysis unit 155 receives the reception data 154, and from the reception data 154, for example, the SSID information 1051 of the base stations 470-1, 470-2, and 470-3 to be connected and the base station to be the connection destination
- the encryption key information 1052 for communicating with the stations 470-1, 470-2, 470-3 is output.
- wireless LAN Local Area Network
- WEP Wi-Fi Protected Access
- WPA2 Wi-Fi Protected Access 2
- PSK Pre-Shared Key
- EAP Extended Authentication Protocol
- the display unit 157 receives the SSID information 1051 and the encryption key information 1052 as input, and displays, for example, the SSID and encryption key of the communication partner accessed by the wireless device 453 included in the terminal 1050 (this display is performed in this embodiment). (Referred to as “first display”).
- the wireless device 453 receives the SSID information 1051 and the encryption key information 1052 as input, and establishes a connection with any of the base stations 470-1, 470-2, 470-3. (For example, the connection shall use radio waves).
- the connection shall use radio waves.
- the modulated signal is transmitted using radio waves, for example.
- the wireless device 453 receives the data 1053 and the control signal 1054 as input, modulates the data 1053 according to the control indicated by the control signal 1054, and transmits the modulated signal as a radio wave.
- the connected base station 470 transmits data to the network (471-1, 471-2, 471-3) and receives data from the network (472-1, 472-2). 2 or 472-3). Thereafter, for example, the connected base station 470 transmits a modulated signal to the terminal 1050 by radio waves.
- the wireless device 453 included in the terminal 1050 performs processing such as demodulation and error correction decoding on the modulated signal received by the radio wave, and acquires received data 1056.
- the display unit 157 performs display based on the received data 1056.
- FIG. 28 shows a frame 2300-1 (frame # 1) which is one of the three types of frame configurations
- FIG. 29 shows a frame 2300-2 (frame configuration #) which is one of the three types of frame configurations
- FIG. 30 shows a frame 2300-3 (frame configuration # 3) which is one of three types of frame configurations.
- FIG. 28 shows an example of the configuration of the frame 2300-1 (frame # 1) of the modulation signal transmitted by the fifth device 1000.
- the horizontal axis is time.
- symbols similar to those in FIGS. 2 and 16 are given the same numbers, and descriptions thereof are omitted.
- the frame 2300-1 (frame # 1) in FIG. 28 includes the SSID information of the base station 470-1 (base station # 1) and the encryption key (base station) of the base station 470-1 (base station # 1) in FIG. This is a frame for transmitting information on an encryption key for accessing 470-1.
- the symbol 2301-1 relating to the SSID is a symbol for transmitting the information 1001-1 relating to the SSID in FIG. Further, the symbol 2301-1 related to the SSID is a symbol for the fifth device 1000 in FIG. 27 to transmit the SSID of the base station 470-1 (base station # 1).
- the symbol 2302-1 related to the encryption key is a symbol for transmitting the information 1001-2 related to the encryption key in FIG.
- symbol 2302-1 related to the encryption key transmits the encryption key of base station 470-1 (base station # 1) (the encryption key for accessing base station 470-1) by fifth device 1000 in FIG. It is a symbol to do.
- the fifth device 1000 transmits the preamble 201, the control information symbol 202, the symbol 2301-1 related to the SSID, the symbol 2302-1 related to the encryption key, and the data symbol 1102. Note that the fifth device 1000 may transmit a frame 2300-1 (frame # 1) including symbols other than the symbols described in FIG. Also, the configuration of frame 2300-1 (frame # 1), including the order in which symbols are transmitted, is not limited to the configuration of FIG.
- FIG. 29 shows an example of the configuration of the frame 2300-2 (frame # 2) of the modulation signal transmitted by the fifth device 1000.
- the horizontal axis is time.
- symbols similar to those in FIGS. 2 and 16 are denoted by the same reference numerals, and description thereof is omitted.
- the frame 2300-2 (frame # 2) in FIG. 29 includes the SSID information of the base station 470-2 (base station # 2) and the encryption key (base station) of the base station 470-2 (base station # 2) in FIG. This is a frame for transmitting information on an encryption key for accessing 470-2.
- the SSID symbol 2301-2 is a symbol for transmitting the SSID information 1001-1 in FIG. Further, the symbol 2301-2 regarding the SSID is a symbol for the fifth device 1000 in FIG. 27 to transmit the SSID of the base station 470-2 (base station # 2).
- the symbol 2302-2 related to the encryption key is a symbol for transmitting the information 1001-2 related to the encryption key in FIG.
- symbol 2302-2 relating to the encryption key transmits the encryption key of base station 470-2 (base station # 2) (the encryption key for accessing base station 470-2) by fifth device 1000 in FIG. It is a symbol to do.
- the fifth device 1000 transmits a preamble 201, a control information symbol 202, a symbol 2301-2 regarding the SSID, a symbol 2302-2 regarding the encryption key, and a data symbol 1102.
- the fifth device 1000 may transmit a frame 2300-2 (frame # 2) including symbols other than the symbols described in FIG.
- frame # 2 the configuration of frame 2300-2 (frame # 2), including the order in which symbols are transmitted, is not limited to the configuration of FIG.
- FIG. 30 shows an example of the configuration of the frame 2300-3 (frame # 3) of the modulated signal transmitted by the fifth device 1000.
- the horizontal axis represents time.
- the same symbols are assigned to symbols similar to those in FIGS. 2 and 16, and the description thereof is omitted.
- the frame 2300-3 (frame # 3) in FIG. 30 includes the SSID information of the base station 470-3 (base station # 3) and the encryption key (base station) of the base station 470-3 (base station # 3) in FIG. This is a frame for transmitting information on an encryption key for accessing 470-3.
- the symbol 2301-3 regarding the SSID is a symbol for transmitting the information 1001-1 regarding the SSID of FIG.
- a symbol 2301-3 regarding the SSID is a symbol for the fifth device 1000 in FIG. 27 to transmit the SSID of the base station 470-3 (base station # 3).
- the symbol 2302-3 regarding the encryption key is a symbol for transmitting the information 1001-2 regarding the encryption key of FIG.
- the symbol 2302-3 regarding the encryption key is used for the fifth device 1000 to transmit the encryption key of the base station 470-3 (base station # 3) (the encryption key for accessing the base station 470-3). Symbol.
- the fifth device 1000 transmits the preamble 201, the control information symbol 202, the symbol 2301-3 regarding the SSID, the symbol 2302-3 regarding the encryption key, and the data symbol 1102. Note that the fifth device 1000 may transmit a frame 2300-3 (frame # 3) including symbols other than the symbols described in FIG. Also, the configuration of frame 2300-3 (frame # 3), including the order in which symbols are transmitted, is not limited to the configuration of FIG.
- FIG. 31 shows that the fifth device 1000 has “frame 2300-1 (frame # 1) in FIG. 28”, “frame 2300-2 (frame # 2) in FIG. 29”, and “frame 2300-3 (in FIG. 30)”.
- An example of a transmission method when transmitting “Frame # 3)” is shown.
- the horizontal axis is time.
- FIG. 31 in “frame # 1 group transmission” 2601-1 and 2601-2, one or more frames 2300-1 (frame # 1) in FIG. 28 are transmitted. In “frame # 2 group transmission” 2602-1 and 2602-2, one or more frames 2300-2 (frame # 2) in FIG. 29 are transmitted. In “frame # 3 group transmission” 2603-1 and 2603-2, one or more frames 2300-3 (frame # 3) in FIG. 30 are transmitted.
- CMOS complementary metal-oxide-semiconductor
- the received signal is processed in units of frames in a moving image or a still image.
- “4K 30p” when “4K 30p” is described in a moving image, it means that the number of pixels per frame is 3840 ⁇ 2160 and the number of frames per second is 30.
- the fifth device 1000 includes “frame 2300-1 (frame # 1) in FIG. 28”, “frame 2300-2 (frame # 2) in FIG. 29”, and “frame 2300- in FIG. 30” within one frame. 3 (frame # 3) ”is transmitted, the terminal 1050 in FIG. 27 transmits the base station 470 to be accessed from the plurality of base stations 470-1, 470-2, 470-3. Selection becomes difficult.
- ⁇ Method 1-1> As a 1-1 method, by including a plurality of frames 2300-1 (frame # 1) in FIG. 28 in each of “frame # 1 group transmission” 2601-1 and 2601-2, “frame # 1 group transmission” The time period occupied by each of 2601-1 and 2601-2 is set to be longer than a frame in a moving image or a still image.
- the terminal 1050 receives “frame 2300-1 (frame # 1) in FIG. 28” and “frame 2300-2 (frame 2 in FIG. 29) in one frame in the moving image or the still image from the fifth device 1000.
- # 2) “ frame 2300-3 (frame # 3) in FIG. 30 ”, that is, reception of a modulated signal including a different SSID and encryption key can be prevented. Therefore, terminal 1050 in FIG. 27 can easily select a base station 470 to access from a plurality of base stations 470-1, 470-2, 470-3.
- the time interval occupied by the frame 2300-1 (frame # 1) in FIG. 28 is set to be longer than a frame in a moving image or a still image.
- the symbol 2301-1 relating to the SSID in FIG. 28 includes a plurality of “information about the SSID of the base station # 1” (that is, repeatedly includes “information about the SSID of the base station # 1”).
- the symbol 2302-1 relating to the encryption key includes a plurality of “information about the encryption key of the base station # 1 (information about the encryption key for connecting to the base station # 1)” (that is, “base station # 1”). 1 encryption key information (information on encryption key for connecting to base station # 1) "is repeatedly included.
- the terminal 1050 receives “frame # 1 of 2300-1 in FIG. 28” and “frame # 2 of 2300-2 in FIG. 29” within one frame of the moving image or still image from the fifth device 1000.
- “Frame # 3 of 2300-3 in FIG. 30” that is, reception of a modulated signal including a different SSID and encryption key can be prevented. Therefore, terminal 1050 can easily select a base station 470 to access from a plurality of base stations 470-1, 470-2, 470-3.
- the “frame # 2 group transmission” 2602-1 and 2602-2 may be configured as follows.
- each of the “frame # 2 group transmission” 2602-1 and 2602-2 includes a plurality of frames 2300-2 (frame # 2) in FIG.
- the time interval occupied by the frame 2300-2 (frame # 2) in FIG. 29 is set to be longer than the frame in the moving image or the still image.
- the symbol 2301-2 relating to the SSID in FIG. 29 includes a plurality of “information about the SSID of the base station # 2” (that is, repeatedly includes information about the SSID of the base station # 2).
- the symbol 2302-2 related to the encryption key includes a plurality of “information about the encryption key of the base station # 2 (information about the encryption key for connecting to the base station # 2)” (that is, “base station # 2”). No. 2 encryption key information (information on encryption key for connecting to base station # 2) "is repeatedly included.
- frame # 3 group transmission 2603-1 and 2603-2 are preferably configured as follows.
- each of “frame # 3 group transmission” 2603-1 and 2603-2 includes a plurality of frames 2300-3 (frame # 3) in FIG.
- the time interval occupied by the frame 2300-3 (frame # 3) in FIG. 30 is set to be longer than the frame of the moving image or still image.
- the symbol 2301-3 regarding the SSID in FIG. 30 includes a plurality of “information about the SSID of the base station # 3” (that is, repeatedly includes information about the SSID of the base station # 3).
- the symbol 2302-3 regarding the encryption key includes a plurality of “information on the encryption key of the base station # 3 (information on the encryption key for connecting to the base station # 3)” (that is, “base station # 3”). 3 encryption key information (information on encryption key for connection with base station # 3) "is repeatedly included.
- the fifth device 1000 is arranged at the position.
- the base station 470-1 (base station # 1) is arranged at the position of “ ⁇ ” 2702-1
- the base station 470-2 (base station # 2) is arranged at the position of “ ⁇ ” 2702-2
- Base station 470-3 (base station # 3) is arranged at the position of “ ⁇ ” 2702-3.
- the terminal 1050 99 terminals having the same configuration as the terminal 1050 (hereinafter simply referred to as the terminal 1050) exist in the area 2703.
- both the fifth devices 1000 arranged at the positions of “ ⁇ ” 2701-5 and 2701-10 transmit the SSID information of the base station 470-3 (base station # 3), and the base station Information on the encryption key for accessing 470-3 (base station # 3) is transmitted. This is because the base station closest to the position of “ ⁇ ” 2701-5, 2701-10 is the base station 470-3 (base station # 3).
- 99 terminals 1050 are connected to base station 470-1 (base station # 1) (position of “ ⁇ ” 2702-1), base station 470-2 (base station # 2) ([ ⁇ ] 2702-2), the base station 470-3 (base station # 3) ([]] 2702-3 position) is controlled to access the base station as evenly as possible.
- base station 470-1 base station # 1
- base station 470-2 base station # 2
- base station 470-3 base station # 3
- []] 2702-3 position is controlled to access the base station as evenly as possible.
- the presence of the terminal 1050 that is difficult to access 470 can be reduced.
- the timing at which 99 terminals 1050 access the fifth device 1000 is generally different. Therefore, as in the present embodiment, the fifth device 1000 is configured as shown in FIGS.
- the 99 terminals 1050 When transmitting a frame to 99, the 99 terminals 1050 each have the SSID and the encryption of any one of the base stations 470-1, 470-2, 470-3 in accordance with the timing of accessing the fifth device 1000. You will get a key. As a result, “the 99 terminals 1050 perform control so as to access the base stations 470-1, 470-2, and 470-3 as evenly as possible”. Therefore, the presence of the terminal 1050 that is difficult to access the base station 470 as described above can be reduced.
- the fifth device 1000 divides “frame 2300-1 (frame # 1) in FIG. 28”, “frame 2300-2 (frame # 2) in FIG. 29”, “frame 2300-in FIG. 3 shows an example of a transmission method when transmitting “3 (frame # 3)”.
- the fifth device 100 is “frame 2300-1 (frame # 1) in FIG. 28”, “frame 2300-2 (frame # 2) in FIG. 29”, “frame 2300-3 (frame # 3) in FIG. ) "Is not limited to this.
- FIG. 31 shows a configuration in which the fifth device 1000 repeatedly transmits “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission” in this order.
- “Group 1 transmission”, “Frame # 2 group transmission”, and “Frame # 3 group transmission” do not need to be transmitted in the order shown in FIG.
- the fifth device 1000 may transmit “frame group 1 transmission”, “frame group # 2 transmission”, and “frame group # 3 transmission” randomly in time, or “frame group 1 transmission”.
- the transmission order of “frame group # 2 transmission” and “frame group # 3 transmission” may be transmitted in a regular order different from FIG. At least the fifth device 1000 may transmit “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission”.
- the fifth device 1000 continuously transmits “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission”. You don't have to.
- the number of base stations 470 is three, but the number of base stations 470 is not limited to this, and even when the number of base stations 470 is two or more, base stations 470 It is possible to operate in the same manner as in the case of three. Therefore, for example, when there are N base stations 470 (N is an integer equal to or larger than 2), when the fifth device 1000 performs transmission as shown in FIG. 31, “frame #k group transmission” exists. . Note that k is an integer of 1 to N.
- the “frame #k group transmission” includes a symbol related to the SSID (information about the SSID of the base station #k), and a symbol related to the encryption key (information about the encryption key for accessing the base station #k). Will be included.
- the frame configuration of the modulation signal transmitted by radio apparatus 453 included in terminal 1050 in FIG. 27 is the same as the frame configuration in FIG. 17 described in Embodiment 4. That is, as illustrated in FIG. 17, the radio apparatus 453 included in the terminal 1050 in FIG. 27 transmits, for example, a preamble 1201, and then transmits a control information symbol 1202 and an information symbol 1203.
- the preamble 1201 is received by the base stations 470-1, 470-2, 470-3 that receive the modulated signal transmitted by the radio apparatus 453 of the terminal 1050, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation. It is a symbol used for performing etc.
- the control information symbol 1202 is a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulated signal.
- Base stations 470-1, 470-2, and 470-3 perform demodulation of the modulation signal based on information included in control information symbol 1202.
- the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 to transmit data.
- radio apparatus 453 of terminal 1050 in FIG. 27 may transmit a frame including a symbol other than the symbols illustrated in FIG. 17 (for example, a pilot symbol (reference symbol) is included in the middle of information symbol 1203). Frame). Also, the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 17, a plurality of symbols may exist in the frequency axis direction, that is, symbols may exist at a plurality of frequencies (a plurality of carriers).
- the frame configuration of the modulation signal transmitted by base stations 470-1, 470-2, and 470-3 in FIG. 27 is the same as the frame configuration in FIG. 12 described in the third embodiment. That is, as shown in FIG. 12, base stations 470-1, 470-2, 470-3 transmit, for example, preamble 701, and then transmit control information symbol 702 and information symbol 703.
- the preamble 701 is transmitted to the radio device 453 of the terminal 1050 that receives the modulated signal transmitted by the base stations 470-1, 470-2, 470-3, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation. It is a symbol for performing etc.
- the control information symbol 702 is, for example, a symbol including data such as an error correction coding method, information on a modulation method, information on a frame configuration, and information on a transmission method used to generate a modulation signal.
- Radio apparatus 453 of terminal 1050 performs demodulation of the modulated signal based on the information of control information symbol 702.
- the information symbol 703 is a symbol for the base stations 470-1, 470-2, 470-3 to transmit data.
- the base stations 470-1, 470-2, 470-3 may transmit a frame including symbols other than the symbols described in FIG.
- the base stations 470-1, 470-2, 470-3 may transmit a frame including a pilot symbol (reference symbol) in the middle of the information symbol 703.
- the frame configuration including the order in which symbols are transmitted is not limited to the configuration of FIG. In FIG. 12, a plurality of symbols may exist in the frequency axis direction. That is, in FIG. 12, symbols may exist at a plurality of frequencies (a plurality of carriers).
- FIG. 33 is a flowchart illustrating an example of processing performed by the “fifth device 1000”, the “terminal 1050”, and the “base station #X”. X is 1 or 2 or 3.
- the fifth device 1000 transmits a modulation signal having the frame configuration shown in FIG. 31 (ST2801).
- the terminal 1050 receives the modulation signal transmitted from the fifth device 1000, and designates the base station accessed by the terminal 1050 as the base station 470-1 (base station # 1) and the base station 470-2 (base station 470-2). Station # 2) and base station 470-3 (base station # 3) are selected (ST2802).
- the terminal 1050 receives the modulated signal transmitted by the fifth device 1000 in order to access any of the base stations 470. At this time, for example, the terminal 1050 obtains one of “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission” in FIG. 31 in one frame with a moving image or a still image. It will be. Then, terminal 1050 determines base station 470 accessed by terminal 1050 from base station 470-1 (base station # 1) and base station 470-2 (base station # 2) from the obtained base station information (eg, SSID). ) And any one of the base stations 470-3 (base station # 3).
- terminal 1050 receives the modulated signal transmitted by fifth apparatus 1000, and acquires the SSID of base station #X accessed by terminal 1050 (ST2803).
- terminal 1050 obtains an encryption key used for communication with base station #X accessed by terminal 1050 (ST2804).
- terminal 1050 performs radio wave connection with base station #X (ST2805).
- terminal 1050 receives the response of base station #X, connection between terminal 1050 and base station #X is completed (ST2806).
- terminal 1050 transmits information on the connection destination to base station #X using radio waves (ST2807).
- Base station #X obtains information for transmission to terminal 1050 from the network (ST2808).
- base station #X transmits the obtained information to terminal 1050 using radio waves, and terminal 1050 obtains information (ST2809). For example, when necessary, the terminal 1050 acquires necessary information from the network via the base station #X.
- the terminal 1050 connects to the base station 470 and acquires the information, thereby ensuring the safety.
- Information can be obtained safely via the base station 470. This is because when information is obtained from a visible light modulation signal, the user can easily determine whether the information source is safe because it is visible light.
- the SSID is acquired from the modulated signal of the radio wave transmitted by the wireless LAN, it is difficult for the user to identify the device that transmitted the radio wave. For this reason, in terms of ensuring the safety of information, visible light communication is more suitable for acquiring an SSID than wireless LAN communication.
- the fifth device 1000 transmits the encryption key information.
- the fifth device 1000 may transmit only the information regarding the SSID without transmitting the encryption key information.
- the same configuration can be implemented by simply deleting the configuration related to the encryption key from the configurations described above.
- the configuration of the fifth device is not limited to the configuration of the fifth device 1000 illustrated in FIG. 27, and the configuration of the terminal is not limited to the configuration of the terminal 1050 illustrated in FIG.
- the connection destinations and configurations of 1, # 2, and # 3 are not limited to the connection destinations and configurations of base stations 470-1, 470-2, and 470-3 shown in FIG.
- the presence of terminals 1050 that are difficult to access to base station 470 can be reduced.
- the frame configuration of the modulation signal transmitted by the fifth device 1000 arranged at the position ⁇ 10 may be all the same as the configuration of FIG. 31, and the modulation signals transmitted by the fifth device 1000 are different from each other. There may be a configuration, and there may be a plurality of fifth devices 1000 that transmit modulated signals having the same frame configuration.
- the communication system includes, for example, communication between a car (car-to-car communication) and communication between a car and a communication device installed on or near a road (road-to-car communication). ) Etc.
- this basic configuration is applicable not only to automobiles, but also to mobile terminals such as smartphones and notebook PCs, and can also be applied to other electronic devices.
- FIG. 34 is a block diagram showing a configuration of communication apparatus A1000 which is an example of the communication apparatus in the present embodiment.
- the communication device A1000 includes a light receiving device A1002, a control unit A1004, and a wireless device A1006.
- the light receiving device A1002 receives the optical signal A1001 emitted from a transmitter (not shown) and / or takes a still image or a moving image, and outputs received light data A1003.
- the control unit A1004 performs control of other devices included in the communication device A1000, processing of received light data A1003 input from the light receiving device A1002, and wireless received data input from the wireless device A1006.
- the wireless device A1006 wirelessly connects to another communication device A1100 to transmit wireless transmission data and receive wireless reception data. Wireless transmission data and wireless reception data are transmitted and received between the wireless device A 1006 and the control unit A 1004 as wireless communication data A 1008.
- the control unit A1004 outputs a control signal A1007 for controlling the operation of the light receiving device A1002, and the light receiving device A1002 controls the operation based on the control signal A1007.
- the control unit A1004 may perform image processing using the still image data or moving image data. Details of an example of image processing performed by the control unit A1004 will be described later.
- FIG. 35 is a block diagram showing a configuration of communication apparatus A2000, which is another example of the communication apparatus in the present embodiment. 35, components having the same functions as those of the communication device A1000 illustrated in FIG. 34 are denoted by the same reference numerals as those in FIG. 34, and description thereof is omitted.
- Communication device A2000 is different from communication device A1000 in that it includes a presentation unit A2003 and an input unit A2004.
- the control unit A1004 generates an image based on the received light data A1003 and / or wireless reception data, other input information, information read from the memory, etc., and uses the generated image as presentation information A2002. Output to A2003.
- the presentation information A2002 is information including, for example, image information or character information generated based on the received light data A1003 or other data.
- the presentation unit A2003 is, for example, image information or character information obtained as the presentation information A2002. Liquid crystal display, plasma display, organic EL display, and the like for displaying image signals generated from the image signal.
- the presentation information A2002 may be voice information
- the presentation unit A2003 may be a speaker that outputs voice according to the voice information.
- the input unit A2004 outputs input information A2005 such as information indicating an operation performed by the user and input character information to the control unit A1004 according to the user's operation.
- the input unit A2004 is, for example, a touch panel, a physical key, a floating touch display, a motion sensor, or the like, but is not limited thereto.
- the input unit A2004 may be a microphone, and the input information A2005 may be audio information.
- FIG. 36 is a block diagram showing a configuration of a light receiving device A3000 which is a first example of a detailed configuration of the light receiving device A1002 in the present embodiment.
- the light receiving device A3000 includes a light receiving unit A3001 and a received light signal processing unit A3003.
- the light receiving unit A3001 has the same configuration as the light receiving unit 151 in FIG. 6, for example, receives light incident from the outside, and outputs a reception signal A3002.
- the light reception signal processing unit A3003 sends a signal obtained by performing predetermined processing on the reception signal A3002 as light reception data A1003.
- the predetermined processing that the received light signal processing unit A3003 performs on the received signal A3002 includes, for example, processing such as demodulation and error correction decoding on the component of the modulation signal included in the received signal A3002, and is obtained by demodulation.
- Demodulated data A4002 is output as received light data A1003.
- the light reception signal processing unit A3003 generates still image data or moving image data from the reception signal A3002 acquired by the light reception unit A3001, which is an image sensor such as a CMOS or an organic CMOS, as a predetermined process.
- the generated still image data or moving image data is output as received light data A1003.
- the still image data or the moving image data may be encoded data encoded using the image compression method or the moving image compression method, or may be uncompressed data.
- details of a configuration example of the light reception signal processing unit A3003 will be described.
- FIG. 37 shows a configuration of a light reception signal processing unit A4000 which is an example of a configuration of the light reception signal processing unit A3003.
- the received light signal processing unit A4000 includes a reception processing unit A4001.
- the reception processing unit A4001 performs processing such as demodulation and error correction on the received signal A3002, and outputs the obtained demodulated data A4002 as received light data A1003.
- the received signal A3002 input to the received light signal processing unit A4000 is, for example, an image of a CMOS sensor or the like using the above-described line scan sampling, an application example of the line scan sampling, a sampling method for receiving an optical signal such as sampling by a frame. It may be a signal acquired by a sensor, or it is sampled at a sampling rate required for receiving an optical signal using an element different from an image sensor that can convert an optical signal such as a photodiode into an electrical signal. It may be a signal.
- FIG. 38 shows a configuration of a light reception signal processing unit A5000, which is another example of the configuration of the light reception signal processing unit A3003.
- the light reception signal processing unit A5000 includes an image data generation unit A5001, and outputs image data A5002 including information on an optical signal as light reception data A1003. That is, the image data generation unit A5001 generates still image data or moving image data from the received signal A3002, and outputs the generated still image data or moving image data, which is image data A5002, as received light data A1003.
- the image data A5002 is moving image data
- the present invention can be similarly implemented by replacing the moving image data in the following description with still image data or a combination of moving image data and still image data.
- the light receiving unit A3001 is an image sensor such as a CMOS sensor.
- the light receiving device A1002 controls the operation of the light receiving unit A3001, and in the first period of FIG. 39, the reception signal A3002 is obtained using the sampling method for receiving the optical signal, and the second period of FIG. Obtains the received signal A3002 using an imaging method for moving image shooting.
- an imaging signal for optical communication a signal acquired using a sampling method for receiving an optical signal
- an imaging signal for moving image shooting a signal acquired using an imaging method for moving image shooting
- Data generated by the image data generation unit A5001 from the imaging signal for optical communication is called imaging data for optical communication
- data generated from the imaging signal for moving images is called imaging data for moving images.
- FIG. 39 shows an example of the control method of the image sensor in the case where both the imaging signal for optical communication and the imaging signal for moving images are acquired in a time division manner using one image sensor described above.
- the light receiving device A1002 obtains an imaging signal for optical communication by using the light receiving unit A3001 for sampling of the optical signal, and in the second period, moves the light receiving unit A3001 to the moving image.
- An imaging signal for moving images is acquired using an imaging method for imaging.
- the first period and the second period are, for example, periods corresponding to one or more frames in the moving image, respectively.
- the light receiving device A1002 may switch between a sampling method for receiving an optical signal and an imaging method for moving image shooting at a timing that is not synchronized with a frame in the moving image.
- the light receiving device A1002 may arrange the first period periodically or aperiodically.
- positioning 1st periods such as the period which arrange
- the light receiving device A1002 may determine the time to start the first period and / or the time to end the first period based on an externally input signal. For example, the light receiving device A1002 controls the operation of the light receiving unit A3001 based on the control signal A1007 input from the control unit A1004. At this time, the control unit A1004 receives signals received from a transmission device external to the communication devices A1000 and A2000 using a communication method such as wireless communication, wired communication, and optical communication, and an image sensor included in the communication devices A1000 and A2000. A control signal for controlling the operation of the light receiving unit A3001 may be output based on the data acquired from the sensor.
- a communication method such as wireless communication, wired communication, and optical communication
- the control information for controlling the operation of the light receiving unit A3001 may be, for example, a signal designating a rule for arranging the first period and the second period described above.
- the control method of the image sensor is not limited to this.
- a third period in which the CMOS sensor is operated by an imaging method or a sampling method different from any of the methods implemented in the first period and the second period may be arranged.
- a transition period for switching the operation of the image sensor may be included between the two periods.
- the image sensor control method it is possible to acquire both an imaging signal for optical communication and an imaging signal for moving images in a time-division format using a single image sensor. As a result, the number of image sensors mounted on the communication device can be reduced.
- the light receiving device A1002 may acquire the reception signal A3002 by always operating the light receiving unit A3001 in the sampling method for receiving the optical signal.
- the image data generation unit A5001 may perform an encoding process using a moving image compression method on a moving image signal composed of a plurality of frames generated from the received signal A3002. .
- the image data generation unit A5001 uses the moving image excluding the image (or frame) generated from the imaging signal for optical communication.
- a moving image compression process may be performed on a frame generated from the imaging signal.
- the light receiving device A1002 outputs the encoded moving image data and the image data generated from the imaging signal for optical communication as the received light data A1003.
- the imaging signal for optical communication is output from the light receiving device A1002 as image data.
- the imaging signal for optical communication is data in a format that can demodulate the optical signal, as any format data
- the light may be output from the light receiving device A1002. For example, data in which the luminance values of the pixels included in each exposure line are averaged or added, or the luminance values of the pixels included in each area obtained by dividing each exposure line into a plurality of areas are sequentially arranged. It may be.
- the moving image encoding process that can be performed by the image data generation unit A5001 when the received signal A3002 includes an imaging signal for optical communication and an imaging signal for moving images is not limited to the above-described moving image encoding process.
- the image data generation unit A5001 performs a common moving image compression process on a moving image including a frame configured with an imaging signal for optical communication and a frame configured with an imaging signal for moving image, and receives the light receiving device.
- A1002 may output the encoded moving image data generated from the imaging signal for optical communication and the imaging signal for moving image as received light data A1003.
- control unit A1004 when the light receiving device A1002 includes the configuration of the received light signal processing unit A5000 will be described.
- the control unit A1004 performs processing such as demodulation and error correction on the optical signal using the imaging data for optical communication included in the received light data A1003, and acquires data transmitted by the optical signal.
- the control unit A1004 When the received light data A1003 includes moving image imaging data in addition to optical communication imaging data, the control unit A1004 performs demodulation and error correction processing on the optical signal included in the optical communication imaging data. Further, image processing such as pattern recognition may be performed on the moving image imaging data, and control may be performed on the light receiving device A1002 and the wireless device A1006 based on the result of image processing such as pattern recognition.
- signal processing using imaging data for moving images for example, processing for detecting a part of a body such as a person or a person's face, processing for identifying a person, processing for detecting an object such as a car or a drone , A process for identifying an object such as a car or a drone, a process for detecting the movement or movement of a detected person or object, and a process for tracking the detected person or object.
- These processes may be performed by extracting feature values determined according to the purpose of the signal processing from the imaging data for moving images and using the extracted feature values, or using a neural network having a multilayer structure.
- a model created by machine learning may be used. When using a model created by machine learning using a multi-layered neural network, after pre-processing the moving image data, the pre-processed data is converted to a multi-layered neural network. You may use and input into the model created by machine learning.
- the moving image imaging data is used for the signal processing performed by the control unit A1004.
- audio data or data obtained by other sensors is used.
- audio data or data obtained by other sensors may be used instead of moving image imaging data.
- the control unit A1004 performs the signal processing or part of the signal processing.
- the moving image decoding process corresponding to the moving image encoding process may be performed on the encoded moving image data included in the received light data A1003.
- FIG. 40 shows a configuration of a light reception signal processing unit A7000, which is a third example of the configuration of the light reception signal processing unit A3003.
- the received light signal processing unit A7000 includes a reception processing unit A7001 and an image data generation unit A7003.
- the reception processing unit A7001 of the received light signal processing unit A7000 has the same function as the reception processing unit A4001 included in the received light signal processing unit A4000 described with reference to FIG.
- the image data generation unit A7003 of the light reception signal processing unit A7000 has the same function as the image data generation unit A5001 provided in the light reception signal processing unit A5000 described with reference to FIG.
- the light receiving device A1002 includes the light receiving signal processing unit A7000
- the light receiving device A1002 controls the light receiving unit A3001, and acquires the moving image imaging signal and the optical communication imaging signal as the received signal A3002.
- the received light signal processing unit A7000 inputs a moving image imaging signal to the image data generation unit A7003 and inputs an optical communication imaging signal to the reception processing unit A7001.
- the received light signal processing unit A7000 may input an imaging signal for optical communication to the image data generation unit A5001.
- the received light signal processing unit A7000 outputs demodulated data A7002 and moving image data A7004 as received light data A1003.
- time information added to the demodulated data A7002 may be in a format capable of identifying the relationship with the time information given to the moving image data A7004.
- the received light signal processing unit A7000 may add the time information of the demodulated data A7002 and the time information of the moving image data A7004 based on a common clock signal or timeline, or the moving image data corresponding to the time information of the demodulated data A7002
- the demodulated data A7002 may include position information indicating the position in the image of the transmission device or light source that has transmitted the modulated signal corresponding to the demodulated data as additional information or metadata.
- the additional information of the demodulated data A7002 may include both time information and position information, or may include only one of them. Further, the additional information of the demodulated data A7002 may include related information related to the demodulated data other than time information and position information.
- the position information is information indicating the position of the transmission device or the light source in the image, but may be other information. For example, it may be information indicating a region in an image used for detecting an optical signal, or information indicating a position in a three-dimensional space.
- the position information in the three-dimensional space may be, for example, information indicating the direction in which the light receiving device A1002 is photographing and the position of the moving image imaging data in the image, or the light reception estimated from these information. It may be information indicating a coordinate value or a region in a coordinate system centering on the device or the communication device. Moreover, the information which shows the value and area
- the distance image data is used in addition to the moving image shooting data.
- a position in the dimensional space may be estimated.
- the distance image can be acquired using, for example, a TOF (Time-Of-Flight) method, a distance measurement method using stereo parallax, a LIDER (Laser Imaging Detection and Ranging) method, or the like.
- TOF Time-Of-Flight
- LIDER Laser Imaging Detection and Ranging
- the demodulated data A7002 and the moving image data A7004 may be transmitted to the control unit A1004 of the communication device A1000 or the control unit A1004 of the communication device A2000 as a plurality of separated data streams or data packet sequences. Both of A7004 may be multiplexed into a data stream in a storable format and transmitted as one data stream or data packet sequence to control unit A1004 of communication device A1000 or control unit A1004 of communication device A2000.
- FIG. 41 shows a configuration of a light receiving device A8000 which is a second example of the configuration of the light receiving device A1002.
- the light receiving device A8000 includes a first light receiving unit A8001-1, a second light receiving unit A8001-2, a first light receiving signal processing unit A8003-1, and a second light receiving signal processing unit A8003-2.
- the first light receiving unit A8001-1 is an image sensor such as a CCD, CMOS, or organic CMOS
- the second light receiving unit A8001-2 receives an optical signal such as an image sensor such as a CCD, CMOS, or organic CMOS, or a photodiode. It is a device that can be converted into an electrical signal.
- the light receiving device A8000 operates the first light receiving unit A8001-1 in the moving image shooting imaging method to obtain a moving image imaging signal as the reception signal A8002-1.
- the light receiving device A8000 When the second light receiving unit A8001-2 is an image sensor, the light receiving device A8000 operates the second light receiving unit A8001-2 by a sampling method for receiving an optical signal and uses it as an optical signal for optical communication. The imaging signal is acquired.
- the second light receiving unit A8001-2 is a device such as a photodiode that can convert an optical signal into an electrical signal
- the light receiving device A8000 uses the second light receiving unit A8001-2 to receive the optical signal.
- Received signal A8002-2 sampled at the required sampling rate is acquired.
- the first received light signal processing unit A8003-1 has, for example, the same function as the received light signal processing unit A5000 shown in FIG. 38, and outputs image data A8004-1 that is imaging data for moving images as received light data A1003. .
- the second received light signal processor A8003-2 has the same function as the received light signal processor A4000 shown in FIG. 37, for example, and outputs demodulated data A8004-2 as received light data A1003.
- the second received light signal processor A8003-2 has the same function as the received light signal processor A5000 shown in FIG. 38, and outputs image data A8004-2, which is image data for optical communication, as received light data A1003. To do.
- the light receiving device A8000 can simultaneously acquire the image data A8004-1 that is image data for moving images and the image data A8004-2 that is image data for demodulation or optical communication. Both optical communication and moving image imaging can be performed without generating a period during which moving image imaging data cannot be acquired.
- the light receiving device A8000 has been described as an example in which two combinations of light receiving units and light receiving signal processing units are provided. However, the light receiving device A8000 includes N (N is an integer of 3 or more) systems of light receiving units and light receiving signal processing units. It may be.
- first light receiving unit A8001-1 and the second light receiving unit A8001-2 do not need to be separate elements.
- some pixels of the image sensor are used as the first light receiving unit A8001-1 for moving image shooting. Used for shooting moving images, and another pixel of the same image sensor is operated as a second light receiving unit A8001-2 in a sampling method for receiving optical signals and used for optical communication. May be.
- the pixels included in the first area of the image sensor are used for moving image shooting by operating the imaging method for moving image shooting
- the pixels included in each of the second region to the Nth region of the image sensor may be used for optical communication by operating in a sampling method for receiving an optical signal.
- the pixels of the image sensor are divided into a plurality of regions without operating any pixel of the image sensor in the imaging method for video shooting, A plurality of optical communications may be performed in parallel by operating the pixels in each region by a sampling method for receiving an optical signal.
- FIG. 42 shows an example of image sensor control when a plurality of optical signals are received simultaneously using the image sensor.
- FIG. 42A shows a state in which four light sources AD that transmit different optical signals are included in a photographing range that can be photographed when an imaging method for photographing a moving image is used.
- Each square in the imaging range in FIG. 42A corresponds to one pixel.
- the light receiving device A8000 determines the areas A to D each including the light sources AD, and the pixels included in the areas A to D for each area. Is operated in accordance with a sampling method for receiving an optical signal to obtain an optical signal.
- Example of line scan sampling for each area As shown in FIG. 42C, a case where line scan sampling is performed by forming one line with four pixels arranged in the vertical direction (column direction) in the region A will be described.
- the region A is composed of five lines.
- the light receiving device exposes the five lines in the region A by shifting the exposure period for each line, thereby acquiring a change in luminance or color of the modulated optical signal.
- the size of each region that is, the number of pixels in the row direction and the number of pixels in the column direction included in each region is not limited to the example shown in FIG. 42, and may be any number.
- the size of the area where sampling for optical communication is performed may be changed in accordance with the size, position, mutual positional relationship, and the like of each light source.
- one line is formed by four pixels arranged in the column direction.
- one line is formed by five pixels arranged in the row direction.
- (C) of 42 it may be considered that there are four lines in the row direction.
- the light receiving device reads the signal of Line 1 that is the leftmost line of the region A, and then sequentially reads the signal of the right adjacent line of the line read immediately before.
- the process returns to Line1 that is the leftmost line, and the process of reading the signal for each line is repeated.
- the light receiving device performs line scan sampling by acquiring a signal by the same processing as in the region A in each of the region B to the region D in FIG.
- the light receiving device may expose the leftmost line of all the regions at the same time or at different times. Further, the line of the region A and the line of the region C that are located in the same column on the image sensor are exposed during the same exposure period, and the line of the region B and the line of the region D that are located in the same column on the image sensor are the same. You may expose during an exposure period. However, regions A to D include lines exposed during the same exposure period.
- At least one pixel included in the image sensor is used for both moving image shooting and optical communication, and the pixel is acquired by an imaging method for moving image shooting, or the signal is acquired by a sampling method for optical communication.
- the configuration of the light receiving device including the image sensor is not limited thereto.
- the image sensor may include pixels used for optical communication in addition to the pixels used for moving image shooting.
- the shape or size of the pixel used for optical communication may be different from the shape or size of the pixel used for moving image shooting.
- video shooting using moving image pixels and optical communication sampling using optical communication pixels are controlled independently, and either process is not required.
- One process may be stopped, and power supply to a circuit for acquiring a signal necessary for the process may be partially or completely stopped to suppress power consumption.
- control unit A1004 included in the communication device A1000 or the communication device A2000 will be described.
- FIG. 43 is a diagram illustrating a control unit A10000 which is an example of a physical configuration of the control unit A1004.
- the control unit A10000 includes a CPU (Central Processing Unit) A10001 and a memory A10002.
- the memory A10002 stores programs executed by the control unit A1004, data necessary for processing performed by the control unit, and the like.
- the CPU A10001 performs processing based on a program read from the memory A10002, and realizes a function as the control unit A1004.
- the memory A10002 stores, for example, data such as image data acquired by the receiving device and reads the stored data.
- control unit A10000 may include, for example, an I / O (Input / Output) that controls data transfer with a device connected to the control unit A10000 such as the wireless device A1006.
- I / O Input / Output
- FIG. 44 is a diagram illustrating a configuration of a control unit A11000, which is a first example of a configuration of the control unit A1004.
- the control unit A11000 includes a signal processing unit A11002, a wireless control unit A11004, and a light receiving device control unit A11006.
- the signal processing unit A11002 acquires image data including imaging data for optical communication as the received light data A1003 from the light receiving device A1002, or demodulated data subjected to demodulation and error correction as an optical signal.
- the signal processing unit A11002 acquires a reception signal corresponding to the modulation signal from the imaging data for optical communication, and performs demodulation and error on the reception signal. Demodulated data is acquired by performing a correction process.
- the wireless control unit A11004 outputs a control signal A1005 for controlling the operation of the wireless device A1006 to the wireless device A1006.
- the wireless control unit A11004 transfers wireless reception data received via the wireless device A1006 to the signal processing unit A11002, and transmits wireless transmission data to be transmitted to other communication devices via the wireless device A1006 from the signal processing unit A11002. Forward to.
- the signal processing unit A11002 performs signal processing using arbitrary data such as demodulated data of optical communication, moving image imaging data, and wireless reception data acquired via the light receiving device A1002 and the wireless device A1006. For example, based on the result of the signal processing described above, the signal processing unit A11002 issues an instruction for controlling the wireless device A1006 to the wireless control unit A11004 and an instruction (A11005) for controlling the light receiving device to the light receiving device control unit A11006.
- the light receiving device control unit A11006 controls the light receiving device A1002 based on an instruction from the signal processing unit A11002.
- the light receiving units A3001, A8001-1, and A8001-2 acquire signals using an imaging method for moving image shooting, or use a sampling method for receiving an optical signal to obtain a signal. That operate in accordance with the sampling method for receiving an optical signal in the case of acquiring a signal using a sampling method for receiving an optical signal using some pixels provided in the image sensor. For example, setting the area.
- the control for the light receiving device A1002 is not limited to this.
- control for switching the power of the light receiving device A1002 on and off the control for switching the signal processing for the received light signal performed inside the light receiving device A1002, and the like. May be performed. Also, some of the controls described here may be automatically performed based on the result of signal processing on the received light signal inside the light receiving device A1002.
- FIG. 45 is a diagram illustrating a configuration of a control unit A12000, which is a second example of the configuration of the control unit A1004.
- the control unit A12000 is different from the control unit A11000 in that it includes a device control unit A12002.
- the device control unit A12002 receives the moving image imaging data acquired by the signal processing unit A11002 and the processing result in the signal processing unit A11002 as input (A12001), generates an image to be displayed in the presentation unit A2003, and generates the generated image The signal is output to the presentation unit A2003 as presentation information A2002.
- the device control unit A12002 acquires the input information A2005 acquired by the input unit A2004 in response to a user operation on the input unit A2004, and transfers the input information A2005 to the signal processing unit A11002.
- the signal processing unit A11002 allows the input information acquired according to the user's operation in addition to the optical communication demodulated data, moving image imaging data, and wireless reception data acquired via the light receiving device A1002 and the wireless device A1006.
- Signal processing can be performed based on A2005.
- the signal processing unit A11002 instructs the wireless control unit A11004 to control the wireless device A1006, instructs the light receiving device control unit A11006 to control the light receiving device (A11005), and presents it.
- An instruction to change the image displayed in A2003 is issued.
- wireless communication is performed based on demodulated data obtained by receiving an optical signal and results of performing image processing such as pattern recognition on moving image imaging data.
- a communication control method for controlling the device A 1006 will be described.
- the signal processing unit A11002 acquires moving image data as light reception data A1003 from the light receiving device A1002, and performs image processing such as pattern recognition on the moving image data.
- the wireless control unit A11004 controls the wireless device A1006 based on the image processing result in the signal processing unit A11002.
- demodulated data obtained by receiving an optical signal and the position on the image of the light source used for transmitting the optical signal or the transmitter that transmitted the optical signal are shown.
- Demodulated data with additional information associated with additional information such as position information is used.
- any information transmitted using optical communication may be used, and is not limited to the transmission of specific information.
- the description will be given in Embodiments 3 to 7 as an example. A case will be described in which connection information including information necessary for connection or communication with another wireless communication device such as the SSID of the base station is transmitted as an optical signal.
- the signal processing unit A11002 performs processing using the demodulated data to which the additional information acquired in the light receiving device A1002 or the signal processing unit A11002 is added.
- the demodulated data is connection information corresponding to another wireless communication apparatus.
- the signal processing unit A11002 controls communication processing performed by the wireless device A1006 using additional information corresponding to each connection information and an image processing result such as pattern recognition.
- the communication devices A1000 and A2000 are cars or devices mounted on a car, and a camera mounted on the car is used as the light receiving device A1002.
- FIG. 46 schematically shows an example of an image captured by a camera that captures the front of the car.
- three other vehicles A13001, A13002, and A13003 traveling in front of the vehicles corresponding to the communication devices A1000 and A2000 are shown.
- the other cars A13001, A13002, and A13003 each include a light source such as an LED and a transmission unit 102 that transmits an optical signal using the light source.
- a light source used for optical communication for example, an arbitrary light source included in a vehicle such as a headlight or a taillight can be used, and which light source among a plurality of light sources included in a vehicle is used for transmitting an optical signal What is necessary is just to design arbitrarily according to a utilization form.
- the car may include a transmission unit for optical communication for each of the plurality of light sources, or one transmission unit may include a plurality of light sources. May be used to transmit an optical signal.
- the car may include a light source used for optical communication separately from the headlight and the taillight.
- Other vehicles A13001, A13002, and A13003 are provided with a communication device for wireless communication corresponding to the other communication device A1100 described with reference to FIGS. 34 and 35, in addition to the transmission unit and the light source for optical communication.
- the respective vehicles are connected to the communication devices A1000 and A2000 with the transmission unit 102 for optical communication.
- the light source 104 is provided.
- the control unit A 1004 may control the data transmitted by the transmission unit 102.
- connection information that is information that can be used to connect to a communication device included in each vehicle by optical communication.
- the connection information includes information indicating the SSID and the frequency channel used for communication when the communication device included in each vehicle operates as a base station.
- the identifier information included in the connection information is not limited to the SSID.
- a physical address such as a MAC (Media Access Control) address of another communication device may be used, or a logical address such as an IP (Internet Protocol) address of another communication device may be used.
- IP Internet Protocol
- the identifier information is not used to select other communication devices with which the communication device communicates directly, but is used to select resources to be accessed via a network such as the Internet, a server that performs communication via the network such as the Internet Or a URL (Uniform Resource Locator), URN (Uniform Resource Name), URI (Uniform Resource Identifier), or the like used to identify a resource on the Internet.
- the identifier information included in the connection information may be any information as long as it can identify other communication terminals as access destinations and resources on the Internet.
- connection information may not include the information of the frequency channel being used, or otherwise. May be included. Examples of other information that can be used as connection information include information relating to encryption keys, the types of physical layer transmission schemes that are supported, data formats and communication protocols that are supported, and the like.
- FIG. 47 shows connection information obtained by demodulating an optical signal transmitted from each of the transmission units of other vehicles A13001, A13002, and A13003 using a light source in the light receiving device A1002 or the control unit A1004 of the communication devices A1000 and A2000.
- the communication devices A1000 and A2000 obtain connection information that the SSID is “XXX” and the frequency channel being used is “1” from the optical signal transmitted by the other vehicle A13001, and the other vehicle A13002 transmits Connection information indicating that the SSID is “YYY” and the frequency channel being used is “3” from the optical signal obtained, and the SSID is “ZZZ” from the optical signal transmitted by the other car A13003. Connection information indicating that the frequency channel being used is “3” is acquired.
- connection information are information that can be acquired when the wireless device A1006 included in the communication devices A1000 and A2000 performs carrier sense over a certain period and receives signals transmitted from each of a plurality of other communication devices. Some can be substituted. However, it is difficult for the communication devices A1000 and A2000 to identify which other communication device the signals are transmitted from among other communication devices in the vicinity. There is a possibility that communication is performed by connecting to a communication device that is different from other communication devices that desire communication.
- the control unit A1004 of the communication devices A1000 and A2000 performs image processing on moving image imaging data captured by the light receiving device A1002, for example, Each of the other cars A13001, A13002, and A13003 is detected from the image of FIG.
- the control unit A1004 based on the position of the light source of the three received optical signals, each of the other vehicles A13001, A13002, A13003 detected from the image and the three connection information received by optical communication. Is associated. Thereby, the connection information utilized when performing wireless communication with each of the three cars detected from the image can be specified.
- control unit A1004 determines the mutual positional relationship between the other vehicles A13001, A13002, and A13003, the positional relationship between each vehicle and its own vehicle, etc. from the image, and selects a target for wireless communication. For example, the control unit A1004 may select another vehicle A13003 having the shortest distance from the own vehicle as a communication target. Further, the control unit A1004 determines the lane that is traveling for each vehicle, and among other vehicles that are traveling in the lane in which the vehicle is traveling, You may select car A13001 as a communicating party.
- information such as an identifier such as an SSID or an address in wireless communication that is difficult to associate with a device in real space only by wireless communication, and a sensor such as an image acquired by an image sensor can be obtained. It is possible to associate the detected data with an object detected by signal processing such as pattern recognition. As a result, for example, when acquiring information such as the surrounding environment and the movement of surrounding cars for the purpose of controlling automatic driving including driving assistance, it is easy to connect to an appropriate communication partner as the information acquisition destination. To promote.
- the configuration of the own vehicle including the communication devices A1000 and A2000 or the communication devices A1000 and A2000 and the configurations of the other vehicles A13001 and A13002 are based on the results of the image processing. This is the same as the first example of control.
- the result of the image processing is that the other vehicle A15003 that does not have the function of transmitting an optical signal is running instead of the other vehicle A13003. Different from the first example of the communication control based on.
- FIG. 48 is a diagram schematically illustrating an example of an image captured by a camera that captures the front of the car in the second example of communication control based on the result of image processing.
- FIG. 48 three other cars A13001, A13002, and A15003 traveling in front of the cars corresponding to the communication devices A1000 and A2000 are shown.
- FIG. 49 schematically shows connection information obtained by demodulating an optical signal transmitted from each of the transmission units of other vehicles A13001 and A13002 using a light source in the light receiving device A1002 or the control unit A1004 of the communication devices A1000 and A2000.
- the communication devices A1000 and A2000 obtain connection information that the SSID is “XXX” and the frequency channel being used is “1” from the optical signal transmitted by the other vehicle A13001, and the other vehicle A13002 transmits
- the connection information that the SSID is “YYY” and the frequency channel being used is “3” is acquired from the optical signal.
- the communication devices A1000 and A2000 cannot obtain connection information regarding the other car A15003.
- the control unit A1004 of the communication devices A1000 and A2000 performs image processing on the moving image imaging data captured by the light receiving device A1002, for example, FIG.
- Each of the other cars A13001, A13002, A15003 is detected from the image of.
- the control unit A1004 performs optical communication with respect to the other cars A13001 and A13002 among the other cars A13001, A13002, and A15003 detected from the image based on the positions of the light sources of the two received optical signals. Correlate the two pieces of connection information received in.
- connection information used when performing wireless communication with other vehicles A13001 and A13002 detected from the image and other base stations or communication devices with SSID of “XXX” or “YYY” It can be specified that the SSID is not used for communication with the car A15003.
- the wireless device A 1006 detects three SSIDs “XXX”, “YYY”, and “PPP” as SSIDs of other communication devices mounted on a vehicle within a communicable distance by performing carrier sense. Then, the control unit A1004 determines that “PPP”, which is different from “XXX” and “YYY” included in the connection information received as the optical signal, is an SSID used for communicating with the other vehicle A15003. Then, another car A15003 is associated with the SSID “PPP”.
- the control unit A1004 determines the mutual positional relationship between the other vehicles A13001, A13002, A15003, the positional relationship between each vehicle and the own vehicle from the image, and selects a target for wireless communication. For example, the control unit A1004 may select another vehicle A15003 having the shortest distance from the own vehicle as a communication target. Further, the control unit A1004 determines the lane that is traveling for each vehicle, and among other vehicles that are traveling in the lane in which the vehicle is traveling, You may select car A13001 as a communicating party.
- information such as an identifier such as an SSID or an address in wireless communication that is difficult to associate with a device in real space only by wireless communication, and a sensor such as an image acquired by an image sensor can be obtained. It is possible to associate the detected data with an object detected by signal processing such as pattern recognition. As a result, for example, when acquiring information such as the surrounding environment and the movement of surrounding cars for the purpose of controlling automatic driving including driving assistance, it is easy to connect to an appropriate communication partner as the information acquisition destination. To promote.
- the wireless device A 1006 detects two SSIDs “XXX” and “YYY” as SSIDs of other communication devices mounted on a vehicle within a communicable distance by performing carrier sense. Since the control unit A1004 does not detect SSIDs different from “XXX” and “YYY” included in the connection information received as an optical signal as SSIDs of other communication devices mounted on the vehicle, A15003 determines that it does not have a function of performing wireless communication or is not in a relationship capable of performing wireless communication.
- the control unit A1004 determines the mutual positional relationship between the other vehicles A13001, A13002, and A15003 from the image, the positional relationship between each vehicle and the own vehicle, and the other vehicle A13001 or other vehicle as a target for wireless communication.
- One of the cars A13002 is selected.
- the control unit A1004 may select another vehicle A13002 that can communicate with the nearest vehicle as the communication target.
- the control unit A1004 determines the lane that is traveling for each vehicle, and among other vehicles that are traveling in the lane in which the vehicle is traveling, You may select car A13001 as a communicating party.
- information such as an identifier such as an SSID or an address in wireless communication that is difficult to associate with a device in real space only by wireless communication, and a sensor such as an image acquired by an image sensor can be obtained. It is possible to associate the detected data with an object detected by signal processing such as pattern recognition. As a result, for example, it can be determined that information cannot be acquired by communication with the other vehicle A15003 that is traveling immediately before. For example, in the case where automatic driving control including driving support is performed, another vehicle A13001 that can communicate with the vehicle. It is possible to prevent misunderstanding of the other vehicle A13002 as the other vehicle A15003, and to promote provision of appropriate automatic driving control.
- the configuration of the own vehicle including the communication devices A1000 and A2000 or the communication devices A1000 and A2000 and the configurations of the other vehicles A13002 and A13003 are based on the results of the image processing. This is the same as the first example of control.
- the third example of communication control based on the result of image processing differs from the first example of communication control based on the result of image processing in that a police vehicle A17001 is traveling instead of another vehicle A13001.
- the police vehicle A 17001 differs from the other vehicle A 13001 in that it is a police vehicle, but has the same configuration as the other vehicle A 13001, and has functions of optical signal transmission and wireless communication.
- FIG. 50 is a diagram schematically illustrating an example of an image captured by a camera that captures the front of the car in the third example of communication control based on the result of image processing.
- FIG. 50 other cars A13002, A13003 and police car A17001 traveling ahead of the cars corresponding to communication devices A1000, A2000 are shown.
- FIG. 51 shows connection information obtained by demodulating an optical signal transmitted from each of the transmission units of other vehicles A17001, A13002, and A13003 using a light source in the light receiving device A1002 or the control unit A1004 of the communication devices A1000 and A2000.
- the communication devices A1000 and A2000 obtain connection information that the SSID is “QQQ” and the frequency channel being used is “1” from the optical signal transmitted from the police vehicle A17001, and the other vehicle A13002 transmits it.
- the connection information that the SSID is “YYY” and the frequency channel being used is “3” is acquired from the optical signal, and the SSID is “ZZZ” from the optical signal transmitted by the other car A13003.
- Connection information indicating that the frequency channel being “3” is acquired.
- the control unit A1004 of the communication devices A1000 and A2000 performs image processing on moving image data captured by the light receiving device A1002, for example, FIG.
- the police car A 17001 and the other cars A 13002 and A 13003 are detected from the image.
- the control unit A1004 sends the three signals received by optical communication to the police vehicle A17001 and other vehicles A13002 and A13003 detected from the image.
- Associate connection information Thereby, connection information used when performing wireless communication can be specified for each of the police vehicle A 17001 and other cars A 13002 and A 13002 detected from the image.
- the control unit A1004 performs detailed classification of the three vehicles recognized in the image processing, such as whether the vehicle is a police vehicle, using information such as the appearance of the vehicle, and the vehicle A17001 is a police vehicle. Recognize The control unit A1004 selects the police vehicle A17001 having a high priority for acquiring information as a target for wireless communication among the police vehicle A17001 and the other vehicles A13002 and A13003.
- the recognized object when recognizing an object by signal processing such as pattern recognition from sensing data obtained by a sensor such as an image acquired by an image sensor, the recognized object is further classified. Communication control can be performed based on the classification.
- control for selecting a police vehicle as a communication partner having a high information acquisition priority is merely an example, and different control may be performed when a police vehicle is recognized.
- the police vehicle A17001 transmits an optical signal including an identifier for identifying the police vehicle, and the control unit A1004 does not directly wirelessly connect to the police vehicle, but another vehicle A13002 or another vehicle.
- the identifier received from the police vehicle A17001 as an optical signal may be specified to obtain information on the police vehicle A17001.
- the same communication control is not always performed, but when it is recognized that a warning light of the recognized police vehicle is turned on, or communication devices A1000 and A2000 Has a microphone as a sensor other than the image sensor, and when the control unit A1004 detects a siren sound by performing pattern recognition signal processing on the voice data acquired by the microphone, priority is given to collecting information on the police vehicle. Communication control may be performed.
- a modulation signal generated based on transmission data such as an identifier of the other device may be transmitted simultaneously.
- a sound signal may be used instead of the optical signal.
- the light receiving device A1002 in the communication devices A1000 and A2000 is replaced with a sound detection device such as a microphone.
- a sound detection device such as a microphone.
- the sound detection device it is possible to further accurately associate the device that generated the detection target sound with the sound signal.
- the communication devices A1000 and A2000 may include a plurality of wireless devices.
- the communication devices A1000 and A2000 may include a plurality of wireless devices corresponding to communication methods defined by different standards, or may include a plurality of wireless devices corresponding to the same communication method. Good.
- the light receiving device A1002 includes, for example, a camera included in a drive recorder, a back monitor camera, It may be a camera for confirming the periphery of the vehicle body, a camera used to display an image instead of a side mirror on a monitor, or the like.
- the communication control disclosed in this embodiment can be realized without adding a new camera by receiving an optical signal using a camera mounted for a purpose other than optical communication. Therefore, it is possible to promote cost reduction and the spread of optical signal reception functions.
- such a camera is installed so that it can capture the area necessary for the driver, that is, the area where important information can be obtained when operating the vehicle, so it combines signal processing such as image recognition and wireless communication. By collecting more information, it is possible to provide appropriate automatic driving control and promote the provision of information to the driver.
- the real space object detected or recognized from the sensing data and the transmission signal transmission source Can be determined.
- the transmission signal is used to transmit information such as the SSID, address, and identifier used in the process including the communication
- the information used in the process including the communication and the real space The association with the object can be facilitated. That is, conventionally, information used in processing via a network that has been difficult to associate with an object in real space can be used based on sensing data obtained from the real space.
- an image sensor is used as a sensor and information used in processing via a network including communication is transmitted as an optical signal
- the information used in processing via a network including a visible object and communication is used.
- the reliability of association can be improved.
- an identifier used for communication such as an SSID and an address is transmitted as an optical signal
- an identifier to be connected by communication is selected based on a result of signal processing of image recognition.
- Communication control based on the positional relationship of the objects and the attributes of the objects can be performed, communication can be performed by specifying the objects to be connected, and information can be acquired and control instructions can be given.
- the structure of FIG. 5 was demonstrated as an example of the communication system which performs visible light communication
- the structure of the communication system which performs visible light communication is not restricted to the structure shown in FIG.
- the configuration shown in FIG. 52 may be used (see, for example, “IEEE802.11-16 / 1499r1”).
- the transmission signal is transmitted as an optical signal in the baseband without being up-converted. That is, a device that transmits an optical signal according to the present embodiment (that is, a device that includes a light source) has the configuration on the transmission side illustrated in FIG. 52, and a terminal that receives the optical signal according to the present embodiment is illustrated in FIG. You may comprise the structure of the receiving side shown.
- the symbol mapping unit receives the transmission data and outputs a symbol sequence (ci) that performs mapping based on the modulation scheme.
- the pre-equalization processing unit receives the symbol series, performs pre-equalization processing on the symbol series, and outputs the post-equalization symbol series in order to reduce the equalization process on the receiving side.
- the Hermite symmetry processing unit receives the symbol sequence after pre-equalization as input, assigns subcarriers to the symbol sequence after pre-equalization so as to ensure Hermitian symmetry, and outputs a parallel signal.
- the inverse (fast) Fourier transform unit receives a parallel signal, performs inverse (fast) Fourier transform on the parallel signal, and outputs a signal after inverse (fast) Fourier transform.
- the parallel serial and cyclic prefix adding unit inputs the signal after inverse (high-speed) Fourier transform, adds the parallel serial conversion and cyclic prefix, and outputs the signal after signal processing.
- the digital-analog conversion unit receives the signal after signal processing, performs digital-analog conversion, and outputs an analog signal.
- the analog signal is output as light from one or more LEDs, for example.
- pre-equalization processing unit and the Hermitian symmetry processing unit may be omitted. That is, signal processing in the pre-equalization processing unit and the Hermite symmetry processing unit may not be performed.
- a photodiode receives light and receives a received signal by TIA (TransimpedanceimpAmplifier).
- TIA TransimpedanceimpAmplifier
- the analog-to-digital conversion unit performs analog-to-digital conversion on the received signal and outputs a digital signal.
- the cyclic prefix removal and serial / parallel conversion unit takes a digital signal as input, performs cyclic prefix removal, then performs serial / parallel conversion, and takes a parallel signal as input.
- the (fast) Fourier transform unit takes a parallel signal as input, performs (fast) Fourier transform, and outputs a signal after (fast) Fourier transform.
- the detection unit receives the signal after Fourier transform, performs detection, and outputs a received symbol sequence.
- the symbol demapper receives a received symbol sequence and performs demapping to obtain a received data sequence.
- FIG. 53 shows a configuration example of the transmission device and the reception device in the present embodiment.
- the transmission device 100 transmits a plurality of light modulation signals
- the reception device 150 receives a plurality of light modulation signals to obtain received data. 53 that operate in the same manner as in FIG. 6 are given the same numbers.
- M is an integer of 2 or more.
- Transmitter A2002_i receives data A2001_i and control signal A2005, and performs error correction coding and signal processing based on the transmission method based on information on the error correction coding method and information on the transmission method included in control signal A2005.
- the optical modulation signal A2003_i is generated and output. Note that i is an integer of 1 to M.
- the light modulation signal A2003_i is transmitted from the light source A2004_i.
- the light receiving unit A2051 such as an image sensor receives light corresponding to the light modulation signal A2003_i. At this time, the light receiving unit A2051 receives light corresponding to M light modulation signals.
- a method for receiving a plurality of light reception signals in the light receiving unit A2051 is, for example, as described in the eighth embodiment.
- the light receiving unit A2051 outputs an optical reception signal A2052_i corresponding to the optical modulation signal 2003_i. Note that i is an integer of 1 to M.
- the receiving unit A2053_i receives the optical reception signal A2052_i corresponding to the optical modulation signal A2003_i, performs processing such as demodulation and error correction decoding, and outputs reception data A2054_i corresponding to the data A2001_i.
- the data acquisition unit A2055 receives data A2054_1, data A2054_2,..., Data A2054_M, and generates and outputs data A2056.
- FIG. 54 shows a configuration example of the transmission device and the reception device in the present embodiment, which is different from FIG. 54 that operate in the same manner as in FIG. 53 are given the same reference numerals.
- Distribution section A2102 receives information A2101 and control signal A2005 as input, performs error correction coding on information A2101 based on information related to the error correction coding method included in control signal A2005, and performs error correction coding. Generate data. Distribution section A2102 distributes the data after error correction coding and outputs data A2001_i after error correction coding.
- the distribution to the data A2001_i after the M error correction encodings may be performed in any manner.
- the data after error correction coding may be divided into M pieces, and the divided M data series may be assigned to data A2001_i after error correction coding.
- M data series composed of the same data may be generated from the data after error correction coding, and each data series may be assigned to data A2001_i after error correction coding.
- the assignment method to the data A2001_i after error correction coding is not limited to these, and M data series is generated from the data after error correction coding, and each data series is data after error correction coding. What is necessary is just to allocate to A2001_i.
- the transmission unit A2002_i receives the data A2001_i and the control signal A2005, performs signal processing based on the transmission method based on information related to the transmission method included in the control signal A2005, and generates and outputs an optical modulation signal A2003_i.
- i is an integer of 1 to M.
- the light modulation signal A2003_i is transmitted from the light source A2004_i.
- the light receiving unit A2051 such as an image sensor receives light corresponding to the light modulation signal A2003_i. At this time, the light receiving unit A2051 receives light corresponding to M light modulation signals.
- a method for receiving a plurality of light reception signals in the light receiving unit A2051 is, for example, as described in the eighth embodiment.
- the light receiving unit A2051 outputs an optical reception signal A2052_i corresponding to the optical modulation signal 2003_i. Note that i is an integer of 1 to M.
- the reception unit A2053_i receives the optical reception signal A2052_i corresponding to the optical modulation signal A2003_i, performs a process such as demodulation, and outputs received data (log likelihood ratio) 2054_i corresponding to the data A2001_i.
- the error correction decoding unit A2151 receives received data (log likelihood ratio) 2054_1, received data (log likelihood ratio) 2054_2,..., Received data (log likelihood ratio) 2054_M, and performs error correction decoding. And receive data A2152 is output.
- FIG. 55 shows an example of a frame configuration of an optical modulation signal transmitted by the transmission device 100 in FIGS.
- the frame configuration A2201_1 in FIG. 55 shows an example of the frame configuration of the optical modulation signal A2003_1 in FIGS.
- the horizontal axis is time.
- the frame configuration A2201_i in FIG. 55 shows an example of the frame configuration of the optical modulation signal A2003_i in FIGS.
- the horizontal axis is time.
- i shall be an integer of 1 or more and M or less. (That is, FIG. 55 shows a configuration of M frames.)
- the transmission apparatus 100 in FIGS. 53 and 54 transmits the preamble A2210_i, the control information symbol A2211_i, and the data symbol A2212_i in the optical modulation signal A2003_i.
- FIG. 56 shows an example of the reception state in the reception device 150.
- A2300 indicates an image sensor which is an example of a light receiving unit, and A2301_1 is light illuminated by the first light source, and this light includes the first light modulation signal.
- the first optical modulation signal corresponds to A2201_1 in FIG.
- A2301_i is light illuminated by the i-th light source, and this light includes the i-th light modulation signal.
- the i-th optical modulation signal corresponds to A2201_i in FIG.
- i is an integer of 1 to 16.
- the light receiving unit of the receiving device 150 includes the light from the fourth light source including the fourth light modulation signal and the light from the eighth light source including the eighth light modulation signal.
- the light from the twelfth light source including the twelfth light modulation signal is received.
- the transmitter 100 in FIGS. 53 and 54 transmits 16 light modulation signals from 16 light sources
- the receiver 150 in FIGS. 53 and 54 in the state of FIG. Since all of the light modulation signals cannot be received, it is difficult to obtain correct received data. A method for overcoming this problem is described below.
- the preamble A 2210_i and the control information symbol A 2211_i in the frame configuration A2201_i are, as shown in FIG. Assume that a symbol A2404 including information on an error correction coding method, a transmission method, and a modulation scheme is included.
- the symbol A2401 for signal detection is a symbol for the reception device 150 to know the presence of the optical modulation signal. By detecting this symbol, the reception device 150 indicates that the optical modulation signal is present. To know.
- the symbol A2402 for synchronization is a symbol for the receiver 150 to perform time synchronization (may include frequency synchronization). By using this symbol, the receiver 150 can perform time synchronization. Thus, each symbol can be demodulated with high accuracy.
- a symbol A 2403 including information on the number of optical modulation signals being transmitted is a symbol for notifying the number of optical modulation signals being transmitted by the transmission apparatus 100. In the state of FIG. The symbol A 2403 including information on the number of modulation signals transmits information “16”.
- the receiving apparatus 150 receives “symbol A2403 including information related to the number of transmitted optical modulation signals, thereby transmitting“ 16 ”optical modulation signals. Will know. In the reception state of FIG. 56, the receiving apparatus 150 knows that only three of the 16 optical modulation signals can be received.
- the symbol A2404 including information on the error correction encoding method, transmission method, and modulation scheme is, for example, an error correction encoding method and transmission method used in a data symbol (symbol for transmitting data) of the optical modulation signal A2003_i.
- the reception device 150 can know the error correction coding method, transmission method, and modulation method used in the optical modulation signal A2003_i by receiving this symbol.
- the transmission apparatus 100 transmits the symbols illustrated in FIG. 57 in the optical modulation signal A2003_1 to the optical modulation signal A2003_16.
- the number of optical modulation signals transmitted by the transmission device 100 can be known even in a state where the reception device 150 cannot receive all the optical modulation signals as shown in FIG. Thereby, the receiving apparatus 150 can know “whether or not all the optical modulation signals can be received”.
- the signal processing is stopped in the middle, and thereby an effect that unnecessary power consumption can be suppressed can be obtained.
- a symbol A 2501 including information related to the number of the optical modulation signal is added to FIG. 57 as a symbol transmitted by the transmission apparatus 100.
- FIG. 58 is the frame configuration A2201_i of the optical modulation signal A2003_i in FIG. 55, that is, the frame configuration of the i-th optical modulation signal. Therefore, the symbol A2501 including information on the number of the optical modulation signal is “i”. It will contain information.
- the symbol A 2501 including information related to the number of the optical modulation signal transmitted by the transmission apparatus 100 using the first optical modulation signal includes information “1”.
- the receiving apparatus 150 receives “symbol A2403 including information related to the number of transmitted optical modulation signals, thereby transmitting“ 16 ”optical modulation signals. Will know. Then, “symbol A2501 including information regarding the number of the optical modulation signal” included in the fourth optical modulation signal, “symbol A2501A including information regarding the number of the optical modulation signal” included in the eighth modulation signal, Since the receiving apparatus 150 receives the “symbol A2501A including information related to the number of the optical modulation signal” included in the modulation signal, the fourth optical modulation signal, the eighth optical modulation signal, and the twelfth optical modulation are included. The receiving apparatus 150 knows that the signal has been received. By knowing this situation, the receiving apparatus 150 performs an operation for improving the reception situation, thereby improving the reception quality of the data. The detailed operation will be described later. Give an explanation.
- FIGS. 59 and FIG. 60 Another example of the reception state in the reception device 150 is shown in FIGS.
- the same numbers are assigned to components that operate in the same manner as in FIG. 56, and description thereof is omitted because it has already been described.
- the light receiving unit A2300 of the reception device 150 includes the light of the 16th light source including the 16th light modulation signal from the light of the first light source including the first light modulation signal.
- Light, that is, 16 optical modulation signals are received.
- the first light modulation signal is received at the upper left of the light receiving unit A2300.
- the light receiving unit A2300 of the reception device 150 includes the light of the 16th light source including the 16th light modulation signal from the light of the first light source including the first light modulation signal.
- Light, that is, 16 optical modulation signals are received.
- the first optical modulation signal is received at the lower right of the light receiving unit A2300, which is different from FIG.
- each optical modulation signal has “symbol A2501 including information related to the number of the optical modulation signal” as shown in FIG. 58. Therefore, “Which part of the light receiving unit has received which optical modulation signal?” ”Can be recognized by the receiving apparatus 150.
- the receiving device 150 obtains the i-th received data obtained from the received signal of the i-th optical modulation signal, and when the 16th received data needs to be rearranged from the first received data, the received data is “ “Which optical modulation signal is the received data” can be identified from “symbol A2501 including information relating to the number of the optical modulation signal”, so that the received data can be rearranged correctly. Will be improved.
- FIG. 55 shows an example of the frame configuration of the optical modulation signal transmitted by the transmission apparatus 100 in FIGS. 53 and 54, and since it has already been described, the description thereof is omitted.
- FIG. 57 shows the preamble and control information symbol configuration in the frame configuration A2201_1 in the optical modulation signal A2003_1 in FIG. 55, and the preamble from “frame configuration A2201_2 in the optical modulation signal A2003_2” to “frame configuration A2201_16 in the optical modulation signal A2003_16”.
- the configuration of the control information symbol is shown in FIG.
- FIG. 61 components that operate in the same manner as in FIG. 57 are given the same numbers, and a characteristic point of FIG. 61 is “symbol A2403 including information on the number of optical modulation signals being transmitted”. It is a point that does not contain. That is, the transmitting apparatus 100 transmits “symbol A2403 including information on the number of optical modulation signals being transmitted” using only the optical modulation signal A2003_1.
- the reception device 150 has not obtained “symbol A2403 including information related to the number of optical modulation signals being transmitted”. I can't figure out the number of signals. Then, the receiving apparatus 150 determines that it is difficult to correctly receive the data, stops the signal processing of the receiving operation, and can suppress unnecessary power consumption.
- transmitting device 100 transmits“ symbol A2403 including information related to the number of optical modulation signals being transmitted ”using only optical modulation signal A2003_1”.
- the transmission apparatus 100 transmits “symbol A2403 including information related to the number of transmitted optical modulation signals” in some of the optical modulation signals A2003_1 to A2003_16. ", The same effect as described above can be obtained.
- FIG. 55 shows an example of the frame configuration of the optical modulation signal transmitted by the transmission apparatus 100 in FIGS. 53 and 54, and since it has already been described, the description thereof is omitted.
- the preamble of the frame configuration A2201_1 in the optical modulation signal A2003_1 in FIG. 55 and the configuration of the control information symbol are shown in FIG.
- the configuration of the control information symbol is shown in FIG. 62, the same numbers are assigned to components that operate in the same manner as in FIGS. 57 and 58, and the characteristic point of FIG. 62 is that “the information on the number of optical modulation signals being transmitted is included.
- the symbol A2403 "is not included. That is, the transmitting apparatus 100 transmits “symbol A2403 including information on the number of optical modulation signals being transmitted” using only the optical modulation signal A2003_1.
- the reception device 150 has not obtained “symbol A2403 including information related to the number of optical modulation signals being transmitted”. I can't figure out the number of signals. Then, the receiving apparatus 150 determines that it is difficult to correctly receive the data, stops the signal processing of the receiving operation, and can suppress unnecessary power consumption.
- transmitting device 100 transmits“ symbol A2403 including information related to the number of optical modulation signals being transmitted ”using only optical modulation signal A2003_1”.
- the transmission apparatus 100 transmits “symbol A2403 including information related to the number of transmitted optical modulation signals” in some of the optical modulation signals A2003_1 to A2003_16. ", The same effect as described above can be obtained.
- the transmitting apparatus 100 may be configured to transmit a preamble and a control information symbol in a part of the optical modulation signals A2003_1 to A2003_16.”
- the reception apparatus can obtain high data reception quality by transmitting the optical modulation signals. It is possible to obtain the effect that power consumption can be reduced.
- the number of optical modulation signals transmitted by the transmission apparatus has been described as 16.
- the present invention is not limited to this.
- the number of optical modulation signals to be transmitted may be changed according to the transmission time. For example, 16 optical modulation signals are transmitted in the first time, 8 optical modulation signals are transmitted in the second time, and one optical modulation signal is transmitted in the third time. May be.
- the information “16” is transmitted in the “symbol A2404 including information on the number of transmitted optical modulation signals” in the first time, and “transmitted optical modulation” is transmitted in the second time.
- Information “8” is transmitted in “symbol A2404 including information regarding the number of signals”
- information “1” is transmitted in “symbol A2404 including information regarding the number of optical modulation signals being transmitted” at the third time. become.
- the frame configuration in FIG. 55 has been described as an example, but the frame configuration is not limited to this, and other symbols may exist in the frame. Further, the order of transmitting symbols is not limited to the order shown in FIG.
- the preamble and control information symbols have been described with reference to FIG. 57, FIG. 58, FIG. 61, and FIG. 62, but some symbols do not exist in each figure, or other symbols exist in each figure. Even in such a configuration, the same operation may be possible. That is, the configuration of the preamble and the control information symbol is not limited to the configurations of FIG. 57, FIG. 58, FIG. 61, and FIG. Further, the order of transmitting the symbols constituting the preamble and control information symbols is not limited to the examples of FIGS. 57, 58, 61, and 62.
- the reception state of the reception device 150 may be as shown in FIG. In FIG. 63, the same number is attached
- FIG. 53 As a configuration example of a transmission device that transmits data, there is a transmission device 100 in FIG. Note that FIG. 53 has already been described, and a description thereof will be omitted.
- FIG. 64 shows the configuration of the receiving apparatus 150 that receives the optical modulation signal transmitted by the transmitting apparatus 100 of FIG.
- FIG. 65 shows the configuration of the receiving device 150 that receives the optical modulation signal transmitted by the transmitting device 100 of FIG.
- FIG. 64 is an example of the configuration of the receiving device 150 that receives the optical modulation signal transmitted by the transmitting device 100 of FIG. 53, and the same numbers are assigned to components that operate in the same manner as in FIG.
- the lens (group) A3101 receives the lens control signal A3109 and controls the focal length, aperture, focus, and the like.
- Image sensor (light receiving unit) A3103 receives light A3102 after passing through the lens, and outputs light reception signals A2052_1 to A2502_M and image signal A3104.
- the image signal A3104 may be subjected to signal processing thereafter and displayed as an image on the internal display unit, or may be displayed as an image on the external display unit via the interface.
- the data acquisition unit A2055 receives the received data A2054_1 to A2054_M, and outputs data A2056 and reception status information A3107.
- the reception status information A3107 is, for example, “information about the number of optical modulation signals being transmitted” obtained from “symbol A2403 including information about the number of optical modulation signals being transmitted” transmitted by the transmission apparatus 100 in the tenth embodiment.
- "Symbol A2501 including information relating to the number of the optical modulation signal” transmitted by the transmission apparatus 100 may be "information relating to the number of the optical modulation signal”
- the reception state information A3107 may be "transmission Information on the reception state generated from “information on the number of modulated optical signals” and “information on the number of modulated optical signals”. It is not limited to this example.
- the object recognition unit A3105 receives the image signal A3104, the reception state information A3107, and the instruction signal A3150, and performs object recognition based on the instruction signal A3150. For example, when the instruction signal A3150 indicates that “communication is performed”, the object recognition unit A3105 starts to recognize the light modulation signal. At this time, the object recognition unit A3105 receives the image signal A3104 and the reception state information A3107 and outputs an object recognition signal A3106. Specific operations will be described later.
- the lens control unit A3108 receives the object recognition signal A3106 and recognizes the reception state shown in FIGS. 56 and 63, for example, “If the lens control or the lens control is performed, the set value of the focal length, the aperture The setting value and the focus setting are determined ", and a lens control signal A3109 corresponding to these controls is output.
- the lens control unit A3108 receives the object recognition signal A3106 as input, but other input signals may exist.
- FIG. 65 shows an example of the configuration of the receiving device 150 that receives the optical modulation signal transmitted by the transmitting device 100 of FIG. 54.
- Components that operate in the same manner as in FIGS. 53 and 54 are given the same numbers. . Since the operations of the lens (group) A 3101, the image sensor A 3103, the object recognition unit A 3105, and the lens control unit A 3108 have already been described, description thereof is omitted here.
- Error correction decoding unit A2155 receives reception data A2054_1 to A2054_M, and outputs data A2056 and reception state information A3107.
- the light receiving unit 150 does not receive the light emitted by some light sources. It is difficult to receive data correctly. Further, as described above, when the reception state of the reception device 150 is as shown in FIG. 63, there is a problem that the reception quality of data of the reception device 150 is poor.
- the receiving device 150 when the receiving device 150 is in a receiving state as shown in FIGS. 59 and 60, the data reception quality is high.
- the receiving apparatus 150 controls the lens (group) A3101 so as to be in the receiving state as shown in FIGS. 59 and 60, the data reception quality is improved.
- the receiving device 150 in FIGS. 64 and 65 is an example of a configuration for realizing this.
- the reception state information A3107 in FIGS. 64 and 65 is information created based on “information on the number of optical modulation signals being transmitted” and “information on the number of optical modulation signals” as already described. Therefore, the object recognition unit A3105 in FIGS. 64 and 65 recognizes that three of the 16 light modulation signals can be received.
- the object recognizing unit A3105 recognizes from the image signal A3104 “the reception state of the light modulation signal, for example, at which position of the image sensor the three light modulation signals are received”. That is, the object recognition unit A3105 performs object recognition of the image in FIG. Then, the object recognition unit A3105 recognizes “the reception state of the light modulation signal” and “the 16 light modulation signals cannot be received”. Further, in this example, the object recognition unit A3105 determines that lens control is to be performed based on these recognition results, and “preferred focal length setting value, suitable aperture value for realizing suitable communication”. Are determined, and a suitable focus setting is determined, ”and an object recognition signal A3106 including these pieces of information is output. The object recognition signal A3106 only needs to include at least a “preferred focal length setting value”, and the object recognition signal A3106 does not include information on a preferable aperture setting value and preferable focus setting. May be.
- the lens control unit A3108 receives the object recognition signal A3106, and based on information such as “a suitable focal length setting value, a suitable aperture setting value, and a suitable focus setting” included in the object recognition signal A3106, (Group)
- a lens control signal A3109 for controlling A3101 is output.
- the receiving device 150 of FIGS. 64 and 65 becomes in a receiving state as shown in FIGS. 59 and 60, for example, and high data reception quality can be obtained. The effect is obtained.
- FIG. 56 the case where the reception state of the reception device 150 is controlled from FIG. 56 to “FIG. 59, FIG. 60” has been described as an example, but the present invention is not limited to this example.
- 63 may be controlled from FIG. 59 to FIG. 59 and FIG. However, it is not limited to this.
- FIG. 66 shows an example of the configuration of the receiving apparatus 150 that receives the optical modulation signal transmitted by the transmitting apparatus 100 of FIG. 53. Elements that operate in the same way as in FIG. 64 are given the same numbers and have already been described. The description is omitted for the parts that are performing.
- 66 is different from the receiving apparatus 150 in FIG. 64 in that a signal processing unit A3302 exists after the image sensor A3103.
- the signal processing unit A3302 has at least a zoom (image enlargement / reduction) processing function.
- the signal processing unit A3302 receives the image signal A3301, the zoom signal A3300, the object recognition signal A3106, and the instruction signal A3150, and indicates that the instruction signal A3150 is “shooting mode (shooting)”.
- the signal processing unit A3302 performs zoom signal processing on the image signal A3301 based on the zoom (image enlargement (/ reduction)) information of the zoom signal A3300, and outputs the image signal A3104 after the signal processing. To do.
- the signal processing unit A3302 displays “a suitable focal length setting value and a suitable aperture setting value included in the object recognition signal A3106”. Based on information such as “preferred focus setting”, the signal processing for zooming is performed on the image signal A3301, and the image signal A3104 after signal processing and the light reception signals 2052_1 to A2052_M after signal processing are output. .
- the reception state is improved, an effect that the reception quality of data is improved can be obtained.
- the receiving apparatus 150 can obtain an effect that the reception quality of data is improved because the reception state is improved.
- the lens (group) A3101 does not have a focal length changing function, the focal length for improving reception is not changed.
- FIG. 67 shows an example of the configuration of the receiving apparatus 150 that receives the optical modulation signal transmitted by the transmitting apparatus 100 of FIG. 54. Components that operate in the same manner as in FIG. The description is omitted for the parts that are performing.
- 67 is different from the receiving device 150 in FIG. 65 in that a signal processing unit A3302 exists after the image sensor A3103, as in FIG.
- the receiving apparatus 150 can obtain an effect that the reception quality of data is improved because the reception state is improved.
- the lens (group) A3101 does not have a focal length changing function, the focal length is not changed to improve reception.
- the lens (group) A3101 can set a plurality of values as the focal length.
- the focal length can be set to 12 mm to 35 mm, or the focal length can be set to 12 mm and 25 mm. Below, it demonstrates based on this example.
- the receiving device 150 of FIGS. 64, 65, 66, and 67 starts communication when set to the “communication mode” by the instruction signal A3150.
- the lens (group) A3101 is started.
- the focal length may be controlled to a suitable value in order to further improve the data reception quality.
- the focal length is described as an example.
- the widest angle Setting the focal length is an effective method in terms of improving data reception quality.
- the focal length can be set continuously (or finely).
- the lens (group) A3101 start communication when the instruction signal A3150 is set to "communication mode".
- the lens (group) A3101 is started.
- the focal length may be controlled to a suitable value in order to further improve the data reception quality.
- the receiving device 150 in FIGS. 66 and 67 starts communication when the “communication mode” is set by the instruction signal A3150.
- the zoom image enlargement (• (Reduction))
- the zoom value may be controlled to a suitable value in order to further improve the data reception quality.
- each embodiment is merely an example, for example, “modulation method, error correction coding method (error correction code to be used, code length, coding rate, etc.), control information, etc.”
- modulation method, error correction coding method error correction code to be used, code length, coding rate, etc.
- control information etc.
- the same configuration can be used.
- APSK Amplitude Phase Shift Keying
- PAM Pulse Amplitude Modulation
- PSK Phase Shift Keying
- QAM QuadraturerAmplitude Modulation
- 2, 4, 8, 16, 64, 128, 256, 1024, etc. signal point arrangement methods in the IQ plane (2, 4, 8, 16,
- the modulation scheme having signal points of 64, 128, 256, 1024, etc.) is not limited to the signal point arrangement method of the modulation scheme shown in this specification.
- the wireless device described in this specification includes, for example, a broadcasting station, a base station, an access point, a terminal, a communication / broadcasting device such as a mobile phone, a television, a radio, a terminal, and a personal computer. It may be a communication device such as a mobile phone, an access point, or a base station.
- the wireless device described in this specification is a device having a communication function, and the device provides some interface to a device for executing an application such as a television, a radio, a personal computer, and a mobile phone. It is also conceivable that the connection is possible.
- the receiving unit described in this specification includes, for example, a broadcasting / base station, an access point, a terminal, a communication / broadcasting device such as a mobile phone (mobile phone), a television, a radio, a terminal, It may be a communication device such as a personal computer, a mobile phone, an access point, or a base station.
- pilot symbols preamble, unique word, postamble, reference symbol, etc.
- control information symbols etc.
- the pilot symbols and the control information symbols are named, but any naming method may be used, and the role of each symbol is important.
- the pilot symbol is, for example, a known symbol modulated by using PSK modulation in a transmitter / receiver (or the receiver may know the symbol transmitted by the transmitter by synchronizing the receiver). .), And the receiver uses this symbol to perform frequency synchronization, time synchronization, channel estimation (for each modulated signal) (CSI (Channel State Information) estimation), signal detection, and the like. Become.
- control information symbol is information (for example, a modulation method, an error correction coding method used for communication, a communication information symbol) that needs to be transmitted to a communication partner in order to realize communication other than data (such as an application).
- This is a symbol for transmitting an error correction coding method coding rate, setting information in an upper layer, and the like.
- the moving picture encoding method described in each of the above embodiments is, for example, MPEG (Moving Picture Experts Group) 2, H.264, or H.264. H.264 / AVC (Advanced Video Coding), H.264. H.265 / HEVC (High Efficiency Video Coding), VC-1, VP8, VP9, etc., can be used.
- MPEG Motion Picture Experts Group
- H.264 or H.264. H.264 / AVC (Advanced Video Coding), H.264. H.265 / HEVC (High Efficiency Video Coding), VC-1, VP8, VP9, etc.
- the moving picture coding scheme described in each of the above embodiments may use a different moving picture coding scheme from the schemes listed above.
- a program that executes the communication method, transmission method, or reception method may be stored in advance in a ROM (Read Only Memory), and the program may be operated by a CPU (Central Processor Unit).
- ROM Read Only Memory
- CPU Central Processor Unit
- a program for executing the communication method, transmission method, or reception method is stored in a computer-readable storage medium, and the program stored in the storage medium is recorded in a computer RAM (Random Access Memory). May be operated according to the program.
- a computer RAM Random Access Memory
- Each functional block used in the description of each of the above embodiments is partially or entirely realized as an LSI (Large Scale Integration) that is an integrated circuit, and each of the functional blocks described in each of the above embodiments.
- the process may be controlled in part or in whole by a single LSI or combination of LSIs.
- the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of the functional blocks.
- the LSI may include data input and output.
- the LSI is sometimes referred to as an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of the circuit cells inside the LSI may be used.
- the present disclosure may be implemented as digital processing or analog processing. Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.
- At least one of an FPGA (Field Programmable Gate Array) and a CPU (Central Processing Unit) wirelessly transmits all or part of software necessary to realize the communication method, transmission method, or reception method described in the present disclosure.
- the configuration may be such that it can be downloaded by communication or wired communication.
- the configuration may be such that all or part of the software for updating can be downloaded by wireless communication or wired communication.
- the downloaded software may be stored in the storage unit, and the digital signal processing described in the present disclosure may be executed by operating at least one of the FPGA and the CPU based on the stored software.
- the device including at least one of the FPGA and the CPU is connected to the communication modem wirelessly or by wire, and the communication method, the transmission method, or the reception method described in the present disclosure is realized by the device and the communication modem. Also good.
- a communication device such as a base station, an AP, or a terminal described in this specification includes at least one of an FPGA and a CPU, and at least one of the FPGA and the CPU is used.
- the communication apparatus may include an interface for obtaining software for operating from the outside.
- the communication device includes a storage unit for storing software obtained from the outside, and the FPGA and CPU are operated based on the stored software, thereby realizing the signal processing described in the present disclosure. May be.
- the first “car or vehicle” includes the transmitting device described in this specification
- the second “car or vehicle” includes the receiving device described in this specification, and transmits and receives data. You may implement.
- the “transmitting device or a part of the function of the transmitting device” described herein is connected to the first “car or vehicle” via the interface, and the “receiving device, Alternatively, a part of the receiving device may be connected to the second “car or vehicle” via the interface, and data transmission may be performed by transmission and reception.
- the transmission device described in this specification may be provided in the first “car or vehicle”, and data transmission / reception may be performed between this transmission device and the reception device described in this specification.
- the second receiving device described in this specification may be included in a second “car or vehicle”, and data may be transmitted and received between this receiving device and the transmitting device described in this specification.
- the “transmitting device or a part of the function of the transmitting device” described in the present specification is connected to the first “car or vehicle” via the interface, and the series of the transmitting device and the present specification are connected. Data may be transmitted and received with the receiving device described in the document.
- the “receiving device or part of the receiving device” described herein is connected to the second “car or vehicle” via the interface, and the transmission device described herein and the series of the same are connected. Data transmission / reception may be performed with the receiving device.
- a car or vehicle “comprises a transmission device or part of a transmission device as described herein” or “a” car or vehicle “as described herein
- a light source included in the transmission device described in the present specification when the transmission device is connected to the “transmission device” or “part of the functions of the transmission device described in the present specification” via an interface ”, You may use the light source with which the "car or vehicle” is equipped.
- a car B100 includes light sources B101_1, B101_2, B101_3, and B101_4, and one or more of these light sources are used by the transmission device described in this specification to transmit an optical modulation signal.
- a light source may be used.
- the transmission device has a function of selecting “which light source is used as a light source for transmitting the light modulation signal by the transmission device described in the present specification” among the plurality of light sources mounted on the car B100.
- a device connected to the transmission device may be included.
- the brightness of the light source, the irradiation angle of the light source, and the position of the light source may be set together.
- a car or vehicle “comprises the receiving device or part of the receiving device described herein” or “a” car or vehicle “is described herein.
- a light receiving unit included in the receiving device described in this specification when the receiving device is connected to the “receiving device” or “part of the functions of the receiving device described in this specification” via an interface ” , A light receiving unit (for example, an image sensor, a photodiode, or the like) included in the “car or vehicle” may be used.
- a car B100 includes light receiving units B201_1, B201_2, B201_3, B201_4, B201_5, and B201_6, and one or more of these light receiving units is optically modulated by the receiving device described in this specification. It is good also as a light-receiving part for receiving a signal.
- a function of selecting “which light receiving unit is used as the light receiving unit for receiving the light modulation signal by the receiving device described in this specification” among the plurality of light receiving units mounted on the vehicle B100. May be included in a receiving device or a device connected to the receiving device. Further, the angle of the light receiving unit and the position of the light receiving unit may be set together.
- the fact that the receiving device described in this specification is able to receive data may be displayed on the front panel mounted on the vehicle or the cockpit mounted on the vehicle.
- the receiving device described in this specification may notify the user that the data can be received by vibrating a steering wheel such as a car itself or a vibrator included in the steering wheel.
- the server may provide an application related to processing related to the receiving apparatus, and the terminal may install the application to realize the function of the receiving apparatus described in this specification.
- the application may be provided to a terminal by connecting a communication device including the transmission device described in this specification to a server via a network.
- the application may be a communication device having another transmission function.
- the terminal may be provided by connecting to a server via a network.
- the server may provide an application related to processing related to the transmission apparatus, and the communication apparatus may install the application to realize the function of the transmission apparatus described in this specification.
- the communication apparatus may install the application to realize the function of the transmission apparatus described in this specification.
- the server also provides software related to the light source provided in the transmission device and the light receiving unit provided in the reception device. By obtaining this software, the light source provided in the transmission device can transmit the light modulation signal.
- the light receiving unit provided in the receiving apparatus may be able to cope with reception of the optical modulation signal.
- the transmission device in this specification may have a server function, and an application provided in the transmission device is provided to the communication device using some communication means, and the communication device is obtained by downloading.
- the receiving device in this specification may be realized by an application.
- illumination unit and “light source” are described.
- a display or a projector that displays an image, a moving image, an advertisement, or the like emits light, and the light includes a light modulation signal. It may be a method such as. That is, the “illumination unit” and “light source” may have functions other than the function of emitting light. Further, the “illumination unit” and “light source” may be configured by a plurality of “illumination” and “light source”.
- the transmission method used by the communication device that generates an optical modulation signal and emits light may be a method other than the transmission method described in this specification.
- the optical modulation signal may include information other than that described in this specification.
- the illumination / light source itself such as an LED may have the function of the transmission device described in this specification.
- the present invention is not limited to this, and the transmission device and the reception device are mounted on other devices. Even if the transmitting device and the receiving device exist alone, the operation described in this specification can be performed, and similar effects can be obtained.
- the communication device and the reception device in the present disclosure may be any one of the first to eleventh embodiments.
- the first communication device includes a first optical signal that transmits first identifier information indicating an identifier of the first communication device, and a first optical signal that indicates the identifier of the second communication device.
- a light receiving unit that receives a second optical signal that transmits two pieces of identifier information and generates a reception signal; and demodulates the reception signal to obtain the first identifier information and the second identifier information.
- a demodulating unit Based on the moving image or still image data, a demodulating unit that performs imaging of a region including the first optical signal and the second optical signal, and acquires a moving image or still image data.
- a control unit that selects one of the identifier information and the second identifier information; and a communication unit that communicates with a communication device corresponding to the selected identifier information.
- the second communication device captures a predetermined region, receives a signal for demodulating the optical signal irradiated on the predetermined region, and a moving image or a still image for use in image processing
- a light receiving unit for acquiring data
- a demodulating unit for demodulating the image data and acquiring a plurality of identifier information indicating identifiers of other corresponding communication devices, and the plurality of identifiers based on the moving image or still image data
- a control unit that selects any one piece of identifier information from the information, and a communication unit that performs wireless communication with another communication device corresponding to the selected identifier information.
- a first receiving device that is one aspect of the present disclosure includes a first optical signal that transmits first identifier information that indicates an identifier of a first communication device, and a second that indicates an identifier of a second communication device.
- a first light receiving unit that receives a second optical signal that transmits identifier information and generates an optical reception signal, a first identifier information that demodulates the optical reception signal, and the second identifier information
- a second demodulator that acquires a moving image or still image data obtained by photographing a region including the first optical signal and the second optical signal, and the moving image data or the still image data.
- a control unit that selects one of the first identifier information and the second identifier information.
- a second receiving device includes a first optical signal that transmits first identifier information that indicates an identifier of the first communication device, and a second that indicates an identifier of the second communication device.
- a light receiving unit that receives a second optical signal that transmits identifier information and generates a reception signal; and a demodulation that demodulates the reception signal to obtain the first identifier information and the second identifier information.
- a camera that captures a region including the first optical signal and the second optical signal, acquires moving image data or still image data, and analyzes the moving image data or still image data,
- An analysis unit that generates relative position information indicating a positional relationship between the first transmitter that transmits the second optical signal and the second transmitter that transmits the second optical signal.
- a third receiving device that is an aspect of the present disclosure includes a first optical signal that transmits first identifier information that indicates an identifier of the first communication device, and a second that indicates an identifier of the second communication device.
- a second optical signal that transmits identifier information, a light receiving unit that receives light using an image sensor to generate a received signal, demodulates the received signal, the first identifier information, and the second identifier information;
- a first demodulator that acquires the first optical signal, a first position information that indicates a position of the first transmitter that transmitted the first optical signal, and a position of the second transmitter that transmitted the second optical signal.
- an analysis unit that generates second position information.
- a fourth receiving apparatus captures a predetermined region, receives a signal for demodulating the optical signal irradiated on the predetermined region, and a moving image or a still image for use in image processing
- a light receiving unit for acquiring data, a demodulating unit for demodulating the received signal to generate demodulated data, and an attribute of a transmitter that analyzes the moving image or still image data and transmits an optical signal corresponding to the demodulated data
- an analysis unit that generates attribute information indicating.
- the receiving device according to the present disclosure may be the modes of the eighth to eleventh embodiments.
- the receiving device includes, for each of an image sensor that acquires an image by shooting and N (N is an integer of 2 or more) regions included in the imaging surface of the image sensor.
- a receiver that receives in parallel N different optical signals transmitted from a plurality of light sources by sampling a plurality of pixels included in the. For example, as shown in FIG. 42, the receiving apparatus performs line scan sampling for each of the areas A, B, C, and D, thereby paralleling different optical signals from the light sources corresponding to the respective areas. To receive.
- the receiving device can obtain information such as SSID safely by receiving the optical signal.
- information such as SSID safely by receiving the optical signal.
- different optical signals transmitted from a plurality of light sources are received in parallel, the effect of improving the data transmission speed can be obtained.
- the receiving apparatus further includes at least one lens and a lens control unit that controls the at least one lens, and the lens control unit receives light from each of the plurality of light sources.
- the at least one lens may be controlled to be projected onto the image sensor through one lens.
- the lens control unit may control a focal length of the at least one lens.
- the at least one lens is, for example, a lens (group) A3101 shown in FIGS. 64 to 67, and the lens control unit is, for example, a lens control unit A3108 shown in FIGS.
- the reception state shown in FIGS. 56 and 63 is changed to the reception state shown in FIGS. 59 and 60 by the control of the focal length by the lens control unit. Note that not only the focal length but also the aperture and focus may be controlled.
- the optical signal transmitted from each of the plurality of light sources includes signal number information regarding the number of optical signals transmitted from the plurality of light sources, and the receiving device further includes the N optical signals.
- a recognition unit for recognizing a reception state wherein the recognition unit includes N signals that are received by the receiving unit and the number of signals included in the optical signal that is received by the receiving unit;
- the reception state may be recognized based on the information, and the lens control unit may control a focal length of the at least one lens based on the reception state recognized by the recognition unit.
- the recognition unit determines that the reception state is the plurality of light sources based on N which is the number of optical signals received by the reception unit and the number of optical signals indicated by the signal number information.
- the lens control unit receives all the optical signals by the recognition unit by the receiving unit. If it is determined that the lens is not in a state in which the at least one lens is not operated, the at least one lens may be controlled such that a focal length of the at least one lens is shortened.
- the signal number information is information included in, for example, “symbol A 2403 including information on the number of transmitted optical modulation signals” illustrated in FIGS. 57 and 58.
- the recognition unit is the object recognition unit A3105 shown in FIGS.
- One embodiment of the present disclosure is useful for an optical communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Optical Communication System (AREA)
- Computer Security & Cryptography (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
情報を安全に入手することができる受信装置(150)は、撮影によって画像を取得するイメージセンサ(A3103)と、イメージセンサ(A3103)の撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する受信部(A2053_1-A2053_M)とを備える。
Description
本開示は、受信装置および受信方法に関する。
端末の位置に基づいたサービスの利用などの目的で、端末自身の位置などの情報を取得する方法として、GPS(Global Positioning System)を用いる方法がある。GPSを用いる方法では、端末が衛星から送信された変調信号を受信し、測位計算を行うことで自身の場所を推定する。しかし、衛星が送信した電波を端末が受信することが困難である場合(例えば、屋内)、端末が自身の場所を推定することが困難となる。
このような場合に端末が自身の場所を推定する方法として、例えば、非特許文献1に開示されているように、端末が無線LAN(Local Area Network)のアクセスポイント(AP(access point))から送信された電波を用いて、自身の場所などの情報を推定する方法がある。
Bayesian based location estimation system using wireless LAN, Third IEEE Conference on Pervasive Computing and Commun. Workshops, pp.273-278, 2005.
「高機能イメージセンサ」映像情報メディア学会誌, vol.66, no3, pp.172-173, 2012.
「CMOSイメージセンサにおける高速化技術の動向」映像メディア学会誌, vol.66, no.3, pp.174-177, 2012.
「画素サイズの微細化に適した新有機CMOSイメージセンサー」FUJIFILM RESEARCH & DEVELOPMENT, no.55, pp.14-17, 2010.
しかしながら、例えば、端末がアクセスすべきアクセスポイントのSSID(service set identifier)等の情報を保持していない場合、端末が周囲にある複数のアクセスポイントの中から、どのアクセスポイントに接続すべきかを適切に判断することは容易ではない。このため、例えば、端末が自身の場所などの情報を得るためにアクセスポイントに接続する際、安全ではないSSIDを持つアクセスポイントに接続する可能性があり、情報漏えいなどの脅威がある。
本開示の一態様は、例えば、端末が接続すべきアクセスポイントを識別するために用いる情報などを安全に入手することができる受信装置などを提供することを促進する。
本開示の一態様に係る受信装置は、撮影によって画像を取得するイメージセンサと、前記イメージセンサの撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する受信部と、を備える。
本開示の一態様に係る受信方法は、イメージセンサによる撮影によって画像を取得し、前記イメージセンサの撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示の一態様によれば、端末が情報を安全に入手することができる。
本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施の形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
以下、本開示の実施の形態について図面を参照して詳細に説明する。
[第1の可視光通信の変復調方法例]
本実施の形態では、変調信号を光信号として送受信する光通信方式を用いる。
本実施の形態では、変調信号を光信号として送受信する光通信方式を用いる。
まず、本開示の各実施の形態に適用可能な光通信方式の一例である、可視光通信の第1の例について説明する。
<ラインスキャンサンプリング>
スマートフォンまたはデジタルカメラなどには、CMOS(Complementary Metal Oxide Semiconductor)センサなどのイメージセンサが搭載されている。CMOSセンサで撮像された画像は、全体が厳密に同じ時刻の風景を写しているわけではなく、例えば、非特許文献2、非特許文献3に示されているように、行ごとにシャッタ動作を行うローリングシャッタ方式により、1ライン毎にセンサが受光した光の量を読み出す。そのため、読み出しに要する時間を見計らって、1ライン毎に時間差をおいて受光の開始、終了の制御が行われる。つまり、CMOSセンサで撮像された画像は、露光期間に少しずつタイムラグのある多数のラインを重ねた形になる。
スマートフォンまたはデジタルカメラなどには、CMOS(Complementary Metal Oxide Semiconductor)センサなどのイメージセンサが搭載されている。CMOSセンサで撮像された画像は、全体が厳密に同じ時刻の風景を写しているわけではなく、例えば、非特許文献2、非特許文献3に示されているように、行ごとにシャッタ動作を行うローリングシャッタ方式により、1ライン毎にセンサが受光した光の量を読み出す。そのため、読み出しに要する時間を見計らって、1ライン毎に時間差をおいて受光の開始、終了の制御が行われる。つまり、CMOSセンサで撮像された画像は、露光期間に少しずつタイムラグのある多数のラインを重ねた形になる。
可視光通信方式の第1の例では、このCMOSセンサの性質に着目した方式に基づいて、可視光信号受信の高速化を実現している。すなわち、可視光通信方式の第1の例では、ライン毎に露光時間が少しずつ異なることを利用することで、図1に示すように、1枚の画像(イメージセンサの撮像画像)から、複数の時点における光源の輝度、色をライン毎に測定することができ、フレームレートよりも高速に変調された信号を捉えることができる。
以下では、このサンプリング手法を「ラインスキャンサンプリング」と呼び、同じタイミングで露光される1列の画素を「露光ライン」と呼ぶ。
なお、CMOSセンサによるローリングシャッタ方式で「ラインスキャンサンプリング」を実現することができるが、CMOSセンサ以外のセンサ、例えば、CCD(Charge-Coupled Device)センサ、非特許文献4を例とする有機(CMOS)センサなどにより、ローリングシャッタ方式を実現しても、同様に「ラインスキャンサンプリング」を実施することができる。
ただし、カメラ機能(動画または静止画の撮影機能)における撮像時の撮像設定では、高速で点滅する光源を撮影しても、点滅が露光ラインに沿った縞模様として現れることはない。なぜなら、この設定では、露光時間が光源の点滅周期よりも十分に長いため、図2に示すように、光源の点滅(発光パターン)による輝度の変化が平均化されて露光ライン間の画素値の変化が小さくなり、ほぼ一様な画像になるからである。
これに対して、図3に示すように、露光時間を光源の点滅周期程度に設定することで、光源の点滅の状態(発光パターン)を露光ラインの輝度変化として観測することができる。図3では、露光期間の長さを同じ発光状態が継続する最小の期間の長さより少し長く設定し、隣接する露光ライン間で露光期間の開始時刻の差を同じ発光状態が継続する最小の期間の長さよりも短く設定しているが、ライスキャンサンプリングにおける露光期間の設定はこれに限定されない。例えば、露光期間の長さは、同じ発光状態が継続する最小の期間の長さより短く設定してもよいし、同じ発光状態が継続する最小の期間の長さの2倍程度の長さに設定してもよい。また、光通信方式として、光信号が例えば図4Aに示す矩形波の組み合わせで表現される方式だけでなく、光信号が連続的に変化する方式を用いる場合もある。いずれの場合においても、光通信方式の受信装置は、光信号を受信して復調するために必要なサンプリングレートに対して、時間的に隣接する露光ライン間で露光期間の開始時刻または終了時刻の差を当該サンプリングレートに対応するサンプリング間隔と同じか、それ以下に設定する。また、光通信方式の受信装置は、露光期間の長さをサンプリング間隔と同じか、それ以下に設定する。ただし、光通信方式の受信装置は、露光期間の長さをサンプリング間隔の1.5倍以下に設定してもよいし、2倍以下に設定してもよい。
例えば、露光ラインは、イメージセンサの長辺方向に平行になるように設計される。この場合、一例として、フレームレートを30fps(frames per second)とすると、1920×1080のサイズの解像度では、毎秒32400以上のサンプルが得られ、3840×2160のサイズの解像度では、毎秒64800以上のサンプルが得られる。
<ラインスキャンサンプリングの応用例>
なお、上記説明では、一ライン毎に受光した光の量を示す信号を読み出すラインスキャンサンプリングについて説明したが、CMOSなどのイメージセンサを用いた光信号のサンプリング方式はこれに限定されない。光信号の受信に用いるサンプリング方式としては、通常の動画の撮影に用いるフレームレートよりも高いサンプリングレートでサンプリングされた信号を取得できる様々な方式が適用可能である。例えば、非特許文献2、非特許文献3に示されている画素ごとにシャッタ機能を持たせるグローバルシャッタ方式により、画素ごとに露光期間を制御して信号を読み出す方式や、ライン状ではない形状に配置された複数の画素のグループ単位で露光期間を制御して信号が読み出される方式を用いてもよい。また、通常の動画の撮影に用いるフレームレートにおける1フレームに相当する期間内に、同一の画素から複数回信号が読み出される方式を用いてもよい。
なお、上記説明では、一ライン毎に受光した光の量を示す信号を読み出すラインスキャンサンプリングについて説明したが、CMOSなどのイメージセンサを用いた光信号のサンプリング方式はこれに限定されない。光信号の受信に用いるサンプリング方式としては、通常の動画の撮影に用いるフレームレートよりも高いサンプリングレートでサンプリングされた信号を取得できる様々な方式が適用可能である。例えば、非特許文献2、非特許文献3に示されている画素ごとにシャッタ機能を持たせるグローバルシャッタ方式により、画素ごとに露光期間を制御して信号を読み出す方式や、ライン状ではない形状に配置された複数の画素のグループ単位で露光期間を制御して信号が読み出される方式を用いてもよい。また、通常の動画の撮影に用いるフレームレートにおける1フレームに相当する期間内に、同一の画素から複数回信号が読み出される方式を用いてもよい。
<フレームによるサンプリング>
さらに、非特許文献2、非特許文献3に示されている画素ごとにシャッタ機能を持たせるフレームレート方式により、フレームレートを高速化した方式においても光信号をサンプリングすることは可能である。
さらに、非特許文献2、非特許文献3に示されている画素ごとにシャッタ機能を持たせるフレームレート方式により、フレームレートを高速化した方式においても光信号をサンプリングすることは可能である。
以下で説明する実施の形態は、例えば、すでに説明を行った「ラインスキャンサンプリング」、「ラインスキャンサンプリングの応用例」、「フレームによるサンプリング」のいずれの方式においても実現することは可能である。
<光源と変調方式>
可視光通信では、例えば、LED(Light Emitting Diode)を送信機として利用することができる。LEDは、照明またはディスプレイのバックライト光源として普及しつつあり、高速に点滅させることが可能である。
可視光通信では、例えば、LED(Light Emitting Diode)を送信機として利用することができる。LEDは、照明またはディスプレイのバックライト光源として普及しつつあり、高速に点滅させることが可能である。
ただし、可視光通信の送信機として利用する光源は、可視光通信のために自由に点滅させられるわけではない。可視光通信による輝度の変化が人間に認識できてしまうと、照明などの本来の光源の機能を損ねてしまう。そのため、送信信号は、人間の目にちらつきが感じられないよう、かつ、所望の明るさで照らすようにすることが求められる。
この要求に応える変調方式として、例えば、4PPM(4-Pulse Position Modulation)と呼ばれる変調方式がある。4PPMは、図4Aに示すように、光源の明暗の4回の組み合わせによって2ビットを表現する方式である。また、4PPMは、図4Aに示すように、4回のうち3回が明るい状態、1回が暗い状態となるため、信号の内容に依らず、明るさの平均(平均輝度)は3/4=75%となる。
比較のため、同様の方式として、図4Bに示すマンチェスタ符号方式がある。マンチェスタ符号方式は、2状態で1ビットを表現する方式であり、変調効率は4PPMと同じ50%であるが、2回のうち1回が明るい状態、1回が暗い状態となるため、平均輝度は1/2=50%となる。すなわち、可視光通信の変調方式としては、4PPMの方がマンチェスタ符号方式よりも適しているといえる。ただし、可視光通信による輝度の変化が人間に認識される場合であっても通信性能が低下するわけではないため、用途によっては人間に認識される輝度の変化が生じる方式を用いても問題は無い。したがって、送信機(光源)は、例えば、ASK(Amplitude Shift Keying)方式、PSK(Phase Shift Keying)方式、PAM(Pulse Amplitude Modulation)などの変調方式を用いて、変調信号を生成し、光源を点灯、照射させてもよい。
<通信システムの全体構成例>
図5に示すように、可視光通信を行う通信システムは、少なくとも、光信号を送信(照射)する送信機と、光信号を受信(受光)する受信機とを含む。例えば、送信機には、表示する映像またはコンテンツに応じて送信内容を変更する可変光送信機と、固定の送信内容を送信し続ける固定光送信機の2種類がある。ただし、可変光送信機、固定光送信機のいずれかが存在するという構成でも、光による通信システムを構成することができる。
図5に示すように、可視光通信を行う通信システムは、少なくとも、光信号を送信(照射)する送信機と、光信号を受信(受光)する受信機とを含む。例えば、送信機には、表示する映像またはコンテンツに応じて送信内容を変更する可変光送信機と、固定の送信内容を送信し続ける固定光送信機の2種類がある。ただし、可変光送信機、固定光送信機のいずれかが存在するという構成でも、光による通信システムを構成することができる。
受信機は、送信機からの光信号を受信し、例えば、当該光信号に対応付けられた関連情報を取得してユーザへ提供することができる。
以上、可視光通信方式の概要について説明したが、以下の実施の形態で説明する光通信に適用可能な通信方式は上記の方式に限定されない。例えば、送信機の発光部は、複数の光源を用いて、データ送信を行ってもよい。また、受信装置の受光部は、CMOSなどのイメージセンサではなく、例えば、フォトダイオードなどの光信号を電気信号に変換可能なデバイスを用いることができる通信方式であってもよい。この場合、上述したラインスキャンサンプリングを用いてサンプリングを行う必要はないため、毎秒32400以上のサンプリングが必要な方式であっても適用可能である。また、用途によっては、例えば、赤外線、紫外線のような可視光以外の周波数の無線を用いた通信方式を用いてもよい。
(実施の形態1)
図6は、本実施の形態のおける機器100および端末150の構成の一例を示す。
図6は、本実施の形態のおける機器100および端末150の構成の一例を示す。
[機器100の構成]
機器100(可視光通信の送信機に対応)は、LED(Light Emitting Diode)などの可視光源、照明、あるいはライト(総称して、光源ともいう)を具備する。なお、以下では、機器100を「第1の機器」と呼ぶこともある。
機器100(可視光通信の送信機に対応)は、LED(Light Emitting Diode)などの可視光源、照明、あるいはライト(総称して、光源ともいう)を具備する。なお、以下では、機器100を「第1の機器」と呼ぶこともある。
図6の第1の機器100において、送信部102は、例えば、場所に関する情報または位置に関する情報101を入力とする。また、送信部102は、時刻に関する情報105を入力としてもよい。また、送信部102は、場所に関する情報または位置に関する情報101と、時刻に関する情報105との両方を入力としてもよい。
送信部102は、場所に関する情報または位置に関する情報101、および/または、時刻に関する情報105を入力とし、これらの入力信号に基づいて、(光)変調信号103を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
ここで、場所に関する情報または位置に関する情報101の例について説明する。
<例1>
場所に関する情報または位置に関する情報101は、場所・位置の緯度および/または経度の情報であってもよい。例えば、「北緯45度、東経135度」という情報を、場所に関する情報または位置に関する情報101としてもよい。
場所に関する情報または位置に関する情報101は、場所・位置の緯度および/または経度の情報であってもよい。例えば、「北緯45度、東経135度」という情報を、場所に関する情報または位置に関する情報101としてもよい。
<例2>
場所に関する情報または位置に関する情報101は、住所の情報であってもよい。例えば、「東京と千代田区○○町1-1-1」という情報を、場所に関する情報または位置に関する情報101としてもよい。
場所に関する情報または位置に関する情報101は、住所の情報であってもよい。例えば、「東京と千代田区○○町1-1-1」という情報を、場所に関する情報または位置に関する情報101としてもよい。
<例3>
場所に関する情報または位置に関する情報101は、建物、施設などの情報であってもよい。例えば、「東京タワー」という情報を、場所に関する情報または位置に関する情報101としてもよい。
場所に関する情報または位置に関する情報101は、建物、施設などの情報であってもよい。例えば、「東京タワー」という情報を、場所に関する情報または位置に関する情報101としてもよい。
<例4>
場所に関する情報または位置に関する情報101は、建物、施設などに設置したものの固有の場所・位置に関する情報であってもよい。
場所に関する情報または位置に関する情報101は、建物、施設などに設置したものの固有の場所・位置に関する情報であってもよい。
例えば、駐車場において5台分の自動車を停めることができるスペースがあるものとする。そのとき、第1の駐車スペースをA-1、第2の駐車スペースをA-2、第3の駐車スペースをA-3、第4の駐車スペースをA-4、第5の駐車スペースをA-5と呼ぶ。この場合、例えば、「A-3」という情報を、場所に関する情報または位置に関する情報101としてもよい。
なお、このような例は、駐車場でのケースに限ったものではない。例えば、コンサート施設、野球・サッカー・テニスなどのスタジアム、飛行機、空港ラウンジ、鉄道、駅、などにある、「エリア・座席・店舗・施設など」に関する情報を、場所に関する情報または位置に関する情報101としてもよい。
以上、場所に関する情報または位置に関する情報101の例について説明した。なお、場所に関する情報または位置に関する情報101の構成方法については、上述の例に限ったものではない。
[端末150の構成]
図6の端末150(可視光通信の受信機に対応)は、第1の機器100から送信された変調信号103を受信する。
図6の端末150(可視光通信の受信機に対応)は、第1の機器100から送信された変調信号103を受信する。
受光部(受光機)151は、例えば、CMOS(Complementary Metal Oxide Semiconductor)、または、有機CMOSなどのイメージセンサである。受光部151は、第1の機器100から送信された変調信号を含む光を受光し、受信信号152を出力する。
なお、受光部151から出力される受信信号152は、イメージセンサで取得された画像、動画の情報を含んだ信号であってもよく、その他の光-電気変換を行う(光から電気信号に変換する)素子の出力信号であってもよい。以降の説明では、受光部151で行われる処理について特に説明することなく受信側の装置が変調信号を受信すると記載した場合、受信側の装置が受光部151で、変調信号を含んだ光から、光-電気変換を行う(光から電気信号に変換する)ことにより、「情報を伝送するための変調信号」、または「画像・動画の信号」と「情報を伝送するための変調信号」を取得することを意味する。ただし、上述した方法は受信側の装置が変調信号の受信する方法の一例であり、変調信号の受信方法はこれらに限定されない。
そして、受信部153は、受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調、誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データ154を解析することにより、例えば、端末150の場所・位置を推定し、少なくとも端末150の場所・位置情報を含む情報156を出力する。
表示部157は、情報156を入力とし、情報156に含まれる端末150の場所・位置情報から、端末150の場所・位置に関する表示を行う。
[フレーム構成]
図7は、第1の機器100が送信する変調信号のフレーム構成の一例を示す。
図7は、第1の機器100が送信する変調信号のフレーム構成の一例を示す。
図7において、横軸は時間である。第1の機器100は、例えば、プリアンブル201を送信し、その後、制御情報シンボル202、場所情報または位置情報に関するシンボル203、時刻情報に関するシンボル204を送信する。
プリアンブル201は、第1の機器100が送信する変調信号を受信する端末150が、例えば、信号検出、時間同期、フレーム同期などを行うためのシンボルである。
制御情報シンボル202は、例えば、変調信号の構成方法、使用している誤り訂正符号化方式の方法、フレーム構成方法などのデータを含んでいるシンボルである。
場所情報または位置情報に関するシンボル203は、図6で示した場所に関する情報または位置に関する情報101を含んだシンボルである。
なお、フレームには、シンボル201、202、203以外のシンボルを含んでいてもよい。例えば、図7に示すように、時刻情報に関するシンボル204を含んでいてもよい。時刻情報に関するシンボル204は、例えば、第1の機器100が変調信号を送信する時刻に関する情報105が含まれているものとする。なお、第1の機器100が送信する変調信号のフレームの構成は、図7に限ったものではなく、また、変調信号に含まれるシンボルは図7の構成に限ったものではない。フレームには、他のデータ・情報を含むシンボルが含まれていてもよい。
[効果]
図6、図7で説明したように、第1の機器100が変調信号を送信し、端末150がその変調信号を受信した際の効果について説明する。
図6、図7で説明したように、第1の機器100が変調信号を送信し、端末150がその変調信号を受信した際の効果について説明する。
第1の機器100は、可視光により変調信号を送信しているため、この変調信号を受信することができる端末150は、第1の機器100が存在している場所から大きく離れた場所にはいない。したがって、第1の機器100が送信した場所・位置情報を端末150が得ることで、端末150は、高精度な位置情報を簡単に(複雑な信号処理を行わずに)得ることが可能である。
また、GPSからの衛星電波を受信しにくい場所に第1の機器100を設置すれば、端末150は、GPSの衛星からの電波が受信しづらい状況でも、第1の機器100が送信する変調信号を受信することで、高精度な位置情報を安全に入手することができる。
(実施の形態2)
本実施の形態では、実施の形態1で説明した第1の機器100が複数台存在する場合について説明する。
本実施の形態では、実施の形態1で説明した第1の機器100が複数台存在する場合について説明する。
本実施の形態では、例えば、図8のように、図6に示す第1の機器100と同様の構成を持つ第1-1の機器301-1が変調信号を送信する。図6に示す端末150と同様の構成を持つ端末302は、第1-1の機器301-1が送信した変調信号を受信し、例えば、第1-1の場所・位置に関する情報、および、第1-1の時刻に関する情報を得る。
同様に、図6に示す第1の機器100と同じ構成を持つ第1-2の機器301-2が変調信号を送信する。端末302は、第1-2の機器301-2が送信した変調信号を受信し、例えば、第1-2の場所・位置に関する情報、および、第1-2の時刻に関する情報を得る。
そして、端末302は、第1-1の場所・位置に関する情報、および、第1-2の場所・位置に関する情報から、図8における第1-1の機器301-1と第1-2の機器301-2との間の距離を算出することができる。また、端末302は、第1-1の時刻に関する情報と、例えば、端末302が第1-1の機器301-1が送信した変調信号を受信した時刻とに基づいて、端末302と第1-1の機器301-1との距離を算出することができる。同様に、端末302は、第1-2の時刻に関する情報と、例えば、端末302が第1-2の機器301-2が送信した変調信号を受信した時刻とに基づいて、端末302と第1-2の機器301-2との間の距離を算出することができる。
また、端末302は、第1-1の場所・位置に関する情報から、第1-1の機器301-1の位置が分かる。端末302は、第1-2の場所・位置に関する情報から、第1-2の機器301-2の位置が分かる。
また、端末302は、「第1-1の機器301-1と第1-2の機器301-2との間の距離」、「第1-1の機器301-1と端末302との間の距離」、「第1-2の機器301-2と端末302との間の距離」から、「第1-1の機器301-1と第1-2の機器301-2と端末302とが構成する三角形」が分かる。
したがって、端末302は、「第1-1の機器301-1の位置」、「第1-2の機器301-2の位置」、「第1-1の機器301-1と第1-2の機器301-2と端末302とが構成する三角形」から、端末302の位置を高精度に計算し、得ることができる。
ただし、端末302が、場所・位置情報を得るための測地測量方法は、上述の説明に限ったものではなく、どのような方法で測地測量を行ってもよい。例えば、測地測量方法の例としては、三角測量、多角測量、三辺測量、水準測量などがある。
以上のように、本実施の形態では、端末302が、場所情報を送信する光源を具備する複数の機器301から、上述のような情報を得ることで、端末302は、端末302の位置の推定を高精度に行うことができる。
また、本実施の形態では、実施の形態1で説明したように、GPSからの衛星電波を受信しにくい場所に、場所情報を送信する光源を具備する機器301を設置すると、端末302は、GPSの衛星からの電波が受信しづらい状況でも、機器301が送信する変調信号を受信することで、高精度な位置情報を安全に入手することができる。
なお、上述の例では、端末302が、2台の機器301が送信した変調信号を受信する例について説明しているが、端末302が、2台より多くの機器301が送信した変調信号を受信する場合でも同様に実施することができる。なお、機器301の台数が多いほど、端末302は位置情報を高精度に算出することができるという利点がある。
(実施の形態3)
図9は、本実施の形態のおける、機器400、端末450、および、端末450と通信を行う基地局470(または、AP(access point))の構成の一例を示す。
図9は、本実施の形態のおける、機器400、端末450、および、端末450と通信を行う基地局470(または、AP(access point))の構成の一例を示す。
機器400は、例えば、LEDなどの可視光源、照明、光源、またはライトを具備する。なお、以下では、機器400を「第1の機器」と呼ぶこともある。
なお、図9に示す第1の機器400において、図6に示す第1の機器100と同様に動作する構成については、同一の符号を付している。また、図9に示す端末450において、図6に示す端末150と同様に動作する構成については同一の符号を付している。
図9の第1の機器400において、送信部102は、例えば、場所に関する情報または位置に関する情報101、基地局470の識別子であるSSID(service set identifier)に関する情報401-1、アクセス先に関する情報401-2を入力とする。また、送信部102は、時刻に関する情報105を入力としてもよい。
送信部102は、場所に関する情報または位置に関する情報101、SSIDに関する情報401-1、および、アクセス先に関する情報401-2、および/または、時刻に関する情報105を入力とし、これらの入力信号に基づいて、(光)変調信号103を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
なお、場所に関する情報または位置に関する情報101の例については、実施の形態1で説明したので、ここでは説明を省略する。
次に、SSIDに関する情報401-1、および、アクセス先に関する情報401-2について説明する。
まず、SSIDに関する情報401-1について説明する。
SSIDに関する情報401-1は、図9における基地局470のSSIDを示す情報である。ここで、光信号により通知されるSSIDが安全な基地局のSSIDであることが判明している場合、第1の機器400は、端末450に対して安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図9の端末450が、基地局470より、情報を安全に入手することができる。
一方、第1の機器400は、基地局470に対してアクセスする端末を、第1の機器400が送信(照射)した光信号を受信可能な空間に位置する端末に制限することができる。
なお、端末450は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよい。また、端末450は、通知されたSSIDが安全であるか否かを判別する処理を別途実施してもよい。例えば、第1の機器400が所定の識別子を光信号に含めて送信し、端末450は、受信した識別子に基づいて、通知されたSSIDが安全な基地局のSSIDであるか否かを判断してもよい。また、端末450は、安全な基地局であるか否かを判断する処理を行わずに、可視光の特性を利用して、ユーザが安全性の高い第1の機器400を選択して、端末450で第1の機器400から光信号の受信を行い、安全性の高い基地局のSSIDを取得してもよい。
なお、図9では、基地局470のみを示しているが、例えば、基地局470以外の他の基地局(または、AP)が1つ以上存在する場合も、端末450は、第1の機器400から取得したSSIDを用いて基地局470にアクセスし、情報を入手することになる。
次に、アクセス先に関する情報401-2について説明する。
アクセス先に関する情報401-2は、端末450が、基地局470にアクセスした後に、情報を入手するためのアクセス先に関する情報である。なお、本実施の形態の具体的な動作例については後述する。
以上、SSIDに関する情報401-1、および、アクセス先に関する情報401-2について説明した。
端末450は、第1の機器400から送信された変調信号103を受信する。
受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサである。受光部151は、第1の機器400から送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データ154から、例えば、端末450の場所・位置を推定する。そして、データ解析部155は、少なくとも端末450の場所・位置情報を含む情報156、SSIDに関する情報451、および、アクセス先に関する情報452を出力する。
表示部157は、端末450の場所・位置情報を含む情報156、SSIDに関する情報451、アクセス先に関する情報452を入力とし、例えば、端末450の場所・位置、端末450が具備する無線装置453がアクセスする通信相手のSSID、および/または、アクセス先を表示する(以下、この表示を「第1の表示」と呼ぶ)。
例えば、第1の表示後、無線装置453は、SSIDに関する情報451、および、アクセス先に関する情報452を入力とする。そして、無線装置453は、SSIDに関する情報451に基づいて、通信を行う相手先と、例えば、電波を利用することで接続する。なお、図9の場合、無線装置453は、基地局470と接続することになる。
そして、無線装置453は、アクセス先に関する情報452に基づいて、アクセス先に関する情報を含むデータから変調信号を生成し、この変調信号を、基地局470に対して、例えば、電波を用いて送信する。
図9において端末450の通信相手である基地局470は、端末450が具備する無線装置453が送信した変調信号を受信する。
そして、基地局470は、受信した変調信号の復調、誤り訂正復号などの処理を行い、端末450から送信されたアクセス先の情報を含む受信データ471を出力する。基地局470は、このアクセス先の情報に基づいて、ネットワークを介し、所望のアクセス先にアクセスするとともに、例えば、アクセス先から所望の情報472を得る。そして、基地局470は、所望の情報472を入力とし、所望の情報472から変調信号を生成し、この変調信号を、端末450(無線装置453)に対して、例えば、電波を用いて送信する。
端末450の無線装置453は、基地局470から送信された変調信号を受信し、復調・誤り訂正復号などの処理を行い、所望の情報472を得る。
例えば、所望の情報472が、地図、建物の地図・フロアガイド、施設の地図・フロアガイド、駐車場の地図・フロアガイド、コンサート施設・スタジアム・飛行機・空港ラウンジ・鉄道・駅などにある「エリア・座席・店舗・施設」の情報などであるとする。
表示部157は、所望の情報472を含む情報454、少なくとも端末450の場所・位置情報を含む情報156、SSIDに関する情報451を入力とし、第1の表示後、所望の情報472と、少なくとも端末450の場所・位置情報を含む情報156とから、地図・フロアガイド・施設の情報・座席の情報・店舗の情報の表示上に、端末450の位置をマッピングした表示を行う。
図10は、表示部157の具体的な表示の例である。
図10の表示は「3階のフロア」であることを示している。そして、A-1、A-2、A-3、A-4、A-21、A-22、A-23、A-24は、車の駐車スペースの位置をそれぞれ示している。また、a-1、a-2は、エレベータの位置を示している。この駐車スペースおよびエレベータの位置を含む地図の情報が、所望の情報454(472)の一例である。
図10に示すように、表示部157は、端末450の現在位置を、地図上にマッピングして表示している。なお、現在位置は、少なくとも端末450の場所・位置情報を含む情報156から得られる情報である。
図11は、図9に示す第1の機器400が送信する変調信号のフレーム構成の一例を示す。図11において、横軸は時間である。また、図11において、図7と同様の情報を伝送するシンボルについては、同一の符号を付しており、その説明を省略する。
第1の機器400は、プリアンブル201、制御情報シンボル202、場所情報または位置情報に関するシンボル203、時刻情報に関するシンボル204に加え、SSIDに関するシンボル600-1、アクセス先に関するシンボル600-2を送信する。
SSIDに関するシンボル600-1は、図9におけるSSIDに関する情報401-1を送信するためのシンボルであり、アクセス先に関するシンボル600-2は、図9のアクセス先に関する情報401-2を送信するためのシンボルである。なお、図11のフレームにおいて、図11に記載しているシンボル以外のシンボルが含まれていてもよい。また、シンボルの送信する順番を含め、フレーム構成は、図11の構成に限ったものではない。
図12は、図9に示す基地局470が送信する変調信号のフレーム構成の一例を示す。図12において、横軸は時間である。
図12に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信する。
プリアンブル701は、基地局470が送信する変調信号を受信する端末450が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルである。
制御情報シンボル702は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報などのデータを含むシンボルである。端末450の無線装置453は、制御情報シンボル702の情報に基づいて、変調信号の復調などを実施する。
情報シンボル703は、情報を伝送するためのシンボルである。なお、本実施の形態の場合、情報シンボル703は、上述で説明した所望の情報472を伝送するためのシンボルである。
なお、図9に示す基地局470は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、基地局470は、情報シンボル703の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルの送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。また、図12において、周波数軸方向に複数のシンボルが存在してもよい。つまり、図12において、複数の周波数(複数のキャリア)にシンボルが存在してもよい。
また、例えば、第1の機器400が送信する図11に示すフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末450が、上述したような動作を実施することができる。
図13は、上述した、図9に示す「第1の機器400」、「端末450」、「基地局470」が実施する処理の一例を示すフローチャートである。
まず、第1の機器400は、図11に示すフレーム構成の変調信号を送信する(ST801)。
そして、端末450は、第1の機器400が送信した変調信号を受信し、端末450の場所・位置推定を行う(ST802)。
併せて、端末450は、第1の機器400が送信した変調信号を受信し、端末450がアクセスする基地局470のSSIDを把握する(ST803)。
そして、端末450は、地図などの情報を入手するためのアクセス先に関する情報452を含むデータを含む変調信号を、例えば、電波を用いて、基地局470に送信する(ST804)。
基地局470は、端末450が送信した変調信号を受信し、アクセス先の情報を得て、ネットワークを介して、所望のアクセス先にアクセスし、地図などの所望の情報(端末450に送信する情報)を得る(ST805)。
そして、基地局470は、入手した地図などの所望の情報を含む変調信号を、例えば、電波を用いて、端末450に送信する(ST806)。
端末450は、基地局470が送信した変調信号を受信し、地図などの情報を得る。そして、端末450は、地図などの情報と、既に得ている端末450の場所・位置の情報に基づいて、図10のような表示を行う。
次に、図10に示す場所に、複数の第1の機器400、および、基地局470を設置した場合の動作例について説明する。
図14は、図10と同様の場所の地図を記載している。すなわち、図14は、図10で説明したように「3階のフロア」の地図である。図14において、A-1、A-2、A-3、A-4、A-21、A-22、A-23、A-24は、車の駐車スペースを示し、a-1、a-2はエレベータを示す。
また、図14の「○」901-1の位置に、図9に示す第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-1の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-1の機器400」と呼ぶ。第1-1の機器400は、場所に関する情報または位置に関する情報として「A-1」という情報を持ち、「A-1」という情報を送信する。
図14の「○」901-2の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-2の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-2の機器400」と呼ぶ。第1-2の機器400は、場所に関する情報または位置に関する情報として「A-2」という情報を持ち、「A-2」という情報を送信する。
図14の「○」901-3の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-3の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-3の機器400」と呼ぶ。第1-3の機器400は、場所に関する情報または位置に関する情報として「A-3」という情報を持ち、「A-3」という情報を送信する。
図14の「○」901-4の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-4の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-4の機器400」と呼ぶ。第1-4の機器400は、場所に関する情報または位置に関する情報として「A-4」という情報を持ち、「A-4」という情報を送信する。
図14の「○」901-21の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-21の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-21の機器400」と呼ぶ。第1-21の機器400は、場所に関する情報または位置に関する情報として「A-21」という情報を持ち、「A-21」という情報を送信する。
図14の「○」901-22の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-22の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-22の機器400」と呼ぶ。第1-22の機器400は、場所に関する情報または位置に関する情報として「A-22」という情報を持ち、「A-22」という情報を送信する。
図14の「○」901-23の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-23の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-23の機器400」と呼ぶ。第1-23の機器400は、場所に関する情報または位置に関する情報として「A-23」という情報を持ち、「A-23」という情報を送信する。
図14の「○」901-24の位置に、図9の第1の機器400と同様の構成を持つ第1の機器を設置する。以下では、901-24の位置に設置される第1の機器400と同様の構成を持つ第1の機器を「第1-24の機器400」と呼ぶ。第1-24の機器400は、場所に関する情報または位置に関する情報として「A-24」という情報を持ち、「A-24」という情報を送信する。
また、図14の「◎」902の位置に、図9の基地局470と同様の構成を持つ基地局(または、AP)を設置する。以下では、図9の基地局470と同様の構成を持つ基地局(または、AP)を単に「基地局470」と呼ぶ。また、ここでは、902の位置に設置された基地局470のSSIDを「abcdef」とする。
図14の地図で示されている位置周辺に存在する端末450は、無線通信を行う場合、図14の902の位置に設置した基地局470にアクセスすればよい。
したがって、図14の901-1に設置されている「第1-1の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
同様に、図14の901-2に設置されている「第1-2の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-3に設置されている「第1-3の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-4に設置されている「第1-4の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-21に設置されている「第1-21の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-22に設置されている「第1-22の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-23に設置されている「第1-23の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
図14の901-24に設置されている「第1-24の機器400」は、SSIDに関する情報(図9の401-1参照)として「abcdef」を送信する。
以下、具体的な動作例を説明する。
図14の903-1の位置に図9の端末450と同様の構成を持つ端末(以下、単に「端末450」と呼ぶ)が存在するものとする。この場合、端末450は、図14の901-4の位置にある「第1-4の機器400」が送信した変調信号を受信し、「A-4」という位置情報を得る。また、端末450は、図14の901-4の位置にある「第1-4の機器400」が送信した変調信号を受信し、「abcdef」というSSIDの情報を得る。これにより、端末450は、図14の902に位置する基地局470にアクセスすることになる。また、端末450は、図14の902に位置する基地局470から、地図などの情報を得る。そして、端末450は、地図情報と位置情報を表示する(例えば、図10参照。ただし、図10はあくまでも表示の例である)。
同様に、図14の903-2の位置に図9の端末450と同様の構成を持つ端末(以下、単に「端末450」と呼ぶ)が存在するものとする。この場合、端末450は、図14の901-22の位置にある「第1の22の機器400」が送信した変調信号を受信し、「A-22」という位置情報を得る。また、端末450は、図14の901-22の位置にある「第1-4の機器400」が送信した変調信号を受信し、「abcdef」というSSIDの情報を得る。これにより、端末450は、図14の902に位置する基地局470にアクセスすることになる。また、端末450は、図14の902に位置する基地局470から、地図などの情報を得る。そして、端末450は、地図情報と位置情報を表示する(例えば、図10参照。ただし、図10はあくまでも表示の例である)。
なお、端末450は、図14のような地図(周辺情報)と位置情報を、端末450が具備する記憶部(図示せず)に記録し、端末450を使用するユーザが必要なときに、記憶部に記録されている情報を取り出せるようにしてもよい。これにより、ユーザはより便利に地図(周辺情報)と位置情報を活用することができる。
以上のように、第1の機器400は、可視光により変調信号を送信しているため、この変調信号を受信することができる端末450は、第1の機器400の位置から光信号を受光できる範囲内に限定される。したがって、第1の機器400が送信した場所・位置情報を端末450が受信することで、端末450は、高精度な位置情報を簡単に(複雑な信号処理をせずに)取得できる。
また、GPSからの衛星電波を受信しにくい場所に第1の機器400を設置すると、端末450は、GPSの衛星からの電波が受信しづらい状況でも、第1の機器400が送信する変調信号を受信することで、高精度な位置情報を、安全に入手することができる。
さらに、第1の機器400から送信されたSSIDの情報に基づいて、端末450が、基地局(または、AP)470と接続して情報を得ることで、端末450は、情報を安全に入手することができる。なぜなら、端末450が可視光の変調信号から情報を得た場合、可視光であるが故に、ユーザは変調信号を送信した第1の機器400を目視等により容易に認識することができ、情報元が安全かどうかの判断を行いやすいからである。これに対して、例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信は、無線LAN通信と比較して、SSIDを取得することに適している。
なお、図9の端末450の無線装置453に、さらに複数の信号が入力されてもよい。例えば、無線装置453を制御するための制御信号、および、基地局470に送信する情報などが、無線装置453に入力されてもよい。このとき、無線装置453が制御信号に基づいて通信を開始するという動作が一例として考えられる。以上のように、本実施の形態では、第1の機器の構成は図9の第1の機器400の構成に限ったものではなく、端末の構成は、図9の端末450の構成に限ったものではなく、基地局の接続先および構成についても図9に示した基地局470の接続先および構成に限定されない。
また、図9において、基地局470が1つ配置されている場合について記載しているが、端末450がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい。このとき、図9の第1の機器400が送信するSSIDに関するシンボルには、これらの複数の基地局(または、AP)のそれぞれのSSIDを示す情報が含まれていてもよい。この場合、図9の端末450の表示部157には、アクセス先の表示(前述した「第1の表示」)として、複数の基地局のSSIDのリスト、および/または複数のアクセス先のリストが表示される。そして、図9の端末450は、複数の基地局(または、AP)のSSIDの情報に基づいて、実際に無線接続する1つ以上の基地局を選択してもよい(つまり、複数の基地局と同時に接続してもよい)。
例えば、基地局470が3つ配置されるとする。ここでは、3つの基地局470をそれぞれ基地局#A、基地局#B、基地局#Cと呼ぶ。また、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とする。この場合、第1の機器400が送信する変調信号の図11に示すフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」とする情報を含んでいる。そして、図9の端末450は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報に基づいて、実際に無線接続する1つ以上の基地局470を選択する。
(実施の形態4)
図15は、本実施の形態における通信システムの構成の一例を示す図である。
図15は、本実施の形態における通信システムの構成の一例を示す図である。
図15の通信システムは、例えば、機器1000、端末1050、および、端末1050と通信を行う基地局(または、AP)470を含む。
機器1000は、例えば、LEDなどの可視光源、照明、光源、ライト(以下、光源104という)を具備する。なお、以下では、機器1000を本実施の形態における「第2の機器」と呼ぶこともある。
なお、図15に示す第2の機器1000において、図6に示す第1の機器100と同様に動作する構成要素については、同一の番号を付している。また、図15に示す端末1050において、図6に示す端末150と同様に動作する構成要素については同一の番号を付している。また、図15に示す端末1050の無線装置453と基地局470との間の通信は、例えば、電波を用いるものとする。
図15の第2の機器1000において、送信部102は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、および、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号103を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明する。
まず、SSIDに関する情報1001-1について説明する。
SSIDに関する情報1001-1は、図15における基地局470のSSIDを示す情報である。なお、例として、基地局470は、端末1050への変調信号を電波で送信し、端末1050からの変調信号を電波で受信する。つまり、第2の機器1000は、端末1050に対して安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図15の端末1050が、基地局470から、情報を安全に入手することができる。
一方、第2の機器1000は、基地局470に対してアクセスする端末を、第2の機器1000が送信(照射)した光信号を受信可能な空間に位置する端末に制限することができる。
なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよい。また、端末1050は、通知されたSSIDが安全であるか否かを判別する処理を別途行ってもよい。例えば、第2の機器1000が所定の識別子を光信号に含めて送信し、端末1050は、受信した識別子に基づいて、通知されたSSIDが安全な基地局のSSIDであるか否かを判断してもよい。
なお、図15では、基地局470のみを示しているが、例えば、基地局470以外の基地局(または、AP)が存在する場合も、端末1050は、第2の機器1000から取得したSSIDを用いて基地局470にアクセスし、情報を入手することになる。
次に、暗号鍵に関する情報1001-2について説明する。
暗号鍵に関する情報1001-2は、端末1050が基地局470と通信を行うために必要となる暗号鍵に関する情報である。端末1050は、第2の機器1000から、暗号鍵に関する情報1001-2を得ることで、基地局470との間で暗号化された通信を行うことが可能となる。
以上、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明した。
図15の端末1050は、第2の機器1000が送信した変調信号を受信する。なお、図15の端末1050において、図6の端末150、図9の端末450と同様に動作する構成要素については、同一の番号を付している。
端末1050が具備する受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサである。受光部151は、第2の機器1000から送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データ154から、例えば、接続先となる基地局のSSIDの情報1051、および、接続先となる基地局と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi(登録商標) Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末1050が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する(この表示を本実施の形態における「第1の表示」と呼ぶ)。
例えば、第1の表示後、無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局470との接続を確立する(例えば、接続は電波を利用するものとする)。このとき、基地局470も、端末1050が具備する無線装置453と通信を行う場合、変調信号を、例えば電波を用いて送信する。
その後、無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号1054に示される制御に従って、データ1053に対して変調を施し、変調信号を電波により送信する。
そして、例えば、基地局470は、ネットワークに対して、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局470は、端末1050に対して、変調信号を電波により送信する。
端末1050が具備する無線装置453は、電波により受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて表示を行う。
図16は、図15に示す第2の機器1000が送信する変調信号のフレーム構成の一例を示している。図16において、横軸は時間である。また、図16において、図7、図11と同様のシンボルについては、同一の番号を付しており、その説明を省略する。
SSIDに関するシンボル600-1は、図15のSSIDに関する情報1001-1を送信するためのシンボルであり、暗号鍵に関するシンボル1101は、図15の暗号鍵に関する情報1001-2を送信するためのシンボルである。データシンボル1102は、図15のデータ1002を送信するためのシンボルである。
第2の機器1000は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、第2の機器1000は、図16で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図16の構成に限ったものではない。
図17は、図15の端末1050が具備する無線装置453が送信する変調信号のフレーム構成の一例を示している。図17において、横軸は時間である。
図17に示すように、端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
プリアンブル1201は、端末1050の無線装置453が送信する変調信号を受信する基地局470が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
制御情報シンボル1202は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。基地局470は、制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施する。
情報シンボル1203は、端末1050の無線装置453がデータを伝送するためのシンボルである。
なお、端末1050の無線装置453は、図17に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、無線装置453は、情報シンボル1203の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図17の構成に限ったものではない。また、図17において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図17において、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。また、実施の形態3において、図9の端末450が具備する無線装置453が変調信号を送信する際、図17のフレーム構成を用いてもよい。
本実施の形態における基地局470が送信する変調信号のフレーム構成は、実施の形態3で説明した図12のフレーム構成と同様である。すなわち、図12に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信する。
プリアンブル701は、基地局470が送信する変調信号を受信する端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルである。
制御情報シンボル702は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。端末1050の無線装置453は、制御情報シンボル702の情報に基づいて、変調信号の復調などを実施する。
情報シンボル703は、基地局470がデータを伝送するためのシンボルである。
なお、図15に示す基地局470は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、基地局470は、情報シンボル703の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。また、図12において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図12において、複数の周波数(複数のキャリア)にシンボルが存在してもよい。
また、例えば、第2の機器1000が送信する図16のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末1050が、上述したような動作を実施することができる。
図18は、図15に示す「第2の機器1000」、「端末1050」、「基地局470」が実施する処理の一例を示すフローチャートである。
まず、第2の機器1000は、図16に示すフレーム構成の変調信号を送信する(ST1301)。
そして、端末1050は、第2の機器1000が送信した変調信号を受信し、端末1050がアクセスする基地局470のSSIDを取得する(ST1302)。
併せて、端末1050は、端末1050がアクセスする基地局470との通信に用いる暗号鍵を取得する(ST1303)。
そして、端末1050は、基地局470との電波による接続を実施する(ST1304)。端末1050が基地局470の応答を受信することにより、基地局470との接続が完了する(ST1305)。
そして、端末1050は、基地局470に対して、接続先の情報を、電波を用いて送信する(ST1306)。
基地局470は、ネットワークから、端末1050に送信するための情報を入手する(ST1307)。
そして、基地局470は、入手した情報を端末1050に、電波を用いて送信し、端末1050は情報を得る(ST1308)。端末1050は、例えば、必要なとき、基地局470を介して、ネットワークから必要な情報を取得する。
以上のように、第2の機器1000から送信されたSSIDの情報、暗号鍵の情報に基づいて、端末1050は、基地局470と接続し、情報を取得することで、安全性の保証された基地局470を介して情報を安全に入手することができる。なぜなら、端末1050が可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザが行いやすいからである。これに対して、例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信は、無線LAN通信と比較して、SSIDを取得することに適している。
なお、本実施の形態では、第2の機器1000が、暗号鍵の情報を送信する場合について説明した。しかし、例えば、基地局470が暗号鍵を用いた暗号化された通信を行っていない場合、第2の機器1000は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信してもよい。この場合、上述した構成のうち、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
また、第2の機器の構成は図15に示す第2の機器1000の構成に限ったものではなく、端末の構成は図15に示す端末1050の構成に限ったものではなく、基地局の接続先、構成は、図15に示す基地局470の接続先、構成に限ったものではない。
また、図15において、基地局470が1つ配置されている場合について記載しているが、端末1050がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい。なお、これらの複数の基地局と端末1050は、電波を用いて、変調信号の送受信をそれぞれ行うことになる。このとき、図15の第2の機器1000が送信するSSIDに関するシンボルには、これらの複数の基地局(または、AP)のそれぞれのSSIDの情報が含まれていてもよい。この場合、図15の端末1050の表示部157には、アクセス先の表示として、複数の基地局のSSIDのリスト、および/または複数のアクセス先のリストが表示される。また、図15の第2の機器1000が送信する暗号鍵に関するシンボルには、これらの複数の基地局(または、AP)のそれぞれと接続するために用いる暗号鍵の情報が含まれていてもよい。そして、図15の端末1050は、複数の基地局のSSIDの情報、暗号鍵の情報に基づいて、(例えば、電波により)実際に無線接続する1つ以上の基地局を選択してもよい(つまり、複数の基地局と同時に接続してもよい)。
例えば、基地局470が3つ配置されるとする。ここでは、3つの基地局470をそれぞれ基地局#A、基地局#B、基地局#Cと呼ぶ。また、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とする。また、基地局#Aと接続するための暗号鍵を「123」とし、基地局#Bと接続するための暗号鍵を「456」とし、基地局#Cと接続するための暗号鍵を「789」とする。
この場合、第2の機器1000が送信する変調信号の図16のフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」とする情報を含んでいる。また、図16のフレーム構成における暗号鍵に関するシンボル1101は、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」とする情報を含んでいる。
そして、図15の端末1050は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報を得る。また、端末1050は、暗号鍵に関するシンボル1101を受信し、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、端末1050は、これらの情報に基づいて、(例えば、電波により)実際に無線接続する1つ以上の基地局を選択し、接続する。
また、本実施の形態のように、LEDを例とする光源を利用して、端末1050がアクセスする基地局470を設定することで、端末1050が送信する無線のための変調信号に、端末1050と基地局470との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。また、基地局470が送信する変調信号に、端末1050と基地局470との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。よって、本実施の形態では、無線通信のデータ伝送効率を向上させることができる。
また、暗号鍵は、上述したように、無線LANのSSIDのための暗号鍵であってもよく、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい。つまり、何らかの制限のために暗号鍵が導入されればよい。
(実施の形態5)
図19は、本実施の形態における通信システムの構成の一例を示す図である。
図19は、本実施の形態における通信システムの構成の一例を示す図である。
図19の通信システムは、例えば、機器1400A、1400B、端末1050、および、端末1050と通信を行う基地局(または、AP)470を含む。
機器1400A,1400Bは、例えば、LEDなどの可視光源、照明、光源、ライト(以下、光源1406-1、1406-2という)を具備する。なお、以下では、機器1400Aを本実施の形態における「第3の機器」と呼び、機器1400Bを本実施の形態における「第4の機器」と呼ぶ。
なお、図19に示す端末1050において、図1に示す端末150又は図15に示す端末1050と同様に動作する構成要素については、同一番号を付している。また、図19に示す基地局(またはAP)470についても、図9に示す基地局470と同様に動作する構成要素については、図9と同一番号を付している。また、図19に示す端末1050の無線装置453と基地局470との間の通信は、例えば、電波を用いるものとする。
図19の第3の機器1400Aにおいて、送信部1404-1は、SSIDに関する情報1401-1、データ1402-1を入力とし、これらの入力信号に基づいて、(光)変調信号1405-1を生成し、変調信号1405-1を出力する。そして、変調信号1405-1は、例えば、光源1406-1から送信される。
図19の第4の機器1400Bにおいて、送信部1404-2は、暗号鍵に関する情報1403-2、データ1402-2を入力とし、これらの入力信号に基づいて、(光)変調信号1405-2を生成し、変調信号1405-2を出力する。そして、変調信号1405-2は、例えば、光源1406-2から送信される。
次にSSIDに関する情報1401-1、および、暗号鍵に関する情報1403-2について説明する。
まず、SSIDに関する情報1401-1について説明する。
SSIDに関する情報1401-1は、図19における基地局470のSSIDを示す情報である。つまり、第3の機器1400Aは、端末1050に対して電波による安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図19の端末1050は、基地局470から、情報を安全に入手することができる。
なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよい。また、端末1050は、通知されたSSIDが安全であるか否かを判別する処理を別途行ってもよい。例えば、第3の機器1400Aが所定の識別子を光信号に含めて送信し、端末1050は、受信した識別子に基づいて、通知されたSSIDが安全な基地局のSSIDであるか否かを判断してもよい。
なお、図19では、基地局470のみを示しているが、例えば、基地局470以外の基地局(または、AP)が存在する場合も、端末1050は、第3の機器1400Aから取得したSSIDおよび第4の機器1400Bから取得した暗号鍵を用いて基地局470にアクセスし、情報を入手することになる。
次に、暗号鍵に関する情報1403-2について説明する。
暗号鍵に関する情報1403-2は、端末1050が基地局470と電波による通信を行うために必要となる暗号鍵に関する情報である。端末1050は、第4の機器1400Bから、暗号鍵に関する情報1403-2を得ることで、基地局470との間で暗号化された通信を行うことが可能となる。
以上、SSIDに関する情報1401-1、および、暗号鍵に関する情報1403-2について説明した。
図19の端末1050は、第3の機器1400Aが送信した変調信号を受信する。
端末1050が具備する受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサである。受光部151は、第3の機器1400Aから送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局のSSIDの情報1051を出力する。無線装置453は、SSIDの情報1051から、無線装置453が電波により接続する基地局470のSSIDの情報を得ることになる。
図19の端末1050は、第4の機器1400Bが送信した変調信号を受信する。
端末1050が具備する受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサなどである。受光部151は、第4の機器1400Bから送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
端末1050が具備する無線装置453は、(例えば、電波による)接続先となる基地局と通信を行うための暗号鍵の情報1052から、無線装置453が接続する基地局470の暗号鍵の情報を得ることになる。
表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末1050が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する(この表示を本実施の形態における「第1の表示」と呼ぶ)。
例えば、第1の表示後、無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局470との電波による接続を確立する。このとき、基地局470も、端末1050が具備する無線装置453と通信を行う場合、変調信号を、例えば電波を用いて送信する。
その後、無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号1054に示される制御に従って、データ1053に対して変調を施し、変調信号を電波により送信する。
そして、例えば、基地局470は、ネットワークに対して、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局470は、端末1050に対して、変調信号を電波により送信する。
端末1050が具備する無線装置453は、電波により受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて表示を行う。
図20は、図19に示す第3の機器1400Aが送信する変調信号のフレーム構成の一例を示している。図20において、横軸は時間である。また、図20において、図2、図11、図16と同様のシンボルについては、同一の符号を付しており、説明を省略する。
SSIDに関するシンボル600-1は、図19のSSIDに関する情報1401-1を送信するためのシンボルである。データシンボル1102は、データ1402-1を送信するためのシンボルである。
第3の機器1400Aは、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、データシンボル1102を送信する。なお、第3の機器1400Aは、図20で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図20の構成に限ったものではない。
図21は、図19の第4の機器1400Bが送信する変調信号のフレーム構成の一例を示している。図21において、横軸は時間である。また、図21において、図7、図16と同様のシンボルについては、同一符号を付しており、説明を省略する。
暗号鍵に関するシンボル1101は、図19の暗号鍵に関する情報1403-2を送信するためのシンボルである。データシンボル1102は、データ1402-2を送信するためのシンボルである。
第4の機器1400Bは、プリアンブル201、制御情報シンボル202、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、図19の第4の機器1400Bは、図21で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図21に限ったものではない。
本実施の形態における無線装置453が送信する変調信号のフレーム構成は、実施の形態4で説明した図17のフレーム構成と同様である。すなわち、図17に示すように、端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
プリアンブル1201は、図19の端末1050の無線装置453が送信する変調信号を受信する基地局(または、AP)470が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
制御情報シンボル1202は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。基地局470は、制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施する。
情報シンボル1203は、端末1050の無線装置453がデータを伝送するためのシンボルである。
なお、図19に示す端末1050の無線装置453は、図17に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、無線装置453は、情報シンボル1203の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図17の構成に限ったものではない。また、図17において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図17において、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
本実施の形態における基地局470が送信する変調信号のフレーム構成は、実施の形態3で説明した図12のフレーム構成と同様である。すなわち、図12に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信する。
プリアンブル701は、基地局470が送信する変調信号を受信する図19の端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルである。
制御情報シンボル702は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。図19の端末1050の無線装置453は、制御情報シンボル702の情報に基づいて、変調信号の復調などを実施する。
情報シンボル703は、図19の基地局470がデータを伝送するためのシンボルである。
なお、図19に示す基地局470は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、基地局470は、情報シンボル703の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。また、図12において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図12において、複数の周波数(複数のキャリア)にシンボルが存在してもよい。
また、例えば、第3の機器1400Aが送信する図20のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末1050が、上述したような動作を実施することができる。同様に、第4の機器1400Bが送信する図21のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末1050が、上述したような動作を実施することができる。
図22は、図19に示す「第3の機器1400A」、「第4の機器1400B」、「端末1050」、「基地局470」が実施する処理の第1の例を示すフローチャートである。なお、図22において、図18と同様に動作するものについては、同一番号を付している。
まず、第3の機器1400Aは、図20に示すフレーム構成の変調信号を送信する(ST1701)。
そして、端末1050は、第3の機器1400Aが送信した変調信号を受信し、端末1050がアクセスする基地局470のSSIDを取得する(ST1702)。
次に、第4の機器1400Bは、図21に示すフレーム構成の変調信号を送信する(ST1703)。
そして、端末1050、第4の機器1400Bが送信した変調信号を受信し、端末1050がアクセスする基地局470との通信に用いる暗号鍵を取得する(ST1704)。
そして、端末1050は、基地局470との電波による接続を実施する(ST1304)。端末1050が基地局470の応答を受信することにより、基地局470との電波による接続が完了する(ST1305)。
そして、端末1050は、基地局470に対して、接続先の情報を、電波を用いて送信する(ST1306)。
基地局470は、ネットワークから、端末1050に送信するための情報を入手する(ST1307)。
そして、基地局470は、入手した情報を端末1050に、電波を用いて送信し、端末1050は情報を得る(ST1308)。端末1050は、例えば、必要なとき、基地局470を介して、ネットワークから必要な情報を取得する。
図23は、図19に示す「第3の機器1400A」、「第4の機器1400B」、「端末1050」、「基地局470」が実施する処理の第2の例を示すフローチャートである。なお、図23において、図18と同様に動作するものについては、同一番号を付している。
まず、第4の機器1400Bは、図21に示すフレーム構成の変調信号を送信する(ST1801)。
そして、端末1050は、第4の機器1400Bが送信した変調信号を受信し、端末1050がアクセスする基地局470との通信に用いる暗号鍵を取得する(ST1802)。
次に、第3の機器1400Aは、図20に示すフレーム構成の変調信号を送信する(ST1803)。
そして、端末1050は、第3の機器1400Aが送信した変調信号を受信し、端末1050がアクセスする基地局470のSSIDを取得する(ST1804)。
そして、端末1050は、基地局470との電波による接続を実施する(ST1304)。端末1050が基地局470の応答を受信することにより、基地局470との電波による接続が完了する(ST1305)。
そして、端末1050は、基地局470に対して、接続先の情報を、電波を用いて送信する(ST1306)。
基地局470は、ネットワークから、端末1050に送信するための情報を入手する(ST1307)。
そして、基地局470は、入手した情報を端末1050に、電波を用いて送信し、端末1050は情報を得る(ST1308)。端末1050は、例えば、必要なとき、基地局470を介して、ネットワークから必要な情報を取得する。
以上のように、第3の機器1400Aから送信されたSSID、および、第4の機器1400Bから送信された暗号鍵の情報に基づいて、端末1050は、基地局470と接続し、情報を取得する。すなわち、端末1050がSSIDの情報を取得する機器と暗号鍵の情報を取得する機器とが異なるので、安全性の保証された基地局470を介して情報を安全に入手することができる。なぜなら、端末1050が可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザが行いやすいからである。これに対して、例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信は、無線LAN通信と比較して、SSIDを取得することに適している。
なお、本実施の形態では、第4の機器1400Bが、暗号鍵の情報を送信する場合を説明した。しかし、例えば、基地局470が暗号鍵を用いた暗号化された通信を行っていない場合、第4の機器1400Bによって暗号鍵の情報が送信されず、第3の機器1400AによってSSIDに関する情報のみが送信されればよい。この場合、上述下構成のうち、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
また、本実施の形態のように、SSIDに関する情報を送信する機器(第3の機器1400A)と、暗号鍵に関する情報を送信する機器(第4の機器1400B)とを別にすることで、端末1050は基地局470とより安全な通信を実現することができる。
例えば、図24のような空間を考える。図24には、エリア#1とエリア#2があり、エリア#1とエリア#2の間には出入口と壁がある。すなわち、図24の空間では、エリア#1からエリア#2の移動、および、エリア#2からエリア#1の移動は、出入口からのみできるものとする。
図24のエリア#1に、基地局470、第3の機器1400A、および、第4の機器1400Bがそれぞれ設置されるものとする。一方、エリア#2には、第3の機器1400Aのみが設置されるものとする。また、図24において、基地局470が送信する電波は、エリア#1、エリア#2いずれのエリアでも受信が可能であるとするものとする。
このとき、第4の機器1400Bが設置されているエリア#1に存在する端末1050は、第4の機器1400Bから基地局470の暗号鍵を取得して、基地局470と通信が可能となる。また、エリア#1で基地局470との接続を行った端末1050が、エリア#2に移動した場合にも、エリア#1において第4の機器1400Bから取得していた暗号鍵を用いて、基地局470と通信が可能である。また、エリア#1で基地局470との接続を行った端末1050が、エリア#1、エリア#2以外のエリアに移動し、その後、エリア#1、エリア#2の何れかのエリアに戻ってきた場合も、エリア#1において第4の機器1400Bから取得していた暗号鍵を用いて、基地局470との通信が可能となる。
一方で、エリア#1に入ることができない端末1050は、第4の機器1400Bから暗号鍵を入手することができない。この場合、端末1050は、基地局(または、AP)470のSSIDのみを知っていることになる。そこで、例えば、基地局470のSSIDのみを知っていることで享受することができるサービスによる当該基地局470との通信を、端末1050が受けられるようにしてもよい。基地局470のSSIDのみを知っていることで享受できるサービスは、SSIDと暗号鍵の両方を知っている場合に享受できるサービスよりも限定的なものとすることができる。
したがって、エリア#1に入ることができた端末1050のみが、基地局470と通信を行うことができるようになる。これにより、通信の安全性を確保することができる。また、エリア毎に異なるサービスを提供することができるというシステムを構築することも可能となる。
なお、端末1050が基地局470と通信を行うための暗号鍵を(例えば、ある時間区間ごとに)変更することで、変更前の暗号鍵を保持する端末1050は、基地局470と通信が行うことができなくなる。このような運用を行うことで、より安全な通信を行うことが可能となる。
また、第3の機器の構成、第4の機器の構成は図19に示す第3の機器1400A、第4の機器1400Bの構成に限ったものではなく、端末の構成は、図19に示す端末1050の構成に限ったものではなく、基地局の接続先、構成は、図19に示す基地局470の接続先、構成に限ったものではない。
また、図19において、基地局470が1つ配置されている場合について記載しているが、端末1050がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい。このとき、図19の第3の機器1400Aが送信するSSIDに関するシンボルには、これらの複数の基地局470のそれぞれのSSIDの情報が含まれていてもよい。また、図19の第4の機器1400Bが送信する暗号鍵に関するシンボルには、これらの複数の基地局のそれぞれと接続するために用いる暗号鍵の情報が含まれていてもよい。この場合、図19の端末1050の表示部157には、アクセス先の表示(前述した「第1の表示」)として、複数の基地局のSSIDのリスト、および/または複数のアクセス先のリストが表示される。そして、図19の端末1050は、複数の基地局のSSIDの情報、暗号鍵の情報に基づいて、実際に無線接続する1つ以上の基地局を選択してもよい(つまり、複数の基地局と同時に接続してもよい)。
例えば、基地局470が3つ配置されるとする。ここでは、3つの基地局470をそれぞれ基地局#A、基地局#B、基地局#Cと呼ぶ。また、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とする。また、基地局#Aと接続するための暗号鍵を「123」とし、基地局#Bと接続するための暗号鍵を「456」とし、基地局#Cと接続するための暗号鍵を「789」とする。
この場合、第3の機器1400Aが送信する変調信号の図20のフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」とする情報を含んでいる。また、第4の機器1400Bが送信する変調信号の図21のフレーム構成における暗号鍵に関するシンボル1101は、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」とする情報を含んでいる。
そして、図19の端末1050は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報を得る。また、端末1050は、暗号鍵に関するシンボル1101を受信し、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、端末1050は、これらの情報に基づいて、(例えば、電波による)無線接続する基地局を選択し、接続する。
また、本実施の形態のように、LEDを例とする光源を利用して、端末1050がアクセスする基地局470を設定することで、端末1050が送信する無線のための変調信号に、端末1050と基地局470との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。また、基地局470が送信する変調信号に、端末1050と基地局470との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。よって、本実施の形態では、無線通信のデータ伝送効率を向上させることができる。
また、暗号鍵は、上述したように、無線LANのSSIDのための暗号鍵であってもよく、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい。つまり、何らかの制限のために暗号鍵が導入されればよい。
(実施の形態6)
図25は、本実施の形態における通信システムの構成の一例を示す図である。
図25は、本実施の形態における通信システムの構成の一例を示す図である。
図25の通信システムは、例えば、基地局2000、および、端末1050を含む。また、基地局2000は、送信装置2001と無線装置2002とを備える。なお、図25において、図6、図15と同様に動作するものについては、同一番号を付している。また、図25の無線装置2002と無線装置453との通信は、例えば、電波を用いるものとする。
図25の基地局(または、AP)2000の送信装置2001は、例えば、LEDなどの可視光源、照明、光源、ライト(以下、光源104という)を具備する。まず、送信装置2001(つまり、「LEDなどの可視光源、照明、光源、ライトに関連する部分」)の動作について説明する。
送信装置2001において、送信部102は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号103を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明する。
まず、SSIDに関する情報1001-1について説明する。
SSIDに関する情報1001-1は、図25における基地局2000の、電波を用いる無線装置2002のSSIDを示す情報である。つまり、送信装置2001は、端末1050に対して安全な無線によるアクセス先である無線装置2002へのアクセスを提供することができる。これにより、図25の端末1050が、無線装置2002から、情報を安全に入手することができる。
一方、送信装置2001は、無線装置2002に対してアクセスする端末を、送信装置2001が送信(照射)した光信号を受信可能な空間に位置する端末に制限することができる。
なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよい。また、端末1050は、通知されたSSIDが安全であるか否かを判別する処理を別途行ってもよい。例えば、送信装置2001が所定の識別子を光信号に含めて送信し、端末1050は、受信した識別子に基づいて、通知されたSSIDが安全な基地局のSSIDであるか否かを判断してもよい。
なお、図25では、基地局2000のみを示しているが、例えば、基地局2000以外の基地局(または、AP)が存在する場合も、端末1050は、送信装置2001から取得したSSIDおよび暗号鍵を用いて基地局2000の無線装置2002にアクセスし、情報を入手することになる。
次に、暗号鍵に関する情報1001-2について説明する。
暗号鍵に関する情報1001-2は、端末1050が無線装置2002と通信を行うために必要となる暗号鍵に関する情報である。端末1050は、送信装置2001から、暗号鍵に関する情報1001-2を得ることで、無線装置2002との間で暗号化された通信を行うことが可能となる。
以上、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明した。
図25の端末1050は、送信装置2001が送信した変調信号を受信する。なお、図25の端末1050において、図6の端末150、図15の端末1050と同様に動作する構成要素については、同一の番号を付している。
端末1050が具備する受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサである。受光部151は、送信装置2001から送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局2000の無線装置2002のSSIDの情報1051、および、接続先となる基地局2000の無線装置2002と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末1050が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する(この表示を本実施の形態における「第1の表示」と呼ぶ)。
例えば、第1の表示後、無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局2000の無線装置2002との接続を確立する(例えば、接続は電波を利用するものとする)。このとき、基地局2000の無線装置2002も、端末1050が具備する無線装置453と通信を行う場合、変調信号を、例えば電波を用いて送信する。
その後、無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号1054に示される制御に従って、データ1053に対して変調を施し、変調信号を電波により送信する。
そして、例えば、基地局2000の無線装置2002は、ネットワークに対して、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局2000の無線装置2002は、端末1050に対して、変調信号を電波により送信する。
端末1050が具備する無線装置453は、電波により受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて表示を行う。
本実施の形態における基地局2000の送信装置2001が送信する変調信号のフレーム構成は、実施の形態4で説明した図16のフレーム構成と同様である。すなわち、図16において、SSIDに関するシンボル600-1は、図25のSSIDに関する情報1001-1を送信するためのシンボルであり、暗号鍵に関するシンボル1101は、図25の暗号鍵に関する情報1001-2を送信するためのシンボルである。データシンボル1102は、図25のデータ1002を送信するためのシンボルである。
図16に示すように、基地局2000の送信装置2001は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、基地局2000の送信装置2001は、図16で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図16の構成に限ったものではない。
本実施の形態における端末1050が具備する無線装置453が送信する変調信号のフレーム構成は、実施の形態4で説明した図17のフレーム構成と同様である。すなわち、図17に示すように、図25の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
このとき、プリアンブル1201は、無線装置453が送信する変調信号を受信する基地局2000の無線装置2002が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
制御情報シンボル1202は、例えば、端末1050が変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。基地局2000の無線装置2002は、制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施する。
情報シンボル1203は、端末1050の無線装置453がデータを伝送するためのシンボルである。
なお、端末1050の無線装置453は、図17に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、無線装置453は、情報シンボル1203の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図17の構成に限ったものではない。また、図17において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図17において、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
本実施の形態における無線装置2002が送信する変調信号のフレーム構成は、実施の形態3で説明した図12のフレーム構成と同様である。すなわち、図12に示すように、無線装置2002は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信する。
プリアンブル701は、無線装置2002が送信する変調信号を受信する端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルである。
制御情報シンボル702は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。端末1050の無線装置453は、制御情報シンボル702の情報に基づいて、変調信号の復調などを実施する。
情報シンボル703は、無線装置2002がデータを伝送するためのシンボルである。
なお、図25に示す基地局2000の無線装置2002は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、無線装置2002は、情報シンボル703の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。また、図12において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図12において、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
また、例えば、送信装置2001が送信する図16のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末1050が、上述したような動作を実施することができる。
図26は、図25に示す「基地局2000の送信装置2001」、「端末1050」、「基地局2000の無線装置2002」が実施する処理の一例を示すフローチャートである。
まず、送信装置2001は、図16のフレーム構成の変調信号を送信する(ST1301)。
そして、端末1050は、送信装置2001が送信した変調信号を受信し、端末1050がアクセスする基地局2000(無線装置2002)のSSIDを取得する(ST1302)。
併せて、端末1050は、端末1050がアクセスする基地局2000(無線装置2002)との通信に用いる暗号鍵を取得する(ST1303)。
そして、端末1050は、基地局2000の無線装置2002との電波による接続を実施する(ST1304)。端末1050が基地局2000の無線装置2002の応答を受信することにより、端末1050と基地局2000の無線装置2002との接続が完了する(ST1305)。
そして、端末1050は、基地局2000の無線装置2002に対して、接続先の情報を、電波を用いて送信する(ST1306)。
基地局2000の無線装置2002は、ネットワークから、端末1050に送信するための情報を入手する(ST1307)。
そして、基地局2000の無線装置2002は、入手した情報を端末1050に、電波を用いて送信し、端末1050は情報を得る(ST1308)。端末1050は、例えば、必要なとき、基地局2000の無線装置2002を介して、ネットワークから必要な情報を取得する。
以上のように、基地局2000の送信装置2001から送信されたSSIDの情報、暗号鍵の情報に基づいて、端末1050は、基地局2000の無線装置2002と接続し、情報を取得することで、安全性の保証された基地局2000を介して情報を安全に入手することができる。なぜなら、端末1050が可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザが行いやすいからである。これに対して、例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信は、無線LAN通信と比較して、SSIDを取得することに適している。
なお、本実施の形態では、送信装置2001が、暗号鍵の情報を送信する場合を説明した。しかし、例えば、基地局2000の無線装置2002が暗号鍵を用いた暗号化された通信を行っていない場合、送信装置2001は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信してもよい。この場合、送信装置2001の構成のうち、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
また、図25のように、基地局2000の無線装置2002のSSIDおよび暗号鍵を書き換え可能な構成をとってもよい。例えば、図25では、無線装置2002には、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2が入力される。基地局2000の無線装置2002は、入力されたSSIDに関する情報1001-1、暗号鍵に関する情報1001-2により、SSIDと暗号鍵を書き換える。このようにすると、端末1050と基地局2000の無線装置2002との通信の安全性がさらに確保されることになる。なお、図25では、基地局2000の無線装置2002がSSID及び暗号鍵の書き換え機能を有しているが、SSID及び暗号鍵の双方又は何れか一方の書き換え機能がない構成であってもよい。
また、送信装置の構成は図25に示す送信装置2001の構成に限ったものではなく、端末の構成は、図25に示す端末1050の構成に限ったものではなく、無線装置の接続先、構成は、図25に示す無線装置2002の接続先、構成に限ったものではない。
また、図25において、基地局2000が1つ配置されている場合について記載しているが、端末1050がアクセス可能な(安全な)基地局(または、AP)2000の無線装置2002が複数存在していてもよい。なお、これらの複数の基地局2000の無線装置2002と端末1050は、電波を用いて、変調信号の送受信を行うことになる。このとき、図25の送信装置2001が送信するSSIDに関するシンボルには、これらの複数の基地局2000の無線装置2002のそれぞれのSSIDの情報が含まれていてもよい。また、図25の送信装置2001が送信する暗号鍵に関するシンボルには、これらの複数の基地局2000の無線装置2002のそれぞれと接続するために用いる暗号鍵の情報が含まれていてもよい。そして、図25の端末1050は、複数の基地局2000の無線装置2002のSSIDの情報、暗号鍵の情報に基づいて、(例えば、電波による)無線接続する基地局2000の無線装置2002を選択してもよい(または、複数の基地局の無線装置と接続してもよい)。
例えば、無線装置2002を具備する基地局2000が3つあるとする。ここでは、3つの基地局2000の無線装置2002をそれぞれ無線装置#A、無線装置#B、無線装置#Cと呼ぶ。また、無線装置#AのSSIDを「abcdef」とし、無線装置#BのSSIDを「ghijk」とし、無線装置#CのSSIDを「pqrstu」とする。また、無線装置#Aと接続するための暗号鍵を「123」とし、無線装置#Bと接続するための無線装置を「456」とし、無線装置#Cと接続するための暗号鍵を「789」とする。
この場合、送信装置2001が送信する変調信号の図16のフレーム構成におけるSSIDに関するシンボル600-1は、「無線装置#AのSSIDを「abcdef」」、「無線装置#BのSSIDを「ghijk」」、「無線装置#CのSSIDを「pqrstu」」とする情報を含んでいる。また、図16のフレーム構成における暗号鍵に関するシンボル1101は、「無線装置#Aと接続するための暗号鍵を「123」」、「無線装置#Bと接続するための暗号鍵を「456」」、「無線装置#Cと接続するための暗号鍵を「789」」とする情報を含んでいる。
そして、図25の端末1050は、SSIDに関するシンボル600-1を受信し、「無線装置#AのSSIDを「abcdef」」、「無線装置#BのSSIDを「ghijk」」、「無線装置#CのSSIDを「pqrstu」」の情報を得る。また、端末1050は、暗号鍵に関するシンボル1101を受信し、「無線装置#Aと接続するための暗号鍵を「123」」、「無線装置#Bと接続するための暗号鍵を「456」」、「無線装置#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、端末1050は、これらの情報に基づいて、(例えば、電波による)無線接続する基地局を選択し、接続する。
また、本実施の形態のように、LEDを例とする光源を利用して、端末1050がアクセスする基地局2000の無線装置2002を設定することで、端末1050が送信する無線のための変調信号に、端末1050と基地局2000との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。また、基地局2000が送信する変調信号に、端末1050と基地局2000との無線通信の接続のための手続きを行う特別な設定のためのモードが不要となる。よって、本実施の形態では、無線通信のデータ伝送効率を向上させることができる。
また、暗号鍵は、上述したように、無線LANのSSIDのための暗号鍵であってもよく、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい。つまり、何らかの制限のために暗号鍵が導入されればよい。
(実施の形態7)
図27は、本実施の形態における通信システムの構成の一例を示す図である。
図27は、本実施の形態における通信システムの構成の一例を示す図である。
図27の通信システムは、機器1000、端末1050、端末1050と通信を行う基地局(またはAP)470-1(基地局#1)、基地局(またはAP)470-2(基地局#2)、基地局(またはAP)470-3(基地局#3)を含む。なお、図27において、図6、図9、図15と同様に動作するものについては同一番号を付している。
機器1000は、例えば、LEDなどの可視光、照明、光源、ライト(光源104)を具備する。なお、以下では、機器1000を本実施の形態における「第5の機器」と呼ぶ。また、図27の無線装置453と基地局470-1(基地局#1)の通信、無線装置453と基地局470-2(基地局#2)の通信、無線装置453と基地局470-3(基地局#3)の通信は、例えば、電波を用いるものとする。
図27の第5の機器1000において、送信部102は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号103を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明する。
まず、SSIDに関する情報1001-1について説明する。
SSIDに関する情報1001-1は、例えば、図27における基地局470-1(基地局#1)のSSIDを示す情報、基地局470-2(基地局#2)のSSIDを示す情報、および、基地局470-3(基地局#3)のSSIDを示す情報を含む。なお、例として、基地局470-1、470-2、470-3は、変調信号を電波で送信し、電波の変調信号を受信する。つまり、第5の機器1000は、端末1050に対して安全なアクセス先である基地局470-1、470-2、470-3へのアクセスを提供することができる。これにより、図27の端末1050が、基地局470-1、470-2、470-3から、情報を安全に入手することができる。
一方、第5の機器1000は、基地局470-1、470-2、470-3に対してアクセスする端末を、第5の機器1000が送信(照射)した光信号を受信可能な空間に位置する端末に制限することができる。
なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよい。また、端末1050は、通知されたSSIDが安全であるか否かを判別する処理を別途行ってもよい。例えば、第5の機器1000が所定の識別子を光信号に含めて送信し、端末1050は、受信した識別子に基づいて、通知されたSSIDが安全な基地局のSSIDであるか否かを判断してもよい。
なお、図27では、基地局470-1、470-2、470-3を示しているが、例えば、基地局470-1、470-2、470-3以外の基地局(または、AP)が存在してもよい。
次に、暗号鍵に関する情報1001-2について説明する。
暗号鍵に関する情報1001-2は、端末1050が基地局470-1、470-2、470-3と通信を行うために必要となる暗号鍵に関する情報である。端末1050は、第5の機器1000から、暗号鍵に関する情報1001-2を得ることで、「端末1050と基地局470-1との間」、「端末1050と基地局470-2との間」、「端末1050と基地局470-3との間」で、暗号化された通信を行うことが可能となる。
以上、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明した。
図27の端末1050は、第5の機器1000が送信した変調信号を受信する。なお、図27の端末1050において、図6の端末150、図9の端末450と同様に動作する構成要素については、同一の番号を付している。
端末1050が具備する受光部151は、例えば、CMOS、または、有機CMOSなどのイメージセンサなどである。受光部151は、第5の機器1000から送信された変調信号を含む光を受光し、受信信号152を出力する。
そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号152に含まれる変調信号に対して復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
データ解析部155は、受信データ154を入力とし、受信データ154から、例えば、接続先となる基地局470-1、470-2、470-3のSSIDの情報1051、および、接続先となる基地局470-1、470-2、470-3と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末1050が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する(この表示を本実施の形態における「第1の表示」と呼ぶ)。
例えば、第1の表示後、無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局470-1、470-2、470-3のいずれかとの接続を確立する(例えば、接続は電波を利用するものとする)。このとき、接続された基地局470も、端末1050が具備する無線装置453と通信を行う場合、変調信号を、例えば電波を用いて送信する。
その後、無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号1054に示される制御に従って、データ1053に対して変調を施し、変調信号を電波として送信する。
そして、例えば、接続された基地局470は、ネットワークに対し、データの送信(471-1、471-2、471-3のいずれか)、およびネットワークからのデータの受信(472-1、472-2、472-3のいずれか)を行う。その後、例えば、接続された基地局470は、端末1050に対して、変調信号を電波により送信する。
端末1050が具備する無線装置453は、電波により受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて表示を行う。
第5の機器1000が送信する変調信号として、図27の場合、3種類のフレーム構成が存在する。図28は3種類のフレーム構成のうちの1つであるフレーム2300-1(フレーム#1)であり、図29は3種類のフレーム構成のうちの1つであるフレーム2300-2(フレーム構成#2)であり、図30は3種類のフレーム構成のうちの1つであるフレーム2300-3(フレーム構成#3)である。
図28は、第5の機器1000が送信する変調信号のフレーム2300-1(フレーム#1)の構成の例を示している。図28において、横軸は時間である。また、図28において、図2、図16と同様のシンボルについては、同一番号を付しており、説明を省略する。図28のフレーム2300-1(フレーム#1)は、図27の基地局470-1(基地局#1)のSSIDの情報と基地局470-1(基地局#1)の暗号鍵(基地局470-1へアクセスするための暗号鍵)の情報を送信するためのフレームである。
SSIDに関するシンボル2301-1は、図27のSSIDに関する情報1001-1を送信するためのシンボルである。また、SSIDに関するシンボル2301-1は、図27の第5の機器1000が基地局470-1(基地局#1)のSSIDを送信するためのシンボルである。
暗号鍵に関するシンボル2302-1は、図27の暗号鍵に関する情報1001-2を送信するためのシンボルである。また、暗号鍵に関するシンボル2302-1は、図27の第5の機器1000が基地局470-1(基地局#1)の暗号鍵(基地局470-1へアクセスするための暗号鍵)を送信するためのシンボルである。
第5の機器1000は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-1、暗号鍵に関するシンボル2302-1、データシンボル1102を送信する。なお、第5の機器1000は、図28で記載しているシンボル以外のシンボルを含むフレーム2300-1(フレーム#1)を送信してもよい。また、シンボルの送信する順番を含め、フレーム2300-1(フレーム#1)の構成は図28の構成に限ったものではない。
図29は、第5の機器1000が送信する変調信号のフレーム2300-2(フレーム#2)の構成の例を示している。図29において、横軸は時間である。また、図29において、図2、図16と同様のシンボルについては、同一番号を付しており、説明は省略する。図29のフレーム2300-2(フレーム#2)は、図27の基地局470-2(基地局#2)のSSIDの情報と基地局470-2(基地局#2)の暗号鍵(基地局470-2へアクセスするための暗号鍵)の情報を送信するためのフレームである。
SSIDに関するシンボル2301-2は、図27のSSIDに関する情報1001-1を送信するためのシンボルである。また、SSIDに関するシンボル2301-2は、図27の第5の機器1000が基地局470-2(基地局#2)のSSIDを送信するためのシンボルである。
暗号鍵に関するシンボル2302-2は、図27の暗号鍵に関する情報1001-2を送信するためのシンボルである。また、暗号鍵に関するシンボル2302-2は、図27の第5の機器1000が基地局470-2(基地局#2)の暗号鍵(基地局470-2へアクセスするための暗号鍵)を送信するためのシンボルである。
第5の機器1000は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-2、暗号鍵に関するシンボル2302-2、データシンボル1102を送信する。なお、第5の機器1000は、図29で記載しているシンボル以外のシンボルを含むフレーム2300-2(フレーム#2)を送信してもよい。また、シンボルの送信する順番を含め、フレーム2300-2(フレーム#2)の構成は図29の構成に限ったものではない。
図30は、第5の機器1000が送信する変調信号のフレーム2300-3(フレーム#3)の構成の例を示している。図30において、横軸は時間である。また、図30において、図2、図16と同様のシンボルについては、同一番号を付しており、説明は省略する。図30のフレーム2300-3(フレーム#3)は、図27の基地局470-3(基地局#3)のSSIDの情報と基地局470-3(基地局#3)の暗号鍵(基地局470-3へアクセスするための暗号鍵)の情報を送信するためのフレームである。
SSIDに関するシンボル2301-3は、図27のSSIDに関する情報1001-1を送信するためのシンボルである。また、SSIDに関するシンボル2301-3は、図27の第5の機器1000が基地局470-3(基地局#3)のSSIDを送信するためのシンボルである。
暗号鍵に関するシンボル2302-3は、図27の暗号鍵に関する情報1001-2を送信するためのシンボルである。また、暗号鍵に関するシンボル2302-3は、第5の機器1000が基地局470-3(基地局#3)の暗号鍵(基地局470-3へアクセスするための暗号鍵)を送信するためのシンボルである。
第5の機器1000は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-3、暗号鍵に関するシンボル2302-3、データシンボル1102を送信する。なお、第5の機器1000は、図30で記載しているシンボル以外のシンボルを含むフレーム2300-3(フレーム#3)を送信してもよい。また、シンボルの送信する順番を含め、フレーム2300-3(フレーム#3)の構成は図30の構成に限ったものではない。
図31は、第5の機器1000が、「図28のフレーム2300-1(フレーム#1)」、「図29のフレーム2300-2(フレーム#2)」、「図30のフレーム2300-3(フレーム#3)」を送信する際の送信方法の例を示す。図31において、横軸は時間である。
図31において、「フレーム#1群送信」2601-1、2601-2では、図28のフレーム2300-1(フレーム#1)が1つ以上送信される。また、「フレーム#2群送信」2602-1、2602-2では、図29のフレーム2300-2(フレーム#2)が1つ以上送信される。また、「フレーム#3群送信」2603-1、2603-2では、図30のフレーム2300-3(フレーム#3)が1つ以上送信される。
このときの詳しい説明を以下で行う。
まず、「フレーム#1群送信」2601-1、2601-2において図28のフレーム2300-1(フレーム#1)が1つ以上送信される点について説明する。
例えば、受光部151において、CMOS、または、有機CMOSなどのイメージセンサを用いた場合、動画または静止画におけるフレーム単位で、受信信号を処理する可能性がある。なお、例えば、動画において、「4K 30p」と記載されていた場合、1フレームの画素数が3840×2160であり、1秒間のフレーム数が30であることを意味している。
したがって、第5の機器1000が、1フレーム内に「図28のフレーム2300-1(フレーム#1)」、「図29のフレーム2300-2(フレーム#2)」、「図30のフレーム2300-3(フレーム#3)」が存在するような構成の変調信号を送信すると、図27の端末1050は、複数の基地局470-1、470-2、470-3から、アクセスする基地局470の選択が難しくなる。
そこで、本実施の形態では、図31に示すようなフレーム構成を提案する。
<第1-1の方法>
第1-1の方法として、「フレーム#1群送信」2601-1、2601-2の各々に、図28のフレーム2300-1(フレーム#1)を複数含めることで、「フレーム#1群送信」2601-1、2601-2の各々が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
第1-1の方法として、「フレーム#1群送信」2601-1、2601-2の各々に、図28のフレーム2300-1(フレーム#1)を複数含めることで、「フレーム#1群送信」2601-1、2601-2の各々が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
こうすることで、端末1050が、第5の機器1000より、動画または静止画における1フレーム内に「図28のフレーム2300-1(フレーム#1)」、「図29のフレーム2300-2(フレーム#2)」、「図30のフレーム2300-3(フレーム#3)」、つまり、異なるSSID、暗号鍵を含む変調信号を受信することを防ぐことができる。よって、図27の端末1050は、複数の基地局470-1、470-2、470-3から、アクセスする基地局470を容易に選択することができる。
<第2-1の方法>
第2-1の方法として、図28のフレーム2300-1(フレーム#1)が占める時間区間を、動画または静止画におけるフレームよりも長い時間になるようにする。
第2-1の方法として、図28のフレーム2300-1(フレーム#1)が占める時間区間を、動画または静止画におけるフレームよりも長い時間になるようにする。
例えば、図28におけるSSIDに関するシンボル2301-1には、「基地局#1のSSIDの情報」が複数含まれており(つまり、「基地局#1のSSIDの情報」が繰り返し含まれている)、暗号鍵に関するシンボル2302-1には、「基地局#1の暗号鍵の情報(基地局#1と接続するための暗号鍵の情報)」が複数含まれている(つまり、「基地局#1の暗号鍵の情報(基地局#1と接続するための暗号鍵の情報)」が繰り返し含まれている)構成でもよい。
こうすることで、端末1050が、第5の機器1000より、動画または静止画における1フレーム内に「図28の2300-1のフレーム#1」、「図29の2300-2のフレーム#2」、「図30の2300-3のフレーム#3」、つまり、異なるSSID、暗号鍵を含む変調信号を受信することを防ぐことができる。よって、端末1050は、複数の基地局470-1、470-2、470-3から、アクセスする基地局470を容易に選択することができる。
同様に考えると、「フレーム#2群送信」2602-1、2602-2は、以下のような構成であるとよい。
<第1-2の方法>
第1-2の方法として、「フレーム#2群送信」2602-1、2602-2の各々に、図29のフレーム2300-2(フレーム#2)を複数含めることで、「フレーム#2群送信」が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
第1-2の方法として、「フレーム#2群送信」2602-1、2602-2の各々に、図29のフレーム2300-2(フレーム#2)を複数含めることで、「フレーム#2群送信」が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
<第2-2の方法>
第2-2の方法として、図29のフレーム2300-2(フレーム#2)が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
第2-2の方法として、図29のフレーム2300-2(フレーム#2)が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
例えば、図29におけるSSIDに関するシンボル2301-2には、「基地局#2のSSIDの情報」が複数含まれており(つまり、「基地局#2のSSIDの情報」が繰り返し含まれている)、暗号鍵に関するシンボル2302-2には、「基地局#2の暗号鍵の情報(基地局#2と接続するための暗号鍵の情報)」が複数含まれている(つまり、「基地局#2の暗号鍵の情報(基地局#2と接続するための暗号鍵の情報)」が繰り返し含まれている)構成でもよい。
同様に考えると、「フレーム#3群送信」2603-1、2603-2は、以下のような構成であるとよい。
<第1-3の方法>
第1-3の方法として、「フレーム#3群送信」2603-1、2603-2の各々に、図30のフレーム2300-3(フレーム#3)を複数含めることで、「フレーム#3群送信」が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
第1-3の方法として、「フレーム#3群送信」2603-1、2603-2の各々に、図30のフレーム2300-3(フレーム#3)を複数含めることで、「フレーム#3群送信」が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
<第2-3の方法>
第2-3の方法として、図30のフレーム2300-3(フレーム#3)が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
第2-3の方法として、図30のフレーム2300-3(フレーム#3)が占める時間区間が、動画または静止画におけるフレームよりも長い時間になるようにする。
例えば、図30におけるSSIDに関するシンボル2301-3には、「基地局#3のSSIDの情報」が複数含まれており(つまり、「基地局#3のSSIDの情報」が繰り返し含まれている)、暗号鍵に関するシンボル2302-3には、「基地局#3の暗号鍵の情報(基地局#3と接続するための暗号鍵の情報)」が複数含まれている(つまり、「基地局#3の暗号鍵の情報(基地局#3と接続するための暗号鍵の情報)」が繰り返し含まれている)構成でもよい。
次に、図28から図31のように第5の機器1000がフレームを送信した場合の効果について説明する。
一例として、図32における2700のエリアについて考える。図32では、「○」2701-1、2701-2、2701-3、2701-4、2701-5、2701-6、2701-7、2701-8、2701-8、2701-9、2701-10の位置に、第5の機器1000が配置される。また、「◎」2702-1の位置に基地局470-1(基地局#1)が配置され、「◎」2702-2の位置に基地局470-2(基地局#2)が配置され、「◎」2702-3の位置に基地局470-3(基地局#3)が配置される。
そして、例えば、エリア2703の内側に、端末1050の構成と同様の構成を具備する端末(以下、単に端末1050と表す)が99台存在するものとする。
このとき、例えば、「○」2701-5、2701-10の位置に配置された第5の機器1000がともに、基地局470-3(基地局#3)のSSIDの情報を送信し、基地局470-3(基地局#3)にアクセスするための暗号鍵の情報を送信する。これは、「○」2701-5、2701-10の位置から最も近い基地局が基地局470-3(基地局#3)であるからである。
この場合、99台の全ての端末1050は、基地局470-3(基地局#3)にアクセスすることになる。すると、アクセス集中により、基地局470-3(基地局#3)にアクセス困難な端末1050が存在する可能性が高くなってしまう。
この点を考慮すると、99台の端末1050が、基地局470-1(基地局#1)(「◎」2702-1の位置)、基地局470-2(基地局#2)([◎]2702-2の位置)、基地局470-3(基地局#3)([◎]2702-3の位置)にできる限り均等にアクセスするような制御を行うことで、上述したような、基地局470にアクセス困難な端末1050の存在を低減することができる。
例えば、99台の端末1050が第5の機器1000にアクセスするタイミングは一般的には異なることになるので、本実施の形態のように、第5の機器1000が、図28から図31のようにフレームを送信した場合、99台の端末1050は、各々が第5の機器1000にアクセスするタイミングに応じて、基地局470-1、470-2、470-3の何れか1つのSSIDおよび暗号鍵を取得することになる。これにより、「99台の端末1050が、基地局470-1、470-2、470-3にできる限り均等にアクセスするような制御を行う」ことになる。したがって、上述したような、基地局470にアクセス困難な端末1050の存在を低減することができる。
なお、図31では、第5の機器1000が、「図28のフレーム2300-1(フレーム#1)」、「図29のフレーム2300-2(フレーム#2)」、「図30のフレーム2300-3(フレーム#3)」を送信する際の送信方法の例を示している。しかし、第5の機器100が「図28のフレーム2300-1(フレーム#1)」、「図29のフレーム2300-2(フレーム#2)」、「図30のフレーム2300-3(フレーム#3)」を送信する際の送信方法はこれに限ったものではない。
例えば、図31では、第5の機器1000が「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」の順に繰り返し送信する構成を示しているが、「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」は、図31のような順番で送信する必要はない。または、例えば、第5の機器1000が「フレーム群1送信」、「フレーム群#2送信」、「フレーム群#3送信」を時間的にランダムに送信してもよいし、「フレーム群1送信」、「フレーム群#2送信」、「フレーム群#3送信」の送信の順番を、図31とは異なる規則的な順番で送信してもよい。少なくとも、第5の機器1000が「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」を送信していればよい。
また、図31では、第5の機器1000が「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」を連続的に送信しているが、必ずしも連続的に送信しなくてもよい。例えば、図31において、フレーム#1群2601-1とフレーム#2群送信2602-2に時間的な間隔があってもよい。
また、図31では、「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」のみで構成しているが、他のシンボル、他のフレームが存在していてもよい。さらに、図31および図27において、基地局470の数を3台としているが、基地局470の数はこれに限ったものではなく、基地局470を2台以上とした場合でも、基地局470が3台の場合と同様に動作することが可能である。したがって、例えば、基地局470がN台(Nは2以上の整数)ある場合、第5の機器1000が図31のような送信を行う場合、「フレーム#k群送信」が存在することになる。なお、kは1以上N以下の整数となる。そして、「フレーム#k群送信」には、SSIDに関するシンボル(基地局#kのSSIDの情報)が含まれており、暗号鍵に関するシンボル(基地局#kのアクセスのための暗号鍵の情報)が含まれていることになる。
図27の端末1050が具備する無線装置453が送信する変調信号のフレーム構成は、実施の形態4で説明した図17のフレーム構成と同様である。すなわち、図17に示すように、図27の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
プリアンブル1201は、端末1050の無線装置453が送信する変調信号を受信する基地局470-1、470-2、470-3が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
制御情報シンボル1202は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。基地局470-1、470-2、470-3は、制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施する。
情報シンボル1203は、端末1050の無線装置453がデータを伝送するためのシンボルである。
なお、図27の端末1050の無線装置453は、図17に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボル1203の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図17の構成に限ったものではない。そして、図17において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
図27の基地局470-1、470-2、470-3が送信する変調信号のフレーム構成は、実施の形態3で説明した図12のフレーム構成と同様である。すなわち、図12に示すように、基地局470-1、470-2、470-3は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信する。
プリアンブル701は、基地局470-1、470-2、470-3が送信する変調信号を受信する端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルである。
制御情報シンボル702は、例えば、変調信号を生成するのに使用された、誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含むシンボルである。端末1050の無線装置453は、制御情報シンボル702の情報に基づいて、変調信号の復調などを実施する。
情報シンボル703は、基地局470-1、470-2、470-3がデータを伝送するためのシンボルである。
なお、基地局470-1、470-2、470-3は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい。例えば、基地局470-1、470-2、470-3は、情報シンボル703の途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなどを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。そして、図12において、周波数軸方向に複数のシンボルが存在していてもよい。つまり、図12において、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
図33は、「第5の機器1000」、「端末1050」、「基地局#X」が実施する処理の一例を示すフローチャートである。なお、Xは1または2または3となる。
まず、第5の機器1000は、図31のフレーム構成の変調信号を送信する(ST2801)。
そして、端末1050は、第5の機器1000が送信した変調信号を受信し、端末1050がアクセスする基地局を図27の基地局470-1(基地局#1)、基地局470-2(基地局#2)、基地局470-3(基地局#3)から選択する(ST2802)。
以下、この点について説明する。端末1050は、基地局470の何れかとアクセスするために、第5の機器1000が送信した変調信号を受信する。このとき、端末1050は、例えば、動画または静止画のある1フレームにおいて、図31における「フレーム#1群送信」、「フレーム#2群送信」、「フレーム#3群送信」のいずれかを得ることになる。そして、端末1050は、得られた基地局の情報(例えばSSID)から、端末1050がアクセスする基地局470を基地局470-1(基地局#1)、基地局470-2(基地局#2)、基地局470-3(基地局#3)のいずれかに決定する。
次に、端末1050は、第5の機器1000が送信した変調信号を受信し、端末1050がアクセスする基地局#XのSSIDを取得する(ST2803)。
併せて、端末1050は、端末1050がアクセスする基地局#Xとの通信に用いる暗号鍵を取得する(ST2804)。
そして、端末1050は、基地局#Xとの電波による接続を実施する(ST2805)。端末1050が基地局#Xの応答を受信することにより、端末1050と基地局#Xとの接続が完了する(ST2806)。
そして、端末1050は、基地局#Xに対し、接続先の情報を、電波を用いて送信する(ST2807)。
基地局#Xは、ネットワークから、端末1050に送信するための情報を入手する(ST2808)。
そして、基地局#Xは、入手した情報を端末1050に、電波を用いて送信し、端末1050は情報を得る(ST2809)。端末1050は、例えば、必要なとき、基地局#Xを介して、ネットワークから必要な情報を取得する。
以上のように、第5の機器1000から送信されたSSIDの情報、暗号鍵の情報に基づいて、端末1050は、基地局470と接続し、情報を取得することで、安全性の保証された基地局470を介して情報を安全に入手することができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザが行いやすいからである。これに対して、例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信は、無線LAN通信と比較して、SSIDを取得することに適している。
なお、本実施の形態では、第5の機器1000が、暗号鍵の情報を送信する場合について説明した。しかし、例えば、基地局470が暗号鍵を用いた暗号化された通信を行っていない場合、第5の機器1000は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信してもよい。この場合、上述した構成のうち、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
また、第5の機器の構成は図27に示す第5の機器1000の構成に限ったものではなく、端末の構成は、図27に示す端末1050の構成に限ったものではなく、基地局#1、#2、#3の接続先、構成についても図27に示す基地局470-1、470-2、470-3の接続先、構成に限ったものではない。
また、本実施の形態によれば、あるエリアに端末1050が複数存在していた場合でも、基地局470にアクセス困難な端末1050の存在を低減することができる。
なお、図32において、「○」2701-1、2701-2、2701-3、2701-4、2701-5、2701-6、2701-7、2701-8、2701-8、2701-9、2701-10の位置に配置した第5の機器1000が送信する変調信号のフレーム構成は、全てが図31の構成と同様であってもよく、第5の機器1000が送信する変調信号がそれぞれ異なるフレーム構成であってもよく、同一のフレーム構成の変調信号を送信する第5の機器1000が複数存在していてもよい。
(実施の形態8)
本実施の形態では、上述した光信号を用いた通信方法の適用例の一つとして、光信号を用いた通信方法を画像処理と組み合わせて用いる場合について説明する。本願実施の形態に係る通信システムは、例えば、自動車と自動車との間の通信(車―車間通信)や、道路またはその付近に設置された通信機器と自動車との間の通信(路―車間通信)などに適用することもできる。
本実施の形態では、上述した光信号を用いた通信方法の適用例の一つとして、光信号を用いた通信方法を画像処理と組み合わせて用いる場合について説明する。本願実施の形態に係る通信システムは、例えば、自動車と自動車との間の通信(車―車間通信)や、道路またはその付近に設置された通信機器と自動車との間の通信(路―車間通信)などに適用することもできる。
まず、本実施の形態における基本構成を簡単に説明する。ただし、この基本構成は自動車に限らず、スマートフォンやノートPCのような携帯端末にも適用可能であり、さらにその他の電子機器に対しても適用可能である。
図34は、本実施の形態における通信装置の一例である通信装置A1000の構成を示すブロック図である。通信装置A1000は、受光装置A1002、制御部A1004、無線装置A1006を備える。
受光装置A1002は、図示しない送信機から照射された光信号A1001の受信および/または静止画像や動画像の撮影をして、受光データA1003を出力する。制御部A1004は、通信装置A1000が備える他の機器の制御や、受光装置A1002から入力される受光データA1003や無線装置A1006から入力される無線受信データに対する処理などを行う。無線装置A1006は、制御部A1004からの制御信号A1005に基づいて、他の通信装置A1100と無線接続して無線通信を行い、無線送信データの送信や無線受信データの受信を行う。無線送信データおよび無線受信データは無線通信データA1008として無線装置A1006と制御部A1004との間で送受信される。制御部A1004は、受光装置A1002の動作を制御するための制御信号A1007を出力し、受光装置A1002は制御信号A1007に基づいて動作の制御を行う。
制御部A1004は、受光装置A1002で生成された受光データA1003に静止画データや動画データを含む場合、静止画データや動画データを用いた画像処理を行ってもよい。制御部A1004が行う画像処理の例の詳細については、後で説明する。
図35は、本実施の形態における通信装置の別の一例である通信装置A2000の構成を示すブロック図である。図35において、図34に示す通信装置A1000と同様の機能を備える構成要素は、図34と同じ符号を付しており、説明を省略する。通信装置A2000は、提示部A2003及び入力部A2004を備える点で、通信装置A1000と異なる。
制御部A1004は、受光データA1003および/または無線受信データやその他の入力された情報、メモリから読みだされた情報などに基づいて画像を生成し、生成された画像を提示情報A2002として、提示部A2003へ出力する。提示情報A2002は、例えば、受光データA1003またはその他のデータに基づいて生成された画像情報や文字情報などを含む情報であり、提示部A2003は、例えば提示情報A2002として得られた画像情報や文字情報から生成された画像信号を表示する液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどであるが、これらに限定されない。例えば、提示情報A2002は音声情報であり、提示部A2003は音声情報に従って音声を出力するスピーカーであるとしてもよい。入力部A2004は、ユーザの操作に従って、ユーザが行った操作を示す情報や入力された文字情報等の入力情報A2005を制御部A1004に出力する。入力部A2004は、例えばタッチパネル、物理キー、フローティングタッチディスプレイ、モーションセンサーなどであるがこれらに限定されない。例えば、入力部A2004はマイクであり、入力情報A2005は音声情報であるとしてもよい。
次に、受光装置A1002の詳細な構成について説明する。
図36は、本実施の形態における受光装置A1002の詳細な構成の第1の例である受光装置A3000の構成を示すブロック図である。
受光装置A3000は、受光部A3001および受光信号処理部A3003を備える。受光部A3001は、例えば図6の受光部151と同様の構成であり、外部から入射した光を受光し、受信信号A3002を出力する。受光信号処理部A3003は、受信信号A3002に対して所定の処理を施して得られる信号を受光データA1003として送出する。
受光信号処理部A3003が、受信信号A3002に対して施す所定の処理は、一例では、受信信号A3002に含まれる変調信号の成分に対する復調、誤り訂正復号などの処理を含み、復調して得られた復調データA4002を受光データA1003として出力する。また別の一例では、受光信号処理部A3003は、所定の処理として、CMOSまたは有機CMOSなどのイメージセンサである受光部A3001で取得された受信信号A3002から静止画データまたは動画像データを生成して、生成された静止画データまたは動画像データを受光データA1003として出力する。ここで、静止画データまたは動画像データは画像圧縮方式または動画像圧縮方式を用いて符号化された符号化後のデータであってもよいし、圧縮されていないデータであってもよい。以下で、受光信号処理部A3003の構成例の詳細について説明する。
図37は、受光信号処理部A3003の構成の一例である受光信号処理部A4000の構成を示す。受光信号処理部A4000は、受信処理部A4001を有する。受信処理部A4001は受信信号A3002に対して復調、誤り訂正などの処理を施し、得られた復調データA4002を受光データA1003として出力する。受光信号処理部A4000に入力される受信信号A3002は、例えば、上述したラインスキャンサンプリング、ラインスキャンサンプリングの応用例、フレームによるサンプリング等の光信号の受信用のサンプリング方式を用いてCMOSセンサなどのイメージセンサで取得された信号であってもよいし、フォトダイオードなどの光信号を電気信号に変換可能な、イメージセンサとは異なる素子を用いて、光信号の受信に要求されるサンプリングレートでサンプリングされた信号であってもよい。
図38は、受光信号処理部A3003の構成の別の一例である受光信号処理部A5000の構成を示す。受光信号処理部A5000は、画像データ生成部A5001を有し、光信号の情報を含んだ画像データA5002を、受光データA1003として出力する。すなわち、画像データ生成部A5001は受信信号A3002から静止画データまたは動画データを生成して、生成された静止画データまたは動画データである画像データA5002を受光データA1003として出力する。
以降の説明では、説明を簡単にするため、特に言及しない場合は、画像データA5002が動画データである例について説明する。しかしながら、以降の説明における動画データを静止画データ、または動画データと静止画データの組み合わせに置き換えても同様に実施可能であることは言うまでもない。
受光装置A1002が受光信号処理部A5000を備える場合、受光部A3001はCMOSセンサなどのイメージセンサである。受光装置A1002は、例えば、受光部A3001の動作の制御を行い、図39の第1の期間は光信号の受信用のサンプリング方式を用いて受信信号A3002を取得し、図39の第2の期間は動画撮影用の撮像方式を用いて受信信号A3002を取得する。
以降では、光信号の受信用のサンプリング方式を用いて取得した信号を光通信用の撮像信号と呼び、動画撮影用の撮像方式を用いて取得した信号を動画用の撮像信号と呼ぶ。また、画像データ生成部A5001が光通信用の撮像信号から生成したデータを光通信用の撮像データと呼び、動画用の撮像信号から生成したデータを動画用の撮像データと呼ぶ。
図39は、上述した、一つのイメージセンサを用いて光通信用の撮像信号と動画用の撮像信号の両方を時分割で取得する場合における、イメージセンサの制御方法の一例を示す。受光装置A1002は、図39の第1の期間において、受光部A3001を光信号の受信用のサンプリング方式を用いて光通信用の撮像信号を取得し、第2の期間において、受光部A3001を動画撮影用の撮像方式を用いて動画用の撮像信号を取得する。
ここで、第1の期間及び第2の期間は、例えば、それぞれ動画における1または複数のフレームに相当する期間である。しかしながら、受光装置A1002は、動画におけるフレームと同期しないタイミングで、光信号の受信用のサンプリング方式と動画撮影用の撮像方式とを切り替えてもよい。受光装置A1002は、第1の期間を周期的に配置してもよいし、非周期的に配置してもよい。また、第1の期間を配置する周期などの第1の期間を配置するためのルールは動的に変更されてもよい。
なお、受光装置A1002は、第1の期間を開始する時刻および/または第1の期間を終了する時刻を、外部から入力された信号に基づいて決めてもよい。例えば、受光装置A1002は、制御部A1004から入力された制御信号A1007に基づいて受光部A3001の動作を制御する。このとき、制御部A1004は、通信装置A1000、A2000の外部の送信装置から無線通信、有線通信、光通信などの通信方式を用いて受信した信号や、通信装置A1000、A2000が備えるイメージセンサなどのセンサから取得されたデータに基づいて、受光部A3001の動作を制御するための制御信号を出力してもよい。
受光部A3001の動作を制御するための制御情報は、例えば、上述した第1の期間と第2の期間を配置するためのルールを指定する信号であってもよいし、通常は動画撮影用の撮像方式を用いて動画用の撮像信号を取得する受光部A3001に対し、一時的または継続的に光信号の受信用のサンプリング方式を用いて光通信用の撮像信号を取得するよう指示する信号であってもよい。なお、具体的な例については、後で説明する。
なお、上記説明では、第1の期間と第2の期間が交互に配置される例について説明したが、イメージセンサの制御方法はこれに限定されない。例えば、第1の期間及び第2の期間において実施される方式のいずれとも異なる撮像方式またはサンプリング方式でCMOSセンサを動作させる第3の期間が配置されていてもよいし、第1の期間と第2の期間の間にイメージセンサの動作を切り替えるための遷移期間が含まれていてもよい。
イメージセンサの制御方法によると、一つのイメージセンサを用いて、光通信用の撮像信号と動画用の撮像信号の両方を時分割の形式で取得することができる。その結果、通信装置が搭載するイメージセンサの数を減らすことができる。
なお、受光装置A1002は、受光部A3001を常に光信号の受信用のサンプリング方式で動作させて、受信信号A3002を取得してもよい。
画像データ生成部A5001は、動画データA5002を生成する際に、受信信号A3002から生成された複数のフレームで構成される動画信号に対して動画像圧縮方式を用いた符号化処理を施してもよい。
例えば、受信信号A3002が光通信用の撮像信号と動画用の撮像信号を含む場合、画像データ生成部A5001は、光通信用の撮像信号から生成された画像(またはフレーム)を除いた、動画用の撮像信号から生成されたフレームに対して動画像圧縮処理を施してもよい。このとき、受光装置A1002は、符号化後の動画データと光通信用の撮像信号から生成された画像データとを、受光データA1003として出力する。
上記説明では、光通信用の撮像信号は画像データとして受光装置A1002から出力されるとしたが、光通信用の撮像信号は光信号を復調できる形式のデータであればどのような形式のデータとして受光装置A1002から出力されてもよい。例えば、各露光ラインに含まれる画素の輝度値を平均または加算した値や、各露光ラインを複数の領域に分割した各領域に含まれる画素の輝度値を平均または加算した値を順に並べたデータであってもよい。
なお、受信信号A3002が光通信用の撮像信号と動画用の撮像信号を含む場合に画像データ生成部A5001が実施し得る動画像符号化処理は、上述した動画像符号化処理に限定されない。例えば、画像データ生成部A5001は、光通信用の撮像信号で構成されるフレームと動画用の撮像信号で構成されるフレームを含む動画に対して、共通の動画像圧縮処理を施して、受光装置A1002は、光通信用の撮像信号と動画用の撮像信号から生成された符号化後の動画データを受光データA1003として出力してもよい。
次に、受光装置A1002が受光信号処理部A5000の構成を備える場合における、制御部A1004の動作について説明する。
受光装置A1002が受光信号処理部A5000の構成を備える場合、受光装置A1002は光通信用の撮像データに対して復調、誤り訂正などの処理を施さない。そのため、制御部A1004は、受光データA1003に含まれる光通信用の撮像データを用いて、光信号に対する復調、誤り訂正などの処理を施し、光信号で伝送されたデータを取得する。
なお、受光データA1003が光通信用の撮像データに加えて動画用の撮像データを含む場合、制御部A1004は、光通信用の撮像データに含まれる光信号に対する復調、誤り訂正の処理に加えて、動画用の撮像データに対してパターン認識などの画像処理を行ってもよいし、さらに、パターン認識などの画像処理の結果に基づいて受光装置A1002や無線装置A1006に対する制御を行ってもよい。
動画用の撮像データを用いた信号処理の一例としては、例えば、人や人の顔などの体の一部を検出する処理、人物を識別する処理、車やドローンなどの対象物を検出する処理、車やドローンなどの対象物を識別する処理、検出された人や対象物の動作や移動を検出する処理、検出された人や対象物を追跡する処理などが挙げられる。これらの処理は、当該信号処理の目的に応じて決められた特徴量を動画用の撮像データから抽出し、抽出された特徴量を用いて行われてもよいし、多層構造のニューラルネットワークを用いて機械学習により作成されたモデルで行われてもよい。なお、多層構造のニューラルネットワークを用いて機械学習により作成されたモデルを利用する場合、動画用の撮像データに対して前処理を行ったうえで、前処理後のデータを多層構造のニューラルネットワークを用いて機械学習により作成されたモデルに入力してもよい。
なお、上記の説明では、制御部A1004が行う信号処理には動画用の撮像データを用いるとしたが、動画用の撮像データに加えて音声データやその他のセンサ等で得られたデータを用いてよいし、動画用の撮像データの代わりに音声データやその他のセンサ等で得られたデータを用いてよい。
また、受光装置A1002が受光信号処理部A5000の構成を備え、受光装置A1002が受光データA1003として符号化後の動画データを出力する場合、制御部A1004は、上記信号処理または信号処理の一部として、受光データA1003に含まれる符号化後の動画データに対して、動画像符号化処理に対応する動画像復号化処理を行ってもよい。
次に、受光信号処理部A3003の構成の例について説明する。
図40は、受光信号処理部A3003の構成の第3の例である受光信号処理部A7000の構成を示す。受光信号処理部A7000は、受信処理部A7001と画像データ生成部A7003とを有する。
受光信号処理部A7000の受信処理部A7001は、図37を用いて説明した受光信号処理部A4000が備える受信処理部A4001と同様の機能を有する。
受光信号処理部A7000の画像データ生成部A7003は、図38を用いて説明した受光信号処理部A5000が備える画像データ生成部A5001と同様の機能を有する。
受光装置A1002が受光信号処理部A7000を備える場合、受光装置A1002は受光部A3001を制御して、動画用の撮像信号と光通信用の撮像信号を受信信号A3002として取得する。受光信号処理部A7000は、動画用の撮像信号を画像データ生成部A7003に入力し、光通信用の撮像信号を受信処理部A7001に入力する。ただし、受光信号処理部A7000は、画像データ生成部A5001に対して、光通信用の撮像信号を入力してもよいことは言うまでもない。
受光信号処理部A7000は、受光データA1003として復調データA7002と動画データA7004とを出力する。
このとき、復調データA7002には、復調されたデータに対応する変調信号が受光された時刻を示す時刻情報などの付加情報、またはメタデータが付加されていてもよい。ここで、復調データA7002に付加される時刻情報は、動画データA7004に付与されている時刻情報との関係を識別できる形式であってもよい。例えば、受光信号処理部A7000は、復調データA7002の時刻情報と動画データA7004の時刻情報とを共通のクロック信号またはタイムラインに基づいて付与してもよいし、復調データA7002の時刻情報に対する動画データA7004の時刻情報のオフセットを示す情報などの復調データA7002の時刻情報と動画データA7004の時刻情報間の関係を示す情報が、復調データA4002の時刻情報または動画データA5002の時刻情報に含まれていてもよい。
また、復調データA7002は、復調されたデータに対応する変調信号を送信した送信装置または光源の画像内における位置を示す位置情報を付加情報、またはメタデータとして含んでいてもよい。
復調データA7002の付加情報は、時刻情報と位置情報の両方を含んでいてもよいし、いずれか一方のみを含んでいてもよい。また、復調データA7002の付加情報は、時刻情報や位置情報以外の、復調されたデータに関連する関連情報を含んでいてもよい。
なお、位置情報は送信装置または光源の画像内における位置を示す情報であるとしたが、別の情報であってもよい。例えば、光信号の検出に用いた画像内の領域を示す情報であってもよいし、3次元空間中の位置を示す情報であってもよい。3次元空間中の位置情報は、例えば、受光装置A1002が撮影している方向と、動画用の撮像データの画像内における位置を示す情報であってもよいし、これらの情報から推定された受光装置または通信装置を中心とする座標系における座標の値や領域を示す情報であってもよい。また、通信装置または受光装置の位置情報を用いて推定した、GPSや3次元地図などで用いられている任意の座標系における座標の値や領域を示す情報であってもよい。また、受光装置A1002が、動画用の撮影データだけでなく、撮影された対象物までの奥行きを示す距離画像データを取得する場合、動画用の撮像データに加えて距離画像データを用いて、3次元空間中の位置を推定してもよい。
距離画像は、例えば、TOF(Time-Of-Flight)方式、ステレオ視差を用いた距離測定方式、LIDER(Laser Imaging Detection and Ranging)方式などを用いて取得することが可能である。
復調データA7002と動画データA7004は、分離された複数のデータストリームまたはデータパケット列として通信装置A1000の制御部A1004または通信装置A2000の制御部A1004に送信されてもよいし、復調データA7002と動画データA7004の両方を格納可能なフォーマットのデータストリームに多重して、一つのデータストリームまたはデータパケット列で通信装置A1000の制御部A1004または通信装置A2000の制御部A1004に送信されてもよい。
図41は、受光装置A1002の構成の第2の例である受光装置A8000の構成を示す。受光装置A8000は、第1の受光部A8001-1、第2の受光部A8001-2、第1の受光信号処理部A8003-1、および第2の受光信号処理部A8003-2を備える。
第1の受光部A8001-1はCCDまたはCMOSまたは有機CMOSなどのイメージセンサであり、第2の受光部A8001-2はCCDまたはCMOSまたは有機CMOSなどのイメージセンサ、またはフォトダイオードなどの光信号を電気信号に変換可能なデバイスである。受光装置A8000は、第1の受光部A8001-1を動画撮影用の撮像方式で動作させて受信信号A8002-1として動画用の撮像信号を取得する。
第2の受光部A8001-2がイメージセンサである場合、受光装置A8000は、第2の受光部A8001-2を光信号の受信用のサンプリング方式で動作させ、受信信号A8002-2として光通信用の撮像信号を取得する。一方、第2の受光部A8001-2がフォトダイオードなどの光信号を電気信号に変換可能なデバイスである場合、受光装置A8000は、第2の受光部A8001-2を用いて光信号の受信に要求されるサンプリングレートでサンプリングされた受信信号A8002-2を取得する。
第1の受光信号処理部A8003-1は、例えば、図38に示す受光信号処理部A5000と同様の機能を有し、動画用の撮像データである画像データA8004-1を受光データA1003として出力する。
第2の受光信号処理部A8003-2は、例えば、図37に示す受光信号処理部A4000と同様の機能を有し、復調データA8004-2を受光データA1003として出力する。なお、第2の受光信号処理部A8003-2は、図38に示す受光信号処理部A5000と同様の機能を有し、光通信用の撮像データである画像データA8004-2を受光データA1003として出力する。
この構成によると、受光装置A8000は、動画用の撮像データである画像データA8004-1と、復調データまたは光通信用の撮像データである画像データA8004-2とを同時に取得することができるため、動画用の撮像データが取得できない期間を発生させることなく、光通信と動画の撮像の両方を行うことができる。
なお、受光装置A8000は、受光部と受光信号処理部の組み合わせを2系統備える場合を例に挙げて説明したが、N(Nは3以上の整数)系統の受光部と受光信号処理部を備えていてもよい。
また、第1の受光部A8001-1および第2の受光部A8001-2は別の素子である必要はなく、例えば、イメージセンサの一部の画素を第1の受光部A8001-1として動画撮影用の撮像方式で動作させて動画の撮影に用い、同じイメージセンサの別の一部の画素を第2の受光部A8001-2として光信号の受信用のサンプリング方式で動作させて光通信に用いてもよい。
同様に、受光装置A8000がN系統以上の受光部と受光信号処理部を備える場合、イメージセンサの第1の領域に含まれる画素を動画撮影用の撮像方式で動作させて動画の撮影に用い、イメージセンサの第2の領域から第Nの領域のそれぞれに含まれる画素を光信号の受信用のサンプリング方式で動作させて光通信に用いてもよい。なお、動画の撮影と光通信とを同時に行わなくてもよい場合は、イメージセンサのいずれの画素も動画撮影用の撮像方式で動作させることなく、イメージセンサの画素を複数の領域に分割し、各領域の画素を光信号の受信用のサンプリング方式で動作させて、複数の光通信を並列に行ってもよい。
なお、イメージセンサを用いて動画撮影または光通信を行う場合、常に全ての画素を動作させておく必要はなく、一時的または継続的に動作させない画素、すなわち光を受光することで蓄積された電荷の読み出しが行われない素子を含んでいてもよい。
次に、図42を用いて、イメージセンサを用いて複数の光信号を同時に受信する場合における、イメージセンサの制御の一例を示す。
図42の(A)は、動画撮影用の撮像方式を用いた場合に撮影可能な撮影範囲に、それぞれ異なる光信号を送信する4つの光源A-Dが含まれる状態を示している。図42の(A)の撮影範囲内の四角形はそれぞれ一つの画素に対応する。
このとき、受光装置A8000は、例えば図42の(B)に示すように光源A-Dのそれぞれが含まれる領域AからDを判定し、領域AからDの領域毎に当該領域に含まれる画素を光信号の受信用のサンプリング方式で動作させて光信号を取得する。
領域毎に光信号の受信用のサンプリングを行う構成の一例として、画素ごとにシャッタ機能を有するイメージセンサにおけるサンプリング方法について説明する。
(領域毎のラインスキャンサンプリングの例)
図42の(C)に示すように領域Aにおいて、垂直方向(列方向)に並んだ4つの画素で1つのラインを構成してラインスキャンサンプリングを行う場合について説明する。このとき、領域Aは5つのラインで構成される。受光装置は、領域Aの5つのラインについてラインごとに露光期間をずらして露光させることで、変調された光信号の輝度または色の変化を取得する。ただし、各領域のサイズ、すなわち各領域に含まれる行方向の画素の数および列方向の画素の数は図42に示した例に限定されるものではなく、いくつであってもよい。また、各光源の画面内での大きさ、位置、互いの位置関係などに応じて、光通信用のサンプリングを行う領域のサイズを変更してもよい。そして、図42の(C)の例では、列方向に並んだ4つの画素で1つのラインを形成しているが、例えば、行方向に並んだ5つの画素で1つのラインを形成し、図42の(C)の場合、行方向の4つのラインがあると考えてもよい。
図42の(C)に示すように領域Aにおいて、垂直方向(列方向)に並んだ4つの画素で1つのラインを構成してラインスキャンサンプリングを行う場合について説明する。このとき、領域Aは5つのラインで構成される。受光装置は、領域Aの5つのラインについてラインごとに露光期間をずらして露光させることで、変調された光信号の輝度または色の変化を取得する。ただし、各領域のサイズ、すなわち各領域に含まれる行方向の画素の数および列方向の画素の数は図42に示した例に限定されるものではなく、いくつであってもよい。また、各光源の画面内での大きさ、位置、互いの位置関係などに応じて、光通信用のサンプリングを行う領域のサイズを変更してもよい。そして、図42の(C)の例では、列方向に並んだ4つの画素で1つのラインを形成しているが、例えば、行方向に並んだ5つの画素で1つのラインを形成し、図42の(C)の場合、行方向の4つのラインがあると考えてもよい。
受光装置は、図42の(C)の領域Aにおいて、領域Aの左端のラインであるLine1の信号を読み出した後、順に直前に読み出したラインの右隣のラインの信号を読み出す。領域Aの右端のラインであるLine5の信号の読み出しが完了すると、左端のラインであるLine1に戻って、ラインごとに信号を読み出す処理を繰り返す。
受光装置は、図42の(B)の領域Bから領域Dのそれぞれにおいても、領域Aと同様の処理で信号を取得することでラインスキャンサンプリングを行う。ここで、受光装置は全ての領域の左端のラインを同じ時間に露光させてもよいし、異なる時間に露光させてもよい。また、イメージセンサ上で同じ列に位置する領域Aのラインと領域Cのラインとを同じ露光期間に露光させ、イメージセンサ上で同じ列に位置する領域Bのラインと領域Dのラインとを同じ露光期間に露光させてもよい。ただし、領域AからDは、同一の露光期間に露光されるラインを含む。
ここでは、垂直方向(列方向)に並んだ複数の画素を1ラインとして同一の期間に露光させ、ラインごとに信号を読み出す場合について説明したが、水平方向(行方向)に並んだ複数の画素を1ラインとしてラインスキャンサンプリングを行ってもよい。
上記説明では、イメージセンサに含まれる少なくとも一つの画素を動画撮影と光通信の両方に用い、当該画素を動画撮影用の撮像方式で信号の取得を行うか、光通信用のサンプリング方式で信号の取得を行うかを切り替える場合について説明したが、イメージセンサを備える受光装置の構成はこれに限定されない。例えば、イメージセンサが動画撮影に用いる画素とは別に光通信に用いる画素を備えていてもよい。
イメージセンサが動画撮影に用いる画素とは別に光通信に用いる画素を備える場合、光通信に用いる画素の形状または大きさは、動画撮影に用いる画素の形状または大きさと異なっていてもよい。
また、動画撮影用の画素を用いた動画の撮影と、光通信用の画素を用いた光通信用のサンプリングとを独立して制御し、一方の処理が不要な状況に置いては、どちらか一方の処理を停止し、当該処理に必要な信号を取得するための回路への電源の供給を部分的、または全て停止して、電力消費を抑制できるようにしてもよい。
以上のように、ラインスキャンサンプリングを行うことで、図42の(A)に示しているように、複数の光源からのそれぞれ異なる変調信号を並列に受信することができるようになるため、データの伝送速度が向上するという効果を得ることができる。
次に、通信装置A1000または通信装置A2000が備える制御部A1004の構成の一例について説明する。
図43は、制御部A1004の物理的構成の一例である制御部A10000を示す図である。制御部A10000は、CPU(Central Processing Unit)A10001及びメモリA10002を備える。メモリA10002は、制御部A1004で実施されるプログラムや、制御部で行われる処理に必要なデータなどを記憶している。CPU A10001は、例えば、メモリA10002から読み出されたプログラムに基づいて処理を行い、制御部A1004としての機能を実現する。また、メモリA10002は、例えば、受信装置で取得された画像データなどのデータの保存や保存されたデータの読み出しを行う。
なお、ここでは、制御部A10000を構成する要素として、CPUとメモリについて説明したが、その他の構成要素を含んでいてもよい。例えば、CPUとは別にGPU(Graphics Processing Unit)を備えていてもよいし、動画像符号化処理や動画像復号化処理、動画用の撮像データに対するパターン認識などの画像処理を行うための回路を備えていてもよい。また、制御部A10000は、例えば無線装置A1006などの制御部A10000と接続される機器との間のデータの転送を制御するI/O(Input/Output)などを含んでいてもよい。
図44は、制御部A1004の構成の第1の例である制御部A11000の構成を示す図である。制御部A11000は、信号処理部A11002、無線制御部A11004および受光装置制御部A11006を有する。
信号処理部A11002は、受光装置A1002から受光データA1003として光通信用の撮像データを含む画像データ、または光信号として復調および誤り訂正を施した復調データを取得する。受光データA1003が光通信用の撮像データを含む画像データの場合、信号処理部A11002は、光通信用の撮像データから変調信号に対応する受信信号を取得して、受信信号に対して復調と誤り訂正の処理を施すことで、復調データを取得する。
無線制御部A11004は、無線装置A1006の動作を制御するための制御信号A1005を無線装置A1006に出力する。無線制御部A11004は無線装置A1006を介して受信した無線受信データを信号処理部A11002に転送し、無線装置A1006を介して他の通信装置に送信する無線送信データを信号処理部A11002から無線装置A1006に転送する。
信号処理部A11002は、受光装置A1002および無線装置A1006を介して取得した光通信の復調データ、動画撮像データ、無線受信データなどの任意のデータを用いて信号処理を行う。信号処理部A11002は、例えば、前述した信号処理の結果に基づいて、無線制御部A11004に対する無線装置A1006の制御の指示や、受光装置制御部A11006に対する受光装置の制御の指示(A11005)を行う。
受光装置制御部A11006は、信号処理部A11002から指示に基づいて受光装置A1002の制御を行う。受光装置A1002に対する制御の一例としては、受光部A3001、A8001-1、A8001-2を動画撮影用の撮像方式を用いて信号の取得を行うか、光信号の受信用のサンプリング方式を用いて信号の取得を行うかの制御や、イメージセンサが備える一部の画素を用いて光信号の受信用のサンプリング方式を用いて信号を取得する場合における、光信号の受信用のサンプリング方式で動作させる画素領域の設定などが挙げられる。ただし、受光装置A1002に対する制御はこれに限定されるものではなく、例えば、受光装置A1002の電源のONとOFFを切り替える制御や、受光装置A1002の内部で行われる受光信号に対する信号処理を切り替える制御などを行ってもよい。また、ここで説明した一部の制御は、受光装置A1002の内部で受光信号に対する信号処理の結果に基づいて自動的に行われていてもよい。
図45は、制御部A1004の構成の第2の例である制御部A12000の構成を示す図である。制御部A12000は、機器制御部A12002を有する点で制御部A11000と異なる。
機器制御部A12002は、信号処理部A11002で取得された動画撮像データや、信号処理部A11002での処理結果を入力(A12001)とし、提示部A2003において表示する画像の生成を行い、生成された画像信号を提示情報A2002として提示部A2003に対して出力する。機器制御部A12002は、入力部A2004に対するユーザの操作に応じて入力部A2004が取得した入力情報A2005を取得し、信号処理部A11002へと転送する。
この構成により、信号処理部A11002は、受光装置A1002および無線装置A1006を介して取得した光通信の復調データ、動画撮像データ、無線受信データに加えて、ユーザの操作に応じて取得された入力情報A2005に基づいて信号処理を行うことができるようになる。信号処理部A11002は、例えば、前述した信号処理の結果に基づいて、無線制御部A11004に対する無線装置A1006の制御の指示や、受光装置制御部A11006に対する受光装置の制御の指示(A11005)、提示部A2003に表示する画像の変更の指示を行う。
以下では、制御部A1004が行う処理の一例として、光信号を受信して得られた復調データと、動画用の撮像データに対してパターン認識などの画像処理を施した結果とに基づいて、無線装置A1006を制御する通信制御方法について説明する。
信号処理部A11002は、受光装置A1002から受光データA1003として動画用の撮像データを取得し、動画用の撮像データに対してパターン認識などの画像処理を施す。無線制御部A11004は、信号処理部A11002における画像処理の結果に基づいて無線装置A1006の制御を行う。
本実施の形態で説明する通信制御方法では、光信号を受信して得られた復調データと、当該光信号の送信に用いられた光源または光信号を送信した送信機の画像上の位置を示す位置情報などの付加情報とを対応づけた、付加情報の付加された復調データを用いる。本実施の形態において、光通信を用いて伝送される情報は何でもよく、特定の情報の伝送に限定されないが、本通信制御方法に関する以下の説明では、一例として、実施の形態3から7で説明した基地局のSSIDなどの他の無線通信装置との接続または通信に必要な情報を含んだ接続情報を光信号で送信する場合について説明する。
信号処理部A11002は、受光装置A1002または信号処理部A11002内部で取得された付加情報の付加された復調データを用いて処理を行う。ここで、復調データは他の無線通信装置に対応する接続情報である。信号処理部A11002は、取得された接続情報が複数ある場合、各接続情報に対応する付加情報と、パターン認識などの画像処理結果を用いて無線装置A1006が実施する通信処理を制御する。
以下では、画像処理の結果に基づく通信制御の第1の例について説明する。
画像処理の結果に基づく通信制御の第1の例において、通信装置A1000、A2000は車、または車に搭載された装置であり、車に搭載されたカメラを受光装置A1002として用いる。図46は、車の前方を撮影するカメラが撮影した画像の一例を模式的に示したものである。図46では、通信装置A1000、A2000に相当する車の前方を走行する3台の他の車A13001、A13002、A13003が写っている。
なお、本実施の形態では、車の前方を撮影するカメラを用いた例について説明するが、車の後方や横方向を撮影するカメラにおいても同様に適用可能であることは言うまでもない。
ここで、他の車A13001、A13002、A13003は、それぞれLEDなどの光源と、当該光源を用いて光信号を送信する送信部102とを備えている。光通信に用いる光源としては、例えばヘッドライトやテールライトなどの車が備える任意の光源を用いることができ、車が備える複数の光源のうちどの光源を光信号の送信に用いるかは光通信の利用形態に応じて任意に設計すればよい。また、車が備える複数の光源を光信号の送信に用いる場合、車は複数の光源のそれぞれに対し、光通信用の送信部を備えていてもよいし、一つの送信部が複数の光源を用いて光信号を送信してもよい。なお、車はヘッドライトやテールライトとは別に、光通信に用いる光源を備えていてもよい。
他の車A13001、A13002、A13003は、光通信用の送信部と光源に加えて、図34や図35で説明した他の通信装置A1100に該当する、無線通信用の通信装置を備えている。なお、自車および他の車A13001、A13002、A13003が、光信号の送信と受信、および無線通信の機能を有する場合、それぞれの車は、通信装置A1000、A2000に光通信用の送信部102と光源104を備えた構成となる。この場合、制御部A1004が送信部102で送信するデータの制御を行ってもよい。
画像処理の結果に基づく通信制御の第1の例では、他の車A13001、A13002、A13003は光通信により各車が備える通信装置に接続するために用いることが可能な情報である接続情報を送信する。以下では、接続情報が、各車が備える通信装置が基地局として動作する場合におけるSSIDと通信に使用している周波数チャネルを示す情報を含んでいる場合について説明する。
なお、上記説明では、接続情報に含まれる通信相手を判定するための識別子としてSSIDを通知する例について説明したが、接続情報に含まれる識別子情報はSSIDに限定されない。例えば、他の通信装置のMAC(Media Access Control)アドレスのような物理アドレスでもよいし、他の通信装置のIP(Internet Protocol)アドレスのような論理アドレスでもよい。なお、識別子情報を通信装置が直接通信を行う他の通信装置の選択に用いるのではなく、インターネットなどのネットワーク経由でアクセスするリソースの選択に用いる場合は、インターネットなどのネットワーク経由で通信を行うサーバのアドレスや、インターネット上のリソースを特定するために用いるURL(Uniform Resource Locator)、URN(Uniform Resource Name)、URI(Uniform Resource Identifier)などであってもよい。接続情報に含まれる識別子情報は、アクセス先となる他の通信端末やインターネット上のリソースを識別できる情報であれば何を用いてもよい。
なお、上記説明では、接続情報が使用している周波数チャネルの情報を通知する場合について説明したが、接続情報は、使用している周波数チャネルの情報を含んでいなくてもよいし、それ以外の情報を含んでいてもよい。接続情報として利用可能な他の情報の例として、暗号鍵に関する情報、対応している物理層の伝送方式の規格の種類、対応しているデータフォーマットや通信プロトコルなどが挙げられる。
図47は、通信装置A1000、A2000の受光装置A1002または制御部A1004において、他の車A13001、A13002、A13003のそれぞれの送信部が光源を用いて送信した光信号を復調して得られた接続情報を模式的に示した図である。通信装置A1000、A2000は、他の車A13001が送信した光信号からSSIDが「XXX」であり、使用している周波数チャネルが「1」であるという接続情報を取得し、他の車A13002が送信した光信号からSSIDが「YYY」であり、使用している周波数チャネルが「3」であるという接続情報を取得し、他の車A13003が送信した光信号からSSIDが「ZZZ」であり、使用している周波数チャネルが「3」であるという接続情報を取得する。
これらの接続情報は、通信装置A1000、A2000が備える無線装置A1006が一定の期間に亘ってキャリアセンスを行い、複数の他の通信装置のそれぞれから送信された信号を受信することで取得できる情報で代替できるものもある。しかしながら、通信装置A1000、A2000は、それらの信号が周辺に存在する複数の他の通信装置のうち、どの他の通信装置から送信された信号であるかを識別することは困難であり、実際に通信を行いたい他の通信装置とは異なる通信装置と接続して通信を行う可能性がある。
そこで、画像処理の結果に基づく通信制御の第1の例では、通信装置A1000、A2000の制御部A1004が、受光装置A1002で撮影された動画用の撮像データに対して画像処理を施して、例えば図46の画像から他の車A13001、A13002、A13003のそれぞれを検出する。このとき、制御部A1004は、受信された3つの光信号の光源の位置に基づいて、画像から検出された他の車A13001、A13002、A13003のそれぞれと、光通信で受信された3つの接続情報とを対応付ける。これにより、画像から検出された3台の車のそれぞれと無線通信を行う場合に利用する接続情報を特定することができる。
次に、制御部A1004は、画像から他の車A13001、A13002、A13003の相互の位置関係や、それぞれの車と自車との位置関係などを判定し、無線通信を行う対象を選択する。制御部A1004は、例えば、自車との距離が最も近い他の車A13003を通信対象として選択してもよい。また、制御部A1004は、車ごとに走行している車線を判定して、自車が走行中の車線を走行している車のうち、画像中で最も前の位置を走行している他の車A13001を通信相手として選択してもよい。
この構成によると、無線通信におけるSSIDやアドレスなどの識別子のような、無線通信のみでは実空間中の装置との対応付けの困難な情報と、イメージセンサで取得された画像などのセンサで得られたセンシングデータからパターン認識などの信号処理で検出された物体との対応付けを行うことができる。その結果、例えば、運転支援を含む自動運転の制御などの目的で、周囲の環境や周囲の車の動きなどの情報を取得する場合に、情報の取得先として適切な通信相手への接続を容易にすることを促進する。
次に、画像処理の結果に基づく通信制御の第2の例について説明する。
画像処理の結果に基づく通信制御の第2の例において、通信装置A1000、A2000または通信装置A1000、A2000を備える自車の構成および他の車A13001、A13002の構成は、画像処理の結果に基づく通信制御の第1の例と同じである。画像処理の結果に基づく通信制御の第2の例では、他の車A13003の代わりに光信号を送信する機能を有していない他の車A15003が走行している点で、画像処理の結果に基づく通信制御の第1の例と異なる。
図48は、画像処理の結果に基づく通信制御の第2の例における、車の前方を撮影するカメラが撮影した画像の一例を模式的に示した図である。図48では、通信装置A1000、A2000に相当する車の前方を走行する3台の他の車A13001、A13002、A15003が写っている。
図49は、通信装置A1000、A2000の受光装置A1002または制御部A1004において、他の車A13001、A13002のそれぞれの送信部が光源を用いて送信した光信号を復調して得られた接続情報を模式的に示した図である。通信装置A1000、A2000は、他の車A13001が送信した光信号からSSIDが「XXX」であり、使用している周波数チャネルが「1」であるという接続情報を取得し、他の車A13002が送信した光信号からSSIDが「YYY」であり、使用している周波数チャネルが「3」であるという接続情報を取得する。このとき、他の車A15003は、光信号を送信する機能を有していないため、通信装置A1000、A2000は、他の車A15003に関する接続情報を取得できない。
画像処理の結果に基づく通信制御の第2の例では、通信装置A1000、A2000の制御部A1004が、受光装置A1002で撮影された動画用の撮像データに対して画像処理を施して、例えば図48の画像から他の車A13001、A13002、A15003のそれぞれを検出する。このとき、制御部A1004は、受信された2つの光信号の光源の位置に基づいて、画像から検出された他の車A13001、A13002、A15003のうち、他の車A13001、A13002に対して光通信で受信された2つの接続情報を対応付ける。これにより、画像から検出された他の車A13001、A13002と無線通信を行う場合に利用する接続情報を特定することができるとともに、SSIDが「XXX」または「YYY」の基地局または通信装置は他の車A15003と通信を行うために用いるSSIDではないことを特定することができる。
まず、他の車A15003が、光信号を送信する機能は有していないが、「PPP」というSSIDを用いて無線通信を行う機能は有している場合について説明する。
このとき、無線装置A1006は、キャリアセンスを行うことで通信可能な距離にある車に搭載された他の通信装置のSSIDとして、「XXX」、「YYY」、「PPP」の3つのSSIDを検出し、制御部A1004は、光信号として受信された接続情報に含まれるSSIDである「XXX」、「YYY」とは異なる、「PPP」を他の車A15003と通信を行うために用いるSSIDと判断して、他の車A15003とSSID「PPP」を対応付ける。
制御部A1004は、画像から他の車A13001、A13002、A15003の相互の位置関係や、それぞれの車と自車との位置関係などを判定し、無線通信を行う対象を選択する。制御部A1004は、例えば、自車との距離が最も近い他の車A15003を通信対象として選択してもよい。また、制御部A1004は、車ごとに走行している車線を判定して、自車が走行中の車線を走行している車のうち、画像中で最も前の位置を走行している他の車A13001を通信相手として選択してもよい。
この構成によると、無線通信におけるSSIDやアドレスなどの識別子のような、無線通信のみでは実空間中の装置との対応付けの困難な情報と、イメージセンサで取得された画像などのセンサで得られたセンシングデータからパターン認識などの信号処理で検出された物体との対応付けを行うことができる。その結果、例えば、運転支援を含む自動運転の制御などの目的で、周囲の環境や周囲の車の動きなどの情報を取得する場合に、情報の取得先として適切な通信相手への接続を容易にすることを促進する。
次に、他の車A15003が、光信号を送信する機能と無線通信を行う機能の両方を有していない場合について説明する。
このとき、無線装置A1006は、キャリアセンスを行うことで通信可能な距離にある車に搭載された他の通信装置のSSIDとして、「XXX」、「YYY」の2つのSSIDを検出する。制御部A1004は、光信号として受信された接続情報に含まれるSSIDである「XXX」、「YYY」とは異なるSSIDが車に搭載された他の通信装置のSSIDとして検出されないため、他の車A15003は無線通信を行う機能は有さない、または無線通信を行える関係にはないと判断する。
制御部A1004は、画像から他の車A13001、A13002、A15003の相互の位置関係や、それぞれの車と自車との位置関係などを判定し、無線通信を行う対象として他の車A13001または他の車A13002のいずれかを選択する。制御部A1004は、例えば、自車との距離が最も近い通信可能な他の車A13002を通信対象として選択してもよい。また、制御部A1004は、車ごとに走行している車線を判定して、自車が走行中の車線を走行している車のうち、画像中で最も前の位置を走行している他の車A13001を通信相手として選択してもよい。
この構成によると、無線通信におけるSSIDやアドレスなどの識別子のような、無線通信のみでは実空間中の装置との対応付けの困難な情報と、イメージセンサで取得された画像などのセンサで得られたセンシングデータからパターン認識などの信号処理で検出された物体との対応付けを行うことができる。その結果、例えば、直前を走行している他の車A15003とは通信により情報を取得できないことを判断でき、例えば、運転支援を含む自動運転の制御を行う場合において、通信可能な他の車A13001や他の車A13002を他の車A15003と誤認することを防止して、適切な自動運転の制御の提供を促進することができる。
次に、画像処理の結果に基づく通信制御の第3の例について説明する。
画像処理の結果に基づく通信制御の第3の例において、通信装置A1000、A2000または通信装置A1000、A2000を備える自車の構成および他の車A13002、A13003の構成は、画像処理の結果に基づく通信制御の第1の例と同じである。画像処理の結果に基づく通信制御の第3の例では、他の車A13001の代わりに警察車両A17001が走行している点で、画像処理の結果に基づく通信制御の第1の例と異なる。警察車両A17001は、警察車両である点で他の車A13001と異なるが、他の車A13001と同様の構成を備え、光信号の送信と無線通信の機能を有している。
図50は、画像処理の結果に基づく通信制御の第3の例における、車の前方を撮影するカメラが撮影した画像の一例を模式的に示した図である。図50では、通信装置A1000、A2000に相当する車の前方を走行する他の車A13002、A13003と警察車両A17001が写っている。
図51は、通信装置A1000、A2000の受光装置A1002または制御部A1004において、他の車A17001、A13002、A13003のそれぞれの送信部が光源を用いて送信した光信号を復調して得られた接続情報を模式的に示した図である。通信装置A1000、A2000は、警察車両A17001が送信した光信号からSSIDが「QQQ」であり、使用している周波数チャネルが「1」であるという接続情報を取得し、他の車A13002が送信した光信号からSSIDが「YYY」であり、使用している周波数チャネルが「3」であるという接続情報を取得し、他の車A13003が送信した光信号からSSIDが「ZZZ」であり、使用している周波数チャネルが「3」であるという接続情報を取得する。
画像処理の結果に基づく通信制御の第3の例では、通信装置A1000、A2000の制御部A1004が、受光装置A1002で撮影された動画用の撮像データに対して画像処理を施して、例えば図50の画像から警察車両A17001と他の車A13002、A13003のそれぞれを検出する。このとき、制御部A1004は、受信された3つの光信号の光源の位置に基づいて、画像から検出された警察車両A17001と他の車A13002、A13003に対して、光通信で受信された3つの接続情報を対応付ける。これにより、画像から検出された警察車両A17001および他の車A13002、A13002のそれぞれについて、無線通信を行う場合に利用する接続情報を特定することができる。
制御部A1004は、画像処理において認識された3台の車両について、車両の外観などの情報を用いて警察車両であるか否かといった車両の詳細な分類を行い、車両A17001が警察車両であることを認識する。制御部A1004は、警察車両A17001と他の車A13002、A13003のうち、情報を取得する優先度の高い警察車両A17001を無線通信を行う対象として選択する。
この構成によると、イメージセンサで取得された画像などのセンサで得られたセンシングデータからパターン認識などの信号処理で対象物を認識する際に、認識された対象物をさらに詳細な分類を行い、当該分類に基づいて通信制御を行うことができる。
なお、上述した警察車両を情報取得の優先度の高い通信相手として選択する制御は、あくまで一例であり、警察車両を認識した場合に異なる制御を行ってもよい。例えば、警察車両A17001が光信号に当該警察車両を識別するための識別子を含めて送信し、制御部A1004は、警察車両に対して直接無線接続するのではなく、他の車A13002または他の車A13003に対して、警察車両A17001から光信号で受信した識別子を指定して、警察車両A17001の情報を取得してもよい。
また、画像処理により警察車両を検出した場合に、常に同じ通信制御を行うのではなく、認識された警察車両の警光灯が点灯していることが認識された場合や、通信装置A1000、A2000がイメージセンサ以外のセンサとしてマイクを備え、制御部A1004がマイクで取得された音声データに対してパターン認識の信号処理を施すことでサイレン音を検出した場合に、警察車両に関する情報収集を優先する通信制御を行ってもよい。
なお、マイクで取得した音声データを用いて他の装置が発生させた音を検出する場合、当該他の装置の識別子などの送信データに基づいて生成された変調信号が同時に送信されていてもよい。
この構成によると、パターン認識などの信号処理で認識された音を発生させた装置と、当該音信号として送信された識別子などの送信データとを対応付けることができる。その結果、例えば、識別子が既知の装置が複数ある環境で、検出された音を発生させた装置の特定を容易にできる可能性がある。
なお、光信号の代わりに音信号を用いてもよく、その場合は通信装置A1000、A2000における受光装置A1002をマイクなどの音検出装置に置き換えた構成となる。また、音検出装置としてアレイマイクなどの音の到来方向を特定できる装置を用いることで、検出対象の音を発生させた装置と音信号との対応付けをさらに正確にすることができる。
なお、本実施の形態に係る通信装置A1000、A2000は、複数の無線装置を有してもよい。例えば、通信装置A1000、A2000は、互いに異なる規格で規定された通信方式に対応した複数の無線装置を備えていてもよいし、互いに同一の通信方式に対応する複数の無線装置を備えていてもよい。
また、本実施の形態に係る通信装置A1000、A2000が車である、または車に搭載された通信装置である場合、受光装置A1002は、例えば、ドライブレコーダーに含まれるカメラ、バックモニター用のカメラ、車体の周辺確認用のカメラ、サイドミラーの代わりの映像をモニタに映すために用いられるカメラなどであってもよい。このように、光通信以外の目的で搭載されているカメラを用いて光信号の受信を行うことで、新たなカメラを追加することなく本実施の形態で開示した通信制御を実現することができ、コストの削減や光信号の受信機能の普及を促進することができる。また、このようなカメラは運転者にとって必要な、すなわち車両の操作を行う上で重要な情報が得られる領域が撮影できるよう設置されているため、画像認識などの信号処理と無線通信とを組み合わせてより多くの情報を収集することで、適切な自動運転の制御を提供や運転者への情報の提供を促進することができる。
本開示では、例えばイメージセンサやマイクなどのセンサで受信可能な通信方式を用いて送信された送信信号を、当該センサで得られたセンシングデータを用いて復調する方法および装置の態様について説明している。
上記態様において、さらに、センサで得られたセンシングデータに対して画像認識などのパターン認識の信号処理を行う態様によると、センシングデータから検出または認識された実空間の対象物と送信信号の送信元との対応を判断することが可能となる。
上記態様において、さらに、送信信号を用いて、通信を含むネットワークを介する処理で用いるSSID、アドレス、識別子などの情報を伝送する態様によると、通信を含むネットワークを介する処理で用いる情報と実空間の対象物との対応付けを容易にすることができる。すなわち、従来は、実空間における対象物と対応付けが困難だったネットワークを介する処理で用いる情報を、実空間から得られたセンシングデータに基づいて利用することができる。
上記態様において、さらに、センサとしてイメージセンサを用い、通信を含むネットワークを介する処理で用いる情報を光信号で送信する態様によると、可視の対象物と通信を含むネットワークを介する処理で用いる情報との対応付けの信頼性を向上させることができる。
上記態様において、さらに、SSID、アドレスなどの通信に用いる識別子を光信号で送信し、画像認識の信号処理の結果に基づいて通信で接続する対象の識別子を選択する態様によると、実空間における対象物の位置関係や対象物の属性に基づいた通信制御を行うことができ、接続したい対象物を指定して通信を行い、情報を取得や制御の指示を行うことができるようになる。その結果、例えば、不特定多数の装置が通信可能範囲に含まれる環境で適切な通信相手との通信を実現する手段を提供できるようになり、通信を介した新たなサービスの創出や普及を促進できる。
以上、本開示の実施の形態8について説明した。
なお、可視光通信を行う通信システムの一例として、図5の構成について説明したが、可視光通信を行う通信システムの構成は、図5に示す構成に限らない。例えば、図52に示すような構成でもよい(例えば、"IEEE 802.11-16/1499r1"を参照)。図52では、送信信号は、アップコンバートされずにベースバンド帯において光信号として送信される。すなわち、本実施の形態の光信号を送信する機器(つまり、光源を具備する機器)が図52に示す送信側の構成を具備し、本実施の形態の光信号を受光する端末が図52に示す受信側の構成を具備してもよい。
(実施の形態9)
本実施の形態では、図52について、補足説明を行う。
本実施の形態では、図52について、補足説明を行う。
図52の具体的な説明を行う。シンボルマッピング部は、送信データを入力し、変調方式に基づいたマッピングを行う、シンボル系列(ci)を出力する。
等化前処理部は、シンボル系列を入力とし、受信側での等化処理を軽減するために、シンボル系列に対し、等化前処理を行い、等化前処理後のシンボル系列を出力する。
エルミート対称性処理部は、等化前処理後のシンボル系列を入力とし、エルミート対称性が確保できるように、等化前処理後のシンボル系列に対しサブキャリア割り当てを行い、パラレル信号を出力する。
逆(高速)フーリエ変換部は、パラレル信号を入力とし、パラレル信号に対し、逆(高速)フーリエ変換を施し、逆(高速)フーリエ変換後の信号を出力する。
パラレルシリアル、および、サイクリックプレフィックス付加部は、逆(高速)フーリエ変換後の信号を入力とし、パラレルシリアル変換、および、サイクリックプレフィックスを付加し、信号処理後の信号として出力する。
デジタルアナログ変換部は、信号処理後の信号を入力とし、デジタルアナログ変換を行い、アナログ信号を出力し、アナログ信号は、1つ以上の例えばLEDから、光として出力される。
なお、等化前処理部、エルミート対称性処理部は、なくてもよい。つまり、等化前処理部、エルミート対称性処理部での信号処理は、行わない場合もあり得る。
フォトダイオードは、光を入力とし、TIA(Transimpedance Amplifier)により、受信信号を得る。
アナログデジタル変換部は、受信信号に対し、アナログデジタル変換を行い、デジタル信号を出力する。
サイクリックプレフィックス除去、および、シリアルパラレル変換部は、デジタル信号を入力とし、サイクリックプレフィックス除去を行い、その後、シリアルパラレル変換を行い、パラレル信号を入力とする。
(高速)フーリエ変換部は、パラレル信号を入力とし、(高速)フーリエ変換を行い、(高速)フーリエ変換後の信号を出力する。
検波部は、フーリエ変換後の信号を入力とし、検波を行い、受信シンボル系列を出力する。
シンボルデマッパーは、受信シンボル系列を入力とし、デマッピングを行い、受信データ系列を得る。
以上のようにして、光変調信号を送信する送信装置、光変調信号を受信する受信装置を、本明細書における各実施の形態に適用しても、各実施の形態は同様に実施することができる。
(実施の形態10)
実施の形態8において、図42を用いて、送信装置が光変調信号を複数送信し、受信装置が複数の光変調信号を受信する場合の例について説明した。本実施の形態では、このときの実施例について説明する。
実施の形態8において、図42を用いて、送信装置が光変調信号を複数送信し、受信装置が複数の光変調信号を受信する場合の例について説明した。本実施の形態では、このときの実施例について説明する。
図53は、本実施の形態における送信装置と受信装置の構成例を示している。図53において、送信装置100が複数の光変調信号を送信し、受信装置150が複数の光変調信号を受信し、受信データを得ることになる。なお、図53において、図6と同様に動作するものについては、同一番号を付している。
図53における送信装置は、M個の光変調信号を送信するものとする。なお、Mは2以上の整数であるものとする。
送信部A2002_iは、データA2001_i、制御信号A2005を入力とし、制御信号A2005に含まれる誤り訂正符号化方法に関する情報、送信方法に関する情報に基づいて、誤り訂正符号化、送信方法に基づく信号処理を施し、光変調信号A2003_iを生成し、出力する。なお、iは1以上M以下の整数であるものとする。
そして、光変調信号A2003_iは、光源A2004_iから送信される。
イメージセンサなどの受光部A2051は、光変調信号A2003_iに対応する光を受信する。このとき、受光部A2051は、M個の光変調信号に対応する光を受信することになる。受光部A2051において、複数の光の受信信号を受信する方法については、例えば、実施の形態8で説明したとおりである。
受光部A2051は光変調信号2003_iに対応する光受信信号A2052_iを出力する。なお、iは1以上M以下の整数であるものとする。
受信部A2053_iは、光変調信号A2003_iに対応する光受信信号A2052_iを入力とし、復調、誤り訂正復号等の処理を行い、データA2001_iに対応する受信データA2054_iを出力する。
データ取得部A2055は、データA2054_1、データA2054_2、・・・、データA2054_Mを入力とし、データA2056を生成、出力する。
図54は、図53とは異なる本実施の形態における送信装置と受信装置の構成例を示している。なお、図54において、図53と同様に動作するものについては、同一番号を付している。
分配部A2102は、情報A2101、制御信号A2005を入力とし、制御信号A2005に含まれる誤り訂正符号化方法に関する情報に基づいて、情報A2101に対し、誤り訂正符号化を行い、誤り訂正符号化後のデータを生成する。そして、分配部A2102は誤り訂正符号化後のデータを分配し、誤り訂正符号化後のデータA2001_iを出力する。
なお、M個の誤り訂正符号化後のデータA2001_iへの分配は、どのように行われてもよい。例えば、誤り訂正符号化後のデータをM個に分割し、分割したM個のデータ系列をそれぞれ誤り訂正符号化後のデータA2001_iに割り当ててもよい。また、誤り訂正符号化後のデータから、同一のデータで構成するM個のデータ系列を生成し、それぞれのデータ系列を誤り訂正符号化後のデータA2001_iに割り当ててもよい。誤り訂正符号化後のデータA2001_iへの割り当て方法はこれらに限ったものではなく、誤り訂正符号化後のデータからM個のデータ系列を生成し、それぞれのデータ系列を誤り訂正符号化後のデータA2001_iに割り当てればよい。
送信部A2002_iはデータA2001_i、制御信号A2005を入力とし、制御信号A2005に含まれる送信方法に関する情報に基づき、送信方法に基づく信号処理を施し、光変調信号A2003_iを生成し、出力する。なお、iは1以上M以下の整数であるものとする。
そして、光変調信号A2003_iは、光源A2004_iから送信される。
イメージセンサなどの受光部A2051は、光変調信号A2003_iに対応する光を受信する。このとき、受光部A2051は、M個の光変調信号に対応する光を受信することになる。受光部A2051において、複数の光の受信信号を受信する方法については、例えば、実施の形態8で説明したとおりである。
受光部A2051は光変調信号2003_iに対応する光受信信号A2052_iを出力する。なお、iは1以上M以下の整数であるものとする。
受信部A2053_iは、光変調信号A2003_iに対応する光受信信号A2052_iを入力とし、復調などの処理を行い、データA2001_iに対応する受信データ(の対数尤度比)2054_iを出力する。
誤り訂正復号部A2151は、受信データ(の対数尤度比)2054_1、受信データ(の対数尤度比)2054_2、・・・、受信データ(の対数尤度比)2054_Mを入力とし、誤り訂正復号を行い、受信データA2152を出力する。
図55は、図53、図54における送信装置100が送信する光変調信号のフレーム構成の一例を示している。
図55におけるフレーム構成A2201_1は、図53、図54における光変調信号A2003_1のフレーム構成の一例を示している。なお、フレーム構成A2201_1において、横軸は時間である。
したがって、図55におけるフレーム構成A2201_iは、図53、図54における光変調信号A2003_iのフレーム構成の一例を示している。なお、フレーム構成A2201_iにおいて、横軸は時間である。そして、iは1以上M以下の整数であるものとする。(つまり、図55では、M個のフレーム構成を示している。)
フレーム構成A2201_iに示すように、図53、図54における送信装置100は、光変調信号A2003_iにおいて、プリアンブルA2210_i、制御情報シンボルA2211_i、データシンボルA2212_iを送信することになる。
図56に受信装置150における受信状態の一例を示す。なお、以下の例では、図53、図54における送信装置100が16(M=16)個の光源を具備しているものとする。
図56において、A2300は受光部の一例であるイメージセンサを示しており、A2301_1は第1の光源が照らしている光であり、この光には、第1の光変調信号が含まれているものとする。なお、第1の光変調信号は図55のA2201_1に相当するものとする。
したがって、図56において、A2301_iは第iの光源が照らしている光であり、この光には、第iの光変調信号が含まれているものとする。なお、第iの光変調信号は図55のA2201_iに相当するものとする。なお、iは1以上16以下の整数である。
図56の受信装置150における受信状態の例では、受信装置150の受光部は、第4の光変調信号を含む第4の光源の光、第8の光変調信号を含む第8の光源の光、第12の光変調信号を含む第12の光源の光の受信を行っている。
例えば、図53、図54の送信装置100が16個の光源から、16個の光変調信号を送信していたとすると、図56の状態の場合、図53、図54における受信装置150は、16個のすべての光変調信号を受信できていないため、正しい受信データを得ることが難しい状態である。この課題を克服するため方法について、以下で説明する。
図57は、図55における光変調信号A2003_iのフレーム構成A2201_iのプリアンブルA2210_i、制御情報シンボルA2211_iが含む情報、および、シンボルの構成の一例を示している。なお、iは1以上M(=16)以下の整数とする。
フレーム構成A2201_iにおけるプリアンブルA2210_i、制御情報シンボルA2211_iは、図57に示すように、信号検出のためのシンボルA2401、同期のためのシンボルA2402、送信している光変調信号数に関する情報を含むシンボルA2403、誤り訂正符号化方法、送信方法、変調方式に関する情報を含むシンボルA2404を含んでいるものとする。
信号検出のためのシンボルA2401は、受信装置150が、光変調信号の存在を知るためのシンボルであり、このシンボルを検出することで、受信装置150は、光変調信号が存在していることを知ることになる。
同期のためのシンボルA2402は、受信装置150が時間同期(周波数同期を含む場合がある)を行うためのシンボルであり、このシンボルを用いることで、受信装置150は、時間同期を行うことができ、各シンボルの高精度な復調が可能となる。
送信している光変調信号数に関する情報を含むシンボルA2403は、送信装置100が送信している光変調信号の数を通知するためのシンボルであり、図56の状態のとき、送信している光変調信号数に関する情報を含むシンボルA2403は、「16」という情報を送信していることになる。
受信装置150は、図56の受信状態において、送信している光変調信号数に関する情報を含むシンボルA2403を受信することで、「16」個の光変調信号を送信装置100が送信していることを知ることになる。なお、図56の受信状態の場合、受信装置150は、16個の光変調信号のうち3個の光変調信号しか受信できていないことを知ることになる。
誤り訂正符号化方法、送信方法、変調方式に関する情報を含むシンボルA2404は、例えば、光変調信号A2003_iのデータシンボル(データを伝送するためのシンボル)において使用されている誤り訂正符号化方法、送信方法、変調方式に関する情報を含むシンボルであり、受信装置150は、このシンボルを受信することで、光変調信号A2003_iで用いられている誤り訂正符号化方法、送信方法、変調方式を知ることができる。
図55のフレーム構成の場合、光変調信号A2003_1から光変調信号A2003_16において、図57に記載しているシンボルを、送信装置100が送信していることになる。このようにすることで、図56のように、受信装置150がすべての光変調信号を受信できていない状態においても、送信装置100が送信している光変調信号の数を知ることができ、これにより、受信装置150は、「すべての光変調信号を受信できているか、受信できていないか」、を知ることができる。すべての光変調信号を受信できていない場合、途中で、信号処理を中止し、これにより、不必要な電力の消費を抑えることができるという効果を得ることができる。
図58は、図57と異なる、図55における光変調信号A2003_iのフレーム構成A2201_iのプリアンブルA2210_i、制御情報シンボルA2211_iが含む情報、および、シンボルの構成の一例を示している。なお、iは1以上M(=16)以下の整数とし、また、図58において、図57と同様に動作するものについては、同一番号を付しており、すでに説明を行っているので、説明を省略する。
図58では、図57に対し、光変調信号の番号に関する情報を含むシンボルA2501が、送信装置100が送信するシンボルとして加わっている。
図58は、図55における光変調信号A2003_iのフレーム構成A2201_iである、つまり、第iの光変調信号のフレーム構成であるので、光変調信号の番号に関する情報を含むシンボルA2501は、「i」という情報を含んでいることになる。
例えば、送信装置100が、第1の光変調信号で送信する光変調信号の番号に関する情報を含むシンボルA2501は、「1」という情報を含んでいることになる。
受信装置150は、図56の受信状態において、送信している光変調信号数に関する情報を含むシンボルA2403を受信することで、「16」個の光変調信号を送信装置100が送信していることを知ることになる。そして、第4の光変調信号に含まれる「光変調信号の番号に関する情報を含むシンボルA2501」、第8の変調信号に含まれる「光変調信号の番号に関する情報を含むシンボルA2501A」、第12の変調信号に含まれる「光変調信号の番号に関する情報を含むシンボルA2501A」を、受信装置150が受信することになるので、第4の光変調信号、第8の光変調信号、第12の光変調信号を受信できているということを、受信装置150は知ることになる。この状況を知ることで、受信装置150は、受信状況を改善するための動作を実行することになり、これにより、データの受信品質が改善することになるが、詳細の動作については、後で説明を行う。
受信装置150における受信状態の別の例を図59、図60に示す。なお、図59、図60において、図56と同様に動作するものについては、同一番号を付しており、すでに説明を行っているので、説明を省略する。
図59の受信装置150における受信状態の例では、受信装置150の受光部A2300は、第1の光変調信号を含む第1の光源の光から第16の光変調信号を含む第16の光源の光、つまり、16個の光変調信号の受信を行っている。図59の場合、例えば、第1の光変調信号を受光部A2300の左上で受信していることになる。
図60の受信装置150における受信状態の例では、受信装置150の受光部A2300は、第1の光変調信号を含む第1の光源の光から第16の光変調信号を含む第16の光源の光、つまり、16個の光変調信号の受信を行っている。図60の場合、例えば、第1の光変調信号を受光部A2300の右下で受信していることになり、これは、図59とは異なる。
図59、図60の受信状態は、あくまでも例であり、受信装置150は、第1の光変調信号から第16の光変調信号をどのような状況で受信するかは、環境によって異なる。この点を考慮した場合、図58のように各光変調信号に「光変調信号の番号に関する情報を含むシンボルA2501」があるため、「受光部のどの部分で、どの光変調信号を受信できたか」、を受信装置150が把握することができる。そして、受信装置150は、第iの光変調信号の受信信号から得た第iの受信データを得、第1の受信データから第16の受信データの並び替えが必要なとき、受信データが「どの光変調信号の受信データであるか」を「光変調信号の番号に関する情報を含むシンボルA2501」から識別することができるため、受信データの正しい並び替えが可能となり、これにより、データの受信品質が改善することになる。
次に、上述とは異なるフレームの構成方法について説明を行う。
図55は、図53、図54における送信装置100が送信する光変調信号のフレーム構成の一例を示しており、すでに説明を行っているので説明を省略する。
例えば、図55における光変調信号A2003_1におけるフレーム構成A2201_1におけるプリアンブル、制御情報シンボルの構成を図57とし、「光変調信号A2003_2におけるフレーム構成A2201_2」から「光変調信号A2003_16におけるフレーム構成A2201_16」のプリアンブル、制御情報シンボルの構成を図61とする。なお、図61において、図57と同様に動作するものについては、同一番号を付しており、図61の特徴的な点は、「送信している光変調信号数に関する情報を含むシンボルA2403」を含んでいない点である。つまり、送信装置100は、「送信している光変調信号数に関する情報を含むシンボルA2403」を光変調信号A2003_1のみで送信しているという点である。
このとき、図56の受信装置150における受信状態の場合、受信装置150は、「送信している光変調信号数に関する情報を含むシンボルA2403」を得ていないので、送信装置100が送信した光変調信号の数を把握できない。すると、受信装置150は、データを正しく受信するのは難しいと判断し、受信動作の信号処理を停止させ、不必要な電力の消費を抑えることができる。
なお、この例の説明では、「送信装置100は、「送信している光変調信号数に関する情報を含むシンボルA2403」を光変調信号A2003_1のみで送信している」として説明しているが、この例に限ったものではなく、「送信装置100は、光変調信号A2003_1からA2003_16のうち、一部の光変調信号において、「送信している光変調信号数に関する情報を含むシンボルA2403」を送信する」のであれば、上述と同様の効果を得ることができる。
さらに、別の例を説明する。
図55は、図53、図54における送信装置100が送信する光変調信号のフレーム構成の一例を示しており、すでに説明を行っているので説明を省略する。
例えば、図55における光変調信号A2003_1におけるフレーム構成A2201_1におけるプリアンブル、制御情報シンボルの構成を図58とし、「光変調信号A2003_2におけるフレーム構成A2201_2」から「光変調信号A2003_16におけるフレーム構成A2201_16」のプリアンブル、制御情報シンボルの構成を図62とする。なお、図62において、図57、図58と同様に動作するものについては、同一番号を付しており、図62の特徴的な点は、「送信している光変調信号数に関する情報を含むシンボルA2403」を含んでいない点である。つまり、送信装置100は、「送信している光変調信号数に関する情報を含むシンボルA2403」を光変調信号A2003_1のみで送信しているという点である。
このとき、図56の受信装置150における受信状態の場合、受信装置150は、「送信している光変調信号数に関する情報を含むシンボルA2403」を得ていないので、送信装置100が送信した光変調信号の数を把握できない。すると、受信装置150は、データを正しく受信するのは難しいと判断し、受信動作の信号処理を停止させ、不必要な電力の消費を抑えることができる。
なお、この例の説明では、「送信装置100は、「送信している光変調信号数に関する情報を含むシンボルA2403」を光変調信号A2003_1のみで送信している」として説明しているが、この例に限ったものではなく、「送信装置100は、光変調信号A2003_1からA2003_16のうち、一部の光変調信号において、「送信している光変調信号数に関する情報を含むシンボルA2403」を送信する」のであれば、上述と同様の効果を得ることができる。
さらに別の例として、「送信装置100は、光変調信号A2003_1からA2003_16のうち、一部の光変調信号において、プリアンブル、制御情報シンボルを送信するという構成であってもよい。」
以上のように、送信装置が複数の光変調信号を送信する際、本実施の形態で説明したように、光変調信号を送信することで、受信装置は、高いデータの受信品質を得ることができる、または、消費電力を低減することができる、という効果を得ることができる。
なお、本実施の形態において、送信装置が送信する光変調信号の数を16として説明したが、これに限ったものではない。例えば、送信装置が図53の100のような構成の場合、送信する時間により、送信する光変調信号の数を変更してもよい。例えば、第1時間において、16個の光変調信号を送信し、第2時間において、8個の光変調信号を送信し、第3時間において、1個の光変調信号を送信する、というようにしてもよい。また、この例の場合、第1時間において、「送信している光変調信号数に関する情報を含むシンボルA2404」では「16」という情報を送信し、第2時間において、「送信している光変調信号数に関する情報を含むシンボルA2404」では「8」という情報を送信し、第3時間において、「送信している光変調信号数に関する情報を含むシンボルA2404」では「1」という情報を送信することになる。
そして、本実施の形態では、図55のフレーム構成を例に説明したが、フレーム構成はこれに限ったものではなく、フレームに他のシンボルが存在していてもよい。また、シンボルの送信する順番は、図55の順番に限ったものではない。
さらに、プリアンブル、制御情報シンボルの構成として、図57、図58、図61、図62について説明したが、各図において、一部のシンボルが存在しない、または、各図において、別のシンボルが存在するような構成であっても同様に動作させることができることがある。つまり、プリアンブル、制御情報シンボルの構成は図57、図58、図61、図62の構成に限ったものではない。また、プリアンブル、制御情報シンボルを構成するシンボルの送信する順番は、図57、図58、図61、図62の例に限ったものではない。
(実施の形態11)
本実施の形態では、例えば、受信装置150の受信状態が、図56のような状況において、受信装置150のデータの受信品質を改善するための実施方法について説明する。
本実施の形態では、例えば、受信装置150の受信状態が、図56のような状況において、受信装置150のデータの受信品質を改善するための実施方法について説明する。
実施の形態10で説明したように、受信装置150が、例えば、図56のような状況となると、受信装置150は、正しく受信データを得ることが難しい。また、受信装置150の受信状態が図63のようになる場合がある。図63において、図56と同様に動作するものについては、同一番号を付している。
図63の場合、イメージセンサなどの受光部における各光源が照射されている面積が小さいため、受信装置150におけるデータの受信品質が低下するという課題が発生する。また、ラインスキャン方式、領域毎ラインスキャンサンプリングを行った場合、受信装置150は、データの受信品質が著しく低下する可能性がある。
本実施の形態では、この課題を克服する受信装置150の構成例について説明する。
データを送信する送信装置の構成例として、図53の送信装置100がある。なお、図53についてはすでに説明を行っているので、説明を省略する。
図53の送信装置100が送信する光変調信号を受信する受信装置150の構成が図64である。
また、データを送信する送信装置の図53と異なる構成例として、図54の送信装置100がある。なお、図54について説明はすでに説明を行っているので、説明を省略する。
図54の送信装置100が送信する光変調信号を受信する受信装置150の構成が図65である。
以下では、図64、図65の受信装置150について説明を行う。
図64は、図53の送信装置100が送信した光変調信号を受信する受信装置150の構成の一例であり、図53と同様に動作するものについては、同一番号を付している。
レンズ(群)A3101はレンズ制御信号A3109を入力とし、焦点距離、絞り、フォーカスなどの制御を行う。
イメージセンサ(受光部)A3103は、レンズ通過後の光A3102を入力とし、光受信信号A2052_1からA2502_M、および、画像信号A3104を出力する。なお、画像信号A3104は、その後、信号処理が行われ、内部の表示部で画像として表示されてもよいし、インターフェースを介し、外部の表示部で画像として表示されてもよい。
データ取得部A2055は、受信データA2054_1からA2054_Mを入力とし、データA2056、および、受信状態情報A3107を出力する。
受信状態情報A3107は、例えば、実施の形態10における、送信装置100が送信した「送信している光変調信号数に関する情報を含むシンボルA2403」から得た「送信している光変調信号数に関する情報」、送信装置100が送信した「光変調信号の番号に関する情報を含むシンボルA2501」から得た「光変調信号の番号に関する情報」であってもよいし、また、受信状態情報A3107は、「送信している光変調信号数に関する情報」、「光変調信号の番号に関する情報」から生成した受信状態の情報でもよい。なお、この例に限ったものではない。
物体認識部A3105は、画像信号A3104、受信状態情報A3107、指示信号A3150を入力とし、指示信号A3150に基づいて、物体認識を行う。例えば、指示信号A3150が、「通信を行う」ことを示していた場合、物体認識部A3105は、光変調信号の認識を開始することになる。このとき、物体認識部A3105は、画像信号A3104、受信状態情報A3107を入力とし、物体認識信号A3106を出力する。具体的な動作については、後で説明を行う。
レンズ制御部A3108は、物体認識信号A3106を入力とし、例えば、図56、図63などの受信状態を認識し、「レンズ制御を行うか、レンズ制御を行う場合、焦点距離の設定値、絞りの設定値、フォーカスの設定を決定し」、これらの制御に相当するレンズ制御信号A3109を出力する。図64では、レンズ制御部A3108は、物体認識信号A3106を入力としているが、これ以外の入力信号が存在してもよい。
図65は、図54の送信装置100が送信した光変調信号を受信する受信装置150の構成の一例であり、図53、図54と同様に動作するものについては、同一番号を付している。なお、レンズ(群)A3101、イメージセンサA3103、物体認識部A3105、レンズ制御部A3108の動作については、すでに説明しているので、ここでは説明を省略する。
誤り訂正復号部A2155は、受信データA2054_1からA2054_Mを入力とし、データA2056、および、受信状態情報A3107を出力する。
次に、図64、図65におけるレンズ(群)A3101の制御方法について、具体的な例を述べる。
実施の形態10で説明したように、例えば、受信装置150の受信状態が図56に示したとおりの場合、いくつかの光源が照射した光を受光部が受光していないため、受信装置150が、データを正しく受信するのが難しい。また、すでに説明したように、受信装置150の受信状態が図63に示すような場合、受信装置150のデータの受信品質が悪いという課題がある。
一方で、受信装置150が、図59、図60のような受信状態の場合、データの受信品質が高い。
以上から、受信装置150は、図59、図60のような受信状態になるように、レンズ(群)A3101を制御すると、データの受信品質が向上する。図64、図65の受信装置150はこれを実現するための構成の例である。
図64、図65の受信装置150の制御の具体例を述べる。
受信装置150の受信状態が例えば、図56のような状態であったものとする。このとき、図64、図65における受信状態情報A3107は、すでに説明したように「送信している光変調信号数に関する情報」、「光変調信号の番号に関する情報」に基づいて作成された情報であるので、16個の光変調信号のうち3個の光変調信号が受信できていることを、図64、図65の物体認識部A3105は認識する。
さらに、物体認識部A3105は、画像信号A3104から、「光変調信号の受信状態、例えば、3個の光変調信号をイメージセンサのどの位置で受信しているか」を認識することになる。つまり、物体認識部A3105は、図56のイメージの物体認識を行うことになる。そして、物体認識部A3105は、「光変調信号の受信状態」、および、「16個の光変調信号を受信できていないこと」を認識する。さらにこの例の場合、物体認識部A3105は、これらの認識結果をもとに、レンズ制御を行うことを判断し、好適な通信を実現するための「好適な焦点距離の設定値、好適な絞りの設定値、好適なフォーカスの設定を決定し」、これらの情報を含む物体認識信号A3106を出力する。なお、物体認識信号A3106は、「好適な焦点距離の設定値」を少なくとも含んでいればよく、物体認識信号A3106は、好適な絞りの設定値、好適なフォーカスの設定の情報を含んでいなくてもよい。
レンズ制御部A3108は、物体認識信号A3106を入力とし、物体認識信号A3106に含まれる「好適な焦点距離の設定値、好適な絞りの設定値、好適なフォーカスの設定」などの情報に基づき、レンズ(群)A3101を制御するためのレンズ制御信号A3109を出力する。
このような一連の動作を実施することで、図64、図65の受信装置150は、例えば、図59、図60のような受信状態となり、これにより、高いデータの受信品質を得ることができるという効果が得られる。
上述の例では、受信装置150の受信状態を、図56から「図59、図60」に制御する場合を例に説明したが、この例に限ったものではなく、受信装置150の受信状態を、図63から「図59、図60」に制御してもよい。ただし、これに限ったものではない。
次に、図64、図65とは異なる図66、図67の受信装置150の制御の例を説明する。
図66は、図53の送信装置100が送信した光変調信号を受信する受信装置150の構成の一例であり、図64と同様に動作するものについては、同一番号を付しており、すでに説明を行っている部分については説明を省略する。
図66の受信装置150が、図64の受信装置150と異なる点は、イメージセンサA3103の後に信号処理部A3302が存在している点である。
信号処理部A3302は少なくともズーム(画像の拡大(・縮小))の処理機能を有しているものとする。
したがって、信号処理部A3302は、画像信号A3301、ズーム用信号A3300、物体認識信号A3106、指示信号A3150を入力とし、指示信号A3150が「撮影モード(撮影を行う)」であることを示している場合、信号処理部A3302は、ズーム用信号A3300のズーム(画像拡大(・縮小))の情報に基づいて、画像信号A3301に対し、ズーム用の信号処理を行い、信号処理後の画像信号A3104を出力する。
指示信号A3150が「通信モード(通信を行う)」であることを示している場合、信号処理部A3302は、物体認識信号A3106に含まれる「好適な焦点距離の設定値、好適な絞りの設定値、好適なフォーカスの設定」などの情報に基づき、画像信号A3301に対し、ズーム用の信号処理を行い、信号処理後の画像信号A3104、および、信号処理後の光受信信号2052_1からA2052_Mを出力する。これにより、上述の説明のように、受信状態が改善するため、データの受信品質が改善するという効果を得ることができる。
なお、レンズ制御部A3108における受信状態を改善する方法については、すでに説明を行っているので、説明を省略する。
以上のようにすることで、受信装置150は、受信状態が改善するため、データの受信品質が改善するという効果を得ることができる。図66において、レンズ(群)A3101が焦点距離変更機能を有していない場合、受信改善を行うための焦点距離の変更は行われないことになる。
図67は、図54の送信装置100が送信した光変調信号を受信する受信装置150の構成の一例であり、図65と同様に動作するものについては、同一番号を付しており、すでに説明を行っている部分については説明を省略する。
図67の受信装置150が、図65の受信装置150と異なる点は、図66と同様、イメージセンサA3103の後に信号処理部A3302が存在している点である。
なお、信号処理部A3302の動作の詳細については、すでに説明を行っているので、説明を省略する。また、このすでに行った説明のように、受信状態が改善するため、データの受信品質が改善するという効果を得ることができる。
なお、レンズ制御部A3108における受信状態を改善する方法については、すでに説明を行っているので、説明を省略する。
以上のようにすることで、受信装置150は、受信状態が改善するため、データの受信品質が改善するという効果を得ることができる。図67において、レンズ(群)A3101が焦点距離変更機能を有していない場合、受信改善を行うための焦点距離の変更は行われないことになる。
ところで、図64、図65、図66、図67の受信装置150において、レンズ(群)A3101が、焦点距離として複数の値の設定が可能であるものとする。例えば、焦点距離として12mm以上35mm以下の設定が可能、または、焦点距離として12mm、および、25mmの設定が可能、というような方法が考えられる。以下では、この例をもとに説明を行う。
第1の例として、焦点距離として離散的な値を複数サポートしている場合を考える。
図64、図65、図66、図67の受信装置150は、指示信号A3150により、「通信モード」に設定したされた場合、通信を開始することになるが、このとき、レンズ(群)A3101の焦点距離を例えば最広角となる12mmに設定するとよい。というのも、最広角に設定した場合、図56のように、一部の光変調の受信が難しいという受信状態を避けることができる可能性が高い。これにより、データの受信品質を改善することができるという効果を得ることができる。ただし、さらにデータの受信品質を改善するために、焦点距離などを好適な値に制御してもよい。
なお、この例では、焦点距離として、12mm、25mmをサポートしている場合を例に説明しているが、2種類以上の焦点距離をサポートしていても、通信開始時に、例えば、最広角の焦点距離に設定することは、データの受信品質を改善するという点では、有効な方法となる。
第2の例として、焦点距離を連続的に(または、細かく)設定可能である場合を考える。
図64、図65、図66、図67の受信装置150は、指示信号A3150により、「通信モード」と設定したされた場合、通信を開始することになるが、このとき、レンズ(群)A3101の焦点距離を例えば最広角となる12mmに設定するとよい。というのも、最広角に設定した場合、図56のように、一部の光変調の受信が難しいという受信状態を避けることができる可能性が高い。これにより、データの受信品質を改善することができるという効果を得ることができる。ただし、この例の場合、焦点距離を細かく設定することが可能であるので、例えば、14mmに設定しても、同等の効果を得ることができる可能性が高い。ただし、さらにデータの受信品質を改善するために、焦点距離などを好適な値に制御してもよい。
図66、図67の受信装置150において、信号処理部A3302が、ズーム(画像の拡大(・縮小))の処理機能を有している場合を考える。このとき、1倍の画像の拡大(拡大を行わない)、2倍の画像の拡大、4倍の画像の拡大に対応している場合を例に説明を行う。
図66、図67の受信装置150は、指示信号A3150により、「通信モード」に設定された場合、通信を開始することになるが、このとき、信号処理部A3302のズーム(画像の拡大(・縮小))として、最も広角となる「1倍の画像の拡大(拡大を行わない)」に設定するとよい。というのも、最広角に設定した場合、図56のように、一部の光変調の受信が難しいという受信状態を避けることができる可能性が高い。これにより、データの受信品質を改善することができるという効果を得ることができる。ただし、さらにデータの受信品質を改善するために、ズームの値を好適な値に制御してもよい。
(補足1)
当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
また、各実施の形態については、あくまでも例であり、例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を例示していても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも同様の構成で実施することが可能である。
変調方式については、本明細書で記載している変調方式以外の変調方式を使用しても、本明細書において説明した実施の形態、その他の内容を実施することが可能である。例えば、APSK(Amplitude Phase Shift Keying)(例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKなど)、PAM(Pulse Amplitude Modulation)(例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMなど)、PSK(Phase Shift Keying)(例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKなど)、QAM(Quadrature Amplitude Modulation)(例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMなど)などを適用してもよく、各変調方式において、均一マッピング、非均一マッピングとしてもよい。また、I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限ったものではない。
本明細書で説明した無線装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本明細書で説明した無線装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。
また、本明細書で説明した受信部を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。
本実施の形態における電波による無線通信では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、シンボルそれぞれの役割が重要となっている。
パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤでの設定情報等)を伝送するためのシンボルである。
(補足2)
上記の各実施の形態で説明した動画像符号化方式は、例えば、MPEG(Moving Picture Experts Group)2、H.264/AVC(Advanced Video Coding)、H.265/HEVC(High. Efficiency Video Coding)、VC-1、VP8、VP9などの名称で規定された仕様に準拠した方式を用いることができる。ただし、上記の各実施の形態で説明した動画像符号化方式は、上記で列挙した方式とは異なる動画像符号化方式を用いてもよい。
上記の各実施の形態で説明した動画像符号化方式は、例えば、MPEG(Moving Picture Experts Group)2、H.264/AVC(Advanced Video Coding)、H.265/HEVC(High. Efficiency Video Coding)、VC-1、VP8、VP9などの名称で規定された仕様に準拠した方式を用いることができる。ただし、上記の各実施の形態で説明した動画像符号化方式は、上記で列挙した方式とは異なる動画像符号化方式を用いてもよい。
なお、本開示は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。
なお、例えば、上記通信方法、送信方法、または受信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
また、上記通信方法、送信方法、または受信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
そして、上記の各実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSI(Large Scale Integration)として実現され、上記の各実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力とを備えてもよい。LSIは、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限られるものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現しても良い。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)またはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
(補足3)
なお、FPGA(Field Programmable Gate Array)およびCPU(Central Processing Unit)の少なくとも一方が、本開示において説明した通信方法、送信方法、または受信方法を実現するために必要なソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。さらに、更新のためのソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。そして、ダウンロードしたソフトウェアを記憶部に格納し、格納されたソフトウェアに基づいてFPGAおよびCPU少なくとも一方を動作させることにより、本開示において説明したデジタル信号処理を実行するようにしてもよい。
なお、FPGA(Field Programmable Gate Array)およびCPU(Central Processing Unit)の少なくとも一方が、本開示において説明した通信方法、送信方法、または受信方法を実現するために必要なソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。さらに、更新のためのソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。そして、ダウンロードしたソフトウェアを記憶部に格納し、格納されたソフトウェアに基づいてFPGAおよびCPU少なくとも一方を動作させることにより、本開示において説明したデジタル信号処理を実行するようにしてもよい。
このとき、FPGAおよびCPUの少なくとも一方を具備する機器は、通信モデムと無線または有線で接続し、この機器と通信モデムにより、本開示において説明した通信方法、送信方法、または受信方法を実現してもよい。
例えば、本明細書で記載した基地局、AP、端末などの通信装置(送信装置または受信装置)が、FPGA、および、CPUのうち、少なくとも一方を具備しており、FPGA及びCPUの少なくとも一方を動作させるためのソフトウェアを外部から入手するためのインターフェースを通信装置が具備していてもよい。さらに、通信装置が外部から入手したソフトウェアを格納するための記憶部を具備し、格納されたソフトウェアに基づいて、FPGA、CPUを動作させることで、本開示において説明した信号処理を実現するようにしてもよい。
本明細書で説明した送信装置を第1の「車、または、乗り物」が具備し、本明細書で説明した受信装置を第2の「車、または、乗り物」が具備し、データの送受信を実施してもよい。
本明細書で説明した「送信装置、または、送信装置の機能の一部」を、インターフェースを介して第1の「車、または、乗り物」に接続し、本明細書で説明した「受信装置、または、受信装置の一部」を、インターフェースを介して第2の「車、または、乗り物」に接続し、送受信によるデータの伝送を実施してもよい。
また、本明細書で説明した送信装置を第1の「車、または、乗り物」が具備し、この送信装置と本明細書で説明した受信装置とで、データの送受信を実施してもよい。
本明細書で説明した受信装置を第2の「車、または、乗り物」が具備し、この受信装置と本明細書で説明した送信装置とで、データの送受信を実施してもよい。
さらに、本明細書で説明した「送信装置、または、送信装置の機能の一部」を、インターフェースを介して第1の「車、または、乗り物」に接続し、この一連の送信装置と本明細書で説明した受信装置とで、データの送受信を実施してもよい。
本明細書で説明した「受信装置、または、受信装置の一部」を、インターフェースを介して第2の「車、または、乗り物」に接続し、本明細書で説明した送信装置とこの一連の受信装置とで、データの送受信を実施してもよい。
「「車、または、乗り物」が本明細書で説明した送信装置、または、送信装置の一部を具備している」、または、「「車、または、乗り物」が「本明細書で説明した送信装置」、または、「本明細書で説明した送信装置の一部の機能」と、インターフェースを介して接続している場合」、本明細書で説明した送信装置が具備している光源として、「車、または、乗り物」が具備している光源を使用してもよい。
例えば、図68のように車B100は、光源B101_1、B101_2、B101_3、B101_4を具備しており、これらの光源の1つ以上を本明細書で説明した送信装置が光変調信号を送信するための光源としてもよい。
また、車B100が搭載している複数の光源のうち、「どの光源を、本明細書で説明した送信装置が光変調信号を送信するための光源として用いるか」、を選択する機能を送信装置、または、送信装置と接続した装置が具備していてもよい。また、光源の明るさ、光源の照射角度、光源の位置をあわせて設定できてもよい。
「「車、または、乗り物」が本明細書で説明した受信装置、または、受信装置の一部を具備している」、または、「「車、または、乗り物」が「本明細書で説明した受信装置」、または、「本明細書で説明した受信装置の一部の機能」と、インターフェースを介して接続している場合」、本明細書で説明した受信装置が具備している受光部として、「車、または、乗り物」が具備している受光部(例えば、イメージセンサ、フォトダイオードなど)を使用してもよい。
例えば、図69のように車B100は、受光部B201_1、B201_2、B201_3、B201_4、B201_5、B201_6を具備しており、これらの受光部の1つ以上を本明細書で説明した受信装置が光変調信号を受信するための受光部としてもよい。
また、車B100が搭載している複数の受光部のうち、「どの受光部を、本明細書で説明した受信装置が光変調信号を受信するための受光部として用いるか」、を選択する機能を受信装置、または、受信装置と接続した装置が具備していてもよい。また、受光部の角度、受光部の位置をあわせて設定できてもよい。
さらに、本明細書で説明した受信装置が、データを受信することができていることを、車が搭載しているフロントパネル、乗り物が搭載しているコクピットに表示してもよい。また、本明細書で説明した受信装置が、データを受信することができていることを、車などのハンドル自身、または、ハンドルが具備するバイブレータを振動させることで、ユーザに知らせてもよい。
(補足4)
本明細書において、受信装置に関連する処理に関するアプリケーションをサーバが提供し、端末は、このアプリケーションをインストールすることで、本明細書で記載した受信装置の機能を実現してもよい。なお、アプリケーションは、本明細書に記載した送信装置を具備する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよいし、アプリケーションは、別の送信機能を有する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよい。
本明細書において、受信装置に関連する処理に関するアプリケーションをサーバが提供し、端末は、このアプリケーションをインストールすることで、本明細書で記載した受信装置の機能を実現してもよい。なお、アプリケーションは、本明細書に記載した送信装置を具備する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよいし、アプリケーションは、別の送信機能を有する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよい。
同様に、本明細書において、送信装置に関連する処理に関するアプリケーションをサーバが提供し、通信装置は、このアプリケーションをインストールすることで、本明細書で記載した送信装置の機能を実現してもよい。なお、アプリケーションは、他の通信装置がネットワークを介しサーバと接続することによって、この通信装置に提供されるという方法が考えられる。
また、送信装置が具備している光源、受信装置が具備している受光部に関するソフトウェアをサーバが提供し、このソフトウェアを得ることで、送信装置が具備している光源が光変調信号の送信に対応でき、受信装置が具備している受光部が光変調信号の受信に対応できるようにしてもよい。
さらに、本明細書における送信装置が、サーバの機能を有していてもよく、送信装置が具備するアプリケーションを、何らかの通信手段を用いて、通信装置に提供し、通信装置はダウンロードすることにより得たアプリケーションにより、本明細書における受信装置を実現することができてもよい。
なお、本明細書において、「照明部」、「光源」と記載しているが、画像、動画、広告などを表示するディスプレイ、プロジェクタが光を発しており、その光に光変調信号が含まれているというような方法であってもよい。つまり、「照明部」、「光源」が光を発する機能以外の機能を有していてもよい。また、「照明部」、「光源」が、複数の「照明」、「光源」により構成されていてもよい。
さらに、光変調信号を生成し、光を発する通信装置が用いる送信方法は、本明細書で記載された送信方法以外の方法であってもよい。また、光変調信号は、本明細書で説明した以外の情報が含まれていてもよい。
また、LEDなどの照明・光源自身が、本明細書で説明した送信装置の機能を有していてもよい。
さらに、本明細書で記載した、送信装置、受信装置を車に搭載する場合を例として説明しているが、これに限ったものではなく、送信装置、受信装置が、他のものに搭載されていてもよいし、送信装置、受信装置が単体で存在していても、本明細書で説明した動作を実施することができ、また、同様な効果を得ることができる。
(補足5)
本開示における通信装置および受信装置は、実施の形態1~11の何れかの態様であってもよい。
本開示における通信装置および受信装置は、実施の形態1~11の何れかの態様であってもよい。
すなわち、本開示の一態様である第1の通信装置は、第1の通信装置の識別子を示す第1の識別子情報を伝送する第1の光信号と、第2の通信装置の識別子を示す第2の識別子情報を伝送する第2の光信号とを受光して受信信号を生成する受光部と、前記受信信号を復調して前記第1の識別子情報と、前記第2の識別子情報とを取得する復調部と、前記第1の光信号及び前記第2の光信号を含む領域を撮影し、動画または静止画データを取得するカメラと、前記動画または静止画データに基づいて、前記第1の識別子情報及び前記第2の識別子情報のいずれか一方を選択する制御部と、前記選択された識別子情報に対応する通信装置と通信を行う通信部と、を備える。
本開示の一態様である第2の通信装置は、所定の領域を撮影し、前記所定の領域に照射された光信号を復調するための受信信号と、画像処理に用いるための動画または静止画データを取得する受光部と、前記画像データを復調し、それぞれ対応する他の通信装置の識別子を示す識別子情報を複数取得する復調部と、前記動画または静止画データに基づいて、前記複数の識別子情報のうちのいずれか一つの識別子情報を選択する制御部と、前記選択された識別子情報に対応する他の通信装置と無線通信を行う通信部と、を備える。
本開示の一態様である第1の受信装置は、第1の通信装置の識別子を示す第1の識別子情報を伝送する第1の光信号と、第2の通信装置の識別子を示す第2の識別子情報を伝送する第2の光信号とを受光して光受信信号を生成する第1の受光部と、前記光受信信号を復調して前記第1の識別子情報と、前記第2の識別子情報とを取得する復調部と、前記第1の光信号及び前記第2の光信号を含む領域を撮影した動画または静止画データを取得する第2の受光部と、前記動画データまたは静止画データに基づいて、前記第1の識別子情報及び前記第2の識別子情報のいずれか一方を選択する制御部と、を備える。
本開示の一態様である第2の受信装置は、第1の通信装置の識別子を示す第1の識別子情報を伝送する第1の光信号と、第2の通信装置の識別子を示す第2の識別子情報を伝送する第2の光信号とを受光して受信信号を生成する受光部と、前記受信信号を復調して前記第1の識別子情報と、前記第2の識別子情報とを取得する復調部と、前記第1の光信号及び前記第2の光信号を含む領域を撮影し、動画データまたは静止画データを取得するカメラと、前記動画データまたは静止画データを解析して、前記第1の光信号を送信した第1の送信機と、前記第2の光信号を送信した第2の送信機との位置関係を示す相対位置情報を生成する解析部と、を備える。
本開示の一態様である第3の受信装置は、第1の通信装置の識別子を示す第1の識別子情報を伝送する第1の光信号と、第2の通信装置の識別子を示す第2の識別子情報を伝送する第2の光信号とイメージセンサを用いて受光して受信信号に生成する受光部と、前記受信信号を復調して前記第1の識別子情報と、前記第2の識別子情報とを取得する復調部と、前記第1の光信号を送信した第1の送信機の位置を示す第1の位置情報と、前記第2の光信号を送信した第2の送信機の位置を示す第2の位置情報とを生成する解析部と、を備える。
本開示の一態様である第4の受信装置は、所定の領域を撮影し、前記所定の領域に照射された光信号を復調するための受信信号と、画像処理に用いるための動画または静止画データを取得する受光部と、前記受信信号を復調して復調データを生成する復調部と、前記動画または静止画データを解析して、前記復調データに対応する光信号を送信した送信機の属性を示す属性情報を生成する解析部と、を備える。
また、本開示における受信装置は、実施の形態8~11の態様であってもよい。
すなわち、本開示の一態様である受信装置は、撮影によって画像を取得するイメージセンサと、前記イメージセンサの撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する受信部と、を備える。例えば、受信装置は、図42に示すように、領域A、領域B、領域Cおよび領域Dのそれぞれについて、ラインスキャンサンプリングを行うことによって、それぞれの領域に対応する光源から互いに異なる光信号を並列に受信する。
これにより、受信装置は、光信号を受信することで、例えばSSIDなどの情報を安全に入手することができる。また、複数の光源から送信される互いに異なる光信号を並列に受信するため、データの伝送速度が向上するという効果を得ることができる。
また、前記受信装置は、さらに、少なくとも1つのレンズと、前記少なくとも1つのレンズを制御するレンズ制御部とを備え、前記レンズ制御部は、前記複数の光源のそれぞれからの光が、前記少なくとも1つのレンズを介して前記イメージセンサに投影されるように、前記少なくとも1つのレンズを制御してもよい。例えば、前記レンズ制御部は、前記少なくとも1つのレンズの焦点距離を制御してもよい。具体的には、少なくとも1つのレンズは、例えば図64~図67に示すレンズ(群)A3101であり、レンズ制御部は、例えば図64~図67に示すレンズ制御部A3108である。また、レンズ制御部による焦点距離の制御によって、例えば図56および図63に示す受信状態が、例えば図59および図60に示す受信状態に変更される。なお、焦点距離だけでなく、絞りおよびフォーカスを制御してもよい。
これにより、高いデータの受信品質を得ることができるという効果が得られる。
また、前記複数の光源のそれぞれから送信される光信号は、前記複数の光源から送信されている光信号の数に関する信号数情報を含み、前記受信装置は、さらに、前記N個の光信号の受信状態を認識する認識部を備え、前記認識部は、前記受信部によって受信されている光信号の数であるN個と、前記受信部によって受信されている前記光信号に含まれる前記信号数情報とに基づいて、前記受信状態を認識し、前記レンズ制御部は、前記認識部によって認識された前記受信状態に基づいて、前記少なくとも1つのレンズの焦点距離を制御してもよい。例えば、前記認識部は、前記受信部によって受信されている光信号の数であるN個と、前記信号数情報によって示される光信号の数とに基づいて、前記受信状態が、前記複数の光源から送信されている全ての光信号が前記受信部によって受信されている状態であるか否かを判定し、前記レンズ制御部は、前記認識部によって、前記全ての光信号が前記受信部に受信されている状態ではないと判定される場合には、前記少なくとも1つのレンズの焦点距離が短くなるように、前記少なくとも1つのレンズを制御してもよい。具体的には、信号数情報は、例えば図57および図58に示す「送信している光変調信号数に関する情報を含むシンボルA2403」に含まれる情報である。また、認識部は、図64~図67に示す物体認識部A3105である。
これにより、受信されている光信号の数であるN個と、その信号数情報によって示される光信号の数とに基づいて、複数の光源から送信されている全ての光信号が受信されているか否かが判定される。そして、全ての光信号が受信されていない場合には、少なくとも1つのレンズの焦点距離が短くなる。その結果、画角が広くなることによって、複数の光源からの全ての光をイメージセンサに投影させ、全ての光信号を受信することができる。したがって、高いデータの受信品質を得ることができる。
本開示の一態様は、光通信システムに有用である。
100,400,1000,1400A,1400B 機器
102,1404-1、1404-2 送信部
104,1406-1,1406-2 光源
150,1050 端末(受信装置)
151 受光部
153 受信部
155 データ解析部
157 表示部
453,2002 無線装置
470,2000 基地局
2001 送信装置
102,1404-1、1404-2 送信部
104,1406-1,1406-2 光源
150,1050 端末(受信装置)
151 受光部
153 受信部
155 データ解析部
157 表示部
453,2002 無線装置
470,2000 基地局
2001 送信装置
Claims (10)
- 撮影によって画像を取得するイメージセンサと、
前記イメージセンサの撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する受信部と、
を備える受信装置。 - 前記受信装置は、さらに、
少なくとも1つのレンズと、
前記少なくとも1つのレンズを制御するレンズ制御部とを備え、
前記レンズ制御部は、
前記複数の光源のそれぞれからの光が、前記少なくとも1つのレンズを介して前記イメージセンサに投影されるように、前記少なくとも1つのレンズを制御する、
請求項1に記載の受信装置。 - 前記レンズ制御部は、
前記少なくとも1つのレンズの焦点距離を制御する、
請求項2に記載の受信装置。 - 前記複数の光源のそれぞれから送信される光信号は、前記複数の光源から送信されている光信号の数に関する信号数情報を含み、
前記受信装置は、さらに、
前記N個の光信号の受信状態を認識する認識部を備え、
前記認識部は、
前記受信部によって受信されている光信号の数であるN個と、前記受信部によって受信されている前記光信号に含まれる前記信号数情報とに基づいて、前記受信状態を認識し、
前記レンズ制御部は、
前記認識部によって認識された前記受信状態に基づいて、前記少なくとも1つのレンズの焦点距離を制御する、
請求項3に記載の受信装置。 - 前記認識部は、
前記受信部によって受信されている光信号の数であるN個と、前記信号数情報によって示される光信号の数とに基づいて、前記受信状態が、前記複数の光源から送信されている全ての光信号が前記受信部によって受信されている状態であるか否かを判定し、
前記レンズ制御部は、
前記認識部によって、前記全ての光信号が前記受信部に受信されている状態ではないと判定される場合には、前記少なくとも1つのレンズの焦点距離が短くなるように、前記少なくとも1つのレンズを制御する、
請求項4に記載の受信装置。 - イメージセンサによる撮影によって画像を取得し、
前記イメージセンサの撮像面に含まれるN(Nは2以上の整数)個の領域のそれぞれについて、当該領域に含まれる複数の画素をサンプリングすることによって、複数の光源から送信される互いに異なるN個の光信号を並列に受信する、
受信方法。 - 前記受信方法では、さらに、
前記複数の光源のそれぞれからの光が、少なくとも1つのレンズを介して前記イメージセンサに投影されるように、前記少なくとも1つのレンズを制御する、
請求項6に記載の受信方法。 - 前記少なくとも1つのレンズの制御では、
前記少なくとも1つのレンズの焦点距離を制御する、
請求項7に記載の受信方法。 - 前記複数の光源のそれぞれから送信される光信号は、前記複数の光源から送信されている光信号の数に関する信号数情報を含み、
前記受信方法は、さらに、
受信されている光信号の数であるN個と、受信されている前記光信号に含まれる前記信号数情報とに基づいて、前記N個の光信号の受信状態を認識し、
前記少なくとも1つのレンズの制御では、
認識された前記受信状態に基づいて、前記少なくとも1つのレンズの焦点距離を制御する、
請求項8に記載の受信方法。 - 前記受信状態の認識では、
受信されている光信号の数であるN個と、前記信号数情報によって示される光信号の数とに基づいて、前記受信状態が、前記複数の光源から送信されている全ての光信号が受信されている状態であるか否かを判定し、
前記少なくとも1つのレンズの制御では、
前記受信状態の認識において、前記全ての光信号が受信されている状態ではないと判定される場合には、前記少なくとも1つのレンズの焦点距離が短くなるように、前記少なくとも1つのレンズを制御する、
請求項9に記載の受信方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311506650.9A CN117336600A (zh) | 2017-06-01 | 2018-05-29 | 图像传感器、由其实施的方法、以及接收装置及方法 |
EP18809390.0A EP3633879B1 (en) | 2017-06-01 | 2018-05-29 | Reception device and reception method |
EP22175054.0A EP4072040A1 (en) | 2017-06-01 | 2018-05-29 | Reception device and reception method |
JP2019521214A JP7221863B2 (ja) | 2017-06-01 | 2018-05-29 | 受信装置および受信方法 |
CN202311509891.9A CN117560080A (zh) | 2017-06-01 | 2018-05-29 | 接收装置以及接收方法 |
CN201880033878.1A CN110663203B (zh) | 2017-06-01 | 2018-05-29 | 接收装置以及接收方法 |
US16/697,475 US11296788B2 (en) | 2017-06-01 | 2019-11-27 | Reception device and reception method |
US17/680,760 US20220182143A1 (en) | 2017-06-01 | 2022-02-25 | Reception device and reception method |
JP2023014516A JP2023058549A (ja) | 2017-06-01 | 2023-02-02 | 受信装置および受信方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762513608P | 2017-06-01 | 2017-06-01 | |
US62/513,608 | 2017-06-01 | ||
US201762532028P | 2017-07-13 | 2017-07-13 | |
US62/532,028 | 2017-07-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/697,475 Continuation US11296788B2 (en) | 2017-06-01 | 2019-11-27 | Reception device and reception method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221472A1 true WO2018221472A1 (ja) | 2018-12-06 |
Family
ID=64455948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020427 WO2018221472A1 (ja) | 2017-06-01 | 2018-05-29 | 受信装置および受信方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11296788B2 (ja) |
EP (2) | EP3633879B1 (ja) |
JP (2) | JP7221863B2 (ja) |
CN (3) | CN117336600A (ja) |
WO (1) | WO2018221472A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158489A1 (ja) * | 2019-01-28 | 2020-08-06 | ソニー株式会社 | 可視光通信装置、可視光通信方法及び可視光通信プログラム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11287829B2 (en) * | 2019-06-20 | 2022-03-29 | Cisco Technology, Inc. | Environment mapping for autonomous vehicles using video stream sharing |
FI20215318A1 (en) | 2021-03-22 | 2022-09-23 | Nokia Technologies Oy | Improving data transfer in wireless communication |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001292107A (ja) * | 2000-04-06 | 2001-10-19 | Sony Corp | 受信装置、送信装置、および通信システム |
JP2007295490A (ja) * | 2006-04-27 | 2007-11-08 | Kyocera Corp | 可視光通信装置および可視光受信方法 |
JP2009218898A (ja) * | 2008-03-11 | 2009-09-24 | Funai Electric Co Ltd | 可視光通信システム |
JP2014225781A (ja) * | 2013-05-16 | 2014-12-04 | 日本電信電話株式会社 | 受信装置、受信方法、およびそのプログラム |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0683145B2 (ja) * | 1986-05-26 | 1994-10-19 | 株式会社日立製作所 | 移動体に対する光無線通信装置 |
JP4224405B2 (ja) * | 2004-01-08 | 2009-02-12 | 日本電信電話株式会社 | データ信号受信方法とその装置及びプログラム並びにその記録媒体 |
JP2007019936A (ja) * | 2005-07-08 | 2007-01-25 | Fujifilm Holdings Corp | 可視光通信システム、撮像装置、可視光通信準備方法及び可視光通信準備プログラム |
JP2007033653A (ja) * | 2005-07-25 | 2007-02-08 | Canon Inc | 焦点検出装置及びそれを用いた撮像装置 |
JP4868217B2 (ja) * | 2006-01-25 | 2012-02-01 | ソニー株式会社 | 撮像装置および方法、記録媒体、並びにプログラム |
US8311414B2 (en) * | 2006-08-21 | 2012-11-13 | Panasonic Corporation | Optical space transfer apparatus using image sensor |
CN101232327B (zh) * | 2007-10-30 | 2011-05-18 | 华东理工大学 | 可见光空分多址多路通信系统 |
JP2012080477A (ja) * | 2010-10-06 | 2012-04-19 | Toyota Central R&D Labs Inc | 光信号と電波を用いた通信装置及び通信方法 |
US20120157159A1 (en) * | 2010-12-17 | 2012-06-21 | Electronics And Telecommunications Research Institute | Communication apparatus using image sensor and error correction method |
US8837611B2 (en) * | 2011-02-09 | 2014-09-16 | Silicon Laboratories Inc. | Memory-aided synchronization in a receiver |
US9587804B2 (en) * | 2012-05-07 | 2017-03-07 | Chia Ming Chen | Light control systems and methods |
JP6083145B2 (ja) * | 2012-07-31 | 2017-02-22 | セイコーエプソン株式会社 | ロボットの制御装置、およびロボット |
WO2014136110A1 (en) * | 2013-03-05 | 2014-09-12 | Shilat Optical Systems Ltd | Free space optical communication system |
JP6183802B2 (ja) * | 2013-06-04 | 2017-08-23 | ユニバーリンク株式会社 | 可視光受信方法及びその装置 |
CN104378163A (zh) * | 2014-11-14 | 2015-02-25 | 北京智谷睿拓技术服务有限公司 | 可见光信号接收控制方法、控制装置及接收设备 |
JP6712883B2 (ja) * | 2016-03-25 | 2020-06-24 | 本田技研工業株式会社 | 撮像装置および撮像方法 |
GB201605142D0 (en) * | 2016-03-25 | 2016-05-11 | Purelifi Ltd | A camera system |
US20170317748A1 (en) * | 2016-05-02 | 2017-11-02 | Magna Electronics Inc. | Vehicle positioning by visible light communication |
CN109804573B (zh) * | 2016-10-12 | 2022-09-09 | 松下电器(美国)知识产权公司 | 发送装置及方法、接收装置及方法、通信系统及通信方法 |
JP7011602B2 (ja) * | 2016-12-16 | 2022-01-26 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 端末及び通信方法 |
US11387901B2 (en) * | 2017-06-30 | 2022-07-12 | Panasonic Intellectual Property Corporation Of America | Communication apparatus and communication method |
EP3657342A4 (en) * | 2017-07-20 | 2020-07-29 | Panasonic Intellectual Property Corporation of America | COMMUNICATION SYSTEM, TERMINAL, CONTROL PROCEDURE AND PROGRAM |
CN111492596A (zh) * | 2017-12-19 | 2020-08-04 | 松下电器(美国)知识产权公司 | 发送方法、接收方法、发送装置、以及接收装置 |
US10382130B1 (en) * | 2018-08-31 | 2019-08-13 | Ford Global Technologies, Llc | Dual mode vehicle camera for visual light communication |
US10887023B1 (en) * | 2018-10-10 | 2021-01-05 | Wayfarer, Inc. | Variable bandwidth free-space optical communication system for autonomous or semi-autonomous passenger vehicles |
GB201816598D0 (en) * | 2018-10-11 | 2018-11-28 | Purelifi Ltd | Signal retransmission system and method |
US11552706B2 (en) * | 2019-03-29 | 2023-01-10 | Advanced Functional Fabrics Of America, Inc. | Optical communication methods and systems using motion blur |
US11916598B2 (en) * | 2020-04-13 | 2024-02-27 | Avicenatech Corp. | Parallel optical communication channels using microLEDs |
-
2018
- 2018-05-29 WO PCT/JP2018/020427 patent/WO2018221472A1/ja unknown
- 2018-05-29 CN CN202311506650.9A patent/CN117336600A/zh active Pending
- 2018-05-29 EP EP18809390.0A patent/EP3633879B1/en active Active
- 2018-05-29 JP JP2019521214A patent/JP7221863B2/ja active Active
- 2018-05-29 EP EP22175054.0A patent/EP4072040A1/en active Pending
- 2018-05-29 CN CN202311509891.9A patent/CN117560080A/zh active Pending
- 2018-05-29 CN CN201880033878.1A patent/CN110663203B/zh active Active
-
2019
- 2019-11-27 US US16/697,475 patent/US11296788B2/en active Active
-
2022
- 2022-02-25 US US17/680,760 patent/US20220182143A1/en active Pending
-
2023
- 2023-02-02 JP JP2023014516A patent/JP2023058549A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001292107A (ja) * | 2000-04-06 | 2001-10-19 | Sony Corp | 受信装置、送信装置、および通信システム |
JP2007295490A (ja) * | 2006-04-27 | 2007-11-08 | Kyocera Corp | 可視光通信装置および可視光受信方法 |
JP2009218898A (ja) * | 2008-03-11 | 2009-09-24 | Funai Electric Co Ltd | 可視光通信システム |
JP2014225781A (ja) * | 2013-05-16 | 2014-12-04 | 日本電信電話株式会社 | 受信装置、受信方法、およびそのプログラム |
Non-Patent Citations (4)
Title |
---|
"Advanced Image Sensor", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 66, no. 3, 2012, pages 172 - 173 |
"High Speed Technology Trends in CMOS Image Sensors", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 66, no. 3, 2012, pages 174 - 177 |
"Proposal of New Organic CMOS Image Sensor for Reduction in Pixel Size", FUJIFILM RESEARCH & DEVELOPMENT, vol. 55, 2010, pages 14 - 17 |
"Third IEEE Conference on Pervasive Computing and Commun", 2005, WORKSHOPS, article "Bayesian based location estimation system using wireless LAN", pages: 273 - 278 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158489A1 (ja) * | 2019-01-28 | 2020-08-06 | ソニー株式会社 | 可視光通信装置、可視光通信方法及び可視光通信プログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3633879B1 (en) | 2022-07-06 |
JP7221863B2 (ja) | 2023-02-14 |
JPWO2018221472A1 (ja) | 2020-04-02 |
JP2023058549A (ja) | 2023-04-25 |
US20200099447A1 (en) | 2020-03-26 |
CN117336600A (zh) | 2024-01-02 |
CN110663203B (zh) | 2023-12-01 |
CN110663203A (zh) | 2020-01-07 |
EP3633879A1 (en) | 2020-04-08 |
US20220182143A1 (en) | 2022-06-09 |
EP4072040A1 (en) | 2022-10-12 |
US11296788B2 (en) | 2022-04-05 |
CN117560080A (zh) | 2024-02-13 |
EP3633879A4 (en) | 2020-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7395354B2 (ja) | 受信方法および受信装置 | |
US20220182143A1 (en) | Reception device and reception method | |
JP7462084B2 (ja) | 端末及び通信方法 | |
JP7418503B2 (ja) | 受信方法および受信装置 | |
JP7466031B2 (ja) | 通信装置及び通信方法 | |
US20240113781A1 (en) | Communication system, terminal, control method, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18809390 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019521214 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018809390 Country of ref document: EP Effective date: 20200102 |