WO2008007737A1 - Tuyau coudé et son procédé de fabrication - Google Patents

Tuyau coudé et son procédé de fabrication Download PDF

Info

Publication number
WO2008007737A1
WO2008007737A1 PCT/JP2007/063904 JP2007063904W WO2008007737A1 WO 2008007737 A1 WO2008007737 A1 WO 2008007737A1 JP 2007063904 W JP2007063904 W JP 2007063904W WO 2008007737 A1 WO2008007737 A1 WO 2008007737A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
bend pipe
strength
toughness
weld
Prior art date
Application number
PCT/JP2007/063904
Other languages
English (en)
French (fr)
Inventor
Nobuaki Takahashi
Akio Yamamoto
Masahiko Hamada
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2008524838A priority Critical patent/JP5200932B2/ja
Priority to CA2657518A priority patent/CA2657518C/en
Priority to KR1020097002979A priority patent/KR101111023B1/ko
Priority to EP07790698A priority patent/EP2045348B1/en
Priority to CN2007800338995A priority patent/CN101517113B/zh
Publication of WO2008007737A1 publication Critical patent/WO2008007737A1/ja
Priority to US12/318,882 priority patent/US7770428B2/en
Priority to NO20090191A priority patent/NO341657B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a bend pipe and a method of manufacturing the same. Specifically, the present invention relates to a bend pipe having a welded steel pipe having a welded portion directed in the axial direction as a raw material and having strength of API standard X70 grade or higher and excellent low temperature toughness of weld metal, and a method for manufacturing the same. Related.
  • Patent Document 1 has a specific composition with a weld cracking susceptibility index Pcm of 0.19% or less (in this specification, “%” means “mass%” unless otherwise specified).
  • a thick welded steel pipe is heated to a temperature above the Ac point and below 1100 ° C, bent at this temperature, and then cooled to a specific cooling rate.
  • Patent Document 2 includes ⁇ 1.5 (0-0. 89A1) + 3.4N ⁇ —Ti values (0, Al, N, and Ti are oxygen, aluminum, nitrogen, and titanium, respectively). (Welcome content) is over 0 ⁇ 010 or more and 0.0 10 or less, welded steel pipes with weld metal in the range of 900 ° C or higher and 1000 ° C or lower, and then immediately cooled while bending. High weld metal toughness An invention for manufacturing a strong bend tube is disclosed.
  • Patent Document 1 Japanese Patent Publication No. 5-67699
  • Patent Document 2 JP-A-9 295067
  • the present invention provides a bend capable of reliably ensuring both the toughness of the weld metal and the yield strength on the ventral side of the bend, which are major problems in the performance of the bend pipe, while having good base material strength and low temperature toughness.
  • An object is to provide a tube and a method of manufacturing the same.
  • the present invention provides:
  • the present invention is manufactured by bending a welded steel pipe. After this bending, the steel pipe is cooled to a temperature range of 300 ° C or lower at a cooling rate of 3 ° C / second or higher, and then 300 to 500 ° C.
  • a bend pipe having a quenched and tempered structure obtained by tempering in a temperature range of
  • Base material strength C 0.03 to 0.12%, Si: 0.05 to 0.50%, Mn: l.4 to 2.2%, S: 0.00 50% or less, A1: 0.06% or less, N: 0.0070% or less, preferably Cu : l.0% or less, Ni: 2.0% or less, Cr: l.0% or less, Mo: l.0% or less, Nb: 0.1% or less, V: 0.1% or less, or Ti: 0.03% or less
  • the weld metal has a weld cracking sensitivity index (Pcm) defined by equation (2) of 0.30% or less, B content of 5 ppm or less, and oxygen content of 300 ppm or less.
  • Pcm weld cracking sensitivity index
  • the present invention comprises a base metal and a weld metal that satisfy the above-mentioned conditions.
  • a welded steel pipe such as a UOE steel pipe or an RB welded steel pipe is heated to a temperature range of 900 ° C or higher and 1100 ° C or lower. It is characterized by immediately cooling to a temperature range of 300 ° C or less at a cooling rate of 3 ° C / second or more and then tempering in a temperature range of 300 ° C or more and 500 ° C or less. It is a manufacturing method of a bend pipe.
  • FIG. 1 is a graph showing the relationship between carbon equivalent Ceq (%) and pipe circumferential strength (MPa).
  • FIG. 2 Graph showing the results of investigation using a weld metal with 0.5% carbon equivalent (IIW) assuming the API standard X100 grade.
  • a welded steel pipe having a welded portion in the axial direction such as a UOE steel pipe or an RB welded steel pipe, is used as a material for the bend pipe.
  • UOE steel pipe is a thick section made of a thick plate that is bent into a U shape by a strong press and then made into a circular cross section by a press, and welded from inside and outside by an automatic submerged arc method. It means a large-diameter welded steel pipe manufactured by doing so.
  • RB welded steel pipe is made of thick plate and made into a circular cross section by an end bending press and a roll bender, and uses an inner surface welder, an outer surface welder, an inner surface circumferential welder, and an outer surface circumferential welder sequentially.
  • Both UOE steel pipes and RB welded steel pipes have welds oriented in the axial direction.
  • C is an element effective for increasing the strength, and is contained in an amount of 0.03% or more because it has a strength of API standard ⁇ 70 grade or higher.
  • the C content is limited to 0.03% to 0.12%.
  • the C content is desirably 0.04% or more and 0.08% or less.
  • Si is effective as a deoxidizer and as a component for strengthening steel.
  • Si content is 0.05% If it is less than 0.5%, deoxidation is insufficient. On the other hand, if it exceeds 0.50%, a large amount of striped martensite is generated in the weld heat-affected zone and the toughness is extremely deteriorated, leading to deterioration of mechanical properties. For this reason, the Si content is limited to 0.05% or more and 0.50% or less.
  • the Si content is desirably 0.05% or more and 0.35% or less. It is desirable to determine the Si content in consideration of the balance with the thickness of the steel sheet.
  • Mn is a basic element that strengthens and strengthens steel, it is contained in an amount of 1.4% or more in order to guarantee strength. However, if the Mn content exceeds 2.2%, the toughness of the weld metal deteriorates, and the toughness of the base metal after welding and the heat affected zone decreases. For this reason, the Mn content is limited to 1.4% or more and 2.2% or less. The Mn content is desirably 1.5% or more and 2.0% or less.
  • the S content exceeds 0.0050%, the toughness of the base material deteriorates. Therefore, the S content is limited to 0.0 050% or less.
  • A1 which acts as a deoxidizer like Si, can be sufficiently obtained if the A1 content is 0.06% or less, and even if added over 0.06%, the effect is saturated and only the cost increases. For this reason, the A1 content is limited to 0.06% or less.
  • the A1 content is desirably 0.010% or more and 0.055% or less.
  • forms nitrides with V, Ti, etc., and improves the high-temperature strength.
  • the N content exceeds 0.008%, it forms carbonitrides with Nb, V, Ti, and the base metal. In addition, it causes a decrease in the toughness of the heat affected zone. For this reason, the N content is limited to 0.008% or less.
  • the N content is preferably 0.0070% or less.
  • Ni 2.0% or less
  • Cr l.0. /.
  • Mo l.0 /. Or less
  • Nb 0.1% or less
  • V 0.1% or less
  • Ti 0.03% or less
  • Cu can be strengthened without greatly impairing toughness by solid solution strengthening and structure improvement by increasing hardenability.
  • the Cu content exceeds 1 ⁇ 0%, harmful Cu checking will occur on the surface of the slab, and the slab must be heated at a low temperature, greatly limiting the production conditions. Therefore, when Cu is contained, its content is 1.0. It is desirable to limit it to / o or less. Cu content is 0.10. It is desirable to set it at / ⁇ or more and 0.50% or less.
  • Ni like Cu, can be strengthened without greatly impairing toughness by solid solution strengthening and structural improvement by increasing hardenability. Ni also has the effect of suppressing toughness deterioration of the base metal after welding and the heat affected zone. However, if the Ni content exceeds 2.0%, the cost increases and becomes impractical. Therefore, when Ni is contained, its content is preferably limited to 2.0% or less. It is desirable that the Ni content is not less than 0.10% and not more than 0.60%.
  • Cr like Cu and Ni, can be strengthened without greatly impairing toughness by solid solution strengthening and structural improvement by increasing hardenability. However, if the Cr content exceeds 1.0%, the toughness of the heat affected zone decreases. Therefore, when Cr is contained, the content is desirably limited to 1.0% or less. The Cr content is preferably from 0.10% to 0.50%.
  • Mo is effective for increasing the strength of the base metal and the weld metal, and has an effect of suppressing toughness deterioration of the base metal after welding and the weld heat affected zone. In order to ensure such an effect, it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 1.0%, the circumferential weldability, which is the weldability at the time of butt joining of pipes at the construction site, and the toughness of the heat affected zone are deteriorated. Therefore, when it contains Mo, its content is preferably limited to 1.0% or less. The Mo content is preferably 0.05% or more and 0.50% or less.
  • Nb, V, and Ti have a great effect on the increase in strength due to precipitation strengthening and hardenability, or the improvement in toughness associated with crystal grain refinement. However, if the content of these elements is excessive, the toughness of the weld metal is lowered. Therefore, when Nb, V or Ti is contained, the content is Nb content: 0.1% or less, V content: 0.1% or less, and Ti content: It is desirable to limit it to 0.030% or less. Note that Ti is preferably contained in an amount of 0.005% or more in order to generate TiN to suppress grain growth in the weld heat affected zone and improve toughness.
  • the Nb content is preferably 0.010% or more and 0.060% or less.
  • the V content is preferably 0.001% or more and 0.0060% or less.
  • the Ti content is 0.005%. More than 0.025% is desirable.
  • B remarkably increases the hardenability of the steel, but it is desirable to contain 0.0005% or more in order to ensure this effect. On the other hand, if the B content exceeds 0.30030%, the weldability is lowered. Therefore, when B is contained, it is desirable to limit its content to 0.0003% or less.
  • the B content is preferably from 0.0005% to 0.000020%.
  • Ca is effective in controlling the morphology of inclusions, specifically in spheroidization, and prevents hydrogen-induced cracking and lamellar tearing. However, this effect is saturated even if the Ca content exceeds 0.005%. Therefore, when Ca is contained, its content is preferably limited to 0.005% or less. The Ca content is desirably 0.0005% or more and 0.0040% or less.
  • the yarns other than the above are Fe and impurities.
  • the carbon equivalent Ceq of the base material defined by the following formula (1) shall be 0.36% or more.
  • Figure 1 is a graph showing the relationship between carbon equivalent Ceq (%) and pipe circumferential strength (MPa).
  • the strength in the circumferential direction of the pipe was calculated by the following formula for the various carbon equivalents Ceq.
  • the straight line parallel to the horizontal axis in the graph in Fig. 1 shows the target value (570 MPa) of pipe circumferential strength of API standard 5LX70 grade or higher.
  • the weld crack susceptibility index Pcm of the base metal defined by the formula (2) exceeds 0.22%, Even with heat treatment, high strength and high toughness cannot be ensured, and local weldability cannot be ensured. Therefore, the weld crack susceptibility index Pcm of the base metal defined by the following formula (2) is set to 0.22% or less.
  • the weld crack susceptibility index Pcm of the base metal is preferably 0.19% or less.
  • the weld cracking susceptibility index Pcm of the weld metal specified by equation (2) is set to 0.30% or less.
  • the weld cracking susceptibility index Pcm of the weld metal is desirably 0.29% or less.
  • the oxygen content and B content of the weld metal which greatly affect the toughness of the weld metal, depend on the flux components used during welding. It is preferable that the oxygen content of the weld metal is as low as possible. To reduce the oxygen content of the weld metal, welding is performed using a high basicity flux.
  • the oxygen content of the weld metal is limited to 30 Oppm or less.
  • the oxygen content of the weld metal is preferably 280 ppm or less.
  • the basicity of the flux is (Ca 0 + MgO + BaO + CaF + 0.5 (Mn 0 + Fe 0
  • the oxygen content of the weld metal can be suppressed to 300 ppm or less, and the target performance can be satisfied.
  • seam weld metal in straight UOE steel pipes up to API standard X70 grade generally contains about 10 to 30 ppm of B in order to prevent a decrease in toughness.
  • B precipitation of intergranular ferrite is suppressed, and a decrease in toughness is prevented, so that a homogeneous uniaxial ferrite structure can be obtained.
  • FIG. 2 is a graph showing the results of investigating the absorbed energy vE_10 (° C) in the Charpy impact test for a weld metal with a carbon equivalent of 0.56% assuming an equivalent to API standard X100 grade.
  • the quenching temperature While the absorbed energy decreases as the temperature increases, the weld energy that does not contain B (marked with a circle in Fig. 2) is 100J when the quenching temperature is 900 ° C or higher and 1100 ° C or lower.
  • the quenching temperature exceeds 1100 ° C, the value is almost constant at 150 to 200J.
  • a welded steel pipe such as a UOE steel pipe or an RB welded steel pipe is used as a raw material, heated to a temperature range of 900 ° C or higher and 1100 ° C or lower, and subjected to bending force to obtain a bend pipe. Then, immediately cool to a temperature range of 300 ° C or less at a cooling rate of 3 ° CZ seconds or more, and then temper in a low temperature range of 300 ° C or more and 500 ° C or less.
  • the heating temperature for the welded steel pipe is less than 900 ° C, it is below the Ac transformation point, so
  • the heating temperature for the welded steel pipe is set to 900 ° C or higher and 1100 ° C or lower. Considering manufacturing variations, it is desirable to set the temperature between 950 ° C and 1100 ° C.
  • the bending force is measured using the welded steel pipe thus heated. Since the bending force can be obtained by well-known and commonly used means, description of the bending means will be omitted.
  • the bending force check is performed by bending the entire length of the welded steel pipe while heating it to a predetermined temperature through a high-frequency heating zone.
  • This bending carriage is performed such that the welded portion in the axial direction of the welded steel pipe is located on the ventral side of the bend portion.
  • Heat treatment (quenching and tempering) is performed on the bend pipe subjected to the bending force in this way.
  • Quenching is performed immediately after bending by cooling to a temperature range of 300 ° C or less at a cooling rate of 3 ° CZ seconds or more.
  • the cooling rate is preferably 5 ° C / second or more by taking into account the variation in manufacturing conditions.
  • high toughness can be obtained by tempering steel in a high temperature range of 500 ° C or higher and lower than 650 ° C. This is because the confined dislocations can move freely in this temperature range, and in order to solve the strength decrease caused by this, the dislocations can be sufficiently pinned only by the precipitation of cementite that always occurs in low-carbon steel. Therefore, the precipitation of carbides such as V, Nb, and Mo is also used to suppress the movement of dislocations, thereby ensuring strength. The precipitation of these carbides occurs only in the high temperature range of 500 ° C or higher and lower than 650 ° C. In other words, tempering in such a high temperature region aims to make the structure fine ferrite, to obtain high toughness and to ensure strength.
  • the tempering temperature in the present invention is a low temperature range of 300 ° C. or more and 500 ° C. or less. In this low temperature range, dislocations cannot move so freely. For this reason, the dislocations are sufficiently pinned only with cementite, so that no precipitates that exhibit a pinning action are required.
  • tempering in this low temperature range it is possible to increase only the yield strength without substantially reducing the tensile strength. In other words, in the present invention, by using an appropriate component system and increasing the strength of the bend element pipe, it is possible to ensure the performance of the bend pipe without causing a significant cost increase.
  • the tempering temperature When the tempering temperature is in the vicinity of 500 ° C, there is a tendency for the performance of the bend pipe to be somewhat deteriorated. Therefore, in order to ensure the performance of the bend pipe, the tempering temperature should be 300 ° C or higher. It is desirable to set the temperature below ° C.
  • the purpose of tempering in the present invention is completely different from the purpose of tempering in a high temperature range in the previous invention.
  • the effect of lowering the tempering temperature will be described more specifically with reference to basic experiments conducted by the present inventors.
  • tempering was performed at a tempering temperature of 4 levels using a straight pipe which was subjected to linear heating under the following conditions without performing bending force check.
  • the linear heating test is a test that can be performed relatively inexpensively and easily compared to the production of bent pipes, and is a very important and useful basis for evaluating the performance of pipes due to differences in tempering temperatures. It is a test.
  • the dimensions of the straight pipe used in this test are steel pipes having an outer diameter of 1016 mm and a wall thickness of 20 mm. Table 1 summarizes the components of this steel pipe and weld metal. Table 2 summarizes the performance of the steel pipe.
  • SA represents the shear area.
  • ' -20
  • the tensile strength TS in the circumferential direction of the TS: 641 MPa, the yield strength YS: 583 MPa, the yield ratio YR: 91.0%, and the toughness is the Charpy test temperature.
  • Degree — 20 ° C absorbed energy vE: 289J.
  • the toughness of the weld metal is the absorbed energy vE: 123J at the Shannope test temperature of 20 ° C.
  • the toughness of the weld heat affected zone is the absorbed energy vE: 206J at the Charpy test temperature of 20 ° C.
  • a steel pipe having the above performance is heated to 1000 ° C and 13 at the center in the thickness direction. Water cooling was performed to a temperature of 300 ° C or lower at a cooling rate of C / sec, and then allowed to cool to room temperature.
  • Table 3 shows the strength and toughness of the base metal, as well as the toughness of the weld metal and the toughness of the heat affected zone using the plate-like tensile test pieces defined by the API. The toughness is shown together with the results of measurement using a 2 mm V-notch Charpy test piece of lOmm x 10 mm at normal temperature.
  • the yield strength YS is greatly increased, and the tensile strength and toughness of the base material both maintain high performance.
  • the toughness of the weld metal can be maintained at a high level by ensuring the target ductile fracture area (Shear Area) SA at _20 ° C.
  • the method of the present invention in which tempering in a low temperature region is very effective for controlling the bend pipe to the target performance.
  • the tempering temperature particularly affects the performance of the bend pipe.
  • the welded steel pipe is bent at a temperature of 900 ° C or higher and 1100 ° C or lower to form a bend pipe, which is then quenched and then 350 ° C.
  • tempering in a low temperature range from C to 500 ° C it is possible to solve both the toughness of the weld metal and the decrease in the yield strength of the ventral side of the bend, which are problems with bend pipes in particular.
  • conventional bend pipes that are manufactured as-quenched do not undergo tempering, so the yield strength is very low, so the welded steel pipe of the material has a much higher tensile strength than the value in this embodiment. It is necessary to have.
  • the yield strength of bend pipes manufactured by high-temperature tempering at 500 ° C or higher increases, the tensile strength decreases greatly.
  • the above-mentioned minimum yield ratio on the ventral side of the bend is difficult to determine uniquely because it depends on the composition of the bend pipe, the heat treatment temperature, the strength and the bend bending force.
  • the target value of the tensile strength of the base material of the welded steel pipe may be set using the minimum yield ratio value that is expected based on past production results.
  • the cooling rate in the heat treatment process of the bend pipe is smaller than the cooling speed when manufacturing the steel plate that is the material of the welded steel pipe, the target tensile strength of the welded steel pipe is changed to the difference in the cooling speed. It is desirable to set a high value accordingly.
  • the tensile strength of the welded steel pipe is a value obtained by dividing the lower limit value of the yield strength of the bend pipe in API standard X70 grade by the minimum value of the yield ratio on the ventral side of the bend. In addition, this welding is performed after considering the cooling rate in the heat treatment of the bend pipe. Bending the steel pipe.
  • compositions shown in Table 4 UOE steel pipes that have a and weld metal with the base metal having a carbon equivalent Ceq and weld cracking sensitivity parameter Pcm, weld cracking susceptibility parameter Pcm shown in the axis table 4, a B amount and ⁇ amount Was heated to the heating temperature shown in Table 4, and the bending force was measured.
  • the welding of UE steel pipes was performed by seam welding using the high basicity flux that has the basicity shown in Table 4 and does not contain boron.
  • the “cooling rate” in Table 4 indicates the cooling rate at the center of the tube in the thickness direction, and the “tempering temperature” also indicates the temperature at the center of the tube in the thickness direction.
  • the reason for stipulating the tempering time is that the productivity is significantly lowered when the tempering time is excessive, but there is a minimum necessary time to obtain a uniform tempering effect. Therefore, it is desirable that the proper tempering time is ⁇ 20% of the retention time calculated according to this standard.
  • Sample Nos. 1 12 13 16 18 19 and 2:! 31 in Table 45 are examples of the present invention that satisfy all of the conditions specified in this research ability S.
  • Sample No. 2-11, 14 15 1 7 and 20 are comparative examples in which at least one of the components or production conditions does not satisfy the conditions defined in the present invention.
  • target values were set as follows for the strength and toughness of the ventral side of the bend part, the toughness of the bend part with the weld metal, and the toughness of the bend part at the weld heat affected zone. That is, the strength and toughness on the ventral side of the bend is the value currently specified in the API standard 5LX70 grade (YS: 485 MPa or more, TS: 570 MPa or more, YR: 93.0% or less), The absorbed energy vE at 20 ° C in the Charpy test of the base metal, weld metal and weld heat affected zone is 84J or more and 48J, respectively, from the viewpoint of preventing brittle fracture.
  • the temperature be 50 ° C or higher and 1100 ° C or lower.
  • the cooling rate be 5 ° C / second or more, and the tempering temperature tends to deteriorate at around 500 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書
ベンド管及びその製造方法
技術分野
[0001] 本発明は、ベンド管及びその製造方法に関する。具体的には、本発明は、軸方向 へ向けた溶接部を有する溶接鋼管を素材とするとともに API規格 X70グレード以上 の強度と溶接金属の優れた低温靱性とを有するベンド管及びその製造方法に関す る。
背景技術
[0002] 近年、ノ ィプラインに対するコストダウンの要請が高まっている。また、製造技術が 進歩したことから、高強度の鋼管がパイプラインに用いられるようになつてきた。パイ プラインに用いられる高強度鋼管(直管)の大部分は、 API規格 X70グレードまでで ある。 API規格 X80グレードの高強度鋼管は世界中でも僅か数例しか実用化されて いない。特に、軸方向へ向けた溶接部を有する溶接鋼管に曲げ加工を行うことにより 製造されるベンド管(曲がり管)は、実際のパイプラインの建設には不可欠であるにも 関わらず、曲げ力卩ェの後に行われる熱処理によって溶接部の強度及び靭性を両立 することが非常に困難である。このため、 API規格 X70グレード以上の高強度のベン ド管の製造技術は確立されてレ、なレ、。
[0003] 特許文献 1には、溶接割れ感受性指数 Pcmが 0. 19%以下(本明細書では特にこ とわりがない限り「%」は「質量%」を意味する)の特定の組成を有する厚肉の溶接鋼 管を Ac点以上 1100°C以下に加熱し、この温度で曲げカ卩ェした後に特定の冷却速
3
度で 300°C以下まで冷却し、 550°C以上 650°C以下の温度域で焼戻すことにより、 厚肉かつ高強度であつて溶接割れ感受性指数 Pcmが低レ、ベンド管を製造する発明 が開示されている。
[0004] また、特許文献 2には、 { 1. 5 (0-0. 89A1) + 3. 4N}— Tiの値(0、 Al、 N、 Tiは それぞれ、酸素、アルミニウム、窒素、チタンの含有量を表す)がー 0· 010以上 0. 0 10以下の範囲にある溶接金属を有する溶接鋼管を、 900°C以上 1000°C以下に加 熱した後、曲げ加工しながら直ちに急冷することにより、溶接金属の靱性が優れた高 強度のベンド管を製造する発明が開示されている。
特許文献 1 :特公平 5— 67699号公報
特許文献 2:特開平 9 295067号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、特許文献 1、 2により開示された発明では、ベンド部の内側である圧縮変形 側(本明細書では「腹側」という)の降伏強度の確保が非常に困難である。確かに、溶 接金属の低温靭性を確保するためには、低 Pcm化及び成分の適正化は必要ではあ るものの、曲げカ卩ェ後に焼戻しを行わなレヽとベンド部の腹側の降伏強度を確保する こと力 S難しレ、。
[0006] また、 500°C以上の高温で焼戻しを行うと引張強度が低下する。引張強度の低下 分を補うために母材の合金元素の含有量を増加させる必要が生じてコストが嵩み、ラ インパイプに用いることは難しい。
[0007] さらに、高強度化を図るにしたがって、ベンド部の溶接金属の低温靭性を確保する ことが難しくなる。
本発明は、良好な母材強度及び低温靭性を有しながら、ベンド管の性能上の大き な課題である溶接金属の靭性及びベンド部の腹側の降伏強度をいずれも確実に確 保できるベンド管とその製造方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明は、
(i)曲げ力卩ェを行った後に 300°C以上 500°C以下という低温域で焼戻すこと、すなわ ち時効処理すること、
(ii)適正な炭素当量 Ceq及び溶接割れ感受性指数 Pcmを有する母材を備える溶接 鋼管 (例えば UOE鋼管やロールベンディング溶接鋼管(以下、「RB溶接鋼管」とレ、う ) )を素材として用いること、
(iii)ボロンを含まない高塩基度フラックスを用いて溶接されて形成される高靭性の溶 接金属を備えること
により、上述した課題を解決できるという知見に基づくものである。 [0009] 本発明は、溶接鋼管に曲げ加工を行って製造され、この曲げ加工後に 3°C/秒以 上の冷却速度で 300°C以下の温度域まで冷却し、その後 300〜500°Cの温度域で 焼戻すことにより得られる焼入れ焼戻し組織を有するベンド管であって、
母材力 C:0.03〜0. 12%、 Si:0.05〜0.50%、 Mn:l.4〜2.2%、 S:0.00 50%以下、 A1:0.06%以下、 N:0.0070%以下、望ましくは Cu:l.0%以下、 Ni: 2.0%以下、 Cr:l.0%以下、 Mo:l.0%以下、 Nb:0.1%以下、 V:0. 1%以下、 又は Ti:0.03%以下から選ばれた一種または二種以上、さらに望ましくは B:0.00 30%以下、より望ましくは Ca:0.005%以下、残部 Fe及び不純物である組成を有し 、(1)式により規定される炭素当量 (Ceq)が 0.36%以上であるとともに(2)式により 規定される溶接割れ感受性指数 (Pcm)が 0.22%以下であり、かつ
溶接金属が、(2)式により規定される溶接割れ感受性指数 (Pcm)が 0.30%以下 であり、 B量が 5ppm以下であるとともに酸素量が 300ppm以下であること
を特徴とするベンド管である。
[0010] —C \ Mn! Cr+Mo + V , Cu+Ni
" 6 5 15
(1)
[ooii] p =C+^+ I+ L+^+ L+^+ +B
cm 30 20 20 60 20 15 10
(2)
別の観点からは、本発明は、上述した条件を満足する母材及び溶接金属を備える 、例えば UOE鋼管若しくは RB溶接鋼管といった溶接鋼管を、 900°C以上 1100°C 以下の温度域に加熱して曲げカ卩ェした後、直ちに 3°C/秒以上の冷却速度で 300 °C以下の温度域まで冷却し、その後 300°C以上 500°C以下の温度域で焼戻すことを 特徴とするベンド管の製造方法である。
発明の効果
[0012] 本発明によれば、高強度のベンド管の性能面の課題であるベンド部の腹側の降伏 強度の低下と強度及び靭性の低下とを、いずれも抑制することができる。これにより、 API規格 X70グレード以上の優れた強度及び靭性バランスを有する、引張強度及び 溶接金属の低温靭性が優れた高強度のベンド管、すなわち良好な母材強度及び靭 性を有しながらもベンド管の課題である溶接金属の靭性の低下、及びベンド部の腹 側の降伏強度の低下をともに改善して確保できる。
図面の簡単な説明
[0013] [図 1]炭素当量 Ceq (%)とパイプの周方向強度(MPa)との関係を示すグラフである。
[図 2]API規格 X100グレード級を想定した炭素等量 (IIW) 0. 56%の溶接金属を用 レ、て調査した結果を示すグラフである。
発明を実施するための最良の形態
[0014] 以下、本発明に係るベンド管の製造方法を実施するための最良の形態を、添付図 面を参照しながら詳細に説明する。
本実施の形態では、例えば UOE鋼管若しくは RB溶接鋼管といった、軸方向へ向 けた溶接部を有する溶接鋼管を、ベンド管の素材として用いる。
[0015] 周知のように、「UOE鋼管」とは、厚板を素材として強力なプレスによって冷間で U 型に曲げた後〇プレスによって円形断面とし、 自動潜弧方式によって内外面から溶 接されることにより製造される大口径溶接鋼管を意味する。一方、「RB溶接鋼管」と は、厚板を素材として、端曲げプレス及びロールベンダーにより円形断面とし、内面 溶接機、外面溶接機、内面円周溶接機及び外面円周溶接機を順次用いて内外面 力、ら溶接されることにより製造される大口径溶接鋼管を意味する。 UOE鋼管又は RB 溶接鋼管のいずれも、その軸方向へ向けた溶接部を有する。
(母材)
ベンド管の素材として用いる溶接鋼管の母材の組成を限定する理由を説明する。
[C : 0. 03%以上 0· 12%以下]
Cは、強度の上昇に有効な元素であり、 API規格 Χ70グレード以上の強度を有する ために 0. 03%以上含有する。しかし、 C含有量が 0. 12%を超えると靭性の低下が 著しくなり、母材の機械的特性に悪影響を及ぼすとともにスラブの表面傷の発生が助 長される。このため、 C含有量は 0. 03%以上 0. 12%以下と限定する。 C含有量は 0 . 04%以上 0. 08%以下であることが望ましい。
[Si : 0. 05%以上 0· 50%以下]
Siは、脱酸剤として、また鋼を強化する成分として効果がある。 Si含有量が 0. 05% 未満では脱酸が不十分であり、一方 0.50%を越えると溶接熱影響部に縞状マルテ ンサイトが多量に生成して靭性を極度に劣化させ、機械的性質の低下につながる。こ のため、 Si含有量を 0.05%以上 0.50%以下と限定する。 Si含有量は 0.05%以 上 0.35%以下であることが望ましい。 Si含有量は、鋼板の板厚とのバランスを考慮 して決定することが望ましい。
[Mn:l.4。/。以上 2.2。/。以下]
Mnは、鋼を強化し、かつ強靭化する基本元素であるので、強度を保証するために 1.4%以上含有する。しかし、 Mn含有量が 2.2%超であると溶接金属の靭性が劣 ィ匕するとともに、曲げ加工後の母材及び溶接熱影響部の靭性が低下する。このため 、 Mn含有量を 1.4%以上 2.2%以下と限定する。 Mn含有量は 1.5%以上 2.0% 以下であることが望ましい。
[S:0.0050%以下]
S含有量が 0.0050%を超えると母材の靭性が劣化する。そこで、 S含有量は 0.0 050%以下と限定する。
[A1:0.06%以下]
A1は、 Si同様に脱酸材として作用する力 A1含有量が 0.06%以下であればその 効果を十分に得られるとともに、 0.06%超添加しても効果が飽和しコストが嵩むだけ となる。このため、 A1含有量を 0.06%以下と限定する。 A1含有量は 0.010%以上 0 .055%以下であることが望ましい。
[Ν:0· 008%以下]
Νは, Vや Ti等と窒化物を形成して高温強度の向上に効果をもたらすが、 N含有量 が 0.008%を超えると、 Nb、 Vや Tiと炭窒化物を形成して、母材及び溶接熱影響部 の靭性の低下を引き起こす。このため、 N含有量を 0.008%以下と限定する。 N含 有量は 0.0070%以下であることが望ましい。
次に、以下に説明する元素を任意添加元素としてさらに含有してもよい。
[Cu:l.0。/。以下、 Ni:2.0%以下、 Cr:l.0。/。以下、 Mo:l.0。/。以下、 Nb:0.1% 以下、 V:0.1%以下、又は Ti:0.03%以下のうち一種または二種以上]
これらの元素は、強度、靱性改善のために配合される。 [0017] Cuは、固溶強化と焼入れ性増大による組織改善とにより、靭性を大きく損なうことな ぐ強化を図ることができる。しかし、 Cu含有量が 1 · 0%を超えるとスラブの表面疵に 有害な Cuチェッキングが発生するためにスラブを低温で加熱しなければならなくなり 、製造条件が大幅に制限される。そこで、 Cuを含有する場合には、その含有量は 1. 0。/o以下と限定することが望ましい。 Cu含有量は 0. 10。/ο以上 0. 50%以下とするこ とが望ましい。
[0018] Niは、 Cuと同じく固溶強化と焼入れ性増大による組織改善とにより、靭性を大きく 損なうことなぐ強化を図ることができる。また、 Niには曲げ加工後の母材及び溶接熱 影響部の靭性劣化を抑制する作用がある。しかし、 Ni含有量が 2. 0%を超えるとコス トが嵩み実用的でなくなる。そこで、 Niを含有する場合には、その含有量は 2. 0%以 下と限定することが望ましい。 Ni含有量は 0. 10%以上 0. 60%以下であることが望 ましい。
[0019] Crは、 Cuや Niと同様に固溶強化と焼入れ性増大による組織改善とにより、靭性を 大きく損なうことなぐ強化を図ることができる。しかし、 Cr含有量が 1. 0%を超えると 溶接熱影響部の靭性が低下する。そこで、 Crを含有する場合には、その含有量は 1 . 0%以下と限定することが望ましい。 Cr含有量は 0. 10%以上 0. 50%以下である ことが望ましい。
[0020] Moは、母材及び溶接金属の強度上昇に有効であるとともに、曲げ加工後の母材 及び溶接熱影響部の靭性劣化を抑制する作用を奏する。このような効果を確実に奏 するには、 0. 05%以上含有することが望ましい。一方、 1. 0%を超えて含有すると、 施工地でのパイプ同士の突き合わせ接合の際の溶接性である周溶接性や溶接熱影 響部の靭性が劣化する。そこで、 Moを含有する場合には、その含有量は 1. 0%以 下と限定することが望ましい。 Mo含有量は 0. 05%以上 0. 50%以下であることが望 ましい。
[0021] Nb、 V及び Tiは、析出強化や焼入れ性増大による強度上昇、あるいは、結晶粒微 細化に伴う靭性の改善に大きな効果を奏する。しかし、これらの元素の含有量が過 剰であると溶接金属の靭性を低下させる。そこで、 Nb、 V又は Tiを含有する場合に は、その含有量は、 Nb含有量: 0. 1%以下、 V含有量: 0. 1 %以下、また Ti含有量: 0. 030%以下と限定することが望ましい。なお、 Tiは、 TiNを生成して溶接熱影響部 の粒成長を抑制し、靭性を向上するために 0. 005%以上含有することが望ましい。
Nb含有量は 0. 010%以上 0. 060%以下であることが望ましぐ V含有量は 0. 010 %以上 0. 060%以下であることが望ましぐ Ti含有量は 0. 005%以上 0. 025%以 下であることが望ましい。
[0022] これらの任意添カ卩元素は、その一種を単独で含有するようにしてもよいし、あるいは 、二種以上を複合して含有するようにしてもよい。
[B : 0. 0030%以下]
Bは、鋼の焼入れ性を顕著に増大させるが、この効果を確実に得るには 0. 0005% 以上含有することが望ましい。一方、 B含有量が 0. 0030%を越えると溶接性を低下 させる。そこで、 Bを含有する場合には、その含有量は 0. 0030%以下と限定するこ とが望ましレ、。 B含有量は 0. 0005%以上 0. 0020%以下であることが望ましい。
[Ca : 0. 005%以下]
Caは、介在物の形態制御、具体的には球状化に効果があり、水素誘起割れやラメ ラーティアーの発生を防止する。しかし、 Ca含有量が 0. 005%を超えて含有してもこ の効果は飽和する。そこで、 Caを含有する場合には、その含有量は 0· 005%以下と 限定することが望ましい。 Ca含有量は 0. 0005%以上 0. 0040%以下であることが 望ましい。
[0023] これらの任意添カ卩元素は、その一種を単独で含有するようにしてもよいし、あるいは
、二種を複合して含有するようにしてもよい。
上記以外の糸且成は、 Fe及び不純物である。
[0024] また、 API規格 X70グレード以上の高強度及び高靭性を達成するには、上述した 組成に加えて、母材の炭素当量 Ceq量及び溶接割れ感受性指数 Pcm値、さらには 溶接金属の炭素当量 Ceq量及び溶接割れ感受性指数 Pcm値を所定の値とすること が、極めて重要である。そこで、これらについても説明する。
[ (1)式により規定される母材の炭素当量 Ceq : 0. 36%以上]
API規格 X70グレード以上の母材の強度を保証するために、下記(1)式により規定 される母材の炭素当量 Ceqを 0. 36%以上とする。 [0025] c - c I Mn I Cr + Mo + v I Cu + Ni
'" 6 5 15
(1)
図 1は、炭素当量 Ceq (%)とパイプ周方向強度(MPa)との関係を示すグラフであ る。本発明の範囲内の組成例について炭素当量 Ceqを種々変化されたものについ て、パイプ周方向強度を、下記式により計算により求めた。図 1のグラフにおける横軸 と平行な直線は、 API規格 5LX70グレード以上のパイプ周方向強度の目標値(570 MPa)を示す。
パイプ周方向強度(MPa) = 9. 75 X炭素当量 Ceq X 100 + 255
このグラフから、 API規格 5LX70グレード以上の強度を確保するためには、 TMCP (熱加工制御)を利用した製造方法で板を製造したとしても、最低でも炭素当量 Ceq は 0. 36%以上必要である。
[0026] さらに、特に熱管ベンド管の製造においては、 900°C以上 1100°C以下の加熱での 曲げ加工後焼入れを施す製造方法の場合、もしくは上記工程の最後に 300°C以上 5 00°C以下で焼戻しを行った場合でも、周方向の強度は約 10〜20MPa程度は元の 熱処理前の強度に比較して、低下することが知られている。そこで、望ましくは、最終 製品であるベンド管において API規格 5LX70グレード以上の強度を満足するために は、炭素当量 Ceqを 0. 40%以上とすることが望ましい。
[ (2)式により規定される母材の溶接割れ感受性指数 Pcm : 0. 22%以下] 下記(2)式により規定される母材の溶接割れ感受性指数 Pcmが 0. 22%を超えると 、熱処理を施しても、高強度でかつ高靭性を確保できないとともに、現地周溶接性を 確保できない。そこで、下記(2)式により規定される母材の溶接割れ感受性指数 Pc mを 0. 22%以下とする。母材の溶接割れ感受性指数 Pcmは、 0. 19%以下である ことが望ましい。
[0027] p = c + ^ + l + + ^ + 9L + ^ + + B
"° 30 20 20 60 20 15 10
(2)
(溶接金属)
[ (2)式により規定される溶接金属の溶接割れ感受性指数 Pcm : 0. 30%以下] (2)式により規定される溶接金属の溶接割れ感受性指数 Pcmが 0. 30%を超えると 、熱処理後の溶接金属の靭性を確保することができない。そこで、(2)式により規定さ れる溶接金属の溶接割れ感受性指数 Pcmを 0. 30%以下とする。溶接金属の溶接 割れ感受性指数 Pcmは、 0. 29%以下であることが望ましい。
[溶接金属の B量: 5ppm以下、溶接金属の酸素量: 300ppm以下]
溶接金属の靭性に大きな影響を及ぼす、溶接金属の酸素量及び B量は、溶接時 に用いるフラックスの成分に依存する。溶接金属の酸素量はできるだけ低いことが好 ましぐ溶接金属の酸素量を低減するには高塩基度のフラックスを用いて溶接を行う
[0028] 溶接金属の酸素量が 300ppmを超えると、溶接金属中の酸化物量が増え、それら が、破壊発生の起点となるために延性が低下する。そこで、溶接金属の酸素量を 30 Oppm以下と限定する。溶接金属の酸素量は 280ppm以下であることが望ましい。
[0029] ここで、フラックスの塩基度は、(Ca〇 + MgO + BaO + CaF + 0. 5 (Mn〇 + Fe〇
2
) ) / (SiO + 0. 5 (A1 O +TiO +ZrO) )として規定される。この塩基度を 3· 0以上
2 2 3 2
に設定することにより、溶接金属の酸素量を 300ppm以下に抑制することができ、こ れにより、 目標性能を満足することができる。
[0030] また、一般に API規格 X70グレードまでの直管の UOE鋼管におけるシーム溶接金 属には、靱性の低下を防止するために Bが 10〜30ppm程度含有される。 Bを含有す ることにより、粒界フェライトの析出を抑制して靱性の低下が防止され、均質なァシキ ユラ一フェライト組織を得ることができる。し力 ながら、 API規格 X70グレード以上の UOE鋼管のシーム溶接では、溶接金属に Bを添カ卩しないほうが靭性の面で有利で ある。これは、焼入れ性の増加により Bを含有しなくとも粒界フヱライトの析出が十分 に防止できるとともに、 Bを含有するとむしろ組織のラス化が促進されて靱性が低下 するからである。
[0031] 図 2は、 API規格 X100グレード相当を想定した炭素当量 0. 56%の溶接金属につ いてシャルピー衝撃試験の吸収エネルギー vE_ 10 (°C)を調査した結果を示すダラ フである。
[0032] 図 2のグラフに示すように、 Bを含有する溶接金属(図 2中のき印)では、焼入れ温 度の上昇に従い吸収エネルギーが低下するのに対し、 Bを含有しない溶接金属(図 2中の〇印)では、焼入れ温度が 900°C以上 1100°C以下の範囲では、吸収エネル ギ一が 100J程度から 150J程度まで増加し、焼入れ温度が 1100°Cを超える範囲で は、 150〜200Jで略一定の値となる。
[0033] この結果より、 API規格 X70グレード〜 X100グレード相当の強度範囲において熱 処理後の溶接金属の靱性を維持するためには、溶接金属に Bを添加しないほうが好 ましいことがわかる。特に 1000°Cを越える高温での焼入れを行う場合にはこの効果 が顕著である。
[0034] 本実施の形態では、例えば UOE鋼管又は RB溶接鋼管といった溶接鋼管を素材と し、 900°C以上 1100°C以下の温度域に加熱して曲げ力卩ェを行ってベンド管とした後 、直ちに 3°CZ秒以上の冷却速度で 300°C以下の温度域まで冷却し、その後 300°C 以上 500°C以下の低温度域で焼き戻す。
[0035] 溶接鋼管に対する加熱温度が 900°C未満であると、 Ac変態点以下であるので再
3
結晶されないために、強度及び靭性が確保されず、一方、加熱温度が 1100°Cを超 えると、オーステナイト粒が粗大化して靭性が確保されないこととなる。このため、本 実施の形態では溶接鋼管に対する加熱温度は 900°C以上 1100°C以下とする。製 造のバラツキを考慮すると、 950°C以上 1100°C以下とすることが望ましい。
[0036] このように加熱した溶接鋼管を素材として曲げ力卩ェを行う。曲げ力卩ェは周知慣用の 手段により行えばよいので、この曲げ加工の手段についての説明は省略する。例え ば、溶接鋼管の全長を、高周波加熱帯を通して所定の温度に加熱しながら曲げカロェ をすることによって曲げ力卩ェを行うことが例示される。
[0037] この曲げカ卩ェは、溶接鋼管の軸方向への溶接部がベンド部の腹側に位置するよう に、行われる。
このようにして曲げ力卩ェを行われたベンド管に対して熱処理 (焼入れ焼戻し)を行う
[0038] 焼入れは、曲げ加工後直ちに 3°CZ秒以上の冷却速度で 300°C以下の温度域ま で冷却することにより行う。製造条件のバラツキを勘案することにより、冷却速度は 5 °C /秒以上とすることが望ましい。 [0039] 上述したように、本発明は、焼戻し温度を低温化した点に大きな特徴があるので、こ の点を説明する。
従前より、曲げカ卩ェ後の溶接金属の靭性の確保に重点を置いて焼き入れまま、つ まり焼戻しを省略する技術や、曲げカ卩ェ後の強度及び靭性の確保に重点を置いて 5 50°C以上 650°C以下の高温での焼戻しを行う技術が知られていた。
[0040] これに対し、ベンド管の溶接金属の靱性の確保が非常に難しいこと、及び、ベンド 管の腹側における降伏強度が低下することを、いずれも改善するために、焼入れ後 に低温での焼戻し、すなわち時効処理を行う点に、大きな特徴がある。
[0041] 一般に、鋼は 500°C以上 650°C未満の高温域で焼戻すことにより高い靭性を得ら れる。この温度域では、閉じ込められた転位が自由に動くことができるためであり、こ れに起因した強度の低下を解決するために、低炭素鋼では必ず起こるセメンタイトの 析出のみでは十分に転位をピンユングすることができないので、 V、 Nb、 Mo等の炭 化物の析出をも利用して転位の動きを抑制し、これにより、強度を確保する。これらの 炭化物の析出は、 500°C以上 650°C未満の高温域でないと生じない。つまり、このよ うな高温域での焼戻しは、組織を微細なフェライトとし、高靭性を得るとともに強度を 確保することを目的とする。
[0042] これに対し、本発明における焼戻し温度は、 300°C以上 500°C以下の低温域であ る。この低温域では、転位はそれほど自由に動くことができなレ、。このため、転位はセ メンタイトのみで十分にピンエングされるので、特にピンニング作用を奏する析出物を 必要としない。この低温域での焼戻しを行うことにより、引張強度を殆ど低下させるこ となく降伏強度のみ上昇させることができる。つまり、本発明では、適正な成分系を用 レ、てベンド素管の強度を高めることにより、大幅なコスト上昇を伴うことなぐベンド管 の性能を確保することができる。
[0043] なお、焼戻し温度が 500°C近傍であるとベンド管の性能が多少劣化する傾向が見 られるので、ベンド管の性能を確実に保証するために、焼戻し温度を 300°C以上 45 0°C以下とすることが望ましい。
[0044] このように、本発明における焼戻しの目的は、従前の発明における高温域での焼戻 しの目的とは全く相違するものである。 次に、焼戻し温度を低温化することによる作用効果を、本発明者等が行った基礎実 験を参照しながら、さらに具体的に説明する。
[0045] 基礎実験として、曲げ力卩ェを行わずに直線加熱を下記条件で行った直管を用いて 、 4水準の焼戻し温度で焼戻しを行った。なお、直線加熱試験は、曲げ管の製造に 比較すると、比較的安価かつ容易に行うことができる試験であり、焼戻し温度の相違 による管の性能評価を行うには、非常に重要かつ有用な基礎試験である。
[0046] この試験に用いた直管の寸法は、外径 1016mm、肉厚 20mmの鋼管である。この 鋼管及び溶接金属の成分を表 1にまとめて示す。また、その鋼管の諸性能を表 2にま とめて示す。
[0047] [表 1]
Figure imgf000014_0001
[0048] [表 2]
Figure imgf000014_0002
SA: Shear Area(:延性破面率)を表す。 ' : -20
[0049] 表 2に示すように、母材に関しては、ノイブ周方向で引張強度 TS : 641MPa、降伏 強度 YS : 583MPa、降伏比 YR: 91. 0%であり、さらに、靭性は、シャルピー試験温 度— 20°Cの吸収エネルギー vE : 289Jである。一方、溶接金属の靭性は、シャノレ ピー試験温度一 20°Cの吸収エネルギー vE : 123Jであり、溶接熱影響部の靱性 は、シャルピー試験温度 20°Cの吸収エネルギー vE : 206Jである。
20
[0050] 以上の性能を有する鋼管を 1000°Cに加熱し、板厚方向中心位置で 13。C/秒とな る冷却速度で 300°C以下の温度まで水冷し、その後常温まで放冷した。
その後、表 3に示すように、焼戻し無しと 4水準の焼戻し温度(300°C、 400。C、 500 °C又は 550°C)で直線加熱試験を行った。それぞれの焼戻し温度での保持時間は、 1時間 /1インチ(25. 4mm)を基準としたため、 20mm厚の本材料を各焼戻し温度 に約 47分間保持した。
[0051] 表 3に、母材の強度、靭性、さらには溶接金属の靭性、溶接熱影響部の靭性を、そ れぞれ APIで定められている板状の引張り試験片を用いて、また靭性は、 lOmm X 10mmの 2mm Vノッチシャルピー試験片を用いて、常温の試験温度で測定した結果 を、あわせて示す。
[0052] [表 3]
Figure imgf000015_0001
[0053] 表 2、 3より、焼入れ直後の引張り強度 TSは、焼入れ前のベンド素管の引張り強度 TSよりも約 30MPa低下し、降伏強度 YSは極端に低下することが分かる。
この焼入れ材を、 500°Cを超えない低温域で焼戻すことにより、降伏強度 YSは非 常に大きく上昇するとともに、母材の引張強度及び靭性は、いずれも、高性能を保持 しており、同時に溶接金属の靭性も、 _ 20°Cにおける目標の延性破面率(Shear A rea) SA を確保でき、高水準を維持できることがわかる。
- 20
[0054] このように、低温域での焼戻しを行う本発明の方法は、ベンド管を目標性能にコント ロールするために非常に有効な方法である。つまり、適正な組成を有する溶接鋼管 を熱間で曲げ加工してベンド管を製造する場合には、特に焼戻し温度がベンド管の 性能を大きく左右する。
[0055] 従前のように、 500°C超の高温域で焼戻しをすると、母材の靭性は回復するものの 、溶接金属の靭性が劣化し、さらに、母材の強度も低下する。つまり、従来の製造ェ 程により最終製品であるベンド管の強度を確保するには、このような曲げ加工工程で の強度降下分を補うために、この強度降下分を見込んでベンド管の素材である溶接 鋼管(直管)の強度を高めておく必要があり、製造コストの点で極めて不利なものであ る。 [0056] これに対し、本発明では、従来法とは異なり、溶接鋼管に 900°C以上 1100°C以下 の熱間で曲げ成形を行ってベンド管とした後、焼入れし、その後、 350°C以上 500°C 以下の低温域で焼戻すことにより、特にベンド管の課題である、溶接金属の靭性低 下とベンド部の腹側の降伏強度の低下とを、ともに解決できる。
[0057] 従前の発明では、特に曲げカ卩ェ後に最も降伏強度が低下する腹側の強度に着目 する発明はなぐ実際にはパイプの最終評価試験として実施される、ベンド部の腹側 の性能を考慮していない。これに対し、本発明では、低温での焼戻し処理を行うこと により、これらの課題を同時に解決することができる。
[0058] 実際のベンド管にぉレ、てベンド部の腹側 (圧縮変形側)でも API規格 5LX70ダレ ードを満足するため、素材の溶接鋼管の引張強度は、 485MPa (API規格 X70ダレ ードでの降伏強度の下限値) /0. 78% (ベンド部腹側の降伏比の最小値) = 621M Pa以上とすればよい。これに対し、焼き入れままで製造される従前のベンド管では、 焼戻し処理を行わないので降伏強度が非常に低くなるため、素材の溶接鋼管は本 実施の形態の値よりも遥かに高い引張強度を有する必要がある。さらに、 500°C以上 の高温焼戻しを行って製造されるベンド管では降伏強度は上昇するものの引張強度 が大きく減少するため、この場合も溶接鋼管の引張強度を上記の値より遥かに高くす る必要がある。従前のいずれの発明によっても、素材の溶接鋼管の強度をかなり高 める必要があり、製造コストの点で極めて不利である。
[0059] 上記のベンド部の腹側の降伏比最小値は、ベンド管の成分、熱処理温度、強度さ らにはベンド曲げ力卩ェ度等により左右されるために一義的に求めることは困難である 、過去の製造実績を基に予想される降伏比最小値を用い、溶接鋼管の母材の引 張強度の目標値を設定するようにすればよい。さらに、ベンド管の熱処理工程での冷 却速度が、溶接鋼管の素材である鋼板を製造する際の冷却速度よりも小さくなる場 合には、溶接鋼管の狙いの引張り強度を冷却速度の違いに見合って高く設定するこ とが望ましい。
[0060] つまり、本実施の形態では、溶接鋼管の引張強度を、 API規格 X70グレードでのべ ンド管の降伏強度の下限値を、ベンド部の腹側の降伏比の最小値により除した値以 上とし、さらに、ベンド管の熱処理での冷却速度を考慮して製造した上で、この溶接 鋼管に対して曲げ加工を行う。
実施例 1
[0061] 本発明を、実施例を参照しながらより具体的に説明する。
4に示す組成、炭素当量 Ceq及び溶接割れ感受性指数 Pcmを有する母材と、同 じく表 4に示す溶接割れ感受性指数 Pcm、 B量及び〇量を有する溶接金属とを有す る UOE鋼管を、表 4に示す加熱温度に加熱して曲げ力卩ェを行った。なお、 U〇E鋼 管の溶接は、表 4に示す塩基度を有するとともにボロンを含まない高塩基度フラックス を用いたシーム溶接により、行った。
[0062] [表 4]
Figure imgf000018_0001
06£90/L00ZdT/13d 91 L£LL00/800Z OAV [0063] 曲げ加工後直ちに表 4に示す冷却速度で、 300°C以下の温度域まで鋼管を冷却し 、その後表 4に示す焼戻し温度で焼戻すことにより、ベンド管を製造した。
表 4における「冷却速度」とは、管の肉厚方向の中央部での冷却速度を示し、「焼戻 し温度」も同様に管の肉厚方向の中央部における温度を示す。
[0064] 本実施例では、焼戻し処理時間は、 1時間 /1インチ(25. 4mm)を基準とし、 60 分 X 20mmZ25. 4mm=47分間とした。
他の肉厚のベンド管を製造する場合も上記の基準を採用して行うことが望ましい。 焼戻し時間を規定する理由は、過度の焼戻し時間では生産性の低下が著しいが、内 部まで均一に焼戻しの効果を得るには、最低必要時間が存在するためである。した がって、この基準で計算された保持時間に対して ± 20%までを、適正な焼戻し時間 とすることが望ましい。
[0065] 得られたベンド管のベンド部の腹側の性能 (YS、 TS、 YR、 vE )、溶接金属の性
-20
能 (vE 、 SA )、及び溶接熱影響部の性能 (vE 、 SA )を測定した。結果を
- 20 - 20 - 20 - 20
表 5にまとめて示す。
[0066] [表 5]
Figure imgf000020_0001
表 4 5における試料 No.1 12 13 16 18 19及び 2:! 31は、本究明力 S規定 する条件を全て満足する本発明例である。これに対し、試料 No.2-11, 14 15 1 7及び 20は、成分又は製造条件の少なくとも一つが、本発明で規定する条件を満足 しない比較例である。
[0068] 本実施例では、ベンド部の腹側の強度及び靭性、ベンド部の溶接金属での靭性、 及びベンド部の溶接熱影響部での靭性について、以下のように目標値を設定した。 すなわち、ベンド部の腹側の強度及び靭性は、現在 API規格 5LX70グレードで規 定されている値(YS : 485MPa以上、 TS : 570MPa以上、 YR: 93. 0%以下、)とし 、ベンド部の母材、溶接金属及び溶接熱影響部のシャルピー試験での— 20°Cの吸 収エネルギー vE は、脆性破壊を防止するとレ、う観点から、それぞれ 84J以上、 48J
- 20
以上、 48J以上と設定した。
[0069] 表 4及び表 5力も、本発明例である試料 No. 1、 12、 13、 16、 18、 19及び 21〜31 は、 目標とする性能を十分に満足することができるのに対し、比較例である試料 No.
2-11 , 14、 15、 17及び 20は、 目標とする性能を満足することができなかった。
[0070] 表 4、 5に示す結果から、ベンド素管の加熱温度は、製造のバラツキを考慮すると 9
50°C以上 1100°C以下とすることが望ましい。同様に、冷却速度は、 5°C/秒以上と することが望ましぐ焼戻し温度も 500°C近傍で劣化する傾向が見られるので、 300
°C以上 450°C以下とすることが望ましい。

Claims

請求の範囲
[1] 溶接鋼管に曲げ加工を行って製造され、該曲げ加工後に 3°CZ秒以上の冷却速 度で 300°C以下の温度域まで冷却し、その後 300〜500°Cの温度域で焼戻すことに より得られる焼入れ焼戻し組織を有するベンド管であって、
母材力 質量0 /0で、 C:0.03〜0.12%、 Si:0.05〜0.50%、 Mn:l.4〜2.2 %、 S:0.0050。/。以下、 A1:0.06。/。以下、 N:0.0070%以下、残部 Fe及び不純 物である組成を有し、(1)式により規定される炭素当量 (Ceq)が 0.36%以上である とともに(2)式により規定される溶接割れ感受性指数 (Pcm)が 0.22%以下であり、 かつ
溶接金属が、(2)式により規定される溶接割れ感受性指数 (Pcm)が 0.30%以下 であり、 B量が 5ppm以下であるとともに酸素量が 300ppm以下であること
を特徴とするノ
Mn Cr+Mo + V C + Ni (ι)
Si Mn Cu Ni Cr Mo V
Prm =C + +— + B
30 20 20 60 20 15 10
(2)
[2] 母材が、さらに、質量%で、 Cu:l.0%以下、 Ni:2.0%以下、 Cr:l.0%以下、 M o:l.0%以下、 Nb:0.1%以下、 V:0.1%以下、又は Ti:0.03%以下から選ばれ た一種または二種以上を含有する請求項 1に記載されたベンド管。
[3] 母材が、さらに、 B:0.0030質量%以下を含有する請求項 1又は請求項 2に記載さ れたベンド管。
[4] 母材が、さらに、 Ca:0.005質量%以下を含有する請求項 1から請求項 3までのい ずれか 1項に記載されたベンド管。
[5] 下記の条件を満足する母材及び溶接金属を備える溶接鋼管を、 900〜: 1100°Cの 温度域に加熱して曲げ加工した後、直ちに 3°C/秒以上の冷却速度で 300°C以下 の温度域まで冷却し、その後 300〜500°Cの温度域で焼戻すことを特徴とするベン ド管の製造方法。 母材:質量0 /0で、 C:0.03 0.12% Si:0.05 0.50% Mn:l.4 2.2% S :0.0050%以下、 A1:0.06%以下、 N:0.0070%以下、残部 Fe及び不純物であ る組成を有し、(1)式により規定される炭素当量 (Ceq)が 0.36%以上であるとともに (2)式により規定される溶接割れ感受性指数 (Pcm)が 0.22%以下であること、 溶接金属:(2)式により規定される溶接割れ感受性指数 (Pcm)が 0.30%以下であ り、 B量が 5ppm以下であるとともに酸素量が 300ppm以下であること
Mn Cr+Mo + V Cu+Ni (1)
π „ Si Mn Cu Ni Cr Mo V ^
Pcm =C +— +— +— +— +— +— +— + B
30 20 20 60 20 15 10
(2)
[6] 母材が、さらに、質量%で、 Cu:l.0%以下、 Ni:2.0%以下、 Cr:l.0%以下、 M o:l.0%以下、 Nb:0.1%以下、 V:0.1%以下、又は Ti:0.03%以下から選ばれ た一種または二種以上を含有する請求項 5に記載されたベンド管の製造方法。
[7] 母材が、さらに、 B:0.0030質量%以下を含有する請求項 5又は請求項 6に記載さ れたベンド管の製造方法。
[8] 母材が、さらに、 Ca:0.005質量%以下を含有する請求項 5から請求項 7までのい ずれか 1項に記載されたベンド管の製造方法。
[9] 前記溶接鋼管は、 UOE鋼管、若しくはロールベンディング溶接鋼管である請求項 5 力 請求項 8までのいずれ力 1項に記載されたベンド管の製造方法。
PCT/JP2007/063904 2006-07-13 2007-07-12 Tuyau coudé et son procédé de fabrication WO2008007737A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008524838A JP5200932B2 (ja) 2006-07-13 2007-07-12 ベンド管及びその製造方法
CA2657518A CA2657518C (en) 2006-07-13 2007-07-12 Hot bend pipe and a process for its manufacture
KR1020097002979A KR101111023B1 (ko) 2006-07-13 2007-07-12 벤드관 및 그 제조 방법
EP07790698A EP2045348B1 (en) 2006-07-13 2007-07-12 Bend pipe and process for producing the same
CN2007800338995A CN101517113B (zh) 2006-07-13 2007-07-12 弯管及其制造方法
US12/318,882 US7770428B2 (en) 2006-07-13 2009-01-12 Hot bend pipe and a process for its manufacture
NO20090191A NO341657B1 (no) 2006-07-13 2009-01-13 Fremgangsmåte for fremstilling av varmbøyerør

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-192839 2006-07-13
JP2006192839 2006-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/318,882 Continuation US7770428B2 (en) 2006-07-13 2009-01-12 Hot bend pipe and a process for its manufacture

Publications (1)

Publication Number Publication Date
WO2008007737A1 true WO2008007737A1 (fr) 2008-01-17

Family

ID=38923293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063904 WO2008007737A1 (fr) 2006-07-13 2007-07-12 Tuyau coudé et son procédé de fabrication

Country Status (9)

Country Link
US (1) US7770428B2 (ja)
EP (1) EP2045348B1 (ja)
JP (2) JP5200932B2 (ja)
KR (1) KR101111023B1 (ja)
CN (1) CN101517113B (ja)
CA (1) CA2657518C (ja)
NO (1) NO341657B1 (ja)
RU (1) RU2404280C2 (ja)
WO (1) WO2008007737A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202167A (ja) * 2008-02-26 2009-09-10 Jfe Steel Corp 溶接熱影響部靭性に優れた溶接鋼管
WO2015132521A1 (fr) 2014-03-04 2015-09-11 Jean-Marc Scherrer Ensemble d'absorption acoustique a hautes et basses frequences
WO2016056514A1 (ja) * 2014-10-08 2016-04-14 新日鐵住金株式会社 高強度と優れた化成処理性を有する熱処理鋼製品及びその製造方法
EP2264203A4 (en) * 2008-03-26 2016-06-01 Nippon Steel & Sumitomo Metal Corp HIGH-RESISTANCE UOE STEEL TUBE WITH EXCELLENT ANTISEISM PERFORMANCE CHARACTERISTICS AND EXCELLENT LOW TEMPERATURE STRENGTH UNDER THE INFLUENCE OF WELDER HEAT
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
WO2018216638A1 (ja) 2017-05-22 2018-11-29 新日鐵住金株式会社 ベンド鋼管およびその製造方法
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139639A1 (ja) * 2007-05-16 2008-11-20 Sumitomo Metal Industries, Ltd. ベンド管及びその製造方法
US20100136369A1 (en) * 2008-11-18 2010-06-03 Raghavan Ayer High strength and toughness steel structures by friction stir welding
CN102191430A (zh) * 2010-03-19 2011-09-21 宝山钢铁股份有限公司 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN102409251A (zh) * 2010-09-21 2012-04-11 鞍钢股份有限公司 610MPa级低焊接裂纹敏感性特厚钢板及其制造方法
IT1404267B1 (it) 2011-02-18 2013-11-15 Sistemi Sospensioni Spa Procedimento per la fabbricazione di componenti in lamiera di acciaio altoresistenziale sottoposti nell'uso a sollecitazioni di fatica, in particolare componenti per sospensioni di veicolo
CN102242323A (zh) * 2011-08-25 2011-11-16 中国石油集团渤海石油装备制造有限公司 一种x80钢及其所制耐低温管件和管件的制造方法
CN102383057A (zh) * 2011-10-26 2012-03-21 中国石油集团渤海石油装备制造有限公司 耐低温k60管线钢及其所制弯管和弯管的制作方法
CN102373387B (zh) * 2011-11-02 2013-05-22 武汉钢铁(集团)公司 大应变冷弯管用钢板及其制造方法
JP5516659B2 (ja) * 2012-06-28 2014-06-11 Jfeスチール株式会社 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
RU2525874C2 (ru) * 2012-12-19 2014-08-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Трубная сталь
CN103981463A (zh) * 2014-05-30 2014-08-13 秦皇岛首秦金属材料有限公司 一种韧性优良的x70弯管用热轧平板及其生产方法
CN104513937A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 一种屈服强度800MPa级别高强钢及其生产方法
US20160281188A1 (en) * 2015-03-27 2016-09-29 Tenaris Coiled Tubes, Llc Heat treated coiled tubing
CN106319390B (zh) * 2015-06-16 2018-02-27 鞍钢股份有限公司 一种x70抗大变形管线钢及制造方法
GB2548175B (en) * 2016-03-09 2018-10-03 Goodwin Plc A steel, a welding consumable and a cast steel product
CN107099745B (zh) * 2017-04-01 2019-12-27 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
RU2019131168A (ru) * 2017-04-04 2021-05-05 Ниппон Стил Корпорейшн Стальная труба с продольным сварным швом
CN107893200A (zh) * 2017-10-23 2018-04-10 扬州市管件厂有限公司 耐低温大口径弯管及其制造方法
CN108048747A (zh) * 2018-01-30 2018-05-18 四川石油天然气建设工程有限责任公司 一种高钢级弯管及制备方法
KR20200136722A (ko) * 2019-05-28 2020-12-08 현대자동차주식회사 차체 멤버 성형방법
CN114871699B (zh) * 2022-05-26 2023-11-24 中南大学 一种带焊接接头的高强韧性x70管线钢弯管

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151545A (ja) 1985-12-25 1987-07-06 Kawasaki Steel Corp 厚肉高強度低PcM曲管とその製造方法
JPH04154913A (ja) * 1990-10-15 1992-05-27 Sumitomo Metal Ind Ltd 耐食性に優れた高張力ベンド管の製造方法
JPH073330A (ja) * 1993-06-18 1995-01-06 Nkk Corp 耐食性に優れた高張力高靭性曲がり管の製造方法
JPH0790375A (ja) 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd 高強度、厚肉、高靱性ベンド鋼管の製造方法
JPH0892649A (ja) * 1994-07-27 1996-04-09 Kawasaki Steel Corp 高強度熱間ベンド鋼管の製造方法
JPH09295067A (ja) 1996-05-02 1997-11-18 Nippon Steel Corp 優れた溶接金属部靱性を有する高強度ベンド管の製造法
JP2001340990A (ja) * 2000-03-31 2001-12-11 Kawasaki Steel Corp 溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管およびその製造方法
JP2001342545A (ja) * 2000-03-31 2001-12-14 Kawasaki Steel Corp 溶接部靱性に優れた高強度溶接ベンド鋼管用の素管およびその製造方法
JP2004332083A (ja) 2003-05-12 2004-11-25 Nippon Steel Corp 低温靭性の優れた高強度ベンド管の製造法
JP2005350724A (ja) * 2004-06-10 2005-12-22 Sumitomo Metal Ind Ltd 低温靱性に優れた超高強度ベンド管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846748B2 (ja) 1991-04-24 1999-01-13 日東電工株式会社 半導体装置
JP3726721B2 (ja) * 2001-07-16 2005-12-14 住友金属工業株式会社 耐低温割れ性に優れた高強度溶接金属部とその形成方法
JP3927056B2 (ja) * 2002-03-20 2007-06-06 Jfeスチール株式会社 高強度高靭性ベンド管の製造方法
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP4254483B2 (ja) * 2002-11-06 2009-04-15 東京電力株式会社 長寿命な耐熱低合金鋼溶接部材及びその製造方法
WO2005052205A1 (ja) * 2003-11-27 2005-06-09 Sumitomo Metal Industries, Ltd. 溶接部靭性に優れた高張力鋼および海洋構造物
JP4207843B2 (ja) * 2004-05-18 2009-01-14 住友金属工業株式会社 鉄骨構造部材用鋼材の使用方法及び鉄骨構造物
WO2008139639A1 (ja) * 2007-05-16 2008-11-20 Sumitomo Metal Industries, Ltd. ベンド管及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151545A (ja) 1985-12-25 1987-07-06 Kawasaki Steel Corp 厚肉高強度低PcM曲管とその製造方法
JPH0567699B2 (ja) 1985-12-25 1993-09-27 Kawasaki Steel Co
JPH04154913A (ja) * 1990-10-15 1992-05-27 Sumitomo Metal Ind Ltd 耐食性に優れた高張力ベンド管の製造方法
JPH073330A (ja) * 1993-06-18 1995-01-06 Nkk Corp 耐食性に優れた高張力高靭性曲がり管の製造方法
JPH0790375A (ja) 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd 高強度、厚肉、高靱性ベンド鋼管の製造方法
JPH0892649A (ja) * 1994-07-27 1996-04-09 Kawasaki Steel Corp 高強度熱間ベンド鋼管の製造方法
JPH09295067A (ja) 1996-05-02 1997-11-18 Nippon Steel Corp 優れた溶接金属部靱性を有する高強度ベンド管の製造法
JP2001340990A (ja) * 2000-03-31 2001-12-11 Kawasaki Steel Corp 溶接部靱性に優れた高強度厚肉溶接ベンド鋼管用の素管およびその製造方法
JP2001342545A (ja) * 2000-03-31 2001-12-14 Kawasaki Steel Corp 溶接部靱性に優れた高強度溶接ベンド鋼管用の素管およびその製造方法
JP2004332083A (ja) 2003-05-12 2004-11-25 Nippon Steel Corp 低温靭性の優れた高強度ベンド管の製造法
JP2005350724A (ja) * 2004-06-10 2005-12-22 Sumitomo Metal Ind Ltd 低温靱性に優れた超高強度ベンド管

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202167A (ja) * 2008-02-26 2009-09-10 Jfe Steel Corp 溶接熱影響部靭性に優れた溶接鋼管
EP2264203A4 (en) * 2008-03-26 2016-06-01 Nippon Steel & Sumitomo Metal Corp HIGH-RESISTANCE UOE STEEL TUBE WITH EXCELLENT ANTISEISM PERFORMANCE CHARACTERISTICS AND EXCELLENT LOW TEMPERATURE STRENGTH UNDER THE INFLUENCE OF WELDER HEAT
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
WO2015132521A1 (fr) 2014-03-04 2015-09-11 Jean-Marc Scherrer Ensemble d'absorption acoustique a hautes et basses frequences
JP6008066B2 (ja) * 2014-10-08 2016-10-19 新日鐵住金株式会社 高強度と優れた化成処理性を有する熱処理鋼製品及びその製造方法
US10370735B2 (en) 2014-10-08 2019-08-06 Nippon Steel Corporation Heat treated steel product having high strength and excellent chemical conversion coating ability and method of production of same
WO2016056514A1 (ja) * 2014-10-08 2016-04-14 新日鐵住金株式会社 高強度と優れた化成処理性を有する熱処理鋼製品及びその製造方法
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
WO2018216638A1 (ja) 2017-05-22 2018-11-29 新日鐵住金株式会社 ベンド鋼管およびその製造方法

Also Published As

Publication number Publication date
EP2045348A4 (en) 2011-05-11
CN101517113B (zh) 2011-05-25
JP2013040405A (ja) 2013-02-28
NO20090191L (no) 2009-02-06
US20090199612A1 (en) 2009-08-13
RU2404280C2 (ru) 2010-11-20
KR20090043517A (ko) 2009-05-06
JPWO2008007737A1 (ja) 2009-12-10
EP2045348B1 (en) 2013-03-13
CN101517113A (zh) 2009-08-26
EP2045348A1 (en) 2009-04-08
KR101111023B1 (ko) 2012-02-13
RU2009104936A (ru) 2010-08-20
JP5200932B2 (ja) 2013-06-05
NO341657B1 (no) 2017-12-18
CA2657518A1 (en) 2008-01-17
CA2657518C (en) 2014-01-28
US7770428B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
WO2008007737A1 (fr) Tuyau coudé et son procédé de fabrication
RU2623551C2 (ru) Высокопрочная листовая сталь, имеющая низкое отношение предела текучести к пределу прочности, превосходная с точки зрения устойчивости к последеформационному старению, способ ее производства и изготавливаемая из нее высокопрочная сварная стальная труба
KR101231270B1 (ko) 내좌굴성능 및 용접열 영향부 인성이 우수한 저온용 고강도 강관 및 그 제조 방법
JP5131411B2 (ja) 油井用電縫鋼管及び油井用電縫鋼管の製造方法
CA2687436C (en) Bent pipe and a method for its manufacture
JP4484123B2 (ja) 高強度かつ溶接熱影響部靭性に優れたクラッド鋼板用母材およびその製造方法
JP2013204103A (ja) 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP4655670B2 (ja) 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
JP4696570B2 (ja) 耐水素脆性特性に優れた高張力鋼材の製造方法
US20070240794A1 (en) Ultrahigh strength UOE steel pipe and a process for its manufacture
KR20150088320A (ko) 인장 강도 540 ㎫ 이상의 고강도 라인 파이프용 열연 강판
JPH05186823A (ja) 高靱性Cu含有高張力鋼の製造方法
JP3290247B2 (ja) 耐食性に優れた高張力高靭性曲がり管の製造方法
JP5028761B2 (ja) 高強度溶接鋼管の製造方法
JP3654194B2 (ja) 耐歪み時効特性に優れた高強度鋼材とその製造方法
JP4193308B2 (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管
JP3661510B2 (ja) 耐歪み時効特性に優れた高強度厚鋼板及びその製造方法
JP2006183127A (ja) 高強度溶接鋼管の製造方法
JP2010046681A (ja) ラインパイプ用高強度厚肉電縫鋼管の製造方法
JP2001049384A (ja) 溶接部靭性に優れた高張力鋼及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033899.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524838

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2657518

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007790698

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009104936

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097002979

Country of ref document: KR