WO2008001908A1 - Gyro-capteur d'oscillations - Google Patents

Gyro-capteur d'oscillations Download PDF

Info

Publication number
WO2008001908A1
WO2008001908A1 PCT/JP2007/063160 JP2007063160W WO2008001908A1 WO 2008001908 A1 WO2008001908 A1 WO 2008001908A1 JP 2007063160 W JP2007063160 W JP 2007063160W WO 2008001908 A1 WO2008001908 A1 WO 2008001908A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
support substrate
gyro sensor
substrate
type gyro
Prior art date
Application number
PCT/JP2007/063160
Other languages
English (en)
French (fr)
Inventor
Eiji Nakashio
Shigeto Watanabe
Shin Sasaki
Teruo Inaguma
Junichi Honda
Kazuo Kurihara
Yuji Shishido
Tomoyuki Takahashi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006182745A external-priority patent/JP2008014633A/ja
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP07767944A priority Critical patent/EP2040033A1/en
Priority to US12/306,860 priority patent/US20090320593A1/en
Publication of WO2008001908A1 publication Critical patent/WO2008001908A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5663Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present invention relates to a vibration type gyro sensor used for, for example, camera shake detection, motion detection in a virtual reality device, direction detection in a car navigation system, and the like.
  • a cantilever vibrator is vibrated at a predetermined resonance frequency, and the Coriolis caused by the influence of the angular velocity is detected by a piezoelectric element or the like to detect the angular velocity.
  • V a loose vibration type gyro sensor (hereinafter referred to as “vibration type gyro sensor”) is widely used.
  • a vibration-type gyro sensor has a simple mechanism, a short time, a start-up time, and can be manufactured at low cost! /.
  • a video camera, a virtual reality device, a car navigation system, etc. It is installed in electronic devices and is used as a sensor for hand shake detection, motion detection, and direction detection.
  • the vibration type gyro sensor is required to have a small size and a high performance as the electronic equipment to be mounted is reduced in size and performance.
  • MEMS Micro-Electro-Mechanical System
  • Si silicon
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vibration type gyro sensor capable of stabilizing vibration characteristics without being affected by distortion or vibration.
  • the vibration-type gyro sensor of the present invention includes a vibration element that detects an angular velocity, a support substrate that is electrically connected to the vibration element and supports the vibration element, and the support substrate and the electric circuit. And a relay board having external connection terminals, and a buffer member disposed between the support board and the relay board.
  • the buffer member can be formed of an elastic member such as a panel or rubber that elastically supports the support substrate with respect to the relay substrate.
  • an elastic member such as a panel or rubber that elastically supports the support substrate with respect to the relay substrate.
  • the buffer member has a configuration that also serves as a wiring member that electrically connects the support substrate and the relay substrate, so that the number of components can be reduced.
  • the buffer member include a metal panel, a flexible wiring board, a conductive paste having a relatively high elastic deformability, and an anisotropic conductive film.
  • FIG. 1 is a side sectional view showing a schematic configuration of a vibration type gyro sensor according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a support substrate in the vibration type gyro sensor shown in FIG.
  • FIG. 3 is a plan view of the vibration type gyro sensor shown in FIG. 1 with the cap member removed.
  • FIG. 4 is a back view for explaining the configuration of the vibration element that constitutes the vibration type gyro sensor shown in FIG. 1.
  • FIG. 4 is a back view for explaining the configuration of the vibration element that constitutes the vibration type gyro sensor shown in FIG. 1.
  • FIG. 5 is a side cross-sectional view of another gyro sensor described in comparison with the vibration type gyro sensor shown in FIG. 1.
  • FIG. 6 is an experimental result showing the load offset voltage characteristics of the vibration type gyro sensor of the comparative example shown in FIG.
  • FIG. 7 is an experimental result showing load offset voltage characteristics of the vibration type gyro sensor of the present invention shown in FIG.
  • a diagram for explaining a proximity noise evaluation method of a vibration type gyro sensor in which A is a side sectional view and B is a plan view.
  • FIG. 9 is an experimental result showing the proximity noise characteristics of the vibration type gyro sensor of the comparative example shown in FIG.
  • FIG. 11 is an experimental result showing the relationship between the resonance frequency of the buffer member and the offset voltage fluctuation amount of the vibration element in the vibration type gyro sensor shown in FIG.
  • FIG. 13 is a model diagram and a result of an experiment for explaining the relationship between the horizontal distance of the main part of the panel member and the resonance frequency in the vibration type gyro sensor shown in FIG.
  • FIG. 14 is a schematic sectional side view showing a modification of the configuration of the joint portion between the panel member and the support substrate in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 15 is an enlarged view showing a modification of the main configuration of FIG.
  • FIG. 16 is an experimental result showing the relationship between the area of the support substrate and the Q value of the vibration element in the vibration type gyro sensor shown in FIG.
  • FIG. 17 is a diagram for explaining an arrangement example of panel members in the vibration type gyro sensor shown in FIG. FIG.
  • FIG. 18 is a diagram showing the relationship between the strain application direction and the output fluctuation voltage for each arrangement configuration of the panel members in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 18 is a diagram showing data obtained when the position and position of the support substrate are changed.
  • FIG. 20 is a plan view of relevant parts for explaining another arrangement example of the panel member in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 20 is a plan view of relevant parts for explaining another arrangement example of the panel member in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 21 is a diagram showing the relationship between the center-of-gravity distance of the support substrate and the output noise.
  • FIG. 22 is a view showing a modification of the arrangement example of the panel members shown in FIG.
  • FIG. 23 is a schematic plan view of another support substrate having a different component mounting form from the support substrate shown in FIG.
  • FIG. 24 is a view for explaining an exemplary arrangement of panel members suitable for the support substrate shown in FIG.
  • 25 is a schematic sectional side view showing a modification of the configuration of the cap member in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 26 is an overall perspective view showing another modified example of the configuration of the cap member in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 27 is a cross-sectional view of the support substrate of the vibration-type gyro sensor shown in FIG. 26, showing the relationship between the cap member and the component mounting surface side.
  • FIG. 28 is an overall perspective view showing still another modified example of the configuration of the cap member in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 29 is a sectional side view of the main part showing the relationship between the support substrate and the cap member of the vibration gyro sensor shown in FIG. 28.
  • FIG. 30 is a side cross-sectional view showing, in an enlarged manner, a configuration of a joint portion between a panel member, a support substrate, and a relay substrate in the vibration type gyro sensor shown in FIG. 1.
  • FIG. 31 is a schematic plan view of the joint shown in FIG. 30.
  • FIG. 32 is a cross-sectional view showing a configuration example of the panel member shown in FIG. 30.
  • Panel member, support substrate and relay base in the vibration type gyro sensor shown in FIG. It is a sectional side view which shows the modification of a structure of the junction part between plates.
  • FIG. 34 is a schematic plan view of the joint shown in FIG. 33.
  • FIG. 35 is a diagram showing the relationship between the thickness of the support substrate and the mechanical quality factor Q of the vibration element in the vibration type gyro sensor shown in FIG.
  • FIG. 36 A side sectional view comparing the heights of the vibration type gyro sensor shown in FIG. 1 and the vibration type gyro sensor having the joint structure shown in FIG.
  • FIG. 37 is a schematic sectional side view showing a modified example of the configuration of the vibration gyro sensor having the panel member joint structure shown in FIG. 33.
  • FIG. 38 is a diagram showing the relationship between the length (height) of the panel member and the resonance frequency of the panel member in the vibration type gyro sensor shown in FIG.
  • FIG. 39 is a view showing a modified example of the structure of the joint shown in FIG. 34.
  • FIG. 40 is a schematic sectional side view showing a modification of the configuration of the vibration gyro sensor shown in FIG. 1.
  • FIG. 41 is a schematic side view of a vibration element in the vibration gyro sensor shown in FIG. 1.
  • FIG. 42 is a diagram showing the relationship between the magnitude of the vibration of the base (pedestal) of the vibration element shown in FIG. 41 and the magnitude of the vibration of the support substrate that supports the vibration element.
  • FIG. 43 is a diagram for explaining the magnitude of vibration of the base (pedestal) due to the difference in bump position of the vibration element shown in FIG. 41.
  • FIG. 44 is a schematic sectional side view showing the configuration of the vibration type gyro sensor according to the second embodiment of the present invention.
  • FIG. 45 is a schematic sectional side view showing another configuration of the vibration type gyro sensor according to the second embodiment of the present invention.
  • FIG. 46 is a schematic sectional side view showing the configuration of the vibration-type gyro sensor according to the third embodiment of the present invention.
  • FIG. 47 is a plan sectional view schematically showing another configuration of the vibration-type gyro sensor according to the third embodiment of the present invention.
  • FIG. 48 is a schematic sectional side view showing the configuration of the vibration-type gyro sensor according to the fourth embodiment of the present invention.
  • FIG. 49 is a schematic sectional side view showing another configuration of the vibration gyro sensor according to the fourth embodiment of the present invention.
  • FIG. 50 is a schematic sectional side view showing still another configuration of the vibration type gyro sensor according to the fourth embodiment of the present invention.
  • FIG. 51 is a schematic side cross-sectional view showing a configuration of a vibration gyro sensor according to a fifth embodiment of the present invention.
  • FIG. 1 is a side sectional view schematically showing a configuration of a vibration type gyro sensor 10 according to a first embodiment of the present invention.
  • the vibration-type gyro sensor 10 of the present embodiment includes a pair of vibration elements IX, 1Y, a support substrate 2 that supports these vibration elements IX, 1Y, a support substrate 2, and an electric
  • the relay board 4 having the external connection terminal 3 connected thereto, the buffer board 5 disposed between the support board 2 and the relay board 4 facing in the sensor height direction, and covering the upper surface of the relay board 4 A cap member 6 is provided.
  • the vibration type gyro sensor 10 of the present embodiment is mounted on, for example, a video camera and constitutes a camera shake correction mechanism. Further, the vibration type gyro sensor 10 is used, for example, in a virtual reality device to constitute a motion detector, or is used in a car navigation system to constitute a direction detector.
  • the support substrate 2 is made of, for example, a ceramic substrate or a glass substrate.
  • One main surface (the lower surface in FIG. 1) of the support substrate 2 is a component mounting surface 2A on which a wiring pattern including a plurality of lands on which vibration elements IX and 1Y described later are mounted is formed.
  • the component mounting surface 2A includes a pair of vibration elements IX, 1Y (hereinafter collectively referred to as vibration element 1 unless otherwise described), IC circuit element 7, and a number of ceramic capacitors.
  • Electronic components 8 are mixed. For simplicity, only a part of electronic component 8 is shown in FIG. Show.
  • FIG. 2 is a plan view of the component mounting surface 2A of the support substrate 2 as viewed from above.
  • the support substrate 2 has a quadrangular shape, but, of course, the shape is not limited to this.
  • a predetermined wiring pattern (not shown) is formed on the component mounting surface 2A of the support substrate 2, and the vibration element 1 is flip-chip mounted on the support substrate 2 via bumps 13 (see FIG. 1). ing .
  • the bump 13 also has a gold stud bump force and is ultrasonically bonded to the support substrate 2.
  • the vibration element 1 is electrically connected to the IC circuit element 7 through a wiring pattern on the support substrate 2.
  • the support substrate 2 is configured as a double-sided wiring substrate, and a wiring pattern formed on the component mounting surface 2A is led out to the other surface (upper surface in FIG. 1) of the support substrate 2.
  • FIG. 3 is a plan view of the vibration type gyro sensor 10 shown in FIG. 1 when the cap member 6 is removed.
  • the other surface of the support substrate 2 is a terminal forming surface 2B.
  • a plurality of terminal portions 2t are formed along the periphery of the terminal forming surface 2B.
  • a plurality of shock-absorbing members 5 to be described later are joined to each terminal portion 2t.
  • the relay substrate 4 is composed of, for example, an organic double-sided wiring substrate based on a glass epoxy material.
  • a plurality of external connection terminals 3 are arranged on one surface (the lower surface in FIG. 1) 4A of the relay substrate 4.
  • the vibration type gyro sensor 10 is electrically and mechanically connected to the external control board 9 through these external connection terminals 3.
  • the control board 9 is a wiring board on which input / output wiring for the vibration type gyro sensor 10 is formed, and is mounted on an electronic device such as a digital camera. Not only the vibration type gyro sensor 10 but also other electric / electronic parts are mounted on the control board 9.
  • Various components on the control board 9 are soldered together by being loaded into a reflow furnace, for example.
  • the other surface (upper surface in FIG. 1) 4B of the relay substrate 4 is a terminal forming surface that supports the support substrate 2 and is electrically connected to the support substrate 2.
  • the support substrate 2 is supported on the terminal formation surface 4B of the relay substrate 4 via a plurality of buffer members 5.
  • the shock-absorbing member 5 is made of a conductive material, and in the region on the terminal forming surface 4B in contact with the plurality of shock-absorbing members 5, there is a terminal portion that is in electrical communication with the external connection terminal 3. (Not shown) are formed respectively.
  • the buffer member 5 is composed of a panel member that supports the support substrate 2 with respect to the relay substrate 4 by inertia.
  • the buffer member 5 also serves as a wiring member that electrically connects the support substrate 2 and the relay substrate 4, thereby reducing the number of components.
  • the constituent material of the buffer member 5 is not particularly limited as long as it has panel properties and electrical conductivity, and a metal material is suitable. In particular, in this embodiment, a panel member having a phosphor bronze power is used. In the following description, the buffer member 5 will be referred to as “panel member 5”.
  • the panel member 5 is bonded to the first arm portion 5a bonded to the terminal portion 2t formed on the terminal forming surface 2B of the support substrate 2 and the terminal portion formed on the terminal forming surface 4B of the relay substrate 4.
  • the second arm portion 5b has a U-shape including a first connecting portion 5c that connects the first and second arm portions 5a and 5b.
  • the shape of the panel member 5 is not limited to the U-shape.
  • one of the first and second arm portions 5a and 5b such as L-shape, ⁇ -shape, and I-shape.
  • a shape in which both are omitted may be used.
  • a conductive bonding material such as a conductive paste or solder can be used for the connection between the arm portions 5a, 5b and the terminal portion.
  • an Ag (silver) paste is used for the connection between the arm portions 5a, 5b and the terminal portion.
  • the panel member 5 has a function of attenuating transmission of strain and vibration between the support substrate 2 and the relay substrate 4. Specifically, it has a function to alleviate the distortion transmitted from the relay board 4 side to the support board 2 side and a function to prevent the vibration of the vibration element 1 on the support board 2 from being transmitted to the relay board 4. ing. Accordingly, the panel member 5 is configured to have a vibration system that absorbs the driving frequency of the vibration element 1.
  • the drive resonance frequency of one vibration element IX is 36 kHz
  • the drive resonance frequency of the other vibration element 1Y is 39 kHz.
  • Each panel member 5 is a plate panel made of a phosphor bronze material having a thickness of 50 ⁇ m and a width of 100 ⁇ m, and the resonance frequency thereof is the drive frequency of the vibration elements IX and 1Y as described later. It is set to be 1Z5 or less (in this example, about 7kHz or less).
  • the cap member 6 shields the support substrate 2 supported by the relay substrate 4 and the vibration element 1, IC circuit element 7, electronic component 8, and the like mounted on the support substrate 2 from the outside. belongs to.
  • the side wall portion of the cap member 6 is firmly fixed to the periphery of the terminal forming surface 4B of the relay board by bonding, fitting, or the like.
  • the support substrate 2 By arranging the component mounting surface 2A and the terminal forming surface 4B of the relay board 4 to face each other, the vibration type gyro sensor 10 can be made thinner!
  • the constituent material of the cap member 6 is not particularly limited, but in this embodiment in which at least a part is preferably made of a conductive material in order to have an electromagnetic shielding function, the stainless steel plate or aluminum It consists of a press-formed body of conductive plate material such as a plate.
  • the cap member 6 performs a predetermined electromagnetic shielding function by being connected to a ground terminal on the control board 9.
  • the relay board 4 to which the cap member 6 is attached also has a shielding function.
  • a part of the internal wiring layer of the relay substrate 4 composed of a multilayer substrate is formed in a solid or mesh shape as a shield layer, and this shield layer is connected to the ground potential of the control substrate 9.
  • a similar shield layer may be provided on the support substrate 2 instead of or in addition to the relay substrate 4! /.
  • the noise (final amplifier output) when the shield member was not provided with a shield structure on the cap member and the relay board was from 0.97 to L 02Vp-p.
  • the noise is reduced to 0.17-0.25Vp-p
  • the noise is reduced to 0.02-0.04Vp-p. It has been confirmed that it can be reduced.
  • the shield structure was provided on each of the cap member and the relay board, it could be reduced to 0.02 to 0.03 Vp-p.
  • the cap member 6 has a resonance frequency around the drive resonance frequency of the vibration element 1 so that the vibration of the vibration element 1 is picked up to cause resonance and cause no external distortion or noise. Be configured to be separated by 5kHz or more.
  • the vibration element 1 includes a base portion 11 supported by the support substrate 2 and a cantilever structure vibrator portion 12 that is integrally formed so as to protrude from one side peripheral portion of the base portion 11.
  • Each resonator element IX, 1Y is mounted with its vibrator part 12 oriented in a different direction, and in this embodiment, the vibrator parts 12 are arranged so as to be orthogonal to each other. That is, one vibration element 1 X is arranged with the axial direction of the vibrator section 12 oriented in the X-axis direction, and the other vibration element 1Y is arranged with the axial direction of the vibrator section 12 oriented in the Y-axis direction.
  • FIG. 4 is a back view schematically showing the configuration of the vibration element 1.
  • the vibration element 1 is made of a silicon single crystal, and is manufactured at the same time from a single silicon wafer, and then cut into the element shape shown in the figure.
  • the substrate facing surface 1A of the vibration element 1 facing the component mounting surface 2A of the support substrate 2 has a reference electrode layer 14, a piezoelectric thin film layer 15, a drive electrode 16 and left and right detection electrodes. 17L, 17R, lead wiring portions 18a, 18b, 18c, 18d, etc. are formed, respectively.
  • the reference electrode layer 14 is formed in almost the entire region of the vibrator portion 12 and a partial region of the base portion 11, and is composed of, for example, a sputtered laminated film of Ti (titanium) and Pt (platinum). Yes.
  • the piezoelectric thin film layer 15 is formed in almost the entire region where the reference electrode layer 14 is formed, and is composed of, for example, a sputtered film of PZT (lead zirconate titanate).
  • the drive electrode 16 and the left and right detection electrodes 17L and 17R also have a pattern processing strength of, for example, a Pt sputtered film formed on the piezoelectric thin film layer 15.
  • the drive electrode 16 is formed along the axial direction at the center of the vibrator section 12, and the left and right detection electrodes 17L and 17R are formed at a predetermined interval so as to sandwich the drive electrode 16.
  • Each of the lead wiring portions 18a to 18d is made of, for example, a laminated film of Ti and Cu (copper) patterned on the base portion 11, and includes a reference electrode layer 14, a drive electrode 16 and left and right detection electrodes 17L and 17R. And electrically connect each bump 13! / Speak.
  • the reference electrode layer 14 is connected to a predetermined reference potential (eg, ground potential), and a driving AC voltage of a predetermined voltage is applied to the driving electrode 16 from the IC circuit element 7.
  • a predetermined reference potential eg, ground potential
  • a driving AC voltage of a predetermined voltage is applied to the driving electrode 16 from the IC circuit element 7.
  • the vibrator portion 12 vibrates due to the inverse piezoelectric effect of the piezoelectric thin film layer 15 sandwiched between the reference electrode layer 14 and the drive electrode 16.
  • the detection electrodes 17L and 17R detect a voltage value generated by the piezoelectric effect of the piezoelectric thin film 15 in accordance with the vibration of the vibrator section 12, and supply it to the IC circuit element 7.
  • the outputs from both the detection electrodes 17L and 17R are the same or almost the same.
  • the vibration direction of the vibrator section 12 is changed by Coriolis.
  • one output of the detection electrodes 17L and 17R increases and the other output decreases.
  • the amount of change in either output or both outputs is I Detect and measure with C circuit element 7 to detect the input angular velocity around the longitudinal direction of transducer section 12.
  • the vibration-type gyro sensor 10 allows the angular velocity around the X-axis to be The angular velocity around the Y axis is detected at the same time.
  • the support substrate 2 on which the vibration element 1 is mounted is elastically formed on the relay substrate 4 via the plurality of panel members 5. Since the structure is supported, it is possible to prevent the distortion generated in the relay substrate 4 from being transmitted to the support substrate 2. As a result, for example, the distortion of the relay board 4 that occurs when the vibration type gyro sensor 10 is reflow-soldered on the control board 9 is attenuated by the elastic deformation of the panel member 5, and the vibration element 1 on the support board 2 is attenuated. The vibration characteristics can be stabilized.
  • FIG. 5 shows a configuration of the vibration type gyro sensor 10R in which the support substrate 2 supporting the vibration element 1 is directly mounted on the control substrate 9.
  • parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIGS. 6A and 6B show how the offset voltages of the vibration elements IX and 1Y fluctuate when a load is applied to the other side of the vibration-type gyro sensor 10R that fixes and opposes one side of the side periphery. ing.
  • “out” shows the change in the load direction
  • “return” shows the change in the load removal direction. It has been confirmed that the magnitude of the applied load coincides with the strain stress of the support substrate 2 generated by the mounting.
  • the offset voltage V0 is a drive voltage applied to the drive electrode 16 of the vibration element 1 and means a voltage difference from the reference potential connected to the reference electrode layer. When this offset voltage is constant, the resonator element 1 maintains stable vibration characteristics. In the illustrated example, the vibration elements IX and 1Y Speak.
  • the offset voltage VO greatly fluctuates due to the application of a load with respect to the vibration elements IX and 1Y, and the state of the fluctuation is abrupt. I know that there is. This is because the support substrate 2 is distorted by applying a load. The generated offset propagates to the vibration element 1 and induces deformation of the piezoelectric thin film layer, so that the set offset voltage is considered to fluctuate. In general, in reflow soldering, the substrate is heated to about 250 ° C.
  • the support substrate 2 When the support substrate 2 is directly mounted on the control substrate 9, the support substrate 2 is likely to be distorted due to the influence of the difference in thermal expansion coefficient between the support substrate 2 and the control substrate 9. Therefore, in the configuration of the vibration type gyro sensor 10R shown in FIG. 5, the vibration characteristics of the vibration element 1 change before and after mounting on the control board 9, and the target performance may not be obtained.
  • FIGS. 7A and 7B show measurement results when the load-Vo characteristic similar to that of FIG. 6 is evaluated for the vibration type gyro sensor 10 shown in FIG. As shown in Figs. 7A and 7B, for the vibration elements IX and 1Y, there is almost no variation in the offset voltage V0, and the variation is within ⁇ 50 mV of the set value.
  • the relay board 4 that supports the support board 2 via the buffer member 5 is provided, and the relay board 4 is mounted on the control board 9. ⁇
  • the force that generates distortion in the relay board 4 due to the difference in thermal expansion coefficient with the control board 9 This generated distortion is attenuated by the elastic deformation of the buffer member 5, and is transmitted to the support board 2.
  • the vibration elements IX and 1Y mounted on the support substrate 2 can ensure stable vibration characteristics without being affected by external stress.
  • FIGS. 8A and 8B disturbance noise when the shielding object P is swung above the sensor 10R in a state where the vibration gyro sensor 1 OR shown in FIG. 5 is driven.
  • the shield P uses an aluminum plate, and the surface force of the sensor 10R is also at an upper position separated by a certain distance H.
  • the shield P is swung at about 1 Hz, and the shield P moves the sensor 10R.
  • the maximum value of the noise contained in the output of the sensor 10R when covered was measured.
  • Figure 9 shows the measurement results.
  • the horizontal axis shows the distance H
  • the vertical axis shows the noise magnitude (amplified value).
  • the vibration-type gyro sensor 10R having the configuration shown in FIG. 5 has a structure in which the support substrate 2 that supports the vibration element 1 is directly mounted on the control substrate 9. 2. Propagated to control board 9 via external connection terminal 3. Further, it is considered that the vibration component of the control board 9 propagates to the upper shielding object P and the vibration reflected by the surface of the shielding object P is incident on the vibration element 1 again, so that the vibration component jumps into the sensor output.
  • FIG. 10 shows a measurement result when the noise amount of the vibration type gyro sensor 10 shown in FIG. 1 is evaluated in the same manner as in FIG. As shown in Fig. 10, there is almost no increase in the amount of noise related to the distance H of the shield P.
  • the relay board 4 that supports the support board 2 via the panel member 5 is provided, and the relay board 4 is mounted on the control board 9. This resonance vibration is absorbed by the vibration of the panel member 5, so that the propagation of the vibration to the relay board 4 and the control board 9 is suppressed.
  • FIG. 11 shows the resonance frequency of the panel member 5 in the Z-axis direction perpendicular to the mounting surface of the vibration element 1, and the offset voltage of the vibration element 1 measured as shown in FIGS. 7A and 7B.
  • the set value of Vo shows the relationship with the amount of fluctuation.
  • FIG. 12 shows the relationship between the resonance frequency of the panel member 5 in the Z-axis direction and the proximity noise measured as shown in FIG.
  • the panel member 5 sample used in the experiment was a phosphor bronze panel with a thickness of 50 ⁇ m and a width of 100 ⁇ m.
  • the resonance frequency of 7 kHz or less of the panel member 5 corresponds to 1Z5 or less of the drive frequency of the vibration element 1. Therefore, the resonance frequency of the panel member 5 can be set corresponding to the drive frequency of the vibration element 1.
  • the resonance frequency of the panel member 5 can be set by adjusting the extension length (the length of the connecting portion 5c) when the thickness and width are constant.
  • FIG. 13B shows the relationship between the horizontal distance S of the panel member 5 and its resonance frequency.
  • the horizontal distance S of the panel member 5 roughly matches the shape and growth of the first arm portion 5a of the panel member 5 as shown in FIG. 13A. More specifically, the horizontal distance S of the panel member 5 is joined to the terminal portion 2t as shown in FIG. The distance S between the distal end portion of the first arm portion 5a and the proximal end portion (the end portion on the connecting portion 5c side) of the first arm portion 5a.
  • the resonance frequency of the panel member 5 decreases.
  • the resonance frequency of the panel member 5 needs to be 10 kHz or less in order to avoid the effect of proximity noise due to fluctuations in offset voltage due to propagation of distortion and leakage of vibration.
  • the horizontal distance S is preferably 0.5 mm or more. Note that the above values vary depending on the panel material and panel shape to be selected, so it is necessary to determine the optimum value according to the selected panel.
  • the edge of the support substrate 2 may come into contact with the first arm portion 5a of the panel member 5, and the vibration form of the first arm portion 5a may be changed.
  • a tapered relief portion 51 is formed at the edge of the support substrate 5 to avoid contact between the peripheral portion of the support substrate 2 and the panel member 5 when the sensor is driven. Is effective. Thereby, since the horizontal distance S of the panel member 5 can be secured, a stable distortion attenuation function and vibration attenuation function by the panel member 5 can be obtained, and the product yield can be improved.
  • the taper angle of the relief portion 51 is such that the surface of the support substrate 2 before the relief portion 51 is formed and the panel. It can be adjusted by the clearance between the member 5 and the first arm portion 5a. This clearance is determined by the bonding thickness of a conductive bonding material (for example, silver paste) that fixes between the support substrate 2 and the panel member 5. Specifically, when the clearance is 300 / zm, the taper angle of the escape portion 51 (the angle ⁇ formed by the escape portion 51 and the first arm portion 5a) is, for example, about 15 ° to 30 °. Further, as a method of forming the relief portion 51, it is possible to easily adjust the taper angle of the rotating turret when the support substrate 2 is diced (cut out).
  • a conductive bonding material for example, silver paste
  • the escape portion is not limited to a tapered shape, and may be, for example, a step-like escape portion 52 formed on the surface of the support substrate 2 as shown in FIG. As a result, the same effect as described above can be obtained.
  • the relief portion it is possible to prevent fluctuations in the horizontal distance S of the panel member due to unintended enlargement of the bonding region of the conductive bonding material for fixing the support substrate and the panel member. That is, for example, as shown in FIG. 15, since the escape portion 52 is provided on the edge side of the support substrate 2 from the bonding position of the support substrate 2 and the panel member 5, the application amount of the bonding material 53 is reduced. In many cases, surplus joining material can be accommodated in the recess 52, thereby effectively preventing fluctuations in the horizontal distance S of the panel member 5 due to expansion of the joining area. From the viewpoint of preventing the bonding material 53 from flowing out, the groove is not limited to the step-shaped recess (52) shown in FIG.
  • the support substrate 2 that supports the vibration element 1 can secure a Q value (mechanical quality factor) that is greater than or equal to a certain level at the time of resonance of the vibration element 1. It is necessary to be made of a hard material.
  • a Q value mechanical quality factor
  • FIG. 16 shows the relationship between the substrate area and the Q value when the 0.5 mm-thick support substrate 2 is used. In this thickness, the Q value is 1000 or more at 5 mm square (25 mm 2 ).
  • the panel member 5 as a buffer member according to the present invention has a function of attenuating the transmission of strain and vibration between the support substrate 2 and the relay substrate 4.
  • relay It has a function of reducing distortion transmitted from the substrate 4 side to the support substrate 2 side and a function of preventing vibration of the vibration element 1 on the support substrate 2 from being transmitted to the relay substrate 4.
  • a plurality of panel members 5 are joined around the support substrate 2 to form a support structure for the support substrate 2 with respect to the relay substrate 4.
  • the support substrate 2 may be twisted in the direction in which the support substrate 2 rotates with respect to the relay substrate 4 due to external forces such as distortion and acceleration generated in the relay substrate 4. That is, in the process of absorbing the external force generated on the control board 9 and the relay board 4 by the panel member 5 and preventing the transmission to the support board 2, the support board 2 rotates due to the twist in the panel member 5 depending on the direction in which the external force is generated.
  • the angular velocity corresponding to the rotation amount of the support substrate 2 is detected even though the angular velocity is not generated.
  • FIG. 17 is a schematic plan view of the terminal formation surface 2 B of the support substrate 2.
  • the support substrate 2 is square, and the panel member 5 is located in a plane symmetrical with respect to two orthogonal axes (X axis and Y axis) passing through the center of the support substrate 2.
  • X axis and Y axis two orthogonal axes
  • the arrangement of the panel members 5 symmetric with respect to the X axis and the Y axis means that the number of panel members 5, the arrangement interval, the terminal joining position, etc. are symmetric.
  • the in-plane stress in the X-axis direction can be absorbed by the panel member 5 in the lateral direction (V in FIG. 17, left and right) symmetrically arranged with respect to the Y-axis, and the in-plane stress in the Y-axis direction can be absorbed. It can be absorbed by the panel member 5 in the vertical direction (vertical direction in FIG. 17) arranged symmetrically with respect to the X axis. Further, the in-plane stress in the oblique direction can be absorbed in a balanced manner by the plurality of panel members 5 arranged symmetrically in the horizontal and vertical directions, and the rotation of the support substrate 2 with respect to the relay substrate 4 can be suppressed. .
  • FIG. 18 shows the fluctuation amount of the output of the vibration element 1 (IX, 1Y) when a strain of 1N (Newton) is applied to the support substrate 2 while changing the direction.
  • a sample in which the panel members 5 are symmetrically arranged only in the horizontal direction a sample in which the panel members 5 are symmetrically arranged only in the vertical direction, and a sample in which the panel members 5 are symmetrically arranged in the horizontal and vertical directions were used.
  • Output fluctuation is Corresponding to the angular velocity output due to the rotation of the support substrate 2 due to the applied strain, the larger the fluctuation voltage, the greater the rotation angular velocity of the support substrate 2.
  • the output fluctuation voltage greatly depends on the strain application direction in the sample in which the panel member 5 is arranged only in the horizontal direction and the sample in which the panel member 5 is arranged only in the vertical direction.
  • the output fluctuation was strong regardless of the direction in which the strain was applied.
  • FIG. 19 shows the strain application direction and output fluctuation when the center position between the panel members 5 in the vertical direction is shifted by the substrate center O force by a size corresponding to 20% of the width dimension of the support substrate. This relationship is shown. As shown in Fig. 19, output fluctuation occurs ⁇ 20mV, and the larger the deviation from the center O, the larger the output fluctuation.
  • the amount of deviation between the center of gravity of the support board determined by the weight distribution of various components mounted on the support board 2 and the rigid position determined by the arrangement of the panel members 5 is large. It is known that the support substrate 2 is rotated by applying strain depending on the size.
  • the rigid center here means the center of the force that shakes the support substrate 2. Even if the rotation is very small in angle, the angular displacement per unit time increases as the vibration frequency increases, resulting in an increase in angular velocity.
  • the center of gravity of the support substrate 2 determined by the weight balance of the components on the support substrate 2 is G, and the rigidity balance of the plurality of panel members 5 that support the support substrate 2 is used.
  • the determined stiffness is C
  • the ratio of the deviation of the stiffness C in the X-axis direction relative to the center of gravity G to the X-direction substrate width Wx is ⁇ Cx
  • the deviation of the stiffness C relative to the center of gravity G in the Y-axis direction is the Y-direction.
  • FIG. 22 shows a preferred arrangement example of the panel member 5 with respect to the support substrate 2 in the component mounting form shown in FIG.
  • the panel members 5 are arranged at different intervals in the horizontal direction and the vertical direction, the panel members 5 in the horizontal direction are on the lower side in the figure of the support board 2, and the panel members 5 in the vertical direction are on the right side in the figure of the support board 2.
  • the positions of the rigid centers C are brought close to the positions of the center of gravity G of the support substrate 2 by arranging them in a biased manner.
  • the gravity center position of the support substrate 2 may be adjusted in accordance with the rigid position when the panel members 5 are arranged symmetrically with respect to the X and Y axes. .
  • a single component such as the IC circuit element 7 is disposed in the center of the substrate, and a pair of components such as the vibration elements IX and 1Y are disposed on the diagonal of the substrate.
  • a plurality of chip capacitors 8 such as chip capacitors 8 are divided into two groups and arranged at diagonal positions on the substrate, so that the position of the center of gravity G can be set near the center of the support substrate 2.
  • the support substrate 2 can be protected from vibrations in the Z direction (height direction).
  • the fact that it is possible to suppress the change in angle is powerful.
  • the distance between the center of gravity and the rigid core is preferably 15% or less, particularly 7.5% or less of the side length of the support substrate.
  • the cap member 6 is attached to the relay substrate 4 to shield the support substrate 2 from the outside, and is a press-molded body made of a conductive plate material such as a stainless steel plate or an aluminum plate in order to have an electromagnetic shielding function. It is configured.
  • the support substrate 2 is electrically connected to the relay substrate 4.
  • a plurality of panel members 5 that are mechanically and mechanically connected are arranged. Therefore, when an impact is applied to the vibration type jack sensor 10, the support substrate 2 moves in parallel with respect to the relay substrate 4, and the panel member 5 and the cap member 6 may come into contact with each other and become conductive.
  • an insulating film 54 is formed on the inner surface of the cap member 6 to prevent electrical conduction between the cap member 6 and the panel member 5 at the time of contact. Is possible.
  • the insulating film 54 a thin film or coating film of an electrically insulating material such as SiO or Al 2 O,
  • the insulating film 54 is not limited to being formed over the entire inner surface of the cap member 6, and at least the insulating film 54 is formed only in a region where the insulating film 54 can come into contact with the panel member 5 due to the parallel movement of the support substrate 2.
  • the corner portions 6A corresponding to the four corner positions of the side circumferential portion of the cap member 6 are formed in a curved surface shape.
  • the corner portion 2C of the support substrate 2 contacts the corner portion 6A of the cap member 6 before the panel member 5 contacts the cap member 6. Configured to touch. Thereby, the movement of the support substrate 2 in the in-plane direction is restricted, and conduction due to contact between the panel member 5 and the cap member 6 can be avoided.
  • the corner portion 6A of the cap member 6 corresponds to a “regulating portion” according to the present invention.
  • the corner portions 6B corresponding to the four corner positions on the upper surface of the cap member 6 are formed flat.
  • the corner portion 2C of the support substrate 2 contacts the corner portion 6B of the cap member 6 before the panel member 5 contacts the cap member 6.
  • the corner portion 6B of the cap member 6 corresponds to a “regulation portion” according to the present invention.
  • the force shown by the flat surface of the corner portion 6B of the cap member 6 in order to facilitate the description of the force is not limited to this, and may be a curved surface shape.
  • the cap member 6 is In many cases, the corner portion 6B is formed in a curved shape.
  • the panel member 5 is fixed to the terminal portions of the support substrate 2 and the relay substrate 4 using a conductive bonding material such as silver paste. Accordingly, the height is increased by an amount corresponding to the thickness of the panel member 5 and the thickness of the adhesive layer, and it is difficult to reduce the thickness of the gyro sensor. Accordingly, a panel member 5 joining structure capable of reducing the thickness of the joint member 5 and reducing the thickness of the gyro sensor will be described below.
  • FIGS. 30A, B, and 31 are schematic diagrams showing an enlarged view of the joint portion between the panel member 5 shown in FIG. 1, the support substrate 2, and the relay substrate 4.
  • FIG. The first arm portion 5a of the panel member 5 is bonded to the terminal portion 2t of the support substrate 2 via a bonding material 53 as shown in FIG. 30A.
  • the second arm portion 5b of the panel member 5 is joined to the terminal portion 4t of the relay board 4 via the joining material 53 as shown in FIG. 30B.
  • the bonding material 53 is a silver paste, and the coating amount is set so that the adhesion height of the panel member 5 is about 50 ⁇ m.
  • a nickel plating layer 57 and a gold plating layer 58 are sequentially formed on the surface of a base material 56 made of phosphor bronze.
  • the nickel plating layer 57 is a base film for improving the adhesion of the gold plating layer 58
  • the gold plating layer 58 is for improving the adhesion with the silver paste to achieve low contact resistance.
  • the gold plating layer 58 may be a gold paste coating film or a gold vapor deposition film.
  • the height corresponding to the sum of the bonding height of the bonding material 53 and the thickness of the panel member 5 Projects from the upper surface of the support substrate 2.
  • the cap member 6 which makes it impossible to reduce the thickness of the gyro sensor.
  • At least one of the terminal portion of the support substrate and the terminal portion of the relay substrate is a recess provided in the terminal portion formation surface of the support substrate or the terminal portion formation surface of the relay substrate.
  • FIG. 33 and 34 show an example in which the terminal portion 2t is formed at the bottom of the recess 61 provided on the terminal portion forming surface 2B of the support substrate 2.
  • FIG. A plurality of recesses 61 are provided corresponding to the individual terminal portions 2t.
  • the depth at which the recess 61 is formed is not particularly limited, but it is particularly preferable that the depth of the panel member 5 is such that the upper surface force of the support substrate 2 does not protrude as shown in FIG.
  • the formation of the recess 61 makes it easy to attach the panel member 5 to the support substrate 2 and improves workability.
  • the recess 61 is not limited to a configuration provided at a plurality of locations corresponding to the individual terminal portions 2t, and one recess is formed across the formation region of each terminal portion 2t at the peripheral edge of the support substrate 2. You may make it form. In this case, since the thickness of the peripheral edge portion of the support substrate 2 is reduced by the amount corresponding to the formation of the recess, the thickness that can ensure at least the mechanical quality factor Q of the vibration element 1 is maintained.
  • FIG. 35 shows the relationship between the thickness of the support substrate and the mechanical quality factor Q of the vibration element. It can be seen that the Q decreases as the thickness of the substrate decreases.
  • FIG. 36 is a side cross-sectional view comparing the heights of the gyro sensor 10H having the configuration shown in FIG. 1 and the gyro sensor 10L having a panel joint structure provided with the recess 61.
  • FIG. The gyro sensor 10L can be made thinner by ⁇ than the gyro sensor 10H. The value of ⁇ corresponds to the bonding height of the panel member 5 with respect to both the support substrate 2 and the relay substrate 4.
  • FIG. 37 is a schematic configuration diagram of a gyro sensor 10M in which an arrangement example of the panel member 5 is changed.
  • the terminal portion forming surface of the support substrate 2 is configured on the same surface as the component mounting surface on which the vibration element 1 (IX, 1Y) and the like are mounted.
  • the first arm portion 5 a of the panel member 5 is joined to the surface facing the relay substrate 4.
  • FIG. 38 shows the relationship between the panel member length (in the vertical direction) and its resonance frequency. From FIG. 38, the resonance frequency of the panel member varies depending on the length of the panel member, and the resonance frequency tends to increase as the panel member becomes shorter. As described above, as explained with reference to FIGS. 11 and 12, the resonance frequency of the panel member 5 is preferably 10 kHz or less. Therefore, the length of the panel member 5 is 0.5 mm. It is necessary to do it above.
  • the tip of the panel member 5 in the recess 61 is covered.
  • the reinforcing plate 62 is affixed on the support substrate 2, which is advantageous in that the reliability of the bonding strength of the panel member 5 against external impact can be increased.
  • FIG. 40 is a schematic sectional side view showing a modified example of the configuration of the vibration type gyro sensor shown in FIG.
  • a vibration type gyro sensor 10N shown in FIG. 40 is configured such that a support substrate 2 on which a pair of vibration elements 1 (IX, 1Y) is mounted is mechanically and electrically connected to a relay substrate 4 through a plurality of panel members 5. This is the same as the configuration of the vibration type gyro sensor shown in FIG.
  • the vibration element 1 is The base 11 and the vibrator portion 12 supported in the cantilever form of the base 11 are mounted on the support substrate 2 via the bumps 13.
  • the base 11 functions as a pedestal that supports the vibration of the vibrator 12, but the base 11 also vibrates with the vibration of the vibrator 12, and the vibration of the base 11 is applied to the support substrate 2 via the bumps 13. Is also communicated.
  • FIG. 42 shows an example of the relationship between the vibration (amplitude) of the base (vibrator base) 11 and the vibration (amplitude) of the support substrate 2. From FIG. 42, the vibration of the support substrate 2 tends to increase as the vibration of the base 11 increases.
  • the vibration of the support substrate 2 is preferably small. Also, if the vibration of the support substrate 2 is left large, when the support substrate 2 moves relative to the relay substrate 4, such as when an impact (acceleration) acts on the sensor, the panel member 5 contacts the cap 6. Therefore, it is necessary to reduce the vibration of the support substrate 2 as much as possible from the viewpoint of ensuring stable operation of the sensor.
  • the inventors have found that the magnitude of vibration of the base 11 can be controlled by the position of the bump 13.
  • the center portion of the base 11 of the vibrator 1 (the extending direction of the vibrator portion 12) is defined as M, and the region on the side where the center portion M force vibrator portion 12 is located is defined as M.
  • the front area is defined as 11F, and the opposite side is defined as the rear area 1 IB.
  • three small areas are equally divided in the front-rear direction (vertical direction in Fig. 43A), and each small area is defined as FF, FM, FB, and BF, BM, BB. did.
  • the example of arrangement in the region FF closest to the transducer unit 12 is the region farthest from the transducer unit 12 with the smallest base vibration
  • the example of arrangement to FB showed that the pedestal vibration was the largest.
  • the arrangement example in the region BB farthest from the transducer unit 12 is the region closest to the transducer unit 12 where the pedestal vibration is smallest.
  • the layout example proved to be the largest in pedestal vibration.
  • the bumps 13 provided on the base 11 are arranged with the two front bumps as close as possible to the vibrator section 12 and the two rear bumps from the vibrator section 12. By arranging them at positions as far apart as possible, vibration transmission to the support substrate 2 can be minimized.
  • the bumps 13 are arranged in regions where the front end portion and the rear end portion force of the base portion 11 are within 30% of the total length in the front-rear direction of the base portion 11 (hereinafter referred to as “bump placement region”). To.
  • the bump placement area is divided into three areas (the area to which FF and FM belong, the area to which FB and BF belong, the area to which BM and BB belong, divided into the base 11 equally along the extending direction of the transducer part 12. ) Correspond to the region closest to the transducer unit 12 (region to which FF and FM belong) and the region farthest from the transducer unit 12 (region to which BM and BB belong).
  • each bump is not limited to an example in which two bumps are arranged in the common bump arrangement area, but at least one bump or a separately formed dummy bump may be arranged in each bump arrangement area.
  • FIG. 44 is a side sectional view showing a schematic configuration of a vibration type gyro sensor 20A according to a second embodiment of the present invention.
  • portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the illustration of the electronic component 8 mounted on the support substrate 2 is omitted.
  • the vibration type gyro sensor 20A of the present embodiment is made of a vibration-absorbing material between the support substrate that supports the pair of vibration elements IX and 1Y and the relay substrate 4 that is mounted on the control substrate 9.
  • the buffer member 23 is installed, and the electrical connection between the support substrate 2 and the relay substrate 4 is made via the electrode member 21 and the bonding wire 22.
  • the bonding wire 22 is an example of the “wiring member” according to the present invention, and electrically connects each terminal portion on the support substrate 2 and the electrode member 21 attached on the relay substrate 4.
  • the buffer member 23 is a material having an action of attenuating the propagation of strain from the relay substrate 4 side to the support substrate 2 side and the vibration propagation from the support substrate 2 side to the relay substrate 4 side, for example, a rubber material. It is made of a resin material such as urethane foam. As a result, it is possible to suppress an increase in disturbance noise due to distortion propagation and vibration leakage, and to ensure stable vibration characteristics and improve output characteristics as in the first embodiment described above. Become.
  • the vibration type gyro sensor 20B shown in FIG. 45 shows an example in which a buffer member 24 composed of a plate panel is used between the support substrate 2 and the relay substrate 4. The buffer member 24 elastically supports the support substrate 2 with respect to the relay substrate 4 to perform the same effect as described above.
  • FIG. 46 shows a third embodiment of the present invention.
  • portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the illustration of the electronic component 8 mounted on the support substrate 2 is omitted.
  • the support substrate 2 that supports the pair of vibration elements IX and 1Y is electrically connected to the electrode member 21 on the relay substrate 4 via the flexible wiring substrate 31.
  • the support substrate 2 is suspended and supported above the relay substrate 4 by these flexible wiring boards 31.
  • the flexible wiring board 31 functions as a buffer member that attenuates the propagation of strain and vibration between the support board 2 and the relay board 4 and at the same time electrically connects the support board 2 and the relay board 4. It also has a function as a wiring member to be connected. Also according to the present embodiment, the same operational effects as those of the first embodiment described above can be obtained.
  • the vibration type gyro sensor 30B shown in FIG. 47 is configured by using a panel-like metal wire 32 instead of the flexible wiring member 31.
  • the metal wire 32 electrically and mechanically connects between each terminal portion 33 on the support substrate 21 and the electrode member 21 on the relay substrate 4. Strain and vibration propagation between the support substrate 2 and the relay substrate 4 are attenuated by the elastic deformation of the metal wires 32.
  • the support substrate 41 that supports the pair of vibration elements IX and 1Y is electrically connected to the upper end of the side wall 45 on the relay substrate 4 through the conductive adhesive layer 43. It has a mechanically connected configuration.
  • a wiring layer 42 is formed on one main surface of the support substrate 41. On the wiring layer 42, only the vibration elements IX and 1Y are mounted, and the element mounting surface is placed facing the relay substrate 4.
  • the support substrate 42 constitutes a canopy for the gyro sensor 40A.
  • An IC circuit element 7 and other electronic components 8 are mounted on the relay board 4.
  • the wiring layer 44 that is electrically connected to the IC circuit element 7 and the electronic component 8 extends to the inner wall surface and the upper surface of the side wall 45 erected around the relay substrate 4.
  • the wiring layer 44 of the relay substrate 4 is electrically connected to the wiring layer 42 of the support substrate 41 via the conductive adhesive layer 43.
  • the conductive adhesive layer 43 can be composed of a conductive paste, an anisotropic conductive paste, an anisotropic conductive film, or the like.
  • the resin matrix material held by the conductive particles has a relatively high elastic deformability, for example, an insulating material based on a rubber material is used.
  • the conductive adhesive layer 43 functions as a buffer member according to the present invention, attenuates the propagation of strain from the relay substrate 4 side to the support substrate 41 side, and stabilizes the vibration characteristics of the vibration elements IX and 1Y. Plan.
  • the vibration propagation of the vibration elements IX, 1Y directed from the support substrate 41 side to the relay substrate 4 side can be attenuated, and the deterioration of output characteristics due to leakage of the vibration to the outside can be suppressed. wear.
  • the vibration elements IX and 1Y and the other IC circuit elements 7 and electronic components 8 are separate substrates (support substrate 41 and relay substrate 4). Therefore, the vibration-type gyro sensor 40A can be reduced in size by reducing the mounting area of each board. Furthermore, when the sensor 40A is mounted on the control board 9 by helium-flow soldering, the distortion of the relay board 4 caused by the remelting-cooling and solidification process of the solder joints of the IC circuit element 7 and the electronic component 8 is supported by the support board 41. Therefore, it is possible to further enhance the stability effect of the vibration characteristics of the vibration elements IX and 1Y.
  • the support substrate 41 that supports the vibration elements IX and 1Y is a double-sided wiring board force, and the main surface on the inner surface side (the lower surface in FIG. 49) It has a wiring layer 42 on which the vibration elements IX and 1Y are mounted.
  • the main surface on the outer surface side includes a flexible wiring board and a panel panel member connected to the wiring layer 42.
  • a buffer member 46 also serving as a wiring member is attached.
  • the peripheral portion of the buffer member 46 is electrically and mechanically connected to the side wall 45 and the wiring layer 44 on the relay substrate 4 so that the IC circuit element 7 and the electronic component 8 are mounted.
  • a support substrate 41 is suspended and supported above the substrate 4.
  • the vibration gyro sensor 40B having such a configuration can achieve the same effects as described above.
  • the support substrate 41 that supports the pair of vibration elements IX and 1Y is supported on the relay substrate 4 via the side wall 47 and the conductive adhesive layer 43.
  • the wiring layer 42 formed on the component mounting surface of the support substrate 41 is electrically connected to the wiring layer 44 on the relay substrate 4 through the inner surface of the side wall 47 and the conductive adhesive layer 43.
  • the conductive adhesive layer 43 has the above-described configuration and functions as a buffer member that also serves as a wiring member. In the vibration type gyro sensor 40C of this example, the same effects as described above can be obtained.
  • FIG. 51 is a side sectional view showing a schematic configuration of a vibration type gyro sensor 50 according to a fifth embodiment of the present invention.
  • portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the vibration-type gyro sensor 50 of the present embodiment includes a support substrate 2 that supports a pair of vibration elements IX and 1Y, and an external connection terminal (not illustrated) that is connected to a control substrate (not illustrated).
  • the arrangement relationship with the relay board 4 is different from that of the first embodiment. That is, in the vibration type gyro sensor 10 of the first embodiment described above, the support substrate 2 and the sensor substrate 4 are opposed to each other in the sensor height direction, whereas the vibration type gyro sensor of the present embodiment.
  • the relay substrate 4 is located on the outer side (outer peripheral side) of the support substrate 2. As a result, the height of the gyro sensor is reduced by reducing the sensor height.
  • An opening 4P is formed in a substantially central portion of the relay substrate 4, and the support substrate 2 is accommodated in the opening 4P of the relay substrate 4.
  • the terminal portion 2t of the support substrate 2 and the terminal portion 4t of the relay substrate 4 are connected by a plurality of panel members 5, and the corresponding terminal portions 2t and 4t are electrically connected by these panel members 5. It is connected. Further, the support substrate 2 is mechanically attached to the relay substrate 4 so as to be suspended in the opening 4P by the plurality of panel members 5. It is connected. Thereby, an independent vibration system of the support substrate 2 is configured.
  • Various components and the panel member 5 mounted on the support substrate 2 are shielded from the outside by a cap member 6 attached to the upper surface of the relay substrate 4.
  • a cap member 6 attached to the upper surface of the relay substrate 4.
  • the boundary between the relay substrate 4 and the support substrate 2 is sealed with a sealing material 55 in order to prevent foreign matter from entering from the lower surface side of the relay substrate 4.
  • the sealing material 55 is made of a flexible adhesive such as a silicone adhesive in order to suppress transmission of vibration and strain between the support substrate 2 and the relay substrate 4.
  • the vibration-type gyro sensor 50 of the present embodiment having the above-described configuration can also obtain the same functions and effects as those of the first embodiment described above.
  • the relay substrate 4 is located outside the support substrate 2, so that the sensor height can be reduced and the gyro sensor can be made thinner.
  • the relay substrate 4 is not limited to being located outside the support substrate 2 as in the above-described example, and the same effect can be obtained even in a configuration located inside the support substrate 2 (inner side). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Description

明 細 書
振動型ジャイロセンサ
技術分野
[0001] 本発明は、例えば、ビデオカメラの手振れ検知ゃバーチャルリアリティ装置における 動作検知、カーナビゲーシヨンシステムにおける方向検知などに用いられる振動型ジ ャイロセンサに関する。
背景技術
[0002] 従来より、民生用の角速度センサとしては、片持ち梁の振動子を所定の共振周波 数で振動させておき、角速度の影響によって生じるコリオリカを圧電素子などで検出 することによって角速度を検出する、 V、わゆる振動型のジャイロセンサ(以下「振動型 ジャイロセンサ」という。)が広く用いられている。
[0003] 振動型ジャイロセンサは、単純な機構、短 、起動時間、安価で製造可能と!/、つた利 点を有しており、例えば、ビデオカメラ、バーチャルリアリティ装置、カーナビゲーショ ンシステムなどの電子機器に搭載され、それぞれ手振れ検知、動作検知、方向検知 などをする際のセンサとして活用されている。
[0004] 振動型ジャイロセンサは、搭載される電子機器の小型化、高性能化に伴 、、小型 ィ匕、高性能化が要求されている。例えば、電子機器の多機能化のため、他の用途で 用いる各種センサと組み合わせて、振動型ジャイロセンサを一基板上に搭載し小型 化を図るといった要請がある。この小型化を図る上で、シリコン (Si)基板を用い、半導 体で用いられる薄膜プロセスとフォトリソグラフィ技術を用いて構造体を形成する ME MS(Micro- Electro- Mechanical System)と呼ばれる技術を用いることが一般的となつ てきて ヽる(例えば特開 2005 - 227110号公報参照)。
発明の開示
[0005] し力しながら、上記のような小型でかつ振動動作を伴う部品は、外部からの歪みの 影響や振動の反射の影響を受けて、特性が大きく変動してしまう可能性がある。特に 、この種の振動型ジャイロセンサを他のセンサ部品とともに同一基板上に実装してモ ジュール化を図る場合、基板への実装前後で角速度の検出特性が変化するようなこ とがあると、実装後さまざまな調整を行っても仕様規格力 外れてしまう懸念がある。
[0006] 更に、実装した基板に、カメラレンズのズーム機構などの可動部が搭載あるいは近 接配置されている場合、その動きを拾って振動素子の振動特性が変動したり、 S/N が低下して検出出力が低下することが懸念される。
[0007] 本発明は上述の問題に鑑みてなされ、歪みや振動などによる影響を受けることなく 振動特性の安定ィ匕を図ることができる振動型ジャイロセンサを提供することを課題と する。
[0008] 以上の課題を解決するに当たり、本発明の振動型ジャイロセンサは、角速度を検出 する振動素子と、振動素子と電気的に接続され当該振動素子を支持する支持基板と 、支持基板と電気的に接続され外部接続端子を有する中継基板と、支持基板と中継 基板との間に配置された緩衝部材とを備えて 、る。
[0009] 緩衝部材は、中継基板に対して支持基板を弾性的に支持するパネやゴム等の弾 性部材で構成することができる。中継基板に対して支持基板を緩衝部材によって弾 性的に支持する構造とすることで、中継基板に生じた歪みが支持基板に伝達される のを阻止することができ、振動素子の振動特性の安定ィ匕を図ることができる。また、振 動素子を支持する支持基板力 中継基板側への振動の伝播を抑制できるので、振 動素子の振動が外部に漏れることによるノイズの影響を回避して、安定した振動特性 と出力特'性の向上を図ることができる。
[0010] 緩衝部材は、支持基板と中継基板との間を電気的に接続する配線部材を兼ねる構 成とすることで、部品点数の低減を図ることができる。具体的には、緩衝部材として金 属製パネ、フレキシブル配線基板、比較的弾性変形能の高い導電性ペーストゃ異方 性導電性フィルムなどが挙げられる。
[0011] 以上述べたように、本発明の振動型ジャイロセンサによれば、歪みや振動による影 響を受けることなく振動特性の安定ィ匕を図ることができる。
図面の簡単な説明
[0012] [図 1]本発明の第 1の実施形態による振動型ジャイロセンサの概略構成を示す側断 面図である。
[図 2]図 1に示した振動型ジャイロセンサにおける支持基板の概略平面図である。 [図 3]図 1に示した振動型ジャイロセンサのキャップ部材を取り外して見た平面図であ る。
[図 4]図 1に示した振動型ジャイロセンサを構成する振動素子の構成を説明する裏面 図である。
[図 5]図 1に示した振動型ジャイロセンサと対比して説明する他のジャイロセンサの側 断面図である。
[図 6]図 5に示した比較例の振動型ジャイロセンサの荷重 オフセット電圧特性を示 す一実験結果である。
[図 7]図 1に示した本発明の振動型ジャイロセンサの荷重 オフセット電圧特性を示 す一実験結果である。
圆 8]振動型ジャイロセンサの近接ノイズ評価方法を説明する図であり、 Aは側断面 図、 Bは平面図である。
[図 9]図 5に示した比較例の振動型ジャイロセンサの近接ノイズ特性を示す一実験結 果である。
圆 10]図 1に示した本発明の振動型ジャイロセンサの近接ノイズ特性を示す一実験 結果である。
[図 11]図 1に示した振動型ジャイロセンサにおける緩衝部材の共振周波数と振動素 子のオフセット電圧変動量との関係を示す一実験結果である。
[図 12]図 1に示した振動型ジャイロセンサにおけるパネ部材の共振周波数と近接ノィ ズの大きさとの関係を示す一実験結果である。
[図 13]図 1に示した振動型ジャイロセンサにおけるパネ部材の要部の水平距離と共 振周波数との関係を説明するモデル図及び一実験結果である。
[図 14]図 1に示した振動型ジャイロセンサにおけるパネ部材と支持基板との接合部の 構成の変形例を示す概略側断面図である。
圆 15]図 14の要部構成の変形例を示す拡大図である。
[図 16]図 1に示した振動型ジャイロセンサにおける支持基板の面積と振動素子の Q 値との関係を示す一実験結果である。
[図 17]図 1に示した振動型ジャイロセンサにおけるパネ部材の配置例を説明する要 部平面図である。
[図 18]図 1に示した振動型ジャイロセンサにぉ 、て、パネ部材の各配置構成につ!ヽ ての歪み印加方向と出力変動電圧との関係を示す図である。
[図 19]図 18について、支持基板の岡 、位置を変えたときのデータを付カ卩した図であ る。
[図 20]図 1に示した振動型ジャイロセンサにおけるパネ部材の他の配置例を説明す る要部平面図である。
圆 21]支持基板の重心—剛心間距離と出力ノイズとの関係を示す図である。
[図 22]図 20に示したパネ部材の配置例の変形例を示す図である。
[図 23]図 20に示した支持基板と部品の実装形態が異なる他の支持基板の概略平面 図である。
圆 24]図 23に示した支持基板に対して好適なパネ部材の配置例を説明する図であ る。
[図 25]図 1に示した振動型ジャイロセンサにおけるキャップ部材の構成の変形例を示 す概略側断面図である。
[図 26]図 1に示した振動型ジャイロセンサにおけるキャップ部材の構成の他の変形例 を示す全体斜視図である。
[図 27]図 26に示した振動型ジャイロセンサの支持基板とキャップ部材との関係を示 す支持基板の部品実装面側から見た断面図である。
[図 28]図 1に示した振動型ジャイロセンサにおけるキャップ部材の構成の更に他の変 形例を示す全体斜視図である。
[図 29]図 28に示した振動型ジャイロセンサの支持基板とキャップ部材との関係を示 す要部側断面図である。
[図 30]図 1に示した振動型ジャイロセンサにおけるパネ部材と支持基板及び中継基 板との間の接合部の構成を拡大して示す側断面図である。
[図 31]図 30に示した接合部の概略平面図である。
[図 32]図 30に示したパネ部材のー構成例を示す断面図である。
圆 33]図 1に示した振動型ジャイロセンサにおけるパネ部材と支持基板及び中継基 板との間の接合部の構成の変形例を示す側断面図である。
[図 34]図 33に示した接合部の概略平面図である。
圆 35]図 1に示した振動型ジャイロセンサにおける支持基板の厚みと振動素子の機 械品質係数 Qとの関係を示す図である。
圆 36]図 1に示した振動型ジャイロセンサと、図 32に示した接合部構造を有する振動 型ジャイロセンサとの高さを比較した側断面図である。
[図 37]図 33に示したパネ部材の接合部構造を有する振動型ジャイロセンサの構成の 変形例を示す概略側断面図である。
[図 38]図 1に示した振動型ジャイロセンサにおけるパネ部材の長さ(高さ)と当該パネ 部材の共振周波数との関係を示す図である。
[図 39]図 34に示した接合部の構成の変形例を示す図である。
[図 40]図 1に示した振動型ジャイロセンサの構成の変形例を示す概略側断面図であ る。
[図 41]図 1に示した振動型ジャイロセンサにおける振動素子の概略側面図である。 圆 42]図 41に示した振動素子の基部(台座)の振動の大きさとこれを支持する支持 基板の振動の大きさとの関係を示す図である。
[図 43]図 41に示した振動素子のバンプ位置の相違による基部(台座)の振動の大き さを説明する図である。
圆 44]本発明の第 2の実施形態による振動型ジャイロセンサの構成を示す概略側断 面図である。
圆 45]本発明の第 2の実施形態による振動型ジャイロセンサの他の構成を示す概略 側断面図である。
圆 46]本発明の第 3の実施形態による振動型ジャイロセンサの構成を示す概略側断 面図である。
圆 47]本発明の第 3の実施形態による振動型ジャイロセンサの他の構成を概略的に 示す平面断面図である。
圆 48]本発明の第 4の実施形態による振動型ジャイロセンサの構成を示す概略側断 面図である。 [図 49]本発明の第 4の実施形態による振動型ジャイロセンサの他の構成を示す概略 側断面図である。
[図 50]本発明の第 4の実施形態による振動型ジャイロセンサの更に他の構成を示す 概略側断面図である。
[図 51]本発明の第 5の実施形態による振動型ジャイロセンサの構成を示す概略側断 面図である。
発明を実施するための最良の形態
[0013] 以下、本発明の各実施形態について図面を参照して説明する。なお、本発明は、 以下の各実施形態に限定されることはなぐ本発明の技術的思想に基づいて種々の 変形が可能である。
[0014] (第 1の実施形態)
図 1は本発明の第 1の実施形態による振動型ジャイロセンサ 10の構成を概略的に 示す側断面図である。
[0015] 本実施形態の振動型ジャイロセンサ 10は、図 1に示すように、一対の振動素子 IX , 1Yと、これらの振動素子 IX, 1Yを支持する支持基板 2と、支持基板 2と電気的に 接続され外部接続端子 3を有する中継基板 4と、センサ高さ方向に対向する支持基 板 2と中継基板 4との間に配置された緩衝部材 5と、中継基板 4の上面を被覆するキ ヤップ部材 6とを備えて 、る。
[0016] 本実施形態の振動型ジャイロセンサ 10は、例えばビデオカメラに搭載されて手振 れ補正機構を構成する。また、振動型ジャイロセンサ 10は、例えばバーチャルリアリ ティ装置に用いられて動作検知器を構成したり、カーナビゲーションシステムに用い られて方向検知器を構成する。
[0017] 支持基板 2は、例えば、セラミックス基板やガラス基板等で構成されて ヽる。支持基 板 2の一方の主面(図 1において下面)は、後述する振動素子 IX, 1Yが実装される 複数個のランドを含む配線パターンが形成された部品実装面 2Aとされている。部品 実装面 2Aには、一対の振動素子 IX, 1Y (以下、個別に説明する場合を除いて振 動素子 1と総称する)、 IC回路素子 7、更には多数個のセラミックコンデンサ等の適宜 の電子部品 8が混載されている。なお、簡略のため、図 1には電子部品 8を一部のみ 示している。
[0018] 図 2は、支持基板 2の部品実装面 2Aを上から見たときの平面図である。支持基板 2 は四角形状とされているが、勿論、形状はこれに限られない。支持基板 2の部品実装 面 2Aには、所定の配線パターン(図示略)が形成されているとともに、振動素子 1が それぞれバンプ 13 (図 1参照)を介して支持基板 2上にフリップチップ実装されている 。本実施形態では、バンプ 13は金のスタッドバンプ力もなり、支持基板 2上に超音波 接合されている。振動素子 1は、支持基板 2上の配線パターンを介して、 IC回路素子 7に電気的に接続されている。
[0019] 支持基板 2は両面配線基板として構成され、部品実装面 2A上に形成された配線 パターンが支持基板 2の他方の面(図 1において上面)に導出されている。図 3は図 1 に示した振動型ジャイロセンサ 10をキャップ部材 6を取り外して見たときの平面図で ある。この支持基板 2の他方側の面は端子形成面 2Bとされており、図 3に示すように 、この端子形成面 2Bの周囲に沿って複数の端子部 2tが形成されている。各端子部 2tには、後述する複数の緩衝部材 5がそれぞれ接合されて ヽる。
[0020] 中継基板 4は、例えばガラスエポキシ材料を基材とする有機系両面配線基板で構 成されて!/、る。中継基板 4の一方の面(図 1にお ヽて下面) 4Aには複数の外部接続 端子 3が配列されている。振動型ジャイロセンサ 10は、これら外部接続端子 3を介し て外部の制御基板 9に対して電気的 ·機械的に接続される。制御基板 9は、振動型ジ ャイロセンサ 10に対する入出力配線が形成された配線基板であり、デジタルカメラ等 の電子機器に搭載される。この制御基板 9には、振動型ジャイロセンサ 10だけでなく 、図示せずとも他の電気 ·電子部品が実装されている。制御基板 9上の各種部品は、 例えばリフロー炉に装填されることで一括的にはんだ付けされる。
[0021] 中継基板 4の他方の面(図 1において上面) 4Bは、支持基板 2を支持するとともに支 持基板 2と電気的に接続される端子形成面とされている。支持基板 2は、複数の緩衝 部材 5を介して中継基板 4の端子形成面 4B上に支持されている。後述するように、緩 衝部材 5は導電性材料で構成されており、これら複数の緩衝部材 5と接する端子形 成面 4B上の領域には、外部接続端子 3と電気的に連絡する端子部(図示略)がそれ ぞれ形成されている。 [0022] 本実施形態において、緩衝部材 5は、中継基板 4に対して支持基板 2を弹性的に 支持するパネ部材で構成されている。また、緩衝部材 5は、支持基板 2と中継基板 4 との間を電気的に接続する配線部材をも兼ねており、部品点数の低減が図られてい る。緩衝部材 5の構成材料は、パネ性と導電性を有するものであれば特に限定され ず、金属材料が好適であり、特に本実施形態では、りん青銅力もなるパネ部材が用 いられている。なお、以下の説明では、緩衝部材 5を「パネ部材 5」と称して説明する。
[0023] パネ部材 5は、支持基板 2の端子形成面 2Bに形成された端子部 2tに接合される第 1アーム部 5aと、中継基板 4の端子形成面 4Bに形成された端子部に接合される第 2 アーム部 5bと、これら第 1,第 2アーム部 5a, 5bの間を連結する連結部 5cとからなる コの字形状を有している。勿論、パネ部材 5の形状は上記コの字状に限定されること はなぐ例えば、 L字状、 Γ字状、 I字状など、上記第 1,第 2アーム部 5a, 5bの何れ か一方又は両方が省略された形状でもよい。各アーム部 5a, 5bと端子部との間の接 合は、導電性ペーストやはんだ等の導電性接合材を用いることができ、本実施形態 では、 Ag (銀)ペーストが用いられている。
[0024] パネ部材 5は、支持基板 2と中継基板 4間における歪み及び振動の伝達を減衰さ せる機能を有する。具体的には、中継基板 4側から支持基板 2側へ伝達される歪み を緩和する機能と、支持基板 2上の振動素子 1の振動が中継基板 4に伝達されるの を防ぐ機能を有している。従って、パネ部材 5は、振動素子 1の駆動周波数に対して 吸収を示す振動系をもつように構成されて 、る。
[0025] 本実施形態においては、一方の振動素子 IXの駆動共振周波数が 36kHz、他方 の振動素子 1Yの駆動共振周波数が 39kHzとされている。また、各パネ部材 5は、厚 みが 50 μ m、幅が 100 μ mのりん青銅材からなる板パネで、その共振周波数は、後 述するように、振動素子 IX, 1Yの駆動周波数の 1Z5以下 (本例では約 7kHz以下) となるように設定されている。
[0026] キャップ部材 6は、中継基板 4に支持されている支持基板 2と、この支持基板 2に実 装されている振動素子 1、 IC回路素子 7、電子部品 8などを外部から遮蔽するための ものである。キャップ部材 6の側壁部は、中継基板の端子形成面 4Bの周囲に接着、 嵌め込み等により密着固定されている。特に本実施形態においては、支持基板 2の 部品実装面 2Aと中継基板 4の端子形成面 4Bとを対向配置させることで、振動型ジャ イロセンサ 10の薄型化を図るようにして!/、る。
[0027] キャップ部材 6の構成材料は特に制限されないが、電磁シールド機能を持たせるた めに少なくとも一部が導電性材料で構成されるのが好ましぐ本実施形態では、ステ ンレス板やアルミニウム板等の導電性板材のプレス成形体で構成されて ヽる。キヤッ プ部材 6は、制御基板 9上のグランド端子に接続されることで、所定の電磁シールド 機能を行う。
[0028] また、振動型ジャイロセンサ 10の電磁シールド機能を高めるため、キャップ部材 6が 取り付けられる中継基板 4に対してもシールド機能をもたせることが好ましい。具体的 には、多層基板で構成される中継基板 4の内部配線層の一部をシールド層としてべ タ状またはメッシュ状に形成し、このシールド層を制御基板 9のグランド電位に接続す る。これにより、外部からの電磁波の影響を受けにくい振動型ジャイロセンサ 10を提 供することができる。なお、中継基板 4に代えて又は中継基板 4に加えて、支持基板 2 につ ヽても同様なシールド層が設けられてもよ!/、。
[0029] 本発明者らの実験では、キャップ部材と中継基板にシールド構造をもたせな力つた 場合のノイズ (最終アンプ出力)が 0. 97〜: L 02Vp— pであったのに対し、中継基板 にのみシールド構造をもたせた場合には 0. 17-0. 25Vp— pに、また、キャップ部 材にのみシールド構造をもたせた場合には 0. 02-0. 04Vp— pにまでノイズを低減 できることが確認されている。更に、キャップ部材と中継基板のそれぞれにシールド 構造をもたせた場合には、 0. 02〜0. 03Vp—pにまで低減することができた。
[0030] なお、キャップ部材 6は、振動素子 1の振動を拾って共振を起こし外部歪みやノイズ を引き起こすことがないように、キャップ部材 6のもつ共振周波数が振動素子 1の駆動 共振周波数の前後 5kHz以上離して構成されるようにする。
[0031] 次に、振動素子 1の構成について説明する。
[0032] 振動素子 1は、支持基板 2に支持される基部 11と、この基部 11の一側周部から一 体的に突出形成された片持ち梁構造の振動子部 12とからなる。各振動素子 IX, 1Y は、その振動子部 12をそれぞれ異なる方向に向けて実装され、本実施形態では、各 々の振動子部 12が互いに直交するように配置されている。即ち、一方の振動素子 1 Xは振動子部 12の軸方向を X軸方向に向けて配置されており、他方の振動素子 1Y は振動子部 12の軸方向を Y軸方向に向けて配置されて 、る。
[0033] 図 4は、振動素子 1の構成を概略的に示す裏面図である。振動素子 1は、シリコン 単結晶からなり、一枚のシリコンゥエーハから多数個同時に製造された後、図示する 素子形状に切り出される。図 4に示すように、支持基板 2の部品実装面 2Aに対向す る振動素子 1の基板対向面 1Aには、基準電極層 14、圧電体薄膜層 15、駆動電極 1 6、左右の検出電極 17L, 17R、リード配線部 18a, 18b, 18c, 18dなどがそれぞれ 形成されている。
[0034] 基準電極層 14は、振動子部 12のほぼ全領域と基部 11の一部領域とに形成されて おり、例えば、 Ti (チタン)と Pt (白金)のスパッタ積層膜で構成されている。圧電体薄 膜層 15は、基準電極層 14の形成領域のほぼ全域に形成されており、例えば、 PZT( チタン酸ジルコン酸鉛)のスパッタ膜で構成されている。駆動電極 16及び左右の検 出電極 17L, 17Rは、圧電体薄膜層 15の上に形成された例えば Ptスパッタ膜のパ ターン加工体力もなる。駆動電極 16は、振動子部 12の中央部に軸方向に沿って形 成されており、左右の検出電極 17L, 17Rは駆動電極 16を挟むように所定の間隔を あけて形成されている。リード配線部 18a〜18dは、それぞれ基部 11の上にパターン 形成された例えば Tiと Cu (銅)の積層膜からなるもので、基準電極層 14、駆動電極 1 6及び左右の検出電極 17L、 17Rと各バンプ 13との間を電気的に接続して!/ヽる。
[0035] 基準電極層 14には所定の基準電位 (例えばグランド電位)に接続され、駆動電極 1 6には IC回路素子 7から所定電圧の駆動交流電圧が印加される。これにより、基準電 極層 14と駆動電極 16との間に挟まれた圧電体薄膜層 15の逆圧電効果によって振 動子部 12が振動する。このとき、検出電極 17L, 17Rは、振動子部 12の振動に伴つ て、圧電体薄膜 15の圧電効果によって発生する電圧値を検出し IC回路素子 7へ供 給する。振動子部 12のまわりに角速度が生じていない場合、両検出電極 17L, 17R からの出力は同等又はほぼ同等である。
[0036] 一方、振動子部 12の長手方向のまわりに角速度が生じると、コリオリカにより振動 子部 12の振動方向が変化する。この場合、検出電極 17L, 17Rの一方の出力は増 加し、他方の出力は減少する。何れか一方の出力あるいは両方の出力の変化量を I C回路素子 7により検出測定して、振動子部 12の長手方向のまわりの入力角速度を 検出する。本実施形態では、振動素子 IX, 1Yの各々の振動子部 12がそれぞれ X 軸方向及び Y軸方向に向けて配置されているので、この振動型ジャイロセンサ 10に よって、 X軸まわりの角速度と Y軸まわり角速度とが同時に検出されることになる。
[0037] 以上のように構成される本実施形態の振動型ジャイロセンサ 10においては、振動 素子 1が実装される支持基板 2が、複数のパネ部材 5を介して中継基板 4上に弾性的 に支持される構成であるので、中継基板 4に生じた歪みが支持基板 2に伝達されるの を阻止することができる。これにより、例えば、振動型ジャイロセンサ 10を制御基板 9 の上にリフローはんだ付けする際に生じる中継基板 4の歪みをパネ部材 5の弾性変 形によって減衰させ、支持基板 2上の振動素子 1の振動特性の安定ィ匕を図ることが できる。
[0038] 次に、本実施形態の振動型ジャイロセンサ 10の作用効果を、図 5に示す構造の振 動型ジャイロセンサ 10Rと比較して説明する。ここで、図 5は、振動素子 1を支持する 支持基板 2を直接、制御基板 9へ実装した振動型ジャイロセンサ 10Rの構成を示して いる。なお、図 5において図 1と対応する部分については同一の符号を付し、その詳 細な説明は省略する。
[0039] 図 6A, Bは、振動型ジャイロセンサ 10Rにおいて、側周部の一辺を固定し対向する 他の一辺に荷重を加えたときの振動素子 IX, 1Yのオフセット電圧の変動の様子を 示している。図 6A, Bにおいて「往」は加重方向における変化の様子を示し、「復」は 荷重除去方向における変化の様子を示している。印加する荷重の大きさは、実装に より発生する支持基板 2の歪み応力と一致することが確認されている。オフセット電圧 V0は、振動素子 1の駆動電極 16に印加する駆動電圧であって、基準電極層 14に 接続される基準電位との電圧差を意味する。このオフセット電圧が一定の場合、振動 素子 1は安定した振動特性を維持する。なお、図示の例では、振動素子 IX, 1Yとで
Figure imgf000013_0001
ヽる。
[0040] 図 6A, Bに示すように、図 5に示した振動型ジャイロセンサ 10Rにおいては、振動 素子 IX, 1Yに関して、荷重の印加によりオフセット電圧 VOが大きく変動し、変動の 様子も急激であることがわかる。これは、荷重が印加されることで支持基板 2に歪みが 発生し、この歪みが振動素子 1に伝播して圧電体薄膜層の変形を誘発することで、 設定オフセット電圧が変動するものと考えられる。一般にリフローはんだ付けでは、 2 50°C程度に基板が加熱される。支持基板 2が制御基板 9上に直接実装される場合、 支持基板 2と制御基板 9との間の熱膨張率差による影響で支持基板 2に歪みが発生 し易い。従って、図 5に示した振動型ジャイロセンサ 10Rの構成では、制御基板 9へ の実装の前後で振動素子 1の振動特性が変化してしまい、目的とする性能が得られ なくなるおそれがある。
[0041] 一方、図 7A, Bは、図 1に示した振動型ジャイロセンサ 10について、図 6と同様の 荷重—Vo特性を評価したときの測定結果を示している。図 7A, Bに示すように、振 動素子 IX, 1Yに関して、オフセット電圧 V0の変動はほとんど認められず、設定値に 対して ± 50mV以下の変動量に収まっている。本実施形態の振動型ジャイロセンサ 10においては、支持基板 2を緩衝部材 5を介して支持する中継基板 4を設け、この中 継基板 4を制御基板 9へ実装させる構造であるので、リフロー実装時にぉ 、て制御基 板 9との熱膨張率差に起因して中継基板 4に歪みは発生する力 この発生した歪み は、緩衝部材 5の弾性変形によって減衰されるため、支持基板 2へ伝達されることは ない。このため、支持基板 2上に搭載されている振動素子 IX, 1Yに関しては、外部 ストレスの影響を受けることなく安定した振動特性を確保できるようになる。また、制御 基板 9への実装前後における振動型ジャイロセンサ 10の振動特性の変化を防ぐこと が可能となる。
[0042] 次に、図 8A, Bに示すように、図 5に示した振動型ジャイロセンサ 1 ORを駆動させた 状態で、センサ 10Rの上方に遮蔽物 Pを揺動させたときの外乱ノイズの変動を評価し た。遮蔽物 Pはアルミニウム板を用い、センサ 10Rの表面力も一定の距離 Hだけ離れ た上方位置で、図 8Bに示すように遮蔽物 Pを 1Hz程度で揺動させ、遮蔽物 Pがセン サ 10Rを覆ったときの当該センサ 10Rの出力に含まれるノイズの大きさの最大値を測 定した。測定結果を図 9に示す。横軸は距離 Hを示し、縦軸はノイズの大きさ(増幅値 )を示している。
[0043] 図 9に示すように、振動素子 IX, 1Yの共振周波数により、およそ半波長の整数倍 のところでノイズが大きくなることが確認される。これは、振動素子 1の共振による振動 の漏れが影響していると考えられる。即ち、図 5に示した構成の振動型ジャイロセンサ 10Rは、振動素子 1を支持する支持基板 2が直接、制御基板 9上に実装される構造 であるので、振動素子 1の共振振動が支持基板 2、外部接続端子 3を介して制御基 板 9へ伝播する。そして更に、制御基板 9の振動が上方の遮蔽物 Pに伝播し、遮蔽物 Pの表面で反射した振動が再び振動素子 1へ入射することにより、センサ出力に当該 振動成分が飛び込むと考えられる。
[0044] 一方、図 10は、図 1に示した振動型ジャイロセンサ 10について、図 8と同様のノイズ 量の評価を行ったときの測定結果を示している。図 10に示すように、遮蔽物 Pの距離 Hに関係なぐノイズ量の増加はほとんど認められない。本実施形態の振動型ジャィ 口センサ 10においては、支持基板 2をパネ部材 5を介して支持する中継基板 4を設け 、この中継基板 4を制御基板 9へ実装させる構造であるので、振動素子 1の共振振動 は、パネ部材 5の振動により吸収されるため、中継基板 4や制御基板 9へ当該振動の 伝播が抑制される。これにより、振動素子 1の共振振動が外部へ漏れることを防止で きるので、振動の反射によるノイズ量の変動あるいは増大を抑制することができる。ま た、制御基板 9上にカメラレンズのズーム機構などの可動部が搭載あるいは近接配 置される場合でも、その動きを拾って振動素子の振動特性が変動したり、 SZNが低 下して検出出力が低下することを防止し、角速度検出を高精度に行うことが可能とな る。
[0045] 次に、図 11は、振動素子 1の実装面と垂直な Z軸方向のパネ部材 5の共振周波数 と、図 7A, Bに示したようにして測定された振動素子 1のオフセット電圧 Voの設定値 力もの変動量との関係を示している。また、図 12は、パネ部材 5の Z軸方向の共振周 波数と、図 8に示したようにして測定された近接ノイズとの関係を示している。なお、実 験に用いたパネ部材 5のサンプルは、厚さ 50 μ m、幅 100 μ mのりん青銅パネとした
[0046] 図 11及び図 12に示したように、パネ部材 5の共振周波数が 10kHz以上で、オフセ ット電圧変動量及び近接ノイズが急激に増加することがわかる。これは、パネ部材 5 のパネ定数が大きくなると、支持基板 2に伝播する歪みの減衰作用及び中継基板 4 に伝播する振動素子 1の共振振動の減衰作用が低下して、安定した振動特性及び 出力特性が得られなくなることを示している。以上のことから、パネ部材 5の共振周波 数を 10kHz以下、好ましくは 7kHz以下とすることで、歪みの伝播によるオフセット電 圧の変動と振動の漏れによる近接ノイズの影響を回避することができる。
[0047] なお、パネ部材 5の共振周波数 7kHz以下は、振動素子 1の駆動周波数の 1Z5以 下に相当する。従って、振動素子 1の駆動周波数に対応してパネ部材 5の共振周波 数を設定することができる。また、パネ部材 5の共振周波数の設定は、厚み及び幅が 一定の場合にはその延在長 (連結部 5cの長さ)を調整することで行うことができる。
[0048] また、パネ部材 5の共振周波数に関しては、上述した Z軸方向の共振周波数だけで なく振動素子 1の実装面と平行な X, Y軸方向の共振周波数も併せて考慮する必要 がある。図 13Bは、パネ部材 5の水平距離 Sとその共振周波数との関係を示している 。パネ部材 5の水平距離 Sは、図 13Aに示すようにパネ部材 5の第 1アーム部 5aの形 成長さに概略一致し、より詳しくは、図 3に示すように、端子部 2tと接合される第 1ァ ーム部 5aの先端部と第 1アーム部 5aの基端部 (連結部 5c側の端部)までの距離 Sを いう。
[0049] 図 13Bに示したように、水平距離 Sが大きくなるに従い、パネ部材 5の共振周波数 が低下することがわかる。上記知見から、歪みの伝播によるオフセット電圧の変動や 振動の漏洩による近接ノイズの影響を回避するためには、パネ部材 5の共振周波数 を 10kHz以下にする必要がある。この条件を満足するためには、水平距離 Sを 0. 5 mm以上とするのが好ましいことがわかる。なお、上記の値は、選択するパネ材料や パネ形状などにより異なるため、選択したパネにより最適値を決定する必要がある。
[0050] また、支持基板 2の振動等により、支持基板 2の縁部がパネ部材 5の第 1アーム部 5 aに当接して第 1アーム部 5aの振動形態に変動を生じさせるおそれがある。この場合 、図 14に示すように、支持基板 5の縁部にテーパー状の逃げ部 51を形成しておき、 センサ駆動時における支持基板 2の周縁部とパネ部材 5との接触を回避する構成が 有効である。これにより、パネ部材 5の水平距離 Sを確保できるので、パネ部材 5によ る安定した歪み減衰機能及び振動減衰機能を得ることができるとともに、製品歩留ま りの改善を図ることができる。
[0051] 逃げ部 51のテーパー角度は、逃げ部 51を形成する前の支持基板 2の表面とパネ 部材 5の第 1アーム部 5aとの間のクリアランスによって調整できる。このクリアランスは 、支持基板 2とパネ部材 5との間を固着する導電性接合材 (例えば銀ペースト)の接 合厚で決定される。具体的に、上記クリアランスが 300 /z mの場合、逃げ部 51のテー パー角(逃げ部 51と第 1アーム部 5aのなす角 α )は、例えば、 15° 〜30° 程度であ る。また、逃げ部 51の形成方法としては、支持基板 2のダイシング (切り出し)時にお ける回転砲石のテーパー角度で容易に調整することができる。
[0052] 逃げ部はテーパー状のものに限られず、例えば、図 15に示すように、支持基板 2の 表面に形成したステップ状の逃げ部 52でもよい。これにより、上述と同様な効果を得 ることがでさる。
[0053] 更に、上記逃げ部を設けることにより、支持基板とパネ部材とを固着する導電性接 合材の接合領域の意図しない拡大によるパネ部材の水平距離 Sの変動を防止できる 。即ち、例えば図 15に示したように、支持基板 2とパネ部材 5との接合位置よりも支持 基板 2の縁部側に逃げ部 52が設けられて ヽるので、接合材 53の塗布量が多 、場合 に余剰の接合材を凹部 52内に収容できるようになり、これにより接合面積の拡大によ るパネ部材 5の水平距離 Sの変動を効果的に防止することができる。なお、接合材 53 の流出を防止する観点からでは、図 15に示すステップ状の凹部(52)に限らず、溝 部でもよい。
[0054] そして、本実施形態の振動型ジャイロセンサ 10において、振動素子 1を支持する支 持基板 2は、振動素子 1の共振時の一定以上の Q値 (機械品質係数)を確保できる程 度の硬い材料で構成される必要がある。本実施形態では、支持基板 2としてアルミナ セラミック基板を用いている。図 16は、 0. 5mm厚の支持基板 2を用いたときの、基板 面積と Q値との関係を示している。 Q値は、この厚みの場合では 5mm角(25mm2 )で 1000以上となる。
[0055] 次に、上述した本発明の第 1の実施形態による振動型ジャイロセンサ 10における各 部の構成の詳細について更に説明する。
[0056] (パネ部材の配置)
上述したように、本発明に係る緩衝部材としてのパネ部材 5は、支持基板 2と中継基 板 4間における歪み及び振動の伝達を減衰させる機能を有する。具体的には、中継 基板 4側から支持基板 2側へ伝達される歪みを緩和する機能と、支持基板 2上の振 動素子 1の振動が中継基板 4に伝達されるのを防ぐ機能を有している。
[0057] ここで、パネ部材 5は、支持基板 2の周囲に複数接合されることで中継基板 4に対す る支持基板 2の支持構造を構成して ヽるが、これら複数のパネ部材 5の接合位置によ つては中継基板 4に生じた歪みや加速度等の外力によって、支持基板 2が中継基板 4に対して回転する方向に捩れが生じるおそれがある。即ち、制御基板 9や中継基板 4に生じた外力をパネ部材 5で吸収し支持基板 2への伝達を阻止する過程において 、外力の発生方向によってパネ部材 5に捩れが生じて支持基板 2が回転し、角速度 が生じていないにもかかわらず支持基板 2の回転量に応じた角速度を検出してしまう おそれがある。
[0058] このような現象を抑えるためのパネ部材 5の配置例を以下説明する。
[0059] 図 17は支持基板 2の端子形成面 2Bの概略平面図である。なお、パネ部材 5の本 数や支持基板 2上の各種部品の実装形態等は、図 3に示した例とは必ずしも対応し ていない。図 17に示した例においては、支持基板 2は正方形であり、その面内にお いて支持基板 2の中心を通る 2つの直交軸 (X軸及び Y軸)に関して対称な位置に、 パネ部材 5がそれぞれ配置されている。 X軸、 Y軸に関して対称なパネ部材 5の配置 としては、パネ部材 5の本数や配置間隔、端子接合位置などがそれぞれ対称である ことを意味する。
[0060] これにより、 X軸方向の面内応力を Y軸に関して対称配置された横方向(図 17にお V、て左右方向)のパネ部材 5で吸収でき、 Y軸方向の面内応力を X軸に関して対称 配置された縦方向(図 17において上下方向)のパネ部材 5で吸収できる。また、斜め 方向の面内応力は、横方向及び縦方向に対称配置された複数のパネ部材 5によつ てバランス良く吸収でき、中継基板 4に対する支持基板 2の回転を抑えることが可能と なる。
[0061] 図 18は、支持基板 2に対して 1N (ニュートン)の歪みを方向を変えながら印加したと きの振動素子 1 (IX, 1Y)の出力の変動量を示している。ここでは、横方向にのみバ ネ部材 5を対称配置したサンプルと、縦方向にのみパネ部材 5を対称配置したサンプ ルと、横及び縦方向にパネ部材 5を対称配置したサンプルを用いた。出力変動は、 歪みの印加による支持基板 2の回転に起因して出力される角速度に対応し、変動電 圧が大き 、ほど支持基板 2の回転角速度が大き 、ことを表して 、る。
[0062] 図 18の結果から明らかなように、横方向にのみパネ部材 5を配置したサンプルと、 縦方向にのみパネ部材 5を配置したサンプルでは、出力変動電圧が歪み印加方向 に大きく依存するが、横及び縦方向にパネ部材 5を対称配置したサンプルでは、歪 みの印加方向に関係なく出力変動は認められな力つた。
[0063] また、支持基板 2の中心 Oが中継基板 4の中心位置と対応するように配置すること で、中継基板 4に対する支持基板 2の回転抑制効果の向上を図ることができる。更に 、対称配置された複数のパネ部材 5の間の中心を支持基板 2の中心 Oに対応させる ことによって、センサの出力変動を効果的に抑えられることがわ力つている。図 19は、 縦方向のパネ部材 5の間の中心位置を、当該支持基板の幅寸法の 20%に相当する 大きさだけ基板中心 O力 ずらして配置したときの、歪み印加方向と出力変動との関 係を示している。図 19に示すように、出力変動が ± 20mV発生しており、中心 Oから のずれ量が大きいほど出力変動が大きくなる傾向にある。
[0064] 一方、支持基板 2の上に実装されている各種部品の重量配分により決定される支 持基板の重心位置と、パネ部材 5の配置により決定される剛心位置とのずれ量の大 きさによっては、歪みの印加による支持基板 2の回転が生じることがわかっている。こ こでいう剛心とは、支持基板 2を揺らす力の中心を意味する。このような回転は、角度 としては微小なものであっても、振動周波数が高くなると単位時間あたりの角度変位 が大きくなる結果、角速度としては大きくなるものであった。
[0065] そこで、図 20に示すように、支持基板 2上の部品の重量バランスにより決定される 支持基板 2の重心位置を G、支持基板 2を支持する複数のパネ部材 5の剛性バラン スにより決定される剛心を C、重心 Gに対する剛心 Cの X軸方向のズレ量の X方向基 板幅 Wxに対する割合を Δ Cx、重心 Gに対する剛心 Cの Y軸方向のズレ量の Y方向 基板幅 Wyに対する割合を A Cyとしたときに、 A Cx、 A Cyの大きさを変えて支持基 板 2の平行移動振動に対する振動素子 1 (IX, 1Y)の出力を観察した。その結果、 図 21に示すように A Cx、 A Cyそれぞれについて、 A CZWが 15%を超えるとノイズ 量が急激に大きくなることがわ力 た。このノイズ量は、外力による支持基板 2の回転 に伴って発生するセンサ出力を内含し、 A CZWの値が大きいほど、即ち重心 Gと剛 心 Pのズレ量が大きいほど外力の影響を受けやすくなる。
[0066] 以上の結果から、パネ部材 5により支持されている支持基板 2の剛心が支持基板 2 の重心と対応するように、複数のパネ部材 5をそれぞれ配置することで、外力による 支持基板の回転を抑えて出力の高精度化を図ることができる。好ましくは、 A CZW の値が 15%未満となるようなパネ部材 5の配置構成を採用する。図 22は、図 20に示 した部品実装形態の支持基板 2に対するパネ部材 5の好適な配置例を示している。 横方向及び縦方向においてパネ部材 5の配置間隔を異ならせるとともに、横方向の パネ部材 5を支持基板 2の図中下方側に、縦方向のパネ部材 5を支持基板 2の図中 右方側にそれぞれ偏倚させて配置することで、剛心 Cの位置を支持基板 2の重心 G の位置に近づけている。
[0067] 一方、図 17に示したように X, Y軸に関して対称に位置にパネ部材 5を配列したとき の剛心位置に合わせて、支持基板 2の重心位置を調整するようにしてもよい。この場 合、例えば図 23に示すように、 IC回路素子 7などの単一部品は基板中心部に配置し 、振動素子 IX, 1Yのように一対一組の部品は基板対角線上に配置し、更にチップ コンデンサ 8など複数用いられるものは 2群に分けて基板対角位置に配置することで 、支持基板 2の中心付近に重心 Gの位置を設定することができる。これにより、上述し たパネ部材 5の対称配置を組み合わせることで、図 24に示すように、支持基板 2の重 心 Gの位置と剛心 Cの位置とを概略一致させることが可能となる。
[0068] なお、支持基板 2の重心 Gと剛心 Cとを支持基板 2の中心に近い位置に設定するこ とにより、 Z方向(高さ方向)からの振動に対しても支持基板 2の角度変化を抑えること が可能となることがわ力つている。この場合、重心と剛心の間の距離を支持基板の辺 長の 15%以下、特に、 7. 5%以下とするのが好ましい。
[0069] (キャップ部材の構造)
次に、キャップ部材 6の構造について説明する。上述のように、キャップ部材 6は、 支持基板 2を外部から遮蔽するために中継基板 4に取り付けられ、電磁シールド機能 を持たせるためにステンレス板やアルミニウム板などの導電性板材のプレス成形体で 構成されている。一方、支持基板 2の周囲には、支持基板 2を中継基板 4に対して電 気的 ·機械的に接続する複数のパネ部材 5が配置されている。従って、振動型ジャィ 口センサ 10に衝撃が加わると、中継基板 4に対して支持基板 2が平行移動して、パネ 部材 5とキャップ部材 6とが接触し導通するおそれがある。
[0070] そこで、図 25に示すように、キャップ部材 6の内面に絶縁膜 54を形成することで、キ ヤップ部材 6とパネ部材 5との接触時における両者間の電気的導通を阻止することが 可能となる。絶縁膜 54としては、 SiOや Al Oなどの電気絶縁材料の薄膜や塗膜、
2 2 3
あるいは電気絶縁シートなどによって構成することができる。また、絶縁膜 54は、キヤ ップ部材 6の内面全域に形成される場合に限られず、少なくとも、支持基板 2の平行 移動によってパネ部材 5と接触し得る領域にのみ絶縁膜 54が形成されていればよい
[0071] 一方、図 26〜図 29に示すように、キャップ部材 6の形状を工夫することで、パネ部 材 5とキャップ部材 6の内面との間の接触を防止することも可能である。
[0072] 即ち、図 26及び図 27は、キャップ部材 6の側周部四隅位置に対応するコーナー部 6Aを曲面状に形成している。そして、支持基板 2が振動等により水平方向に平行移 動した際、パネ部材 5がキャップ部材 6に当接するよりも先に、支持基板 2のコーナー 部 2Cがキャップ部材 6のコーナー部 6Aに当接するように構成される。これにより、支 持基板 2の面内方向の移動が規制され、パネ部材 5とキャップ部材 6との間の接触に よる導通を回避することができる。キャップ部材 6のコーナー部 6Aは、本発明に係る「 規制部」に対応する。
[0073] また、図 28及び図 29は、キャップ部材 6の上面四隅位置に対応するコーナー部 6B を平坦に形成している。そして、支持基板 2が振動等により水平方向に平行移動した 際、パネ部材 5がキャップ部材 6に当接するよりも先に、支持基板 2のコーナー部 2C がキャップ部材 6のコーナー部 6Bに当接するように構成される。これにより、支持基 板 2の面内方向の移動が規制され、パネ部材 5とキャップ部材 6との間の接触による 導通を回避することができる。キャップ部材 6のコーナー部 6Bは、本発明に係る「規 制部」に対応する。
なお、図示の例では説明を分力り易くするためキャップ部材 6のコーナー部 6Bを平 坦面で示した力 これに限らず、曲面形状であってもよい。実際に、キャップ部材 6は 絞り加工で作製される場合が多ぐこの場合はコーナー部 6Bが曲面形状に形成され るカゝらである。
[0074] 以上の構成により、パネ部材 5とキャップ部材 6との接触を回避しながら、パネ部材 5 とキャップ部材 6内面との間のクリアランスを小さく設定することが可能となり、振動型 ジャイロセンサの小型化を図ることができる。
[0075] (パネ部材の接合構造)
パネ部材 5は、支持基板 2及び中継基板 4の各々の端子部に、銀ペースト等の導電 性接合材を用いて固着されている。従って、パネ部材 5の厚みと接着層の厚みに相 当する分だけ高さが嵩み、ジャイロセンサの薄型化が困難になっている。そこで、ノ ネ部材 5の接合高さを低減してジャイロセンサの薄型化を図ることができるパネ部材 5 の接合構造にっ 、て以下説明する。
[0076] 図 30A, B及び図 31は、図 1に示したパネ部材 5と支持基板 2及び中継基板 4の接 合部を拡大して示す模式である。パネ部材 5の第 1アーム部 5aは、図 30Aに示すよう に支持基板 2の端子部 2tに接合材 53を介して接合されている。また、パネ部材 5の 第 2アーム部 5bは、図 30Bに示すように中継基板 4の端子部 4tに接合材 53を介して 接合されている。
[0077] 図示の例では、接合材 53は銀ペーストであり、パネ部材 5の接着高さが約 50 μ mと なるように塗布量が設定されている。パネ部材 5は、図 32に示すように、りん青銅から なる基材 56の表面にニッケルめっき層 57及び金めつき層 58が順次形成されている 。ニッケルめっき層 57は金めつき層 58の密着性を高めるための下地膜であり、金め つき層 58は銀ペーストとの接着性を高めて低接触抵抗ィ匕を図るためのものである。 なお、金めつき層 58は金ペーストの塗膜や金蒸着膜などであってもよい。
[0078] 図 30の例においては、接合材 53の接着高さとパネ部材 5 (第 1アーム部 5a)の厚さ の和に相当する高さ(50 m+ 50 m= 100 μ m)分だけ、支持基板 2の上面から 突出する。この場合、パネ部材 5の接触を避けるため、キャップ部材 6の取付高さも高 くする必要があり、これによりジャイロセンサの薄型化が図れなくなる。
[0079] そこで、本発明では、支持基板の端子部及び中継基板の端子部のうち少なくとも一 方は、支持基板の端子部形成面又は中継基板の端子部形成面に設けられた凹所 内に形成するようにしている。図 33及び図 34は、支持基板 2の端子部形成面 2Bに 設けた凹所 61の底部に端子部 2tを形成した例を示している。凹所 61は、個々の端 子部 2tに対応して複数設けられている。これにより、端子部 2t上に接合材 53を介し て接合されるパネ部材 5 (第 1アーム部 5a)の支持基板 2上面からの突出量を抑える ことが可能となり、キャップ部材 6の低背化を実現してジャイロセンサの薄型化を図れ るよつになる。
[0080] 凹所 61の形成深さは特に制限されないが、特に、図 33に示したように、パネ部材 5 が支持基板 2の上面力も突出しない程度の深さとするのが好ましい。また、凹所 61の 形成により、支持基板 2に対するパネ部材 5の取付けが容易となり、作業性の向上を 図ることち可會となる。
[0081] なお、凹所 61は個々の端子部 2tに対応して複数箇所に設けられる構成に限らず、 支持基板 2の周縁部の各端子部 2tの形成領域にまたがって一つの凹所を形成する ようにしてもよい。この場合、支持基板 2の周縁部の厚みが凹所の形成分だけ薄くな るため、振動素子 1の機械品質係数 Qを少なくとも確保できる程度の厚みは維持する ようにする。図 35は、支持基板の厚みと振動素子の機械品質係数 Qとの関係を示し て 、る。基板の厚みが薄くなるほど Qが低下するのがわかる。
[0082] なお、上記構成は、支持基板 2の端子部 2tについての例だけに限らず、中継基板 4の端子部 4tについても同様に適用可能である。特に、支持基板 2及び中継基板 4 の両方に対して適用することにより、ジャイロセンサの更なる薄型化を図ることができ る。図 36は、図 1に示した構成を有するジャイロセンサ 10Hと、凹所 61を備えたパネ 接合部構造を有するジャイロセンサ 10Lの高さを比較した側断面図である。ジャイロ センサ 10Lの方がジャイロセンサ 10Hよりも Δ Ηだけ薄く構成することができる。 Δ Η の値は、支持基板 2及び中継基板 4の双方に対するパネ部材 5の接合高さに相当す る。
[0083] 一方、本発明に係る振動型ジャイロセンサは、図 37に示すように構成することも可 能である。図 37は、パネ部材 5の配置例を変更したジャイロセンサ 10Mの概略構成 図である。図示するジャイロセンサ 10Mにおいては、支持基板 2の端子部形成面が 振動素子 1 (IX, 1Y)等が実装される部品実装面と同一面で構成され、支持基板 2 の中継基板 4との対向面にパネ部材 5の第 1アーム部 5aが接合されている。
[0084] なお、図 37に示すジャイロセンサ 10Mにおいては、パネ部材 5の共振周波数との 関係でパネ部材 5の垂直方向の長さ(連結部 5cの長さ)を一定以上確保する必要が ある。図 38は、パネ部材の(垂直方向の)長さとその共振周波数との関係を示してい る。図 38より、パネ部材の長さにより当該パネ部材のもつ共振周波数は変化し、短く なるほど共振周波数は高くなる傾向にある。先に説明したように、図 11及び図 12を 参照して説明したように、パネ部材 5の共振周波数は 10kHz以下が好ましぐこのた めには、パネ部材 5の長さは 0. 5mm以上とする必要がある。
[0085] 更に、支持基板 2の端子部形成領域に上述した凹所 61内にパネ部材 5を接合する 構成において、図 39に示すように、凹所 61内のパネ部材 5の先端を覆うように補強 板 62を支持基板 2の上に貼り付けることで、外部衝撃に対するパネ部材 5の接合強 度の信頼性を高めることができる点で有利である。また、凹所内に充填した非導電性 の接合材によってパネ部材と端子部との接触状態を保持する構成も適用可能である
[0086] (リフロー対策)
図 40は、図 1に示した振動型ジャイロセンサの構成の変形例を示す概略側断面図 である。図 40に示す振動型ジャイロセンサ 10Nは、一対の振動素子 1 (IX, 1Y)が 実装された支持基板 2を複数本のパネ部材 5を介して中継基板 4に機械的'電気的 に接続されて 、る点で、図 1に示した振動型ジャイロセンサの構成と共通する。
[0087] 本実施形態では、センサを構成する各種部品のうち、はんだ付け実装されるチップ コンデンサ 8等の電子部品は中継基板 4に実装し、はんだ付け以外の方法で実装さ れる振動素子 1等の部品を支持基板 2へ集約させている。これにより、制御基板 4へ のリフロー実装時に、はんだ接合部の再溶融 '凝固により発生する歪み力 振動素 子 1を保護し、制御基板 4のセンサ実装前後における振動素子 1の振動特性の変化 を防止できるようになる。なお、図 40に示した例では、 IC回路素子 7が、振動素子 1と 同様に、バンプ 19を介した超音波接合により実装される形態を示している。
[0088] (支持基板の振動対策)
次に、支持基板の振動対策について説明する。図 41に示すように、振動素子 1は、 基台 11と、基台 11の片持ち梁形式で支持された振動子部 12とからなり、基部 11は バンプ 13を介して支持基板 2に実装されて 、る。基部 11は振動子部 12の振動を支 持する台座として機能するが、振動子部 12の振動に伴って基部 11も振動し、この基 部 11の振動がバンプ 13を介して支持基板 2にも伝達される。図 42は、基部(振動子 台座) 11の振動 (振幅)と支持基板 2の振動 (振幅)との関係の一例を示して 、る。図 42より、基部 11の振動が大きくなるほど、支持基板 2の振動も大きくなる傾向にある。
[0089] 支持基板 2の振動は、本発明に係る緩衝部材としてのパネ部材 5によって中継基板 4側への伝達は減衰される。しかし、支持基板 2の振動は小さい方が好ましい。また、 支持基板 2の振動が大きい状態を放置すると、衝撃 (加速度)がセンサに作用したと きなど、支持基板 2が中継基板 4に対して相対移動した場合にパネ部材 5がキャップ 6と接触する可能性が高くなるため、センサの安定した動作確保という観点力もでは 支持基板 2の振動はできるだけ低減する必要がある。
[0090] 本発明者らは、基台 11の振動の大きさをバンプ 13の位置によって制御できることを 見出した。図 43Aに示すように、まず、振動子 1の基部 11の前後方向(振動子部 12 の延在方向)中心部を Mとし、この中心部 M力 振動子部 12が位置する側の領域を 前部領域 11F、その反対側を後部領域 1 IBとそれぞれ規定する。更に、各領域につ いて前後方向(図 43Aにおいて上下方向)に等分に 3つの小領域を区画し、それぞ れの小領域を FF、 FM、 FB、及び BF、 BM、 BBとそれぞれ規定した。そして、バン プ 13の中心位置が上記各小領域のいずれに位置するかで基部(台座) 11の振動振 幅を測定したところ、図 43B及び図 43Cに示すような結果が得られた。測定条件は、 バンプ 13の個数を 4つとし、前後(上下)各々の 2バンプをそれぞれ同一の小領域に 配置した。
[0091] 図 43Bの結果から、前方の 2バンプ(上バンプ)については、振動子部 12に最も近 い領域 FFへの配置例が台座振動が最も小さぐ振動子部 12から最も離れた領域 F Bへ配置例が台座振動が最も大きいことがわ力つた。また、図 43Cの結果から、後方 の 2バンプ(下バンプ)については、振動子部 12から最も遠い領域 BBへの配置例が 台座振動が最も小さぐ振動子部 12に最も近い領域 BFへの配置例が台座振動が最 も大きいことがわ力つた。 [0092] 以上の結果から、基部 11に設けられるバンプ 13の配置個所としては、前方の 2バ ンプを振動子部 12にできるだけ接近させて配置するとともに、後方の 2バンプを振動 子部 12からできるだけ離間させた位置に配置することで、支持基板 2への振動伝達 を最小限に抑えられることになる。好適には、基部 11の前後方向の全長に対して、 基部 11の前方端部及び後方端部力も 30%以内の領域 (以下「バンプ配置領域」と いう。)にそれぞれバンプ 13を配置するようにする。上記バンプ配置領域は、基部 11 を振動子部 12の延在方向に沿って等分に区画した 3つの領域 (FFと FMが属する領 域、 FBと BFが属する領域、 BMと BBが属する領域)のうち、振動子部 12に最も近い 領域 (FFと FMが属する領域)と、振動子部 12から最も離れた領域 (BMと BBが属す る領域)とに該当する。なお、各バンプは前後 2つずつ共通のバンプ配置領域に配 置される例に限らず、少なくとも 1個のバンプ、あるいは別途形成したダミーバンプが 、各バンプ配置領域に配置されていればよい。
[0093] (第 2の実施形態)
図 44は、本発明の第 2の実施形態による振動型ジャイロセンサ 20Aの概略構成を 示す側断面図である。なお、図において上述の第 1の実施形態と対応する部分につ いては同一の符号を付し、その詳細な説明は省略する。また、図において支持基板 2の上に搭載される電子部品 8の図示は省略している。
[0094] 本実施形態の振動型ジャイロセンサ 20Aは、一対の振動素子 IX, 1Yを支持する 支持基板と、制御基板 9に実装される中継基板 4との間に、振動吸収性の材料からな る緩衝部材 23が設置されているとともに、支持基板 2と中継基板 4との間の電気的接 続が電極部材 21とボンディングワイヤ 22とを介して行われて!/、る。ボンディングワイ ャ 22は本発明に係る「配線部材」の一例であり、支持基板 2上の各端子部と、中継基 板 4上に取り付けられた電極部材 21との間を電気的に接続する。
[0095] 緩衝部材 23は、中継基板 4側から支持基板 2側への歪みの伝播及び支持基板 2 側から中継基板 4側への振動の伝播を減衰する作用を有する材料、例えば、ゴム材 料、ウレタンフォーム等の榭脂材料等で構成されている。これにより、歪みの伝播及 び振動の漏洩等による外乱ノイズの増大を抑制して、上述の第 1の実施形態と同様 に、安定した振動特性の確保と出力特性の向上を図ることが可能となる。 [0096] また、図 45に示す振動型ジャイロセンサ 20Bは、支持基板 2と中継基板 4との間に 板パネで構成された緩衝部材 24を用いた例を示して 、る。この緩衝部材 24は支持 基板 2を中継基板 4に対して弾性的に支持することで、上述と同様な作用効果を行う
[0097] (第 3の実施形態)
図 46は本発明の第 3の実施形態を示している。なお、図において上述の第 1の実 施形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。 また、図において支持基板 2の上に搭載される電子部品 8の図示は省略している。
[0098] 本実施形態の振動型ジャイロセンサ 30Aは、一対の振動素子 IX, 1Yを支持する 支持基板 2が中継基板 4上の電極部材 21に対してフレキシブル配線基板 31を介し て電気的に接続されているとともに、これらのフレキシブル配線基板 31によって支持 基板 2が中継基板 4の上方位置で懸吊支持された構造を有して ヽる。
[0099] フレキシブル配線基板 31は、支持基板 2と中継基板 4との間における歪み及び振 動の伝播を減衰させる緩衝部材として機能すると同時に、支持基板 2と中継基板 4と の間を電気的に接続する配線部材としての機能をも有して 、る。本実施形態によつ ても上述の第 1の実施形態と同様な作用効果を得ることができる。
[0100] また、図 47に示す振動型ジャイロセンサ 30Bは、フレキシブル配線部材 31の代わ りにパネ性のある金属線 32を用いて構成されている。金属線 32は、支持基板 21上 の各端子部 33と中継基板 4上の電極部材 21との間を電気的 ·機械的に接続する。 支持基板 2と中継基板 4との間における歪み及び振動の伝播は、これら金属線 32の 弾性変形によって減衰される。
[0101] (第 4の実施形態)
図 48〜図 50は本発明の第 4の実施形態を示している。なお、図において上述の第 1の実施形態と対応する部分については同一の符号を付し、その詳細な説明は省略 する。
[0102] 図 48に示す振動型ジャイロセンサ 40Aは、一対の振動素子 IX, 1Yを支持する支 持基板 41が、導電性接着層 43を介して中継基板 4上の側壁 45上端に電気的'機械 的に接続された構成を有している。支持基板 41の一主面には配線層 42が形成され ており、その配線層 42の上には振動素子 IX, 1Yのみが実装され、素子実装面を中 継基板 4に対向させて設置されている。また、支持基板 42はジャイロセンサ 40Aの天 蓋を構成している。
[0103] 中継基板 4には、 IC回路素子 7及びその他の電子部品 8が実装されている。 IC回 路素子 7、電子部品 8と電気的に接続される配線層 44は、中継基板 4の周囲に立設 された側壁 45の内壁面及び上面にまで延在して 、る。中継基板 4の配線層 44は、 導電性接着層 43を介して支持基板 41の配線層 42と電気的に接続されている。
[0104] 導電性接着層 43は、導電性ペースト、異方性導電ペースト、異方性導電フィルム 等で構成することができる。特に、導電性粒子が保持する榭脂マトリックス材は、比較 的弾性変形能の高 、、例えばゴム材料をベースとした絶縁材料が用いられて 、る。 これにより、上述の第 1の実施形態と同様な作用効果を得ることができる。即ち、導電 性接着層 43は本発明に係る緩衝部材として機能し、中継基板 4側から支持基板 41 側への歪みの伝播を減衰させて、振動素子 IX, 1Yの振動特性の安定ィ匕を図る。ま た、支持基板 41側から中継基板 4側へ向力う振動素子 IX, 1Yの振動の伝播の減 衰作用が得られ、当該振動の外部への漏洩による出力特性の低下を抑えることがで きる。
[0105] また、本実施形態の振動型ジャイロセンサ 40Aによれば、振動素子 IX, 1Yとこれ 以外の IC回路素子 7及び電子部品 8とがそれぞれ別基板 (支持基板 41及び中継基 板 4)に実装されているため、各基板の実装面積の低減を図って振動型ジャイロセン サ 40Aの小型化を実現することができる。更に、当該センサ 40Aを制御基板 9ヘリフ ローはんだ付け実装する際において、 IC回路素子 7や電子部品 8等のはんだ接合 部の再溶融〜冷却凝固過程により発生する中継基板 4の歪みが支持基板 41へ伝播 するのを阻止することができるため、振動素子 IX, 1Yの振動特性の安定ィ匕効果をよ り一層高めることができる。
[0106] 次に、図 49に示す振動型ジャイロセンサ 40Bは、振動素子 IX、 1Yを支持する支 持基板 41が両面配線基板力 なり、その内面側の主面(図 49において下面)には振 動素子 IX, 1Yが実装される配線層 42を有し、外面側の主面(図 49において上面) には、配線層 42と層間接続されたフレキシブル配線基板や板パネ部材などカゝらなる 配線部材を兼ねた緩衝部材 46が取り付けられている。そして、この緩衝部材 46の周 縁部を中継基板 4上の側壁 45及び配線層 44に対して電気的'機械的に接続するこ とで、 IC回路素子 7及び電子部品 8が実装される中継基板 4の上方位置で支持基板 41が懸吊支持されている。このような構成の振動型ジャイロセンサ 40Bにおいても、 上述と同様な効果を得ることができる。
[0107] そして、図 50に示す振動型ジャイロセンサ 40Cにおいては、一対の振動素子 IX, 1Yを支持する支持基板 41が、側壁 47及び導電性接着層 43を介して中継基板 4上 に支持された構造を有して ヽる。支持基板 41の部品実装面に形成された配線層 42 は、側壁 47の内面及び導電性接着層 43を介して、中継基板 4上の配線層 44に電 気的に接続されている。導電性接着層 43は上述したような構成を有しており、配線 部材を兼ねる緩衝部材として機能する。本例の振動型ジャイロセンサ 40Cにお 、て も上述と同様な作用効果を得ることができる。
[0108] (第 5の実施形態)
図 51は本発明の第 5の実施形態による振動型ジャイロセンサ 50の概略構成を示 す側断面図である。なお、図において上述の第 1の実施形態と対応する部分につい ては同一の符号を付し、その詳細な説明は省略する。
[0109] 本実施形態の振動型ジャイロセンサ 50は、一対の振動素子 IX, 1Yを支持する支 持基板 2と、制御基板 (図示略)と接続される外部接続端子(図示略)を備えた中継基 板 4との配置関係が上述の第 1の実施形態と異なっている。即ち、上述の第 1の実施 形態の振動型ジャイロセンサ 10においては、支持基板 2とセンサ基板 4とは、センサ 高さ方向に対向配置されているのに対して、本実施形態の振動型ジャイロセンサ 50 においては、中継基板 4が支持基板 2の外側(外周側)に位置している。これにより、 センサ高さを低減してジャイロセンサの薄型化が図られている。
[0110] 中継基板 4の略中央部には開口 4Pが形成されており、支持基板 2はその中継基板 4の開口 4P内に収容されている。支持基板 2の端子部 2tと中継基板 4の端子部 4tと の間は複数本のパネ部材 5によって接続されており、対応する各端子部 2t, 4t間が これらのパネ部材 5によって電気的に接続されている。また、支持基板 2はこれら複数 本のパネ部材 5によって開口 4P内に懸吊されるように、中継基板 4に対して機械的に 接続されている。これにより、支持基板 2の独立した振動系が構成されている。
[0111] 支持基板 2上に実装されている各種部品及びパネ部材 5は、中継基板 4の上面に 取り付けられたキャップ部材 6によって外部から遮蔽されている。また、開口 4Pが図 示する貫通孔の場合、中継基板 4の下面側からの異物の侵入を防止するため、中継 基板 4と支持基板 2との境界部が封止材 55で封止される。封止材 55は、支持基板 2 と中継基板 4との間における振動及び歪みの伝達を抑えるため、柔軟性のある例え ばシリコーン系接着剤などで構成される。
[0112] 以上のような構成の本実施形態の振動型ジャイロセンサ 50においても、上述の第 1 の実施形態と同様な作用効果を得ることができる。特に、本実施形態の振動型ジャィ 口センサ 50においては、中継基板 4が支持基板 2の外側に位置しているので、セン サ高さを低減してジャイロセンサの薄型化を図ることができる。なお、中継基板 4は、 上述の例のように支持基板 2の外側に位置する場合に限らず、支持基板 2の内側( 内周側)に位置する構成においても同様な効果を得ることができる。

Claims

請求の範囲
[1] 角速度を検出する振動素子と、
前記振動素子と電気的に接続され当該振動素子を支持する支持基板と、 前記支持基板と電気的に接続され外部接続端子を有する中継基板と、 前記支持基板と前記中継基板との間に配置された緩衝部材とを備えた ことを特徴とする振動型ジャイロセンサ。
[2] 前記緩衝部材は、前記支持基板と前記中継基板との間を電気的に接続する配線 部材を兼ねている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[3] 前記緩衝部材は、前記支持基板の周囲に複数配置され、前記支持基板と前記中 継基板との間を電気的に接続する配線部材として形成されている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[4] 前記緩衝部材は、前記支持基板の周囲に複数配置され、
前記複数の緩衝部材は、前記支持基板の面内の直交する 2軸に関して対称な位 置にそれぞれ配置されて ヽる
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[5] 前記緩衝部材は、前記支持基板の周囲に複数配置され、
前記複数の緩衝部材は、当該複数の緩衝部材により支持されて ヽる前記支持基板 の剛心が前記支持基板の重心と対応するように配置されて 、る
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[6] 前記緩衝部材は、前記支持基板の端子部に接合される第 1アーム部と、前記中継 基板の端子部に接合される第 2アーム部と、これら第 1,第 2アーム部の間を連結する 連結部とからなるパネ部材である
ことを特徴とする請求項 3に記載の振動型ジャイロセンサ。
[7] 前記支持基板の縁部には、前記第 1アーム部との接触を回避するための逃げ部が 形成されている
ことを特徴とする請求項 6に記載の振動型ジャイロセンサ。
[8] 前記支持基板の端子部及び前記中継基板の端子部のうち少なくとも一方は、前記 支持基板の端子部形成面又は前記中継基板の端子部形成面に設けられた凹所内 に形成されて ヽる ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[9] 前記中継基板には、前記支持基板を外部力 遮蔽するためのキャップ部材が取り 付けられている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[10] 前記キャップ部材の内面側の少なくとも一部は電気絶縁材料で形成されて ヽる ことを特徴とする請求項 9に記載の振動型ジャイロセンサ。
[11] 前記キャップ部材の少なくとも一部は導電性材料力 なるとともに接地電位に接続 されている
ことを特徴とする請求項 9に記載の振動型ジャイロセンサ。
[12] 前記キャップ部材には、前記支持基板の面内方向の移動を規制する規制部が設 けられている
ことを特徴とする請求項 9に記載の振動型ジャイロセンサ。
[13] 前記中継基板及び Z又は前記支持基板には、ノイズ遮蔽用のシールド層が設けら れている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[14] 前記支持基板と前記中継基板とは、センサ高さ方向に対向配置されている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[15] 前記中継基板は、前記支持基板の外側又は内側に位置している
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[16] 前記支持基板の端子部と前記中継基板の端子部との間が、配線部材を介して接 続されている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[17] 前記振動素子は、前記支持基板上に複数設けられ、互いに異なる軸方向の角速 度を検出する
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[18] 前記支持基板には、前記振動素子とともに回路素子が実装されている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[19] 前記支持基板には前記振動素子のみが実装されており、前記中継基板には回路 素子が実装されている
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[20] 前記振動素子は、片持ち梁構造の振動子を有する
ことを特徴とする請求項 1に記載の振動型ジャイロセンサ。
[21] 前記振動素子は、前記振動子を支持する基部と、この基部に設けられた実装用の 複数の金属バンプとを備えて 、るとともに、
前記基部を前記振動子の延在方向に沿って等分に区画した 3つの領域のうち、前 記振動子に最も近い領域と、前記振動子力 最も離れた領域のそれぞれについて 少なくとも 1つの金属バンプが配置されている
ことを特徴とする請求項 20に記載の振動型ジャイロセンサ。
PCT/JP2007/063160 2006-06-30 2007-06-29 Gyro-capteur d'oscillations WO2008001908A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07767944A EP2040033A1 (en) 2006-06-30 2007-06-29 Oscillation gyro sensor
US12/306,860 US20090320593A1 (en) 2006-06-30 2007-06-29 Vibration type gyro sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-182745 2006-06-30
JP2006182745A JP2008014633A (ja) 2006-06-07 2006-06-30 振動型ジャイロセンサ

Publications (1)

Publication Number Publication Date
WO2008001908A1 true WO2008001908A1 (fr) 2008-01-03

Family

ID=38845668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063160 WO2008001908A1 (fr) 2006-06-30 2007-06-29 Gyro-capteur d'oscillations

Country Status (5)

Country Link
US (1) US20090320593A1 (ja)
EP (1) EP2040033A1 (ja)
KR (1) KR20090024208A (ja)
CN (1) CN101484776A (ja)
WO (1) WO2008001908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125820A (ja) * 2014-12-26 2016-07-11 セイコーエプソン株式会社 光学フィルターデバイス、光学モジュール、及び電子機器
US10330917B2 (en) 2014-09-29 2019-06-25 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992438B2 (en) * 2007-11-28 2011-08-09 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Multiaxial gyroscope
DE102009000574B4 (de) * 2009-02-03 2017-07-27 Robert Bosch Gmbh Sensorvorrichtung
SG173732A1 (en) * 2009-02-17 2011-09-29 Agency Science Tech & Res Miniaturized piezoelectric accelerometers
US8418554B2 (en) 2009-06-01 2013-04-16 The Boeing Company Gyroscope packaging assembly
JP5737848B2 (ja) * 2010-03-01 2015-06-17 セイコーエプソン株式会社 センサーデバイス、センサーデバイスの製造方法、モーションセンサー及びモーションセンサーの製造方法
CN102074220B (zh) * 2010-11-17 2012-07-11 西南交通大学 一种消除屏显设备视觉振动的方法
CN102353371B (zh) * 2011-07-22 2013-03-27 上海交通大学 静电驱动电容检测三轴微陀螺仪
JP2013030850A (ja) * 2011-07-26 2013-02-07 Seiko Epson Corp 振動デバイスおよび電子機器
JP6323034B2 (ja) * 2014-01-28 2018-05-16 セイコーエプソン株式会社 機能素子、電子デバイス、電子機器、および移動体
JP6302305B2 (ja) * 2014-03-18 2018-03-28 キヤノン株式会社 振動低減装置、リソグラフィ装置、および物品の製造方法
DE102014105861B4 (de) 2014-04-25 2015-11-05 Infineon Technologies Ag Sensorvorrichtung und Verfahren zum Herstellen einer Sensorvorrichtung
US10345330B2 (en) * 2015-09-25 2019-07-09 Apple Inc. Mechanical low pass filter for motion sensors
US10324105B2 (en) 2015-09-25 2019-06-18 Apple Inc. Mechanical low pass filter for motion sensors
JP6825306B2 (ja) * 2016-11-02 2021-02-03 富士電機株式会社 半導体装置
JP6942517B2 (ja) * 2017-04-27 2021-09-29 キヤノン株式会社 撮像装置およびその製造方法
CN114174777A (zh) * 2019-07-30 2022-03-11 京瓷株式会社 振动计及振动的检测方法
CN110797415A (zh) * 2019-10-28 2020-02-14 中国电子科技集团公司第十一研究所 引线组件及红外探测器
CN111536994B (zh) * 2020-04-29 2021-09-24 中国人民解放军国防科技大学 一种谐振式微陀螺多模态协同控制方法、系统及谐振式微陀螺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299963A (ja) * 1992-04-20 1993-11-12 Kyocera Corp 電子部品収納用容器
JPH08186457A (ja) * 1994-12-27 1996-07-16 Miyota Kk 水晶振動片の支持方法
JPH08334331A (ja) * 1995-06-07 1996-12-17 Murata Mfg Co Ltd 振動ジャイロ
JPH0914966A (ja) * 1995-06-26 1997-01-17 Murata Mfg Co Ltd 振動ジャイロ
JPH0983033A (ja) * 1995-09-14 1997-03-28 Sony Corp 圧電セラミックトランス
JP2005227110A (ja) 2004-02-12 2005-08-25 Sony Corp 振動型ジャイロセンサ素子の製造方法及び振動型ジャイロセンサ素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241861A (en) * 1991-02-08 1993-09-07 Sundstrand Corporation Micromachined rate and acceleration sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299963A (ja) * 1992-04-20 1993-11-12 Kyocera Corp 電子部品収納用容器
JPH08186457A (ja) * 1994-12-27 1996-07-16 Miyota Kk 水晶振動片の支持方法
JPH08334331A (ja) * 1995-06-07 1996-12-17 Murata Mfg Co Ltd 振動ジャイロ
JPH0914966A (ja) * 1995-06-26 1997-01-17 Murata Mfg Co Ltd 振動ジャイロ
JPH0983033A (ja) * 1995-09-14 1997-03-28 Sony Corp 圧電セラミックトランス
JP2005227110A (ja) 2004-02-12 2005-08-25 Sony Corp 振動型ジャイロセンサ素子の製造方法及び振動型ジャイロセンサ素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330917B2 (en) 2014-09-29 2019-06-25 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus
US10684463B2 (en) 2014-09-29 2020-06-16 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus
US11493748B2 (en) 2014-09-29 2022-11-08 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus
JP2016125820A (ja) * 2014-12-26 2016-07-11 セイコーエプソン株式会社 光学フィルターデバイス、光学モジュール、及び電子機器
US10113909B2 (en) 2014-12-26 2018-10-30 Seiko Epson Corporation Optical filter device, optical module, and electronic equipment

Also Published As

Publication number Publication date
EP2040033A1 (en) 2009-03-25
KR20090024208A (ko) 2009-03-06
US20090320593A1 (en) 2009-12-31
CN101484776A (zh) 2009-07-15

Similar Documents

Publication Publication Date Title
WO2008001908A1 (fr) Gyro-capteur d'oscillations
CN108507557B (zh) 传感器装置
JP2008014633A (ja) 振動型ジャイロセンサ
US20070051182A1 (en) Mechanical quantity sensor
WO2011102121A1 (ja) 角速度センサおよび角速度および加速度検出用複合センサ
US20170176186A1 (en) Angular velocity sensor having support substrates
US8624339B2 (en) Vibrating device and electronic apparatus
JP2012193971A (ja) センサーモジュール、センサーデバイス、センサーデバイスの製造方法及び電子機器
KR20110088437A (ko) 물리량 검출 소자, 물리량 검출 장치, 및 전자기기
US8166815B2 (en) Angular velocity sensor element
US8841762B2 (en) Sensor module, sensor device, manufacturing method of sensor device, and electronic apparatus
US9140549B2 (en) Physical quantity detection element, physical quantity detection device, and electronic apparatus
US9121707B2 (en) Bending vibration piece and electronic device
JP2006194681A (ja) 角速度センサ装置
US11287260B2 (en) Vibrator device
US8561467B2 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
WO2018131404A1 (ja) センサデバイス及び電子機器
JP2008185385A (ja) 角速度センサ及び電子機器
JP2008039576A (ja) 振動型ジャイロセンサ
JP2006234463A (ja) 慣性センサ
JP2008185369A (ja) 角速度センサ、角速度センサの製造方法、電子機器、及び回路基板
JP2007316090A (ja) 慣性センサ
JP2008058066A (ja) 振動センサ
JP5764898B2 (ja) センサーデバイスの製造方法
JP2011133299A (ja) センサーデバイス、センサーデバイスの製造方法、モーションセンサー及びモーションセンサーの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024822.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007767944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087031823

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12306860

Country of ref document: US