WO2008010377A1 - Composé aminé contenant un carbazole et son utilisation - Google Patents

Composé aminé contenant un carbazole et son utilisation Download PDF

Info

Publication number
WO2008010377A1
WO2008010377A1 PCT/JP2007/062348 JP2007062348W WO2008010377A1 WO 2008010377 A1 WO2008010377 A1 WO 2008010377A1 JP 2007062348 W JP2007062348 W JP 2007062348W WO 2008010377 A1 WO2008010377 A1 WO 2008010377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
general formula
organic
formula
Prior art date
Application number
PCT/JP2007/062348
Other languages
English (en)
French (fr)
Inventor
Tadao Yagi
Hiroaki Tanaka
Yoshitake Oryu
Yasumasa Toba
Yasumasa Suda
Michiko Tamano
Original Assignee
Toyo Ink Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006250332A external-priority patent/JP5082356B2/ja
Application filed by Toyo Ink Manufacturing Co., Ltd. filed Critical Toyo Ink Manufacturing Co., Ltd.
Priority to TW096122430A priority Critical patent/TW200806626A/zh
Publication of WO2008010377A1 publication Critical patent/WO2008010377A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a novel rubazol-containing amine compound, and more specifically, when used in an organic electroluminescence device (hereinafter abbreviated as an organic EL device), the molecular crystallinity is low,
  • the present invention relates to a powerful rubazole-containing amine compound having high performance (low voltage driving, long life, high stability) due to high glass transition temperature (Tg).
  • Tg glass transition temperature
  • diamine compounds in which the 3-position of N-ethylcarbazole is substituted with an amino group have been disclosed (see Non-patent Documents 3 and 4, Patent Document 1). Since these diamine compounds have an appropriate Ip as a hole injection material and a hole transport material and become non-crystalline due to the asymmetry of the carbazole ring, they have high film stability. However, on the other hand, the Tg is so high that the heat resistance is inferior, and sufficient life characteristics as an EL element cannot be obtained.
  • Non-Patent Document 1 Applied Physics Letters, 2001, 78 ⁇ , 278
  • Non-Patent Document 2 Journal of the American Chemicaal Society 2001, 123 ,, 4 304
  • Non-Patent Document 3 European Polymer Journal 2005, 41 ,, 1821
  • Non-Patent Document 4 Environmental and Chemical Physics 2002, 24 ⁇ , p. 30 Patent Document 1: Special Table 2004-536134
  • An object of the present invention is low voltage driving and long life when used as a material for an organic EL device in which molecules are difficult to crystallize while having a high Tg.
  • purification by sublimation or the like is easy with little damage to organic materials.
  • an organic electoluminescence element is produced by vapor deposition, the element can be easily produced with little damage to the organic compound. It is to provide a powerful rubazole-containing amine compound having excellent characteristics such as.
  • the present invention relates to a powerful rubazole-containing amine compound represented by the following general formula [1].
  • Ar 1 represents a force rubazolyl group represented by the following general formula [2],
  • Ar 2 to Ar 4 are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or one having 2 to 18 carbon atoms which may have a substituent.
  • Valent heterocyclic group (however, Except for the following general formula [2]. )
  • A represents an arylene group having 10 to 30 carbon atoms which may have a substituent.
  • Ar 5 is a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or one having 2 to 18 carbon atoms which may have a substituent.
  • Valent aromatic heterocyclic group
  • R 1 ⁇ each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue o)
  • the present invention relates to the above-mentioned force rubazole-containing amine compound characterized by being represented by a bi-butylene group represented by the following general formula [3]:
  • one of R 2U to R 24 and one of R 2 to R 29 represent a bond, and the rest independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue. Group or adjacent organic residues may form a ring with each other.
  • the present invention relates to the above-described strong rubazole-containing amine compound, wherein A is represented by the following general formula [4].
  • R dU ⁇ 7 are hydrogen atom, an organic residue of a halogen atom, or a monovalent
  • R 3 ° and R 31 , R 32 and R 33 , R 34 and R 35 , or R 36 and R 37 may combine with each other to form a ring.
  • the present invention also relates to the carbazole-containing amine compound as described above, wherein Ar 5 is represented by the following general formula [5].
  • [In the formula, is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 3 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent, Or, it represents a monovalent heterocyclic group having 2 to 5 carbon atoms which may have a substituent.
  • the present invention also relates to a material for an organic electoluminescence device comprising the above-mentioned powerful rubazol-containing amine compound.
  • the present invention provides an organic electoluminescence device in which a light emitting layer or a plurality of organic layers including a light emitting layer is formed between a pair of electrodes.
  • the present invention relates to an organic electoluminescence device comprising a material for a luminescence device.
  • the present invention provides an organic electroluminescent device having a hole injection layer and a Z or hole transport layer, wherein the hole injection layer and Z or the hole transport layer are the organic electroluminescence.
  • the present invention relates to an organic electoluminescence device comprising an element material.
  • Ar 5 is a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or a monovalent aromatic group having 2 to 18 carbon atoms which may have a substituent. Represents a heterocyclic group
  • R 1 ⁇ each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • Ar 2 to Ar 4 are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or a monovalent aromatic group having 2 to 18 carbon atoms which may have a substituent.
  • a heterocyclic group except for the case of the carbazolyl group represented by the general formula [2]),
  • A represents an arylene group having 10 to 30 carbon atoms which may have a substituent.
  • R is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 3 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent. Or a monovalent heterocyclic group having 2 to 5 carbon atoms which may have a substituent.
  • R 38 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 3 carbon atoms, a phenol group, or a 4-pyridyl group. Powerful rubazole-containing amine compound.
  • a in the general formula [1] is an alkyl group having 1 to 5 carbon atoms or a halogenated, 4,4-biphenylene group, an alkyl group having 1 to 5 carbon atoms, or 3,3, -biphenylene group optionally substituted with a halogen atom, alkyl group having 1 to 5 carbon atoms Alternatively, a 2,2, bi-phenylene group which may be substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, a 1,4 naphthylene group which may be substituted with a halogen atom, or 1 to 5 carbon atoms
  • the force rubazole-containing amine compound according to any one of the above (1) to (4), which is a 1,5-naphthylene group which may be substituted with an alkyl group or a halogen atom.
  • one of R 1 to R 4 and one of R 1 to R 4 represent a bond, and the rest independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • Group or adjacent organic residues may form a ring with each other.
  • R dU to R ′′ represent a hydrogen atom, a halogen atom, or a monovalent organic residue
  • R 3G and R 31 , R 32 and R 33 , R 34 and R 35 , or R 36 and R 37 are bonded together to form a ring You may do it. )
  • the rubazole-containing amine compound according to (6) which is a 4,4, -biphenylene group represented by:
  • organic electoluminescence device formed by forming a light-emitting layer or a plurality of organic layers including a light-emitting layer between a pair of electrodes, at least one of the organic layers is an organic elect described in (10).
  • An organic electoluminous element comprising a material for an oral luminescence element.
  • the hole injection layer and Z or hole transport layer are for the organic electroluminescence device according to (11).
  • An organic electrium luminescence device comprising a material.
  • An organic EL device using the rubazol-containing amine compound of the present invention as an organic EL device material emits light at a low driving voltage with a very high stability of the thin film, and has a long lifetime. Therefore, it can be suitably used as a flat panel display such as a wall-mounted TV or a flat light emitter, and can be used for light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. Application is possible.
  • A has a substituent. However, it represents an arylene group having 10 to 30 carbon atoms.
  • examples of the arylene group having 10 to 30 carbon atoms include polycyclic or condensed cyclic aromatic hydrocarbon groups having 10 to 30 carbon atoms, such as a naphthylene group, biphenylene group, And anthracylene, phenanthrylene, fluorenylene, and pyrenylene.
  • a linear or branched alkyl group having 1 to 30 carbon atoms preferably 1 to LO; a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, or Branched alkyloxy group; norogen atom; linear or branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, substituted with 1 to 5, preferably 1 to 3 halogen atoms A nitro group and the like, but not limited to these substituents.
  • Examples of preferable substituents for the arylene group include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a trifluoromethyl group, a trifluoromethyl group, a chlorine atom, a fluorine atom, and a nitro group.
  • the substituent of the arylene group it is bonded together with the adjacent atomic group in the aryl group, such as 3 to 5 atomic groups, to form an ortho-condensed condensed 5-membered ring, condensed 6-membered ring, condensed heterocycle.
  • a 5-membered ring or a condensed hetero 6-membered ring may be formed.
  • Examples of the 5-membered ring formed as a result of bonding of adjacent groups to each other include a cyclopentane ring and a cyclopentene ring.
  • Examples of the 6-membered ring formed as a result of bonding between adjacent groups include a cyclohexane ring, a cyclohexene ring, and a benzene ring.
  • Hetero 5-membered rings formed as a result of bonding of adjacent groups to each other include dihydrofuran ring, pyrrolidine ring, dihydrothiophene ring, furan ring, pyrrole ring, thiophene ring, imidazole ring, pyrazole ring, oxazole. Ring, thiazole ring and the like.
  • hetero 6-membered rings formed as a result of bonding of adjacent groups to each other include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a biranone ring.
  • arylene groups a naphthylene group, a biphenylene group, an anthracylene group, a phenanthrylene group, and a fluorenylene group are preferable, and a biphenyl group represented by the general formula [3] is more preferable.
  • a particularly preferred group A in the general formula [1] of the present invention which is a 4,4 ′ biphenylylene group represented by the general formula [4], is an alkyl group having 1 to 5 carbon atoms.
  • a 4,4, -biphenylene group which may be substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or a 3,3'-biphenylene group, which may be substituted with a halogen atom, 1 carbon atom 2,2'-biphenylene diene group optionally substituted with an alkyl group of ⁇ 5 or halogen atom, 1,4 naphthylene group optionally substituted with an alkyl group of 1 to 5 carbon atoms or halogen atom, or carbon Examples thereof include 1, 5 naphthylene groups which may be substituted with alkyl groups of 1 to 5 or halogen atoms, and more preferable groups A include 4, 4 ′ biphenylene group, 2, 2′-dimethyl group.
  • groups A include 4,4′-biphenylene groups.
  • Ar 2 to Ar 4 are each a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms that may have a substituent, or a carbon number having 2 to 2 that may have a substituent.
  • 18 represents a monovalent heterocyclic group (excluding the case of the general formula [2]).
  • the monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent includes, for example, a phenol group, a naphthyl group, a biphenyl group, an anthryl group, a phenanthryl group. Fluorol group, Pyrylene group, 3-Methylphenol group, 3-Methoxyphenol group, 3-Fluorophenol group, 3-Trichloromethylphenol group, 3-Trifluoromethylphenol And the like, and 3-to-trope group. Of these, a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, a phantolyl group, and a fluorenyl group are preferable.
  • the monovalent heterocyclic group having 2 to 18 carbon atoms which may have a substituent is 1 to 4, preferably 1 to 3 or 1 to 2 nitrogen atoms, oxygen atoms, or Examples include monocyclic, polycyclic, or fused-ring heterocyclic groups having 3 to 8, preferably 5 to 8 membered rings containing a hetero atom consisting of a sulfur atom, such as pyridinyl group, pyradyl Group, pyrimidyl group, pyridazinyl group, triazyl group, indolinyl group, quinolinyl group, attaridyl group, pyrrolidyl group, dioxal group, piperidyl group, morpholinyl group, piperazil group, Examples include fulleryl, thiphenyl, oxazolyl, oxadiazolyl, benzoxazolyl, thiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, imidazo,
  • a pyridinyl group, a quinolinyl group, a furanyl group, a thiofur group, and an oxazolyl group are preferable.
  • the force rubazolyl group represented by the general formula [2] is excluded.
  • Ar 2 to Ar 4 in the general formula [1] of the present invention include a phenyl group, a 4-methylphenol group, a 4-methoxyphenol group, a 4-fluorophenol group, and a 4-cyanophenol group.
  • 4-diphenylaminophenol groups such as alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 5 carbon atoms, halogen atoms, diarylamino groups substituted with aryl groups having 6 to 12 carbon atoms, and cyano groups Force group power is selected and substituted with one or more substituents !, may!
  • Phenyl group 1 naphthyl group, 2 naphthyl group such as naphthyl group; 4 biphenyl group; 9 —phenanthryl Groups: anthracene-9yl group; 4-pyridyl group; 2-chenyl group and the like.
  • preferred Ar 2 groups include a phenyl group, a 1-naphthyl group, a 4-biphenyl group, and a 9-phenanthryl group, among which a phenol group, a 1-naphthyl group, or 4 A phenyl group in which a biphenyl group is preferred or a phenyl group in which a 1-naphthyl group is more preferred is more preferred.
  • a phenol group, a 1-naphthyl group, or a 4-biphenyl group is preferred among the above-described groups of preferred groups in the Ar 2 to Ar 4 groups. More preferred is a phenyl group, more preferably a naphthyl group or a 1-naphthyl group.
  • Ar 5 is a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, and 2 to 30 carbon atoms which may have a substituent.
  • I ⁇ to R 7 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • the monovalent aromatic hydrocarbon group and the monovalent heterocyclic group in Ar 5 are the above-described monovalent aromatic hydrocarbon group and the monovalent heterocyclic ring in Ar 2 to Ar 4 . It is synonymous with that explained in the group.
  • halogen atom in the I ⁇ to R 7 fluorine atom, chlorine atom, bromine atom and iodine atom.
  • the monovalent organic residue in I ⁇ to R 7 is not particularly limited, but may have a substituent, a monovalent aliphatic hydrocarbon group, or may have a substituent.
  • Examples thereof include an aromatic hydrocarbon group, a monovalent aliphatic heterocyclic group which may have a substituent, and a monovalent aromatic heterocyclic group which may have a substituent.
  • substituents in these groups include, for example, cyano group, alkoxy group, aryloxy group, alkylthio group, arylothio group, substituted amino group, Examples include an acyl group, an alkoxy carbo yl group, an aryl carboxy group, an alkyl sulfonyl group, and an aryl sulfonyl group.
  • the monovalent aliphatic hydrocarbon group refers to a monovalent aliphatic hydrocarbon group having 1 to 18 carbon atoms, such as linear or branched having 1 to 18 carbon atoms.
  • alkyl group methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, pentyl group, isopentyl group, hexyl group, heptyl group, octyl group
  • alkyl groups having 1 to 18 carbon atoms such as decyl group, dodecyl group, pentadecyl group and octadecyl group.
  • alkell groups include bur group, 1-probe group, 2-probe group, iso-probe group, 1-butur group, 2 butur group, 3 butur group, and 1 otatur group.
  • Alkyl groups include ethur, 1 propyl, 2-propyl, 1-butynyl, 2 butyl, 3 propyl, 1 octyl, 1 decyl. And alkyl groups having 2 to 18 carbon atoms such as 1-octadecyl group.
  • cycloalkyl group examples include cycloalkyl groups having 3 to 18 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, and cyclooctadecyl group. .
  • examples of the monovalent aromatic hydrocarbon group include monovalent monocyclic, condensed ring, and ring assembly hydrocarbon groups having 6 to 18 carbon atoms.
  • the monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms is a phenyl group.
  • examples thereof include monovalent monocyclic aromatic hydrocarbon groups having 6 to 18 carbon atoms such as —tolyl group, m-tolyl group, p tolyl group, 2,4 xylyl group, p tamenyl group, mesityl group and the like.
  • the monovalent condensed ring hydrocarbon group includes 1-naphthyl group, 2-naphthyl group, 1-anthrinole group, 2 anthrinole group, 5 anthrinole group, 1-phenanthrinole group, 9 phenance.
  • Examples thereof include monovalent condensed ring hydrocarbon groups having 10 to 18 carbon atoms such as a ryl group, a 1-acenaphthyl group, a 2-azuleyl group, a 1-pyrole group, and a 2-triphenyl group.
  • monovalent ring assembly hydrocarbon group examples thereof include monovalent ring-assembled hydrocarbon groups having 12 to 18 carbon atoms, such as —biferyl group, m-biphenyl group, and p—biphenyl group.
  • the monovalent aliphatic heterocyclic group contains 1 to 4, preferably 1 to 3 or 1 to 2 hetero atoms composed of nitrogen, oxygen or sulfur atoms.
  • the monovalent aromatic heterocyclic group has 1 to 4, preferably 1 to 3 or 1 to 2 nitrogen atoms, oxygen atoms, or 5 to 6 members containing different atoms such as sulfur nuclear power.
  • alkoxy group examples include C1-C8 alkoxyl groups such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert butoxy group, an octyloxy group, and a tert-octyloxy group.
  • aryloxy group examples include aryloxy groups having 6 to 14 carbon atoms such as a phenoxy group, a 4 tert butyl phenoxy group, a 1 naphthyloxy group, a 2 naphthyloxy group, and a 9 anthryloxy group.
  • alkylthio group examples include alkylthio groups having 1 to 8 carbon atoms such as methylthio group, ethylthio group, tert-butylthio group, hexylthio group, and octylthio group. can give.
  • arylthio group examples include arylthio groups having 6 to 14 carbon atoms, such as a furthio group, a 2-methylfurthio group, and a 4 tertbutylphenylthio group.
  • substituted amino group examples include N-methylamino group, N-ethylamino group, N, N-jetylamino group, N, N diisopropylamino group, N, N dibutylamino group, N-benzylamino group, N, N dibenzylamino group, N Phenylamino group, N Phenyl N-methylamino group, N, N Diphenylamino group, N, N bis (m tolyl) amino group, N, N bis (p tolyl) amino group, N, N bis (p Biphenyl-amino), bis [4 mono (4-methyl) biphenyl] amino, N—a mononaphthyl N-phenylamino, N ⁇ naphthyl ⁇ -phenylamino, etc. An amino group is mentioned.
  • acyl group examples include an acyl group having 2 to 14 carbon atoms such as an acetyl group, a propiol group, a bivaloyl group, a cyclohexyl carbonyl group, a benzoyl group, a toluoyl group, an ether group, and a cinnamoyl group.
  • an acyl group having 2 to 14 carbon atoms such as an acetyl group, a propiol group, a bivaloyl group, a cyclohexyl carbonyl group, a benzoyl group, a toluoyl group, an ether group, and a cinnamoyl group.
  • alkoxycarbo yl group examples include C2-C14 alkoxy carbo ol groups such as a methoxy carbo ol group, an ethoxy carbo ol group, and a benzyl oxy carboxy group.
  • arylcarbonyl group examples include an arylcarbonyl group having 2 to 14 carbon atoms such as a phenoxycarbol group and a naphthyloxycarboxyl group.
  • alkylsulfol group examples include C2-C14 alkylsulfol groups such as a mesyl group, an ethylsulfol group, and a propylsulfol group.
  • arylaryl groups examples include arylaryl groups having 2 to 14 carbon atoms such as benzenesulfol groups and ⁇ -toluenesulfol groups.
  • the monovalent aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, and aromatic heterocyclic group may be further substituted with other substituents.
  • these substituents may be bonded to each other to form a ring.
  • substituents include: Halogen atom, cyano group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, substituted amino group, acyl group, alkoxycarbonyl group, aryloxyball group, alkylsulfol group, arylsulfo -Lu group. Examples of these substituent groups include those described above.
  • Preferable I ⁇ to R 7 in the general formula [2] of the present invention include a hydrogen atom.
  • Ar 5 a phenyl group, a 4-methylphenol group, a 4-fluorophenol group, a 4-methoxyphenyl group, a 4-cyanophenol group, a 4-biphenyl group, a 1-naphthyl group, 2 naphthyl group, 4 pyridyl group and the like.
  • carbazolyl group represented by the general formula [2] of the present invention include 9-phenyl-3-r-rubazolyl group, 9- (4-methylphenol) 3--r-rubazolyl group, 9- (4 Fluorophenol) 3—force rubazolyl group, 9— (4-methoxyphenol) —3—carbazolyl group, 9— (4-cyanophenol) —3—carbazolyl group, 9- (1 naphthyl) -3—force Rubazolyl group, 9-1- (2 naphthyl) -3 1-strength rubazolyl group, 9-1- (4-biphenyl) 1-3-strength rubazolyl group, 9-1- (4-1-pyridyl) -1-3-carbazolyl group, and the like are more preferable.
  • the carbazolyl group includes 9-phenol, 1-3-rubberolyl group, 9-one (4-cyanophenol), 3-3-force rubazolyl group, 9-one (1 naphthyl), 3-one force rubazolyl group, 9-one (2 Naphthyl) 3-strength rubazolyl group, more preferred as carbazolyl group 9 phenylene Lou 3-carbazolyl group Ru mentioned.
  • R 2G to R 24 and one of R 25 to R 29 represent a bond, and the rest each independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue. .
  • halogen atom or monovalent organic residue in R 25 to R 29 is as described above! It is synonymous with what was demonstrated with the halogen atom in ⁇ ⁇ , or a monovalent organic residue.
  • adjacent organic residues may form a ring with each other.
  • one of R 2 ° to R 24 and one of R 25 to R 29 is a force bond, and forms a biphenylene group.
  • R 2G and R 25 are bonds. This is because the higher the symmetry of the molecule, the higher heat resistance and higher Tg can be expected, and the easier it is to synthesize compounds.
  • R 16 to R 19 , R 21 to R 24 that are not a bond, and R 26 to R 28 that are not a bond more preferred examples include a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and a phenol group. And tolyl group. When these substituents are used, it is easy to sublimate the compound (material) by vapor deposition or the like having a relatively small molecular weight, and the stability surface is also preferable.
  • R 3 to R 37 represent a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • the halogen atom or monovalent organic residue in R 3G to R 37 has the same meaning as described for the halogen atom or monovalent organic residue in I ⁇ to R 7 described above.
  • R 3G and R 31 , R 32 and R 33 , R 34 and R 35 , or R 36 and R 37 may be bonded to each other to form a ring.
  • R 38 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 3 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent, or a substituent.
  • substituent which may be included include the above-described halogen atoms and monovalent organic residues.
  • R 38 include a hydrogen atom, a phenyl group, a biphenyl group, a tolyl group, a xylyl group, a methyl group, an ethyl group, and a fluorine atom.
  • the 3-force rubazolyl group of the general formula [2] is! More preferably, ⁇ ⁇ is a hydrogen atom.
  • ⁇ ⁇ is a hydrogen atom.
  • Ar 5 in the general formula [2] preferably has the structure of the general formula [5]. [0048] The superiority of having a 3-force rubazolyl group of the general formula [2] will be described below.
  • force rubazole compounds tend to have a stronger structure and higher thermal stability than diphenylamino compounds having no bond (see Chemical Formula 11).
  • an N-alkyl compound having an alkyl group at another bonding position on nitrogen is well known.
  • the compound of the present invention is bonded to this position.
  • Aromatic groups and heteroaromatic groups have a great effect on increasing stability.
  • Ar 5 can be expected to have an effect of increasing stability.
  • Ar 5 is represented by the general formula [5]. This is the case when a phenyl group having R 38 as a substituent is bonded to the nitrogen atom.
  • the carbazolyl group bonded at the 3-position Normally, the amino group acts as an electron donor, but the nitrogen atom of force rubazole has almost no donor property for the substituent bonded on the nitrogen atom. This is because the force rubazole ring has planarity and is a very bulky substituent, and it is caused by difficulty in taking a planar structure with the substituent on the nitrogen atom. it is conceivable that. On the other hand, the force rubazole ring bonded at the 3-position has the planarity of the ring.
  • the ring Since the ring does not form a plane, it can take a plane structure.
  • both the amino group bonded to the force rubazole ring and the nitrogen atom of the force rubazole ring are electron donors to the benzene ring of the force rubazole ring. It is considered that an electronic donor effect equivalent to or more than that of the phenylenediamine structure can be exhibited (see Chemical formula 13).
  • the powerful rubazol-containing amine compound of the present invention becomes a compound having a small ionic potential (a compound in which the ground state of the organic molecule is at a higher level), and the organic EL When producing an element, a compound having a high hole injecting and transporting property can be used.
  • the force rubazole ring bonded at the 3-position has a lower molecular symmetry than the force rubazole ring bonded on the nitrogen atom, so that the crystallinity of the molecule is lower and the amorphous property is higher. It is possible to greatly contribute to the improvement of stability when formed.
  • the strong rubazole-containing amine compound of the present invention has only one carbazolyl group and is asymmetric as a whole molecule, so that the amorphous nature is high, and as a result, crystallization hardly occurs. This property is attributed to the safety of thin films when used as a material for organic EL devices. Qualitative properties are improved, dark spots are less likely to occur, and the lifetime of the organic EL element is extended. In particular, when the group A in the general formula [1] is a 4, 4, -biphenylene group, the lifetime of the organic EL device can be remarkably increased.
  • the molecular weight of the compound is preferably 1500 or less, more preferably 1300 or less, more preferably 1200 or less, even more preferably 1100 or less. This is because, when the molecular weight is large, there is a concern that the vapor deposition property may deteriorate when an element is formed by vapor deposition.
  • the rubazole-containing amine compound of the present invention has a high glass transition point and melting point, and is resistant to Joule heat generated in the organic layer, between the organic layers, or between the organic layer and the metal electrode during electroluminescence (heat resistance). Therefore, when used as an organic EL device material, it exhibits high luminous efficiency and is advantageous when emitting light for a long time.
  • Preferred rubazole-containing amine compounds of the present invention include groups represented by the general formula [1].
  • A is 4,4, -bi-phenylene group
  • Arl is 9-ferrue 3-force rubazolyl group
  • Ar2-Ar4 are each independently an alkyl group having 1-5 carbon atoms, 1-5 carbon atoms
  • a group power consisting of an alkoxy group, a diarylamino group substituted with an aryl group having 6 to 12 carbon atoms, a halogen atom, or a cyano group may be substituted with one or more selected substituents.
  • Examples of the compound include: -luryl group; 1 naphthyl group; 2 naphthyl group; 4 biphenyl group; or 9 phenanthryl group.
  • the group A in the general formula [1] is a 4,4-biphenyl group
  • Arl is a 9-loop 3-force rubazolyl group.
  • compounds in which Ar2, Ar3, and Ar4 are each independently a phenyl group, a 1-naphthyl group, a 2-naphthyl group, or a 4-biphenyl group.
  • More preferred examples of the strong rubazole-containing amine compound of the present invention include the group A in the general formula [1] being a 4,4-biphenyl group, and Arl being a 9-phenol 3-force rubazolyl group.
  • Ar 2, Ar 3, and Ar 4 are each independently a phenyl group, or a 1 naphthyl group, particularly a phenyl group.
  • the strength rubazol-containing amine compound of the present invention can be used in various applications.
  • a material that exhibits functions such as sensitizing effect, heat generation effect, coloring effect, fading effect, phosphorescence effect, phase change effect, photoelectric conversion effect, magneto-optical effect, photocatalytic effect, light modulation effect, optical recording effect, radical generation effect, etc. Or, conversely, these materials can be used as a material having a light emitting function.
  • light emitting materials photoelectric conversion materials, optical recording materials, image forming materials, photochromic materials, organic EL materials, photoconductive materials, dichroic materials, radical generating materials, acid generating materials, base generating materials, Phosphorescent material, nonlinear optical material, 2nd harmonic generation material, 3rd harmonic generation material, photosensitive material, light absorption material, near infrared absorption material, photochemical hole versioning material, optical sensing material, optical marking material Sensitizing material for photochemical treatment, optical phase change recording material, photosintered recording material, magneto-optical recording material, dye for photodynamic therapy, and the like.
  • organic EL material organic EL material, organic EL element material
  • organic EL material organic EL material, organic EL element material
  • the rubazole-containing amine compound of the present invention can be used for the sublimation purification method and Purification can be performed by a crystallization method, a reprecipitation method, a zone melting method, a column purification method, an adsorption method, or a combination of these methods. Of these purification methods, the recrystallization method is preferred. For compounds having sublimation properties, the sublimation purification method is preferred. In sublimation purification, it is preferable to employ a method in which a sublimation boat is maintained at a temperature lower than the temperature at which the target compound sublimes, and impurities that sublimate are removed in advance.
  • Sublimation purification as described above is purification that separates impurities, and can be applied to the present invention. In addition, sublimation purification helps to predict the difficulty of material deposition.
  • An organic EL element is composed of an element in which a single-layer or multilayer organic layer is formed between an anode and a cathode.
  • a single-layer organic EL element is composed of only a light emitting layer between an anode and a cathode.
  • the multilayer organic EL device facilitates the injection of holes and electrons into the light emitting layer, and facilitates the recombination of holes and electrons in the light emitting layer.
  • it refers to a layer in which a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer, and the like are laminated.
  • typical device configurations of multilayer organic EL devices include (1) anode Z hole injection layer Z light emitting layer Z cathode, and (2) anode Z hole injection layer Z hole transport layer Z light emitting layer Z cathode. (3) Anode Z hole injection layer Z light emitting layer Z electron injection layer Z cathode, (4) Anode
  • Z hole injection layer Z hole transport layer Z light emission layer Z electron injection layer Z cathode (5) anode z hole injection layer Z light emission layer Z hole blocking layer Z electron injection layer Z cathode, (6) anode Z positive Hole injection layer Z hole transport layer Z light emitting layer Z hole blocking layer Z electron injection layer Z cathode, (7) Anode Z light emitting layer Z hole blocking layer Z electron injection layer Z cathode, (8) Anode Z light emitting layer Z-electron injection layer
  • a multi-layer structure such as a Z cathode can be considered.
  • each of the organic layers described above may be formed by a layer configuration of two or more layers, or several layers may be repeatedly laminated.
  • an element configuration called “multi-photon emission” has recently been proposed in which some layers of the above-mentioned multilayer organic EL element are multilayered for the purpose of improving light extraction efficiency.
  • This is for example Gala Substrate z Anode z Hole transport layer z Electron transport light emitting layer z Electron injection layer z Charge generation layer z Light emission unit Z Cathode force
  • the strength rubazole-containing amine compound (organic electoluminescence device material) of the present invention may be used in any of the above-mentioned layers, but particularly in a hole injection layer, a hole transport layer, and a light emitting layer. It can be preferably used.
  • the organic electoluminescence device material of the present invention is used not only as a single compound but also as a combination of two or more compounds, that is, mixed, co-evaporated, laminated, etc. It is possible. Further, in the above-described hole injection layer, hole transport layer, and light emitting layer, they may be used together with other materials.
  • the hole injection layer a hole injection material that exhibits an excellent hole injection effect with respect to the light emitting layer and that can form a hole injection layer excellent in adhesion to the anode interface and thin film formation is used.
  • the materials used for each are a hole injection material and a hole transport material.
  • the material for organic electroluminescence device of the present invention can be suitably used for both hole injection materials and hole transport materials. These hole-injecting materials and hole-transporting materials must have high ion mobility and a low ion energy of 5.5 eV or less.
  • a hole injection layer a material that transports holes to the light emitting layer with a lower electric field strength is preferred.
  • the mobility force of holes for example, when an electric field of 10 4 to: L0 6 V / cm is applied, Those that are at least 10 _6 cm 2 ZV 'seconds are preferred.
  • Other hole injecting materials and hole transporting materials that can be used in combination with the material for organic electroluminescence device of the present invention are not particularly limited as long as they have the above-mentioned preferred properties.
  • hole injection materials and hole transport materials include triazole derivatives (see US Pat. No. 3,112,197, etc.), oxadiazole derivatives (US Pat. No. 3,189,447). No., etc.), imidazole derivatives (Japanese Patent Publication No. 37-16096) Polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544, JP-B-45-555) 51-10983, JP-A 51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-36656 Pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos.
  • JP-A-2-204996 polysilanes
  • aniline copolymers JP No. 2-282263
  • JP-A-1-211399 such as conductive polymer oligomers (particularly thiophene oligomers).
  • the ability to use the above-mentioned materials as a hole injection material or a hole transport material is a porphyrin compound (Japanese Patent Laid-Open No. 63-29556965), an aromatic tertiary amine compound, and a styrylamine salt.
  • Compound US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450 No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695, etc.
  • aromatic tertiary amine derivative examples include, for example, N, N'-diphenyl-N, N,
  • R all to R a14 each independently represents a hydrogen atom, an alkoxyl group, or a cyan group, but they are not all hydrogen atoms at the same time.
  • the alkoxyl group includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert butoxy group, an octyloxy group, a tert-octyloxy group, a 2-boroxy group, a 2-isoboroxy group, and a 1-adamanman Examples thereof include an alkoxyl group having 1 to 18 carbon atoms, such as a thioloxy group.
  • R all to R al4 are all a methoxy group, an ethoxy group, or a cyan group.
  • Z 21 linking groups include single bond, beylene group, o-phenylene group, m-phenylene group, p-phenylene group, 1,4-naphthylene group, 2,6-naphthylene group. 9, 10-phenanthrylene group and 9,10-anthrylene group are preferred, and a single bond, bi-ylene group, p-phenylene group and 1,4-naphthylene group are more preferred.
  • R a21 to R a26 are selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • Valent aromatic hydrocarbon groups are preferred.
  • Z dl is a linking group and represents any of a single bond, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, an oxygen atom, and a sulfur atom.
  • R a31 to R a36 each independently represents a monovalent aromatic hydrocarbon group.
  • Z 31 linking groups include single bond, beylene group, o-phenylene group, m-phenylene group, p-phenylene group, 1,4-naphthylene group, 2,6-naphthylene group. 9, 10-phenanthrylene group and 9,10-anthrylene group are preferred, and a single bond, bi-ylene group, p-phenylene group and 1,4-naphthylene group are more preferred.
  • R a31 to R a36 phenyl group, 1-naphthyl group, 2-naphthyl group, o- Bifue - 1 selected from Li Le group - Lil group, m- Bifue - Lil groups, and p- Bifue Valent aromatic hydrocarbon groups are preferred.
  • R a to R a48 each independently represents a monovalent aromatic hydrocarbon group.
  • R a41 to R a48 are monovalent groups selected from a phenyl group, 1-naphthyl group, 2-naphthyl group, o-biphenyl group, m-biphenyl group, and p-biphenyl group.
  • the aromatic hydrocarbon group is preferable.
  • R a & 1 to R a56 each independently represents a monovalent aromatic hydrocarbon group.
  • RR a5b is a monovalent aromatic selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • a hydrocarbon group is preferred.
  • R abl to R ab4 each independently represents a monovalent aromatic hydrocarbon group, and p represents an integer of 1 to 4).
  • R a61 to R a64 are monovalent groups selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • the aromatic hydrocarbon group is preferable.
  • examples of the hole transport material that can be used together with the compound of the present invention include known compounds shown in Tables 8 to 14 below.
  • the above-mentioned compound is formed into a thin film by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • an electron injection material that exhibits an excellent electron injection effect with respect to the light emitting layer and that can form an electron injection layer excellent in adhesion to the cathode interface and thin film formability is used.
  • electron injection materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, fluorenone derivatives, anthraquinodimethane derivatives, difluoroquinone derivatives, thiopyran dioxide derivatives, perylenetetracarboxylic acid derivatives, fluorenylidene.
  • Methane invitation examples thereof include conductors, anthrone derivatives, silole derivatives, triaryl phosphine oxide derivatives, bismuth acetylacetonate, sodium acetate and the like.
  • inorganic Z organic composite materials doped with metal such as cesium in bathofannant mouth phosphorus (Proceedings of the Society of Polymer Science, Vol. 50, No. 4, 660, published in 2001) and 50th applied physics-related BCP, TPP, T5MPyTZ, etc. described in the Joint Lecture Lecture Proceedings, No. 3, page 1402, published in 2003 are examples of electron injection materials.
  • the material is not particularly limited as long as it can inject electrons and can transport electrons.
  • electron injection materials particularly effective electron injection materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, silole derivatives, and triarylphosphine oxide derivatives.
  • a preferred metal complex compound usable in the present invention is a metal complex of 8-hydroxyquinoline or a derivative thereof.
  • Specific examples of metal complexes of 8-hydroxyquinoline or its derivatives include tris (8-hydroxyquinolinato) aluminum, tris (2methyl-8hydroxyquinolinato) aluminum, and tris (4methyl-8hydroxyquinolinato) aluminum.
  • Tris (5-methyl 8-hydroxyquinolinato) aluminum Tris (5-phenol 8-hydroxyquinolinato) aluminum, Bis (8-hydroxyquinolinato) (1 naphtholato) anoleum
  • Bis (8 hydroxyquinolinate) (2 naphtholate) aluminum bis (8 hydroxyquinolinate) (phenolate) aluminum
  • bis (8 hydroxyquinolinate) (4-cyanol 1 naphtholate) Aluminum bis (4-methyl-8 hydroxyquinolinate) (1 naphtholate) al Ni
  • bis (5-methyl-8-hydroxyquinolinate) (2 naphtholate) aluminum bis (5-phenol-8-hydroxyquinolinate) (phenolate) aluminum
  • bis (5- Aluminum complexes such as cyano 8-hydroxyquinolinate (4-cyanol 1 naphtholate) aluminum, bis (8 hydroxyquinolinato) chloroaluminum, bis ( 8 -hydroxyquinolinato) (o cresolato) anoremi-um Compound, Tris ( 8 -hydroxyquinolinato) gallium, Tris (2-methyl-8
  • preferable nitrogen-containing five-membered ring derivatives include oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazol derivatives, and triazole derivatives.
  • Benzene 1, 4 Bis [2— (5 Pheloxadiazolyl) -4 tert butyl benzene], 2— (4, -tert-butyl phenol) —5— (4, — Biphenol) ) —1, 3, 4—thiadiazole, 2,5 bis (1 naphthyl) -1,3,4, thiadiazole, 1,4 bis [2— (5 phenthiadiazolyl).
  • oxaziazole derivative As the conductor, an oxadiazole derivative represented by the following general formula [12] can be shown.
  • Ar 11 and Ar 12 each independently represent a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • the monovalent nitrogen-containing aromatic heterocyclic group includes 2 pyridyl group, 3 pyridyl group, 4 pyridyl group, 3 pyridazyl group, 4 pyridazyl group, 2 pyrimidyl group, 4 pyrimidyl group, 5 pyrimidyl group, 2-birazyl group Group, 1 monovalent nitrogen-containing monocyclic aromatic heterocyclic group such as imidazolyl group, 2 quinolyl group, 3 quinolyl group, 4 quinolyl group, 5 quinolyl group, 6 quinolyl group, 7 quinolyl group, 8 quinolyl group, 2 quinazolyl group Group, 4 quinazolyl group, 5 quinazolyl group, 2 quinoxalyl group, 5 quinoxalyl group, 6 quinoxalyl group, 1 indolyl group, 9 monovalent nitrogen-containing condensed ring aromatic heterocyclic group, such as 2,2'bibilidirou 3—yl
  • Preferred as the monovalent aromatic hydrocarbon group as Ar 11 and Ar 12 is a monovalent aliphatic hydrocarbon group which may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • Preferred monovalent nitrogen-containing aromatic heterocyclic groups include monovalent aliphatic groups.
  • Tables 15 to 18 show specific examples of oxaziazole derivatives that can be used in the present invention. [0097] [Table 15]
  • triazole derivatives represented by the following general formula [13].
  • preferred monovalent aromatic hydrocarbon groups in Ar "and Ar t2 are also good, for example, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, m- Such as biphenyl group and p biphenyl group, and these monovalent aromatic hydrocarbon groups are substituted with monovalent aliphatic hydrocarbon groups or monovalent nitrogen-containing aromatic heterocyclic groups.
  • Preferred monovalent nitrogen-containing aromatic heterocyclic groups include, for example, 2-pyri Such as dil group, 3-pyridyl group, 4-pyridyl group, 2, 2, -bibilidyl 3-yl group, and 2, 2 'bibilidil 4-yl group.
  • These monovalent nitrogen-containing aromatic heterocyclic groups are A monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group may be substituted. Further, in Ar t3, the monovalent aromatic hydrocarbon group is preferred, for example, Hue - group, 1-naphthyl, 2-naphthyl, o Bifue - Lil group, m- Bifue - Lil group, and p bifurylyl group, and these monovalent aromatic hydrocarbon groups may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • preferred monovalent nitrogen-containing aromatic heterocyclic group in Ar t3 for example, 2-pyridyl group, 3-pyridyl group, and 4 pyridyl group and the like.
  • These monovalent nitrogen-containing aromatic heterocyclic The group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group.
  • Tables 19 to 23 show specific examples of triazole derivatives that can be used in the present invention.
  • silole derivatives represented by the following general formula [14].
  • R P1 and 2 are each independently a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, or a monovalent nitrogen-containing group that may have a substituent.
  • Ar p 1 Ar p 4 each independently represents a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • R P1 R P2 Ar pl Ar p4 adjacent groups may be linked to each other to form a ring.
  • preferred monovalent aliphatic hydrocarbon group may be substituted with a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group, Examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Preferred monovalent aromatic hydrocarbon groups include a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • Examples of the monovalent nitrogen-containing aromatic heterocyclic group may include a phenyl group, an m-bifluoro-allyl group, and a p-bifluoro-allyl group, which may be substituted with a monovalent nitrogen-containing aromatic heterocyclic group.
  • 2-pyridyl group optionally substituted by aliphatic hydrocarbon group or monovalent aromatic hydrocarbon group 3 pyridyl group, 4 pyridyl group.
  • preferred monovalent aromatic hydrocarbon groups may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group 2 pyridyl group, 3 pyridyl group, 4-pyridyl group, 2, 2, -bibilidyl 3- And 2, 2, -bibilidyl-4-yl groups.
  • triarylphosphine oxide derivatives include JP 2002-63989, JP 2004-95221, JP 2004-203828. Examples thereof include triarylphosphine oxide derivatives and triarylphosphine oxide derivatives represented by the following general formula [15] described in JP-A-2004-204140.
  • Ar ql to Ar q3 each independently represent a monovalent aromatic hydrocarbon group which may have a substituent.
  • a preferable monovalent aromatic hydrocarbon group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group. , 1-naphthyl group, 2-naphthyl group, o-biphenylyl group, m-biphenylyl group, and p-biphenylyl group.
  • Tables 29 to 33 show specific examples of triarylphosphine oxide derivatives that can be used in the present invention.
  • a hole blocking material is used for the hole blocking layer, which can prevent holes that have passed through the light emitting layer from reaching the electron injection layer and can form a layer with excellent thin film formability.
  • hole blocking materials include aluminum complex compounds such as bis (8-hydroxyquinolinate) (4-phenenolephenolate) aluminum, and bis (2-methyl-8 hydroxyquino).
  • (Linato) (4-phenolphenol) Gallium complex compounds such as gallium, nitrogen-containing condensed aromatic compounds such as 2,9 dimethyl-4,7 diphenyl 1,10 phenanthrene (BCP) It is done.
  • the light-emitting layer of the organic EL device of the present invention preferably has the following functions.
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light-emitting function A function that provides a field for recombination of electrons and holes, and connects this to light emission. However, it is preferable to transfer one of the charges, although the transport capacity expressed by the electron mobility may be large or small.
  • the light-emitting materials of organic EL devices are mainly organic compounds. Specifically, the following compounds are used depending on the desired color tone.
  • a compound represented by the following general formula [16] is preferably used.
  • X 1 represents a group represented by the following general formula [17], and X 2 represents a phenyl group, a 1 naphthyl group, or a 2-naphthyl group.
  • Hue in X 1 of the general formula [16] - Len group Hue is represented by X 2 - group, 1-naphthyl group, 2-naphthyl group, one or more alkyl of 1 to 4 carbon atoms Group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxyl group, a sulfonyl group, a carbonyl group, an amino group, a dimethylamino group, or a diphenylamino group. Moreover, when there are a plurality of these substituents, they may be bonded to each other to form a ring.
  • phenylene group represented by X 1 is preferably bonded at the para position because it is easy to form a smooth deposited film with good bonding properties.
  • Specific examples of the compound represented by the general formula [16] are as follows (where Ph represents a phenyl group).
  • p-quarterphenol derivatives and p-quintamine derivatives are particularly preferable.
  • fluorescent brighteners such as benzothiazole, benzimidazole, and benzoxazole, metal chelate oxinoid compounds, styrylbenzene compoundscan be used. Specific examples of these compounds include compounds disclosed in, for example, JP-A-59-194393. Still other useful compounds are listed in Chemistry-of-Synthetic Dise (1971) pages 628-637 and page 640.
  • metal chelated oxinoid compound for example, compounds disclosed in JP-A-63-295695 can be used.
  • 8-hydroxyquinoline metal complexes such as tris (8-quinolinol) aluminum, dilithium pin tridione and the like can be mentioned as suitable compounds.
  • styrylbenzene compound for example, those disclosed in European Patent No. 0319881 and European Patent No. 0373582 can be used.
  • a distyrylvirazine derivative disclosed in JP-A-2-252793 can also be used as a material for the light emitting layer.
  • polyphenyl compounds disclosed in EP 0387715 can also be used as a material for the light emitting layer.
  • metal chelate oxinoid compound for example, 12-lid perinone (J. Appl. Phys., 27th, L713 (1988) ), 1,4-diphenyl-1,3-butadiene, 1,1,4,4-tetraphenyl-1,3-butadiene (Appl. Phys. Lett., No.
  • R X1 and R X2 each independently represent a monovalent aliphatic hydrocarbon group, nl represents 3 to Represents an integer of 100.
  • R Xd and R X4 each independently represent a monovalent aliphatic hydrocarbon group, n2 and n
  • R x & and R Xb each independently represent a monovalent aliphatic hydrocarbon group, n4 and n 5 each independently represent an integer of 3 to: LOO. -Represents a ru group.
  • a phenylanthracene derivative represented by the following general formula [21] as disclosed in JP-A-8-12600 can also be used as a luminescent material.
  • A1 and A2 each independently represent a monophenylanthryl group or a diphenylanthryl group, which may be the same or different.
  • L represents a single bond or a divalent linking group.
  • the divalent linking group represented by L is preferably a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a substituent.
  • a phenylanthracene derivative represented by the following general formula [22] or general formula [23] is preferable.
  • R Z1 to R Z4 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, or a diallylamino group.
  • R Z1 , R z2 , R z3 , R Z4 may be the same or different from each other R Z1 , R Z2 , R Z3 , R Z4 may be bonded to each other to form a ring
  • L1 is a divalent monocyclic or condensed ring aromatic hydrocarbon which may have a single bond or a substituent
  • a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a substituent is an alkylene group, —O , - S- or -.
  • NR- where R represents an alkyl group or Ariru group) or may be mediated
  • R Z5 and R Zb are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, a diarylamino group, A monovalent aliphatic heterocyclic group and a monovalent aromatic heterocyclic group, which may be the same or different, and r5 and r6 are each independently 0 or an integer of 1 to 5 Represents. When r5 and r6 are each independently an integer of 2 or more, R Z5 and R Zb may be the same or different. R Z5 and R Z6 are bonded together to form a ring. It may be formed.
  • L2 represents a single bond or a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a substituent, and may have a divalent monocyclic or condensed ring aromatic carbonization.
  • the hydrogen group may be interposed by an alkylene group, —O—, 1 S— or 1 NR— (wherein R represents an alkyl group or an aryl group).
  • R zll to R ZdU each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, a diallylamino group
  • a ring may be formed, and kl represents an integer of 0 to 3.
  • R Zdl to R z & u each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, a diarylamino group, Represents a monovalent aliphatic heterocyclic group and a monovalent aromatic heterocyclic group, which may be the same or different, and R ⁇ to R ⁇ are formed by connecting adjacent groups together.
  • K2 represents an integer of 0 to 3.
  • R Z51 ⁇ R ZbU are each independently a hydrogen atom, an alkyl group, Aruke - group, consequent opening alkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, Ariruokishi group, Jiari Ruamino group, a monovalent aliphatic heterocyclic group, a monovalent aromatic heterocyclic group, it may be different, even the same.
  • R Z51 ⁇ R Z6G is between adjacent groups linked And k3 represents an integer of 0 to 3.
  • amine compounds represented by the following general formula [27] are also useful as light emitting materials.
  • E 1 is an n-valent aromatic hydrocarbon group
  • E 2 is a dialkylamino group, a diarylamino group, an alkylarylamino
  • the base structure of the n-valent aromatic hydrocarbon group represented by E 1 includes naphthalene, anthracene, 9-phenylanthracene, 9, 10-diphenylanthracene, naphthacene, pyrene, perylene, Biphenyl, binaphthyl, and bianthryl are preferred.
  • the amino group represented by E 2 is preferably a diarylamino group.
  • n is most preferably 1 to 4, particularly preferably 2.
  • an amine compound represented by the following general formula [28] to general formula [30] is particularly preferable.
  • R yl to R y8 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent group, or At least one of the forces R yl to R y8 representing the aromatic heterocyclic group or the dialkylamino group, diarylamino group, and alkylaryl amino group selected from R yl to R y8 is a dialkylamino group or a diarylamino group.
  • Alkylaryl amino group power represents an amino group selected R yl to R y8 may be the same or different, and adjacent groups may be linked to form a ring.
  • R yll to R y2 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 At least one of R yll to R y2 represents a divalent amino group, a diarylamino group, a diarylamino group, a dialkylamino group, a diarylamino group, or an alkylaryl amino group.
  • Group, alkylarylamino group power represents an amino group selected, 11 to 2 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y21 to R y34 each independently represent a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group, of the force R y21 to R Y34 represents an alkyl ⁇ arylamino group forces amino group selected, at least one, dialkyl Ruamino group, Jiariruamino group
  • Alkylaryl amino group power represents an amino group selected R y21 to R y34 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y35 to R y52 each independently represent a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 A valent aromatic heterocyclic group, or a dialkylamino group, a diarylamino group, an alkylaryl amino group force
  • a power representing a selected amino group Ry35 to Ry52 at least one of which is a dialkylamino group, a diarylamino group
  • Alkylaryl amino group power represents an amino group selected R y35 to R y52 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y53 to R y64 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represents an alkyl ⁇ arylamino group mosquito amino group which may be chosen among the R y53 to R Y64, at least one, dialkyl Ruamino group, (Dialylamino group, alkylarylamino group power)
  • An amino group selected 53 to 64 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y65 to R y74 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 A valent aromatic heterocyclic group, or a dialkylamino group, a diarylamino group, an alkylaryl amino group, and an amino group that is also selected, but at least one of R y65 to R y74 is a dialkylamino group, Diarylamino group, alkylarylamino group power represents an amino group selected 65 to 74 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y75 to R y86 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represents an alkyl ⁇ arylamino group mosquito amino group which may be chosen among the R Y75 to R Y86, at least one, dialkyl Ruamino group, (Dialylamino group, alkylarylamino group) Represents the selected amino group 75 to 86 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y87 to R y96 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group, of the force R y87 ⁇ R y96 represents an alkyl ⁇ arylamino group forces amino group selected, at least one, dialkyl Ruamino group, Jiariruamino group
  • Alkylaryl amino group power represents an amino group selected R y87 to R y96 may be the same or different, and adjacent groups may be connected to form a ring.
  • R y97 to R yllC> each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent aromatic heterocyclic group, or a dialkylamino group
  • Jiariruamino group represent a Arukiruari Ruamino group forces amino group which may be chosen among the R Y97 to R yll, at least one di ⁇ alkylamino group, Jiari - Ruamino group, Arukiruari -.
  • Ruamino represents a group mosquito ⁇ et amino groups selected R y97 ⁇ R yllC> is linked groups adjacent yo ingredients different from be the same, may form a ring).
  • R ylll to R y128 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent aliphatic group, aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represent a Arukiruari Ruamino group forces amino group which may be chosen among the R ylll ⁇ R y128, at least one di ⁇ alkylamino group, Jiari - Ruamino group, And represents an amino group selected from alkylarylamine groups
  • R ylll to R y128 may be the same or different, and adjacent groups may be linked to form a ring.
  • the amine compounds represented by the general formulas [34] and [37] obtain yellow to red light emission. In this case, it can be suitably used.
  • Specific examples of the amine compounds represented by the general formulas [34] to [37] described above include compounds having the following structure (where Ph represents a phenyl group).
  • RR yl31 independently represents a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • adjacent groups may be connected to form a ring.
  • R yl32 to R y138 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, or a monovalent aromatic hydrocarbon group.
  • 134 to 138 each independently represents a hydrogen atom) , ⁇ alkyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group or a dialkylamino group, Jiariruamino group, the force R yl represents an alkyl ⁇ arylamino group forces amino group selected
  • At least one is an amino group whose dialkylamino group, dialylamino group, alkylarylamino group power is also selected.
  • adjacent groups may be connected to form a ring.
  • Specific examples of the compound having at least one styryl group represented by the general formula [38] or the general formula [39] described above can include compounds having the following structure (where Ph represents a phenyl group: To express).
  • L3 is a hydrocarbon of 6-24 carbon atoms comprising a phenyl moiety
  • O—L 3 is a phenolate ligand
  • Q is a substituted 8-quinolinolato coordination.
  • Rs represents an 8-quinolinolate ring substituent selected to sterically hinder the attachment of more than two substituted 8-quinolinolato ligands to an aluminum atom.
  • examples of the host include the above-mentioned light emitting materials
  • examples of the dopant include fluorescent dyes having strong blue power and green, for example, coumarins or fluorescent dyes similar to those used as the above-mentioned host.
  • a light-emitting material having a distyrylarylene skeleton as a host particularly preferably 4, 4, 1 bis.
  • diphenylamino vinylarylene particularly preferably, for example, N, N diphenylaminovinylbenzene can be mentioned.
  • the light emitting layer for obtaining white light emission is not particularly limited, and the following can be used.
  • each layer of the organic EL laminated structure is specified and light is emitted using tunnel injection (European Patent No. 0390551).
  • a white light emitting element is described as an example of an element using tunnel injection (Japanese Patent Laid-Open No. 3-230584).
  • a light-emitting layer having a two-layer structure is described (JP-A-2-220390 and JP-A-2-216790).
  • a structure in which a light emitting layer is divided into a plurality of materials each having a different emission wavelength Japanese Patent Laid-Open No. 4 51491).
  • a structure in which a blue phosphor (fluorescence peak 380 to 480 nm) and a green phosphor (480 to 580 nm) are laminated and a red phosphor is further contained Japanese Patent Laid-Open No. 6-207170.
  • a structure in which the blue light emitting layer contains a blue fluorescent dye, the green light emitting layer has a region containing a red fluorescent dye, and further contains a green phosphor JP-A-7-142169.
  • the luminescent material for example, the following known compounds are preferably used (where Ph represents a phenyl group).
  • a phosphorescent material can be used in the organic electoluminescence device of the present invention.
  • the phosphorescent light emitting material or doping material that can be used in the organic electoluminescence device of the present invention include, for example, an organometallic complex, in which the metal atom is usually a transition metal, and preferably has a period of 5th. Periods or 6th period, for groups 6 to 11 elements, more preferably 8 to 10 elements. Specifically, iridium or white For example, money.
  • ligands include 2-phenylpyridine and 2- (2'-benzochel) pyridine, and the feature is that the carbon atom on these ligands is directly bonded to the metal. .
  • Another example is a porphyrin or tetraazaborphyrin ring complex, and the central metal is platinum.
  • the following known compounds are suitably used as the phosphorescent light emitting material (where Ph represents a phenyl group).
  • the material used for the anode of the organic EL device of the present invention is preferably a material having a large work function (4 eV or more) metal, alloy, electrically conductive compound or a mixture thereof as an electrode material. It is done.
  • electrode materials include metals such as Au, and conductive materials such as Cul, IT 0, SNO, and ZNO. To form this anode, these
  • a thin film can be formed on the electrode material by a method such as vapor deposition or sputtering.
  • This anode desirably has such a characteristic that, when light emitted from the light emitting layer is extracted with an anodic force, the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less. Further, although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the material used for the cathode of the organic EL device of the present invention is a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material.
  • electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium 'silver alloy, aluminum / acid aluminum, aluminum' lithium alloy, indium, and rare earth metals.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably larger than 10%.
  • the resistance is preferably several hundred ⁇ or less, and the film thickness is usually from 1011111 to 1111, preferably from 50 to 200.
  • an anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary are formed by the above materials and methods.
  • a cathode may be formed.
  • the organic EL element can be produced in the reverse order from the cathode to the anode.
  • This organic EL element is manufactured on a light-transmitting substrate.
  • This translucent substrate is a substrate that supports the organic EL element, and it is desirable that the translucency is such that the transmittance of light in the visible region of 400 to 700 nm is 50% or more, preferably 90% or more. It is preferable to use a smoother substrate.
  • a glass plate, a synthetic resin plate and the like are preferably used.
  • the glass plate include a plate formed of soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, quartz, and the like.
  • the synthetic resin plate include plates such as a polystrength resin resin, an acrylic resin, a polyethylene terephthalate resin, a polyether sulfide resin, and a polysulfone resin.
  • each layer of the organic EL device of the present invention a dry film forming method such as vacuum deposition, electron beam irradiation, sputtering, plasma, ion plating, or spin coating, dating, flow coating, inkjet Wet film-forming methods such as the method, vapor-depositing phosphors on a donor film, and also described in Special Table 2002-534782 and ST ⁇ ee, et al., Proceedings of SID'02, p.784 (2002) It is possible to apply any of the laser thermal transfer methods (also referred to as laser induced thermal imaging or LITI method), and the organic layer is particularly preferably a molecular deposited film.
  • LITI method laser induced thermal imaging
  • the thin film (accumulated molecular film) formed by the method can be classified according to the difference in aggregation structure, higher order structure, and functional difference caused by it, as disclosed in JP-A-57-51781.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution
  • An organic layer can be formed.
  • the film thickness of each layer is not particularly limited, but if the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency.
  • the film thickness of each layer is more preferably in the range of 0.2 m from the force lOnm force, which is suitable in the range of lnm to 1 m.
  • a protective layer may be provided on the surface of the element, or the entire element may be covered or sealed with grease or the like. Good.
  • a photocurable resin that is cured by light is preferably used.
  • the current applied to the organic EL device of the present invention is usually a direct current, but a pulse current or an alternating current may be used.
  • the current value and voltage value are not particularly limited as long as the element is not damaged, but considering the power consumption and life of the element, it is desirable to emit light efficiently with as little electrical energy as possible.
  • the driving method of the organic EL element of the present invention can be driven not only by the noisy matrix method but also by the active matrix method.
  • the method for extracting light from the organic EL element of the present invention is applicable not only to the bottom emission method for extracting light from the anode side, but also to the top emission method for extracting light from the negative electrode side. is there.
  • the organic EL element of the present invention may adopt a microcavity structure. This is because the organic EL element has a structure in which the light emitting layer is sandwiched between the anode and the cathode, and the emitted light causes multiple interference between the anode and the cathode, but the reflectance of the anode and the cathode is low.
  • the technique of actively utilizing the multiple interference effect and controlling the emission wavelength extracted from the device It is a technique. Thereby, it is also possible to improve the emission chromaticity.
  • the organic EL element using the power rubazole-containing amine compound of the present invention can emit light for a long time with a low driving voltage. Therefore, this organic EL device is used as a flat panel display such as a wall-mounted television and various flat light emitters, as well as a light source such as a copying machine and a printer, a light source such as a liquid crystal display and an instrument, a display board, and a sign lamp Application to is considered.
  • a flat panel display such as a wall-mounted television and various flat light emitters
  • a light source such as a copying machine and a printer
  • a light source such as a liquid crystal display and an instrument, a display board, and a sign lamp Application to is considered.
  • FIG. 1 shows a 1 H-NMR ⁇ vector of the compound (1). (In THF-d)
  • FIG. 2 shows a 1 H-NMR ⁇ vector of the compound (2). (In THF-d)
  • FIG. 3 shows the 1 H-NMR ⁇ vector of compound (7). (In THF-d)
  • the resulting crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (1) by elemental analysis (manufactured by Pakin Elmer, 2400II CHNOZO type) and 'H-NMR, 13 C-NMR (manufactured by JEOL Ltd., GSX-270W).
  • the resulting crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (2) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). did.
  • the results of elemental analysis of the product are shown below, and Fig. 2 shows the 1 H-NMR spectrum of compound (2).
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified. Elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by JEOL Ltd., GSX-270W) analysis of this compound confirmed that it was compound (3) . The results of elemental analysis of the product are shown below.
  • the resulting crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (5) by elemental analysis (manufactured by Pakin Elmer, 2400II CHNOZO type) and 'H-NMR, 13 C-NMR (manufactured by JEOL Ltd., GSX-270W). The results of elemental analysis of the product are shown below.
  • the obtained crude product was purified by silica gel column chromatography and further purified by sublimation. Elemental analysis of this compound (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR, 13 C-NM R (manufactured by JEOL Ltd., GSX-270W) showed that it was compound (6). confirmed. The results of elemental analysis of the product are shown below.
  • the obtained crude product was purified by silica gel force ram chromatography, and further purified by sublimation.
  • elemental analysis of this compound manufactured by Parkin Elmer, 2400II CHNOZO type
  • 1 H-NMR 13 C-NMR manufactured by Nippon Denshi, GSX-270W
  • Fig. 3 shows the 1 H-NMR spectrum of compound (7).
  • the resulting crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (8) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). .
  • the results of elemental analysis of the product are shown below.
  • This compound was purified by silica gel column chromatography and further sublimation purified.Element analysis of this compound (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR, 13 C-N MR (manufactured by JEOL Ltd., GSX-270W) analysis confirmed that it was compound (9). Show.
  • Example 3 (1) In the method described in Example 3 (1) (method described in Formula 6), 9 phenanthrylamine was used instead of 1 naphthylamine, and the method described in Example 3 (1) (Formula Intermediate (XXXIV) was produced in the same manner as in (6).
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified. Elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type) and 1 H-NMR 13 C-NMR (manufactured by JEOL Ltd., GSX-270W) analysis of this compound confirmed that it was compound (10). Below, raw The elemental analysis result of a composition is shown.
  • Compound (11) (compound represented by the following compound (XXXVIII) in formula 20) was prepared by the synthetic scheme represented by the following formula 20.
  • N-phenyl-N- (9-phenanthryl) amine instead of N-phenyl-N- (9-phenanthryl) amine in the method described in Example 7 (1) (method described in Formula 14), N-phenol-N- (anthracene 9- (G) Intermediate (XXXVI) was prepared in the same manner as in Example 7 (1) (Method described in Formula 14) using amine.
  • Example 3 (1) In the method described in Example 3 (1) (method described in Formula 6), 9 anthracenylamine was used instead of 1 naphthylamine, and the method described in Example 3 (1) (Formula Intermediate (XXXVII) was prepared in the same manner as in (6).
  • Compound (12) (compound represented by the following compound (XLI) in the formula 21) was prepared by the synthetic scheme represented by the following formula 21.
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (12) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). did.
  • the results of elemental analysis of the product are shown below.
  • N diphenylamine in the method described in Example 1 (1) (method described in Formula 1)
  • N- (4-fluorophenyl) -N phenolamine is used
  • Intermediate (XLII) was produced in the same manner as described in Example 1 (1) (method described in Formula 1).
  • the resulting crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be the compound (13) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). did.
  • the results of elemental analysis of the product are shown below.
  • Compound (14) (compound represented by the following compound (XLVII) in formula 23) was prepared by the synthetic scheme represented by the following formula 23.
  • N-diphenylamine in the method described in Example 1 (1) (method described in Formula 1), N- (4-methoxyphenol) -N-phenolamine is used. Then, an intermediate (XLV) was produced in the same manner as the method described in Example 1 (1) (the method described in Formula 1).
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be the compound (15) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type) and 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). .
  • the results of elemental analysis of the product are shown below.
  • N-diphenylamine in the method described in Example 1 (1) (method described in Formula 1), N- (2-Chel) -N-Phenolamine is used.
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified. Elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type) and 3 ⁇ 4-NMR 13 C-NMR (manufactured by JEOL Ltd., GSX-270W) analysis of this compound confirmed that it was compound (16) . The results of elemental analysis of the product are shown below.
  • Compound (17) (compound represented by compound (LV) in the following formula 26) was produced by the synthetic scheme represented by the following formula 26.
  • the obtained crude product was purified by silica gel column chromatography and further purified by sublimation.
  • This compound was confirmed to be compound (17) by elemental analysis (Perkin Elmer, 2400II CHNOZO type) and 1 H-NMR 13 C-NMR (manufactured by JEOL Ltd., GSX-270W) analysis.
  • elemental analysis Perkin Elmer, 2400II CHNOZO type
  • 1 H-NMR 13 C-NMR manufactured by JEOL Ltd., GSX-270W
  • Compound (19) (compound represented by the following compound (LIX) in formula 28) was produced by the synthetic scheme represented by the following formula 28.
  • Compound (20) (compound represented by the compound (LXII) in the following formula 29) was produced by the synthetic scheme represented by the following formula 29.
  • the obtained crude product was purified by silica gel column chromatography and further sublimation purified.
  • This compound was confirmed to be compound (20) by elemental analysis (manufactured by Parkin Elmer, 2400II CHNOZO type), 1 H-NMR 13 C-NMR (manufactured by Nippon Denshi, GSX-270W). .
  • the results of elemental analysis of the product are shown below.
  • Compound (22) (compound represented by the following compound (LXVI) in the formula 31) was produced by the synthetic scheme represented by the following formula 31.
  • N diphenylamine in the method described in Example 1 (1) (method described in Formula 1), N- (4-diphenylaminophenol) N-phenylamine is used. Then, an intermediate (LXVII) was produced in the same manner as in the method described in Example 1 (1) (the method described in Formula 1).
  • Vapor deposition was performed in a vacuum of 10 _ 6 T OTr under conditions without temperature control such as substrate heating and cooling.
  • the characteristics of an organic EL device with an electrode area of 2 mm x 2 mm were measured.
  • Compound (1) was vacuum-deposited on a cleaned glass plate with an ITO electrode to obtain a 60 nm-thick hole injection layer.
  • N, N, -bis (4, -diphenylamino-4-biphenyl) -N, N, -diphenylpentidine was vacuum deposited to obtain a 20 nm hole transport layer.
  • a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to inject electrons with a thickness of 60 nm.
  • An organic EL device was obtained by forming a light emitting layer and forming an electrode on it by first depositing 1 nm of lithium fluoride and then 200 nm of aluminum.
  • An organic EL device was prepared in the same manner as in Example 31 except that the hole injection layer was replaced with the compounds (2) to (30) shown in Tables 1 to 3 instead of the compound (1).
  • the devices of Examples 31 to 56 were allowed to emit light continuously at a current density of lOmAZcm 2 for a certain time in an environment of room temperature and 100 ° C., and the luminance was measured. The results are shown in Table 35.
  • [0319] were co-evaporated at a composition ratio of 100: 8 to form a light emitting layer having a thickness of 45 nm. Further, the above-described compound (B) was deposited to form an electron injection layer having a thickness of 20 nm. On top of that, a cathode is formed by vapor deposition of lithium oxide (Li 2 O) with lnm and aluminum (A1) with lOOnm.
  • An electoluminescence device was obtained. This device showed an external quantum efficiency of 6.5% at a DC voltage of 10V. In addition, the half-life when driven at a constant current at an emission luminance of 150 (cdZm 2 ) was 5000 hours or more.
  • An organic EL device was produced in the same manner as in Example 61 except that the compound shown in Table 36 below was used instead of the compound (19) for the light emitting layer.
  • the devices of Examples 62 to 68 were allowed to emit light continuously at a current density of lOmAZcm 2 for a certain period of time in an environment of room temperature and 100 ° C., and the luminance was measured. The results are shown in Table 36 below.
  • [0324] was deposited to form a hole injection layer having a thickness of 60 nm, and then the compound (13) in Table 2 was deposited to form a hole transport layer having a thickness of 20 nm.
  • Alq3 is vapor-deposited to form an electron-injecting light-emitting layer with a thickness of 60 nm.
  • an electrode is formed by vacuum deposition of 1 nm of lithium fluoride and 200 nm of aluminum, and an organic-electric-luminescence device is obtained. Obtained.
  • the luminous efficiency of this device at a DC voltage of 5 V was 1.6 (lmZW).
  • the half life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • An organic EL device was produced in the same manner as in Example 69 except that the compound shown in Table 37 below was used instead of the compound (13) in the hole transport layer.
  • the devices of Examples 64 to 67 were allowed to emit light continuously at a current density of lOmAZcm 2 for a certain period of time in an environment of room temperature and 100 ° C., and the luminance was measured. The results are shown in Table 37 below.
  • An organic EL device was produced in the same manner as in Example 73 except that the compound shown in Table 38 below was used instead of the compound (1) in the light emitting layer.
  • the devices of Examples 68 to 70 were allowed to emit light continuously at a current density of lOmAZcm 2 for a certain period of time at room temperature and 100 ° C., and the luminance was measured. The results are shown in Table 38 below. [0331] [Table 38]
  • PEDOT / PSS poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulphonic acid
  • PEDOT / PSS poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulphonic acid
  • the compound (3) in Table 1 and the above-mentioned compound (A) were dissolved in a toluene solvent at a composition ratio of 100: 8 and applied by a spin coating method to form a light emitting layer having a thickness of 50 nm.
  • the compound (B) described above was further deposited on this coated substrate by a vacuum deposition method to form an electron injection layer having a thickness of 20 nm.
  • lithium oxide (Li 2 O) is lnm
  • aluminum (A1) is lOOnm.
  • a cathode was formed by vapor deposition to obtain an organic electoluminescence device. This device showed an external quantum efficiency of 5.3% at a DC voltage of 10V. The half-life when driven at a constant current at an emission luminance of 100 (cdZm 2 ) was 5000 hours or more.
  • HIM9 in Table 5 was deposited to form a 50 nm-thick hole injection layer, and then compound (1) was deposited to 20 nm to form a hole transport layer. Furthermore, Alq3 was deposited to form a 20 nm thick light-emitting layer. Further, the compound EX3 in Table 15 was deposited to form an electron injection layer having a film thickness of 30 nm.
  • a cathode was formed by vapor deposition of lnm of lithium oxide and lOOnm of aluminum to obtain an organic EL device. This element is The emission luminance at pressure OV was 720 (cdZm 2 ). The half-life of the device immediately after the device was created and after being stored for 1 hour in an oven at 150 ° C. was 5000 hours or more when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ).
  • a device was fabricated under the same conditions as in Example 87, using Compound EX1, Compound EX2, and Compound EX4 to Compound EX16 in Table 15 to Table 18 as the electron injection layer instead of Compound EX3.
  • the characteristics of the device were measured for the device immediately after device fabrication and after storage for 1 hour in an oven at 150 ° C.
  • the characteristics of all the elements when driven at a current density of 10 are as follows: voltage is 4.0 (V) or less, luminance is 500 (cdZm 2 ) or more, The half life when driven at a constant current at room temperature at (cd / m 2 ) was 5000 hours or more.
  • the device characteristics when driving at a current density of 10 are as follows: voltage is 4.0 (V) or less, luminance is 500 (cdZ m 2 ) or more, and light emission luminance is 500 ( The half life when driving at constant current at room temperature at cd / m 2 ) was over 5000 hours.
  • a compound HIM 10 in Table 6 was deposited on a glass plate with an ITO electrode to form a 55 nm-thick hole injection layer, and then a compound (9) was deposited to 20 nm to form a hole transport layer. Further, A1 q3 was deposited to form a light emitting layer with a thickness of 20 nm. Further, the compound ET3 in Table 15 was deposited to form an electron injection layer with a thickness of 30 nm. On top of this, a cathode was formed by vapor deposition of lithium oxide with lnm and aluminum with lOOnm to obtain an organic EL device. This device showed a light emission luminance of 680 (cdZm 2 ) at a DC voltage of 5V.
  • emission luminance of 500 (c The half-life when driven at a constant current at room temperature at d / m 2 ) was over 5000 hours for all the devices.
  • Devices were created under the same conditions as 115.
  • device characteristics were measured.
  • the device characteristics when driven at a current density of 10 are as follows: the voltage is 4.O (V) or less, the luminance is 500 (cdZm 2 ) or more, and the emission brightness is 500 ( cd / m 2 )
  • the half-life when driving at constant current at room temperature is 5000 hours or more o
  • a compound HIM 11 in Table 6 was deposited on a glass plate with an ITO electrode to form a 60 nm-thick hole injection layer, and then a compound (20) was deposited to a thickness of 15 nm to form a hole transport layer. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Further, compound ES 5 was deposited to form an electron injection layer having a thickness of 30 nm. On top of this, a cathode was formed by vapor deposition of lithium oxide with lnm and aluminum with lOOnm to obtain an organic EL device. This device showed a luminous efficiency of 3.5 (lmZW) at a DC voltage of 5.0 V.
  • Alq3 were co-evaporated at a composition ratio of 1:50 to form a light-emitting layer having a thickness of 40 nm. Further, Alq 3 was deposited to form an electron injection layer with a thickness of 30 nm. On top of this, an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain a device. This device showed a luminous efficiency of 0.70 (lmZW) at a DC voltage of 5.0 V. In addition, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was over 5000 hours.
  • LiF lithium fluoride
  • AlA1 aluminum
  • [0346] was deposited to form a light-emitting layer having a thickness of 20 nm. Furthermore, Alq3 was deposited to form an electron injection layer with a thickness of 20 nm. On top of this, an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain a device. This element is a DC voltage 5. Luminous efficiency at OV was 3. O (lmZW). The half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • LiF lithium fluoride
  • A1 aluminum
  • [0349] were co-evaporated at a composition ratio of 20: 1 to form a light-emitting layer having a thickness of 20 nm. Furthermore, Alq3 was deposited to form an electron injection layer with a thickness of 20 nm. On top of that, an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain a device. This device showed a luminous efficiency of 6. O (lmZW) at a DC voltage of 5. OV. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • [0352] were co-evaporated at a composition ratio of 20: 1 to form a light-emitting layer having a thickness of 40 nm. Furthermore, Alq3 was evaporated to form an electron injection layer with a thickness of 30 nm. On top of that, an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain a device. This device showed a luminous efficiency of 3.5 (lmZW) at a DC voltage of 4. OV. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • LiF lithium fluoride
  • A1 aluminum
  • a compound (6) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 70 nm-thick hole injection layer.
  • (L) [0355] and Alq3 were co-evaporated at a composition ratio of 1: 1 to form an electron-transporting light-emitting layer having a thickness of 45 nm. Furthermore, an element having a thickness of 200 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 1: 3 to obtain a device. The luminous efficiency of this device at a DC voltage of 7.0 was 2. O (lmZW). Further, the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • [0358] were co-evaporated at a composition ratio of 100: 1 to form a light-emitting layer with a thickness of 25 nm.
  • Sarakuko and BCP were deposited to form an electron injection layer with a thickness of 25 nm.
  • 0.5 nm of lithium (Li) and 150 nm of silver were deposited to obtain a device.
  • This device showed a luminous efficiency of 1.5 (lmZW) at a DC voltage of 8.0 V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • a compound (15) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 40 nm-thick hole injection layer.
  • the compound (N) shown below was deposited to a thickness of 10 nm to form a hole transport layer. Further, the following compound (O) and the following compound (P)

Description

明 細 書
力ルバゾール含有アミン化合物およびその用途
技術分野
[0001] 本発明は新規な力ルバゾ一ル含有アミンィ匕合物に関し、さらに詳しくは、有機エレ タトロルミネッセンス素子 (以下有機 EL素子と略記)に用いた場合、分子の結晶性が 低ぐかつ、ガラス転移温度 (Tg)が高いため、優れた性能 (低電圧駆動、長寿命、高 安定性)を有する力ルバゾール含有アミン化合物に関する。
背景技術
[0002] 従来、力ルバゾール誘導体は各種機能材料、電子材料への応用が検討されてきた 。力ルバゾール骨格力 正孔輸送性の性質を有すること、耐熱性の高い構造であるこ とを利用して、例えば、電子写真感光体の電荷輸送材料や有機 EL素子用材料等へ の応用が検討されている。代表的なものとしては、ポリビュルカルバーゾール(PVK) や、 N, N,ージカルバゾィルー 4, 4,ービフエ-ル(CBP)は有機 EL素子用材料とし て広く検討されている (非特許文献 1, 2参照)。通常高温環境下で有機 EL素子を駆 動させたり、保管したりすると、発光色の変化、発光効率の低下、駆動電圧の上昇、 発光寿命の短時間化等の悪影響が生じる。これを防ぐためには材料のガラス転移温 度 (Tg)を高くする必要がある。 PVKや CBPのような力ルバゾール類は Tgが比較的 高ぐ耐熱性を有しているものの、対称性の高い構造故、真空蒸着や、スピンコーテ イングなどで薄膜を形成した際に、膜の安定性が低ぐ容易に結晶化してしまい、素 子の寿命が極端に短!、と!/、う問題点を有して!/、た。
[0003] このような状況の中、 N—ェチルカルバゾールの 3位をァミノ基で置換したジァミン 化合物が開示されている (非特許文献 3, 4,特許文献 1参照)。これらのジァミンィ匕合 物は、正孔注入材料、正孔輸送材料として適正な Ipを有していることと、カルバゾー ル環の非対称性によって非結晶性となって 、るため、高 、膜安定性を有して 、るが、 一方で Tgがそれほど高くなぐ耐熱性に劣り EL素子として十分な寿命特性が得られ なかった。
[0004] 非特許文献 1 : Applied Physics Letters, 2001年発行, 78卷, 278頁 非特許文献 2 : Journal of the American Chemicaal Society 2001年発行, 123卷, 4 304頁
非特許文献 3 : European Polymer Journal 2005年発行, 41卷, 1821頁
非特許文献 4 Environmental and Chemical Physics 2002年発行, 24卷, 30頁 特許文献 1:特表 2004 - 536134号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明の課題は、高い Tgを有しながらも、分子が結晶化しにくぐ有機 EL素子 用材料として用いた場合に、低電圧駆動、長寿命である。また昇華法等による精製 の際、有機材料に対するダメ—ジが少なぐ精製も容易である。また、蒸着法により、 有機エレクト口ルミネッセンス素子を作成する際も、有機化合物に対するダメ ジも少 なぐ容易に素子作成が可能である。などの優れた特性を有する力ルバゾール含有 ァミン化合物を提供することである。
課題を解決するための手段
[0006] 本発明者らは、前記諸問題を解決するために、鋭意研究を重ねた結果、本発明に 至った。
すなわち、本発明は、下記一般式 [1]で表される力ルバゾール含有アミンィ匕合物に 関する。
一般式 [1]
[0007] [化 1]
Figure imgf000003_0001
(式中、 Ar1は、下記一般式 [2]で表される力ルバゾリル基を表し、
Ar2〜Ar4は、それぞれ独立に、置換基を有してもよい炭素数 6〜18の一価の芳香 族炭化水素基、又は置換基を有してもよい炭素数 2〜18の一価の複素環基 (但し、 下記一般式 [2]の場合を除く。)を表し、
Aは、置換基を有してもよい炭素数 10〜30のァリ—レン基を表す。 )
一般式 [2]
[0009] [化 2]
Figure imgf000004_0001
[0010] (式中、 Ar5は置換基を有してもよい炭素数 6〜18の一価の芳香族炭化水素基、又 は置換基を有してもよい炭素数 2〜 18の一価の芳香族複素環基を表し、
R1 ^は、それぞれ独立に、水素原子、ハロゲン原子、又は一価の有機残基を表す o )
[0011] また、本発明は、 A力 下記一般式 [3]で表されるビフヱ-レン基で表されることを 特徴とする前記の力ルバゾ―ル含有アミンィ匕合物に関する。
一般式 [3]
[0012] [化 3]
Figure imgf000004_0002
(式中、 R2U〜R24のうちの一つと、 R 〜 R29のうちの一つは、結合手を表し、残りは、 それぞれ独立に、水素原子、ハロゲン原子、若しくは一価の有機残基、又は隣接し た有機残基が互いに環を形成しても良い。 ) [0014] また、本発明は、 Aが、下記一般式 [4]で表されることを特徴とする前記してきた力 ルバゾ ル含有アミン化合物に関する。
一般式 [4]
[0015] [化 4]
Figure imgf000005_0001
[0016] (式中、 RdU7は、水素原子、ハロゲン原子、又は一価の有機残基を表し、
R3°と R31、 R32と R33、 R34と R35、又は、 R36と R37が、置換基同士で結合して環を形成し ても良い。)
[0017] また、本発明は、 Ar5が、下記一般式 [5]で表されることを特徴とする前記してきた カルバゾ ル含有アミン化合物に関する。
一般式 [5]
[0018] [化 5]
Figure imgf000005_0002
[0019] (式中、 は、水素原子、ハロゲン原子、シァノ基、炭素数 1〜3のアルキル基、置換 基を有してもよい炭素数 6〜12の一価の芳香族炭化水素基、又は、置換基を有して もよい炭素数 2〜5の一価の複素環基を表す。 )
[0020] また、本発明は、上記力ルバゾ一ル含有アミンィ匕合物を含んでなる有機エレクト口 ルミネッセンス素子用材料に関する。 [0021] また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機層を形 成してなる有機エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層 1S 上記有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミネッ センス素子に関する。
[0022] また、本発明は、正孔注入層および Zまたは正孔輸送層を有する有機エレクトロル ミネッセンス素子にぉ 、て、前記正孔注入層および Zまたは正孔輸送層が上記有機 エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミネッセンス素子に 関する。
[0023] 本発明をより詳細に説明すれば、本発明は次の(1)〜(12)のとおりとなる。
(1)下記の一般式 [1]
[0024] [化 6]
Figure imgf000006_0001
(式中、 Ar5は置換基を有してもよい炭素数 6〜18の一価の芳香族炭化水素基、又 は置換基を有してもよい炭素数 2〜 18の一価の芳香族複素環基を表し、
R1 ^は、それぞれ独立に、水素原子、ハロゲン原子、又は、一価の有機残基を表 す。)
で表される力ルバゾリル基を表し、
Ar2〜Ar4は、それぞれ独立に、置換基を有してもよい炭素数 6〜18の一価の芳香 族炭化水素基、置換基を有してもよい炭素数 2〜18の一価の複素環基 (但し、前記 一般式 [2]で表されるカルバゾリル基の場合を除く。 )を表し、
Aは、置換基を有してもよい炭素数 10〜30のァリ—レン基を表す。 )
で表される力ルバゾール含有アミンィ匕合物。
(2)一般式 [2]における Ar5が、下記の一般式 [5]
[0028] [ィ匕 8]
Figure imgf000007_0001
[0029] (式中、 R は、水素原子、ハロゲン原子、シァノ基、炭素数 1〜3のアルキル基、置換 基を有してもよい炭素数 6〜12の一価の芳香族炭化水素基、又は、置換基を有して もよい炭素数 2〜5の一価の複素環基を表す。 )
で表される置換基を有してもょ ヽフエ-ル基である前記(1)に記載の力ルバゾール含 有ァミン化合物。
(3)—般式 [5]における R38が、水素原子、ハロゲン原子、シァノ基、炭素数 1〜3の アルキル基、フエ-ル基、又は 4 ピリジル基である前記(2)に記載の力ルバゾール 含有アミン化合物。
(4)一般式 [2]における R1 !^が、水素原子である前記(1)〜(3)のいずれかに記 載の力ルバゾール含有アミン化合物。
(5)—般式 [1]における Aが、炭素数 1〜5のアルキル基若しくはハロゲン原子で置 換されていてもよい 4, 4,ービフエ-レン基、炭素数 1〜5のアルキル基若しくはハロ ゲン原子で置換されていてもよい 3, 3,ービフエ-レン基、炭素数 1〜5のアルキル基 若しくはハロゲン原子で置換されていてもよい 2, 2,ービフエ-レン基、炭素数 1〜5 のアルキル基若しくはハロゲン原子で置換されていてもよい 1, 4 ナフチレン基、又 は炭素数 1〜5のアルキル基若しくはハロゲン原子で置換されて 、てもよい 1 , 5 ナ フチレン基である前記(1)〜 (4)の 、ずれかに記載の力ルバゾール含有アミンィ匕合 物。
(6)—般式 [1]における Αが、下記の一般式 [3]
[0030] [化 9]
Figure imgf000008_0001
[0031] (式中、 R 〜R のうちの一つと、 R 〜R のうちの一つは、結合手を表し、残りは、 それぞれ独立に、水素原子、ハロゲン原子、若しくは一価の有機残基、又は隣接し た有機残基が互いに環を形成しても良い。 )
で表されるビフヱ-レン基である前記(1)〜(4)の!、ずれかに記載の力ルバゾール含 有ァミン化合物。
(7)—般式 [1]における Aが、下記の一般式 [4]
[0032] [化 10]
Figure imgf000008_0002
(式中、 RdU〜R"は、水素原子、ハロゲン原子、または一価の有機残基を表し、
R3Gと R31、 R32と R33、 R34と R35、または、 R36と R37が、置換基同士で結合して環を形成 しても良い。)
で表される 4, 4,ービフエ-レン基である前記(6)に記載の力ルバゾール含有アミン 化合物。
(8)—般式 [1]における A力 4, 4,ービフエ-レン基、 2, 2, 一ジメチルー 4, 4,ービ フエ-レン基、 3, 3,一ビフエ-レン基、又は 2, 2,一ビフエ-レン基である前記(1)〜 (6)のいずれかに記載の力ルバゾール含有アミンィ匕合物。
(9)一般式 [1]における Aが、 4, 4,ービフエ-レン基である前記(1)〜(8)に記載の 力ルバゾール含有アミン化合物。
(10)前記(1)〜(9)の 、ずれかに記載の力ルバゾール含有アミンィ匕合物を含んでな る有機エレクト口ルミネッセンス素子用材料。
(11)一対の電極間に発光層または発光層を含む複数層の有機層を形成してなる有 機エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層が、前記(10 )に記載の有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミ ネッセンス素子。
(12)正孔注入層および Zまたは正孔輸送層を有する有機エレクト口ルミネッセンス 素子において、前記正孔注入層および Zまたは正孔輸送層が、前記(11)に記載の 有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミネッセンス素 子。
発明の効果
[0034] 本発明の力ルバゾ一ル含有アミンィ匕合物を有機 EL素子用材料として用いた有機 E L素子は、薄膜の安定性が非常に高ぐ低い駆動電圧で発光し、かつ、長寿命であ るため、壁掛けテレビ等のフラットパネルディスプレイや平面発光体として好適に使用 することができ、複写機やプリンタ—等の光源、液晶ディスプレイや計器類等の光源 、表示板、標識灯等への応用が可能である。
発明を実施するための最良の形態
[0035] 以下、詳細にわたって本発明を説明する。まず、一般式 [1]で表されるカルバゾー ル含有アミン化合物について説明する。
一般式 [1]で表される力ルバゾ―ル含有アミンィ匕合物において、 Aは、置換基を有 してもょ 、炭素数 10〜30のァリ レン基を表す。
ここで、炭素数 10〜30のァリ—レン基としては、炭素数 10〜30の多環式又は縮合 環式の芳香族炭化水素基が挙げられ、例えば、ナフチレン基、ビフエ二レン基、アン トラ-レン基、フエナントリレン基、フルォレニレン基、ピレニレン基などが挙げられる。 また、ァリーレン基の置換基としては、炭素数 1〜30、好ましくは 1〜: LOの直鎖状又 は分岐状のアルキル基;炭素数 1〜30、好ましくは 1〜10の直鎖状又は分岐状のァ ルコキシ基;ノヽロゲン原子; 1〜5個、好ましくは 1〜3個のハロゲン原子で置換された 炭素数 1〜10、好ましくは 1〜5の直鎖状又は分岐状のアルキル基;ニトロ基などが 挙げられるがこれらの置換基に限定されるものではない。ァリーレン基における好ま しい置換基の例としては、例えば、メチル基、ェチル基、メトキシ基、エトキシ基、トリコ ロロメチル基、トリフルォロメチル基、塩素原子、フッ素原子、ニトロ基などが挙げられ る。また、ァリーレン基の置換基としては、ァリール基中の隣接する原子力、 3〜5原 子カゝらなる基と共に互いに結合して、オルト縮合の縮合 5員環、縮合 6員環、縮合へ テロ 5員環、又は、縮合へテロ 6員環を形成していても良い。
[0036] 隣接基同士で互いに結合した結果形成される 5員環としては、シクロペンタン環、シ クロペンテン環などが挙げられる。
隣接基同士で互いに結合した結果形成される 6員環としては、シクロへキサン環、 シクロへキセン環、ベンゼン環などが挙げられる。
隣接基同士で互いに結合した結果形成されるへテロ 5員環としては、ジヒドロフラン 環、ピロリジン環、ジヒドロチオフェェン環、フラン環、ピロール環、チォフェン環、イミ ダゾール環、ピラゾール環、ォキサゾール環、チアゾール環などが挙げられる。
隣接基同士で互いに結合した結果形成されるへテロ 6員環としては、ピリジン環、ピ ラジン環、ピリミジン環、ピリダジン環、ビラノン環などが挙げられる。
[0037] ァリ レン基の中で好ましくは、ナフチレン基、ビフエ二レン基、アントラ-レン基、フ ヱナントリレン基、フルォレニレン基であり、更に好ましくは一般式 [3]で表されるビフ ヱ-レン基であり、特に好ましくは一般式 [4]で表される 4, 4' ビフヱ二レン基である 本発明の一般式 [1]における好ましい基 Aとしては、炭素数 1〜5のアルキル基若 しくはハロゲン原子で置換されていてもよい 4, 4,ービフエ-レン基、炭素数 1〜5の アルキル基若しくはハロゲン原子で置換されていてもよい 3, 3'ービフヱ-レン基、炭 素数 1〜5のアルキル基若しくはハロゲン原子で置換されていてもよい 2, 2'ービフエ 二レン基、炭素数 1〜5のアルキル基若しくはハロゲン原子で置換されていてもよい 1 , 4 ナフチレン基、又は炭素数 1〜5のアルキル基若しくはハロゲン原子で置換され ていてもよい 1, 5 ナフチレン基などが挙げられ、より好ましい基 Aとしては 4, 4' ビフエ二レン基、 2, 2'—ジメチル一 4, 4,一ビフエ二レン基、 3, 3 '—ビフエ二レン基 、 2, 2,ービフエ-レン基、 1, 4 ナフチレン基、 1, 5 ナフチレン基などが挙げられ る。特に好ましい基 Aとしては、 4, 4'—ビフエ-レン基が挙げられる。
一般式 [1]においては、 Ar2〜Ar4は、置換基を有してもよい炭素数 6〜18の一価 の芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の一価の複素環基 (但し 、一般式 [2]の場合を除く。)を表す。
ここで、置換基を有してもよい炭素数 6〜18の一価の芳香族炭化水素基としては、 例えば、フエ-ル基、ナフチル基、ビフヱ-ル基、アントラ-ル基、フエナントリル基、 フルォレ -ル基、ピレ-ル基、 3—メチルフエ-ル基、 3—メトキシフヱ-ル基、 3—フ ルォロフエ-ル基、 3—トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基 、 3— -トロフエ-ル基などが挙げられる。これらの中でフエ-ル基、ナフチル基、ビフ ェ-ル基、アントラ-ル基、フ ナントリル基、フルォレニル基が好ましい。
また、置換基を有してもよい炭素数 2〜18の一価の複素環基としては、 1個〜 4個、 好ましくは 1〜3個又は 1〜2個の窒素原子、酸素原子、又は硫黄原子からなる異種 原子を含有する 3〜8員、好ましくは 5〜8員の環を有する単環式、多環式、又は縮合 環式の複素環基が挙げられ、例えば、ピリジニル基、ピラジュル基、ピリミジ -ル基、 ピリダジニル基、トリアジ-ル基、インドリニル基、キノリニル基、アタリジ-ル基、ピロリ ジ-ル基、ジォキサ-ル基、ピベリジ-ル基、モルホリニル基、ピペラジ-ル基、フラ -ル基、チォフエニル基、ォキサゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル 基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリ ル基、ベンゾイミダゾリル基、ブラ-ル基などが挙げられる。これらの中で、ピリジニル 基、キノリニル基、フラニル基、チォフ -ル基、ォキサゾリル基が好ましい。ただし、 一般式 [2]で示される力ルバゾリル基は除かれる。
本発明の一般式 [1]における好ましい Ar2〜Ar4としては、フエ-ル基、 4ーメチルフ ェ-ル基、 4—メトキシフエ-ル基、 4—フルオロフェ-ル基、 4—シァノフエ-ル基、 4 ージフエ-ルァミノフエ-ル基などの炭素数 1〜10のアルキル基、炭素数 1〜5のァ ルコキシ基、ハロゲン原子、炭素数 6〜 12のァリール基で置換されたジァリールァミノ 基、及びシァノ基力 なる群力 選ばれる 1個以上の置換基で置換されて!、てもよ!/ヽ フエ-ル基; 1 ナフチル基、 2 ナフチル基などのナフチル基; 4 ビフエ-ル基; 9 —フエナントリル基;アントラセン— 9 ィル基; 4 -ピリジル基; 2 -チェニル基などが 挙げられる。さらに詳細には、好ましい Ar2基としては、フエ-ル基、 1—ナフチル基、 4 ビフエ-ル基、 9 フエナントリル基が挙げられ、なかでもフエ-ル基、 1—ナフチ ル基、又は 4ービフヱ-ル基が好ましぐフエ-ル基又は 1 ナフチル基がより好まし ぐフエ-ル基がさらに好ましい。また、好ましい Ar3基及び Ar4基としては前記した Ar 2〜Ar4基における好ましい基が挙げられる力 なかでもフエ-ル基、 1 ナフチル基 、又は 4ービフエ-ル基が好ましぐフエ-ル基又は 1 ナフチル基がより好ましぐフ ェニル基がさらに好ましい。
[0039] 一般式 [2]において、 Ar5は、置換基を有してもよい炭素数 6〜18の一価の芳香族 炭化水素基、置換基を有してもよい炭素数 2〜30の一価の複素環基を、 I^〜R7は、 それぞれ独立に、水素原子、ハロゲン原子、又は、一価の有機残基を表す。
ここで、 Ar5における、一価の芳香族炭化水素基、及び、一価の複素環基は、前述 の Ar2〜Ar4における一価の芳香族炭化水素基、及び、一価の複素環基、で説明し たものと同義である。
[0040] I^〜R7におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素 原子が挙げられる。
I^〜R7における一価の有機残基としては、特に制限はないが、置換基を有してもよ い 1価の脂肪族炭化水素基、置換基を有してもよい 1価の芳香族炭化水素基、置換 基を有してもよい 1価の脂肪族複素環基、置換基を有してもよい 1価の芳香族複素環 基などが挙げられる。これらの基における好ましい置換基としては、例えば、シァノ基 、アルコキシ基、ァリールォキシ基、アルキルチオ基、ァリールチオ基、置換アミノ基、 ァシル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、アルキルスルホ -ル基、ァリ ルスルホ -ル基などが挙げられる。
ここで、 1価の脂肪族炭化水素基としては、炭素数 1〜18の 1価の脂肪族炭化水素 基を指し、そのようなものとしては、炭素数 1〜18の直鎖状又は分枝状のアルキル基 、炭素数 2〜18の直鎖状又は分枝状のアルケニル基、炭素数 2〜18の直鎖状又は 分枝状のアルキニル基、炭素数 3〜18の単環式、多環式又は縮合環式のシクロアル キル基が挙げられる。
したがって、アルキル基としては、メチル基、ェチル基、プロピル基、イソプロピル基 、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、ペンチル基、イソペン チル基、へキシル基、ヘプチル基、ォクチル基、デシル基、ドデシル基、ペンタデシ ル基、ォクタデシル基といった炭素数 1〜18のアルキル基があげられる。
また、ァルケ-ル基としては、ビュル基、 1—プロべ-ル基、 2—プロべ-ル基、イソ プロべ-ル基、 1ーブテュル基、 2 ブテュル基、 3 ブテュル基、 1 オタテュル基 、 1—デセ-ル基、 1—ォクタデセ-ル基といった炭素数 2〜18のァルケ-ル基があ げられる。
また、アルキ-ル基としては、ェチュル基、 1 プロピ-ル基、 2—プロピ-ル基、 1 ーブチニル基、 2 プチ-ル基、 3 プチ-ル基、 1ーォクチ-ル基、 1 デシ-ル基 、 1—ォクタデシ-ル基といった炭素数 2〜18のアルキ-ル基があげられる。
また、シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチ ル基、シクロへキシル基、シクロへプチル基、シクロォクチル基、シクロォクタデシル 基といった炭素数 3〜18のシクロアルキル基があげられる。
さらに、 1価の芳香族炭化水素基としては、炭素数 6〜18の 1価の単環、縮合環、 環集合炭化水素基があげられる。ここで、炭素数 6〜18の 1価の単環芳香族炭化水 素基としては、フエ-ル基、。―トリル基、 m—トリル基、 p トリル基、 2, 4 キシリル 基、 p タメ二ル基、メシチル基等の炭素数 6〜18の 1価の単環芳香族炭化水素基 があげられる。
また、 1価の縮合環炭化水素基としては、 1—ナフチル基、 2—ナフチル基、 1—ァ ンスリノレ基、 2 アンスリノレ基、 5 アンスリノレ基、 1—フエナンスリノレ基、 9 フエナンス リル基、 1ーァセナフチル基、 2—ァズレ-ル基、 1ーピレ-ル基、 2—トリフエ-レル基 等の炭素数 10〜18の 1価の縮合環炭化水素基があげられる。
また、 1価の環集合炭化水素基としては、。—ビフエ-リル基、 m—ビフエ-リル基、 p —ビフエ-リル基等の炭素数 12〜18の 1価の環集合炭化水素基があげられる。 また、 1価の脂肪族複素環基としては、 1個〜 4個、好ましくは 1〜3個又は 1〜2個 の窒素原子、酸素原子、又は硫黄原子からなる異種原子を含有する 3〜8員、好まし くは 5〜8員の環を有する単環式、多環式、又は縮合環式の脂肪族複素環基が挙げ られ、例えば、 2—ピラゾリノ基、ピペリジノ基、モルホリノ基、 2—モルホリニル基といつ た炭素数 3〜18の 1価の脂肪族複素環基が挙げられる。
また、 1価の芳香族複素環基としては、 1個〜 4個、好ましくは 1〜3個又は 1〜2個 の窒素原子、酸素原子、又は硫黄原子力 なる異種原子を含有する 5〜6員の環を 有する単環式、多環式、又は縮合環式の芳香族複素環基が挙げられ、例えば、トリ ァゾリル基、 3 ォキサジァゾリル基、 2 フリル基、 3 フリル基、 2 チェニル基、 3 チェ-ル基、 1 ピロ リル基、 2 ピロ リル基、 3 ピロ リル基、 2 ピリジル基 、 3 ピリジル基、 4 ピリジル基、 2—ビラジル基、 2—ォキサゾリル基、 3 イソォキ サゾリル基、 2 チアゾリル基、 3 イソチアゾリル基、 2 イミダゾリル基、 3 ビラゾリ ル基、 2 キノリル基、 3 キノリル基、 4 キノリル基、 5 キノリル基、 6 キノリル基、 7 キノリル基、 8 キノリル基、 1 イソキノリル基、 2 キノキサリニル基、 2 べンゾ フリル基、 2—べンゾチェ-ル基、 N—インドリル基、 N—力ルバゾリル基、 N アタリ ジニル基といった炭素数 2〜18の 1価の芳香族複素環基が挙げられる。
また、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキ シ基、 tert ブトキシ基、ォクチルォキシ基、 tert—ォクチルォキシ基などの炭素数 1 〜8のアルコキシル基があげられる。
また、ァリールォキシ基としては、例えば、フエノキシ基、 4 tert ブチルフエノキ シ基、 1 ナフチルォキシ基、 2 ナフチルォキシ基、 9 アンスリルォキシ基などの 炭素数 6〜 14のァリールォキシ基があげられる。
また、アルキルチオ基としては、例えば、メチルチオ基、ェチルチオ基、 tert—ブチ ルチオ基、へキシルチオ基、ォクチルチオ基などの炭素数 1〜8のアルキルチオ基が あげられる。
また、ァリールチオ基としては、例えば、フ -ルチオ基、 2—メチルフ 二ルチオ基 、 4 tert ブチルフエ-ルチオ基などの炭素数 6〜 14のァリ ルチオ基があげられ る。
また、置換アミノ基としては、例えば、 N—メチルァミノ基、 N ェチルァミノ基、 N, N ジェチルァミノ基、 N, N ジイソプロピルアミノ基、 N, N ジブチルァミノ基、 N —ベンジルァミノ基、 N, N ジベンジルァミノ基、 N フエ-ルァミノ基、 N フエ- ルー N—メチルァミノ基、 N, N ジフエ-ルァミノ基、 N, N ビス(m トリル)ァミノ 基、 N, N ビス (p トリル)アミノ基、 N, N ビス (p ビフエ-リル)アミノ基、ビス [4 一(4ーメチル)ビフエ-リル]アミノ基、 N— a一ナフチルー N—フエ-ルァミノ基、 N β ナフチルー Ν—フエニルァミノ基等の炭素数 2〜16の置換アミノ基があげられ る。
また、ァシル基としては、例えば、ァセチル基、プロピオ-ル基、ビバロイル基、シク 口へキシルカルボ-ル基、ベンゾィル基、トルオイル基、ァ-ソィル基、シンナモイル 基等の炭素数 2〜 14のァシル基があげられる。
また、アルコキシカルボ-ル基としては、例えば、メトキシカルボ-ル基、エトキシカ ルポ-ル基、ベンジルォキシカルボ-ル基等の炭素数 2〜 14のアルコキシカルボ- ル基があげられる。
また、ァリールォキシカルボ-ル基としては、例えば、フエノキシカルボ-ル基、ナフ チルォキシカルボ-ル基等の炭素数 2〜 14のァリールォキシカルボ-ル基があげら れる。
また、アルキルスルホ-ル基としては、例えば、メシル基、ェチルスルホ -ル基、プ 口ピルスルホ -ル基等の炭素数 2〜14のアルキルスルホ-ル基があげられる。 また、ァリールスルホ-ル基としては、例えば、ベンゼンスルホ-ル基、 ρ—トルエン スルホ -ル基等の炭素数 2〜14のァリールスルホ-ル基があげられる。
これら I^〜R7における、 1価の脂肪族炭化水素基、芳香族炭化水素基、脂肪族複 素環基、芳香族複素環基は、さらに他の置換基によって置換されていても良い。また 、これら置換基同士が結合し、環を形成していても良い。そのような置換基としては、 ハロゲン原子、シァノ基、アルコキシル基、ァリールォキシ基、アルキルチオ基、ァリ ルチオ基、置換アミノ基、ァシル基、アルコキシカルボ-ル基、ァリールォキシカル ボ-ル基、アルキルスルホ-ル基、ァリールスルホ -ル基等があげられる。これらの 置環基の例としては、前述のものが挙げられる。
本発明の一般式 [2]における好ましい I^〜R7としては、水素原子が挙げられる。ま た、好ましい Ar5としては、フエ-ル基、 4—メチルフエ-ル基、 4—フルオロフェ-ル 基、 4ーメトキシフヱ-ル基、 4 シァノフエ-ル基、 4ービフヱ-ル基、 1 ナフチル基 、 2 ナフチル基、 4 ピリジル基などが挙げられる。本発明の一般式 [2]で表される カルバゾリル基の好ましい例としては、 9 フエ-ルー 3—力ルバゾリル基、 9ー(4ーメ チルフエ-ル) 3—力ルバゾリル基、 9一(4 フルオロフェ -ル) 3—力ルバゾリル 基、 9— (4—メトキシフエ-ル)—3—カルバゾリル基、 9— (4—シァノフエ-ル)—3— カルバゾリル基、 9一(1 ナフチル)ー3—力ルバゾリル基、 9一(2 ナフチル)ー3 一力ルバゾリル基、 9一(4ービフエ-ル)一 3—力ルバゾリル基、 9一(4一ピリジル)一 3—カルバゾリル基などが挙げられ、より好ましいカルバゾリル基としては 9—フエ-ル 一 3—力ルバゾリル基、 9一(4一シァノフエ-ル)一 3—力ルバゾリル基、 9一(1一ナフ チル) 3—力ルバゾリル基、 9一(2 ナフチル) 3—力ルバゾリル基が挙げられ、 さらに好まし 、カルバゾリル基としては 9—フエ二ルー 3—カルバゾリル基が挙げられ る。
[0043] 次に一般式 [3]で表されるビフエ-レン基について説明する。 R2G〜R24のうちの一 つと、 R25〜R29のうちの一つは、結合手を表し、残りは、それぞれ独立に、水素原子 、ハロゲン原子、又は一価の有機残基を表す。
R25〜R29におけるハロゲン原子、又は、一価の有機残基は、前述の!^〜 におけ るハロゲン原子、又は、一価の有機残基で説明したものと同義である。
また、隣接した有機残基が互いに環を形成しても良い。
[0044] 一般式 [3]においては、 R2°〜R24のうちの一つと、 R25〜R29のうちの一つ力 結合 手であり、ビフエ二レン基を形成する。
結合手の位置については、特に制限はなく一般式 [3]のビフ -レン結合となる場 合には、 2, 2,ービフエ二レン、 3, 3,ービフエ二レン、 4, 4,ービフエ二レン、 2, 3,一 ビフエ-レン、 2, 4,ービフエ-レン、 3, 4,ービフエ-レン等であってよい。
これらの結合のうち好ましいものとしては、 R2Gと R25が結合手である 4, 4'—ビフエ- レンが挙げられる。これは、分子の対称性が高いほど、高い耐熱性、高い Tgが期待 できるからであり、また、化合物を合成する際にも容易であるためである。
R16〜R19、結合手でない R21〜R24および、結合手でない R26〜R28のうち、より好ま しい例としては、水素原子、炭素数 1〜3のアルキル基、フエ-ル基、トリル基等が挙 げられる。これらの置換基とした場合には、分子量も比較的小さぐ蒸着等で化合物 ( 材料)を昇華する場合に、容易であり、また、安定性の面力もも好ましい。
[0045] 次に、一般式 [4]について説明する。 R3〜R37は、水素原子、ハロゲン原子、又は 一価の有機残基を表す。
R3G〜R37におけるハロゲン原子、又は、一価の有機残基は、前述の I^〜R7におけ るハロゲン原子、又は、一価の有機残基で説明したものと同義である。
また、 R3Gと R31、 R32と R33、 R34と R35、または、 R36と R37が、置換基同士で結合して 環を形成しても良い。
[0046] 次に、一般式 [5]について説明する。 R38は、水素原子、ハロゲン原子、シァノ基、 炭素数 1〜3のアルキル基、置換基を有してもよい炭素数 6〜 12の一価の芳香族炭 化水素基、又は、置換基を有してもよい炭素数 2〜5の一価の複素環基を表す。 炭素数 1〜3のアルキル基、炭素数 6〜12の一価の芳香族炭化水素基、炭素数 2 〜5の一価の複素環基としては、 I^〜R7の一価有機残基の項で説明したもののうち 、該当する炭素数のものが挙げられる。また、有してもよい置換基としては、前述のハ ロゲン原子や、一価の有機残基が挙げられる。
R38のうち特に好ましい例としては、水素原子、フエ-ル基、ビフエニル基、トリル基、 キシリル基や、メチル基、ェチル基、フッ素原子等があげられる。
[0047] ここで、一般式 [2]の 3—力ルバゾリル基は、!^〜 が水素原子である場合である ことが、より好ましい。このような構造をとつた場合には、分子量も比較的小さぐ蒸着 等で化合物 (材料)を昇華して薄膜を形成する際に、容易であり、また、安定性の面 からも優れて ヽるカゝらである。
さらに、一般式 [2]の中の Ar5は一般式 [5]の構造をとることがより好ま 、。 [0048] 以下に一般式 [2]の 3—力ルバゾリル基をもつことの優位性を説明する。
一般的に、力ルバゾール化合物は、結合を有さないジフエ-ルァミノ化合物と比較 してその構造が強固であり、熱安定性が高い傾向にある (化 11参照)。
[0049] [化 11]
Figure imgf000018_0001
[0050] 力ルバゾール化合物においては、窒素上のもうひとつの結合位置にはアルキル基 を配した N—アルキルィ匕合物が良く知られている力 本発明の化合物は、この位置に 結合している置換基(=Ar5)が、芳香族基、または、複素芳香族基であることを特徴 のひとつとしている。芳香族基ゃ複素芳香族基は、さらに、安定性を高める効果が大 きぐその中でも、安定性を高める効果が期待できるのが、 Ar5が一般式 [5]、すなわ ち、力ルバゾールの窒素原子に R38を置換基として有するフエニル基が結合している 場合である。
ところで、 3位で結合したカルバゾリル基の効果について触れておく。通常、アミノ基 は電子ドナーとして働くが、力ルバゾールの窒素原子は、窒素原子上に結合した置 換基に対してはドナー性をほとんど有さない。これは力ルバゾール環が平面性を有し ていて、かつ、非常に嵩高い置換基となってしまっているためであり、窒素原子上の 置換基と平面構造をとりにくい事に起因していると考えられる。逆に、 3位で結合した 力ルバゾール環は環の平面性があるため、そのベンゼン環部分に対しては電子ドナ
-性となりうる (化 12参照)。
[0051] [化 12]
Figure imgf000019_0001
窒索原子上の a換基と力ルバゾー カルバゾール瓌のベンゼン環に対
ル環が平面を形成しないので、 電 しては平面構造をとることが出来
子ドナーとはならない るので電子ドナーとなる
[0052] このため、本発明の力ルバゾール含有アミン化合物においては、力ルバゾール環に 結合したァミノ基と力ルバゾール環の窒素原子の両方が力ルバゾール環のベンゼン 環に対して電子ドナーとなっており、フエ-レンジァミン構造と同等かそれ以上の電 子ドナ―効果を発揮しうると考えられる (化 13参照)。
[0053] [化 13]
Figure imgf000019_0002
[0054] このような理由から、本発明の力ルバゾ一ル含有アミンィ匕合物は、イオンィ匕ポテンシ ャルの小さな化合物 (有機分子の基底状態がより高いレベルにある化合物)となりや すぐ有機 EL素子を作成する際には、正孔注入輸送性の高い化合物とすることが可 能である。
さらに、 3位で結合した力ルバゾール環は、窒素原子上で結合した力ルバゾール環 に比較して、分子の対称性が低いので、分子の結晶性が低くなり、アモルファス性が 高くなるため、薄膜形成した際の安定性向上にも大きく寄与することが可能である。 特に、本発明の力ルバゾール含有アミン化合物は、 1個のカルバゾリル基のみを有 し分子全体としては非対称であるのでアモルファス性が高くなり、その結果として結晶 化が起こりにくい。この性状は、有機 EL素子用の材料として用いる場合、薄膜の安 定性が向上し、ダ―クスポットが起き難くなり、有機 EL素子寿命が長くなる。特に、一 般式 [1]における基 Aが、 4, 4,ービフエ-レン基の場合には、有機 EL素子の寿命を 顕著に長くすることができる。
[0055] また、本発明の力ルバゾール含有アミン化合物は、カルバゾリル基が分子中に 1個 のみ導入されているので、ジカルバゾールイ匕合物に比較して、分子量が小さくなり、 それにより昇華法等による精製の際、比較的低い温度で昇華精製出来るので、有機 材料に対するダメ—ジが少なぐ精製も容易である。即ち、化合物の分子量としては、 1500以下が好ましぐ 1300以下がより好ましぐ 1200以下がさらに好ましぐ 1100 以下が特に好ましい。この理由として、分子量が大きと、蒸着によって素子を作成す る場合の蒸着性が悪くなる懸念があるためである。
また、蒸着法により、有機エレクト口ルミネッセンス素子を作成する際も、分子量が大 きいと、蒸着によって素子を作成する場合の蒸着性が悪くなる懸念があるが、本発明 の力ルバゾール含有アミン化合物は、蒸着時の有機化合物に対するダメージも少な ぐ容易に素子作成が可能である。塗布法により、有機 EL素子を作成する際も、モノ カルバゾリル化合物は、汎用性有機溶媒に対する溶解性が高いため、広範囲な溶 媒での使用が可能となる。
また、本発明の力ルバゾ―ル含有アミン化合物は、ガラス転移点や融点が高くなり 電界発光時における有機層中、有機層間もしくは、有機層と金属電極間で発生する ジュール熱に対する耐性 (耐熱性)が向上するので、有機 EL素子材料として使用し た場合、高い発光効率を示し、長時間発光させる際にも有利である。
[0056] 本発明の化合物の代表例を、以下の表 1〜3に示すが、本発明は、この代表例に 限定されるものではない。
[0057] [表 1]
Figure imgf000021_0001
[0058] [表 2]
Figure imgf000022_0001
3]
Figure imgf000023_0001
本発明の好ましい力ルバゾ―ル含有アミン化合物としては、一般式 [1]における基 Aが 4, 4,ービフエ-レン基であり、 Arlが 9 フエ-ルー 3—力ルバゾリル基であり、 Ar2〜Ar4がそれぞれ独立して、炭素数 1〜5のアルキル基、炭素数 1〜5のアルコ キシ基、炭素数 6〜12のァリール基で置換されたジァリールアミノ基、ハロゲン原子、 若しくはシァノ基力 なる群力 選ばれる 1個以上の置換基で置換されて 、てもよ!/ヽ フエ-ル基; 1 ナフチル基; 2 ナフチル基; 4 ビフエ-ル基;又は 9 フエナントリ ル基である化合物が挙げられる。より好まし!/、本発明の力ルバゾール含有アミンィ匕合 物としては、一般式 [1]における基 Aが 4, 4,ービフエ-ル基であり、 Arlが 9 フエ- ルー 3—力ルバゾリル基であり、 Ar2、 Ar3、及び Ar4がそれぞれ独立してフエ-ル基 、 1 ナフチル基、 2 ナフチル基、又は 4ービフエニル基である化合物が挙げられる 。さらに好ましい本発明の力ルバゾール含有アミンィ匕合物としては、一般式 [1]にお ける基 Aが 4, 4,ービフエ-ル基であり、 Arlが 9 フエ-ルー 3—力ルバゾリル基で あり、 Ar2、 Ar3、及び Ar4がそれぞれ独立してフエ-ル基、又は 1 ナフチル基、特 にフ ニル基である化合物が挙げられる。
本発明の力ルバゾ一ル含有アミンィ匕合物は、種々の用途に用いることができる。増 感効果、発熱効果、発色効果、退色効果、蓄光効果、相変化効果、光電変換効果、 光磁気効果、光触媒効果、光変調効果、光記録効果、ラジカル発生効果等の機能 を発現する材料として、あるいは逆にこれらの効果を受けて発光機能を有する材料と しても用いることができる。より具体的には、発光材料、光電変換材料、光記録材料、 画像形成材料、フォトクロミック材料、有機 EL材料、光導電材料、二色性材料、ラジ カル発生材料、酸発生材料、塩基発生材料、蓄光材料、非線形光学材料、第 2高調 波発生材料、第 3高調波発生材料、感光材料、光吸収材料、近赤外吸収材料、フォ トケミカルホールバ—ユング材料、光センシング材料、光マーキング材料、光化学治 療用増感材料、光相変化記録材料、光焼結記録材料、光磁気記録材料、光線力学 療法用色素等が挙げられる。
これら挙げた種々の用途のうち、特に好ましくは、有機 EL材料 (有機 EL用材料、有 機 EL素子用材料)として用いられる。
有機 EL素子用材料として用いる等の場合には、特に、高純度の材料が要求される 1S このような場合に、本発明の力ルバゾール含有アミン化合物は、昇華精製法や再 結晶法、再沈殿法、ゾーンメルティング法、カラム精製法、吸着法など、あるいはこれ ら方法を組み合わせて精製を行うことができる。これら精製法の中でも再結晶法によ るのが好ましい。昇華性を有する化合物においては、昇華精製法によることが好まし い。昇華精製においては、目的化合物が昇華する温度より低温で昇華ボートを維持 し、昇華する不純物を予め除去する方法を採用するのが好ましい。また昇華物を採 集する部分に温度勾配を施し、昇華物が不純物と目的物に分散するようにするのが 望ましい。以上のような昇華精製は不純物を分離するような精製であり、本発明に適 用しうるものである。また、昇華精製を行うことにより、材料の蒸着性の難易度を予測 するのに役立つ。
[0062] ここで、本発明の力ルバゾール含有アミン化合物を用いて作成することができる有 機 EL素子について詳細に説明する。
有機 EL素子は、陽極と陰極間に一層または多層の有機層を形成した素子から構 成されるが、ここで、一層型有機 EL素子とは、陽極と陰極との間に発光層のみからな る素子を指す。一方、多層型有機 EL素子とは、発光層の他に、発光層への正孔ゃ 電子の注入を容易にしたり、発光層内での正孔と電子との再結合を円滑に行わせた りすることを目的として、正孔注入層、正孔輸送層、正孔阻止層、電子注入層などを 積層させたものを指す。したがって、多層型有機 EL素子の代表的な素子構成として は、(1)陽極 Z正孔注入層 Z発光層 Z陰極、(2)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z陰極、(3)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極、(4)陽極
Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極、 (5)陽極 z正孔注入 層 Z発光層 Z正孔阻止層 Z電子注入層 Z陰極、 (6)陽極 Z正孔注入層 Z正孔輸 送層 Z発光層 Z正孔阻止層 Z電子注入層 Z陰極、 (7)陽極 Z発光層 Z正孔阻止 層 Z電子注入層 Z陰極、 (8)陽極 Z発光層 Z電子注入層 Z陰極等の多層構成で 積層した素子構成が考えられる。
[0063] また、上述した各有機層は、それぞれ二層以上の層構成により形成されても良ぐ いくつかの層が繰り返し積層されていても良い。そのような例として、近年、光取り出 し効率の向上を目的に、上述の多層型有機 EL素子の一部の層を多層化する「マル チ 'フオトン'ェミッション」と呼ばれる素子構成が提案されている。これは例えば、ガラ ス基板 z陽極 z正孔輸送層 z電子輸送性発光層 z電子注入層 z電荷発生層 z発 光ユニット Z陰極力 構成される有機 EL素子に於いて、電荷発生層と発光ユニット の部分を複数層積層すると ヽつた方法があげられる。
本発明の力ルバゾ―ル含有アミンィ匕合物(有機エレクト口ルミネッセンス素子用材料 )は、上述したいかなる層に用いても構わないが、特に正孔注入層、正孔輸送層、発 光層に好適に使用することができる。また、本発明の有機エレクト口ルミネッセンス素 子用材料は、単一の化合物での使用はもちろんのこと、 2種類以上の化合物を組み 合わせて、すなわち混合、共蒸着、積層するなどして使用することが可能である。さら に、上述した正孔注入層、正孔輸送層、発光層において、他の材料と共に用いても 構わない。
正孔注入層には、発光層に対して優れた正孔注入効果を示し、かつ陽極界面との 密着性と薄膜形成性に優れた正孔注入層を形成できる正孔注入材料が用いられる 。また、このような材料を多層積層させ、正孔注入効果の高い材料と正孔輸送効果の 高い材料とを多層積層させた場合、それぞれに用いる材料を正孔注入材料、正孔輸 送材料と呼ぶことがある。本発明の有機エレクト口ルミネッセンス素子用材料は、正孔 注入材料、正孔輸送材料いずれにも好適に使用することができる。これら正孔注入 材料ゃ正孔輸送材料は、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV 以下と小さい必要がある。このような正孔注入層としては、より低い電界強度で正孔を 発光層に輸送する材料が好ましぐさらに正孔の移動度力 例えば 104〜: L06V/cm の電界印加時に、少なくとも 10_6cm2ZV'秒であるものが好ましい。本発明の有機 エレクト口ルミネッセンス素子用材料と混合して使用することができる、他の正孔注入 材料および正孔輸送材料としては、上記の好ま 、性質を有するものであれば特に 制限はなぐ従来、光導伝材料において正孔の電荷輸送材料として慣用されている ものや、有機 EL素子の正孔注入層に使用されて 、る公知のものの中から任意のも のを選択して用いることができる。
このような正孔注入材料ゃ正孔輸送材料としては、具体的には、例えばトリァゾー ル誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘導体 (米 国特許 3, 189, 447号明細書等参照)、イミダゾ—ル誘導体 (特公昭 37— 16096号 公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55— 17105号公報、同 56— 4 148号公報、同 55— 108667号公報、同 55— 156953号公報、同 56— 36656号 公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体 (米国特許第 3, 180, 729 号明細書、同第 4, 278, 746号明細書、特開昭 55— 88064号公報、同 55— 8806 5号公報、同 49— 105537号公報、同 55— 51086号公報、同 56— 80051号公報、 同 56— 88141号公報、同 57— 45545号公報、同 54— 112637号公報、同 55— 7 4546号公報等参照)、フ 二レンジァミン誘導体 (米国特許第 3, 615, 404号明細 書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特 開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照 )、ァリ—ルァミン誘導体 (米国特許第 3, 567, 450号明細書、同第 3, 180, 703号 明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明細書、同第 4, 232, 1 03号明細書、同第 4, 175, 961号明細書、同第 4, 012, 376号明細書、特公昭 49 — 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 11 9132号公報、同 56— 22437号公報、西独特許第 1, 110, 518号明細書等参照) 、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾ —ル誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの)、スチリルアントラ セン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細書、特 開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52064号公報、同 55— 4 6760号公報、同 55— 85495号公報、同 57— 11350号公報、同 57— 148749号 公報、特開平 2— 311591号公報等参照)、スチルベン誘導体 (特開昭 61— 21036 3号公報、同第 61— 228451号公報、同 61— 14642号公報、同 61— 72255号公 報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報、同 60— 174749号 公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国特許第 4, 950, 950 号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリン系共重合体 (特開 平 2— 282263号公報)、特開平 1— 211399号公報に開示されて 、る導電性高分 子オリゴマ—(特にチォフェンオリゴマー)等を挙げることができる。
[0065] 正孔注入材料ゃ正孔輸送材料としては上記のものを使用することができる力 ポル フィリン化合物 (特開昭 63— 2956965号公報)、芳香族第三級ァミン化合物および スチリルアミンィ匕合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号公 報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 55 — 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 2955 58号公報、同 61— 98353号公報、同 63— 295695号公報等参照)を用いることも できる。例えば、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環 を分子内に有する 4, 4,一ビス(N— (1 ナフチル)—N—フエ-ルァミノ)ビフエ-ル 等や、特開平 4— 308688号公報に記載されているトリフエ-ルァミンユニットが 3つ スタ—バ—スト型に連結された 4, 4,, 4"—トリス(N— (3—メチルフエ-ル)— N フ ェニルァミノ)トリフエニルァミン等を挙げることができる。また、正孔注入材料として銅 フタロシアニンや水素フタロシアニン等のフタロシアニン誘導体もあげられる。さらに、 その他、芳香族ジメチリデン系化合物、 p型 Si、 p型 SiC等の無機化合物も正孔注入 材料ゃ正孔輸送材料の材料として使用することができる。
[0066] 芳香族三級アミン誘導体の具体例としては、例えば、 N, N'—ジフエニル— N, N,
- (3—メチルフエ-ル)— 1, 1, ビフエ-ルー 4, 4,—ジァミン、 N, N, N,, N,—( 4—メチノレフエ-ノレ)一 1, 1,一フエ-ノレ 4, 4,ージァミン、 N, N, Ν' , Ν,一(4ーメ チルフエ-ル)— 1, 1, ビフエ-ルー 4, 4,—ジァミン、 Ν, Ν,—ジフエ-ルー Ν, Ν ,—ジナフチル— 1, 1 ' ビフエ-ルー 4, 4'—ジァミン、 Ν, Ν, - (メチルフエ-ル) — Ν, Ν, - (4 Ν ブチルフエ-ル)一フエナントレン一 9, 10 ジァミン、 Ν, Ν— ビス(4—ジ一 4—トリルァミノフエ-ル) 4—フエ-ルーシクロへキサン、 Ν, Ν,一ビ ス(4,一ジフエ-ルァミノ一 4—ビフエ-リル) Ν, Ν,一ジフエニルベンジジン、 Ν, Ν,一ビス(4'—ジフエ-ルァミノ一 4—フエ-ル) Ν, N'—ジフエ-ルペンジジン、 Ν, Ν,—ビス(4,—ジフエ-ルァミノ 4 フエ-ル) Ν, Ν,—ジ(1—ナフチル)ベ ンジジン、 Ν, Ν,—ビス(4'—フエ-ル(1—ナフチル)アミノー 4 フエ-ル) Ν, N' —ジフエニルベンジジン、 Ν, Ν,一ビス(4'—フエ-ル(1—ナフチル)ァミノ一 4 フ ェニル) -N, N,ージ(1 ナフチル)ベンジジン等があげられ、これらは正孔注入材 料、正孔輸送材料 、ずれにも使用することができる。
本発明の化合物 (有機 EL素子用材料)とともに用いる正孔注入材料、正孔輸送材 料としては、さらに以下の一般式 [6]〜[11]のようなものを用いることが出来る。 一般式 [6]
[0067] [化 14]
Figure imgf000029_0001
[0068] (式中、 Rall〜Ra14は、それぞれ独立に、水素原子、アルコキシル基、又はシァノ基を 表すが、全てが同時に水素原子となることはない。 )
ここで、アルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基 、 tert ブトキシ基、ォクチルォキシ基、 tert—ォクチルォキシ基、 2—ボル-ルォキ シ基、 2 イソボル-ルォキシ基、 1ーァダマンチルォキシ基等の炭素数 1〜18のァ ルコキシル基があげられる。特に Rall〜Ra14の好ましい組み合わせとしては、 Rall〜 Ral4が全てメトキシ基、エトキシ基、もしくはシァノ基の場合であることが好ましい。 一般式 [7]
[0069] [化 15]
Figure imgf000029_0002
[0070] (式中、 は連結基であり、単結合、 2価の脂肪族炭化水素基、 2価の芳香族炭化 水素基、酸素原子、硫黄原子のいずれかを表す。 Ra21〜Ra26は、それぞれ独立に、 1 価の芳香族炭化水素基を表す。 )
Z21の連結基としては、単結合、ビ-レン基、 o—フエ-レン基、 m—フエ-レン基、 p —フエ-レン基、 1, 4—ナフチレン基、 2, 6—ナフチレン基、 9, 10—フエナントリレン 基、 9, 10—アンスリレン基が好ましぐ単結合、ビ-レン基、 p—フエ-レン基、 1, 4 —ナフチレン基がさらに好ましい。また、 Ra21〜Ra26としては、フエニル基、 1—ナフチ ル基、 2—ナフチル基、 o—ビフエ-リル基、 m—ビフエ-リル基、および p—ビフエ-リ ル基より選ばれる 1価の芳香族炭化水素基が好ましい。
一般式 [8]
[0071] [化 16]
Figure imgf000030_0001
[0072] (式中、 Zdlは連結基であり、単結合、 2価の脂肪族炭化水素基、 2価の芳香族炭化 水素基、酸素原子、硫黄原子のいずれかを表す。 Ra31〜Ra36は、それぞれ独立に、 1 価の芳香族炭化水素基を表す。 )
Z31の連結基としては、単結合、ビ-レン基、 o—フエ-レン基、 m—フエ-レン基、 p —フエ-レン基、 1, 4—ナフチレン基、 2, 6—ナフチレン基、 9, 10—フエナントリレン 基、 9, 10—アンスリレン基が好ましぐ単結合、ビ-レン基、 p—フエ-レン基、 1, 4 —ナフチレン基がさらに好ましい。また、 Ra31〜Ra36としては、フエニル基、 1—ナフチ ル基、 2—ナフチル基、 o—ビフエ-リル基、 m—ビフエ-リル基、および p—ビフエ-リ ル基より選ばれる 1価の芳香族炭化水素基が好ましい。
一般式 [9] [0073] [化 17]
Figure imgf000031_0001
[0074] (式中、 Ra 〜Ra48は、それぞれ独立に、 1価の芳香族炭化水素基を表す。 )
Ra41〜Ra48としては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
一般式 [10]
[0075] [化 18]
Figure imgf000031_0002
[0076] (式中、 Ra&1〜Ra56は、それぞれ独立に、 1価の芳香族炭化水素基を表す。 )
a51
R Ra5bとしては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
一般式 [11]
[0077] [化 19]
Figure imgf000032_0001
[0078] (式中、 Rabl〜Rab4は、それぞれ独立に、 1価の芳香族炭化水素基を表し、 pは 1〜4 の整数を表す。 )
Ra61〜Ra64としては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
以上述べた一般式 [6]〜[11]で示したィ匕合物は特に正孔注入材料として、好適 に用いられる。以下の表 4〜7に特に好ましい例を示す。
[0079] [表 4]
Figure imgf000033_0001
u §00
Figure imgf000034_0001
£Z90/L00Zd£/13d εε ..C0T0/800Z OAV
[9挲] [Ϊ800]
St£Z90/L00Zdr/lDd £ LLZOlOmOZ OAV
Figure imgf000036_0001
l7CZ90/.00Zdf/X3d 9ε ..C010/800Z OAV [0082] [表 7]
Figure imgf000037_0001
[0083] また、本発明の化合物 (有機 EL素子用材料)と共に用いることが出来る正孔輸送 材料としては、下記の表 8〜14に示す公知の化合物も挙げられる。
[0084] [表 8]
Figure imgf000038_0001
]
Figure imgf000039_0001
[0086] [表 10]
Figure imgf000040_0001
[0087] [表 11]
Figure imgf000041_0001
[0088] [表 12]
Figure imgf000042_0001
[0089] [表 13]
Figure imgf000043_0001
4]
Figure imgf000044_0001
この正孔注入層を形成するには、上述の化合物を、例えば真空蒸着法、スピンコ― ト法、キャスト法、 LB法等の公知の方法により薄膜ィ匕するが、正孔注入層の膜厚は、 特に制限はないが、通常は 5nm〜5 μ mである。
一方、電子注入層には、発光層に対して優れた電子注入効果を示し、かつ陰極界 面との密着性と薄膜形成性に優れた電子注入層を形成できる電子注入材料が用い られる。そのような電子注入材料の例としては、金属錯体化合物、含窒素五員環誘 導体、フルォレノン誘導体、アントラキノジメタン誘導体、ジフヱノキノン誘導体、チォ ピランジオキシド誘導体、ペリレンテトラカルボン酸誘導体、フレオレニリデンメタン誘 導体、アントロン誘導体、シロール誘導体、トリアリールホスフィンォキシド誘導体、力 ルシゥムァセチルァセトナ—ト、酢酸ナトリウムなどがあげられる。また、セシウム等の 金属をバソフヱナント口リンにド―プした無機 Z有機複合材料 (高分子学会予稿集, 第 50卷, 4号, 660頁, 2001年発行)や、第 50回応用物理学関連連合講演会講演 予稿集、 No. 3、 1402頁、 2003年発行記載の BCP、 TPP、 T5MPyTZ等も電子注 入材料の例としてあげられるが、素子作成に必要な薄膜を形成し、陰極からの電子 を注入できて、電子を輸送できる材料であれば、特にこれらに限定されるものではな い。
上記電子注入材料の中でも特に効果的な電子注入材料としては、金属錯体化合 物、含窒素五員環誘導体、シロール誘導体、トリアリールホスフィンォキシド誘導体が あげられる。本発明に使用可能な好ましい金属錯体ィ匕合物としては、 8—ヒドロキシキ ノリンまたはその誘導体の金属錯体が好適である。 8—ヒドロキシキノリンまたはその 誘導体の金属錯体の具体例としては、トリス(8—ヒドロキシキノリナ—ト)アルミニウム、 トリス(2 メチル 8 ヒドロキシキノリナ ト)アルミニウム、トリス(4 メチル 8 ヒ ドロキシキノリナ ト)アルミニウム、トリス(5—メチル 8 -ヒドロキシキノリナ ト)アル ミニゥム、トリス(5—フエ-ル一 8—ヒドロキシキノリナ一ト)アルミニウム、ビス(8—ヒド 口キシキノリナート)(1 ナフトラート)ァノレミ-ゥム、ビス(8 ヒドロキシキノリナート) ( 2 ナフトラ一ト)アルミニウム、ビス(8 ヒドロキシキノリナ一ト)(フエノラ一ト)アルミ- ゥム、ビス(8 ヒドロキシキノリナート)(4ーシァノー 1 ナフトラート)アルミニウム、ビ ス (4ーメチルー 8 ヒドロキシキノリナート)(1 ナフトラート)アルミニウム、ビス(5—メ チル一 8 ヒドロキシキノリナ一ト)(2 ナフトラ一ト)アルミニウム、ビス(5 フエ-ル —8—ヒドロキシキノリナ一ト)(フエノラ一ト)アルミニウム、ビス(5—シァノ 8—ヒドロ キシキノリナート)(4ーシァノー 1 ナフトラート)アルミニウム、ビス(8 ヒドロキシキノ リナート)クロロアルミ-ゥム、ビス(8ーヒドロキシキノリナート)(o クレゾラート)ァノレミ -ゥム等のアルミニウム錯体ィ匕合物、トリス(8—ヒドロキシキノリナ—ト)ガリウム、トリス( 2 メチル 8 ヒドロキシキノリナ ト)ガリウム、トリス(4—メチル 8 ヒドロキシキノ リナ一ト)ガリウム、トリス(5—メチル 8 ヒドロキシキノリナ一ト)ガリウム、トリス(2—メ チル 5 フエニル 8 ヒドロキシキノリナ ト)ガリウム、ビス(2—メチル 8 ヒドロ キシキノリナ—ト)(1—ナフトラ—ト)ガリウム、ビス(2—メチル—8 ヒドロキシキノリナ —ト)(2 ナフトラ一ト)ガリウム、ビス(2—メチル 8 ヒドロキシキノリナ一ト)(フエノ ラート)ガリウム、ビス(2—メチル 8 ヒドロキシキノリナ一ト)(4 シァノ 1—ナフト ラート)ガリウム、ビス(2、 4 ジメチルー 8 ヒドロキシキノリナ一ト)(1—ナフトラ一ト) ガリウム、ビス(2、 5 ジメチルー 8 ヒドロキシキノリナート)(2 ナフトラート)ガリウム 、ビス(2—メチル 5 フエ-ル一 8 ヒドロキシキノリナ一ト)(フエノラ一ト)ガリウム、 ビス(2—メチル 5 シァノ 8 ヒドロキシキノリナ一ト)(4 -シァノ 1 ナフトラ一 ト)ガリウム、ビス(2—メチルー 8 ヒドロキシキノリナート)クロ口ガリウム、ビス(2—メチ ルー 8—ヒドロキシキノリナ一ト)(o タレゾラ ト)ガリウム等のガリゥム錯体化合物の 他、 8—ヒドロキシキノリナ一トリチウム、ビス(8—ヒドロキシキノリナ一ト)銅、ビス(8— ヒドロキシキノリナート)マンガン、ビス(10—ヒドロキシベンゾ [h]キノリナート)ベリリウ ム、ビス(8 ヒドロキシキノリナ一ト)亜鉛、ビス(10 ヒドロキシベンゾ [h]キノリナ一ト )亜鉛等の金属錯体ィ匕合物があげられる。
また、本発明に使用可能な電子注入材料の内、好ましい含窒素五員環誘導体とし ては、ォキサゾール誘導体、チアゾール誘導体、ォキサジァゾール誘導体、チアジア ゾ―ル誘導体、トリァゾ—ル誘導体があげられ、具体的には、 2, 5 ビス(1—フエ- ル)— 1 , 3, 4—ォキサゾ—ル、 2, 5 ビス(1—フエ-ル)— 1, 3, 4 チアゾ—ル、 2 , 5 ビス(1—フエ-ル)— 1, 3, 4—ォキサジァゾ—ル、 2— (4,— tert—ブチルフエ -ル)—5— (4,,—ビフエ-ル) 1, 3, 4—ォキサジァゾ—ル、 2, 5 ビス(1—ナフチ ル)—1 , 3, 4 ォキサジァゾール、 1, 4 ビス [2— (5 フエ-ルォキサジァゾリル )。)ベンゼン、 1, 4 ビス [2—(5 フエ-ルォキサジァゾリル)ー4 tert ブチル ベンゼン]、 2— (4, -tert- ブチルフエ-ル)—5— (4,,—ビフエ-ル)— 1, 3, 4— チアジアゾール、 2, 5 ビス(1 ナフチル)ー1, 3, 4ーチアジアゾール、 1, 4ービ ス [2—(5 フエ-ルチアジァゾリル)。)ベンゼン、 2—(4,一 tert ブチルフエ-ル) — 5— (4,, ビフエ-ル)— 1, 3, 4 トリァゾ—ル、 2, 5 ビス(1—ナフチル)—1, 3 , 4 トリァゾ—ル、 1, 4 ビス [2— (5—フエ-ルトリアゾリル)。 ]ベンゼン等があげら れる。
また、本発明に使用可能な電子注入材料の内、特に好ましいォキサジァゾール誘 導体としては下記一般式 [ 12]で表されるォキサジァゾール誘導体を示すことができ る。
一般式 [12]
[0094] [化 20]
Figure imgf000047_0001
[0095] (式中、 Ar11および Ar12は、それぞれ独立に、置換基を有しても良い、 1価の芳香族 炭化水素基もしくは 1価の含窒素芳香族複素環基を表す。 )
1価の含窒素芳香族複素環基としては、 2 ピリジル基、 3 ピリジル基、 4 ピリジ ル基、 3 ピリダジル基、 4 ピリダジル基、 2 ピリミジル基、 4 ピリミジル基、 5 ピ リミジル基、 2—ビラジル基、 1 イミダゾリル基等の 1価の含窒素単環芳香族複素環 基、 2 キノリル基、 3 キノリル基、 4 キノリル基、 5 キノリル基、 6 キノリル基、 7 キノリル基、 8 キノリル基、 2 キナゾリル基、 4 キナゾリル基、 5 キナゾリル基 、 2 キノキサリル基、 5 キノキサリル基、 6 キノキサリル基、 1 インドリル基、 9 力リバゾリル基等の 1価の含窒素縮合環芳香族複素環基、 2, 2' ビビリジルー 3— ィル基、 2, 2,—ビビリジル— 4—ィル基、 3, 3,—ビビリジル— 2—ィル基、 3, 3 ,—ビ ピリジノレー 4ーィノレ 、 4, 4,一ビビリジノレー 2—ィノレ 、 4, 4,一ビビリジノレー 3—ィ ル基等の 1価の含窒素環集合芳香族複素環基があげられ、さらに、これら 1価の含窒 素芳香族複素環基上の水素原子は、 1価の脂肪族炭化水素基もしくは 1価の芳香族 炭化水素基で置換されて ヽても良 ヽ。
Ar11および Ar12として、好ましい 1価の芳香族炭化水素基としては、 1価の脂肪族炭 化水素基もしくは 1価の含窒素芳香族複素環基で置換されていても良い、 1 ナフチ ル基、 2—ナフチル基、 o ビフヱ-リル基、 m—ビフヱ-リル基、および p ビフエ-リ ル基があげられ、また好ましい 1価の含窒素芳香族複素環基としては、 1価の脂肪族 炭化水素基もしくは 1価の芳香族炭化水素基で置換されていても良い、 2—ピリジル 基、 3 ピリジル基、 4 ピリジル基、 2, 2,—ビビリジルー 3—ィル基、および 2, 2,一 ビビリジル 4 ィル基があげられる。
[0096] 以下、表 15〜18に本発明に使用可能なォキサジァゾール誘導体の具体例を示す [0097] [表 15]
Figure imgf000048_0001
[0098] [表 16]
Figure imgf000049_0001
[0099] [表 17]
Figure imgf000051_0001
^εί90/.00Ζ«ΙΓ/Χ3ΰ 09 Ζ,.εθΐΟ/800ί OAV [0100] [表 18]
Figure imgf000052_0002
[0101] また、本発明に使用可能な電子注入材料の内、特に好ましいトリァゾール誘導体と しては、下記一般式 [ 13]で表されるトリァゾール誘導体があげられる。
一般式 [ 13]
[0102] [化 21]
[0103] (
Figure imgf000052_0001
それぞれ独立に、置換基を有しても良い、 1価の芳香族炭化 水素基、又は 1価の含窒素芳香族複素環基を表す。 )
ここで、 Ar"および Art2における、好ましい 1価の芳香族炭化水素基としては、も良 い、例えば、フエ-ル基、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m— ビフエ-リル基、及び p ビフヱ-リル基などが挙げられ、これらの 1価の芳香族炭化 水素基は 1価の脂肪族炭化水素基又は 1価の含窒素芳香族複素環基で置換されて いてもよい。また、好ましい 1価の含窒素芳香族複素環基としては、例えば、 2—ピリ ジル基、 3 ピリジル基、 4 ピリジル基、 2, 2,—ビビリジルー 3—ィル基、および 2, 2' ビビリジルー 4ーィル基などが挙げられ、これらの 1価の含窒素芳香族複素環基 は、 1価の脂肪族炭化水素基又は 1価の芳香族炭化水素基で置換されていてもよい 。また、 Art3における、好ましい 1価の芳香族炭化水素基としては、例えば、フエ-ル 基、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル基、およ び p ビフ 二リル基が挙げられ、これらの 1価の芳香族炭化水素基は、 1価の脂肪 族炭化水素基又は 1価の含窒素芳香族複素環基で置換されていてもよい。また、 Ar t3における好ましい 1価の含窒素芳香族複素環基としては、例えば、 2—ピリジル基、 3 ピリジル基、および 4 ピリジル基などが挙げられ、これらの 1価の含窒素芳香族 複素環基は、 1価の脂肪族炭化水素基又は 1価の芳香族炭化水素基で置換されて いてもよい。
以下、表 19〜23に本発明に使用可能なトリァゾール誘導体の具体例を示す。
[表 19]
Figure imgf000054_0001
]
Figure imgf000055_0001
St£Z90/L00Zdr/lDd 99 LL£0l0m0Z OAV //:/ O/-00ί1£-/-εοϊο800ίAV 99
Figure imgf000057_0001
[0107] [表 22]
Figure imgf000059_0001
[0108] [表 23]
Figure imgf000060_0001
[0109] また、本発明に使用可能な電子注入材料の内、特に好ま 、シロール誘導体とし ては、下記一般式 [14]で表されるシロール誘導体があげられる。
一般式 [14]
[0110] [化 22]
Figure imgf000060_0002
[0111] (式中、 RP1および 2は、それぞれ独立に、置換基を有しても良い、 1価の脂肪族炭 化水素基、 1価の芳香族炭化水素基もしくは 1価の含窒素芳香族複素環基を表す。 Arpl Arp4は、それぞれ独立に、置換基を有しても良い、 1価の芳香族炭化水素基 もしくは 1価の含窒素芳香族複素環基を表す。 RP1 RP2 Arpl Arp4の隣接した基同 士は互いに連結して環を形成しても良い。 )
ここで、 Rplおよび Rp2として、好ましい 1価の脂肪族炭化水素基としては、 1価の芳 香族炭化水素基又は 1価の含窒素芳香族複素環基で置換されていても良い、メチ ル基、ェチル基、プロピル基、及びブチル基があげられ、また、好ましい 1価の芳香 族炭化水素基としては、 1価の脂肪族炭化水素基又は 1価の含窒素芳香族複素環 基で置換されていても良い、フエ-ル基、 m—ビフヱ-リル基、及び p—ビフヱ-リル 基があげられ、また、好ましい 1価の含窒素芳香族複素環基としては、 1価の脂肪族 炭化水素基又は 1価の芳香族炭化水素基で置換されていても良い、 2—ピリジル基 、 3 ピリジル基、 4 ピリジル基があげられる。また、 Arpl〜Arp4として、好ましい 1価 の芳香族炭化水素基としては、 1価の脂肪族炭化水素基又は 1価の含窒素芳香族 複素環基で置換されていても良い、フエ-ル基、 1 ナフチル基、 2—ナフチル基、 o ービフヱ-リル基、 m—ビフヱ-リル基、及び p ビフヱ-リル基があげられ、また、好 ましい 1価の含窒素芳香族複素環基としては、 1価の脂肪族炭化水素基又は 1価の 芳香族炭化水素基で置換されていても良い、 2 ピリジル基、 3 ピリジル基、 4ーピ リジル基、 2, 2,—ビビリジルー 3—ィル基、及び 2, 2,—ビビリジル— 4—ィル基があ げられる。
以下、表 24〜28に本発明に使用可能なシロール誘導体の具体例を示す。
[表 24]
Figure imgf000062_0001
25]
Figure imgf000063_0001
[0114] [表 26]
Figure imgf000065_0001
[0115] [表 27]
Figure imgf000067_0001
[0116] [表 28]
Figure imgf000068_0001
[0117] また、本発明に使用可能な電子注入材料の内、好ましいトリアリールホスフィンォキ シド誘導体としては、特開 2002— 63989号公報、特開 2004— 95221号公報、特 開 2004— 203828号公報、特開 2004— 204140号公報記載の卜リアリールホスフィ ンォキシド誘導体や下記一般式 [15]で表されるトリアリールホスフィンォキシド誘導 体を示すことができる。
一般式 [15]
[0118] [化 23]
个!^
[0119] (式中、 Arql〜Arq3は、それぞれ独立に、置換基を有しても良い 1価の芳香族炭化水 素基を表す。 )
ここで Arql〜Arq3として、好ましい 1価の芳香族炭化水素基としては、 1価の脂肪族 炭化水素基又は 1価の含窒素芳香族複素環基で置換されていても良い、フ -ル基 、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル基、及び p ービフエ-リル基があげられる。
以下、表 29〜33に本発明に使用可能なトリアリールホスフィンォキシド誘導体の具 体例を示す。
[0120] [表 29]
Figure imgf000069_0001
[0121] [表 30]
Figure imgf000070_0001
£Z90/L00ZdT/13d 69 ..C010/800Z OAV [0122] [表 31]
Figure imgf000072_0001
St£Z90/L00Zdr/lDd vi LLzoiomoz OAV [0123] [表 32]
Figure imgf000074_0001
[εε挲] [wio] P£Z90/LOOZd£/13d PI ίί£010/800Ζ OAV
Figure imgf000076_0001
[0125] さらに、正孔阻止層には、発光層を経由した正孔が電子注入層に達するのを防ぎ 、薄膜形成性に優れた層を形成できる正孔阻止材料が用いられる。そのような正孔 阻止材料の例としては、ビス(8—ヒドロキシキノリナ一ト)(4—フエニノレフエノラート)ァ ルミ-ゥム等のアルミニウム錯体化合物や、ビス(2—メチルー 8 ヒドロキシキノリナ ート)(4 フエ-ルフエノラート)ガリウム等のガリウム錯体ィ匕合物、 2, 9 ジメチルー 4, 7 ジフエ-ルー 1, 10 フエナント口リン (BCP)等の含窒素縮合芳香族化合物 があげられる。
[0126] 本発明の有機 EL素子の発光層としては、以下の機能を併せ持つものが好適であ る。
注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ、陰 極または電子注入層より電子を注入することができる機能
輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさには、違いがあってもよぐま た正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の 電荷を移動することが好まし ヽ。
有機 EL素子の発光材料は主に有機化合物であり、具体的には所望の色調により、 次のような化合物が用いられる。
たとえば、紫外域力 紫色の発光を得る場合には、下記一般式 [16]で表される化 合物が好適に用いられる。
一般式 [16]
[0127] [化 24]
Figure imgf000077_0001
[0128] (式中、 X1は下記一般式 [17]で表される基を示し、 X2は、フエ-ル基、 1 ナフチル 基、 2—ナフチル基のいずれかを示す。〕
一般式 [17] [0129] [化 25]
Figure imgf000078_0001
[0130] (式中、 mは 2〜5の整数を示す)
この一般式 [16]の X1におけるフエ-レン基、 X2で表されるフエ-ル基、 1—ナフチ ル基、 2—ナフチル基は、 1個または複数の炭素数 1〜4のアルキル基、炭素数 1〜4 のアルコキシル基、水酸基、スルホニル基、カルボニル基、アミノ基、ジメチルァミノ基 、又はジフエニルァミノ基等の置換基で置換されていてもよい。また、これら置換基が 複数ある場合には、それらが互いに結合し、環を形成していてもよい。さらに、 X1で表 されるフエ-レン基は、パラ位で結合したものが、結合性が良ぐかつ平滑な蒸着膜 が形成し易 、ことから好ま 、。上記一般式 [16]で表される化合物の具体例を示せ ば、下記のとおりである(ただし、 Phはフエ二ル基を表す)。
[0131] [化 26]
Figure imgf000078_0002
[0132] [化 27]
Figure imgf000079_0001
Figure imgf000079_0002
これら化合物の中では、特に p—クォーターフエ-ル誘導体、 p—クインタフヱニル 誘導体が好ましい。
また、可視域、特に青色から緑色の発光を得るためには、例えばべンゾチアゾール 系、ベンゾイミダゾール系、ベンゾォキサゾール系等の蛍光増白剤、金属キレートイ匕 ォキシノイドィ匕合物、スチリルベンゼン系化合物を用いることができる。これら化合物 の具体例としては、例えば特開昭 59— 194393号公報に開示されている化合物を 挙げることができる。さらに他の有用な化合物は、ケミストリ一 ·ォブ ·シンセテイツク 'ダ ィズ(1971) 628〜637頁ぉょび640頁【こ歹1』挙されて ヽる。
前記金属キレ—ト化ォキシノイド化合物としては、例えば、特開昭 63— 295695号 公報に開示されている化合物を用いることができる。その代表例としては、トリス(8— キノリノール)アルミニウム等の 8—ヒドロキシキノリン系金属錯体や、ジリチウムェピン トリジオン等が好適な化合物として挙げることができる。 また、前記スチリルベンゼン系化合物としては、例えば、欧州特許第 0319881号 明細書や欧州特許第 0373582号明細書に開示されているものを用いることができる 。そして、特開平 2— 252793号公報に開示されているジスチリルビラジン誘導体も、 発光層の材料として用いることができる。このほか、欧州特許第 0387715号明細書 に開示されているポリフエ-ル系化合物も発光層の材料として用いることができる。
[0134] さらに、上述した蛍光増白剤、金属キレートィ匕ォキシノイド化合物およびスチリルべ ンゼン系化合物等以外に、例えば 12—フタ口ペリノン (J. Appl. Phys. ,第 27卷 , L713 (1988年))、 1, 4—ジフエ-ル— 1, 3—ブタジエン、 1, 1, 4, 4—テトラフエ -ル— 1, 3—ブタジエン(以上 Appl. Phys. Lett. ,第 56卷,: L799 (1990年)) 、ナフタルイミド誘導体 (特開平 2— 305886号公報)、ペリレン誘導体 (特開平 2—1 89890号公報)、ォキサジァゾ—ル誘導体 (特開平 2— 216791号公報、または第 3 8回応用物理学関係連合講演会で浜田らによって開示されたォキサジァゾール誘導 体)、アルダジン誘導体 (特開平 2— 220393号公報)、ピラジリン誘導体 (特開平 2— 220394号公報)、シクロペンタジェン誘導体(特開平 2— 289675号公報)、ピロロピ 口—ル誘導体 (特開平 2— 296891号公報)、スチリルァミン誘導体 (Appl. Phys.
Lett. , 第 56卷, L799 (1990年)、クマリン系ィ匕合物(特開平 2— 191694号公 報)、国際特許公報 WO90Z13148や Appl. Phys. Lett. , νο158, 18, P198 2 (1991)に記載されているような高分子化合物、 9, 9' , 10, 10'—テトラフエ-ルー 2, 2,一ビアントラセン、 PPV (ポリパラフエ-レンビ-レン)誘導体、ポリフルオレン誘 導体やそれら共重合体等、例えば、下記一般式 [18]〜一般式 [20]の構造をもつも のや、 9, 10—ビス(Ν— (4— (2—フエ-ルビ-ル— 1—ィル)フエ-ル)— Ν—フエ -ルァミノ)アントラセン等も発光層の材料として用いることができる。
一般式 [18]
[0135] [化 28]
Figure imgf000080_0001
[0136] (式中、 RX1および RX2は、それぞれ独立に、 1価の脂肪族炭化水素基を、 nlは、 3〜 100の整数を表す。 )
一般式 [19]
[化 29]
Figure imgf000081_0001
[0138] (式中、 RXdおよび RX4は、それぞれ独立に、 1価の脂肪族炭化水素基を、 n2および n
3は、それぞれ独立に、 3〜: L00の整数を表す。 )
一般式 [20]
[0139] [化 30]
Figure imgf000081_0002
[0140] (式中、 Rx&および RXbは、それぞれ独立に、 1価の脂肪族炭化水素基を、 n4および n 5は、それぞれ独立に、 3〜: LOOの整数を表す。 Phはフエ-ル基を表す。)
さらには、特開平 8— 12600号公報に開示されているような下記一般式 [21]で示 されるフエ-ルアントラセン誘導体も発光材料として用いることができる。
一般式 [21]
A1 -L-A2 [21]
(式中、 A1及び A2は、それぞれ独立に、モノフエ-ルアントリル基またはジフエ-ル アントリル基を示し、これらは同一でも異なっていてもよい。 Lは、単結合または 2価の 連結基を表す。 )
ここで、 Lで示される 2価の連結基としては、置換基を有しても良い 2価の単環もしく は縮合環芳香族炭化水素基が好ましい。特に、以下の一般式 [22]又は一般式 [23 ]で表されるフエ-ルアントラセン誘導体は好適である。
一般式 [22]
[0141] [化 31]
Figure imgf000082_0001
[0142] (式中、 RZ1〜RZ4は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。 rl〜r4は、それぞれ独立に、 0又は 1〜5の整数を表 す。 rl〜r4が、それぞれ独立に、 2以上の整数であるとき、 RZ1同士、 Rz2同士、 Rz3同 士、 RZ4同士は各々同一でも異なるものであってもよぐ RZ1同士、 RZ2同士、 RZ3同士 、 RZ4同士は結合して環を形成してもよい。 L1は単結合又は置換基を有しても良い 2 価の単環もしくは縮合環芳香族炭化水素基を表し、置換基を有しても良い 2価の単 環もしくは縮合環芳香族炭化水素基は、アルキレン基、— O—、— S—又は— NR— (ここで Rはアルキル基又はァリール基を表す)が介在するものであってもよい。 ) 一般式 [23]
[0143] [化 32]
Figure imgf000082_0002
(式中、 RZ5及び RZbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シ クロアルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァ リールアミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同 一でも異なるものであってもよい。 r5及び r6は、それぞれ独立に、 0又は 1〜5の整数 を表す。 r5及び r6が、それぞれ独立に、 2以上の整数であるとき、 RZ5同士及び RZb同 士は各々同一でも異なるものであってもよぐ RZ5同士及び RZ6同士は結合して環を形 成してもよい。 L2は単結合又は置換基を有しても良い 2価の単環もしくは縮合環芳 香族炭化水素基を表し、置換基を有しても良い 2価の単環もしくは縮合環芳香族炭 化水素基は、アルキレン基、—O—、 一 S—又は一 NR—(ここで Rはアルキル基又は ァリール基を表す)が介在するものであってもよい。 )
前記一般式 [23]の内、下記一般式 [24]又は一般式 [25]で表されるフ 二ルアン トラセン誘導体がさらに好適である。
一般式 [24]
[0145] [化 33]
Figure imgf000083_0001
[0146] (式中、 Rzll〜RZdUは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 RZ11〜RZ3°は、隣り合う基同士が連結し、環を 形成していても良い。 klは、 0〜3の整数を表す。 )
一般式 [25]
[0147] [化 34]
Figure imgf000084_0001
(式中、 RZdl〜Rz&uは、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 R^〜R ^は、隣り合う基同士が連結し、環を 形成していても良い。 k2は、 0〜3の整数を表す。 )
また、前記一般式 [25]の内、下記一般式 [26]で表されるフ 二ルアントラセン誘 導体はさらに好適である。
一般式 [26]
[0149] [化 35]
Figure imgf000084_0002
[0150] (式中、 RZ51〜RZbUは、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 RZ51〜RZ6Gは、隣り合う基同士が連結し、環を 形成していても良い。 k3は、 0〜3の整数を表す。 )
上記一般式 [26]又は一般式 [27]の具体例としては、例えば、下記化合物が挙げ られる。
[0151] [化 36]
Figure imgf000085_0001
[0152] さらには、以下の化合物も具体例として挙げられる。
[0153] [化 37]
Figure imgf000086_0001
[0154] また、下記一般式 [27]で示されるアミンィ匕合物も発光材料として有用である。
一般式 [27]
[0155] [化 38]
[0156] (式中、 hは、価数であり 1〜6の整数を表す。 E1は、 n価の芳香族炭化水素基、 E2は 、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミ ノ基を表す。 )
ここで、 E1で示される n価の芳香族炭化水素基の母体構造としては、ナフタレン、アン トラセン、 9—フエ-ルアントラセン、 9, 10—ジフエ-ルアントラセン、ナフタセン、ピレ ン、ペリレン、ビフエ-ル、ビナフチル、ビアンスリルが好ましぐ E2で示されるアミノ基 としては、ジァリールァミノ基が好ましい。また、 nは、 1〜4が好ましぐ特に 2であるこ とが最も好ましい。一般式 [27]の内、特に以下の一般式 [28]〜一般式 [30]で表さ れるァミンィ匕合物が好適である。
一般式 [28]
[0157] [化 39]
Figure imgf000087_0001
[0158] (式中、 Ryl〜Ry8は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シクロ アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表す力 Ryl〜Ry8の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 Ryl〜Ry8は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成してい ても良い。)
一般式 [29]
[0159] [化 40]
Figure imgf000087_0002
[0160] (式中、 Ryll〜Ry2は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表す力 Ryll〜Ry2の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 112は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [30]
[0161] [化 41]
Figure imgf000088_0001
[0162] (式中、 Ry21〜Ry34は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基力 選ばれるアミノ基を表す力 Ry21〜Ry34の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 Ry21〜Ry34は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [31]
[0163] [化 42]
Figure imgf000088_0002
[0164] (式中、 Ry35〜Ry52は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基力 選ばれるアミノ基を表す力 Ry35〜Ry52の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 Ry35〜Ry52は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [32] [0165] [化 43]
Figure imgf000089_0001
[0166] (式中、 Ry53〜Ry64は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry53〜Ry64の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 5364は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [33]
[0167] [化 44]
Figure imgf000089_0002
[0168] (式中、 Ry65〜Ry74は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry65〜Ry74の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 6574は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [34]
[0169] [化 45]
Figure imgf000090_0001
[0170] (式中、 Ry75〜Ry86は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry75〜Ry86の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 7586は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [35]
[0171] [化 46]
Figure imgf000090_0002
[0172] (式中、 Ry87〜Ry96は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基力 選ばれるアミノ基を表す力 Ry87〜Ry96の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 Ry87〜Ry96は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
一般式 [36]
[0173] [化 47]
Figure imgf000091_0001
[0174] (式中、 Ry97〜RyllC>は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シ クロアルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の 芳香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリー ルァミノ基力も選ばれるアミノ基を表すが、 Ry97〜Ryllの内、少なくとも一つは、ジァ ルキルアミノ基、ジァリ—ルァミノ基、アルキルァリ—ルァミノ基カゝら選ばれるアミノ基を 表す。 Ry97〜RyllC>は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成 していても良い。 )
一般式 [37]
[0175] [化 48]
Figure imgf000091_0002
[0176] (式中、 Rylll〜Ry128は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シ クロアルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の 芳香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリー ルァミノ基力も選ばれるアミノ基を表すが、 Rylll〜Ry128の内、少なくとも一つは、ジァ ルキルアミノ基、ジァリ—ルァミノ基、アルキルァリ—ルァミノ基カゝら選ばれるアミノ基を 表す。 Rylll〜Ry128は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成 していても良い。 )
上述した一般式 [34]及び一般式 [37]のァミン化合物は、黄色〜赤色発光を得る 場合、好適に用いることができる。以上述べた一般式 [34]〜一般式 [37]で表される ァミン化合物の具体例として下記構造の化合物をあげることができる(ただし、 Phは フエ二ル基を表す)。
[化 49]
Figure imgf000092_0001
[化 50]
Figure imgf000093_0001
[0179] [化 51]
Figure imgf000094_0001
[0180] [化 52]
Figure imgf000095_0001
Figure imgf000095_0002
Figure imgf000095_0003
[0182] また、上記一般式 [34]〜一般式 [37]において、ァミノ基の代わりに、下記一般式 [ 38]又は一般式 [39]で表されるスチリル基を少なくとも一つ含有する化合物(例えば 、欧州特許第 0388768号明細書、特開平 3— 231970号公報などに開示のものを 含む)も発光材料として好適に用いることができる。
一般式 [38]
[0183] [化 54]
Figure imgf000096_0001
yl29
[0184] (式中、 R Ryl31は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基
、 1価の芳香族炭化水素基を表す。 Ryl29' 131は、隣り合う基同士が連結し、環を 形成していても良い。)
一般式 [39]
[0185] [化 55]
Figure imgf000096_0002
[0186] (式中、 Ryl32〜Ry138は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基 、 1価の芳香族炭化水素基を表す。 134138は、それぞれ独立に、水素原子、ァ ルキル基、シクロアルキル基、 1価の芳香族炭化水素基、もしくは、ジアルキルアミノ 基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表す力 Ryl
34
Ryl38の内、少なくとも一つは、ジアルキルアミノ基、ジァリールアミノ基、アルキル ァリ—ルァミノ基力も選ばれるアミノ基である。 Ryl32〜Ryl3°は、隣り合う基同士が連結 し、環を形成していても良い。 )
以上述べた一般式 [38]又は一般式 [39]で表されるスチリル基を少なくとも一つ含 有する化合物の具体例として下記構造の化合物をあげることができる(ただし、 Phは フエ二ル基を表す)。
[0187] [化 56]
[ S ] [8810]
Figure imgf000097_0001
St£Z90/L00Zdr/lDd 96 LL£0l0m0Z OAV
Figure imgf000098_0001
[0189] [化 58]
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
[0193] また、特開平 5— 258862号公報等に記載されている次の一般式
(Rs-Q) -A1-0-L3
2
(式中、 L3はフエ-ル部分を含んでなる炭素原子 6〜24個の炭化水素であり、 O— L 3はフエノラ一ト配位子であり、 Qは置換 8—キノリノラ一ト配位子を示し、 Rsはアルミ- ゥム原子に置換 8 キノリノラート配位子が 2個を上回り結合するのを立体的に妨害 するように選ばれた 8—キノリノラート環置換基を示す。 )
で表される化合物も挙げられる。具体的には、ビス(2—メチル—8 キノリノラ—ト) ( パラ一フエ-ルフエノラート)アルミニウム(ΠΙ)、ビス(2—メチル 8 キノリノラート) ( 1 ナフトラート)アルミニウム (ΠΙ)等が挙げられる。
[0194] このほか、特開平 6— 9953号公報等によるド—ビングを用いた高効率の青色と緑 色の混合発光を得る方法が挙げられる。この場合、ホストとしては、上記の発光材料 、ド—パントとしては青色力も緑色までの強い蛍光色素、例えばクマリン系あるいは上 記のホストとして用いられているものと同様な蛍光色素を挙げることができる。具体的 には、ホストとしてジスチリルァリ一レン骨格の発光材料、特に好ましくは 4, 4,一ビス (2, 2—ジフエ-ルビ-ル)ビフエ-ル、ドーパントとしてはジフエ-ルアミノビ-ルァリ —レン、特に好ましくは例えば N, N ジフエ-ルアミノビ-ルベンゼンを挙げることが できる。
[0195] 白色の発光を得る発光層としては特に制限はないが、下記のものを用いることがで きる。
有機 EL積層構造体の各層のエネルギ―準位を規定し、トンネル注入を利用して発 光させるもの(欧州特許第 0390551号公報)。同じくトンネル注入を利用する素子で 実施例として白色発光素子が記載されて ヽるもの(特開平 3— 230584号公報)。二 層構造の発光層が記載されているもの(特開平 2— 220390号公報および特開平 2 — 216790号公報)。発光層を複数に分割してそれぞれ発光波長の異なる材料で構 成されたもの(特開平 4 51491号公報)。青色発光体 (蛍光ピーク 380〜480nm) と緑色発光体 (480〜580nm)とを積層させ、さらに赤色蛍光体を含有させた構成の もの(特開平 6— 207170号公報)。青色発光層が青色蛍光色素を含有し、緑色発 光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のも の(特開平 7— 142169号公報)。
これらの中では、上記の構成のものが特に好ましい。
さらに、発光材料としては、例えば、下記に示す公知の化合物が好適に用いられる (ただし、 Phはフエ二ル基を表す)。
[0196] [化 62]
Figure imgf000103_0001
[0198] [化 64]
[0199]
Figure imgf000104_0001
[0200] [化 66]
Figure imgf000105_0001
[0202] [化 68]
Figure imgf000106_0001
また、本発明の有機エレクト口ルミネッセンス素子では、リン光発光材料を用いること ができる。本発明の有機エレクト口ルミネッセンス素子に使用できるリン光発光材料ま たはドーピング材料としては、例えば有機金属錯体があげられ、ここで金属原子は通 常、遷移金属であり、好ましくは周期では第 5周期または第 6周期、族では 6族から 1 1族、さらに好ましくは 8族から 10族の元素が対象となる。具体的にはイリジウムや白 金などである。また、配位子としては 2—フエ-ルビリジンや 2— (2'—ベンゾチェ-ル )ピリジンなどがあり、これらの配位子上の炭素原子が金属と直接結合しているのが 特徴である。別の例としてはポルフィリンまたはテトラァザボルフイリン環錯体などがあ り、中心金属としては白金などがあげられる。例えば、下記に示す公知の化合物がリ ン光発光材料として好適に用いられる(ただし、 Phはフエ-ル基を表す)。
[化 69]
//:/ O/-00ί1£-/-εοϊο800ίAV ΖΟ _■
Figure imgf000108_0001
[0205] [化 70]
Figure imgf000109_0001
[0206] さらに、本発明の有機 EL素子の陽極に使用される材料は、仕事関数の大きい (4e V以上)金属、合金、電気伝導性化合物またはこれらの混合物を電極物質とするもの が好ましく用いられる。このような電極物質の具体例としては、 Au等の金属、 Cul、 IT 0、 SNO 、 ZNO等の導電性材料が挙げられる。この陽極を形成するには、これら
2
の電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成させることができる 。この陽極は、上記発光層からの発光を陽極力 取り出す場合、陽極の発光に対す る透過率が 10%より大きくなるような特性を有していることが望ましい。また、陽極の シート抵抗は、数百 ΩΖ口以下としてあるものが好ましい。さらに、陽極の膜厚は、材 料にもよるが通常 10nm〜l μ m、好ましくは 10〜200nmの範囲で選択される。
[0207] また、本発明の有機 EL素子の陰極に使用される材料は、仕事関数の小さい (4eV 以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするもの が用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム 合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸ィ匕アルミ-ゥ ム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。この陰極 はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることによ り、作製することができる。ここで、発光層力もの発光を陰極力も取り出す場合、陰極 の発光に対する透過率は 10%より大きくすることが好ましい。また、陰極としてのシ— ト抵抗は数百 ΩΖ口以下が好ましぐさらに、膜厚は通常1011111〜1 111、好ましくは 50〜200應である。
[0208] 本発明の有機 EL素子を作製する方法については、上記の材料および方法により 陽極、発光層、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し 、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で有機 EL 素子を作製することもできる。
この有機 EL素子は、透光性の基板上に作製する。この透光性基板は有機 EL素子 を支持する基板であり、その透光性については、 400〜700nmの可視領域の光の 透過率が 50%以上、好ましくは 90%以上であるものが望ましぐさらに平滑な基板を 用いるのが好ましい。
これら基板は、機械的、熱的強度を有し、透明であれば特に限定されるものではな いが、例えば、ガラス板、合成樹脂板などが好適に用いられる。ガラス板としては、特 にソ一ダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガ ラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英などで成形された板が挙げら れる。また、合成樹脂板としては、ポリ力一ボネ一ト榭脂、アクリル榭脂、ポリエチレン テレフタレート榭脂、ポリエーテルサルファイド榭脂、ポリサルフォン榭脂などの板が 挙げられる。
[0209] 本発明の有機 EL素子の各層の形成方法としては、真空蒸着、電子線ビーム照射、 スパッタリング、プラズマ、イオンプレ一ティング等の乾式成膜法、もしくはスピンコ一 ティング、デイツビング、フローコーティング、インクジェット法等の湿式成膜法、発光 体をドナ—フィルム上に蒸着する方法、また、特表 2002— 534782や S.T丄 ee, et al ., Proceedings of SID'02, p.784(2002)に記載されているレーザー熱転写法((Laser I nduced Thermal Imaging, LITI法ともいわれる)のいずれかの方法を適用することが できる。有機層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気 相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の 材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、 LB 法により形成された薄膜 (分子累積膜)とは凝集構造、高次構造の相違や、それに起 因する機能的な相違により区分することができる。また特開昭 57— 51781号公報に 開示されているように、榭脂等の結着剤と材料ィ匕合物とを溶剤に溶カゝして溶液とした 後、これをスピンコート法等により薄膜ィ匕することによつても、有機層を形成することが できる。各層の膜厚は特に限定されるものではないが、膜厚が厚すぎると一定の光出 力を得るために大きな印加電圧が必要となり効率が悪くなり、逆に膜厚が薄すぎると ピンホ―ル等が発生し、電界を印加しても充分な発光輝度が得にくくなる。したがつ て、各層の膜厚は、 lnmから 1 mの範囲が適している力 lOnm力ら 0. 2 mの範 囲がより好ましい。
[0210] また、有機 EL素子の温度、湿度、雰囲気等に対する安定性向上のために、素子の 表面に保護層を設けたり、榭脂等により素子全体を被覆や封止を施したりしても良い 。特に素子全体を被覆や封止する際には、光によって硬化する光硬化性榭脂が好 適に使用される。
[0211] 本発明の有機 EL素子に印加する電流は通常、直流であるが、パルス電流や交流 を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はな いが、素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率 良く発光させることが望ま U、。
本発明の有機 EL素子の駆動方法は、ノッシブマトリクス法のみならず、アクティブ マトリックス法での駆動も可能である。また、本発明の有機 EL素子力 光を取り出す 方法としては、陽極側力も光を取り出すボトム'ェミッションという方法のみならず、陰 極側から光を取り出すトップ 'ェミッションという方法にも適用可能である。これらの方 法や技術は、城戸淳ニ著、「有機 ELのすベて」、日本実業出版社 (2003年発行)に 記載されている。
さらに、本発明の有機 EL素子は、マイクロキヤビティ構造を採用しても構わない。こ れは、有機 EL素子は、発光層が陽極と陰極との間に挟持された構造であり、発光し た光は陽極と陰極との間で多重干渉を生じるが、陽極及び陰極の反射率、透過率な どの光学的な特性と、これらに挟持された有機層の膜厚とを適当に選ぶことにより、 多重干渉効果を積極的に利用し、素子より取り出される発光波長を制御するという技 術である。これにより、発光色度を改善することも可能となる。この多重干渉効果のメ 力-ズムについては、 J.Yamada等による AM- LCD Digest of TechNical Papers, OD- 2 ,p.77〜80(2002)に記載されて!、る。
[0212] 以上述べたように、本発明の力ルバゾール含有アミンィ匕合物を用いた有機 EL素子 は、低い駆動電圧で長時間の発光を得ることが可能である。故に、本有機 EL素子は 、壁掛けテレビ等のフラットパネルディスプレイや各種の平面発光体として、さらには 、複写機やプリンタ一等の光源、液晶ディスプレイや計器類等の光源、表示板、標識 灯等への応用が考えられる。 図面の簡単な説明
[0213] [図 1]図 1は、化合物(1)の1 H— NMR ^ベクトルである。(THF-d中)
8
[0214] [図 2]図 2は、化合物(2)の1 H—NMR ^ベクトルである。(THF-d中)
8
[0215] [図 3]図 3は、化合物(7)の1 H—NMR ^ベクトルである。(THF-d中)
8
実施例
[0216] 以下、本発明を実施例で説明するが、本発明はこれら実施例になんら限定されるも のではない。また、説明中、%は重量%を表す。
[0217] 実施例 1
化合物(1)の製造
化合物(1) (次の式 3のスキームの化合物 (VII)で示される化合物。)を次の式 1〜 式 3に示される合成スキ ムにより製造した。
式 1
[0218] [化 71]
Figure imgf000112_0001
(I) Cm)
[0219] 式 2
[0220] [化 72]
Figure imgf000113_0001
Figure imgf000113_0002
(ΙΠ) (VII) 以下、式 1〜3を参照しながら説明する。
(1)中間体 (III)の製造
4つ口フラスコ中の-トロベンゼン 10g中に、 Ν,Ν ジフエ-ルァミン 10g、 4、 4, - ジョードビフエ-ル 30g、及び無水炭酸カリウム 9. 4g、銅粉 0. 8gを入れ、窒素気流 下で 200°Cにて 10時間加熱撹拌した。反応終了後、 100gのトルエンで反応混合物 力も抽出を行ない、トルエン層を濃縮した。シリカゲルを用いたカラムクロマトグラフィ —により精製を行ない白色の蛍光を有する粉末 8gを得た。 FD— MSよる分子量分 祈により、化合物(ΠΙ)であることを確認した。
(2)中間体 (VI)の製造
4つ口フラスコ中の 1, 3 ジメチルー 2—ィ-ダゾリジノン 10g中に、 3 ブロモ 9 —フエ-ルカルバゾ―ル(IV) 6. 4g、ァ-リン 2. 3g、及び無水炭酸カリウム 2. 0g、 銅粉 0. 2gを入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 1 00gのトルエンで本能混合物力も抽出を行ない、トルエン層を濃縮した。シリカゲルを 用いたカラムクロマトグラフィ一により精製を行ない白色の個体 5gを得た。 FD-MS よる分子量分析により、化合物 (VI)であることを確認した。
(3)化合物(1)の製造
前記(1)で製造した中間体 (111)7. 4g、前記 (2)で製造した中間体 (VI)5. 5g、酢酸 パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム— tert—ブト キサイド 2. Ogを、 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、窒素 気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析出した 固体をろ取し、熱真空乾燥させた。粗生成物として式 3における化合物 (VII) (=化合 物(1) )が 9. 2g (収率 85%)得られた。得られた粗成生物を、シリカゲルカラムクロマ トグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ キンエルマ—社製、 2400II CHNOZO型)、 'H -NMR, 13C— NMR (日本電子 製、 GSX— 270W)分析により、化合物(1)であることを確認した。
以下に、生成物の元素分析結果を、図 1に得られたィ匕合物(1)の1 H— NMR^ぺクト ルを示す。
元素分析結果 : C H N として
48 35 3
計算値(%) : C : 88. 18 H : 5. 40 N : 6. 43 実測値(%) : C : 88. 21 H : 5. 38 N : 6. 41
[0224] なお、化合物(1)の製造に使用した 3 ブロモー 9 フエ-ルカルバゾール(IV)は 、工業化学雑誌, 1967年発行, 70卷, 63頁に記載の方法を参考にして、カルバゾ —ルの 3位を臭素化し、っ 、で銅触媒を用いたウルマン法によりョ―ドベンゼンを反 応させて製造したものを用いた。
[0225] 実施例 2
化合物(2)の製造
化合物(2) (次の式 5における化合物 (X)で示される化合物。)を、次の式 4及び式 5で示される合成スキ ムにより製造した。
式 4
[0226] [化 74]
Figure imgf000115_0001
(VIII) (IX)
[0227] 式 5
[0228] [化 75]
Figure imgf000115_0002
(IX) (χ)
[0229] 以下、式 4〜5を参照しながら説明する。
(1)中間体 (IX)の製造
4つ口フラスコ中の、ニトロベンゼン 10g中に、 N—フエ-ルー N— (1—ナフチル)ァ ミン 13g、 4、 4,—ジョ—ドビフエ-ル 30g、無水炭酸カリウム 9. 4g、及び銅粉 0. 8g を入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 lOOgのトル ェンで反応混合物力 抽出を行ない、トルエン層を濃縮した。シリカゲルを用いた力 ラムクロマトグラフィ—により精製を行ない淡黄色の蛍光を有する粉末 9gを得た。 FD MSよる分子量分析により、化合物 (IX)であることを確認した。
(2)化合物(2)の製造
前記(1)で得られた中間体 (IX)7. 9g、前記実施例 1の(2)で得られた中間体 (VI)5 . 5g、酢酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム —tert—ブトキサイド 2. Ogを、 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlを カロえて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入 し、析出した固体を濾取し、熱真空乾燥させた。粗生成物として式 5の化合物 (X) (= 化合物(2))が 8. lg (収率 72%)得られた。得られた粗成生物を、シリカゲルカラムク 口マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(2)であることを確認した。以下に、生成物 の元素分析結果を、図 2に化合物(2)の1 H— NMRスペクトルを示す。
元素分析結果 : C H N
52 37 3 として
計算値(%): C:88.73 H:5.30 N:5.97
実測値(%): C:88.56 H:5.38 N:6.03
[0230] 実施例 3
化合物(3)の製造
化合物(3) (次の式 7における化合物 (XIII)で示される化合物。)を、次の式 6〜7に 示される合成スキ―ムにより製造した。
式 6
[0231] [化 76]
Figure imgf000116_0001
[0232] 式 7
[0233] [化 77]
Figure imgf000116_0002
[0234] 以下、式 6〜7を参照しながら説明する。
(1)中間体 (XII)の製造
4つ口フラスコ中の 1, 3 ジメチルー 2—イミダゾリジノン 10g中に、 3 ブロモ 9 —フエ-ルカルバゾ―ル(IV) 6. 4g、 1—ナフチルァミン 3. 5g、無水炭酸カリウム 2. 0g、及び銅粉 0. 2gを入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応 終了後、 100gのトルエンで反応混合物力も抽出を行ない、トルエン層を濃縮した。シ リカゲルを用いたカラムクロマトグラフィ一により精製を行ない白色の個体 6gを得た。 FD— MSよる分子量分析により、化合物 (XII)であることを確認した。
(2)化合物(3)の製造
前記実施例 1の(1)で得られた中間体 (ΙΠ)7. 4g、前記(1)で得られた中間体 (ΧΠ)6 . 0g、酢酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム — tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlを カロえて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入 し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 7の化合物 (XIII) ( =化合物(3) )が 7. 3g (収率 65%)得られた。得られた粗成生物を、シリカゲルカラ ムクロマトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日本 電子製、 GSX— 270W)分析により、化合物(3)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H N
53 38 3 として
計算値(%) : C : 88. 80 H : 5. 34 N : 5. 86
実測値(%) : C : 88. 61 H : 5. 38 N : 6. 01
[0235] 実施例 4
化合物 (4)の製造
化合物 (4) (次の式 8における化合物 (XIV)で示される化合物。)を、次の式 8で示 される合成スキ ムにより製造した。
式 8
[0236] [化 78]
Figure imgf000118_0001
(ix) (XIV)
[0237] 以下、式 8を参照しながら説明する。
化合物 (4)の製造
前記実施例 2の(1)で得られた中間体 (IX)7.9g、中間体 (ΧΠ)6. Og、酢酸パラジゥ ム 0.35g、トリー tert ブチルホスフィン 1.34g、及びナトリウム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコ〖こいれ、脱水キシレン 50mlをカ卩えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析出した固体をろ取 し、熱真空乾燥させた。粗生成物として式 8の化合物 (XIV) (=化合物 (4))が 8.5g( 収率 71%)得られた。得られた粗成生物を、シリカゲルカラムクロマトグラフィーにより 精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ—キンエルマ—社製 、 2400II CHNOZO型)、1 H— NMR、 13C— NMR (日本電子製、 GSX— 270W) 分析により、化合物 (4)であることを確認した。以下に、生成物の元素分析結果を示 す。
元素分析結果 : C H N
56 39 3 として
計算値(%): C:89.21 H:5.21 N:5.57
実測値(%): C:89.25 H:5.36 N:5.39
[0238] 実施例 5
化合物(5)の製造
化合物(5) (次の式 11における化合物 (XIX)で示される化合物。)を、次の式 9〜1 1に示される合成スキームにより製造した。
式 9
[0239] [化 79]
Figure imgf000119_0001
以下、式 9〜: 11を参照しながら説明する。
(1)中間体 (XVI)の製造
4つ口フラスコ中の-トロベンゼン lOg中に、 N、 N—ビス(p-ビフエ-ル)ァミン 13g 、 4、 4,ージョードビフエ-ル 30g、無水炭酸カリウム 9. 4g、及び銅粉 0. 8gを入れ、 窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 lOOgのトルエンで反 応混合物から抽出を行ない、トルエン層を濃縮した。シリカゲルを用いたカラムクロマ トグラフィ—により精製を行ない淡黄色の蛍光を有する粉末 9gを得た。 FD— MSよる 分子量分析により、化合物 (XVI)であることを確認した。
(2)中間体 (XVIII)の製造
4つ口フラスコ中の 1, 3 ジメチルー 2—イミダゾリジノン 10g中に、 3 ブロモ 9 フエ-ルカルバゾール(IV) 6. 4g、 4 アミノビフエ-ル 4. 2g、無水炭酸カリウム 2 . 0g、及び銅粉 0. 2gを入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応 終了後、 lOOgのトルエンで抽出を行ない、トルエン層を濃縮した。シリカゲルを用い たカラムクロマトグラフィーにより精製を行ない白色の個体 4. 6gを得た。 FD— MSよ る分子量分析により、化合物 (XVIII)であることを確認した。
(3)化合物 (5)の製造
前記(1)で製造した中間体 (XVI)9. 6g、前記 (2)で製造した中間体 (XVIII)6. 6g、 酢酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム— tert —ブトキサイド 2. 0gを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、 窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入し、析出 した固体をろ取し、熱真空乾燥させた。粗生成物として式 11の化合物 (XIX) (=化合 物(5) )が 8. 7g (収率 62%)得られた。得られた粗成生物を、シリカゲルカラムクロマ トグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ キンエルマ—社製、 2400II CHNOZO型)、 'H -NMR, 13C— NMR (日本電子 製、 GSX— 270W)分析により、化合物(5)であることを確認した。以下に、生成物の 元素分析結果を示す。
元素分析結果 : C H N として
67 51 3
計算値(%) : C : 89. 60 H : 5. 72 N : 4. 68
実測値(%) : C : 89. 50 H : 5. 48 N : 5. 02
実施例 6
化合物 (6)の製造
化合物(6) (次の式 13における化合物 (XXIII)で示される化合物。)を、次の式 12 〜 13に示される合成スキームにより製造した。
式 12
[0246] [化 82]
Figure imgf000121_0001
[0249] 以下、式 12〜 13を参照しながら説明する。
(1)中間体 (XXI)の製造
4つ口フラスコ中の-トロベンゼン 10g中に、 N フエ-ル一 N- (p ビフエ-リル)ァ ミン 15g、 4、 4,—ジョ—ドビフエ-ル 30g、無水炭酸カリウム 9. 4g、及び銅粉 0. 8g を入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 lOOgのトル ェンで反応混合物力 抽出を行ない、トルエン層を濃縮した。シリカゲルを用いた力 ラムクロマトグラフィ—により精製を行ない淡黄色の蛍光を有する粉末 10gを得た。 F D MSよる分子量分析により、化合物 (XXI)であることを確認した。
(2)化合物 (6)の製造
前記(1)で製造した中間体 (XXI)8. 3g、前記実施例 5の(2)で製造した中間体 (XV 111)6.5g、酢酸パラジウム 0.35g、トリ— tert—ブチルホスフィン 1.34g、及びナトリ ゥム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50ml を加えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノール 500ml中に注 入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 13の化合物 (X XIII) (=化合物(6))が 8.9g (収率 67%)得られた。得られた粗成生物を、シリカゲ ルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元 素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— NM R (日本電子製、 GSX— 270W)分析により、化合物(6)であることを確認した。以下 に、生成物の元素分析結果を示す。
元素分析結果 : C H N として
60 43 3
計算値(%): C:89.41 H:5.38 N:5.21
実測値(%): C:89.25 H:5.35 N:6.40
[0250] 実施例 7
化合物(7)の製造
化合物(7) (次の式 15における化合物 (XXVI)で示される化合物。)を、次の式 14 〜 15に示される合成スキームにより製造した。
式 14
[0251] [化 84]
Figure imgf000122_0001
(XXIV) (XXV)
[0252] 式 15
[0253] [化 85]
Figure imgf000123_0001
以下、式 14〜 15を参照しながら説明する。
(1)中間体 (XXV)の製造
4つ口フラスコ中の-トロベンゼン 10g中に、 N—フエ-ルー N— (9—フエナントリル )ァミン 20g、 4、 4,—ジョ—ドビフエ-ル 30g、無水炭酸カリウム 9. 4g、及び銅粉 0. 8gを入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 lOOgのト ルェンで反応混合物から抽出を行ない、トルエン層を濃縮した。シリカゲルを用いた カラムクロマトグラフィ—により精製を行ない淡黄色の蛍光を有する粉末 12gを得た。 FD— MSよる分子量分析により、化合物 (XXV)であることを確認した。
(2)化合物(7)の製造
前記(1)で製造した中間体 (XXV)8. 7g、前記実施例 1の(2)で製造した中間体 (VI )6. 6g、酢酸パラジウム 0. 35g、トリー tert—ブチルホスフィン 1. 34g、及びナトリウ ム一 tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlを カロえて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入 し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 15の化合物 (XXVI ) (=化合物(7) )が 8. 5g (収率 63%)得られた。得られた粗成生物を、シリカゲル力 ラムクロマトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分 析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日 本電子製、 GSX— 270W)分析により、化合物(7)であることを確認した。以下に、生 成物の元素分析結果を、図 3に化合物(7)の1 H— NMRスペクトルを示す。
元素分析結果 : C H N
56 39 3 として
計算値(%) : C : 89. 21 H : 5. 21 N : 5. 57
実測値(%) : C : 89. 31 H : 5. 38 N : 5. 31 [0255] 実施例 8
化合物 (8)の製造
化合物(8) (次の式 17における化合物 (XXX)で示される化合物。)を、次の式 16〜 17に示される合成スキームにより製造した。
式 16
[0256] [化 86]
Figure imgf000124_0001
[0259] 以下、式 16〜17を参照しながら説明する。
(1)中間体 (XXVIII)の製造
4つ口フラスコ中の-トロベンゼン 10g中に、 N— (1—ナフチノレ) N— (2 ナフ チル)ァミン 18g、 4、 4,—ジョ—ドビフエ-ル 30g、無水炭酸カリウム 9. 4g、及び銅 粉 0. 8gを入れ、窒素気流下で 200°Cにて 10時間加熱撹拌した。反応終了後、 100 gのトルエンで反応混合物力も抽出を行ない、トルエン層を濃縮した。シリカゲルを用 いたカラムクロマトグラフィーにより精製を行ない淡黄色の蛍光を有する粉末 10gを得 た。 FD— MSよる分子量分析により、化合物 (XXVIII)であることを確認した。 (2)中間体 (XXIX)の製造
実施例 3の(1)における 1 ナフチルァミンに代えて 2 ナフチルァミンを用いて、 実施例 3の(1)に記載の方法と同様にして中間体 (XXIX)を製造した。
(3)化合物 (8)の製造
前記(1)で製造した中間体 (XXVIII)8. 7g、前記(2)で製造した中間体 (XXIX)6. 2 g、酢酸パラジウム 0. 35g、トリ— tert ブチルホスフィン 1. 34g、及びナトリウム— te rt—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlを加えて 、窒素気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として式 17の化合物 (XXX) (= 化合物(8) )が 7. 8g (収率 60%)得られた。得られた粗成生物を、シリカゲルカラムク 口マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(8)であることを確認した。以下に、生成物 の元素分析結果を示す。
元素分析結果 : C H N として
60 41 3
計算値(%) : C : 89. 63 H : 5. 14 N : 5. 23
実測値(%) : C : 89. 50 H : 5. 23 N : 5. 27
[0260] 実施例 9
化合物(9)の製造
化合物(9) (次の式 18における化合物 (XXXII)で示される化合物。)を、次の式 18 に示される合成スキームにより製造した。
式 18
[0261] [化 88]
Figure imgf000126_0001
[0262] (1)中間体 (XXXI)の製造
実施例 2の(1)における N -フエ-ノレ N— ( 1—ナフチノレ)ァミンに代えて N -フエ 二ルー N— (2—ナフチル)アミンを用いて、実施例 2の(1)に記載の方法と同様にし て中間体 (XXXI)を製造した。
(2)化合物(9)の合成方法
前記(1)で製造した中間体 (XXXD7.9g、前記実施例 8の(2)で製造した中間体 (X XIX)6. lg、酢酸パラジウム 0.35g、トリ— tert—ブチルホスフィン 1.34g、及びナト リウム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50 mlをカ卩えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノール 500ml中に 注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 18の化合物( XXXII) (=化合物(9))が 7.8g (収率 65%)得られた。得られた粗成生物を、シリカ ゲルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、 元素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— N MR (日本電子製、 GSX— 270W)分析により、化合物(9)であることを確認した。以 下に、生成物の元素分析結果を示す。
元素分析結果 : C H N として
56 39 3
計算値(%): C:89.21 H:5.21 N:5.57
実測値(%): C:89.02 H:5.38 N:5.60
[0263] 実施例 10
化合物(10)の製造
化合物(10) (次の式 19における化合物 (XXXV)で示される化合物。)を、次の式 1 9に示される合成スキームにより製造した。
式 19
[0264] [化 89]
Figure imgf000127_0001
[0265] (1)中間体 (XXXIII)の製造
中間体 (XXXIII)は、実施例 7の(1)に記載の方法により製造された中間体 (XXV)と 同じ化合物であり、中間体 (XXXIII)は、実施例 7の(1)に記載の方法 (式 14に記載 の方法)により製造した。
(2)中間体 (XXXIV)の製造
前記した実施例 3の(1)に記載の方法 (式 6に記載の方法)における 1 ナフチルァ ミンに代えて 9 フエナントリルアミンを用いて、実施例 3の(1)に記載の方法 (式 6に 記載の方法)と同様にして中間体 (XXXIV)を製造した。
(3)化合物(10)の製造
前記(1)で製造した中間体 (XXXIII)8. 7g、前記(2)で製造した中間体 (XXXIV)7. Og、酢酸パラジウム 0. 35g、トリ— tert ブチルホスフィン 1. 34g、及びナトリウム— t ert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカロえ て、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として式 19の化合物 (XXXV) (= 化合物(10) )が 8. 2g (収率 60%)得られた。得られた粗成生物を、シリカゲルカラム クロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元素分析( パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本 電子製、 GSX— 270W)分析により、化合物(10)であることを確認した。以下に、生 成物の元素分析結果を示す。
元素分析結果 : C H N として
64 43 3
計算値(%) : C : 90. 01 H : 5. 07 N :4. 92
実測値(%) : C : 90. 20 H : 5. 13 N :4. 67
[0266] 実施例 11
化合物(11)の製造
化合物(11) (次の式 20における化合物 (XXXVIII)で示される化合物。)を、次の式 20に示される合成スキームにより製造した。
式 20
[0267] [化 90]
Figure imgf000128_0001
[0268] (1)中間体 (XXXVI)の製造
前記した実施例 7の(1)に記載の方法 (式 14に記載の方法)における N フ ニル -N- (9—フエナントリル)ァミンに代えて N—フエ-ルー N— (アントラセン一 9—ィ ル)アミンを用いて、実施例 7の(1)に記載の方法 (式 14に記載の方法)と同様にして 中間体 (XXXVI)を製造した。
(2)中間体 (XXXVII)の製造
前記した実施例 3の(1)に記載の方法 (式 6に記載の方法)における 1 ナフチルァ ミンに代えて 9 アントラセニルァミンを用いて、実施例 3の(1)に記載の方法 (式 6に 記載の方法)と同様にして中間体 (XXXVII)を製造した。
(3)化合物(11)の製造
前記(1)で製造した中間体 (XXXVI)8. 7g、前記(2)で製造した中間体 (XXXVID7. Og、酢酸パラジウム 0. 35g、トリ— tert ブチルホスフィン 1. 34g、及びナトリウム— t ert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカロえ て、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として式 20の化合物 (XXXVIII) ( =化合物(11) )が 8. 3g (収率 62%)得られた。得られた粗成生物を、シリカゲルカラ ムクロマトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本 電子製、 GSX— 270W)分析により、化合物(11)であることを確認した。以下に、生 成物の元素分析結果を示す。
元素分析結果 : C H N
64 43 3 として
計算値(%) : C : 90. 01 H : 5. 07 N :4. 92
実測値(%) : C : 90. 12 H : 5. 18 N :4. 70
[0269] 実施例 12
化合物(12)の製造
化合物(12) (次の式 21における化合物 (XLI)で示される化合物。)を、次の式 21 に示される合成スキームにより製造した。
式 21
[0270] [化 91]
Figure imgf000129_0001
(1)中間体 (XXXIX)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N—ジフエ -ルァミンに代えて、 N—トリル— N—フエ-ルァミンを用いて、実施例 1の(1)に記載 の方法 (式 1に記載の方法)と同様にして中間体 (XXXIX)を製造した。 (2)中間体 (XL)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 4ーメチルァ-リンを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法)と 同様にして中間体 (XL)を製造した。
(3)化合物(12)の製造
前記(1)で製造した中間体 (XXXIX)7. 3g、前記 (2)で製造した中間体 (XL)5. 6g、 酢酸パラジウム 0. 35g、トリー tert—ブチルホスフィン 1. 34g、及びナトリウム—tert —ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、 窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入し、析出 した固体をろ取し、熱真空乾燥させた。粗生成物として式 21の化合物 (XL) (=化合 物(12) )が 6. 5g (収率 60%)得られた。得られた粗成生物を、シリカゲルカラムクロ マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(12)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H N として
50 39 3
計算値(%) : C : 88. 07 H : 5. 77 N : 6. 16
実測値(%) : C : 88. 21 H : 5. 81 N : 5. 98
[0272] 実施例 13
化合物(13)の製造
化合物(13) (次の式 22における化合物 (XLIV)で示される化合物。)を、次の式 22 に示される合成スキームにより製造した。
式 22
[0273] [化 92]
Figure imgf000131_0001
(1)中間体 (XLII)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N ジフエ -ルァミンに代えて、 N— (4—フルオロフェ -ル)—N フエ-ルァミンを用いて、実 施例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (XLII)を製造し た。
(2)中間体 (XLIII)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 4 フルォロア-リンを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法 )と同様にして中間体 (XLIII)を製造した。
(3)化合物(13)の製造
前記(1)で製造した中間体 (XLII)7. 4g、前記 (2)で製造した中間体 (XLIII)5. 6g、 酢酸パラジウム 0. 35g、トリー tert ブチルホスフィン 1. 34g、及びナトリウム—tert —ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、 窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注入し、析出 した固体をろ取し、熱真空乾燥させた。粗生成物として式 22の化合物 (XLIV) (=化 合物(13) )が 7. Og (収率 64%)得られた。得られた粗成生物を、シリカゲルカラムク 口マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(13)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H F N として 計算値(%) : C : 83. 58 H :4. 82 F: 5. 51 N: 6. 09
実測値(%) : C : 83. 63 H :4. 75 F: 5. 46 N: 6. 16
[0275] 実施例 14
化合物(14)の製造
化合物(14) (次の式 23における化合物 (XLVII)で示される化合物。)を、次の式 2 3に示される合成スキームにより製造した。
式 23
[0276] [化 93]
Figure imgf000132_0001
[0277] (1)中間体 (XLV)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N—ジフエ -ルァミンに代えて、 N— (4—メトキシフエ-ル)—N—フエ-ルァミンを用いて、実施 例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (XLV)を製造した
(2)中間体 (XLVI)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 4ーメトキシァ-リンを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法) と同様にして中間体 (XLVI)を製造した。
化合物(14)の合成方法
前記(1)で製造した中間体 (XLV)7. 6g、前記 (2)で製造した中間体 (XLVI)5. 8g、 酢酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム— tert —ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、 窒素気流下で 1.5時間加熱還流した。反応液をメタノール 500ml中に注入し、析出 した固体をろ取し、熱真空乾燥させた。粗生成物として式 23の化合物 (XLVII) (=化 合物(14))が 6.9g (収率 61%)得られた。得られた粗成生物を、シリカゲルカラムク 口マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(14)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H N O
50 39 3 2として
計算値(%): C:84. 12 H:5.51 N:5.89
実測値(%): C:84. 18 H:5.42 N:5.68
[0278] 実施例 15
化合物(15)の製造
化合物(15) (次の式 24における化合物 (L)で示される化合物。)を、次の式 24に 示される合成スキームにより製造した。
式 24
[0279] [化 94]
Figure imgf000133_0001
[0280] (1)中間体 (XLVIII)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N ジフエ -ルァミンに代えて、 N— (4 ピリジル) N フエ-ルァミンを用いて、実施例 1の( 1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (XLVIII)を製造した。 (2)中間体 (XLIX)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 4—アミノビリジンを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法)と 同様にして中間体 (XLIX)を製造した。
(3)化合物(15)の製造
前記(1)で製造した中間体 (XLVIII)7. 2g、前記(2)で製造した中間体 (XLIX)5. 4g 、酢酸パラジウム 0. 35g、トリー tert—ブチルホスフィン 1. 34g、及びナトリウム—ter t—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて 、窒素気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として式 24の化合物 (L) (=化合 物(15) )が 6. 5g (収率 62%)得られた。得られた粗成生物を、シリカゲルカラムクロ マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(15)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H N として
46 33 5
計算値(%) : C : 84. 25 H : 5. 07 N : 10. 68
実測値(%) : C : 84. 21 H : 5. 18 N : 10. 61
[0281] 実施例 16
化合物(16)の製造
化合物(16) (次の式 25における化合物(LIII)で示される化合物。)を、次の式 25 に示される合成スキームにより製造した。
式 25
[0282] [化 95]
Figure imgf000134_0001
[0283] (1)中間体 (LI)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N—ジフエ -ルァミンに代えて、 N— (2—チェ-ル)—N—フエ-ルァミンを用いて、実施例 1の
(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LI)を製造した。
(2)中間体 (LII)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 2—アミノチォフェンを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法) と同様にして中間体 (LII)を製造した。
(3)化合物(16)の製造
前記(1)で製造した中間体 (LI)7. 2g、前記 (2)で製造した中間体 (LII)5. 4g、酢酸 パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム— tert—ブト キサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、窒素 気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析出した 固体をろ取し、熱真空乾燥させた。粗生成物として式 25の化合物 (LIII) (=化合物( 16) )が 6. 8g (収率 63%)得られた。得られた粗成生物を、シリカゲルカラムクロマト グラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ—キ ンエルマ―社製、 2400II CHNOZO型)、 ¾ - NMRゝ 13C - NMR (日本電子製 、 GSX— 270W)分析により、化合物(16)であることを確認した。以下に、生成物の 元素分析結果を示す。
元素分析結果 : C H N S
44 31 3 2として
計算値(%) : C : 79. 37 H :4. 69 N: 6. 31 S : 9. 63
実測値(%) : C : 79. 40 H :4. 65 N: 6. 25 S : 9. 70
[0284] 実施例 17
化合物(17)の製造
化合物(17) (次の式 26における化合物(LV)で示される化合物。)を、次の式 26に 示される合成スキームにより製造した。
式 26
[0285] [化 96]
Figure imgf000136_0001
(III) (LV)
[0286] (1)中間体 (LIV)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)における 3 プロモー 9 フエ-ルカルバゾールに代えて、 3—ブロモー 9一(4 メチルフエ-ル)カルバゾ ールを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法)と同様にして中間 体 (LIV)を製造した。
(2)化合物(17)の製造
前記した実施例 1の(1)で製造した中間体 (111)7. lg、前記(1)で製造した中間体 (L IV)5.5g、酢酸パラジウム 0.35g、トリー tert ブチルホスフィン 1.34g、及びナトリ ゥム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50ml を加えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノール 500ml中に注 入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 26の化合物 (LV ) (=化合物(17))が 8.7g (収率 82%)得られた。得られた粗成生物を、シリカゲル カラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元素 分析(パーキンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR( 日本電子製、 GSX— 270W)分析により、化合物(17)であることを確認した。以下に 、生成物の元素分析結果を示す。
元素分析結果 : C H N として
49 37 3
計算値(%): C:88.12 H:5.58 N:6.29
実測値(%): C:88.09 H:5.38 N:6.53
[0287] 実施例 18
化合物(18)の製造 化合物(18) (次の式 27における化合物(LVII)で示される化合物。)を、次の式 27 に示される合成スキームにより製造した。
式 27
[化 97]
Figure imgf000137_0001
(III) (LVII) (1)中間体 (LVI)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)における 3 プロモー 9 フエ-ルカルバゾールに代えて、 3—ブロモー 9一(4 フルオロフェ -ル)カルバゾ ールを用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法)と同様にして中間 体 (LVI)を製造した。
(2)化合物(18)の製造
前記した実施例 1の(1)で製造した中間体 (111)7. lg、前記(1)で製造した中間体 (L VI)5. 6g、酢酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリ ゥム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50ml を加えて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に注 入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 27の化合物 (LV ) (=化合物(18) )が 8. 7g (収率 81%)得られた。得られた粗成生物を、シリカゲル カラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元素 分析(パーキンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR ( 日本電子製、 GSX— 270W)分析により、化合物(18)であることを確認した。以下に 、生成物の元素分析結果を示す。
元素分析結果 : C H FN として 計算値(%): C:85.82 H:5.10 F:2.83 N:6.25
実測値(%): C:85.75 H:5.12 F:2.80 N:6.35
[0290] 実施例 19
化合物(19)の製造
化合物(19) (次の式 28における化合物(LIX)で示される化合物。)を、次の式 28 に示される合成スキームにより製造した。
式 28
[0291] [化 98]
Figure imgf000138_0001
(III) (LIX)
[0292] (1)中間体 (LVIII)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)における 3 プロモー 9 —フエ-ルカルバゾールに代えて、 3 -ブロモ— 9—ビフエ-ルカルバゾールを用 ヽ て、実施例 1の(2)に記載の方法 (式 2に記載の方法)と同様にして中間体 (LVIII)を 製造した。
(2)化合物(19)の製造
前記した実施例 1の(1)で製造した中間体 (111)7. lg、前記(1)で製造した中間体 ( LVIII)6.5g、酢酸ノ《ラジウム 0.35g、トリ— tert—ブチルホスフィン 1.34g、及びナト リウム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50 mlをカ卩えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノール 500ml中に 注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 28の化合物( LIX) (=化合物(19))が 8.8g (収率 76%)得られた。得られた粗成生物を、シリカゲ ルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、元 素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— NM R (日本電子製、 GSX—270W)分析により、化合物(19)であることを確認した。以 下に、生成物の元素分析結果を示す。
元素分析結果 : C H N
54 39 3 として
計算値(%): C:88.86 H:5.39 N:5.76
実測値(%): C:88.72 H:5.28 N:6.00
[0293] 実施例 20
化合物(20)の製造
化合物(20) (次の式 29における化合物(LXII)で示される化合物。)を、次の式 29 に示される合成スキームにより製造した。
式 29
[0294] [化 99]
Figure imgf000139_0001
(1)中間体 (LX)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N ジフエ -ルァミンに代えて、 N— (4—シァノフエ-ル)—N フエ-ルァミンを用いて、実施 例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LX)を製造した。
(2)中間体 (LXI)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)におけるァニリンに代え て、 4—シァノア-リンを用い、さらに 3—ブロモ 9—フエ-ルカルバゾールに代えて 3 ブロモー 9一(4 ピリジル)力ルバゾールを用いて、実施例 1の(2)に記載の方 法 (式 2に記載の方法)と同様にして中間体 (LXI)を製造した。
(3)化合物(20)の製造
前記(1)で製造した中間体 (LX)7. 5g、前記 (2)で製造した中間体 (LXI)5. 7g、酢 酸パラジウム 0. 35g、トリ— tert—ブチルホスフィン 1. 34g、及びナトリウム— tert— ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、窒 素気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析出し た固体をろ取し、熱真空乾燥させた。粗生成物として式 29の化合物 (LXII) (=化合 物(20) )が 7. 3g (収率 65%)得られた。得られた粗成生物を、シリカゲルカラムクロ マトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ —キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR 13C— NMR (日本電 子製、 GSX— 270W)分析により、化合物(20)であることを確認した。以下に、生成 物の元素分析結果を示す。
元素分析結果 : C H N として
49 32 6
計算値(%) : C : 83. 50 H :4. 58 N : l l. 92
実測値(%) : C : 83. 45 H :4. 48 N : 12. 07
[0296] 実施例 21
化合物(21)の製造
化合物(21) (次の式 30における化合物(LXIV)で示される化合物。)を、次の式 30 に示される合成スキームにより製造した。
式 30
[0297] [化 100]
Figure imgf000140_0001
[0298] (1)中間体 (LXIII)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における 4, 4' ジョー ドビフエ-ルに代えて、 1, 4 ビス(4 ョードフエ-ル)ベンゼンを用いて、実施例 1 の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LXIII)を製造した。 (2)化合物(21)の製造
前記(1)で製造した中間体 (LXIII)8. 4g、前記した実施例 1の(2)で製造した中間 体 (VI)5. 3g、酢酸パラジウム 0. 35g、トリー tert ブチルホスフィン 1. 34g、及びナ トリウム一 tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50 mlをカ卩えて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に 注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 30の化合物( LXIV) (=化合物(21) )が 7. 2g (収率 62%)得られた。得られた粗成生物を、シリカ ゲルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、 元素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— N MR (日本電子製、 GSX— 270W)分析により、化合物(21)であることを確認した。 以下に、生成物の元素分析結果を示す。
元素分析結果 : C H N として
54 39 3
計算値(%) : C : 88. 86 H : 5. 39 N : 5. 76
実測値(%) : C : 88. 76 H : 5. 28 N : 5. 96
[0299] 実施例 22
化合物(22)の製造
化合物(22) (次の式 31における化合物(LXVI)で示される化合物。)を、次の式 31 に示される合成スキームにより製造した。
式 31
[0300] [化 101]
Figure imgf000142_0001
[0301] (1)中間体 (LXV)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における 4, 4' ジョー ドビフエニルに代えて、 1, 4 ビス(4 ョードナフタレン一 1—ィル)ベンゼンを用い て、実施例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LXV)を 製造した。
(2)化合物(22)の製造
前記(1)で製造した中間体 (LXV)10. Og、前記した実施例 1の(2)で製造した中間 体 (VI)5. 3g、酢酸パラジウム 0. 35g、トリー tert ブチルホスフィン 1. 34g、及びナ トリウム一 tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50 mlをカ卩えて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に 注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 31の化合物( LXVI) ( =化合物(22) )が 7. 4g (収率 56%)得られた。得られた粗成生物を、シリカ ゲルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、 元素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— N MR (日本電子製、 GSX— 270W)分析により、化合物(22)であることを確認した。 以下に、生成物の元素分析結果を示す。
元素分析結果 : C H N として
62 43 3
計算値(%) : C : 89. 72 H : 5. 22 N : 5. 06
実測値(%) : C : 89. 65 H : 5. 38 N : 5. 03
[0302] 実施例 23
化合物(23)の製造
化合物(23) (次の式 32における化合物(LXVIII)で示される化合物。)を、次の式 3 2に示される合成スキームにより製造した。
式 32
[0303] [化 102]
Figure imgf000143_0001
[0304] (1)中間体 (LXVII)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における N, N ジフエ -ルァミンに代えて、 N— (4—ジフエ-ルァミノフエ-ル) N—フエ-ルァミンを用い て、実施例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LXVII)を 製造した。
(2)化合物(23)の製造
前記(1)で製造した中間体 (LXVII)IO.0g、前記した実施例 1の(2)で製造した中 間体 (VI)5.3g、酢酸パラジウム 0.35g、トリ— tert—ブチルホスフィン 1.34g、及び ナトリウム tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて、窒素気流下で 1.5時間加熱還流した。反応液をメタノ―ル 500ml中 に注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 32の化合 物(LXVIII) (=化合物(23))が 5.6g (収率 43%)得られた。得られた粗成生物を、 シリカゲルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合 物の、元素分析(パーキンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13 C— NMR (日本電子製、 GSX— 270W)分析により、化合物(23)であることを確認 した。以下に、生成物の元素分析結果を示す。
元素分析結果 : C H N として
80 44 4
計算値(%): C:87.77 H:5.40 N:6.82
実測値(%): C:87.70 H:5.59 N:6.71 [0305] 実施例 24
化合物(24)の製造
化合物(24) (次の式 33における化合物(LXX)で示される化合物。)を、次の式 33 に示される合成スキームにより製造した。
式 33
[0306] [化 103]
Figure imgf000144_0001
(LXIX) (LXX)
[0307] (1)中間体 (LXIX)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における 4, 4' ジョー ドビフエ-ルに代えて、 2, 2,一ジメチルー 4, 4,ージョードビフエ-ルを用いて、実施 例 1の(1)に記載の方法 (式 1に記載の方法)と同様にして中間体 (LXIX)を製造した
(2)化合物(24)の製造
前記(1)で製造した中間体 (LXIX)7. 8g、前記した実施例 1の(2)で製造した中間 体 (VI)5. 4g、酢酸パラジウム 0. 35g、トリー tert ブチルホスフィン 1. 34g、及びナ トリウム一 tert—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50 mlをカ卩えて、窒素気流下で 1. 5時間加熱還流した。反応液をメタノール 500ml中に 注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として式 33の化合物( LXX) (=化合物(24) )が 4. 6g (収率 42%)得られた。得られた粗成生物を、シリカ ゲルカラムクロマトグラフィ一により精製し、さらに昇華精製を行った。この化合物の、 元素分析(パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMR、 13C— N MR (日本電子製、 GSX— 270W)分析により、化合物(24)であることを確認した。 以下に、生成物の元素分析結果を示す。 元素分析結果 : C H N として
50 39 3
計算値(%): C:88.07 H:5.77 N:6.16
実測値(%): C:88.20 H:5.58 N:6.22
[0308] 実施例 25
化合物(25)の製造
化合物(25) (次の式 34における化合物(LXXIII)で示される化合物。)を、次の式 3 4に示される合成スキームにより製造した。
式 34
[0309] [化 104]
Figure imgf000145_0001
[0310] (1)中間体 (LXXI)の製造
前記した実施例 1の(1)に記載の方法 (式 1に記載の方法)における 4, 4' ジョー ドビフエニルに代えて、 3, 3,一ジョードビフエニルを用いて、実施例 1の(1)に記載 の方法 (式 1に記載の方法)と同様にして中間体 (LXXI)を製造した。
(2)中間体 (LXXII)の製造
前記した実施例 1の(2)に記載の方法 (式 2に記載の方法)における 3 プロモー 9 フエ-ルカルバゾールに代えて、 3 ブロモー 9一(1 ナフチル)力ルバゾールを 用いて、実施例 1の(2)に記載の方法 (式 2に記載の方法)と同様にして中間体 (LXX Π)を製造した。
(3)化合物(25)の製造
前記(1)で製造した中間体 (LXXI)7.2g、前記(2)で製造した中間体 (LXXII)6.2g 、酢酸パラジウム 0.35g、トリー tert ブチルホスフィン 1.34g、及びナトリウム—ter t—ブトキサイド 2. Ogを 200mlの 4つ口フラスコにいれ、脱水キシレン 50mlをカ卩えて 、窒素気流下で 1. 5時間加熱還流した。反応液をメタノ―ル 500ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として式 34の化合物 (LXXIII) ( =化合物(25) )が 3. 5g (収率 31%)得られた。得られた粗成生物を、シリカゲルカラ ムクロマトグラフィ—により精製し、さらに昇華精製を行った。この化合物の、元素分析 (パ—キンエルマ—社製、 2400II CHNOZO型)、1 H— NMRゝ 13C— NMR (日本 電子製、 GSX— 270W)分析により、化合物(25)であることを確認した。以下に、生 成物の元素分析結果を示す。
元素分析結果 : C H N として
52 37 3
計算値(%) : C : 88. 36 H : 5. 30 N : 5. 97
実測値(%) : C : 88. 55 H : 5. 28 N : 6. 17
[0311] 実施例 26〜 30
実施例 25と同様の合成方法により、化合物(26)〜(30)を合成した。表 34に、生 成物の元素分析の結果を示す。
[0312] [表 34]
Figure imgf000146_0001
[0313] 以下に示す実施例においては、特に断りのない限り、混合比は全て重量比を示す 。蒸着 (真空蒸着)は 10_6TOTrの真空中で、基板加熱、冷却等の温度制御なしの条 件下で行った。また、素子の発光特性評価においては、電極面積 2mm X 2mmの有 機 EL素子の特性を測定した。
[0314] 実施例 31
洗浄した ITO電極め付きガラス板上に、化合物(1)を真空蒸着して膜厚 60nmの正 孔注入層を得た。次いで、 N, N,—ビス(4,—ジフエ-ルァミノ— 4—ビフエ-リル)― N, N,—ジフエ-ルペンジジンを真空蒸着して 20nmの正孔輸送層を得た。さらに、 トリス(8—ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚 60nmの電子注入 型発光層を作成し、その上に、まずフッ化リチウムを lnm、次いでアルミニウムを 200 nm蒸着して電極を形成して、有機 EL素子を得た。
[0315] 実施例 32〜60
正孔注入層を化合物(1)のかわりに、表 1〜3の化合物(2)〜(30)を用いた以外 は、実施例 31と同様の有機 EL素子を作成した。
実施例 31〜56の素子を室温および 100°Cの環境で、 lOmAZcm2の電流密度で 一定時間連続して発光させ輝度を測定した。結果を表 35に示す。
[0316] [表 35]
1000 1 〇 0Ό、 1 00 讓 mE 謹軍度
化^ ¾ 綱 軍度 晴姆軍度
(V) (c d/m2)
(c d/m2) (c d/m2)
CD 5. 1 430 1 0 387
(2) 5. 5 41 0 39 0 360
(3) 5. 6 36 0 355 345
(4) 5. 0 500 450 425
(5) 4. 5 450 42 0 400
(6) 5. 0 41 0 388 366
(7) 5. 2 400 385 363
(8) 4. 9 36 0 356 345
(9) 5. 1 41 〇 405 370
(1 0) 5. 3 380 37 5 360
(1 1) 5. 0 39 0 380 365
(1 2) 4. 8 400 388 360
(1 3) 5. 5 480 450 435
(1 ) 5. 1 430 42 0 1 0
(1 5) 5. 0 46 0 450 420
(1 6) 4. 8 430 42 0 1 0
(1 ) 5. 0 380 36 5 338
(1 8) 5. 2 350 340 325
(1 9) 4. 6 29 0 264 250
(2 0) 5. 6 250 240 230
(2 1) 5. 1 42 0 400 365
(2 2) 5. 0 41 0 405 378
(2 3) 5. 2 400 39 0 370
(24) 5. 1 36 0 385 360
(2 5) 5. 2 380 1 0 370
(2 5) 5. 1 41 0 385 340
(2 7) 5. 2 400 39 0 370
(2 8) 5. 3 480 450 398
(2 9) 4. 6 46 0 450 420
(30) 4. 9 41 0 400 1 0 ITO電極め付きガラス板上に、銅フタロシアニンを蒸着して膜厚 25nmの正孔注入 層を形成した。次に、表 2の化合物(19)と次に示される化合物 (A)
[化 105]
Figure imgf000149_0001
[0319] とを 100 : 8の組成比で共蒸着して膜厚 45nmの発光層を形成した。さらに前記した 化合物 (B)を蒸着して膜厚 20nmの電子注入層を形成した。その上に、酸化リチウム (Li O)を lnm、さらにアルミニウム (A1)を lOOnm蒸着によって陰極を形成して有機
2
エレクト口ルミネッセンス素子を得た。この素子は、直流電圧 10Vでの外部量子効率 は 6. 5%を示した。また、発光輝度 150 (cdZm2)で定電流駆動したときの半減寿命 は 5000時間以上であった。
[0320] 実施例 62〜68
発光層をィ匕合物(19)のかわりに、次に示す表 36に示した化合物を用いた以外は 、実施例 61と同様の有機 EL素子を作成した。 実施例 62〜68の素子を室温および 100°Cの環境で、 lOmAZcm2の電流密度で一定時間連続して発光させ輝度を測 定した。結果を次の表 36に示す。
[0321] [表 36] 室温 1 0 00 1 00。C、 1 0 0 籾期電圧 初期輝度
実施例 化合物 時間後の輝度 時間後の録度 (V) (c d/m2)
、 c d m2) (c d/m2)
6 2 ( 1 9) 5. 0 4 3 0 4 4 0 8
6 3 (2) 4. 9 3 9 0 3 6 0 3 5 8
6 4 (3) 5. 2 4 0 0 3 9 0 3 6 0
6 5 (9) 5. 0 4 40 3 8 5 3 6 0
6 6 ( 1 0) 4. 8 420 400 3 9 0
6 7 ( 1 2) 4. 3 4 60 38 0 3 7 5
6 8 (2 1 ) 4. 9 4 50 440 4 1 5
[0322] 実施例 69
ITO電極め付きガラス板上に、次に示す化合物(C)
[0323] [化 106]
Figure imgf000150_0001
[0324] を蒸着して膜厚 60nmの正孔注入層を形成した後、表 2の化合物(13)を蒸着して膜 厚 20nmの正孔輸送層を形成した。次に、 Alq3を蒸着して膜厚 60nmの電子注入 性発光層を形成し、その上に、フッ化リチウムを lnm、さらにアルミニウムを 200nm真 空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子を得た。この素子の 直流電圧 5Vでの発光効率は 1.6(lmZW)であった。また、発光輝度 500(cdZm2 )で室温にて定電流駆動したときの半減寿命は 5000時間以上であった。
[0325] 実施例 70〜72
正孔輸送層の化合物(13)のかわりに、次の表 37に示したィ匕合物を用いた以外は 、実施例 69と同様の有機 EL素子を作成した。実施例 64〜67の素子を室温および 1 00°Cの環境で、 lOmAZcm2の電流密度で一定時間連続して発光させ輝度を測定 した。結果を次の表 37に示す。
[0326] [表 37]
Figure imgf000151_0001
[0327] 実施例 73
ITO電極め付きガラス板上に、 Ν, Ν,—ビス(4'—ジフエニルァミノ— 4—ビフエ-リ ル) Ν, N'—ジフヱ-ルペンジジンを真空蒸着して膜厚 40nmの正孔注入層を得 た。次いで、表 1の化合物(1)と次に示すィ匕合物(D)
[0328] [化 107]
Figure imgf000151_0002
[0329] を 98: 3の比率で共蒸着して、膜厚 40nmの発光層を作成し、次 、で Alq3を真空蒸 着して膜厚 30nmの電子注入層を作成した。その上に、フッ化リチウムを 0. 7nm、次 V、でアルミニウムを 200nm真空蒸着することで電極を形成して、有機燐光発光素子 を得た。この素子は、直流電圧 5Vでの発光輝度 350 (cdZm2)、最大発光輝度 766 00 (cd/m2)の発光が得られた。また、発光輝度 500 (cd/m2)で定電流駆動したと きの半減寿命は 4000時間であった。
[0330] 実施例 74〜75
発光層の化合物(1)のかわりに、次の表 38に示したィ匕合物を用いた以外は、実施 例 73と同様の有機 EL素子を作成した。実施例 68〜70の素子を室温および 100°C の環境で、 lOmAZcm2の電流密度で一定時間連続して発光させ輝度を測定した。 結果を次の表 38に示す。 [0331] [表 38]
Figure imgf000152_0001
[0332] 実施例 76
ITO電極め付きガラス板上に、 PEDOT/PSS (ポリ (3,4—エチレンジォキシ)— 2,5 —チォフェン/ポリスチレンスノレホン酸)をスピンコ ト法で 60nmの膜厚に製膜した。 さらに、表 1の化合物(3)と前記したィ匕合物 (A)とを 100: 8の組成比でトルエン溶媒 に溶解させスピンコート法にて塗布し、膜厚 50nmの発光層を作成した。この塗布基 板に真空蒸着法にさらに前記した化合物 (B)を蒸着して膜厚 20nmの電子注入層を 形成した。その上に、酸化リチウム (Li O)を lnm、さらにアルミニウム (A1)を lOOnm
2
蒸着によって陰極を形成して有機エレクト口ルミネッセンス素子を得た。この素子は、 直流電圧 10Vでの外部量子効率は 5. 3%を示した。また、発光輝度 100 (cdZm2) で定電流駆動したときの半減寿命は 5000時間以上であった。
[0333] 実施例 77〜86
化合物(3)のかわりに表 1〜表 3中の化合物(6)、化合物(8)、化合物(9)、化合物 (10)、化合物(18)、化合物 (21)、化合物 (22)、化合物 (24)、化合物 (25)、及び 化合物(27)を用いた以外は、実施例 76と同様に素子を作成した。これらの素子を 発光輝度 100 (cd/m2)で室温にて定電流駆動したときの半減寿命はすべて 5000 時間以上であった。
[0334] 実施例 87
ITO電極付きガラス板上に、表 5中の HIM9を蒸着して膜厚 50nmの正孔注入層 を形成した後、化合物(1)を 20nm蒸着して正孔輸送層を形成した。さらに Alq3を蒸 着して膜厚 20nmの発光層を形成した。さらに、表 15中の化合物 EX3を蒸着して膜 厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さらにアルミニゥ ムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、直流電 圧 5. OVでの発光輝度は 720 (cdZm2)を示した。また、素子作成直後ならびに 150 °Cのオーブン中にて 1時間保存後の素子について、発光輝度 500 (cdZm2)で室温 にて定電流駆動したときの半減寿命は、 5000時間以上であった。
[0335] 実施例 88〜102
化合物 EX3の代わりに電子注入層として、表 15〜表 18中の化合物 EX1、化合物 EX2、化合物 EX4〜化合物 EX16を用いて、実施例 87と同じ条件で素子を作成し た。素子作成直後ならびに 150°Cのオーブン中にて 1時間保存後の素子について、 素子の特性を測定した。その結果、いずれの素子も、電流密度 10 (mAZcm2)で駆 動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 500 (cdZm2)以上であり、発 光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000時間以上 であった。
[0336] 実施例 103〜114
化合物(1)のかわりに、表 1〜表 3中の化合物(8)、化合物(9)、化合物(10)、化 合物(11)、化合物(13)、化合物(14)、化合物(15)、化合物(16)、化合物(21)、 化合物(27)、化合物(28)、及びィ匕合物(30)を用いた以外は、実施例 87と同じ条 件で素子を作成した。素子作成直後ならびに 150°Cのオーブン中にて 1時間保存後 の素子について、素子の特性を測定した。その結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 500 (cdZ m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿 命は 5000時間以上であった。
[0337] 実施例 115
ITO電極付きガラス板上に、表 6中の化合物 HIM 10を蒸着して膜厚 55nmの正孔 注入層を形成した後、化合物(9)を 20nm蒸着して正孔輸送層を形成した。さらに A1 q3を蒸着して膜厚 20nmの発光層を形成した。さらに表 15中の化合物 ET3を蒸着し て膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さらにアル ミニゥムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、こ の素子は、直流電圧 5Vでの発光輝度は 680 (cdZm2)を示した。また、素子作成直 後ならびに 150°Cのオーブン中にて 1時間保存後の素子について、発光輝度 500 (c d/m2)で室温にて定電流駆動したときの半減寿命は、 、ずれの素子も 5000時間 以上であった。
[0338] 実施例 116〜実施例 128
化合物 ET3の代わりに、電子注入層として表 19〜表 23の化合物 ET2、化合物 ET 4、化合物 ET6、化合物 ET9、化合物 ET10、化合物 ET12〜化合物 ET14、化合 物 ET16〜化合物 ET20を用いて、実施例 115と同じ条件で素子を作成した。素子 作成直後ならびに 150°Cのオーブン中にて 1時間保存後の素子について、素子の 特性を測定した。その結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した 際の素子特性は、電圧は 4. O (V)以下、輝度は 500 (cdZm2)以上であり、発光輝 度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000時間以上であ つた o
[0339] 実施例 129
ITO電極付きガラス板上に、表 6中の化合物 HIM 11を蒸着して膜厚 60nmの正孔 注入層を形成した後、化合物(20)を 15nm蒸着して正孔輸送層を形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに化合物 ES 5を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さらにアルミニウム を lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、この素子 は、直流電圧 5. 0Vでの発光効率は 3. 5 (lmZW)を示した。また、素子作成直後な らびに 150°Cのオーブン中にて 1時間保存後の素子について、発光輝度 500 (cdZ m2)で室温にて定電流駆動したときの半減寿命は、いずれの素子も 5000時間以上 であった。
[0340] 実施例 130
ITO電極付きガラス板上に、化合物(11)を 1, 2—ジクロロェタンに溶解させ、スピ ンコーティング法により膜厚 50nmの正孔注入層を形成した。次に、 Alq3を蒸着して 膜厚 30nmの電子注入性発光層を作成し、その上に、マグネシウムと銀を 10 : 1で混 合した合金で膜厚 lOOnmの電極を形成して素子を得た。この素子の直流電圧 8. 0 Vでの発光効率は 3. O (lmZW)であった。また、発光輝度 500 (cdZm2)で室温に て定電流駆動したときの半減寿命は 5000時間以上であった。 [0341] 実施例 131
ITO電極付きガラス板上に、化合物(12)を蒸着して膜厚 35nmの正孔注入層を形 成した。次に、以下に示す化合物 (F)
[0342] [化 108]
Figure imgf000155_0001
[0343] と Alq3を 1: 50の組成比で共蒸着して膜厚 40nmの発光層を形成した。さらに、 Alq 3を蒸着して膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム (LiF)を lnm、さらにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して素子を得 た。この素子は、直流電圧 5. 0Vでの発光効率は 0. 70 (lmZW)を示した。また、発 光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった
[0344] 実施例 132
ITO電極付きガラス板上に、化合物(13)と化合物(14)とを 1: 1の組成比で共蒸着 して膜厚 60nmの正孔注入層を形成した。次に、以下に示す化合物(G)
[0345] [化 109]
Figure imgf000155_0002
[0346] を蒸着して膜厚 20nmの発光層を形成した。さら〖こ、 Alq3を蒸着して膜厚 20nmの 電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム( A1)を 200nm真空蒸着によって電極を形成して素子を得た。この素子は、直流電圧 5. OVでの発光効率は 3. O (lmZW)を示した。また、発光輝度 500 (cdZm2)で定 電流駆動したときの半減寿命は 5000時間以上であった。
[0347] 実施例 133
ITO電極付きガラス板上に、化合物(7)を蒸着して膜厚 60nmの正孔注入層を形 成した。次に、以下に示す化合物 (H)と以下に示す化合物 (I)
[0348] [化 110]
Figure imgf000156_0001
[0349] とを 20: 1の組成比で共蒸着して膜厚 20nmの発光層を形成した。さら〖こ、 Alq3を蒸 着して膜厚 20nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm 、さらにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して素子を得た。こ の素子は、直流電圧 5. OVでの発光効率は 6. O (lmZW)を示した。また、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0350] 実施例 134
ITO電極付きガラス板上に、化合物(13)を蒸着して膜厚 45nmの正孔注入層を形 成した。次に以下に示す化合物 ωと以下に示す化合物 (Κ)
[0351] [化 111]
Figure imgf000157_0001
[0352] とを 20: 1の組成比で共蒸着して膜厚 40nmの発光層を形成した。さら〖こ、 Alq3を蒸 着して膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm 、さらにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して素子を得た。こ の素子は、直流電圧 4. OVでの発光効率は 3. 5 (lmZW)を示した。また、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0353] 実施例 135
ITO電極付きガラス板上に、本発明の化合物(6)を蒸着して膜厚 70nmの正孔注 入層を形成した。次に、以下に示す化合物 (L)
[0354] [化 112]
Figure imgf000157_0002
( L ) [0355] と Alq3とを 1: 1の組成比で共蒸着して膜厚 45nmの電子輸送性発光層を形成した。 さら〖こ、その上に、マグネシウムと銀を 1 : 3で混合した合金で膜厚 200nmの電極を形 成して素子を得た。この素子の直流電圧 7. 0での発光効率は 2. O (lmZW)であつ た。また、発光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は 500 0時間以上であった。
[0356] 実施例 136
ITO電極付きガラス板上に、化合物(12)を蒸着して膜厚 50nmの正孔注入層を形 成した。次に、前記した化合物 ωと以下に示すィ匕合物 (M)
[0357] [化 113]
Figure imgf000158_0001
化合物 (Μ)
[0358] とを 100: 1の組成比で共蒸着して膜厚 25nmの発光層を形成した。さら〖こ、 BCPを 蒸着して膜厚 25nmの電子注入層を形成した。その上に、リチウム (Li)を 0. 5nm、さ らに銀を 150nm蒸着して素子を得た。この素子は、直流電圧 8. 0Vでの発光効率は 1. 5(lmZW)を示した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減 寿命は 5000時間以上であった。
[0359] 実施例 137
ITO電極付きガラス板上に、本発明の化合物(15)を蒸着して膜厚 40nmの正孔注 入層を形成した。次に、以下に示す化合物 (N)を 10nm蒸着して正孔輸送層を形成 した。さらに以下に示す化合物 (O)と以下に示す化合物 (P)
[0360] [化 114]
Figure imgf000159_0001
化合物 (N) 化合物 O
Figure imgf000159_0002
化合物 ( P )
[0361] とを 1 : 9の組成比で共蒸着して膜厚 25nmの発光層を形成した。さら〖こ BCPを蒸着 して 15nmの正孔阻止層を形成した。さらに Alq3を蒸着して膜厚 25nmの電子注入 層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム (A1)を 10 Onm蒸着によって陰極を形成して素子を得た。この素子は、直流電圧 8Vでの外部 量子効率は 8. 0%を示した。また、発光輝度 200 (cdZm2)で定電流駆動したときの 半減寿命は 5000時間以上であった。
[0362] 実施例 138
ITO電極付きガラス板上に、本発明の化合物(10)を 60nm蒸着して正孔注入層を 形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。以下に示す化合 物(Q)
[0363] [化 115]
Figure imgf000160_0001
化合物 (Q)
[0364] を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウム (Li O)を 1
2 nm、さらにアルミニウム (A1)を lOOnm蒸着によって陰極を形成して素子を得た。こ の素子は、この素子は、直流電圧 4. OVでの発光効率は 3. 3 (lmZW)を示した。ま た、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上で めつに。
[0365] 実施例 139〜 145
電子注入層として前記したィ匕合物(Q)のかわりに表 24〜表 33に示される ES 11、 EP2〜5、 EP10、又は EP22を用いた以外は実施例 138と同じ条件で実験を行った 。素子作成直後ならびに 150°Cのオーブン中にて 1時間保存後の素子について、実 施例 138と同様に素子の特性を測定した。その結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0(V)以下、輝度は 500(cdZ m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿 命は 5000時間以上であった。
[0366] 実施例 146
ITO電極付きガラス板上に、本発明の化合物(2)を蒸着して膜厚 35nmの正孔注 入層を形成した。さらに、表 10に示される HTM9を蒸着して膜厚 20nmの正孔輸送 層を形成した。次に以下に示す化合物 (R)と以下に示す化合物(S)とを 50 : 1の組 成比で共蒸着して膜厚 35nmの発光層を形成した。さらに、以下に示す化合物 (T) [0367] [化 116]
Figure imgf000161_0001
Figure imgf000161_0002
[0368] を蒸着して膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム (LiF)を 1 nm、さらにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して素子を得た 。この素子は、直流電圧 3. 5Vでの発光効率は 5. O (lmZW)を示した。また、発光 輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0369] 実施例 147〜153
化合物(2)のかわりに表 1〜3に示される化合物 (4)、化合物(8)、化合物(12)、化 合物(15)、化合物(19)、化合物(22)、及び化合物(26)
をそれぞれ用いた以外は、実施例 146と同じ条件で素子を作成した。その結果、い ずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0( V)以下、輝度は 500 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて定 電流駆動したときの半減寿命は 5000時間以上であった。
[0370] 比較例 1
正孔注入層をィ匕合物(1)のかわりに以下の化合物 (U) [0371] [化 117]
Figure imgf000162_0001
化合物 (U)
[0372] を用いた以外は、実施例 31と同様の有機 EL素子を作成した。
[0373] 比較例 2
正孔注入層を化合物(1)のかわりに以下の化合物 (V)
[0374] [化 118]
Figure imgf000162_0002
化合物 (V)
[0375] を用いた以外は、実施例 31と同様の有機 EL素子を作成した。
[0376] 比較例 1, 2の素子を室温および 100°Cの環境で、 lOmAZcm2の電流密度で一 定時間連続して発光させ輝度を測定した。結果を次の表 39に示す。
[0377] [表 39] 室温 1 000 1 00°C、 1 00時 初期電圧 初期輝度
時間後の輝度 間後の輝度
(V) (c d/m2)
( c d / m 、 c d / mつ
比較例
6. 7 350 2 1 0 絶縁破壊
1
比較例
7. 0 1 50 35 絶緣破壌
2 [0378] 表 34及び表 39より明らかなように、本発明の化合物はいずれも、比較例に示した 化合物 (U)、(V)を用いて作成した素子よりも初期電圧が低ぐ長寿命で高い輝度 が得られていることが明ら力となった。
[0379] 以上のように、本発明で示された力ルバゾ一ル含有アミンィ匕合物を用いることにより 、高い性能の EL素子が作成できる。また、窒素原子上の置環基がアルキル基である 比較ィ匕合物に対して格段に高い性能が発揮されることは明らかであり、有機 EL素子 の低駆動電圧化、長寿命化が達成できる。

Claims

請求の範囲
下記の一般式 [1]
Figure imgf000164_0001
(式中、 Ar5は置換基を有してもよい炭素数 6〜18の一価の芳香族炭化水素基、又 は置換基を有してもよい炭素数 2〜 18の一価の芳香族複素環基を表し、
R1 ^は、それぞれ独立に、水素原子、ハロゲン原子、又は、一価の有機残基を表 す。)
で表される力ルバゾリル基を表し、
Ar2〜Ar4は、それぞれ独立に、置換基を有してもよい炭素数 6〜18の一価の芳香 族炭化水素基、置換基を有してもよい炭素数 2〜18の一価の複素環基 (但し、前記 の一般式 [2]で表されるカルバゾリル基の場合を除く。 )を表し、
Aは、置換基を有してもよい炭素数 10〜30のァリ—レン基を表す。 )
で表される力ルバゾール含有アミンィ匕合物。
一般式
[2]における Ar5が、下記の一般式 [5]
Figure imgf000165_0001
(式中、 R38は、水素原子、ハロゲン原子、シァノ基、炭素数 1〜3のアルキル基、置換 基を有してもよい炭素数 6〜12の一価の芳香族炭化水素基、又は、置換基を有して もよい炭素数 2〜5の一価の複素環基を表す。 )
で表される置換基を有してもよいフエ-ル基である請求の範囲第 1項に記載の力ルバ ゾール含有アミン化合物。
[3] 一般式 [5]における R38が、水素原子、ハロゲン原子、シァノ基、炭素数 1〜3のァ ルキル基、フ -ル基、又は 4 ピリジル基である請求の範囲第 2項に記載の力ルバ ゾール含有アミン化合物。
[4] 一般式 [2]における R1 ^が、水素原子である請求の範囲第 1項〜第 3項のいず れかに記載の力ルバゾール含有アミン化合物。
[5] 一般式 [1]における Aが、炭素数 1〜5のアルキル基若しくはハロゲン原子で置換さ れていてもよい 4, 4,ービフエ-レン基、炭素数 1〜5のアルキル基若しくはハロゲン 原子で置換されていてもよい 3, 3,ービフエ-レン基、炭素数 1〜5のアルキル基若し くはハロゲン原子で置換されていてもよい 2, 2,ービフエ-レン基、炭素数 1〜5のァ ルキル基若しくはハロゲン原子で置換されていてもよい 1, 4 ナフチレン基、又は炭 素数 1〜5のアルキル基若しくはハロゲン原子で置換されていてもよい 1, 5 ナフチ レン基である請求の範囲第 1項〜第 4項のいずれかに記載の力ルバゾール含有アミ ン化合物。
[6] 一般式 [1]における Aが、下記の一般式 [3]
[化 4]
Figure imgf000166_0001
(式中、 R2U〜R24のうちの一つと、 R 〜 R29のうちの一つは、結合手を表し、残りは、 それぞれ独立に、水素原子、ハロゲン原子、若しくは一価の有機残基、又は隣接し た有機残基が互いに環を形成しても良い。 )
で表されるビフヱ-レン基である請求の範囲第 1項〜第 4項のいずれかに記載の力 ルバゾ―ル含有アミン化合物。
一般式 [1]における Aが、下記の一般式 [4]
[化 5]
Figure imgf000166_0002
(式中、 RdU〜R"は、水素原子、ハロゲン原子、または一価の有機残基を表し、
R3Gと R31、 R32と R33、 R34と R35、または、 R36と R37が、置換基同士で結合して環を形成 しても良い。)
で表される 4, 4,ービフエ-レン基である範囲第 6項に記載の力ルバゾール含有アミ ン化合物。
[8] 一般式 [1]における Aが、 4, 4,ービフエ-レン基、 2, 2,一ジメチルー 4, 4,ービフ ェニレン基、 3, 3,一ビフエ-レン基、又は 2, 2,一ビフエ-レン基である請求の範囲 第 1項〜第 6項のいずれかに記載の力ルバゾール含有アミンィ匕合物。
[9] 一般式 [1]における Aが、 4, 4'ービフヱ-レン基である請求の範囲第 1項〜第 8項 に記載の力ルバゾール含有アミンィ匕合物。
[10] 請求の範囲第 1項〜第 9項のいずれかに記載の力ルバゾール含有アミンィ匕合物を 含んでなる有機エレクト口ルミネッセンス素子用材料。
[11] 一対の電極間に発光層または発光層を含む複数層の有機層を形成してなる有機 エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層が、請求の範囲 第 10項に記載の有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト ロノレミネッセンス素子。
[12] 正孔注入層および Zまたは正孔輸送層を有する有機エレクト口ルミネッセンス素子 において、前記正孔注入層および Zまたは正孔輸送層が、請求の範囲第 11項に記 載の有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミネッセ ンス素子。
PCT/JP2007/062348 2006-07-21 2007-06-19 Composé aminé contenant un carbazole et son utilisation WO2008010377A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096122430A TW200806626A (en) 2006-07-21 2007-06-22 Amine compound containing carbazol and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-199927 2006-07-21
JP2006199927 2006-07-21
JP2006250332A JP5082356B2 (ja) 2005-10-07 2006-09-15 カルバゾ−ル含有アミン化合物およびその用途
JP2006-250332 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008010377A1 true WO2008010377A1 (fr) 2008-01-24

Family

ID=38956712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062348 WO2008010377A1 (fr) 2006-07-21 2007-06-19 Composé aminé contenant un carbazole et son utilisation

Country Status (2)

Country Link
TW (1) TW200806626A (ja)
WO (1) WO2008010377A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026171B1 (ko) 2008-07-01 2011-04-05 덕산하이메탈(주) 신규의 축합 카바졸 유도체 및 이를 포함하는 유기전계발광 소자
US8298684B2 (en) 2008-05-20 2012-10-30 Samsung Display Co., Ltd. Phenylcarbazole compounds, organic light emitting device comprising the phenylcarbazole compounds and flat panel display device comprising the organic light emitting device
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US8394511B2 (en) 2008-02-11 2013-03-12 Samsung Display Co., Ltd. Compound for forming organic film, and organic light emitting device and flat panel display device including the same
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11825740B2 (en) * 2018-11-06 2023-11-21 Samsung Display Co., Ltd. Amine compound and organic light-emitting device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863918B (zh) * 2018-06-19 2022-02-11 长春海谱润斯科技股份有限公司 一种芳胺衍生物及其有机电致发光器件
CN108832013B (zh) * 2018-06-19 2020-06-12 长春海谱润斯科技有限公司 一种有机电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310574A (ja) * 1997-05-09 1998-11-24 Minolta Co Ltd 新規アミノ化合物、その製造方法および用途
WO2006043647A1 (en) * 2004-10-19 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element and light emitting device using the carbazole derivative
WO2006059745A1 (en) * 2004-11-30 2006-06-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2007070352A (ja) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd アリールアミン化合物およびその合成方法、並びにアリールアミン化合物を用いて得られる発光素子用材料、発光素子、電子機器
WO2007063986A1 (ja) * 2005-12-02 2007-06-07 Toyo Ink Manufacturing Co., Ltd. カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP2007137873A (ja) * 2005-10-18 2007-06-07 Semiconductor Energy Lab Co Ltd 芳香族アミン化合物、および芳香族アミン化合物を用いた発光素子、発光装置、電子機器
JP2007153776A (ja) * 2005-12-02 2007-06-21 Toyo Ink Mfg Co Ltd カルバゾリル基を有するフルオレン化合物およびその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310574A (ja) * 1997-05-09 1998-11-24 Minolta Co Ltd 新規アミノ化合物、その製造方法および用途
WO2006043647A1 (en) * 2004-10-19 2006-04-27 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element and light emitting device using the carbazole derivative
WO2006059745A1 (en) * 2004-11-30 2006-06-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2007070352A (ja) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd アリールアミン化合物およびその合成方法、並びにアリールアミン化合物を用いて得られる発光素子用材料、発光素子、電子機器
JP2007137873A (ja) * 2005-10-18 2007-06-07 Semiconductor Energy Lab Co Ltd 芳香族アミン化合物、および芳香族アミン化合物を用いた発光素子、発光装置、電子機器
WO2007063986A1 (ja) * 2005-12-02 2007-06-07 Toyo Ink Manufacturing Co., Ltd. カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP2007153776A (ja) * 2005-12-02 2007-06-21 Toyo Ink Mfg Co Ltd カルバゾリル基を有するフルオレン化合物およびその用途

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394511B2 (en) 2008-02-11 2013-03-12 Samsung Display Co., Ltd. Compound for forming organic film, and organic light emitting device and flat panel display device including the same
US8298684B2 (en) 2008-05-20 2012-10-30 Samsung Display Co., Ltd. Phenylcarbazole compounds, organic light emitting device comprising the phenylcarbazole compounds and flat panel display device comprising the organic light emitting device
KR101026171B1 (ko) 2008-07-01 2011-04-05 덕산하이메탈(주) 신규의 축합 카바졸 유도체 및 이를 포함하는 유기전계발광 소자
US20120302762A1 (en) * 2011-05-27 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Carbazole Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US9079855B2 (en) * 2011-05-27 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element, light-emitting device, electronic device, and lighting device
US9761812B2 (en) 2012-11-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10629823B2 (en) 2012-11-26 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11825740B2 (en) * 2018-11-06 2023-11-21 Samsung Display Co., Ltd. Amine compound and organic light-emitting device including the same
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same

Also Published As

Publication number Publication date
TW200806626A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
JP4211869B2 (ja) カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP4765589B2 (ja) カルバゾリル基を有するフルオレン化合物およびその用途
JP5255296B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
JP5082356B2 (ja) カルバゾ−ル含有アミン化合物およびその用途
WO2009099133A1 (ja) カルバゾリル基を有する化合物およびその用途
WO2007043484A1 (ja) カルバゾール含有アミン化合物及びその用途
JP2010195708A (ja) カルバゾリル基を有する化合物およびその用途
JP2009029726A (ja) カルバゾリル基を有する化合物およびその用途
JP2009120582A (ja) カルバゾリル基を有する化合物およびその用途
WO2008010377A1 (fr) Composé aminé contenant un carbazole et son utilisation
JP2008133225A (ja) インドール誘導体およびその用途
JP2009057307A (ja) カルバゾリル基を有する化合物およびその用途
JP2009203203A (ja) アントラセン誘導体及びその用途
JP2009194042A (ja) カルバゾリル基を含有する有機エレクトロルミネッセンス素子用電荷輸送材料およびその用途
JP2010126571A (ja) 有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子
JP2013118288A (ja) 有機エレクトロルミネッセンス素子用材料およびその用途
JP2010147115A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP5423171B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその用途
JP2009221442A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JP6056367B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその用途
JP2014183226A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP5186173B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
JP2007126439A (ja) カルバゾール含有アミン化合物およびその用途
JP5200490B2 (ja) カルバゾリル基を有する化合物およびその用途
JP2011084717A (ja) 有機エレクトロルミネッセンス素子用材料およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767206

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767206

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)