WO2008013103A1 - système de climatisation - Google Patents

système de climatisation Download PDF

Info

Publication number
WO2008013103A1
WO2008013103A1 PCT/JP2007/064308 JP2007064308W WO2008013103A1 WO 2008013103 A1 WO2008013103 A1 WO 2008013103A1 JP 2007064308 W JP2007064308 W JP 2007064308W WO 2008013103 A1 WO2008013103 A1 WO 2008013103A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
side heat
heat source
compressor
Prior art date
Application number
PCT/JP2007/064308
Other languages
English (en)
French (fr)
Inventor
Hiromune Matsuoka
Toshiyuki Kurihara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/373,264 priority Critical patent/US8156752B2/en
Priority to AU2007277803A priority patent/AU2007277803B2/en
Priority to CN2007800272697A priority patent/CN101490482B/zh
Priority to EP07791046.1A priority patent/EP2045546B1/en
Priority to ES07791046.1T priority patent/ES2526057T3/es
Publication of WO2008013103A1 publication Critical patent/WO2008013103A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an air conditioning system, and more particularly to an air conditioning system that can be switched between indoor cooling and heating using a refrigeration cycle that is performed by compressing a refrigerant to a critical pressure or higher.
  • a heat source unit having a compressor, a four-way switching valve, and a heat source side heat exchanger, and a utilization unit having an expansion valve and a utilization side heat exchanger are two refrigerant communication pipes.
  • a so-called separate-type air conditioner in which a refrigerant circuit is configured by being connected via the.
  • the carbon dioxide as the refrigerant is compressed by the compressor until the critical pressure is exceeded.
  • the refrigerant compressed to the critical pressure or higher in the compressor flows into the heat source side heat exchanger via the four-way switching valve to be cooled, and expands through one refrigerant communication pipe.
  • Refrigeration cycle operation is carried out after being sent to the valve, depressurized until it reaches a low pressure, flowing into the use side heat exchanger and heated, and then returning to the compressor via the other refrigerant communication pipe and the four-way selector valve .
  • the refrigerant compressed to the critical pressure or higher in the compressor flows into the use-side heat exchanger via the four-way switching valve and the other refrigerant communication pipe, is cooled, and is expanded.
  • the refrigerant is depressurized until it reaches a low pressure, flows into the heat source side heat exchanger via one refrigerant communication pipe, is heated, and then returns to the compressor via the four-way switching valve. Is called.
  • compression Carbon dioxide that has been compressed to a critical pressure or higher passes through the four-way switching valve, heat source side heat exchanger, and one refrigerant communication pipe to the expansion valve.
  • the carbon dioxide compressed to the critical pressure or higher passes through the part from the compressor to the expansion valve via the four-way switching valve, the other refrigerant communication pipe and the use side heat exchanger.
  • Patent Document 1 the expansion valve is connected to the heat source unit side, the refrigerant cooled by the heat source side heat exchanger is decompressed by the expansion valve, and then the use side heat exchange is performed via one refrigerant communication pipe.
  • Disclosed is a technique that suppresses the increase in the thickness of the refrigerant communication pipe by sending it to the vessel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-139422
  • Patent Document 1 is only applicable to a separate type air conditioner that only performs cooling, and is a separate type that can be switched between indoor cooling and heating. It cannot be applied to an air conditioner.
  • An object of the present invention is to provide a wall thickness of a refrigerant communication pipe in an air conditioning system that can be switched between indoor cooling and heating using a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher. Is to suppress the increase.
  • An air conditioning system that is powerful in the first invention is an air conditioning system capable of switching between indoor cooling and heating, and a compressor that compresses a refrigerant until it reaches a critical pressure or higher.
  • the first heat source side heat exchanger that heats or cools the refrigerant, the second heat source side heat exchanger that exchanges heat between the refrigerant and the heat transfer medium, and the first heat source side heat exchanger are cooled!
  • the first heat-side heat exchanger and the second heat-source side heat exchanger that can cool the room with the cooled refrigerant A second usage-side heat exchanger capable of heating the room with the heat exchange medium subjected to heat exchange in the room, and a connection mechanism.
  • the connection mechanism has a first connection state in which the refrigerant discharged from the compressor is circulated in the order of the first heat source side heat exchanger, the first usage side heat exchanger, and the compressor, and the refrigerant discharged from the compressor is the second It is possible to switch between the second connection state in which the heat source side heat exchanger, the first heat source side heat exchanger, and the compressor are circulated in this order.
  • the compressor, the first heat source side heat exchanger, the second heat source side heat exchanger, and the connection mechanism constitute a heat source unit, and the first usage side heat exchanger constitutes a usage unit.
  • the utilization unit and the heat source unit are connected via a refrigerant communication pipe.
  • connection mechanism by switching the connection mechanism to the first connection state, the refrigerant cools the room while the refrigerant exchanges between the heat source unit and the utilization unit via the refrigerant communication pipe, and the connection mechanism is By switching to the second connection state, it is possible to heat the room while the heat transfer medium exchanging heat with the refrigerant is exchanged between the heat source unit and the second use side heat exchanger.
  • the connection mechanism In both the case of heating and indoor heating, it is not necessary to flow the high-pressure refrigerant compressed in the compressor until the pressure exceeds the critical pressure. As a result, it is possible to prevent costs from being increased due to an increase in the thickness of the refrigerant communication pipe and workability from being lowered.
  • when performing indoor heating can be performed comfortably heating by the heat-carrying medium.
  • the air conditioning system that is strong in the second invention is the power in the first invention.
  • the connection mechanism has a first connection mechanism and a second connection mechanism. Yes.
  • the first connection mechanism connects the discharge side of the compressor and one end of the first heat source side heat exchanger and connects the suction side of the compressor and one end of the first use side heat exchanger.
  • the compressor discharge side and one end of the second heat source side heat exchanger are connected and the compressor suction side and one end of the first heat source side heat exchanger are connected. It is possible to switch to the second switching state that connects to.
  • the second connection mechanism depressurizes the refrigerant cooled in the first heat source side heat exchanger and sends it to the first usage side heat exchanger, and in the second connection state, 2 Heat exchanged in heat source side heat exchanger It is possible to switch between a second reduced pressure state in which the refrigerant is decompressed and sent to the first heat source side heat exchanger.
  • the first connection mechanism is switched to the first switching state, and the second connection mechanism is The refrigerant cooled in the first heat source side heat exchanger is depressurized and sent to the first usage side heat exchanger, and the refrigerant heat-exchanged to the second heat source side heat exchanger is depressurized. It is possible to switch to the third reduced pressure state sent to the first heat source side heat exchanger.
  • the first connection mechanism is switched to the first switching state, and the second connection mechanism is reduced in the first heat source side heat exchanger by depressurizing the cooled refrigerant. It is possible to switch to the third reduced pressure state where the refrigerant sent to the heat exchanger and the heat exchanged in the second heat source side heat exchanger is depressurized and sent to the first heat source side heat exchanger. It is possible to cool the room with the IJ side heat exchanger and also to cool the room with the second usage side heat exchanger.
  • the air conditioning system according to the fourth aspect of the present invention is the air conditioning system according to any one of the first to third aspects of the invention, wherein the heat transfer medium is water.
  • the heat transfer medium is water
  • the connection mechanism switched to the second connection state heat is exchanged with the refrigerant in the second heat source side heat exchanger! It is also possible to use water as a heat transfer medium for hot water supply.
  • the air conditioning system according to the fifth aspect of the present invention is the air conditioning system according to any one of the first to fourth aspects of the present invention, wherein the refrigerant is carbon dioxide.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an operation during cooling operation of the air conditioning system.
  • FIG. 3 is a schematic configuration diagram showing an operation during heating operation of the air conditioning system.
  • FIG. 4 is a schematic configuration diagram of an air conditioning system according to Modification 1;
  • FIG. 5 is a schematic configuration diagram of an air conditioning system according to Modification 2.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning system 1 according to an embodiment of the present invention.
  • the air conditioning system 1 is an air conditioning system that can be switched between cooling and heating in the room of the building U using a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher.
  • the air conditioning system 1 mainly includes a heat source unit 2, a utilization unit 4, an indoor heating unit 5, a refrigerant communication pipe 6 as a refrigerant communication pipe connecting the heat source unit 2 and the utilization unit 4, and a refrigerant communication.
  • the pipe 7 is provided with a medium communication pipe 8 and a medium communication pipe 9 as medium communication pipes connecting the heat source unit 2 and the indoor heating unit 5.
  • the refrigerant circuit 10 is configured by connecting the heat source unit 2 and the utilization unit 4 via the refrigerant communication pipes 6 and 7, and the heat source unit 2 and the indoor heating unit 5 are connected to the medium communication pipes 8, 9
  • the heat transfer medium circuit 11 is configured by being connected via the.
  • the refrigerant circuit 10 of the air conditioning system 1 mainly includes a compressor 21, a first heat source side heat exchanger 22, a second heat source side heat exchanger 23, a first usage side heat exchanger 41, a connection mechanism 24, and a closing valve 25. , 26 and refrigerant communication tubes 6 and 7, and carbon dioxide is enclosed as a refrigerant.
  • the compressor 21 is a compressor that is driven by a drive mechanism such as a motor and compresses the low-pressure refrigerant until the critical pressure is exceeded.
  • the first heat source side heat exchanger 22 is a heat exchanger that heats or cools the refrigerant by exchanging heat between air or water as a heat source and the refrigerant.
  • the second heat source side heat exchanger 23 is a heat exchanger that exchanges heat between the refrigerant and the heat transfer medium.
  • the first usage-side heat exchanger 41 is a heat exchanger that can cool the room with the refrigerant cooled in the first heat source-side heat exchanger, and one end 41a is connected to the refrigerant communication pipe 6. The other end 41b is connected to the refrigerant communication pipe 7.
  • the connection mechanism 24 includes a first connection state in which the refrigerant discharged from the compressor 21 is circulated in the order of the first heat source side heat exchanger 22, the first use side heat exchanger 41, and the compressor 21, and from the compressor 21. It is possible to switch between the second connection state in which the discharged refrigerant is circulated in the order of the second heat source side heat exchanger 23, the first heat source side heat exchanger 22, and the compressor 21, and mainly the first connection mechanism.
  • the four-way switching valve 27 as the first connection mechanism includes a first port 27a connected to the discharge side of the compressor 21, and a second port 27b connected to one end 22a of the first heat source side heat exchanger 22.
  • the compressor 21 has a third port 27c connected to the suction side and the closing valve 26, and a fourth port 27d connected to one end 23a of the second heat source side heat exchanger 23.
  • the first switching state (refer to the solid line in the four-way switching valve 27 in FIG. 1) in which the port 27a and the second port 27b are in communication and the third port 27c and the fourth port 27d are in communication
  • the first Switching between the second switching state (refer to the broken line in the four-way switching valve 27 in Fig.
  • the four-way switching valve 27 connects the discharge side of the compressor 21 and the one end 22a of the first heat source side heat exchanger 22 and switches the suction side of the compressor 21 to the first switching state by switching to the first switching state.
  • the discharge side of the compressor 21 and one end 23a of the second heat source side heat exchanger 23 are connected and the compressor 21 Inhalation side and first heat
  • the one end 22a of the source side heat exchanger 22 can be connected.
  • the first connection mechanism may be replaced with the four-way switching valve 27 by providing a combination of a plurality of solenoid valves or three-way valves.
  • the second connection mechanism 28 mainly includes a first expansion mechanism 29 connected between the other end 22b of the first heat source side heat exchanger 22 and the closing valve 25, and a first heat source side heat exchanger 22
  • the second expansion mechanism 30 connected between the other end 22b of the first heat source side heat exchanger 23 and the other end 23b of the second heat source side heat exchanger 23, the other end 22b of the first heat source side heat exchanger 22 and the first expansion mechanism 29, and
  • a third expansion mechanism 31 connected between the second expansion mechanism 30 and the second expansion mechanism 30;
  • electric expansion valves are used as the expansion mechanisms 29, 30, 31.
  • the second connection mechanism 28 has a first decompression state in which the second expansion mechanism 30 is fully closed and the first expansion mechanism 29 and the third expansion mechanism 31 are in an open state. It is possible to switch between the second decompression state where the first expansion mechanism 29 is fully closed and the second expansion mechanism 30 and the third expansion mechanism 31 are open. That is, the second connection mechanism 28 sets the four-way switching valve 27 serving as the first connection mechanism to the first switching state and the second connection mechanism 28 to the first reduced pressure state (that is, the connection mechanism 24 In the first connection state), the refrigerant cooled in the first heat source side heat exchanger 22 is depressurized by the first expansion mechanism 29 and the third expansion mechanism 31 to be transferred to the first use side heat exchanger 22.
  • the four-way switching valve 27 as the first connection mechanism is set to the second switching state and the second connection mechanism 28 is set to the second reduced pressure state (that is, the connection mechanism 24 is connected to the second connection mechanism).
  • the refrigerant exchanged in the second heat source side heat exchanger 23 is depressurized by the second expansion mechanism 30 and the third expansion mechanism 31 and sent to the first heat source side heat exchanger 22. It is possible to do this.
  • the shut-off valves 25 and 26 are valves provided at connection ports with external devices and pipes (specifically, refrigerant communication pipes 6 and 7).
  • the closing valve 25 is connected to the first expansion mechanism 29.
  • the closing valve 26 is connected to the suction side of the compressor 21 and the third port 27 c of the four-way switching valve 27.
  • the refrigerant communication pipes 6 and 7 are refrigerant pipes that are applied locally when the air conditioning system 1 is installed at the installation site.
  • the refrigerant connection pipes 6 and 7 and the first user-side heat exchanger 41 are connected to the second connection as described later. Since the refrigerant that has been depressurized by the mechanism 28 flows, the refrigerant that has been compressed in the compressor 21 until it reaches the critical pressure or higher remains in a high pressure state, and the refrigerant communication pipes 6, 7 and 1 It does not flow through the use side heat exchanger 41. Therefore, the refrigerant connecting pipes 6 and 7 and the first usage-side heat exchanger 41 are designed based on the pressure at which the refrigerant is compressed by the compressor 21, and the refrigerant is decompressed by the second connection mechanism 28. As a result, the increase in the thickness of the refrigerant communication pipes 6 and 7 and the first use side heat exchanger 41 can be suppressed! /.
  • the heat transfer medium circuit 11 mainly includes a second heat source side heat exchanger 23, a medium tank 32, a medium pump 33, a second use side heat exchanger 51, and medium connecting pipes 8 and 9. Water is used as the heat transfer medium.
  • the medium tank 32 is a container for storing the heat transfer medium heat-exchanged with the refrigerant in the second heat source side heat exchanger 23, and its inlet is connected to one end 23c of the second heat source side heat exchanger 23.
  • a pump that is rotatively driven by a drive mechanism such as a motor to circulate the heat transfer medium in the heat transfer medium circuit 11.
  • the heat transfer medium stored in the medium tank 32 is secondly used through the medium connecting pipe 8. Connected to pump side heat exchanger 51
  • the second usage-side heat exchanger 51 is a heat exchanger capable of heating a room with the heat transfer medium heat-exchanged in the second heat source-side heat exchanger 23, and one end 51a communicates with the medium.
  • the other end 51b is connected to the other end 23d of the second heat source side heat exchanger 23 via the medium connecting pipe 9 via the pipe 8 to the discharge side of the medium pump 33.
  • the medium communication pipes 8 and 9 are medium pipes that are applied locally when the air conditioning system 1 is installed at the installation site.
  • the heat source unit 2 is installed, for example, outdoors, and mainly includes a compressor 21, a first heat source side heat exchanger 22, a second heat source side heat exchanger 23, and a connection mechanism 24 (specifically, Four-way switching A valve 27 and expansion mechanisms 29, 30, 31), a medium tank 32, and a medium pump 33 are accommodated in the unit.
  • the medium tank 32 and the medium pump 33 may be accommodated in a unit different from the heat source unit 2.
  • the usage unit 4 is disposed, for example, on an indoor wall surface or ceiling surface, and mainly includes a first usage-side heat exchanger 41 and a blower fan (not shown).
  • the indoor heating unit 5 is installed, for example, under the floor, and mainly includes a second usage-side heat exchanger 51 as an underfloor heating pipe and a heat transfer panel (not shown) provided on the floor. This is a so-called floor heating device.
  • the indoor heating unit 5 is not limited to such a floor heating device.
  • the fan coil unit in this case, the second usage-side heat exchanger 51 is disposed on the heat transfer tube on the wall surface or ceiling surface of the room.
  • a radiator installed on the wall surface of the room in this case, the second usage-side heat exchanger 51 functions as a heat exchanger for the radiator).
  • FIG. 2 is a schematic configuration diagram showing the operation of the air conditioning system 1 during the cooling operation.
  • FIG. 3 is a schematic configuration diagram showing the operation of the air conditioning system 1 during the heating operation.
  • the shutoff valves 25 and 26 are fully opened, and the connection mechanism 24 is in the first connection state. That is, the four-way switching valve 27 as the first connection mechanism is set to the first switching state (see the solid line in the four-way switching valve 27 in FIG. 2), and the second connection mechanism 28 is set to the first pressure-reducing state ( That is, the first expansion mechanism 29 and the third expansion mechanism 31 are opened and the second expansion mechanism 30 is fully closed), and the second heat source side heat exchanger 23 is not used. Even if the heat transfer medium circuit 11 is not used, it is not used.
  • the compressor 21 When the compressor 21 is driven in such a state of the refrigerant circuit 10, the refrigerant sucked into the compressor 21 is compressed in the compressor 21 until the critical pressure or higher is reached.
  • This high-pressure refrigerant passes through the four-way switching valve 27 and flows into the first heat source side heat exchanger 22, and in the first heat source side heat exchanger 22, heat exchange is performed with air and water as heat sources. To be cooled.
  • the refrigerant cooled in the first heat source side heat exchanger 22 is depressurized in the third expansion mechanism 31 and the first expansion mechanism 29 to become a low-pressure refrigerant.
  • the third expansion mechanism 31 and the first expansion mechanism 29 are depressurized in two stages in this order, so that the noise in the expansion mechanisms 29 and 31 is reduced and the expansion mechanism 29 is reduced. 31 durability is also improved.
  • the low-pressure refrigerant decompressed by the expansion mechanisms 29 and 31 exits the heat source unit 2 and is sent to the utilization unit 4 through the refrigerant communication pipe 6.
  • the low-pressure refrigerant sent to the usage unit 4 flows into the first usage-side heat exchanger 41 and is heated and evaporated by cooling the room.
  • the low-pressure refrigerant heated and evaporated in the first usage-side heat exchanger 41 leaves the usage unit 4 and is sent to the heat source unit 2 through the refrigerant communication pipe 7.
  • the low-pressure refrigerant sent to the heat source unit 2 is returned to the suction side of the compressor 21. By performing such refrigeration cycle operation, cooling operation is performed.
  • the closing valves 25 and 26 are fully opened, and the connection mechanism 24 is in the second connection state. That is, the four-way switching valve 27 as the first connection mechanism is set to the second switching state (see the broken line in the four-way switching valve 27 in FIG. 3), and the second connection mechanism 28 is set to the second pressure-reducing state ( That is, the second expansion mechanism 30 and the third expansion mechanism 31 are in an open state and the first expansion mechanism 29 is in a fully closed state), and the first usage-side heat exchanger 41 is not used.
  • the medium pump 33 is driven to circulate the heat transfer medium in the heat transfer medium circuit 11.
  • the compressor 21 When the compressor 21 is driven in such a state of the refrigerant circuit 10, the refrigerant sucked into the compressor 21 is compressed in the compressor 21 until the critical pressure or higher is reached.
  • This high-pressure refrigerant passes through the four-way switching valve 27, flows into the second heat source side heat exchanger 23, and enters the second heat source side heat exchanger 23 to exchange heat with the heat transfer medium.
  • the refrigerant cooled in the second heat source side heat exchanger 23 is depressurized in the second expansion mechanism 30 and the third expansion mechanism 31 to become a low-pressure refrigerant.
  • the second expansion mechanism 30 and the third expansion mechanism 31 are depressurized in two stages in this order, so that noise in the expansion mechanisms 30 and 31 is reduced and the expansion mechanism 30 is reduced. 31 durability is also improved.
  • the low-pressure refrigerant decompressed in the expansion mechanisms 30 and 31 flows into the first heat source side heat exchanger 22 and is heated and evaporated by exchanging heat with air and water as heat sources.
  • the low-pressure refrigerant heated and evaporated in the first heat source side heat exchanger 22 is transferred to the four-way switching valve.
  • the heat transfer medium heated by exchanging heat with the refrigerant in the second heat source side heat exchanger 23 is temporarily stored in the medium tank 32 and then pressurized by the medium pump 33.
  • the heat transfer medium whose pressure has been increased by the medium pump 33 leaves the heat source unit 2 and is sent to the indoor heating unit 5 through the medium communication pipe 8.
  • the heat transfer medium sent to the indoor heating unit 5 flows into the second usage side heat exchanger 51 and is cooled by heating the room.
  • the heat transfer medium heated by the second use side heat exchanger 51 leaves the indoor heating unit 5 and is sent to the heat source unit 2 through the medium connecting pipe 9.
  • the heat transfer medium sent to the heat source unit 2 is returned to the second heat source side heat exchanger 23.
  • the refrigerant is exchanged between the heat source unit 2 and the utilization unit 4 via the refrigerant communication pipes 6 and 7 by switching the connection mechanism 24 to the first connection state.
  • the heat transfer medium exchanging heat with the refrigerant is exchanged between the heat source unit 2 and the indoor heating unit 5 (that is, the second usage-side heat exchanger 51). It is possible to heat the room while exchanging between them. Therefore, the compressor 21 can be used for both indoor cooling and indoor heating.
  • High pressure refrigerant carbon dioxide in this case
  • water as a heat transfer medium circulating in the heat transfer medium circuit 11 is allowed to flow into the second usage-side heat exchanger 51 of the indoor heating unit 5 during the heating operation.
  • the hot water supply pipe 12 may be branched before it flows into the indoor heating unit 5 and used for hot water supply.
  • the water as the heat transfer medium used for hot water supply and flowing out of the heat transfer medium circuit 11 is connected to the water supply pipe 13 around the medium tank 32 to keep the water level in the medium tank 32 constant.
  • connection mechanism 24 when the connection mechanism 24 is switched to the second connection state and the heating operation is performed, the water as the heat transfer medium heat-exchanged with the refrigerant in the second heat source side heat exchanger 23 is used for hot water supply. It becomes possible.
  • the heat transfer medium circuit 11 is not used during the cooling operation.
  • the four-way switching valve 27 serving as the first connection mechanism is not used.
  • the second connection mechanism 28 reduces the refrigerant cooled in the first heat source side heat exchanger 22 for the first use.
  • the third depressurized state (i.e., first expansion mechanism 29) that depressurizes the refrigerant that has been sent to the side heat exchanger 41 and that has been heat-exchanged in the second heat source side heat exchanger 23 and sends it to the first heat source side heat exchanger 22
  • All of the second expansion mechanism 30 and the third expansion mechanism 31 may be switched to the open state.
  • the refrigerant discharged from the compressor 21 is circulated in the order of the first heat source side heat exchanger 22, the first use side heat exchanger 41, and the compressor 21, and the refrigerant discharged from the compressor 21.
  • the medium pump 33 is driven to generate heat in such a state of the refrigerant circuit 10.
  • an air conditioning system capable of switching between indoor cooling and heating using a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher is used.
  • An increase in wall thickness can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

明 細 書
空気調和システム
技術分野
[0001] 本発明は、空気調和システム、特に、冷媒を臨界圧力以上になるまで圧縮して行う 冷凍サイクルを利用して室内の冷房と暖房とを切り換えて行うことが可能な空気調和 システムに関する。
背景技術
[0002] 従来より、室内の冷房と暖房とを切り換えて行うことが可能な空気調和装置がある。
このような空気調和装置として、圧縮機と四路切換弁と熱源側熱交換器とを有する熱 源ユニットと、膨張弁と利用側熱交換器とを有する利用ユニットとが、 2つの冷媒連絡 管を介して接続されることによって冷媒回路が構成された、いわゆるセパレート型の 空気調和装置がある。
一方、室内の冷房と暖房とを切り換えて行うことが可能なセパレート型の空気調和 装置において、冷媒回路内に封入される冷媒として、これまで使用されている CFC 系冷媒、 HCFC系冷媒ゃ HFC系冷媒に代えて、環境への影響の小さい二酸化炭 素の使用が有望視されている。
しかし、上述の空気調和装置において、冷媒として二酸化炭素を使用すると、冷媒 としての二酸化炭素が圧縮機によって臨界圧力以上になるまで圧縮されることになる 。そして、冷房運転時には、圧縮機において臨界圧力以上になるまで圧縮された冷 媒が、四路切換弁を介して熱源側熱交換器に流入して冷却され、一方の冷媒連絡 管を介して膨張弁に送られて低圧になるまで減圧され、利用側熱交換器に流入して 加熱された後に、他方の冷媒連絡管及び四路切換弁を介して圧縮機に戻る冷凍サ イタル運転が行われる。また、暖房運転時には、圧縮機において臨界圧力以上にな るまで圧縮された冷媒が、四路切換弁及び他方の冷媒連絡管を介して利用側熱交 換器に流入して冷却され、膨張弁に送られて低圧になるまで減圧され、一方の冷媒 連絡管を介して熱源側熱交換器に流入して加熱された後に、四路切換弁を介して圧 縮機に戻る冷凍サイクル運転が行われる。すなわち、冷房運転時においては、圧縮 機から四路切換弁、熱源側熱交換器及び一方の冷媒連絡管を介して膨張弁に至る までの部分を臨界圧力以上まで圧縮された二酸化炭素が通過することになり、暖房 運転時においては、圧縮機から四路切換弁、他方の冷媒連絡管及び利用側熱交換 器を介して膨張弁に至るまでの部分を臨界圧力以上まで圧縮された二酸化炭素が 通過することになる。
[0003] このように、冷媒を臨界圧力以上になるまで圧縮して行う冷凍サイクルを利用して室 内の冷房と暖房とを切り換えて行うことが可能な空気調和装置を構成すると、冷媒連 絡管を含む冷媒回路を構成する部品のほぼ全てを、冷媒が圧縮機によって圧縮さ れる圧力に基づいて決定される最大圧力で設計する必要が生じるため、冷媒連絡管 の肉厚の増加による材料のコストアップや肉厚の増加による施工性の低下、さらに、 施工性の低下によるコストアップが問題になる。
これに対して、特許文献 1では、膨張弁を熱源ユニット側に接続し、熱源側熱交換 器で冷却された冷媒を膨張弁で減圧した後に、一方の冷媒連絡管を介して利用側 熱交換器に送るようにすることで、冷媒連絡管の肉厚の増加を抑える手法が開示さ れている。
特許文献 1 :特開 2003— 139422号公報
発明の開示
[0004] しかし、特許文献 1における手法は、あくまでも、冷房のみを行うセパレート型の空 気調和装置にしか対応できないものであり、室内の冷房と暖房とを切り換えて行うこと が可能なセパレート型の空気調和装置には適用することができない。
本発明の課題は、冷媒を臨界圧力以上になるまで圧縮して行う冷凍サイクルを利 用して室内の冷房と暖房とを切り換えて行うことが可能な空気調和システムにおいて 、冷媒連絡管の肉厚が増加するのを抑えることにある。
[0005] 第 1の発明に力、かる空気調和システムは、室内の冷房と暖房とを切り換えて行うこと が可能な空気調和システムであって、冷媒を臨界圧力以上になるまで圧縮する圧縮 機と、冷媒を加熱又は冷却する第 1熱源側熱交換器と、冷媒と熱搬送媒体とを熱交 換させる第 2熱源側熱交換器と、第 1熱源側熱交換器にお!/、て冷却された冷媒によ つて室内の冷房を行うことが可能な第 1利用側熱交換器と、第 2熱源側熱交換器に おいて熱交換された熱搬送媒体によって室内の暖房を行うことが可能な第 2利用側 熱交換器と、接続機構とを備えている。接続機構は、圧縮機から吐出される冷媒を第 1熱源側熱交換器、第 1利用側熱交換器、圧縮機の順に循環させる第 1接続状態と 、圧縮機から吐出される冷媒を第 2熱源側熱交換器、第 1熱源側熱交換器、圧縮機 の順に循環させる第 2接続状態とを切り換えることが可能である。そして、圧縮機と第 1熱源側熱交換器と第 2熱源側熱交換器と接続機構とは、熱源ユニットを構成してお り、第 1利用側熱交換器は、利用ユニットを構成しており、利用ユニットと熱源ユニット とは、冷媒連絡管を介して接続されている。
[0006] この空気調和システムでは、接続機構を第 1接続状態に切り換えることで、冷媒が 冷媒連絡管を介して熱源ユニットと利用ユニットとの間でやりとりしながら室内の冷房 を行い、接続機構を第 2接続状態に切り換えることで、冷媒と熱交換した熱搬送媒体 が熱源ユニットと第 2利用側熱交換器との間でやりとりしながら室内の暖房を行うこと ができるため、室内の冷房を行う場合及び室内の暖房を行う場合のいずれであって も、圧縮機において臨界圧力以上になるまで圧縮された高圧の冷媒を冷媒連絡管 に流さなくても済むようになり、冷媒連絡管の肉厚を増加するのを抑えることができる これにより、冷媒連絡管の肉厚の増加によるコストアップや施工性の低下を防ぐとと もに、施工性の低下によるコストアップも防ぐことができ、しかも、室内の暖房を行う際 には、熱搬送媒体による快適な暖房を行うことができる。
[0007] 第 2の発明に力、かる空気調和システムは、第 1の発明に力、かる空気調和システムに おいて、接続機構は、第 1接続機構と、第 2接続機構とを有している。第 1接続機構 は、第 1接続状態において、圧縮機の吐出側と第 1熱源側熱交換器の一端とを接続 するとともに圧縮機の吸入側と第 1利用側熱交換器の一端とを接続する第 1切換状 態と、第 2接続状態において、圧縮機の吐出側と第 2熱源側熱交換器の一端とを接 続するとともに圧縮機の吸入側と第 1熱源側熱交換器の一端とを接続する第 2切換 状態とを切り換えることが可能である。第 2接続機構は、第 1接続状態において、第 1 熱源側熱交換器において冷却された冷媒を減圧して第 1利用側熱交換器に送る第 1減圧状態と、第 2接続状態において、第 2熱源側熱交換器において熱交換された 冷媒を減圧して第 1熱源側熱交換器に送る第 2減圧状態とを切り換えることが可能で ある。
[0008] 第 3の発明に力、かる空気調和システムは、第 2の発明に力、かる空気調和システムに おいて、第 1接続機構を第 1切換状態に切り換えるとともに、第 2接続機構を、第 1熱 源側熱交換器において冷却された冷媒を減圧して第 1利用側熱交換器に送り、かつ 、第 2熱源側熱交換器にお!/、て熱交換された冷媒を減圧して第 1熱源側熱交換器に 送る第 3減圧状態に切り換えることが可能である。
この空気調和システムでは、第 1接続機構を第 1切換状態に切り換えるとともに、第 2接続機構を、第 1熱源側熱交換器にお!/、て冷却された冷媒を減圧して第 1利用側 熱交換器に送り、かつ、第 2熱源側熱交換器において熱交換された冷媒を減圧して 第 1熱源側熱交換器に送る第 3減圧状態に切り換えることが可能であるため、第 1禾 IJ 用側熱交換器によって室内の冷房を行うとともに、第 2利用側熱交換器による室内の 冷房を行うことも可能になる。
[0009] 第 4の発明に力、かる空気調和システムは、第 1〜第 3の発明のいずれかにかかる空 気調和システムにおいて、熱搬送媒体は、水である。
この空気調和システムでは、熱搬送媒体が水であるため、接続機構を第 2接続状 態に切り換えて運転を行う際に、第 2熱源側熱交換器にお!/、て冷媒と熱交換した熱 搬送媒体としての水を給湯に利用することも可能である。
第 5の発明に力、かる空気調和システムは、第 1〜第 4の発明のいずれかにかかる空 気調和システムにおいて、冷媒は、二酸化炭素である。
図面の簡単な説明
[0010] [図 1]本発明の一実施形態に力、かる空気調和システムの概略構成図である。
[図 2]空気調和システムの冷房運転時の動作を示す概略構成図である。
[図 3]空気調和システムの暖房運転時の動作を示す概略構成図である。
[図 4]変形例 1にかかる空気調和システムの概略構成図である。
[図 5]変形例 2にかかる空気調和システムの概略構成図である。
符号の説明
[0011] 1 空気調和システム 2 熱源ユニット
4 利用ユニット
6、 7 冷媒連絡管
21 圧縮機
22 第 1熱源側熱交換器
23 第 2熱源側熱交換器
24 接続機構
27 四路切換弁(第 1接続機構)
28 第 2接続機構
41 第 1利用側熱交換器
51 第 2利用側熱交換器
発明を実施するための最良の形態
[0012] 以下、図面に基づいて、本発明に力、かる空気調和システムの実施形態について説 明する。
(1)空気調和システムの構成
図 1は、本発明の一実施形態に力、かる空気調和システム 1の概略構成図である。空 気調和システム 1は、冷媒を臨界圧力以上になるまで圧縮して行う冷凍サイクルを利 用して建物 Uの室内の冷房と暖房とを切り換えて行うことが可能な空気調和システム である。
空気調和システム 1は、主として、熱源ユニット 2と、利用ユニット 4と、室内暖房ュニ ット 5と、熱源ユニット 2と利用ユニット 4とを接続する冷媒連絡管としての冷媒連絡管 6 及び冷媒連絡管 7と、熱源ユニット 2と室内暖房ユニット 5とを接続する媒体連絡管と しての媒体連絡管 8及び媒体連絡管 9とを備えている。そして、熱源ユニット 2と利用 ユニット 4とが冷媒連絡管 6、 7を介して接続されることにより冷媒回路 10が構成され ており、熱源ユニット 2と室内暖房ユニット 5とが媒体連絡管 8、 9を介して接続されるこ とにより熱搬送媒体回路 11が構成されている。
[0013] <冷媒回路〉
まず、空気調和システム 1の冷媒回路 10について説明する。 冷媒回路 10は、主として、圧縮機 21と、第 1熱源側熱交換器 22と、第 2熱源側熱 交換器 23と、第 1利用側熱交換器 41と、接続機構 24と、閉鎖弁 25、 26と、冷媒連 絡管 6、 7とを有しており、冷媒として二酸化炭素が封入されている。
圧縮機 21は、モータ等の駆動機構によって駆動されて、低圧の冷媒を臨界圧力以 上になるまで圧縮する圧縮機である。
第 1熱源側熱交換器 22は、熱源としての空気や水と冷媒とを熱交換させることで、 冷媒を加熱又は冷却する熱交換器である。
第 2熱源側熱交換器 23は、冷媒と熱搬送媒体とを熱交換させる熱交換器である。 第 1利用側熱交換器 41は、第 1熱源側熱交換器において冷却された冷媒によって 室内の冷房を行うことが可能な熱交換器であり、一端 41aが冷媒連絡管 6に接続され ており、他端 41bが冷媒連絡管 7に接続されている。
接続機構 24は、圧縮機 21から吐出される冷媒を第 1熱源側熱交換器 22、第 1利 用側熱交換器 41、圧縮機 21の順に循環させる第 1接続状態と、圧縮機 21から吐出 される冷媒を第 2熱源側熱交換器 23、第 1熱源側熱交換器 22、圧縮機 21の順に循 環させる第 2接続状態とを切り換えることが可能であり、主として、第 1接続機構として の四路切換弁 27と、第 2接続機構 28とを有している。
第 1接続機構としての四路切換弁 27は、圧縮機 21の吐出側に接続される第 1ポー ト 27aと、第 1熱源側熱交換器 22の一端 22aに接続される第 2ポート 27bと、圧縮機 2 1の吸入側及び閉鎖弁 26に接続される第 3ポート 27cと、第 2熱源側熱交換器 23の 一端 23aに接続される第 4ポート 27dとを有しており、第 1ポート 27aと第 2ポート 27b とを連通させ、かつ、第 3ポート 27cと第 4ポート 27dとを連通させる第 1切換状態(図 1の四路切換弁 27内の実線を参照)と、第 1ポート 27aと第 4ポート 27dとを連通させ 、かつ、第 2ポート 27bと第 3ポート 27cとを連通させる第 2切換状態(図 1の四路切換 弁 27内の破線を参照)とを切り換えることが可能である。すなわち、四路切換弁 27は 、第 1切換状態に切り換えることによって、圧縮機 21の吐出側と第 1熱源側熱交換器 22の一端 22aとを接続するとともに圧縮機 21の吸入側と第 1利用側熱交換器 41の 一端 41 aとを接続し、第 2切換状態に切り換えることによって、圧縮機 21の吐出側と 第 2熱源側熱交換器 23の一端 23aとを接続するとともに圧縮機 21の吸入側と第 1熱 源側熱交換器 22の一端 22aとを接続することが可能である。尚、第 1接続機構として は、複数の電磁弁や三方弁を組み合わせて設けることによって、四路切換弁 27に代 用してもよい。
[0015] 第 2接続機構 28は、主として、第 1熱源側熱交換器 22の他端 22bと閉鎖弁 25との 間に接続される第 1膨張機構 29と、第 1熱源側熱交換器 22の他端 22bと第 2熱源側 熱交換器 23の他端 23bとの間に接続される第 2膨張機構 30と、第 1熱源側熱交換 器 22の他端 22bと第 1膨張機構 29及び第 2膨張機構 30との間に接続される第 3膨 張機構 31とを有している。ここで、本実施形態においては、膨張機構 29、 30、 31と して、電動膨張弁が使用されている。
そして、第 2接続機構 28は、第 1接続状態において、第 2膨張機構 30を全閉状態 にするとともに第 1膨張機構 29及び第 3膨張機構 31を開状態にする第 1減圧状態と 、第 1膨張機構 29を全閉状態にするとともに第 2膨張機構 30及び第 3膨張機構 31を 開状態にする第 2減圧状態とを切り換えることが可能である。すなわち、第 2接続機 構 28は、第 1接続機構としての四路切換弁 27を第 1切換状態にするとともに第 2接 続機構 28を第 1減圧状態にすることによって (すなわち、接続機構 24を第 1接続状 態にすることによって)、第 1熱源側熱交換器 22において冷却された冷媒を第 1膨張 機構 29及び第 3膨張機構 31によって減圧して第 1利用側熱交換器 22に送るように し、第 1接続機構としての四路切換弁 27を第 2切換状態にするとともに、第 2接続機 構 28を第 2減圧状態にすることによって (すなわち、接続機構 24を第 2接続状態に することによって)、第 2熱源側熱交換器 23において熱交換された冷媒を第 2膨張機 構 30及び第 3膨張機構 31によって減圧して第 1熱源側熱交換器 22に送るようにす ることが可能である。
[0016] 閉鎖弁 25、 26は、外部の機器 ·配管(具体的には、冷媒連絡管 6、 7)との接続口 に設けられた弁である。閉鎖弁 25は、第 1膨張機構 29に接続されている。閉鎖弁 26 は、圧縮機 21の吸入側及び四路切換弁 27の第 3ポート 27cに接続されている。 冷媒連絡管 6、 7は、空気調和システム 1を設置場所に設置する際に、現地にて施 ェされる冷媒配管である。
尚、冷媒連絡管 6、 7内及び第 1利用側熱交換器 41には、後述のように、第 2接続 機構 28によって減圧された後の冷媒が流れるようになつているため、圧縮機 21にお いて臨界圧力以上になるまで圧縮された冷媒が高圧状態のままで、冷媒連絡管 6、 7及び第 1利用側熱交換器 41を流れることはない。このため、冷媒連絡管 6、 7及び 第 1利用側熱交換器 41は、冷媒が圧縮機 21によって圧縮される圧力に基づいて設 計するのではなぐ冷媒が第 2接続機構 28によって減圧された後の圧力に基づいて 設計できることとなり、その結果、冷媒連絡管 6、 7及び第 1利用側熱交換器 41の肉 厚の増加が抑えられて!/、る。
[0017] <熱搬送媒体回路〉
次に、空気調和システム 1の熱搬送媒体回路 11につレ、て説明する。
熱搬送媒体回路 11は、主として、第 2熱源側熱交換器 23と、媒体タンク 32と、媒体 ポンプ 33と、第 2利用側熱交換器 51と、媒体連絡管 8、 9とを有しており、熱搬送媒 体として水が使用されている。
媒体タンク 32は、第 2熱源側熱交換器 23において冷媒と熱交換された熱搬送媒体 を溜める容器であり、その入口が第 2熱源側熱交換器 23の一端 23cに接続されてい 媒体ポンプ 33は、モータ等の駆動機構によって回転駆動されて、熱搬送媒体回路 11内の熱搬送媒体を循環させるポンプであり、媒体タンク 32に溜められた熱搬送媒 体を媒体連絡管 8を通じて第 2利用側熱交換器 51に圧送するように接続されている
[0018] 第 2利用側熱交換器 51は、第 2熱源側熱交換器 23において熱交換された熱搬送 媒体によって室内の暖房を行うことが可能な熱交換器であり、一端 51aが媒体連絡 管 8を介して媒体ポンプ 33の吐出側に接続されており、他端 51bが媒体連絡管 9を 介して第 2熱源側熱交換器 23の他端 23dに接続されている。
媒体連絡管 8、 9は、空気調和システム 1を設置場所に設置する際に、現地にて施 ェされる媒体配管である。
<熱源ユニット〉
熱源ユニット 2は、例えば、室外に設置されており、主として、圧縮機 21と、第 1熱源 側熱交換器 22と、第 2熱源側熱交換器 23と、接続機構 24 (具体的には、四路切換 弁 27及び膨張機構 29、 30、 31)と、媒体タンク 32と、媒体ポンプ 33とがユニット内に 収容されている。尚、媒体タンク 32や媒体ポンプ 33については、熱源ユニット 2とは 別のユニットに収容するようにしてもよい。
[0019] <利用ユニット〉
利用ユニット 4は、例えば、室内の壁面や天井面に配置されており、主として、第 1 利用側熱交換器 41と、送風ファン(図示せず)とがユニット内に収容されている。
<室内暖房ユニット〉
室内暖房ユニット 5は、例えば、床下に設置されており、主として、床下暖房用配管 としての第 2利用側熱交換器 51と、床面に設けられた伝熱パネル(図示せず)とを有 する、いわゆる床暖房装置である。尚、室内暖房ユニット 5としては、このような床暖房 装置に限られず、例えば、室内の壁面や天井面に配置されたファンコイルユニット(こ の場合、第 2利用側熱交換器 51が伝熱管コイルとして機能する)にしたり、室内の壁 面に設置されたラジェータ(この場合には、第 2利用側熱交換器 51がラジェータ用 熱交換器として機能する)にしてもよい。
[0020] (2)空気調和システムの動作
次に、本実施形態の空気調和システム 1の冷房運転時及び暖房運転時の動作に ついて、図 2及び図 3を用いて説明する。ここで、図 2は、空気調和システム 1の冷房 運転時の動作を示す概略構成図である。図 3は、空気調和システム 1の暖房運転時 の動作を示す概略構成図である。
<冷房運転 >
まず、冷媒回路 10について、閉鎖弁 25、 26を全開状態とし、さらに、接続機構 24 を第 1接続状態とする。すなわち、第 1接続機構としての四路切換弁 27を第 1切換状 態(図 2の四路切換弁 27内の実線を参照)とするとともに、第 2接続機構 28を第 1減 圧状態 (すなわち、第 1膨張機構 29及び第 3膨張機構 31を開状態、かつ、第 2膨張 機構 30を全閉状態)として、第 2熱源側熱交換器 23を使用しない状態とする。また、 熱搬送媒体回路 11につレ、ても、使用しなレ、状態とする。
[0021] このような冷媒回路 10の状態において、圧縮機 21を駆動すると、圧縮機 21に吸入 された冷媒が、圧縮機 21において臨界圧力以上になるまで圧縮される。 この高圧の冷媒は、四路切換弁 27を通過して第 1熱源側熱交換器 22に流入し、 第 1熱源側熱交換器 22において、熱源としての空気や水と熱交換を行うことによって 冷却される。
この第 1熱源側熱交換器 22において冷却された冷媒は、第 3膨張機構 31及び第 1 膨張機構 29において減圧されて、低圧の冷媒となる。ここで、冷媒の減圧の際には、 第 3膨張機構 31、第 1膨張機構 29の順に 2段階に減圧するようにしているため、膨張 機構 29、 31における騒音が小さくなるとともに、膨張機構 29、 31の耐久性も向上し ている。
[0022] この膨張機構 29、 31において減圧された低圧の冷媒は、熱源ユニット 2を出て、冷 媒連絡管 6を通じて利用ユニット 4に送られる。
この利用ユニット 4に送られた低圧の冷媒は、第 1利用側熱交換器 41に流入し、室 内の冷房を行うことによって、加熱'蒸発される。
この第 1利用側熱交換器 41において加熱 ·蒸発された低圧の冷媒は、利用ユニット 4を出て、冷媒連絡管 7を通じて熱源ユニット 2に送られる。
この熱源ユニット 2に送られた低圧の冷媒は、圧縮機 21の吸入側に戻される。 このような冷凍サイクル運転を行うことによって、冷房運転が行われる。
<暖房運転〉
まず、冷媒回路 10について、閉鎖弁 25、 26を全開状態とし、さらに、接続機構 24 を第 2接続状態とする。すなわち、第 1接続機構としての四路切換弁 27を第 2切換状 態(図 3の四路切換弁 27内の破線を参照)とするとともに、第 2接続機構 28を第 2減 圧状態 (すなわち、第 2膨張機構 30及び第 3膨張機構 31を開状態、かつ、第 1膨張 機構 29を全閉状態)として、第 1利用側熱交換器 41を使用しない状態とする。また、 熱搬送媒体回路 11については、媒体ポンプ 33を駆動して、熱搬送媒体回路 11内 の熱搬送媒体を循環させる。
[0023] このような冷媒回路 10の状態において、圧縮機 21を駆動すると、圧縮機 21に吸入 された冷媒が、圧縮機 21において臨界圧力以上になるまで圧縮される。
この高圧の冷媒は、四路切換弁 27を通過して第 2熱源側熱交換器 23に流入し、 第 2熱源側熱交換器 23にお!/ヽて、熱搬送媒体と熱交換を行うことによって冷却され この第 2熱源側熱交換器 23において冷却された冷媒は、第 2膨張機構 30及び第 3 膨張機構 31において減圧されて、低圧の冷媒となる。ここで、冷媒の減圧の際には、 第 2膨張機構 30、第 3膨張機構 31の順に 2段階に減圧するようにしているため、膨張 機構 30、 31における騒音が小さくなるとともに、膨張機構 30、 31の耐久性も向上し ている。
この膨張機構 30、 31において減圧された低圧の冷媒は、第 1熱源側熱交換器 22 に流入し、熱源としての空気や水と熱交換を行うことによって加熱,蒸発される。
[0024] この第 1熱源側熱交換器 22において加熱 ·蒸発された低圧の冷媒は、四路切換弁
27を通過した後に圧縮機 21の吸入側に戻される。
一方、第 2熱源側熱交換器 23において、冷媒と熱交換を行うことによって加熱され た熱搬送媒体は、媒体タンク 32に一時的に溜められた後に、媒体ポンプ 33によって 昇圧される。
この媒体ポンプ 33によって昇圧された熱搬送媒体は、熱源ユニット 2を出て、媒体 連絡管 8を通じて室内暖房ユニット 5に送られる。
この室内暖房ユニット 5に送られた熱搬送媒体は、第 2利用側熱交換器 51に流入 し、室内の暖房を行うことによって、冷却される。
この第 2利用側熱交換器 51にお!/、て加熱された熱搬送媒体は、室内暖房ユニット 5を出て、媒体連絡管 9を通じて熱源ユニット 2に送られる。
[0025] この熱源ユニット 2に送られた熱搬送媒体は、第 2熱源側熱交換器 23に戻される。
このような冷凍サイクル運転を行うことによって、暖房運転が行われる。
(3)空気調和システムの特徴
本実施形態の空気調和システム 1では、接続機構 24を第 1接続状態に切り換える ことで、冷媒が冷媒連絡管 6、 7を介して熱源ユニット 2と利用ユニット 4との間でやりと りしながら室内の冷房を行い、接続機構 24を第 2接続状態に切り換えることで、冷媒 と熱交換した熱搬送媒体が熱源ユニット 2と室内暖房ユニット 5 (すなわち、第 2利用 側熱交換器 51)との間でやりとりしながら室内の暖房を行うことができるため、室内の 冷房を行う場合及び室内の暖房を行う場合のいずれであっても、圧縮機 21において 臨界圧力以上になるまで圧縮された高圧の冷媒 (ここでは、二酸化炭素)を冷媒連絡 管 6、 7に流さなくても済むようになり、冷媒連絡管 6、 7の肉厚を増加するのを抑える こと力 Sでさる。
[0026] これにより、冷媒連絡管の肉厚の増加によるコストアップや施工性の低下を防ぐとと もに、施工性の低下によるコストアップも防ぐことができ、しかも、室内の暖房を行う際 には、熱搬送媒体による快適な暖房を行うことができる。
(4)変形例 1
上述の実施形態においては、暖房運転時に、熱搬送媒体回路 11内を循環する熱 搬送媒体としての水を、室内暖房ユニット 5の第 2利用側熱交換器 51に流入させるよ うにしているが、図 4に示されるように、室内暖房ユニット 5に流入させる手前で給湯配 管 12を分岐させるようにして、給湯に使用するようにしてもよい。この際、給湯に使用 されて熱搬送媒体回路 11から流出する熱搬送媒体としての水は、媒体タンク 32まわ りに給水配管 13を接続して、媒体タンク 32内の水位を一定に保つ等により補給され
[0027] これにより、接続機構 24を第 2接続状態に切り換えて暖房運転を行う際に、第 2熱 源側熱交換器 23において冷媒と熱交換した熱搬送媒体としての水を給湯に利用す ることも可能になる。
(5)変形例 2
上述の実施形態及び変形例 1においては、冷房運転時に、熱搬送媒体回路 11を 使用しない状態にしているが、図 5に示されるように、第 1接続機構としての四路切換 弁 27を第 1切換状態(図 5の四路切換弁 27内の実線を参照)とするとともに、第 2接 続機構 28を、第 1熱源側熱交換器 22において冷却された冷媒を減圧して第 1利用 側熱交換器 41に送り、かつ、第 2熱源側熱交換器 23において熱交換された冷媒を 減圧して第 1熱源側熱交換器 22に送る第 3減圧状態 (すなわち、第 1膨張機構 29、 第 2膨張機構 30及び第 3膨張機構 31のすベてを開状態)に切り換えるようにしてもよ い。
[0028] これにより、圧縮機 21から吐出される冷媒を第 1熱源側熱交換器 22、第 1利用側熱 交換器 41、圧縮機 21の順に循環させるとともに、圧縮機 21から吐出される冷媒を第 1熱源側熱交換器 22、第 2熱源側熱交換器 23、圧縮機 21の順に循環させることも可 能になるため、このような冷媒回路 10の状態において、媒体ポンプ 33を駆動して熱 搬送媒体回路 11内の熱搬送媒体を循環させることによって、利用ユニット 4 (すなわ ち、第 1利用側熱交換器 41)による室内の冷房とともに、室内暖房ユニット 5 (すなわ ち、第 2利用側熱交換器 51)による室内の冷房を行うことができるようになり、冷房の ノ リエーシヨンを増やすことができる。
産業上の利用可能性
本発明を利用すれば、冷媒を臨界圧力以上になるまで圧縮して行う冷凍サイクル を利用して室内の冷房と暖房とを切り換えて行うことが可能な空気調和システムにお いて、冷媒連絡管の肉厚が増加するのを抑えることができる。

Claims

請求の範囲
[1] 室内の冷房と暖房とを切り換えて行うことが可能な空気調和システムであって、 冷媒を臨界圧力以上になるまで圧縮する圧縮機(21)と、
冷媒を加熱又は冷却する第 1熱源側熱交換器 (22)と、
冷媒と熱搬送媒体とを熱交換させる第 2熱源側熱交換器 (23)と、
前記第 1熱源側熱交換器において冷却された冷媒によって室内の冷房を行うこと が可能な第 1利用側熱交換器 (41)と、
前記第 2熱源側熱交換器において熱交換された熱搬送媒体によって室内の暖房 を行うことが可能な第 2利用側熱交換器 (51 )と、
前記圧縮機から吐出される冷媒を前記第 1熱源側熱交換器、前記利用側熱交換 器、前記圧縮機の順に循環させる第 1接続状態と、前記圧縮機から吐出される冷媒 を前記第 2熱源側熱交換器、前記第 1熱源側熱交換器、前記圧縮機の順に循環さ せる第 2接続状態とを切り換えることが可能な接続機構(24)とを備え、
前記圧縮機と前記第 1熱源側熱交換器と前記第 2熱源側熱交換器と前記接続機 構とは、熱源ユニット(2)を構成しており、
前記第 1利用側熱交換器は、利用ユニット (4)を構成しており、
前記利用ユニットと前記熱源ユニットとは、冷媒連絡管(6、 7)を介して接続されて いる、
空気調和システム(1)。
[2] 前記接続機構 (24)は、第 1接続機構 (27)と、第 2接続機構 (28)とを有しており、 前記第 1接続機構は、前記第 1接続状態において、前記圧縮機(21)の吐出側と前 記第 1熱源側熱交換器 (22)の一端(22a)とを接続するとともに前記圧縮機の吸入 側と前記第 1利用側熱交換器 (41)の一端 (41a)とを接続する第 1切換状態と、前記 第 2接続状態において、前記圧縮機の吐出側と前記第 2熱源側熱交換器(23)の一 端(23a)とを接続するとともに前記圧縮機の吸入側と前記第 1熱源側熱交換器の一 端とを接続する第 2切換状態とを切り換えることが可能であり、
前記第 2接続機構は、前記第 1接続状態において、前記第 1熱源側熱交換器にお いて冷却された冷媒を減圧して前記第 1利用側熱交換器に送る第 1減圧状態と、前 記第 2接続状態において、前記第 2熱源側熱交換器において熱交換された冷媒を 減圧して前記第 1熱源側熱交換器に送る第 2減圧状態とを切り換えることが可能であ る、
請求項 1に記載の空気調和システム(1)。
[3] 前記第 1接続機構(27)を第 1切換状態に切り換えるとともに、前記第 2接続機構(2 8)を、前記第 1熱源側熱交換器 (22)において冷却された冷媒を減圧して前記第 1 利用側熱交換器 (41)に送り、かつ、前記第 2熱源側熱交換器(23)において熱交換 された冷媒を減圧して第 1熱源側熱交換器 (22)に送る第 3減圧状態に切り換えるこ とが可能である、請求項 2に記載の空気調和システム(1)。
[4] 前記熱搬送媒体は、水である、請求項;!〜 3のいずれかに記載の空気調和システ ム(1)。
[5] 前記冷媒は、二酸化炭素である、請求項 1〜4のいずれかに記載の空気調和シス テム(1)。
PCT/JP2007/064308 2006-07-24 2007-07-20 système de climatisation WO2008013103A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/373,264 US8156752B2 (en) 2006-07-24 2007-07-20 Air conditioning system
AU2007277803A AU2007277803B2 (en) 2006-07-24 2007-07-20 Air conditioning system
CN2007800272697A CN101490482B (zh) 2006-07-24 2007-07-20 空调系统
EP07791046.1A EP2045546B1 (en) 2006-07-24 2007-07-20 Air conditioning system
ES07791046.1T ES2526057T3 (es) 2006-07-24 2007-07-20 Sistema de acondicionamiento de aire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-200634 2006-07-24
JP2006200634A JP4811167B2 (ja) 2006-07-24 2006-07-24 空気調和システム

Publications (1)

Publication Number Publication Date
WO2008013103A1 true WO2008013103A1 (fr) 2008-01-31

Family

ID=38981415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064308 WO2008013103A1 (fr) 2006-07-24 2007-07-20 système de climatisation

Country Status (8)

Country Link
US (1) US8156752B2 (ja)
EP (1) EP2045546B1 (ja)
JP (1) JP4811167B2 (ja)
KR (1) KR100994471B1 (ja)
CN (1) CN101490482B (ja)
AU (1) AU2007277803B2 (ja)
ES (1) ES2526057T3 (ja)
WO (1) WO2008013103A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517087B2 (en) * 2007-02-20 2013-08-27 Bergstrom, Inc. Combined heating and air conditioning system for vehicles
ES2385948B1 (es) * 2009-04-23 2013-06-17 Orkli, S.Coop Instalacion de refrigeracion adaptada a establecimientos comerciales
EP2495513B1 (en) * 2009-10-28 2018-02-14 Mitsubishi Electric Corporation Air conditioning device
WO2011117922A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 空気調和装置
IT1400150B1 (it) * 2010-05-19 2013-05-17 Riefolo Macchina economizzatrice per il raffreddamento ed il riutilizzo dellã¢â ¬â ¢acqua di condensazione proveniente da macchine frigorifere ad essa collegate, non necessitante di approvvigionamento idrico esterno
JP5593853B2 (ja) * 2010-06-01 2014-09-24 ダイキン工業株式会社 空調給湯システム
US9605887B2 (en) * 2011-07-29 2017-03-28 Hdt Expeditionary Systems, Inc. Transportable packaged ice supply system for high temperature environments
JP5788526B2 (ja) * 2011-11-29 2015-09-30 株式会社日立製作所 空調給湯システム
JP6004764B2 (ja) * 2012-06-12 2016-10-12 三菱重工業株式会社 熱源システムの熱源選択装置及びその方法並びに熱源システム
JP6201434B2 (ja) * 2012-07-18 2017-09-27 株式会社デンソー 冷凍サイクル装置
US10429083B2 (en) * 2013-08-30 2019-10-01 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Multi-type air conditioner system
ITMI20131947A1 (it) * 2013-11-22 2015-05-23 Aggradi Walter Ferrari Sistema di climatizzazione, relativa unità periferica di climatizzazione e procedimento di riqualificazione di rete idraulica per riscaldamento.
WO2016112275A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat pump
CN107131694A (zh) * 2017-05-12 2017-09-05 上海碳誉节能环保科技有限公司 一种空调冰蓄冷系统
CA3016471A1 (en) * 2017-09-06 2019-03-06 Lee W. Froemke Air temperature control using potable water
CN112503656A (zh) * 2020-11-24 2021-03-16 海信(山东)空调有限公司 新风热泵采暖系统及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139422A (ja) 2001-10-31 2003-05-14 Daikin Ind Ltd 冷凍機
JP2005257181A (ja) * 2004-03-12 2005-09-22 Fujitsu General Ltd ヒートポンプ給湯エアコン

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633377A (en) * 1969-04-11 1972-01-11 Lester K Quick Refrigeration system oil separator
US3581519A (en) * 1969-07-18 1971-06-01 Emhart Corp Oil equalization system
JPS5969674A (ja) * 1982-10-13 1984-04-19 サンデン株式会社 ヒ−トポンプ式冷暖房湯沸かし装置
US4589263A (en) * 1984-04-12 1986-05-20 Hussmann Corporation Multiple compressor oil system
JPH0327249Y2 (ja) * 1984-10-26 1991-06-12
US4693089A (en) * 1986-03-27 1987-09-15 Phenix Heat Pump Systems, Inc. Three function heat pump system
US4878357A (en) * 1987-12-21 1989-11-07 Sanyo Electric Co., Ltd. Air-conditioning apparatus
JPH03236570A (ja) * 1990-02-14 1991-10-22 Toshiba Corp 空気調和機
JP2839343B2 (ja) * 1990-08-10 1998-12-16 株式会社日立製作所 マルチエアコン
JP3352469B2 (ja) * 1992-07-14 2002-12-03 東芝キヤリア株式会社 空気調和装置
JP3060770B2 (ja) * 1993-02-26 2000-07-10 ダイキン工業株式会社 冷凍装置
JP3289366B2 (ja) * 1993-03-08 2002-06-04 ダイキン工業株式会社 冷凍装置
WO1996000872A1 (fr) * 1994-06-29 1996-01-11 Daikin Industries, Ltd. Controleur de commande de repartition d'huile d'un appareil de conditionnement d'air
KR100195913B1 (ko) * 1996-10-04 1999-06-15 구자홍 다실 공기조화기
EP0838640A3 (en) * 1996-10-28 1998-06-17 Matsushita Refrigeration Company Oil level equalizing system for plural compressors
ES2228796T3 (es) * 2000-01-21 2005-04-16 Toshiba Carrier Corporation Detector de cantidad de aceite, dispositivo de refrigeracion y acondicionador de aire.
JP4032634B2 (ja) * 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
KR20040010740A (ko) * 2002-04-08 2004-01-31 다이킨 고교 가부시키가이샤 냉동장치
JP4300804B2 (ja) * 2002-06-11 2009-07-22 ダイキン工業株式会社 圧縮機構の均油回路、冷凍装置の熱源ユニット及びそれを備えた冷凍装置
ES2541776T3 (es) * 2002-08-02 2015-07-24 Daikin Industries, Ltd. Equipo de refrigeración
KR100459137B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
JP3939314B2 (ja) * 2004-06-10 2007-07-04 三星電子株式会社 空気調和装置及びその均油運転方法
US7614249B2 (en) * 2005-12-20 2009-11-10 Lung Tan Hu Multi-range cross defrosting heat pump system and humidity control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139422A (ja) 2001-10-31 2003-05-14 Daikin Ind Ltd 冷凍機
JP2005257181A (ja) * 2004-03-12 2005-09-22 Fujitsu General Ltd ヒートポンプ給湯エアコン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2045546A4 *

Also Published As

Publication number Publication date
CN101490482A (zh) 2009-07-22
CN101490482B (zh) 2010-12-01
JP4811167B2 (ja) 2011-11-09
AU2007277803A1 (en) 2008-01-31
EP2045546A1 (en) 2009-04-08
US20090288437A1 (en) 2009-11-26
AU2007277803B2 (en) 2010-05-13
ES2526057T3 (es) 2015-01-05
US8156752B2 (en) 2012-04-17
KR100994471B1 (ko) 2010-11-16
JP2008025940A (ja) 2008-02-07
EP2045546A4 (en) 2012-05-30
EP2045546B1 (en) 2014-10-01
KR20090019004A (ko) 2009-02-24

Similar Documents

Publication Publication Date Title
WO2008013103A1 (fr) système de climatisation
JP5145674B2 (ja) 冷凍装置
JP5611376B2 (ja) 空気調和装置
JP5442005B2 (ja) 空気調和装置
CN102713469B (zh) 空调装置
WO2009133644A1 (ja) 空気調和装置
KR100688171B1 (ko) 냉난방 동시형 멀티 공기조화기 및 냉매 회수방법
JP5387235B2 (ja) ヒートポンプ式温水暖房装置
KR101034204B1 (ko) 냉난방시스템
JP2008064435A5 (ja)
JP4973078B2 (ja) 冷凍装置
WO2013161011A1 (ja) 空調給湯システム
JP5734524B2 (ja) 空気調和装置
WO2011064830A1 (ja) 空気調和装置
WO2008053802A1 (fr) Appareil de climatisation
WO2020174618A1 (ja) 空気調和装置
JP2007183045A (ja) ヒートポンプ式冷暖房装置
WO2023053573A1 (ja) 熱源ユニットおよび冷媒処理方法
WO2021065677A1 (ja) 空気調和機
WO2008047784A1 (en) Air conditioner
JP2002022303A (ja) 冷凍装置及びこの装置を用いた空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027269.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097000188

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12373264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007277803

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007791046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007277803

Country of ref document: AU

Date of ref document: 20070720

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU