WO2008001531A1 - Système de communication par code optique - Google Patents

Système de communication par code optique Download PDF

Info

Publication number
WO2008001531A1
WO2008001531A1 PCT/JP2007/057754 JP2007057754W WO2008001531A1 WO 2008001531 A1 WO2008001531 A1 WO 2008001531A1 JP 2007057754 W JP2007057754 W JP 2007057754W WO 2008001531 A1 WO2008001531 A1 WO 2008001531A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
code
frequency
local oscillation
Prior art date
Application number
PCT/JP2007/057754
Other languages
English (en)
French (fr)
Inventor
Manabu Yoshino
Noriki Miki
Shin Kaneko
Tomohiro Taniguchi
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to US12/302,245 priority Critical patent/US8032034B2/en
Priority to EP07741190A priority patent/EP2034647B1/en
Priority to CN2007800196763A priority patent/CN101455017B/zh
Priority to JP2008522326A priority patent/JP4746676B2/ja
Publication of WO2008001531A1 publication Critical patent/WO2008001531A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/63Homodyne, i.e. coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal

Definitions

  • the present invention relates to an optical code division multiplex (OCDM) optical code communication system that transmits and receives encoded signal light.
  • OCDM optical code division multiplex
  • optical code multiplex division method that can be shared by a plurality of signals by simultaneously identifying the same propagation medium and the same optical frequency band with a code is being studied as a future optical communication.
  • optical code multiplexing encoded with intensity, phase, and frequency is promising in an optical frequency or wavelength region where there is room to block interference light due to misconnection.
  • Fig. 1 shows a single station side device, OLT (Optical Line Terminal) via a single optical fiber, and a plurality of user side devices, ONU (Optical Network Unit) and optical multiplexer / demultiplexer 112.
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • ONU 101-1 modulated light obtained by modulating light from light source 121 with user transmission data by modulator 122 is encoded by encoder 123 and output.
  • the encoder 123 follows a unique code defined for each of the ONUs 101-1, 101-2 to 101-n.
  • the encoded light encoded with a different code for each ONU is decoded by the decoder 131, and the differential detectors 132a and 132b. Detect.
  • the code used for code ⁇ in encoder 123 is a code in which intersymbol interference is suppressed by decoding by decoder 131 on the receiving side and differential detection by differential detectors 132a and 132b. Use.
  • such codes are, for example, There are Damar codes and bit-shifted M-sequence codes.
  • an optical frequency chip whose code value constituting the code to be received corresponds to “1” is input to one side of the substantially differential detectors 132a and 132b, and the other Do not input to the side of.
  • the optical frequency chip whose code value constituting the code not to be received is “1” is input to both sides of the differential detectors 132a and 132b with substantially equal intensity. For this reason, the optical frequency chips that constitute the codes that are not the target are canceled by the differential, and ideally there is no intersymbol interference.
  • the decoder 131 corresponding to the code light E of the code i the suppression ratio ⁇ of the intersymbol interference of the code i corresponding to the decoder 131 corresponding to the code p, and the code ⁇ .
  • the noise variance ⁇ 2 after detection when using is expressed by the following equation, for example.
  • I is an integer from 1 to K (where K is a natural number greater than or equal to 2)
  • m is an integer from 1 to M (where M is a natural number greater than or equal to 2)
  • C is an integer from 1 to K (where K is a natural number greater than or equal to 2)
  • pm binding ' is the optical power transfer function of the two outputs of the decoder 131 of the optical frequency chip m for the code p pm
  • F is the frequency interval of the chip.
  • A, a, a, a and a are received respectively
  • E is the elementary charge
  • R is the conversion efficiency of the differential detectors 132a and 132b
  • B is the band of the electrical stage of the receiving system
  • D (t) is a time t taking a value of 0 or 1.
  • the values corresponding to the codes other than the code p are shown by averaging the data values of 0 and 1.
  • the signal current strength of all codes is the same
  • the intersymbol interference suppression ratio (CMR) i is the same value
  • the field strength and polarization of the optical frequency chip constituting the code light of each code are the same.
  • the polarization of the code light of the different code has a uniform distribution, different numbers The beats between these chips were assumed to be outside the band of the receiving system, and the frequency difference of the same number of chips of differently encoded light was assumed to be uniformly distributed in half the frequency interval F. Therefore, only BZF of beat noise in Equation (3) contributes to the noise.
  • the beat noise between non-selected codes and non-selected codes can be suppressed by the inter-symbol interference suppression ratio.
  • the code error rate BER in this example can be expressed by the following equation (4).
  • Equation (4) erfc is the complementary error function, and i is the signal current intensity.
  • FIG. 2 shows the relationship between the number of code multiplexes and the power penalty.
  • the dotted line shows the power penalty for the number of code multiplexes according to Equation (4).
  • the CMR was 30.7 dB.
  • the penalty due to shot noise and beat noise due to other code light cannot be ignored in the conventional example.
  • there is a method of performing coherent detection using local oscillation light having a relationship between the code light and a predetermined frequency and having a higher intensity see, for example, Non-Patent Document 2).
  • a patent document 1 for performing coherent detection by light C DM
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-013306
  • Non-Patent Document 1 CF Lam, et al, Experimental Demonstration 01 Dipolar optical CDMA System Using a Balanced Transmitter and Complimentar y Spectral Encoding, "IEEE Photon. Technol. Lett., Vol. 10, No. 1 0, pp. 1504- 1506 (1998)
  • Non-Patent Document 2 Ohm “Coherent Optical Communication Engineering”
  • Patent Document 1 described above performs homodyne detection between a signal light that has been encoded using a phase modulation code in the time domain and a replica of the signal light. It is not optical code multiplexing of the area. Therefore, there is no room for blocking the interference light, and it cannot be applied as it is.
  • a problem when coherent detection is applied to a conventional optical code in the optical frequency region having a plurality of optical frequency chip forces will be described.
  • ONU 101-1 transmits code light that is intensity-modulated with transmission data, and OLT 111 mixes the code light and the local oscillation light in the preceding stage of decoder 131.
  • the OLT 111 detects the two outputs from the decoder 131 with two detectors (not shown) instead of the differential detectors 132a and 132b for each path after being decoded by the decoder 131.
  • the output of the filter is added / subtracted by an adder / subtracter (not shown) instead of the differential detectors 132a and 132b, and output to the filter 133.
  • the modulation scheme in ONU 101-1 is not limited to intensity modulation, and the same applies to other modulation schemes.
  • the local oscillation light E can be expressed, for example, by the following formula (5).
  • the code light intensity i in the detector with the code p can be expressed by the following equation (6).
  • E, f + f, and ⁇ are respectively the optical frequency chips m of the local oscillation light in order.
  • m is an integer from 1 to M (where M is a natural number greater than or equal to 2), f is an intermediate frequency, and C binding 'is the optical frequency for the sign p
  • the power transfer function of the two outputs of a decoder 131 of several chips m F is the frequency spacing of the chip, R is the conversion efficiency of the detector, and adds or subtracts the intermediate frequency signal from each detector N (t) is the noise of the receiving system including dark current.
  • the polarizations of the optical frequency chips that make up the code light of each code are the same.
  • the first and second terms are the direct detection components of the local oscillation light and code light
  • the third term is the signal current of the selected code
  • the fourth and fifth terms are due to intersymbol interference.
  • the intermediate frequency is sufficiently smaller than the direct current which is sufficiently smaller than the frequency interval F of the optical frequency chip, the first, second and fifth terms can be removed by the filter 133 of the electric stage, and the signal current component is reduced. Only the third term and the fourth term of the intersymbol interference component remain.
  • the third term of the signal current component is a value corresponding to the phase of the intermediate frequency signal because the phase relationship between the optical frequency chips is indefinite.
  • the value of the cos part takes a random value between 1 and 1. For example, when the value is considered to be uniform, the average value of the signal current according to the third term is 0, and the code light is not transmitted or not transmitted, and the data is not transmitted in either case. .
  • the propagation delay in each path of the signal passing through different paths to the adder / subtractor applied in place of the differential detectors 132a and 132b is also different at the frequency of the data rate at most. Matched to match. Therefore, especially in the case of heterodyne, the data rate and the intermediate frequency should be approximately 5 times or more, so there is no guarantee that the phase of the intermediate frequency signal will match.
  • the present invention uses light having coherence maintained between the optical frequency chips constituting each code light and between the optical frequency chips constituting the local oscillation light.
  • the receiver After the receiver receives the code light with the power of the optical transmitter, it adds / subtracts with the adder / subtracter.
  • the phase of the intermediate frequency signal from which the coded light and z or the local oscillation light and z or the coded light are detected is adjusted in each path.
  • the optical code communication system is a light that transmits code light obtained by modulating a plurality of optical frequency chips obtained by encoding a plurality of lights having optical frequencies having different light source powers with a predetermined code.
  • the optical frequency difference between the transmitter and the optical frequency chip that receives the encoded light from the optical transmitter and is larger than the optical intensity of the received encoded light and has the different optical frequencies is set to an approximately intermediate frequency.
  • An optical receiver that processes the received code light using the local oscillation light including a plurality of the received lights to extract and output transmission data in the optical transmitter, and the optical transmitter and the optical receiver.
  • Both the target optical frequency corresponding to the optical frequency chip whose code value of the reception target of the optical receiver is “1” and at least one of the code light from the optical transmitter and the local oscillation light and the code of the reception target The target optical frequency and the non-target optical frequency obtained by branching to the non-target optical frequency corresponding to the optical frequency chip whose value is “0” and mixing the code light from the optical transmitter and the local oscillation light are obtained.
  • Each of the optical mixing decoders to be output, and the target optical frequency and the non-target optical frequency from the optical mixing decoder are respectively detected, and intermediate frequency signals of the target optical frequency and the non-target optical frequency are respectively obtained.
  • a detection addition / subtraction filter that transmits and subtracts one of the other forces of the intermediate frequency signal and outputs it, and the encoded light from the optical transmitter is detected when detected by the detection addition / subtraction filter.
  • Optical transmission power code light The local oscillation light has coherence between the optical frequency chips constituting the local oscillation light when detected by the detection adder / subtractor filter, and the local oscillation light is coherent between the optical frequency chips constituting the local oscillation light.
  • the optical mixing decoder or the detection addition / subtraction filter is used when the optical receiver receives code light encoded with the reception target code and modulated with a value of 1 of transmission data, and with the reception target code.
  • the conduction band at the time of filtering in the detection addition / subtraction filter out of the output of the detection addition / subtraction filter when the optical receiver receives the encoded light that is encoded and modulated with another value of the transmission data The intermediate frequency signal is reduced so that the output value or absolute value of the intermediate frequency signal is different.
  • the phase of the intermediate frequency signal within the conduction band when calculating is adjusted. Thereby, noise can be suppressed.
  • the optical frequency chip corresponding to the code value "1" of the code light that is not the reception target is added with half of the intermediate frequency signal in the conduction band, and the other half. Are subtracted from each other and cancel each other, and the local oscillation light further has an optical frequency difference of the optical frequency chip corresponding to the code value of the code light corresponding to the other code is “1”.
  • the optical mixing decoder or the detection adder / subtracter filter receives the code light of the code to be received modulated by the value of 1 of the transmission data.
  • the optical receiver receives the code light of the code not to be received from the output within the conduction band of the output of the detection adder / subtractor filter.
  • Intermediate frequency at An output obtained by multiplying the current value of the signal by the occurrence probability of each current value, and subtracting the sum, has received the code light of the code to be received modulated by another value of the transmission data.
  • the optical mixing decoder includes an optical multiplexer / demultiplexer that mixes the received encoded light and the local oscillation light and outputs mixed light, and the optical multiplexer / demultiplexer. And a detector that branches and outputs the mixed light from the target optical frequency and the non-target optical frequency, respectively, and the detection addition / subtraction filter includes the target optical frequency and the non-target from the decoder. It is desirable to detect, filter and add / subtract optical frequencies. As a result, a specific optical receiver can be configured.
  • the optical mixing decoder outputs the received encoded light and the local oscillation light separately to the target optical frequency and the non-target optical frequency. Decoders and target optical frequencies from the decoder and non-target optical frequencies An optical multiplexer / demultiplexer that mixes and outputs the numbers, and the detection adder / subtractor filter detects, filters, adds, and subtracts the target optical frequency and the non-target optical frequency from the optical multiplexer / demultiplexer. It is desirable to do.
  • the transmission band corresponding to each optical frequency chip when decoding the encoded light can be improved to the extent of modulation expansion in addition to the line width of the encoded light, and the transmission band when decoding the local oscillation light can be improved. This can be improved by the line width of the local oscillation light.
  • the optical mixing decoder includes a decoder that branches the received encoded light into the target optical frequency and the non-target optical frequency, and outputs the branched optical signal.
  • An optical demultiplexer that branches and outputs the local oscillation light by the number corresponding to the number of branches of the decoder, a target optical frequency from the decoder, and a local oscillation light from the optical demultiplexer are mixed.
  • the target optical frequency and the non-target optical frequency from the optical multiplexer / demultiplexer are detected, filtered, and added / subtracted.
  • the transmission band corresponding to each optical frequency chip when decoding the encoded light can be improved to the extent of modulation spread in addition to the line width of the encoded light.
  • the overall optical loss of the optical receiver can be reduced.
  • the optical mixing decoder includes a decoder that branches the local oscillation light into the target optical frequency and the non-target optical frequency, and the received code.
  • An optical demultiplexer that divides and outputs light by the number corresponding to the number of branches of the decoder, and an optical combiner that outputs the target optical frequency from the decoder and the coded light from the optical demultiplexer.
  • a demultiplexer, and an optical multiplexer / demultiplexer that mixes and outputs the non-target optical frequency from the decoder and the encoded light from the optical demultiplexer, and the detection adder / subtractor filter includes the optical multiplexer.
  • the transmission band corresponding to each optical frequency chip when decoding the local oscillation light can be improved to about the line width of the local oscillation light.
  • the overall optical loss of the optical receiver can be reduced.
  • the received code light and the locally oscillated light are in a relationship in which optical frequencies of the received light substantially match each other
  • the optical multiplexer / demultiplexer An optical hybrid that mixes code light and the local oscillation light and branches and outputs a plurality of mixed lights in which the phase difference between the received code light and the local oscillation light differs by a predetermined value, and the decoder A plurality of mixed lights from the optical hybrid are branched and output as the target optical frequency and the non-target optical frequency, respectively, and the detection add / sub filter filters the mixed lights having different phase differences from the optical mixing decoder.
  • the target optical frequency corresponding to each of the plurality of mixed lights from the optical hybrid and the non-target optical frequency corresponding to each of the plurality of mixed lights from the optical hybrid are obtained. Detect and transmit each intermediate frequency signal and subtract one force or the other of the intermediate frequency signals of the target optical frequency and non-target optical frequency that have the same phase difference and output each of them.
  • Optical receiver it is desirable to provide an adder adding and outputting intermediate frequency signals respectively output from the detector adder filter. This makes it possible to perform homodyne detection using phase diversity.
  • the intermediate frequency can be reduced, and the optical frequency band necessary for the coded light can be reduced.
  • the received code light and the local oscillation light are in a relationship in which optical frequencies of the optical code and the local oscillation light substantially match each other.
  • An optical hybrid that mixes and branches a plurality of input lights input to an optical multiplexer / demultiplexer and outputs a plurality of mixed lights having a phase difference between the received code light and the local oscillation light different from each other by a predetermined value.
  • the adder / subtracter filter for each of the mixed lights having different phase differences from the optical mixing decoder, at least one of the coded light and the local oscillation light received from the optical hybrid has the target optical frequency.
  • the detected mixed light and the mixed light from the optical hybrid are detected in phase difference, and at least one of the received code light and the local oscillation light is detected according to the non-target optical frequency.
  • Each intermediate frequency The optical receiver passes through the signal and subtracts one of the other forces of the intermediate frequency signal and outputs the result, and the optical receiver adds an intermediate frequency signal output from each of the detected addition / subtraction filter forces and outputs an adder. It is desirable to provide. This makes it possible to perform homodyne detection using phase diversity. Further, the intermediate frequency can be reduced, and the optical frequency band necessary for the coded light can be reduced.
  • the optical mixing decoder is the optical transmitter.
  • the code light and the local oscillation light are mixed, the code light and the local oscillation light are mixed in two polarization relationships that are relatively different from each other by ⁇ 2 or 3 ⁇ 2, and the code light and the local oscillation light are mixed.
  • the detection adder / subtracter filter includes a plurality of mixed lights having different polarization relationships from the optical mixing decoder, a plurality of the mixed lights from the optical mixing decoder, and the target optical frequencies corresponding to the mixed light.
  • Each of the non-target optical frequencies is detected and transmitted through each intermediate frequency signal, and the other of the intermediate frequency signals of the target optical frequency and the non-target optical frequency having the same polarization relationship is subtracted from the other and output, respectively.
  • the receiver preferably further includes an adder that adds and outputs the intermediate frequency signal from the detection adder / subtractor filter. As a result, the optical receiver can be made independent of polarization.
  • the optical mixing decoder is configured to mix the code light and the local oscillation when mixing the code light from the optical transmitter and the local oscillation light.
  • the light is mixed in two polarization relationships that are relatively different from each other by ⁇ ⁇ 2 or 3 ⁇ ⁇ 2, depending on the plurality of target optical frequencies corresponding to the combination of the polarization relationship and phase difference of the coded light and the local oscillation light.
  • the mixed light and the mixed light corresponding to the non-target optical frequency are output, and the detection adder / subtractor filter outputs the light for each of the mixed light corresponding to the combination of the polarization relationship and the phase difference from the optical mixing decoder.
  • the target optical frequency and the asymmetric optical frequency corresponding to each of the mixed lights from the mixing decoder are detected and transmitted through the respective intermediate frequency signals, and the target optical frequency and the asymmetrical light having the same polarization relationship and phase difference are transmitted.
  • One-sided force at intermediate frequency The other is subtracted and output, and the optical receiver preferably adds the intermediate frequency signals of the detection addition / subtraction filter power by the adder. As a result, the optical receiver can be made independent of polarization.
  • the optical code communication system only one of the local oscillation light and the code light is the local oscillation light or the optical signal within a time slot corresponding to one transmission data value. It is desirable that the light corresponding to each optical frequency chip constituting the coded light is composed of two polarized light powers orthogonal to each other. This makes the optical receiver polarization independent. [0038] Also, in the optical code communication system, the optical receiver configures an optical frequency chip in the optical receiver with a code obtained by concatenating the two codes used in claims 1 to 8, and the optical receiver receives the code.
  • Each of the code light and the locally oscillated light has the same polarization in the optical frequency chip constituting each code constituting the connected code, and the optical mixing decoder codes the received in the code light and the local oscillator light and a relatively [pi ?? 2 or 3 [pi ?? 2 only two polarization relationships that different to the code for each that make up the connection code in mixing the locally oscillated beam It is desirable to mix light and the local oscillation light. As a result, the optical receiver can be made independent of polarization. In addition, the transmission band for each optical frequency chip can be narrowed.
  • the optical mixing decoder branches at least one of the encoded light from the optical transmitter or the local oscillation light into a target optical frequency and a non-target optical frequency.
  • the optical multiplexer / demultiplexer outputs two sets of mixed lights having a phase difference of approximately ⁇ , and the detection adder / subtractor filter separates from the optical multiplexer / demultiplexer.
  • the set of two mixed lights that differ by approximately ⁇ of the output phase difference is differentially detected, and the intermediate frequency signal between the target optical frequency and the non-target optical frequency is transmitted and the corresponding target optical frequency and non-target optical frequency are correlated. It is desirable to output by subtracting one force from the other. As a result, it is possible to reduce the code mode and local oscillation light direct detection components and common mode noise, which become noise with respect to the signal component.
  • the optical mixing decoder converts the target optical frequency and the non-target optical frequency into the plurality of optical frequency chips in the decoder, respectively.
  • the target optical frequency and the non-target optical frequency for each of the plurality of optical frequency chips are branched and output as the target optical frequency and the non-target optical frequency. It is desirable to detect each of the plurality of optical frequency chips for each optical frequency. As a result, it is possible to reduce the division loss when the code light is divided for each code.
  • the optical receiver is an intermediate frequency signal that is subsequent to detection, filtering, and addition / subtraction in the detection adder / subtractor filter and that is output from each of the detector adder / subtractor filter forces.
  • a demodulator that demodulates and outputs the intermediate frequency signal of the detection addition / subtraction filter power before the adder. This eliminates the need for an optical PLL.
  • the optical mixing decoder or the detection addition / subtraction filter may be configured such that the optical frequency chip after the plurality of optical frequency chips having different optical frequencies are modulated with transmission data in the optical transmitter.
  • a dispersion adjuster that adjusts a transmission delay depending on an optical frequency until it is added or subtracted in the detection adder / subtractor of the receiver; and a plurality of lights having different optical frequencies are emitted from the light source to force the detector adder / subtractor filter
  • the phase adjustment for adjusting the propagation time of the coded light before modulation in the optical transmitter so that the phase difference corresponding to the frequency interval between the optical frequency chips until the detection is within a predetermined range.
  • phase adjuster that adjusts the propagation time of the local oscillation light at the front stage of mixing the code light and the local oscillation light with respect to the optical mixing decoder or the front stage of the optical mixing decoder; of It is desirable to have at least one of them. Thereby, it is possible to suppress a decrease in signal strength due to a phase shift of the intermediate frequency signal and intersymbol interference.
  • the present invention can ignore sensitivity deterioration due to shot noise and beat noise caused by superimposition of other code light in an optical code communication system encoded in the optical frequency domain or wavelength domain, and can limit the number of code multiplexes. Reduced high-precision optical communication is possible.
  • FIG. 1 is a schematic configuration diagram showing a conventional optical code communication system.
  • FIG. 2 is a diagram showing the relationship between the number of code multiplexes and the power penalty for the conventional example and the ASK heterodyne envelope detection of the present invention.
  • FIG. 3 is a schematic configuration diagram showing an optical code communication system according to an embodiment.
  • FIG. 4 is a schematic configuration diagram showing an optical code communication system according to an embodiment.
  • FIG. 5 is a schematic configuration diagram showing an optical code communication system according to an embodiment.
  • FIG. 6 is a diagram showing optical spectrums of encoded light to be received and code light to be excluded from reception and local oscillation light input to the encoder 54.
  • Fig. 8 is a diagram showing the optical spectrum of the encoded light to be received by the detector 64b, the encoded light not to be received, and the local oscillation light.
  • FIG. 9 is a diagram showing the relationship between the received light intensity and the code error rate of the code light to be received.
  • FIG. 10 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 11 is a schematic configuration diagram showing an optical receiver described in an embodiment.
  • FIG. 12 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 13 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 14 is a schematic configuration diagram showing an optical receiver described in one embodiment.
  • FIG. 15 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 16 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 17 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 18 is a schematic configuration diagram illustrating the optical receiver described in the embodiment.
  • FIG. 19 is a schematic configuration diagram illustrating an optical receiver described in an embodiment.
  • FIG. 20 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 21 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 22 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 23 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 24 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • FIG. 25 is a schematic configuration diagram showing the optical receiver described in the embodiment.
  • Optical code communication system 21: Optical transmitter, 22: Optical receiver, 31: Light source, 32: Modulator, 33: Encoder, 41: Local oscillation light source, 42: Optical mixing decoder, 43: Optical detection Addition / subtraction filter, 44, 4 4-1, 44— 2: Filter, 45, 45-1, 45— 2: Envelope detector, 46: Calorie calculator, 51, 52: Adjuster, 53, 59: Optical multiplexer / demultiplexer, 53a, 53b, 53a— 1, 53b— 1, 53a— 2, 53b— 2: Optical multiplexer / demultiplexer, 54, 54a, 54b, 54-1, 54— 2: Decoder, 55: Optical Demultiplexer, 56, 56-1, 56-2, 56— la, 56— lb, 56— 2a, 56— 2b: Optical noise, 57, 58: Adjuster, 61 a, 61b, 61a— 1, 61b—
  • 61— 2b— 1, 61— 2b— 2 detector, 62a, 62b, 62a— 1, 62b— 1, 62a— 2, 62 b-2, 62— la, 62— lb, 62— 2a, 62— 2b, 62— la— 1, 62— la— 2, 62— lb — 1, 62— lb— 2, 62— 2a— 1, 62— 2a— 2, 62— 2b— 1, 62— 2b— 2: Adjuster, 6
  • 63-1, 63—2 Calo subtractor, 64a, 64b, 64a— 1, 64b— 1, 64a— 2, 64b— 2: Differential detector, 71, 72, 74: Polarization-maintaining light component 73: Optical polarization splitter, 81: Optical transmission line, 82: Polarization-maintaining optical fiber, 101—1 ⁇ : LOl— n: ONU, lll: OLT, 112: Optical multiplexer / demultiplexer, 121 : Light source, 122: Modulator, 123: Encoder, 131: Decoder, 132a, 132b: Differential detector, 133: Filter, 300: Optical code communication system
  • the optical communication system 10 in FIGS. 3 to 5 is an optical transmission that transmits coded light by modulating a plurality of optical frequency chips obtained by encoding a plurality of lights having different optical frequencies with a predetermined code with transmission data.
  • An optical receiver 22 that receives the encoded light from the optical transmitter 21, processes the received encoded light based on the local oscillation light, extracts the transmission data in the optical transmitter 21, and outputs the data.
  • the optical transmitter 21 includes a light source 31 that outputs an optical frequency chip composed of a plurality of lights having different optical frequencies, a modulator 32 that modulates the light from the light source 31 with transmission data, and outputs light. And an encoder 33 for selecting and transmitting an optical frequency chip corresponding to the code from the source 31.
  • the optical frequency chip output from the light source 31 maintains coherence.
  • a pulsed light source such as a coherent mode-locked laser or the like, light that becomes the seed when modulating the light of the seed light source, and the sideband by the modulation.
  • a light source that outputs light can be applied.
  • the light source 31 and the modulator 32 may be the same by directly modulating a plurality of lights in the force light source 31 having different configurations. Further, as the configuration of the optical transmitter 21, the order of the force modulator 32 and the encoder 33 which are configured by the light source 31, the modulator 32, and the encoder 33 may be switched. Further, an encoder having a delay depending on the optical frequency may be applied as the encoder 33. In this case, it is necessary to make the propagation delay from the modulator 32 to the detectors 6 la and 6 lb described later substantially uniform for each optical frequency chip. In the optical code communication system 10 of FIG.
  • the encoder 33 can be omitted.
  • the optical transmitter 21 uses a plurality of encoders corresponding to different codes as the encoder 33. Prepare.
  • the modulator 33 selects one of the outputs from the plurality of encoders, each encoding the light from the light source 31. Play the role of a switch.
  • the modulator 32 switches whether to input light from the light source 31 to one of a plurality of encoders corresponding to different codes.
  • the optical transmitter 21 is connected to the subsequent stage of the encoder 33 and combines an optical multiplexer / demultiplexer (not shown) that multiplexes and outputs the encoded lights of a plurality of encoder powers, or the subsequent stage of the encoder 33.
  • a modulator (not shown) for switching the output of a plurality of encoders in synchronization with the modulator 32. Then, the encoder 33 outputs the encoded light via the optical multiplexer / demultiplexer (not shown) or the modulator.
  • the code used for the code ⁇ in the encoder 32 is a code in which intersymbol interference is suppressed by the decoder 54, the detectors 61a and 61b, and the adder / subtractor 63 on the receiving side.
  • ONZOFF light intensity Orthogonal codes in degree modulation include Hadamard codes and optical codes that transmit bit-shifted M-sequence codes with optical frequency chips corresponding to either 1 or 0 bits.
  • An optical frequency chip having a value of “1”, which constitutes the selected code has an adder-side detector 6 la of an adder / subtracter 63 of an optical receiver 22 to be described later and a subtractor-side detector 6 lb.
  • the decoder 54 is configured so that it is input to either one and not to the other detector. Due to the orthogonality of the codes, an optical frequency chip with a code value of “1” that constitutes a code that is not subject to reception is input to both the addition side and the subtraction side with substantially equal intensity, and differential Ideally eliminates intersymbol interference.
  • the optical receiver 22 has an optical frequency difference between each of a plurality of lights having different optical frequencies output from the light source 31 of the optical transmitter 21 that is greater than the light intensity of the received encoded light, and is approximately an intermediate frequency.
  • the local oscillation light source 41 that outputs the local oscillation light including a plurality of set lights, the code light of the optical transmitter 21 and the local oscillation light from the local oscillation light source 41 are mixed and the code from the optical transmitter 21 is mixed.
  • Optical mixing decoder that decodes and branches to a non-target optical frequency corresponding to the optical frequency chip and outputs the target optical frequency and the non-target optical frequency mixed with the coded light from the optical transmitter 21 and the local oscillation light, respectively. 42 and the target optical frequency and non-target light from the optical mixing decoder 42 And a detection addition / subtraction filter 43 that transmits the intermediate frequency signals of the target optical frequency and the non-target optical frequency and subtracts one of the powers of the intermediate frequency signal and outputs the result.
  • the optical receiver 22 includes a demodulator (in this embodiment, a rectifier or a mixer and an envelope detector 45 having a low-pass filter power for removing intermediate frequency components). Further, in the case of a two-dimensional code in the optical frequency domain-time domain, the optical receiver 22 may include an integrator (not shown) that performs time integration corresponding to 1-bit time of transmission data.
  • a demodulator in this embodiment, a rectifier or a mixer and an envelope detector 45 having a low-pass filter power for removing intermediate frequency components.
  • the optical receiver 22 may include an integrator (not shown) that performs time integration corresponding to 1-bit time of transmission data.
  • the optical mixing decoder 42 adjusts the delay or phase of the encoded light from the optical transmitter 21 and the adjuster 51 that adjusts the delay or phase of the local oscillation light from the local oscillation light source 41.
  • an optical multiplexer / demultiplexer 53 that mixes and outputs the encoded light from the optical transmitter 21 via the adjuster 52 and the local oscillation light from the local oscillation light source 41 via the adjuster 51,
  • a detector 54 that decodes and outputs the mixed light from the demultiplexer 53, and the detection adder / subtractor filter 43 in FIG. 3 detects the target optical frequency from the decoder 54 and outputs it.
  • Detector 61a, 61b for detecting and outputting the non-target optical frequency from decoder 54, detectors 61a and 61b, and regulators 62a and 62b for adjusting the delay or phase of the intermediate frequency signal respectively.
  • An adder / subtractor 63 that subtracts one of the forces of the intermediate frequency signal from the controllers 61a and 61b through the adjusters 62a and 62b and outputs the other, and a filter 44 that transmits the intermediate frequency signal multiplied by the modulation signal. .
  • the local oscillation light source 41 outputs local oscillation light having a sufficiently large intensity and coherence, for example, 20 dB higher than the total light intensity of all the code lights received by the optical receiver 22.
  • the local oscillation light has a plurality of optical frequencies necessary for canceling the codes that are necessary and not selected for decoding the selected code. For example, if the selected code is “11110000” and an optical frequency signal from fl to f 4 is output, and the unselected code is “10101010” and an odd-numbered optical frequency signal is output, at least fl, f2, Outputs local oscillation light with optical frequencies f3, f4, f5, and f7.
  • the local oscillation light is output from the local oscillation light source 41 into the optical receiver 22; however, after taking into account Equation (11) described later or code light that is not a reception target as described later.
  • the local oscillation light supplied from the outside may be used as long as the relational expressions shown in Expression (22) to Expression (33) are satisfied.
  • the decoder 54 acquires the encoded light received by the optical receiver 22 and the local oscillation light from the local oscillation light source 41, and the light corresponding to the optical frequency chip whose value constituting the code is “1”. Branches to the light corresponding to the optical frequency chip whose value constituting the code is “0” and outputs it. Of the split light, the light corresponding to the optical frequency chip with the code power S “1” of the reception target is sent to the detector 61a, and the light corresponding to the optical frequency chip with the code value of “0” is received. Input each to detector 61b.
  • the detector 61a detects and outputs the light corresponding to the optical frequency chip whose sign value is “1”, inputs the detected light to the addition side of the adder / subtractor 63 via the adjuster 62a, and the detector 61b The light corresponding to the optical frequency chip whose code value is “0” is detected and output, and is input to the subtraction side of the adder / subtractor 63 via the adjuster 62b.
  • the detectors 61a and 61b and the regulators 62a and 62b are divided into two parts. As shown in FIG. 4, the signals output from the detectors are the detectors 61a—1, 61a-2, 61b.
  • each may be divided.
  • the regulators 62a-1, 62a-2, 62b-1, 62b-2 are connected to the detectors 61a-1, 61a-2, 61b-1, 61b-2, respectively.
  • the adder / subtractor 63 in FIG. 3 adds and subtracts the outputs of the detectors 61a and 61b and outputs the result. Further, the filter 44 transmits the intermediate frequency signal from the adder / subtractor 63 and outputs it. In addition, the envelope detector 45 square-detects the intermediate frequency signal from the filter 44, extracts the transmission data from the optical transmitter 21, and outputs it.
  • code light encoded with a code other than the code to be received (hereinafter, “code light encoded with a code other than the code to be received” will be referred to as “code light not to be received”) )) Is received by the optical receiver 22, half of the intermediate frequency signal in the conduction band of the filter 44 is sent to the adder / subtracter 63 for the optical frequency chip whose value is “1”, which is a code light not subject to reception. Since they are added and the other half is subtracted by the adder / subtractor 63 and cancels each other, they are canceled by the adder / subtractor 63.
  • the optical frequency chip having a value of “l” with a code not to be received is input to the adder / subtracter 63 on both the addition side and the subtraction side with substantially equal strength due to the orthogonality of the sign, It is canceled by the differential and ideally there is no intersymbol interference.
  • an optical frequency chip having a value of “1” with a code to be received is transmitted to one of the detector 6 la connected to the addition side of the adder / subtracter 63 and the detector 61b connected to the subtraction side. The frequency chip is almost input and not input to the other detector 61b.
  • the intermediate frequency signal corresponding to the light of each frequency is non-uniform due to the light intensity and polarization state of the multiple optical frequency chips that make up the signal light, the signal light will be canceled so that the codes that are not selected are canceled out.
  • the intensity ratio between the light of a plurality of optical frequencies constituting the light or the intensity ratio between the light of a plurality of light frequencies constituting the local oscillation light is adjusted so as to be canceled.
  • the output of the adder / subtractor 63 passes through the filter 44 that transmits the modulated center frequency signal, and the intermediate frequency signal is square-detected by the envelope detector 45 and then sent to the optical transmitter 21. It is output as a transmission data signal.
  • the adder / subtracter, filter, and regulator can also be processed by digital signal processing after analog-digital conversion.
  • the output of the decoder 54 and the detectors 6la and 61b are divided for each optical frequency chip as shown in FIG. 4, and the output for each optical frequency chip is branched, and the adder / subtracter 63 according to the code.
  • the filter 44 is a bandt pass filter having an absolute value of a predetermined frequency difference as an intermediate frequency, and having a transmission band including the intermediate frequency and substantially equal to or higher than the data rate. The order of the adder / subtractor 63 and the filter 44 may be changed.
  • the differential detectors 64a and 64b may be used instead of the combination of the detectors 61a and 61b and the adder / subtractor 63 in FIG. Good. Further, the addition side and the subtraction side of the adder / subtracter 63 in FIG. 3 may be interchanged. This is because the signals from the detectors 6 la and 6 lb are only inverted at the output of the adder / subtractor 63.
  • the adjusters 51, 52, 62a, and 62b are coded light encoded with a reception target code (hereinafter referred to as “code light encoded with a reception target code”). ) Only received by the optical receiver 22, for example, when the transmission data is a binary value of a mark and a space, it is output from the adder / subtracter 63 when the transmission data is a mark and a space, respectively.
  • the phase of the intermediate frequency signal is adjusted so that the absolute value of the intermediate frequency signal within the conduction band of the filter 44 is different. For example, make adjustments so that when the transmitted data is a mark, the space is always larger. The same applies when the transmission data is multi-valued.
  • the output of the adder / subtracter 63 is processed under a predetermined condition when the transmission data of the reception target code is the transmission data corresponding to the value specified as large.
  • the absolute value of the received value corresponds to the value specified as a small output in the transmission data of the other reception target code.
  • the phase of the intermediate frequency signal is adjusted so that the output of the adder / subtracter 63 for the corresponding transmission data is larger than the value processed under a predetermined condition.
  • “processing under a predetermined condition” means that an intermediate frequency within the conduction band of the filter 44 out of the signal output from the adder / subtracter 63 when the optical receiver 22 receives code light that is not the object of reception.
  • the sum of the signal current value multiplied by the probability of occurrence of each current value is subtracted from the output of the adder / subtracter 63 for the transmission data corresponding to the value that the output of the code to be received is defined as large, and the output is small. It is added to the output of the adder / subtracter 63 in the case of transmission data corresponding to the specified value.
  • the regulators 62a and 62b in FIG. 3 perform the adjustment in the electric stage.
  • the regulators 62a and 62b in FIG. 5 perform the adjustment in the optical stage. Also in FIG. 3, it may be replaced with an optical stage as in FIG.
  • adjusters 62a and 62b are arranged in front and rear of the pre-stage code light and local oscillation light mixed by the optical multiplexer / demultiplexer 53 and in front of and behind the detectors 61a and 61b, respectively.
  • the detectors 61a—1, 61a—2, 61b—1, 61b—2 are arranged after the detectors 62a—1, 62a—2, 62b—1, and 62b—2 in each optical frequency chip. If the phase of the intermediate frequency signal can be adjusted so that each data value can be discriminated, the regulators 62a, 62b, 62a—1, 62a-2, 62b-l, 62b—2 J may be reduced.
  • the regulators 51, 52, 62a, 62b, 62a —1, 62a— 2, 62b— 1, 62b—2 are used to modulate the optical frequency chip in the optical transmitter 21 and the power to the adder / subtracter 63 of the optical receiver 22
  • Dispersion adjuster, light source 31 power detector 61a, 61b, 61a— 1, 61a— 2, 61b— 1, 61b— 2 ( Figure 3 or 4) or differential detector 64a, 64b (Fig. 5) is at least one phase adjuster that adjusts the propagation time of the coded light before modulation in order to keep the phase difference according to the frequency interval between the optical frequency chips within a predetermined range. It is desirable.
  • the adjuster 51 is preferably a phase adjuster that adjusts the propagation time of the local oscillation light before mixing the coded light and the local oscillation light in the optical multiplexer / demultiplexer 53. It is also desirable that the regulator is a combination of both. As a result, the specific phase adjustment of the intermediate frequency signal can be performed.
  • the code to be received is “1100” and the code not to be received is “1010”. Mark and space binary transmission for simplicity and “1” It is assumed that the optical frequency chip having the value of “0” is transmitted and the optical frequency chip of “0” is not transmitted. Also
  • the output of the decoder is independent for each optical frequency chip as shown in the decoder 54 in FIG. 4, and the detector is the detector 61a-1, 61a-2, 61b-1, 61b in FIG. — As shown in Fig. 2, each output of the decoder 54 is connected independently, and the regulators are the regulators 62a— 1, 62a— 2, 6 2b— 1, 62b— 2 in Fig. 4. Detectors 61a—1, 61a—2, 61b—1, 61b—Every two connections are assumed. Further, the chip i of the coded light and the local oscillation light in the optical multiplexer / demultiplexer 53 is assumed to be expressed by the following formula (7). Chip numbers 1 to 4 correspond to optical frequency chips detected by the detectors 61a-1, 61a-2, 61b-1, 1, 61b-2, respectively.
  • i indicates a chip number from 1 to 4
  • E and E are code light and local oscillation light, respectively.
  • f represents the frequency of the chip i of the code light
  • F represents the frequency difference between adjacent optical frequency chips of the code light and the local oscillation light
  • f represents the frequency difference between adjacent optical frequency chips of the code light and the local oscillation light
  • IF indicates the intermediate frequency and the efficiency of Ri detectors 61a-1, 61a-2, 61b-1, 61b-2. ⁇ ,, ⁇ and
  • fi de and ⁇ are the delay of the optical transmission path 81 from the optical transmitter 21 to the optical multiplexer / demultiplexer 53 and the optical multiplexer / demultiplexer 53 to the detector 61a—1, 61a—2, 61b—1, 61b—, respectively. 2 delay, delay from detector 61a—1, 61a—2, 61b—1, 61b—2 to adder / subtractor 63 and delay of adjusters 62a-1, 62a—2, 62b—1, 62b—2
  • the values other than are the same regardless of the optical frequency chip.
  • the four optical frequency chips are branched by the decoder 54 and are respectively detected by the detectors 61a-1 and 61a.
  • the signals of the optical frequency chip 1 and the optical frequency chip 2 are added by the adder / subtractor 63, so the value obtained by adding both can be expressed as the following equation (9).
  • the optical frequency chip 1 is added and the signal of the optical frequency chip 3 is subtracted. Therefore, the interference component value obtained by subtracting both is expressed by the following equation (10).
  • the adjusters 62a-1, 62a-2, 62b-1, 62b-2 are set to minimize the interference component shown in the equation (1 0) and maximize the signal component, respectively. It is only necessary to satisfy the relationship between the code light to be received and the code light not to be received.
  • a code error rate in the case where code light is transmitted only when a mark is used in ASK binary transmission is shown as a representative example.
  • the code light E and the local oscillation light E of the code i are, for example,
  • ⁇ and ⁇ are optical frequency chips of the coded light and the local oscillation light, respectively.
  • i ⁇ represents the initial phase of the optical frequency chip of the code light of symbol i and the local oscillation light, respectively.
  • f , f indicate the frequency and intermediate frequency of chip m, respectively.
  • the output current after the adder / subtracter of the code light of the code p can be expressed by the following formula (12).
  • R represents the sensitivity of the detector
  • C and C ' represent the code p and the light of the decoder 54 to be received.
  • the power transfer function of the frequency chip m is shown, and n (t) shows the noise of the optical receiver 22.
  • the first and second terms are the direct detection components of the local oscillation light and code light in the output current equation, the third term is the signal component to be received, and the fourth and fifth terms are the intersymbol interference components (MAI ).
  • the first, second, and fifth terms are removed by a filter 44 that transmits intermediate frequencies.
  • the fourth term is ideally suppressed by the orthogonality of the signs.
  • the intersymbol interference suppression ratio (CMR) a of the residual component of the MAI current in the fourth term with respect to data is assumed to be expressed by the following equation (13).
  • the output current can be expressed by the following equation (14).
  • Equation (14) ⁇ represents an envelope, ⁇ . 'Represents a phase difference, ⁇ represents a signal intensity, N (t) represents noise transmitted through the filter 44, and a represents a sign D (t) indicates the data value of the code i at time t, which takes a value of 0 or 1, and X and y indicate in-phase component and quadrature component noise.
  • Equation (16) u and s are the numbers of non-reception coded lights when the data value is the mark and the phase is 0.
  • x 'and y are uncorrelated Gaussian distributions
  • the noise variance ⁇ 2 can be expressed by the following equation (17).
  • E is the elementary charge
  • B is the electricity band of the receiving system.
  • I ( ⁇ ) is a zero-order first-type modified Bessel function.
  • the code error rate can be expressed by the following equation (20).
  • Q (a, b) is Markham's Q function
  • T is a mark and space threshold. If the number of codes is sufficient to approximate the binomial distribution by Gaussian distribution, it can be further approximated as in the following equation (21).
  • MAI is the variance of the MAI current, and its value is (K 1) (i) 2 « 2 data
  • the light source 31 on the optical transmitter 21 side and the local oscillation light source 41 include a laser diode (LD) (not shown) that outputs seed light, a synthesizer (not shown), and an intensity modulator (not shown). It is composed of The intensity modulator is driven by a 12.5 GHz sine wave from the synthesizer, and constitutes a three-optical frequency chip with a frequency interval F between the seed light of the LD power itself and the double sideband of 12.5 GHz.
  • the phase of the coded light and the local oscillation light is the electrical delay line from the synthesizer to the sideband generation intensity modulator or the sideband generation. Adjustment was made by the optical delay line after the intensity modulator. These delay lines are part of the regulator of this configuration.
  • the optical frequencies of the coded light and the local oscillation light are separated by an intermediate frequency of 2.5 GHz.
  • the encoder 33 used a Mach-Zehnder interferometer with FSR forces of 0 GHz and 20 GHz.
  • the optical transmitter 21 configures the code light of the code “0011” to be received and the code “0101” to be received.
  • Code light 2 7 LGbitZs - modulated by the intensity modulator for data modulation in the first pseudo-random pattern (modulator 32 in FIG. 5).
  • a 2-channel optical filter at 25 GHz intervals is used as the decoder 54.
  • an optical delay line (not shown) and an optical attenuator (not shown) are inserted for correcting the phase difference and intensity difference between the two paths.
  • the adjusters 51, 52, 62a, and 62b are constituted by an optical delay line and the above-described electric or optical delay line.
  • FIG. 6a, FIG. 6b, and FIG. 6c show the optical spectrums of the code light to be received, the code light not to be received, and the local oscillation light input to the decoder 54, respectively.
  • FIGS. 7a, 7b, and 7c show the optical spectrums of the code light to be received, the code light not to be received, and the local oscillation light that are input to the detector 64a, respectively.
  • FIGS. 8a, 8b, and 8c show the optical spectrums of the code light to be received, the code light not to be received, and the local oscillation light input to the detector 64b, respectively.
  • Fig. 6a, Fig. 7a and Fig. 8a show the optical spectrum of the code light to be received
  • Fig. 6b, Fig. 7b and Fig. 8b show the optical spectrum of the code light not to be received.
  • FIGS. 6c, 7c and 8c show the optical spectrum of the local oscillation light.
  • the outputs of the differential detectors 64a and 64b are amplified by an intermediate frequency amplifier, and then filtered by a filter 44 that transmits from 1.25 GHz to 3.75 GHz, and an envelope that also includes a diode and a low-pass filter force. Demodulated by the line detector 45.
  • the intersymbol interference suppression ratio (CMR) ⁇ taking into account the non-uniformity of the intensity of the optical frequency chip is 30.7 dB.
  • FIG. 9 shows the code error rate of the code light to be received when there is code light not to be received and when it is not. If a white circle with no sign light outside reception object, black circles, white triangles, by the intensity of the code optical code error rate becomes 10_ 9 when there is no black diamonds their respective receiving covered symbols light remote This is the code error rate when there is code light that is not subject to reception with an intensity of 0, 5, or 10 dB, and simulates the case where the number of code lights is large.
  • the solid and dotted lines are based on Eq. (20), and when the intensity of the coded light that is not subject to reception using the measured parameters is OdB and 10dB, respectively. This is the calculated value.
  • Figure 2 shows a Pawapena Luthi in bit error rate 10_ 9 according to formula (20) in which the number of codes multiplexed on the horizontal axis.
  • the one-dot chain line, the two-dot chain line, and the solid line are the cases where the intersymbol interference suppression ratio a is 25, 30.7, and 35 dB.
  • the improvement effect is clear compared with the calculated value of the conventional example shown by the dotted line.
  • the black circles are measured values when the intensity of the coded light that is not the subject of reception is 0, 5, and 10 dB, which are almost the same as the calculated values.
  • the calculated value based on Formula (20) is shown, the calculated value based on Formula (21) is almost the same.
  • the present embodiment can be described using a general formula as follows.
  • the value of the transmission data is shown in a situation where binary transmission of mark and space is performed and there is no code light that is not subject to reception. Is the same.
  • the i-th light that constitutes the local oscillation light reaching the detector 61a is eA, and the transmission data value is
  • EA is the jth light that makes up the coded light at the time of transmission, and the value of the transmitted data is a space
  • the i-th light that composes the light is eB, and the value of the transmitted data is mark
  • EB is the jth light
  • Be is the conduction band of the filter 44
  • is the sum of i and j.
  • the beat when the mark is the sum of the beat currents i and j within the conduction band Be of the filter 44 out of the beat current of the encoded light and the local oscillation light when the value of the transmitted data is mark
  • the square of the current sum is the sum of the beat currents i and j in the conduction band Be of the filter 44 out of the beat current of the local oscillation light and the coded light when the value of the transmission data is space. It is larger than the square of the beat current sum at the time and can be expressed by Equation (24).
  • Equation (22) the sum of i and j of the beat current of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (22), where i and j of the beat current of the coded light and the local oscillation light at the time of the space are expressed.
  • Equation (23) the sum total for can be expressed as Equation (23).
  • the electric field strength of the i-th light eA that constitutes the local oscillation light reaching the detector 61a is
  • the field intensity of the j-th light eA that constitutes the coded light is DAm EA
  • the frequency is f ml _] si _] si _] si
  • the phase is ⁇
  • the cth of the degree difference is PA, and the jth light that composes the coded light when the transmitted data value is space
  • the electric field intensity of the eye's light eA is DAs EA, the frequency is f, and the phase is ⁇ A
  • PA is the cosine of the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light.
  • the electric field strength of the i-th light eB composing the local oscillation light reaching the detector 61b is EB l_i 1
  • the frequency is f
  • the initial phase is ⁇
  • the transmitted data value is marked
  • the field intensity of the jth light eB that composes the coded light is DBm EB, the frequency is f ml _] sl _] sl _] sl _], the phase is ⁇ , and the corresponding local oscillation light Polarization angle
  • the cth of the difference is PB, and the jth light that composes the coded light when the value of the transmitted data is space
  • the field intensity of the light eB is DBs EB, the frequency is f, the phase is ⁇ , and sl_] sl_] sl_] sl_] is the angle of the polarization plane with respect to the light constituting the corresponding local oscillation light If the cosine of the difference is PB
  • Equation (27) should be established.
  • the sum of the beat currents i and j of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (25), where i and j of the beat currents of the coded light and the local oscillation light at the time of the space are expressed.
  • the sum total for can be expressed as Equation (26).
  • the electric field strength of the jth light eA composing the coded light is EA, the frequency is fm,
  • phase is ⁇ , and the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light
  • PA is the cosine of the angle difference of the polarization plane with respect to the light that constitutes the local oscillation light.
  • EB is the electric field strength of the i-th light eB composing the local oscillation light to reach, and the frequency
  • the electric field strength of the second light eB is EB, the frequency is fm, the phase is ⁇ , the cosine of the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light is PB, and the value of the transmitted data is space.
  • the coded light when the local oscillation light and the transmitted data values are marks
  • the sum of the beat currents with respect to i and j and the square of the beat sum when the mark is in the conduction band B e of the filter 44 is the sign light when the local oscillation light and the value of the transmitted data are space.
  • the sum of the beat currents i and j with respect to the sum of the beats in the conduction band Be of the filter 44 is larger than the square of the beat sum in the space, and Equation (30) may be established.
  • Equation (28) the sum of i and j of the beat current of the coded light and the local oscillation light at the time of the mark
  • Equation (29) the beat current i of the coded light and the local oscillation light at the time of the space
  • the following shows an example in which different local oscillation light is used for a mark with a large frequency deviation and for a space. Electric field strength when the value of the transmitted data corresponds to the coded light in the i-th light eA composing the local oscillation light that reaches the detector 61a
  • the electric field strength for the paced light is EAs, and the frequency is fs.
  • the electric field strength of the light eA is EAm
  • the frequency is fm
  • the phase is ⁇
  • ml _] si _] si _] si _] is the cosine of the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light.
  • EAs, frequency fs, phase ⁇ 3, and the corresponding local oscillation light is configured sl_] si_] si_]
  • the cosine of the angle difference of the polarization plane with respect to the light to be transmitted is PAs, and the local area that reaches the detector 61b
  • the cosine of the difference is PBm and the jth light that composes the coded light when the value of the transmitted data is space
  • the electric field strength of the eye light eB is EBs, the frequency is fs, the phase is ⁇ 3,
  • the sum of the beat current i and j of the oscillating light and the transmitted light when the value of the transmitted data is space is a formula larger than the square of the beat sum when the space is within the conduction band Be of the filter 44 ( 33) should be established.
  • Equation (31) the sum of the beat currents i and j of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (31), where i and j of the beat currents of the coded light and the local oscillation light at the time of the space are expressed.
  • Equation (32) the sum total for can be expressed as Equation (32).
  • FIGS. 10 and 11 are schematic configuration diagrams of the optical receiver according to the present embodiment.
  • the optical receiver 22 in FIG. 10 and FIG. 11 is a point power in which the local oscillation light and the code light are branched by the decoders 54a and 54b according to the code to be received, and then mixed by the optical multiplexer / demultiplexers 53a and 53b, respectively. 3 and different from the optical receiver 2 2 in FIG.
  • the outputs from the decoders 54a and 54b are divided and output for each optical frequency chip, and the optical multiplexers / demultiplexers 53a—1, 53a—2, 53b—1, 53b—2 are provided for each frequency chip.
  • the light is mixed and output.
  • FIG. 10 and FIG. 11 the components having the same reference numerals as those in FIG. 3 and FIG.
  • a transmission band corresponding to each optical frequency chip requires a transmission band up to the local oscillation light separated by the intermediate frequency in addition to the modulation spread of the code light.
  • the local oscillation light and the code light are individually passed through the decoders 54a and 54b, respectively, so that the transmission band of the decoder 54a used for the code light is the code light.
  • the decoder 54b used for locally oscillated light that has a sufficient modulation spread in addition to the line width of the above has an effect that the transmission band may be approximately the line width of the locally oscillated light.
  • adjusters 57 and 58 are provided between the local oscillation light side decoder and the optical multiplexer / demultiplexer. It can be on the code light side or on both sides instead of the local oscillation light side. The same applies to FIG. 11 and FIG. 12 to FIG. 15 and FIG. 19 to FIG.
  • FIGS. 12 and 13 are schematic configuration diagrams of the optical receiver according to the present embodiment. This corresponds to the optical receiver 22 shown in FIGS. 3 and 4 described in the first embodiment.
  • the optical receiver in FIGS. 12 and 13 replaces the decoder 54a on the coded light side in the optical receiver 22 in FIGS. 10 and 11 with a decoder 54, and the decoder on the local oscillation light side in the optical receiver 22 In this configuration, 54b is replaced with an optical demultiplexer 55.
  • the components having the same reference numerals as those in FIGS. 10 and 11 indicate the same components, and the description thereof is omitted.
  • the optical receiver 22 shown in FIGS. 12 and 13 takes into account the optical loss of the optical demultiplexer 55 that splits the local oscillation light.
  • the optical loss of the local oscillation light-side decoder 54b in the optical receiver 22 of FIGS. 10 and 11 is large, the optical loss is reduced compared to the optical receiver 22 of FIGS. be able to.
  • Other effects are the same as those obtained by the optical receiver 22 of FIGS. 10 and 11, and the requirement of the transmission band of the decoder 54 can be reduced as compared with the optical receiver 22 of FIGS.
  • FIGS. 14 and 15 show schematic configuration diagrams of the optical receiver according to the present embodiment. This corresponds to the optical receiver shown in Figs. 3 and 4 described in the first embodiment.
  • the optical receiver 22 in FIGS. 14 and 15 replaces the coded light side decoder 54a in the optical receiver 22 in FIGS. 10 and 11 with an optical demultiplexer 55, and decodes the coded light side in the optical receiver 22.
  • the decoder 54b is replaced with a decoder 54.
  • FIG. 14 and FIG. 15 the same reference numerals as those in FIG. 10 and FIG.
  • the optical receiver 22 in Figs. 14 and 15 is a local oscillator light side decoder in the optical receiver 22 in Figs. 10 and 11 against the optical loss of the optical demultiplexer 55 that divides the coded light.
  • the optical loss of 54b is large, the optical loss can be reduced as compared with the optical receiver 22 of FIGS.
  • the transmission band requirement of the decoder 54 can be further reduced as compared with the optical receiver 22 of FIGS.
  • Other effects are the same as those obtained by the optical receiver 22 of FIGS. 10 and 11, and the requirement of the transmission band of the decoder 54 can be reduced as compared with the optical receiver 22 of FIGS.
  • FIG. 16 shows a schematic configuration diagram of an optical receiver according to the present embodiment.
  • the optical receiver 22 of FIG. 16 is different from that of FIG. 10 in the configuration of an optical multiplexer / demultiplexer and detector that mix local oscillation light and code light.
  • the optical multiplexer / demultiplexer in FIG. 16 is an optical multiplexer / demultiplexer 53a, 53b that outputs two outputs
  • the detector is a differential detector 64a—1, 2 that receives the two outputs of the optical multiplexer / demultiplexers 53a, 53b. 64a-2, 64b-1, 64b-2.
  • the optical receiver 22 in FIG. 16 includes adjusters 57 and 58 corresponding to the adjusters 62a and 62b in FIG.
  • the components having the same reference numerals as those in FIGS. 10 and 11 indicate the same components, and the description thereof is omitted.
  • optical multiplexer / demultiplexers 53a, 53b Nearly equal light
  • the mixed light is input to the differential detectors 64a—1, 64a-2, 64b-1, 64b—2 by the path length and differentially detected.
  • Common mode noise such as the direct detection component of local oscillation light and the beat component between the coded light can be reduced.
  • a similar configuration is obtained by using optical multiplexers / demultiplexers 53a, 53b, 53a— 1, 53a— 2, 53b downstream of the decoders 54, 54a, 54b of FIGS. 11, 12, 13, 14, and 15. It can also be applied to the configuration of each optical receiver 22 that mixes the coded light and the local oscillation light by 1, 53b-2.
  • the detection method of the optical receiver is different from the detection method in the optical receiver 22 described with reference to FIGS. 3 to 5 and FIGS.
  • square detection by the envelope detector 45 is applied, but in this embodiment, synchronous detection is performed instead of envelope detection.
  • synchronous detection is performed instead of envelope detection.
  • the phase adjustment circuit desirably performs phase synchronization on the output signal of the adder / subtractor 63.
  • the regulators 62a, 62b, 62a—1, 62a—2, 62b—1, 62b—2 in Fig. 3 and Fig. 5 and Fig. 10 show the absolute value of the output according to the value of the transmission data. Instead, adjust so that the output value is different. Replacing optical frequency chips for transmission in case of mark and space When transmitting such transmitted data, the signal strength is subtracted by a factor of 2 compared to transmitting only with one value.
  • the value of the transmission data is indicated in the situation with binary transmission of mark and space and no coded light that is not the object of reception. It is the same.
  • A is the jth light that makes up the coded light when the value of the transmitted data is space, and eA ml _] si _], and the local oscillation light that reaches detectors 61b, 61b-1 and 61b-2
  • the i-th light is set to eB
  • the j-th light making up the coded light when the transmission data value is mark is set to eB
  • the conduction band of the filter 44 is represented by Be, and the sum of i and j is represented by ⁇ .
  • the conduction of the filter 44 The total beat current when the mark is the sum of the beat currents i and j in the band Be is derived from the beat current of the local oscillation light and the coded light when the transmission data value is space. It can be expressed by Equation (36), which is larger than the beat current sum in the space that is the sum of beat currents i and j in the bandwidth Be.
  • Equation (34) the sum of the beat currents i and j of the coded light and the local oscillation light at the time of the mark
  • Equation (35) the beat currents i and j of the coded light and the local oscillation light at the time of the space are expressed as follows.
  • the sum total of can be expressed as Equation (35).
  • the field strength of Ll_i is EA, the frequency is f, the initial phase is ⁇ , and the transmission data
  • the light of the j-th light eA that constitutes the sign light when the value is a mark is DAm EA ml _] si _] si, the frequency is f, the phase is ⁇ , and the corresponding local oscillation light
  • the light of the j-th light eA that constitutes the signal light is DAs EA, the frequency is f and sl _] si _] si _] si _], the phase is ⁇ , and the light constituting the corresponding local oscillation light Difference of polarization plane relative to si_i
  • Si_i is the local oscillation light that reaches the detectors 61b, 61b— 1, 61b— 2
  • the field strength of the i-th light eB is EB, the frequency is f, and the initial phase is ⁇
  • the field intensity of the j-th light eB composing the coded light in the space is DBs EB and sl _] sl _] sl _], the frequency is f, the phase is ⁇ , and the corresponding local oscillation light is composed Sl _] sl _] for light
  • the sum of the beat currents i and j with respect to the sign light at the time of the signal is the sum of the beats when the mark is within the conduction band Be of the filter 44.
  • the sum of the beat currents i and j with light is larger than the beat sum in the space within the conduction band Be of the filter 44, and equation (39) may be established.
  • the sum of the beat currents i and j of the sign light and local oscillation light at the time of mark can be expressed as Equation (37), and the beat current i of the sign light and local oscillation light at the time of space is expressed as The sum of j can be expressed as equation (38)
  • Equation (37) the beat current i of the sign light and local oscillation light at the time of space
  • Ll_i The field strength of Ll_i is EA, the frequency is f, the phase is ⁇ , and the transmitted data value is
  • the electric field strength of the jth light eA that composes the sign light at the mark is EA, and the frequency
  • f is the phase
  • is the phase
  • the cosine of the angle difference of the surface is PA, and the coded light is configured when the transmission data value is space
  • the field strength of the jth light eA is EA, the frequency is f, and the phase is ⁇ As
  • the field strength of 1 is EB, the frequency is f, the phase is ⁇ , and the transmitted data value is
  • EB is the electric field strength of the jth light eB that composes the sign light at the mark, and the frequency
  • Si_i that composes the coded light when the cosine of the angle difference is PB and the value of the transmitted data is space
  • the field strength of the jth light eB is EB, the frequency is f, the phase is ⁇ 3,
  • the sum of beat currents i and j of the local oscillation light and the coded light when the value of the transmitted data is a mark is the sum of the beat current when the mark is in the conduction band Be of the filter 44.
  • the sum of the beat currents i and j with the coded light when the value of the transmitted data is a space, and is greater than the beat sum when the space is within the conduction band Be of the filter 44.
  • the sum of i and j of the beat current of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (40), and i of the beat current between the coded light and the local oscillation light at the time of the space
  • Equation (41) the sum of x and j can be expressed as equation (41).
  • Detector 61a, 61a-l, 6 la The electric field strength of the i-th light eA that constitutes the local oscillation light reaching 2 is EA, the frequency is f, the phase is ⁇ , and the transmission data is l_i and l_i L_i then l_i
  • the electric field strength of the j-th light eA composing the sign light when the value is a mark is EA
  • the circumference ml _] si _] is the wave number fm
  • the phase is ⁇
  • the cosine of the angle difference between the polarization planes is PA, and the coded light when the transmission data value is space is si_i
  • the electric field strength of the j-th light eA is EA
  • the frequency is fs
  • the phase is ⁇ A si _] sl _] sl _] s
  • the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light The cosine of PA
  • the electric field strength of the i-th light e B composing the local oscillation light reaching the detectors 61b, 61b—1, 61b— 2 is EB, the frequency is f, the phase is ⁇ , and the transmission data
  • the field strength of the j-th light eB that constitutes the sign light when the value of is the mark is EB, ml _] sl _] frequency is fm, phase is ⁇ , and the corresponding local oscillation light sl _] sl _]
  • the cosine of the angle difference between the polarization planes is PB, and the coded light when the transmission data value is space is si_i
  • the electric field strength of the j-th light eB is EB, the frequency is fs, the phase is ⁇ sl_] sl_] sl_] sl, and the angle difference of the polarization plane with respect to the light constituting the corresponding local oscillation light Cosine PB
  • the beat sum for the mark within the conduction band Be of the filter 44 which is the sum of the beat current of the local oscillation light and the coded light when the transmission data value is the mark, is the local oscillation light.
  • the sum of the beat currents i and j with the coded light when the value of the transmitted data is space, and if the formula (45) is larger than the beat sum when the space is within the conduction band Be of the filter 44, Good.
  • the sum of the beat currents i and j of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (42), and the sum of the coded light and the local oscillation light at the time of the space is expressed.
  • the sum of the gate currents i and j can be expressed as equation (43).
  • the following shows an example in which different local oscillation light is used for a mark with a large frequency deviation and for a space.
  • EAs The electric field strength when the data value corresponds to the coded light when the space is space.
  • the electric field strength of the j-th light eA is EAm, the frequency is fm, and the phase is ml _] sl _] sl _]
  • EAs The field strength of EAs is EAs, the frequency is fs, the phase is ⁇ 3, and the corresponding station sl _ j sl _] sl _] sl _]
  • PAs the detector 61b
  • 61b— 1, 61b— Transmits within the i-th light eB that constitutes the local oscillation light reaching 2
  • the electric field strength for light is EBs, the frequency is fs, and the phase is ⁇ 3.
  • ml _] degree is EBm
  • frequency is fm
  • phase is ⁇
  • PBm is the cosine of the angle difference of the polarization plane with respect to the light that makes up the transmission data, and the transmitted data value is
  • EBs is the electric field strength of the jth light eB composing the sign light at the pace, and the frequency
  • fs be the number
  • ⁇ 3 be the phase
  • the sum of the beat currents i and j with respect to the signal light of the signal is the sum of the beats when the mark in the conduction band Be of the filter 44 is in the conduction band Be.
  • the sum of the beat currents with respect to i and j is larger than the beat sum in the space within the conduction band Be of the filter 44, and Equation (48) may be established.
  • the sum of the beat currents i and j of the coded light and the local oscillation light at the time of the mark can be expressed as Equation (46), and the beat currents i and j of the coded light and the local oscillation light at the time of the space are expressed as follows. Can be expressed as equation (47)
  • the filter 44 in FIGS. 10 to 15 is a filter that has a transmission band of approximately half or more of the data rate and does not conduct a DC component.
  • a filter 44 can be constituted by, for example, a combination of a DC block that cuts a DC component and a low-pass filter.
  • the differential detectors 64a, 64b, 64a- 1, 64a— 2, 64b— 1, 64b— are also applied to 61a— 1, 61 a-2, 61b— 1, 61b— 2.
  • a configuration replacing 2 is also possible.
  • the detection method of the optical receiver is different from the detection method in the optical receiver described in the sixth embodiment.
  • synchronous detection is performed by an optical phase-locked loop that synchronizes the phase of the local oscillation light source (Fig. 3 is also the local oscillation light source 41 in Figs. 5 and 10 to 15).
  • a generator that generates an intermediate frequency signal that is phase-locked by an electrical phase-locked loop that synchronizes the phase of the intermediate frequency signal (Not shown), a mixer (not shown) for mixing the intermediate frequency signal generated by the generator and the intermediate frequency signal generated by the code light and the local oscillation light, and a demodulator.
  • the adjusters of this embodiment (the adjusters 62a, 62b, 62a-1, 62a-2, 62b-1, 1, 62b-2 in FIGS. 3 to 5 and 10 to 15) Accordingly, adjust the output value so that it is different from the absolute value.
  • the signal strength is subtracted by a factor of 2 compared to transmission in the case of only one value. .
  • the synchronization is facilitated because it is synchronized with the phase of the intermediate frequency signal as compared with the optical receiver described in the sixth embodiment that is synchronized with the phase at the optical frequency.
  • differential detectors 64a, 64b, 64a— 1, 64a— 2 A configuration that replaces 64b—1 and 64b—2 is also possible.
  • the self code is a code of (1100), and the self code intermediate frequency signal having a two-chip power is expressed by Equation (51).
  • the other code is the code (1010), and the intermediate frequency signal of the other code consisting of two chips is given by Equation (52).
  • Equation (53) the sum of the intermediate frequency signals of both codes is given by Equation (53) from Equation (51) and Equation (52).
  • the amplitude voltages A, A, B, B of the intermediate frequency signal corresponding to each chip are respectively It is assumed that the intermediate frequencies f 1, f 2, f 3 and f are substantially equal.
  • the phase difference between the optical frequency chips constituting each of the other code light and the local oscillation light, that is, the phase term of the intermediate frequency is aligned at least ⁇ ⁇ ⁇ .
  • the demodulator In the case of homodyne detection where the intermediate frequency is substantially zero, the demodulator is not necessary. In the above equation (54), the parentheses in the “cos” term are almost zero, and the force that makes the intermediate frequency signal a baseband signal. On the other hand, in the case of heterodyne detection where the intermediate frequency is a finite value, a demodulator is required to make the intermediate frequency signal a baseband signal.
  • the demodulator may be an envelope detector as in the first embodiment, as long as the output is different in absolute value depending on the data value.
  • an envelope detector for example, a diode detector that squares an input and outputs it, a full-wave rectifier detector configured by a combination of devices such as a diode bridge or an amplifier, or a mixer such as a mixer that divides a pre-divided input It is also possible to use a mixer such as a mixer that is configured to input to a plurality of inputs.
  • a mixer such as a mixer that is configured to input to a plurality of inputs.
  • the output of the baseband signal becomes 2A 2. However, it cannot be negative.
  • analog-digital conversion may be performed after the optical detection, and the demodulator may be configured as a digital circuit.
  • the phase difference for each optical frequency chip constituting each of the encoded light and the local oscillation light is not necessarily zero.
  • the force does not use the optical PLL.
  • the phase difference between the optical frequency chips constituting each of the other code light and the local oscillation light, that is, the phase of the intermediate frequency signal is at least ⁇ ⁇
  • the demodulator that demodulates the intermediate frequency signal into a baseband signal is a synchronous detector using an electric PLL, unlike the first embodiment.
  • Synchronous detectors are, for example, an oscillator that oscillates and outputs an intermediate frequency signal, and an electric PLL that synchronizes the phase of the intermediate frequency signal output from the oscillator with the phase of the intermediate frequency signal caused by its own encoded light.
  • a mixer such as a mixer provided therein. The mixer such as the mixer multiplies the intermediate frequency signal from the oscillator and the intermediate frequency signal caused by the code light. It is also possible to configure a demodulator as a digital circuit by performing analog-to-digital conversion after optical detection.
  • the demodulator used in the above-described sixth embodiment has been exemplified as the envelope detector. However, the demodulator uses the synchronous detector of the present embodiment that can take a negative value as an output value. It is desirable.
  • the intermediate frequency signal of the oscillator force may be set to arrive at the mixer with a phase term of zero. Phase synchronization is easier than the electrical PLL of the embodiment.
  • phase adjustment is also performed by an electrical PLL of an intermediate frequency signal.
  • This configuration uses an electrical PLL that synchronizes the phase when multiplying the intermediate frequency signal of each optical frequency chip by the intermediate frequency signal of the oscillator power.
  • the demodulator demodulates the intermediate frequency signal for each optical frequency chip.
  • the baseband signal after demodulation is added / subtracted by an adder / subtracter.
  • the intermediate frequency signal for each optical frequency chip after optical detection is synchronously detected and decoded, and then added and subtracted. There is an effect that the processing at can be performed at the electrical stage.
  • FIGS. 17 and 18 are schematic configuration diagrams of the optical receiver according to the present embodiment. This corresponds to the optical receiver 22 shown in FIGS. 3 and 4 described in the first embodiment.
  • an optical hybrid 56 is applied instead of the optical multiplexer / demultiplexer 53 in the optical receiver 22 of FIGS.
  • the optical hybrid 56 divides the input light into a plurality of predetermined phase differences and outputs them.
  • the decoders 54-1, 5 4 2 and detectors 61-la, 61-lb, 61-2a, 61-2b and the calorie subtractor 63-1, 1 are separated for each path branched by the optical hybrid 56.
  • the decoders 54-1, 54-2 split the mixed light for each optical frequency chip and output it.
  • the detectors 61—la—1, 61—la—2, 61—lb- 1, 61— lb— 2, 61— 2a— 1, 61— 2a— 2, 61— 2b— 1, 61— 2b— 2 is the optical frequency chip that mixes light from decoders 54-1, 54— 2 Detect every time.
  • the constituent elements having the same reference numerals as those in FIG. 10 and FIG.
  • phase diversity is applied as homodyne detection in the optical receiver 22 in FIGS.
  • an optical 90 ° hybrid is assumed as the optical hybrid 56, and the set of decoder, detector, and adder / subtractor is (decoder 5 4-1, detector 61-la, 61-lb, adder / subtractor 63-la, 63-lb) and (decoder 54-2, detectors 61-2a, 61-2b, adder / subtractors 63-2a, 63-2b). Therefore, the optical multiplexer / demultiplexer 53, the decoder 54, the detectors 61a and 61b, and the adder / subtractor 63 in the optical receiver 22 in FIGS.
  • the light 90 ° hybrid used as the optical hybrid 56 outputs the two input lights with the phase difference of 90 ° phase difference between the two outputs.
  • the filters 44-1 and 44 2 have detections similar to homodyne detection or homodyne detection because the intermediate frequency is smaller than the data rate. For this reason, the transmission band is approximately half or more of the data rate, and no DC component is conducted.
  • Such filters 44-1 and 442 can be constituted by, for example, a combination of a DC block that cuts a direct current component and a low-pass filter.
  • the intermediate frequency components i and i at the output of each adder / subtracter in Equation (12) described in the optical receiver 22 in FIGS. 3 and 4 in the case of the intermediate frequency force SOHz in the present embodiment are the following numbers excluding the noise term:
  • Equation (49) the second terms of i and i are sufficiently small due to the orthogonality of the codes.
  • Equation (49) becomes constant regardless of the phase difference between the corresponding optical frequency chips of the local oscillation light and the coded light.
  • the optical frequency band required as the condition of the encoded light can be narrowed as much as the intermediate frequency is small.
  • FIGS. 19 to 24 show schematic configuration diagrams of the optical receiver according to the present embodiment.
  • the power of the second embodiment also corresponds to the optical receiver 22 of FIGS. 10 to 15 described in the fourth embodiment.
  • the optical noise detectors 56-1 and 56-2 are applied in place of the optical multiplexer / demultiplexers 53a and 53b in the optical receiver 22 shown in FIGS. Fig. 11, 13 and Fig. 15 Demultiplexer 53a—1, 53a—2, 53b—1, 53b—2 [Instead, the optical bullet 56-la, 56-lb, 56-2a, 56-2b apply.
  • Fig. 19 Power and light Fig.
  • Optical novels 56 1, 56-2, 56— la, 56— lb, 56— 2a, 56— 2b respectively split the input light into a plurality of predetermined phase differences. Output.
  • the optical hybrid 56-1, 56-2, 56-la, 56-lb, 56-2a, 56-2b is detected for each path (detector 61-la, 61 lb, adder / subtractor).
  • Fig. 10 shows a configuration with two sets of 63-1) and (detectors 61-2a, 61-2b, adder-subtractor 63-2), and an adder 46 that adds and outputs the outputs of each set. Different from 15 optical receivers 22.
  • 19 to 24 includes filters 44-1 and 44-2 in each path. Furthermore, each path is equipped with regulators 62-1, 62-2. 20, 22, and 24, for each optical frequency chip (detector 61—la—1, 61—1 a-2, 61—lb—1, 61—lb—2, calo subtractor 63— 1) and (detector 61—2a—1, 61 2a—2, 61—2b—1, 61—2b—2, calorie subtractor 63—2), and regulator 62—la—1, 62 — La— 2, 62— lb— 1, 62— lb— 2, 62— 2a— 1, 62— 2a— 2, 62— 2 b-1, 62-2b-2.
  • FIG. 19 to FIG. 24 components having the same reference numerals as those in FIG. 10 to FIG.
  • This embodiment is an example in which phase diversity is applied as homodyne detection in the optical receiver 22 in FIGS. 10 to 15.
  • the optical hybrid 56—1, 56—2, 56—la, 56—lb, 56—2a, 56—2b is assumed to have a 90 ° optical noise, and the detector There are two sets of adders / subtracters. Therefore, the optical multiplexer / demultiplexer, detector, and adder / subtracter in the optical receiver 22 in FIGS. 10 to 15 are optical hybrids 56-1, 56-2, 56—la, 56—lb, 56-2a, 56—2b.
  • the two detectors (detector 61-1a, 61-lb, calorie subtractor 63-1) and (detector 61-2a, 61-2b, adder / subtractor 63-2) are replaced.
  • the optical hybrid 56- 1, 56-2, 56-la which has an output with a phase difference of ⁇ corresponding to the output of which the output of the optical hybrid is different by ⁇ Z2. If 56—lb, 56—2a, 56—2b are applied, detectors 61—1, 61—2 will be replaced with differential detectors 64a and 64b, respectively, in the same way as optical receiver 22 in Fig. 16. A configuration that differentially detects two inputs with different values is also possible.
  • An integrator (not shown) can be provided in the electrical stage of the optical receiver 22 described in the eighth embodiment and the first embodiment.
  • the detectors 61a and 61b can be provided downstream of the detectors 61a and 61b in FIG. The same applies to the other optical receivers 22.
  • the output of the optical receiver 22 can be made substantially constant regardless of the polarization.
  • the polarization independence in this embodiment will be described in the case where the local oscillation light is polarization scrambled.
  • the intensity is 0.5L
  • the polarization angle of the code light and TE is ⁇
  • the intensity is S
  • the signal intensity is (50)
  • the polarization scrambling for the coded light is performed by the polarization modulator (not shown) at a timing that is half the bit time, or at a timing that is shifted by 1Z2 bits from the modulation timing by the transmission data. It can be applied by modulating.
  • polarization scrambling for locally oscillated light can be applied by modulating the coded light with a polarization modulator (not shown) in half the bit time.
  • pulsed light having a small pulse width with respect to the bit time is used, a plurality of pulsed lights are used within the bit time.
  • the coherent detection is performed using the corresponding pulse light of the code light or the local oscillation light corresponding to the pulse light power of each polarization of approximately the same number of the local oscillation light or the code light. Need to wave.
  • a pulse light source whose pulse period is a natural number multiple of 2 of the bit time is used, and half of the pulse light is polarized ⁇ ⁇ 2 using a polarization modulator (not shown) If you modulate it.
  • the pulsed light is split, and the polarization of half the pulse is rotated by ⁇ ⁇ 2 to delay the pulsed light so that it does not collide.
  • the coded light and the local oscillation light are pulse lights, the light on the non-scrambled side is also branched to give the same delay in order to cause the pulses to collide in time so as to generate beats. It is also necessary to combine them.
  • phase scrambling is applied, and the transmission band of the filter is changed to the filters 44-1 and 44-1 of the optical receiver 22 described in the eighth or ninth embodiment.
  • homodyne detection can be performed by the optical receiver 22 described in the first to fifth embodiments.
  • phase scrambling one bit time is divided into four parts, and each requires light of different phase by ⁇ ⁇ 2. Since each polarization scrambling requires two polarizations, one bit time must be divided into eight.
  • the scramble can be performed by reflecting the phase modulator (not shown) or the branched light with a 45 degree Faraday mirror (not shown) as many times as necessary.
  • the optical receiver according to this embodiment can be made independent of polarization.
  • the optical receivers described in the first to ninth embodiments in a polarization-independent manner as in the optical receiver described in the tenth embodiment will be described.
  • two optical powers having different optical frequencies in which the polarizations of the optical frequency chips constituting one of the coded light and the local oscillation light are orthogonal to each other are also provided.
  • the intermediate frequency between these two lights and the optical frequency chip of the corresponding light overlaps at least the modulation main lobe between the intermediate frequency signals detected by the detectors 6 la and 61b (for example, Fig. 3). It must be an intermediate frequency that does not occur.
  • the difference between the intermediate frequencies should be at least 2.5 times the symbol rate.
  • the filter 44 that transmits the intermediate frequency (for example, FIG. 3) needs a transmission band that transmits at least the main lobe modulated at each intermediate frequency.
  • Optical frequency chip for two orthogonal lights Since the sum of the signal intensities due to the beats between the optical frequency chip and one optical frequency chip is constant, the optical receiver according to the present embodiment is also polarization independent as in the optical receiver described in the tenth embodiment. There is an effect.
  • the polarization modulator (polarization modulator described in the tenth embodiment) having an operation speed twice the symbol rate as compared with the optical receiver described in the tenth embodiment can be eliminated. Monkey.
  • a configuration for operating the optical receiver 22 described in the first to ninth embodiments in a polarization-independent manner as in the optical receiver described in the tenth embodiment will be described.
  • a concatenated code in which two codes are concatenated on the optical frequency axis is used instead of the codes applied in the optical receiver 22 described in the first to eighth embodiments.
  • the concatenated code it is desirable to use the same code twice because of the code utilization efficiency.
  • the polarization of the optical frequency chip forming the code light used for one code constituting the concatenated code and the optical frequency chip forming the code light used for the other code are orthogonal to each other.
  • the local oscillation light has the same polarization in both codes constituting the concatenated code.
  • the optical multiplexers / demultiplexers 53, 53a, 53b, 53a—1, 53b—1, 53a—2, 53b—2 and the optical noble gad 56, 56-1 shown in FIGS. 3 to 5 and 10 to 24 are shown.
  • 56-2 are polarization states that are substantially the same for each code constituting the concatenated code with respect to the code light and the local oscillation light and that are relatively different from each other by ⁇ 2 or 3 ⁇ / 2l. Mix with.
  • the optical receiver according to the present embodiment can be polarization independent.
  • the transmission band of the coded light in the decoder is expanded by the modulation by scrambling as in the optical receiver described in the tenth embodiment, or the optical frequency as in the optical receiver described in the eleventh embodiment.
  • the transmission band for each optical frequency chip can be narrowed compared to an optical receiver that transmits three lights separated by more than twice the intermediate frequency wave number for each chip.
  • the first embodiment is similar to the optical receiver described in the tenth embodiment.
  • a configuration for operating the optical receiver described in the ninth embodiment independent of polarization will be described.
  • the configuration of the optical receiver 22 according to the present embodiment will be described based on the configuration of the optical receiver described in the first embodiment.
  • the configuration of the optical receiver 22 according to the present embodiment is the same as that of the optical receiver described in the eighth embodiment. The same applies to the machine.
  • FIG. 25 shows a schematic configuration diagram of the optical receiver 22 according to the present embodiment.
  • the optical multiplexer / demultiplexer 59 is an optical multiplexer / demultiplexer that mixes two polarization relationships with different polarization relationships of ⁇ ⁇ 2 or 3 ⁇ ⁇ 2 when mixing the coded light and the local oscillation light.
  • the configuration from the demultiplexer 59 to the envelope detectors 45-1, 45-2 is a configuration that individually processes the mixed light with two polarization relationships.
  • an adder 46 that adds the outputs of the filters 44-1, 44-2 is provided to realize polarization diversity.
  • the same reference numerals as those in FIGS. 3 to 5 and FIGS. 10 to 24 indicate the same constituent elements, and the description thereof will be omitted.
  • An optical multiplexer / demultiplexer 59 applied in the optical receiver 22 of FIG. 25 includes, for example, one optical polarization splitter / demultiplexer 73 and three 2 ⁇ 2 polarization maintaining units as shown in FIG.
  • Optical demultiplexers 71, 72, and 74 can be coupled by a polarization maintaining optical fiber 82. Note that the local oscillation light is adjusted so that the optical polarization demultiplexer 73 outputs two lights having the same intensity and having orthogonal polarizations.
  • the polarization maintaining optical demultiplexer 71 outputs two lights having the same intensity while maintaining the polarization.
  • the intensity of the beat signal between the upper set of local oscillation light and the lower local oscillation light branched by the optical polarization demultiplexer 73 is different depending on the polarization state of the code light.
  • the sum in adder 46 is the same. Therefore, the optical receiver 22 shown in FIG. 25 can be made independent of polarization as in the optical receiver described in the tenth embodiment.
  • one local oscillation light source 41 and an optical polarization demultiplexer 73 are used to output one local oscillation light as two lights having the same intensity and whose polarizations are orthogonal to each other. Can be replaced with two local oscillation light sources if they are mixed in a polarization state in which the optical frequencies are substantially equal and have the same intensity and the polarization state of the code light is shifted by ⁇ 2 .
  • the optical multiplexer / demultiplexer 59 is provided in the preceding stage of the decoders 54-1 and 54-2.
  • Fig. 10 Power to the optical receiver 22 in Fig. 16! / ⁇ , optical multiplexer / demultiplexer 53a, 53b, 53a— 1, 53b
  • optical detection addition / subtraction filter 44 and an envelope detector 45 are provided for each output having the same polarization relation, and the outputs are added by an adder 46 and output.
  • the optical multiplexer / demultiplexer 59 is replaced with an optical multiplexer / demultiplexer having a modified structure instead of the optical hybrid 56.
  • the optical multiplexer / demultiplexer having a modified structure of the optical multiplexer / demultiplexer 59 is replaced with an optical hybrid that maintains the polarization maintaining optical demultiplexer 72 and the polarization maintaining optical demultiplexer 74 of the optical multiplexer / demultiplexer 59. Is.
  • Each of the outputs of the optical hybrids constituting the optical multiplexer / demultiplexer having a modified structure of the optical multiplexer / demultiplexer 59 is provided with a decoder, and an optical detection addition / subtraction filter 43 and an envelope detector 45 are provided for each output of the decoder. In preparation, the outputs are added by calorie calculator 46 and output.
  • an optical multiplexer / demultiplexer 59 is used instead of the optical hybrids 56-1, 56-2, 56—la, 56—lb, 56-2a, 56—2b.
  • An optical multiplexer / demultiplexer having a modified structure of the optical multiplexer / demultiplexer 59 is obtained by replacing the polarization maintaining optical demultiplexer 72 and the polarization maintaining optical demultiplexer 74 with an optical hybrid that maintains polarization. Then, for each output having the same polarization relationship and the same phase relationship, an optical detection addition / subtraction filter 44 and an envelope detector 45 are provided, and the outputs are added by an adder 46 and output.
  • the optical code communication system of the present invention can be used as an OCDM optical code communication system that transmits and receives encoded signal light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

明 細 書
光符号通信システム
技術分野
[0001] 本発明は、符号化した信号光を送受信する OCDM (Optical Code Division Multiplex)方式の光符号通信システムに関する。
背景技術
[0002] 同じ伝搬媒体、同じ光周波数帯域を同時に符号で識別することにより複数信号で 共用できる光符号多重分割方式は、将来の光通信として検討されている。特に、誤 接続による妨害光を遮断する余地のある光周波数又は波長領域において、強度、位 相、周波数で符号化した光符号多重は有望である。
[0003] しかし、光周波数領域又は波長領域の光符号多重では、符号間干渉を抑圧可能 なノ ィポーラ方式及び擬似ノ ィポーラ方式であっても、媒体と光周波数帯域を共用 する複数符号間における符号光同士のビート雑音及びショット雑音による感度劣化 が無視できず、多重符号数に制限が発生するという課題が存在する (例えば、非特 許文献 1を参照。 ) o以下、この課題について説明する。
[0004] 図 1に、複数のユーザ側機器である ONU (Optical Network Unit)と光合分波 器 112とを単一光ファイバを介して単一の局側装置である OLT (Optical Line Te rminal)に接続して光符号多重(OCDM)した PON (Passive Optical Network )である擬似バイポーラ OCDM— PONの構成の 1例を示す。
[0005] ONU101— 1では、変調器 122によってユーザの送信データで光源 121からの光 を変調した変調光を符号器 123によって符号ィ匕して出力する。符号器 123は、 ONU 101 - 1, 101— 2〜101—n毎に定められた固有の符号に従う。そして、 OLT111 では、複数の ONU101— 1, 101— 2〜: L01— n力ら、 ONU毎に異なる符号で符号 化された符号光を復号器 131で復号し、差動検波器 132a, 132bで検波する。
[0006] ここで、符号器 123において符号ィ匕に用いる符号は、受信側の復号器 131による 復号と差動検波器 132a, 132bでの差動検波とにより符号間干渉が抑圧される符号 を用いる。 ONZOFFの光強度変調において、そのような符号としては、例えば、了 ダマール符号やビットシフトした M系列符号がある。
[0007] このような符号を用いると、受信対象の符号を構成する符号の値が「1」に相当する 光周波数チップは、略差動検波器 132a, 132bの一方の側に入力され、他方の側に は入力されないようにする。このとき、受信対象外の符号を構成する符号の値が「1」 に相当する光周波数チップは、差動検波器 132a, 132bの両方の側に略均等の強 度で入力される。そのため、対象外の符号を構成する光周波数チップが差動により 打ち消され、理想的には符号間干渉がなくなる。
[0008] 図 1の擬似バイポーラ OCDM— PONにおいて、符号 iの符号光 E、符号 pに対応 する復号器 131に対応する符号 iの符号間干渉の抑圧比 α、符号 ρに対応する復号 器 131を用いた際の検波後の雑音の分散 σ 2は、例えばそれぞれ次式で表せる。
[0009] [数 1]
Ε =∑Ε ∞5\ f t+ φ )
[0010] [数 2]
Figure imgf000004_0001
[0011] [数 3]
(j = t + 2 + 3 + 4 4- a5
M \
pm ' pm
Figure imgf000005_0001
11 22 KK MM (( 22 --22 \\ 22
pm pm p \ f J— ' pm ' i
•≠p m
1 KK KK MM ' \
/ 2
-/ pm pm / J— ^ im. i-^ jm -- a.
^ /■;/'≠/?./';./'≠/?,/ m
Figure imgf000005_0002
data
Figure imgf000005_0003
とする。 ここで E f 及び Φ は、符号 iの光周波数チップ mの電界強度、光周波数及び位 im im im
相をそれぞれ意味する。また、 iは 1から K (但し、 Kは 2以上の自然数とする。)までの 整数であり、 mは 1から M (但し、 Mは 2以上の自然数とする。)までの整数であり、 C
pm とじ 'は符号 p用の光周波数チップ mの復号器 131の 2出力の光パワー伝達関数で pm
あり、 Fはチップの周波数間隔である。また、 a , a , a , a及び aは、それぞれ受信
1 2 3 4 5
対象として選択した選択符号である符号 Pのショット雑音、それ以外の符号の非選択 符号のショット雑音、選択符号 非選択符号間ビート雑音、非選択符号 非選択符 号間ビート雑音及び暗電流を含む受信系の雑音でそれぞれの分散でガウス分布近 似できるとした。また、 eは素電荷であり、 Rは差動検波器 132a, 132bの変換効率で あり、 Bは受信系の電気段の帯域であり、 D (t)は 0または 1の値をとる時刻 tにおける
P
符号 Pのデータ値である。符号 p以外の符号に対応する値は 0と 1のデータ値を平均 化した値で示している。単純化のため全符号の信号電流強度は同一、符号間干渉 抑圧比(CMR)ひ iは同一値ひとし、各符号の符号光を構成する光周波数チップの電 界強度と偏波とは同一とし、異なる符号の符号光の偏波は一様分布とし、異なる番号 のチップ同士のビートは受信系の帯域外とし、異なる符号の符号光の同一番号のチ ップの周波数差は周波数間隔 Fの半分に一様分布と想定した。従って、数式(3)に おけるビート雑音のうち BZFのみが雑音に寄与する。また、この従来例におけるビー ト雑音の符号多重数に対する影響を緩和して評価するために、非選択符号一非選 択符号間ビート雑音は符号間干渉抑圧比の で抑圧できるものとした。この例にお ける符号誤り率 BERは、次の数式 (4)で表せる。数式 (4)において、 erfcは相補誤 差関数、 i は信号電流強度を意味する。
[0013] [数 4]
Figure imgf000006_0001
[0014] ここで、図 2に符号多重数とパワーペナルティとの関係を示す。図 2において、点線は 、数式 (4)に従う符号多重数に対するパワーペナルティを示す。 CMRは 30. 7dBと した。図 2の点線に示すように、従来の例では他符号光によるショット雑音およびビー ト雑音によるペナルティが無視できないことが分かる。この場合、受信感度を向上させ る方法として、符号光と所定の周波数の関係にあり強度のより強い局部発振光を用 いてコヒーレント検波を行う方法がある(例えば、非特許文献 2を参照。 )0従来、光 C DMでコヒーレント検波を行う方法として、例えば特許文献 1がある。
[0015] 特許文献 1 :特開平 10— 013306号公報
非特干文献 1 : C. F. Lam, et al, Experimental Demonstration 01 Dipolar optical CDMA System Using a Balanced Transmitter and Complimentar y Spectral Encoding, " IEEE Photon. Technol. Lett. , Vol. 10, No. 1 0, pp. 1504- 1506 (1998)
非特許文献 2 :オーム社「コヒーレント光通信工学」
発明の開示
発明が解決しょうとする課題 [0016] しかし、上記特許文献 1は、時間領域における位相変調符号を用いて符号ィ匕した 信号光と信号光のレプリカとの間でのホモダイン検波を行うものであり、光周波数領 域又は波長領域の光符号多重ではない。そのため、妨害光を遮断する余地はなぐ またそのまま適用することもできない。以下、コヒーレント検波を従来の複数の光周波 数チップ力もなる光周波数領域の光符号に適用した場合の課題について説明する。
[0017] ここで、 ONU101— 1は、送信データで強度変調した符号光を送信し、 OLT111 は、復号器 131の前段で符号光と局部発振光とを混合する。また、 OLT111は、復 号器 131で復号した後、復号器 131からの 2出力を各経路について差動検波器 132 a, 132bに代えて 2つの検波器 (不図示)で検波し、当該検波器の出力を差動検波 器 132a, 132bに代えて加減算器 (不図示)で加減算して濾波器 133に向けて出力 する。なお、 ONU101— 1における変調方式は、強度変調に限らず他の変調方式で あっても同様である。
[0018] 上記構成の下、局部発振光 Eは、例えば次数式(5)と表せる。
[0019] [数 5]
EL = EL 、 {fim +f + (pJ
[0020] このときの符号 pの検波器における符号光強度 iは、次の数式 (6)と表せる。
P
[0021] 園
= 2 — C J , 。 ^ J十 — )
+ 2W , - 〕^ 。 て,, J+ - )
Figure imgf000007_0001
+2«∑∑
Figure imgf000007_0002
〔 ' C - v ," ノ ,じ。 4,か て J+ - ) +" ii)
[0022] ここで、 E , f +f 及び Φ は、それぞれ順に局部発振光の光周波数チップ mの
Lm im し m
電界強度、光周波数及び位相を意味する。 mは 1から M (但し、 Mは 2以上の自然数 とする。)までの整数であり、 f は中間周波数であり、 C とじ 'は符号 p用の光周波 数チップ mの復号器 131の 2つの出力のパワー伝達関数であり、 Fはチップの周波数 間隔であり、 Rは検波器の変換効率であり、 ては各検波器から中間周波数信号を加 減算する箇所までに中間周波数信号が被る遅延時間であり、 n (t)は暗電流等を含 む受信系の雑音である。単純化のため各符号の符号光を構成する光周波数チップ の偏波は同一とした。数式 (6)の第 1項と第 2項は局部発振光と符号光の直接検波 成分、第 3項は選択符号の信号電流、第 4項と第 5項は符号間干渉に起因する。
[0023] 中間周波数が光周波数チップの周波数間隔 Fより十分小さぐ直流より十分大きいと すると、第 1項、第 2項及び第 5項は電気段の濾波器 133により除去でき、信号電流 成分の第 3項及び符号間干渉成分の第 4項のみが残る。符号光と局部発振光の位 相同期を行わない包絡線検波の場合、信号電流成分の第 3項は、光周波数チップ 間の位相関係が不定であるため、中間周波数信号の位相に対応する値 (cos部分の 値)は 1から 1の値のランダムな値をとる。例えば、値が一様分布と考えた場合、第 3 項による信号電流の平均値は 0であり、符号光が送信されている場合も送信されてい な 、場合も 0となりデータ伝送ができな 、。
[0024] また、符号光と局部発振光の位相同期を行う同期検波の場合でも、符号光と局部発 振光との間では位相同期残差を残したまま中間周波数信号の位相を最小とするよう に同期を行うが、符号光を構成する光周波数チップ同士にコヒーレンス性がないため 、信号及び符号間干渉にランダムな揺らぎが生じる。そのため、特に符号間干渉成 分が相殺できずデータ伝送が困難となる。
[0025] 更に、復号器 131の異なる出力力も差動検波器 132a, 132bに代えて適用した加減 算器まで異なる経路を経由する信号の各経路における伝搬遅延は、高々データレー ト程度の周波数で合致するよう合わせてある。従って、特にへテロダインの場合、デ ータレートと中間周波数は大よそ 5倍程度以上が目安であるため、中間周波数信号 の位相が合致する保証はな 、。
課題を解決するための手段
[0026] 上記課題を解決するため、本発明では、各符号光を構成する光周波数チップ間及 び局部発振光を構成する光周波数チップ間でそれぞれコヒーレンス性の保たれた光 を用い、光受信機が光送信機力もの符号光を受信してから加減算器で加減算するま での各経路で符号光及び z又は局部発振光及び z又は符号光が検波された中間 周波数信号の位相を調整するようにした。
具体的には本願発明に係る光符号通信システムは、光源力 の異なる光周波数の 複数の光を所定の符号で符号化した複数の光周波数チップを送信データで変調し た符号光を送信する光送信機と、前記光送信機からの符号光を受信し、受信した符 号光の光強度よりも大きく前記異なる光周波数の複数の光周波数チップのそれぞれ との光周波数差が略中間周波数に設定された複数の光を含む局部発振光を用いて 前記受信した符号光を処理して前記光送信機における送信データを取り出して出力 する光受信機と、前記光送信機と前記光受信機とを接続し前記光送信機からの符号 光を前記光受信機に向けて伝送する光伝送路と、を備える光符号通信システムであ つて、前記光受信機は、前記光送信機からの符号光と前記局部発振光とを混合する と共に前記光送信機からの符号光又は前記局部発振光の少なくとも一方を前記光 受信機の受信対象の符号の値が「1」の光周波数チップに応じた対象光周波数と前 記受信対象の符号の値が「0」の光周波数チップに応じた非対象光周波数とに分岐 し前記光送信機からの符号光と前記局部発振光とが混合した前記対象光周波数及 び前記非対象光周波数をそれぞれ出力する光混合復号器と、前記光混合復号器か らの対象光周波数と非対象光周波数とをそれぞれ検波し、前記対象光周波数と前 記非対象光周波数とのそれぞれの中間周波数信号を透過すると共に前記中間周波 数信号の一方力 他方を減算して出力する検波加減算濾波器と、を備え、前記光送 信機からの符号光は、前記検波加減算濾波器において検波される際に前記光送信 機力 の符号光を構成する光周波数チップ間でコヒーレンス性があり、前記局部発 振光は、前記検波加減算濾波器において検波される際に前記局部発振光を構成す る光周波数チップ間でコヒーレンス性があり、前記光混合復号器又は前記検波加減 算濾波器は、前記受信対象の符号で符号化され送信データの 1の値で変調された 符号光を前記光受信機が受信したときと前記受信対象の符号で符号化され送信デ ータの他の値で変調された符号光を前記光受信機が受信したときとで前記検波加減 算濾波器の出力のうち前記検波加減算濾波器における濾波の際の導通帯域内にあ る中間周波数信号の出力値又は絶対値が異なるように、前記中間周波数信号を減 算する際の前記導通帯域内にある中間周波数信号の位相を調整することを特徴と する。これにより雑音を抑制することができる。
[0028] 上記光符号通信システムにおいて、受信対象外の符号光の符号の値が「1」に対応 する光周波数チップは、前記導通帯域内にある前記中間周波数信号の半分が加算 され他の半分が減算されて互いに打ち消しあう関係にあり、前記局部発振光は、さら に前記他の符号に応じた符号光の符号の値が「1」に対応する光周波数チップの光 周波数差が略中間周波数に設定された光を含み、前記光混合復号器又は前記検 波加減算濾波器は、送信データの 1の値で変調された前記受信対象とする符号の 符号光を前記光受信機が受信したときの前記検波加減算濾波器の出力のうち前記 導通帯域内にある出力から前記受信対象としない符号の符号光を前記光受信機が 受信したときの前記検波加減算濾波器の出力のうち前記導通帯域内にある中間周 波数信号の電流値に各電流値の発生確率を乗じたものの総和を減じた出力が、送 信データの他の値で変調された前記受信対象とする符号の符号光を前記光受信機 が受信したときの前記検波加減算濾波器の出力のうち前記導通帯域内にある出力 に前記受信対象としない符号の符号光を前記光受信機が受信したときの前記検波 加減算濾波器の出力のうち前記導通帯域内にある中間周波数信号の電流値に各電 流値の発生確率を乗じたものの総和を加算した出力と比べてその値又はその絶対 値より大きくなるように位相を調整することが望ましい。これにより、符号間干渉を十分 小さくして雑音を抑制することができる。
[0029] また、上記光符号通信システムにおいて、前記光混合復号器は、前記受信した符号 光と前記局部発振光とを混合して混合光を出力する光合分波器と、前記光合分波器 からの混合光をそれぞれ前記対象光周波数と前記非対象光周波数とに分岐して出 力する復号器を備え、前記検波加減算濾波器は、前記復号器からの前記対象光周 波数及び前記非対象光周波数を検波し、濾波し及び加減算することが望ましい。こ れにより、具体的な光受信機を構成することができる。
[0030] また、上記光符号通信システムにおいて、前記光混合復号器は、前記受信した符号 光と前記局部発振光のそれぞれを前記対象光周波数と前記非対象光周波数とに分 岐して出力する復号器と、前記復号器からの対象光周波数同士及び非対象光周波 数同士をそれぞれ混合して出力する光合分波器と、を備え、前記検波加減算濾波器 は、前記光合分波器からの前記対象光周波数及び前記非対象光周波数を検波し、 濾波し及び加減算することが望ましい。これにより、符号光を復号するときの各光周 波数チップに対応する透過帯域を符号光の線幅に加えて変調拡がり程度でよくする ことができ、局部発振光を復号するときの当該透過帯域を局部発振光の線幅程度で よくすることがでさる。
[0031] また、上記光符号通信システムにお 、て、前記光混合復号器は、前記受信した符 号光を前記対象光周波数と前記非対象光周波数とに分岐して出力する復号器と、 前記局部発振光を前記復号器の分岐数に対応する数だけ分岐して出力する光分波 器と、前記復号器からの対象光周波数と前記光分波器からの局部発振光とを混合し て出力する光合分波器と、前記復号器からの非対象光周波数と前記光分波器から の局部発振光とを混合して出力する光合分波器と、を備え、前記検波加減算濾波器 は、前記光合分波器からの前記対象光周波数及び前記非対象光周波数を検波し、 濾波し及び加減算することが望ましい。これにより、符号光を復号するときの各光周 波数チップに対応する透過帯域を符号光の線幅に加えて変調拡がり程度でよくする ことができる。また、光受信機の全体的な光損失を小さくすることができる。
[0032] また、上記光符号通信システムにおいて、前記光混合復号器は、前記局部発振光を 前記対象光周波数と前記非対象光周波数とに分岐して出力する復号器と、前記受 信した符号光を前記復号器の分岐数に対応する数だけ分岐して出力する光分波器 と、前記復号器からの対象光周波数と前記光分波器からの符号光とを混合して出力 する光合分波器と、前記復号器からの非対象光周波数と前記光分波器からの符号 光とを混合して出力する光合分波器と、を備え、前記検波加減算濾波器は、前記光 合分波器からの前記対象光周波数及び前記非対象光周波数を検波し、濾波し及び 加減算することが望ましい。これにより、局部発振光を復号するときの各光周波数チ ップに対応する透過帯域を局部発振光の線幅程度でよくすることができる。また、光 受信機の全体的な光損失を小さくすることができる。
[0033] また、上記光符号通信システムにお 、て、前記受信した符号光と前記局部発振光 とは、互いの光周波数が略一致する関係にあり、前記光合分波器は、前記受信した 符号光と前記局部発振光を混合すると共に分岐して前記受信した符号光と前記局 部発振光の位相差が所定値異なる複数の混合光を出力する光ハイブリッドであり、 前記復号器は、前記光ハイブリッドからの複数の混合光をそれぞれ前記対象光周波 数及び前記非対象光周波数として分岐して出力し、前記検波加減算濾波器は、前 記光混合復号器からの位相差の異なる混合光のそれぞれにつ ヽて、前記光ハイプリ ッドからの複数の混合光のそれぞれに対応する前記対象光周波数と前記光ハイプリ ッドからの複数の混合光のそれぞれに対応する前記非対象光周波数とをそれぞれ 検波しそれぞれの中間周波数信号を透過すると共に位相差が等しい対象光周波数 と非対象光周波数の該中間周波数信号の一方力 他方を減算してそれぞれ出力し 、前記光受信機は、前記検波加減算濾波器からそれぞれ出力される中間周波数信 号を加算して出力する加算器を備えることが望ましい。これにより、位相ダイバシチに よるホモダイン検波が可能となる。また、中間周波数を小さくすることができ符号光に 必要な光周波数帯域を狭くすることができる。
[0034] また、上記光符号通信システムにお!/、て、前記受信した符号光と前記局部発振光と は、互いの光周波数が略一致する関係にあり、前記光合分波器は、前記光合分波 器に入力される複数の入力光を混合すると共に分岐して前記受信した符号光と前記 局部発振光の位相差が所定値異なる複数の混合光を出力する光ハイブリッドであり 、前記検波加減算濾波器は、前記光混合復号器からの位相差の異なる混合光のそ れぞれについて、前記光ハイブリッドからの受信した符号光と局部発振光の少なくと もいずれか一方が対象光周波数に応じた混合光と前記光ハイブリッドからの前記混 合光と位相差の等し 、受信した符号光と局部発振光の少なくとも 、ずれか一方が非 対象光周波数に応じた混合光とをそれぞれ検波しそれぞれの中間周波数信号を透 過すると共に該中間周波数信号の一方力 他方を減算してそれぞれ出力し、前記光 受信機は、前記検波加減算濾波器力 それぞれ出力される中間周波数信号を加算 して出力する加算器を備えることが望ましい。これにより、位相ダイバシチによるホモ ダイン検波が可能となる。また、中間周波数を小さくすることができ符号光に必要な 光周波数帯域を狭くすることができる。
[0035] また、上記光符号通信システムにお 、て、前記光混合復号器は、前記光送信機か らの符号光及び前記局部発振光を混合する際に前記符号光と前記局部発振光とを 相対的に π Ζ2又は 3 π Ζ2だけ異なる 2つの偏波関係で混合し前記符号光と前記 局部発振光の偏波関係が異なる複数の対象光周波数に応じた混合光と非対称光周 波数に応じた混合光を出力し、
前記検波加減算濾波器は、前記光混合復号器からの偏波関係が異なる混合光の それぞれつ 、て、前記光混合復号器からの複数の混合光のそれぞれに対応する前 記対象光周波数と前記非対象光周波数とをそれぞれ検波しそれぞれの中間周波数 信号を透過すると共に偏波関係が等しい対象光周波数と非対象光周波数の該中間 周波数信号の一方から他方を減算してそれぞれ出力し、前記光受信機は、前記検 波加減算濾波器からの中間周波数信号を加算して出力する加算器と、をさらに備え ることが望ましい。これにより、光受信機を偏波無依存化することができる。
[0036] また、上記光符号通信システムにお!/ヽて、前記光混合復号器は、前記光送信機か らの符号光及び前記局部発振光を混合する際に前記符号光と前記局部発振光とを 相対的に π Ζ2又は 3 π Ζ2だけ異なる 2つの偏波関係で混合し前記符号光と前記 局部発振光の偏波関係と位相差の組み合わせに対応する複数の対象光周波数に 応じた混合光と非対象光周波数に応じた混合光を出力し、前記検波加減算濾波器 は、前記光混合復号器からの偏波関係と位相差の組合せに対応する混合光のそれ ぞれについて前記光混合復号器からの混合光のそれぞれに対応する前記対象光周 波数と前記非対称光周波数とをそれぞれ検波しそれぞれの中間周波数信号を透過 すると共に偏波関係と位相差の等しい対象光周波数と非対称光周波数の中間周波 数の一方力 他方を減算してそれぞれ出力し、前記光受信機は、前記検波加減算 濾波器力もの中間周波数信号をそれぞれ前記加算器にて加算することが望ましい。 これにより、光受信機を偏波無依存化することができる。
[0037] また、上記光符号通信システムにお 、て、前記局部発振光又は前記符号光の 、ず れか一方のみは、一つの送信データの値に対応する時間スロット内に前記局部発振 光又は前記符号光を構成する各光周波数チップに対応する光が直交する 2偏波の 光力ゝら構成されることが望ましい。これにより、光受信機を偏波無依存化することがで きる。 [0038] また、上記光符号通信システムにおいて、前記光受信機は、請求項 1から 8で用い る 2つの符号を連結した符号で前記光受信機における光周波数チップを構成し、前 記受信した符号光及び前記局部発振光のそれぞれは、前記連結した符号を構成す るそれぞれの符号を構成する光周波数チップは偏波が同一であり、前記光混合復号 器は、前記受信した符号光と前記局部発振光とを混合する際に連結符号を構成す る符号毎に前記符号光と前記局部発振光とを相対的に π Ζ2又は 3 π Ζ2だけ異な る 2つの偏波関係で前記受信した符号光と前記局部発振光とを混合することが望ま しい。これにより、光受信機を偏波無依存化することができる。また、光周波数チップ 毎の透過帯域を狭くすることができる。
[0039] また、上記光符号通信システムにお!/ヽて、前記光混合復号器が前記光送信機からの 符号光又は前記局部発振光の少なくとも一方を対象光周波数と非対象光周波数に 分岐した後に混合する場合において、前記光合分波器はそれぞ; 立相差が略 π異 なる 2つの混合光の組を出力し、前記検波加減算濾波器は、前記光合分波器から分 割して出力された前記位相差の略 π異なる 2つの混合光の組をそれぞれ差動検波 し対象光周波数と非対象光周波数の中間周波数信号を透過し相対応する対象光周 波数と非対象光周波数の一方力 他方を減算して出力することが望ましい。これによ り、信号成分に対して雑音となる符号光及び局部発振光の直接検出成分とコモンモ ードノイズの軽減が可能となる。
[0040] また、上記光符号通信システムにお!/、て、前記光混合復号器は、前記復号器にお いて前記対象光周波数と前記非対象光周波数とをそれぞれ前記複数の光周波数チ ップ毎に分岐して前記複数の光周波数チップ毎の前記対象光周波数及び前記非対 象光周波数として出力し、前記検波加減算濾波器は、前記光混合復号器からの対 象光周波数と非対象光周波数とのそれぞれについて前記複数の光周波数チップ毎 に検波することが望ましい。これにより、符号毎に符号光を分割する際の分割損を軽 減することができる。
[0041] また、上記光符号通信システムにおいて、前記光受信機は、前記検波加減算濾波 器における検波、濾波及び加減算よりも後段で且つ前記検波加減算濾波器力 そ れぞれ出力される中間周波数信号を加算して出力する加算器を備える場合は前記 加算器より前段に前記検波加減算濾波器力 の中間周波数信号を復調して出力す る復調器をさらに備えることが望ましい。これにより、光 PLLを不要とすることができる
[0042] また、上記光符号通信システムにおいて、前記光混合復号器又は前記検波加減算 濾波器は、前記異なる光周波数の複数の光周波数チップが前記光送信機において 送信データで変調されてから前記光受信機の前記検波加減算濾波器において加減 算されるまでの光周波数による伝送遅延を調整する分散調整器と、前記光源から前 記異なる光周波数の複数の光が出射されて力 前記検波加減算濾波器にぉ 、て検 波されるまでの光周波数チップ間の周波数間隔に応じた位相差を所定の範囲に収 めるように前記光送信機における変調前の符号光の伝搬時間を調整する位相調整 器と、前記光混合復号器にお!ヽて前記符号光と前記局部発振光とを混合する前段 又は前記光混合復号器の前段で前記局部発振光の伝搬時間を調整する位相調整 器と、のうち少なくとも 1つを備えることが望ましい。これにより、中間周波数信号の位 相ずれによる信号強度の低下と符号間干渉との抑制をすることができる。
発明の効果
[0043] 本発明は、光周波数領域又は波長領域に符号化した光符号通信システムにおけ る他符号光の重畳に起因するショット雑音とビート雑音とによる感度劣化を無視でき、 符号多重数制限を軽減した高精度な光通信が可能となる。
図面の簡単な説明
[0044] [図 1]従来の光符号通信システムを示した概略構成図である。
[図 2]従来例と本発明の ASKヘテロダイン包絡線検波の符号多重数とパワーペナル ティとの関係を示した図である。
[図 3]—実施形態に係る光符号通信システムを示した概略構成図である。
[図 4]一実施形態に係る光符号通信システムを示した概略構成図である。
[図 5]—実施形態に係る光符号通信システムを示した概略構成図である。
[図 6]符号器 54に入力される受信対象の符号光と受信対象外とする符号光と局部発 振光との光スペクトルを示した図である。
[図 7]検波器 64aでの受信対象の符号光と受信対象外とする符号光と局部発振光と の光スペクトルを示した図である。
[図 8]検波器 64bでの受信対象の符号光と受信対象外とする符号光と局部発振光の 光スペクトルを示した図である。
[図 9]受光強度と受信対象の符号光の符号誤り率との関係を示した図である。
[図 10]—実施形態で説明した光受信機を示した概略構成図である。
[図 11]一実施形態で説明した光受信機を示した概略構成図である。
[図 12]—実施形態で説明した光受信機を示した概略構成図である。
[図 13]—実施形態で説明した光受信機を示した概略構成図である。
[図 14]一実施形態で説明した光受信機を示した概略構成図である。
[図 15]—実施形態で説明した光受信機を示した概略構成図である。
[図 16]—実施形態で説明した光受信機を示した概略構成図である。
[図 17]—実施形態で説明した光受信機を示した概略構成図である。
[図 18]—実施形態で説明した光受信機を示した概略構成図である。
[図 19]一実施形態で説明した光受信機を示した概略構成図である。
[図 20]—実施形態で説明した光受信機を示した概略構成図である。
[図 21]—実施形態で説明した光受信機を示した概略構成図である。
[図 22]—実施形態で説明した光受信機を示した概略構成図である。
[図 23]—実施形態で説明した光受信機を示した概略構成図である。
[図 24]—実施形態で説明した光受信機を示した概略構成図である。
[図 25]—実施形態で説明した光受信機を示した概略構成図である。
符号の説明
図面において使用されている符号は、以下の通りである。
10:光符号通信システム、 21:光送信機、 22:光受信機、 31:光源、 32:変調器、 33 :符号器、 41:局部発振光源、 42:光混合復号器、 43:光検波加減算濾波器、 44, 4 4-1, 44— 2:濾波器、 45, 45-1, 45— 2:包絡線検波器、 46:カロ算器、 51, 52: 調整器、 53, 59:光合分波器、 53a, 53b, 53a— 1, 53b— 1, 53a— 2, 53b— 2: 光合分波器、 54, 54a, 54b, 54-1, 54— 2:復号器、 55:光分波器、 56, 56-1, 56-2, 56— la, 56— lb, 56— 2a, 56— 2b:光ノヽイブジッド、、 57, 58:調整器、 61 a, 61b, 61a— 1, 61b— 1, 61a— 2, 61b— 2, 61— la, 61— lb, 61— 2a, 61— 2b, 61— la— 1, 61— la— 2, 61— lb— 1, 61— lb— 2, 61— 2a— 1, 61— 2a—
2, 61— 2b— 1, 61— 2b— 2 :検波器、 62a, 62b, 62a— 1, 62b— 1, 62a— 2, 62 b - 2, 62— la, 62— lb, 62— 2a, 62— 2b, 62— la— 1, 62— la— 2, 62— lb - 1, 62— lb— 2, 62— 2a— 1, 62— 2a— 2, 62— 2b— 1, 62— 2b— 2 :調整器、 6
3, 63 - 1, 63— 2 :カロ減算器、 64a, 64b, 64a— 1, 64b— 1, 64a— 2, 64b— 2 :差 動検波器、 71, 72, 74 :偏波保持光分波器、 73 :光偏波分波器、 81 :光伝送路、 82 :偏波保持光ファイノく、 101— 1〜: LOl— n : ONU、 l l l : OLT、 112 :光合分波器、 121 :光源、 122 :変調器、 123 :符号器、 131 :復号器、 132a, 132b :差動検波器、 133 :濾波器、 300 :光符号通信システム
[0046] 添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の 形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるもので はない。
[0047] (第一実施形態)
図 3、図 4及び図 5に、本実施形態に係る光通信システムの概略構成図を示す。
[0048] 図 3から図 5の光通信システム 10は、異なる光周波数の複数の光を所定の符号で 符号化した複数の光周波数チップを送信データで変調して符号光を送信する光送 信機 21と、光送信機 21からの符号光を受信し、受信した符号光を局部発振光に基 づ ヽて処理して光送信機 21における送信データを取り出して出力する光受信機 22 と、光送信機 21と光受信機 22との間で符号光を伝送する光伝送路 81と、を備える。
[0049] 光送信機 21は、異なる光周波数の複数の光で構成された光周波数チップを出力 する光源 31と、光源 31からの光を送信データで変調して出力する変調器 32と、光 源 31からの符号に応じた光周波数チップを選択して透過する符号器 33と、を備える
[0050] 光源 31が出力する光周波数チップは、コヒーレンス性が保たれている。光源 31とし ては、異なる複数の光の位相が揃っており、コヒーレンス性のあるモード同期レーザ 等のパルス光源や、種光源力 の光を変調した際の種となる光及び変調によるサイド バンドの光を出力する光源を適用することができる。また、後述する数式(11)又は後 述のように受信対象とする符号光を考慮した上で、数式 (22)力 数式 (33)に示す 関係式を満たすように互 ヽのコヒーレンス性が保てれば複数光源の組合せでもよ 、。
[0051] 図 3では、光源 31と変調器 32とは、それぞれ別の構成とした力 光源 31において 複数の光を直接変調することで同一としてもよい。また、光送信機 21の構成として、 光源 31、変調器 32及び符号器 33からなる構成を示した力 変調器 32と符号器 33と の順番は入れ替えてもよい。また、符号器 33として光周波数に依存した遅延のある 符号器を適用してもよい。この場合には、光周波数チップ毎に変調器 32から後述の 検波器 6 la, 6 lbまでの伝搬遅延を略均一にする必要がある。 4チップの場合の例で ある図 4の光符号通信システム 10では、検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2の場合も同様で、図 5の光符号通信システム 10では、差動検波器 64a, 64bの場 合も同様である。また、光源 31自体が符号に対応する複数の光を出力するか、又は 変調器 32が符号に対応する光のみ導通する場合は、符号器 33は省略することもで きる。また、光送信機 21が送信データの値に応じて異なる光周波数チップ力もなる符 号光を出力する場合には、光送信機 21は、異なる符号に対応する複数の符号器を 符号器 33として備える。そして、光源 31、符号器 33、変調器 32の並びとするときは、 変調器 33は、光源 31からの光をそれぞれ符号ィ匕した、複数の符号器の出力からい ずれかの出力を選択するスィッチの役目を果たす。一方、光源 31、変調器 32、符号 器 33の並びとするときは、変調器 32は、異なる符号に対応する複数の符号器のい ずれかに光源 31からの光を入力するかを切り替えるスィッチの役目を果たす。この場 合、光送信機 21は、符号器 33の後段に接続され複数の符号器力ゝらの符号光を合波 して出力する光合分波器 (不図示)、又は符号器 33の後段に接続され複数の符号器 力もの出力の切り替えを変調器 32に同期して行う変調器 (不図示)を備える。そして 、符号器 33は、不図示の当該光合分波器又は当該変調器を経由して符号光を出力 する。
[0052] ここで、符号器 32で符号ィ匕に用いる符号は、受信側での復号器 54、検波器 61a, 61b及び加減算器 63により符号間干渉が抑圧される符号を適用する。図 4及び図 5 の光符号通信システム 10では、図 4の検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2 及び図 5の差動検波器 64a, 64bの場合も同様である。例えば、 ONZOFFの光強 度変調における直交符号としては、アダマール符号や、ビットシフトした M系列符号 でビットが 1又は 0のいずれかに相当する光周波数チップを送信する光符号がある。 本実施形態では、このような符号として値が 1に相当する光周波数チップのみを送出 するュ-ポーラ符号を用いて、擬似バイポーラ受信する場合にて説明する。選択した 符号を構成する光周波数チップで値が「1」である光周波数チップは、後述する光受 信機 22の加減算器 63の加算側の検波器 6 laが減算側の検波器 6 lbのいずれか一 方に入力され、他方の検波器には入力されないように復号器 54を構成する。符号の 直交性により、受信対象外の符号を構成する符号の値が「1」である光周波数チップ は、加算側と減算側の両方に略均等な強度で入力されることになり、差動により打ち 消され、理想的には符号間干渉がなくなる。
[0053] 光受信機 22は、受信した符号光の光強度よりも大きく光送信機 21の光源 31から出 力される異なる光周波数の複数の光のそれぞれとの光周波数差が略中間周波数に 設定された複数の光を含む局部発振光を出力する局部発振光源 41と、光送信機 21 力 の符号光と局部発振光源 41からの局部発振光とを混合すると共に光送信機 21 からの符号光又は局部発振光の少なくとも一方を光受信機 22の受信対象の符号の 値が「1」に対応する光周波数チップに応じた対象光周波数と受信対象の符号の値 が「0」に対応する光周波数チップに応じた非対象光周波数とに復号して分岐し光送 信機 21からの符号光と局部発振光とが混合した対象光周波数及び非対象光周波数 をそれぞれ出力する光混合復号器 42と、光混合復号器 42からの対象光周波数と非 対象光周波数とをそれぞれ検波し、対象光周波数と非対象光周波数とのそれぞれ の中間周波数信号を透過すると共に該中間周波数信号の一方力 他方を減算して 出力する検波加減算濾波器 43と、を備える。さらに、光受信機 22は、復調器 (本実 施形態では、整流器又はミキサー等と中間周波数成分を除去する低域濾波器力 な る包絡線検波器 45)を含む。また、光受信機 22は、光周波数領域-時間領域の二 次元符号の場合は、送信データの 1ビットの時間に対応する時間の積分を行う積分 器 (不図示)を備えてもよい。
[0054] 本実施形態では、光混合復号器 42は、局部発振光源 41からの局部発振光の遅 延又は位相を調整する調整器 51と、光送信機 21からの符号光の遅延又は位相を調 整する調整器 52と、光送信機 21から調整器 52を介した符号光と局部発振光源 41 から調整器 51を介した局部発振光とを混合して出力する光合分波器 53と、光合分 波器 53からの混合光を復号して出力する復号器 54と、を備え、検波加減算濾波器 4 3は、図 3においては、復号器 54からの対象光周波数を検波して出力する検波器 61 aと、復号器 54からの非対象光周波数を検波して出力する 61bと、検波器 61a, 61b 力もの中間周波数信号の遅延又は位相をそれぞれ調整する調整器 62a, 62bと、検 波器 61a, 61bから調整器 62a, 62bを介した中間周波数信号の一方力も他方を減 算して出力する加減算器 63と、変調信号が乗じた中間周波数信号を透過する濾波 器 44と、を備える。
[0055] 局部発振光源 41は、例えば、光受信機 22が受信する全符号光の光強度の総和よ り 20dBのように十分大きな強度で且つコヒーレンス性の保たれた局部発振光を出力 する。局部発振光は、選択する符号を復号するのに必要且つ選択しない符号を相殺 するのに必要な複数の光周波数を具備する。例えば、選択する符号が「11110000 」で flから f 4までの光周波数の信号を出力し、選択しない符号が「10101010」で奇 数番号の光周波数の信号を出力する場合、少なくとも fl, f2, f3, f4, f5, f7の光周 波数の局部発振光を出力する。全符号光の光強度の総和よりも十分大きな局部発 振光を用いることで、後述するように、他の符号光に起因するショットノイズや符号光 符号光間のビートノイズの光受信機における影響を無視できるようになる。本実施 形態では、局部発振光は、光受信機 22内に局部発振光源 41から出力するとしてい るが、後述する数式(11)又は後述のように受信対象としない符号光も考慮した上で 数式 (22)から数式 (33)に示す関係式を満たせば外部から供給された局部発振光 を用いてもよい。
[0056] 復号器 54は、光受信機 22が受信した符号光及び局部発振光源 41からの局部発 振光を取得し、符号を構成する値が「1」の光周波数チップに対応する光と符号を構 成する値が「0」の光周波数チップに対応する光とに分岐して出力する。分岐された 光のうち受信対象の符号の値力 S「1」の光周波数チップに応じた光は検波器 61aに、 受信対象の符号の値が「0」の光周波数チップに応じた光は検波器 61bにそれぞれ 入力する。 [0057] 検波器 61aは、符号の値が「1」の光周波数チップに対応する光を検波して出力し 調整器 62aを介して加減算器 63の加算側に入力し、検波器 61bは、符号の値が「0」 の光周波数チップに対応する光を検波して出力し調整器 62bを介して加減算器 63 の減算側に入力する。図 3では検波器 61a, 61b及び調整器 62a, 62bの 2つに分け ているが、図 4に示すように、検波器から出力される信号は、検波器 61a— 1, 61a- 2, 61b— 1, 6 lb— 2のように加減算器 63の加算側及び減算側への入力が一致す る限りそれぞれ分割してもよい。この場合、調整器 62a— 1, 62a— 2, 62b— 1, 62b —2は、検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2にそれぞれ接続される。
[0058] 図 3の加減算器 63は、検波器 61a, 61b力もの出力を加減算して出力する。また、 濾波器 44は、加減算器 63からの中間周波数信号を透過して出力する。また、包絡 線検波器 45は、濾波器 44からの中間周波数信号を二乗検波して光送信機 21にお ける送信データを取り出して出力する。受信対象の符号を除く他の符号で符号化さ れた符号光 (以下、「受信対象の符号を除く他の符号で符号化された符号光」を「受 信対象外の符号光」とする。)を光受信機 22が受信した場合は、受信対象外の符号 光で値が「1」の光周波数チップは、濾波器 44の導通帯域内の中間周波数信号の半 分が加減算器 63で加算され、他の半分が加減算器 63で減算され打ち消しあう符号 関係にあるため、加減算器 63により打ち消される。このように、受信対象外の符号で 値力「l」の光周波数チップは、符号の直交性により加算側と減算側の両方の加減算 器 63に略均等な強度で入力され、加減算器 63における差動により打ち消されて、理 想的には符号間干渉がなくなる。一方、受信対象の符号で値が「1」の光周波数チッ プは、加減算器 63の加算側に接続される検波器 6 la又は減算側に接続される検波 器 61bのいずれかの一方に光周波数チップが略入力され、他方の検波器 61bには 入力されない。信号光を構成する複数の光周波数チップの光の強度や偏波状態に より、各周波数の光に対応する中間周波数信号が不均一である場合は、選択しない 符号が相殺されるように信号光を構成する複数の光周波数の光の間の強度比又は 局部発振光を構成する複数の光周波数の光の間の強度比を調整して打ち消される ようにする。加減算器 63の出力は、変調された中心周波数信号を透過する濾波器 4 4を経由し、中間周波数信号を包絡線検波器 45で二乗検波した後に光送信機 21に おける送信データ信号として出力される。なお、復調器として適用した包絡線検波器
45は、変調信号のマークとスペースの値による強度差を検出することで送信データ を取り出すので、二乗検波に限定する必要はなぐ中間周波数信号を直接アナログ デジタル変換を行い、強度差を検出する場合は、デジタル信号処理で置き換える ことも可能である。デジタル信号処理で行う場合は、加減算器、濾波器、調整器もァ ナログ—デジタル変換後にデジタル信号処理で行うことが可能である。
[0059] 復号器 54の出力と検波器 6 la, 61bは、図 4に示すように光周波数チップ毎に分割 し、それぞれの光周波数チップ毎の出力を分岐し加減算器 63において符号に応じ て加減算を行うと、各符号に応じた加減算器 63の間で検波器以前を少なくとも共用 することができるので符号毎に光を分割する分割損を軽減することができる。また、濾 波器 44は、所定の周波数差の絶対値が中間周波数となり、中間周波数を含み略デ ータレート以上の透過帯域を有するバントパスフィルタである。加減算器 63と濾波器 44の順番は入れ替えてもよい。この場合、加減算器 63への入力数だけの濾波器が 加減算器 63の前段に接続される。復号器 54による分岐が 2出力の場合は、図 5に示 すように、図 3の検波器 61a, 61bと加減算器 63との組み合わせに代えて、差動検波 器 64a, 64bを用いてもよい。また、図 3の加減算器 63の加算側と減算側とは入れ替 えてもよい。検波器 6 la, 6 lbからの信号が加減算器 63の出力で反転するだけだか らである。
[0060] 調整器 51, 52, 62a, 62bは、受信対象の符号で符号化された符号光(以下、「受 信対象の符号で符号化された符号光」を「受信対象の符号光」とする。 )のみを光受 信機 22が受信する場合は、例えば、送信データがマークとスペースとの 2値の場合、 送信データがマークのときとスペースのときに加減算器 63からそれぞれ出力される信 号のうち濾波器 44の導通帯域内にある中間周波数信号の絶対値が異なるように中 間周波数信号の位相を調整する。例えば、送信データがマークのときがスペースのと きょり大きくなるように調整する。送信データが多値の場合も同様である。一方、受信 対象外の符号光も受信する場合は、受信対象の符号の送信データで出力が大と規 定した値に対応する送信データのときの加減算器 63の出力を所定の条件で処理し た値の絶対値が、他の受信対象の符号の送信データで出力が小と規定した値に対 応する送信データのときの加減算器 63の出力を所定の条件で処理した値よりも大き くなるように中間周波数信号の位相を調整する。この場合、「所定の条件で処理」は、 光受信機 22が受信対象外の符号光を受信したときに加減算器 63から出力される信 号のうち濾波器 44の導通帯域内にある中間周波数信号の電流値に各電流値の発 生確率を乗じたものの総和を受信対象の符号の出力が大と規定した値に対応する 送信データのときの加減算器 63の出力から減じ、出力が小と規定した値に対応する 送信データのときの加減算器 63の出力に加えることを 、う。
[0061] 図 3の調整器 62a, 62bは、電気段で調整を行う力 図 5の調整器 62a, 62bは、光 段で調整を行う。図 3においても、図 5と同様に光段で置き換えてもよい。また、図 3, 図 5では、光合分波器 53で混合する前段の符号光と局部発振光とのそれぞれ、及 び検波器 61a, 61bの前後のいずれかに調整器 62a, 62bを配置し、図 4では各光 周波数チップの検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2の後段に調整器 62a— 1, 62a— 2, 62b— 1 , 62b— 2を配置している力 各データ値が弁別できるように中 間周波数信号の位相を合わせることができれば、調整器 62a, 62b, 62a— 1, 62a - 2, 62b - l, 62b— 2は、追カロ ·肖 'J減してもよい。調整器 51, 52, 62a, 62b, 62a —1, 62a— 2, 62b— 1 , 62b— 2としては、光送信機 21において光周波数チップを 変調して力も光受信機 22の加減算器 63までの光周波数による伝送遅延を調整する 分散調整器、光源 31力ら検波器 61a, 61b, 61a— 1, 61a— 2, 61b— 1, 61b— 2 ( 図 3又は図 4)又は差動検波器 64a, 64b (図 5)までの光周波数チップ間の周波数間 隔に応じた位相差を所定の範囲に収めるために変調前における符号光の伝搬時間 を調整する位相調整器の少なくとも 1つであることが望ましい。また、調整器 51として は、光合分波器 53における符号光と局部発振光との混合前に局部発振光の伝搬時 間を調整する位相調整器であることが望ましい。また、その両者の組合せである調整 器であることが望ましい。これにより、中間周波数信号の具体的な位相調整をするこ とがでさる。
[0062] 以下に、図 4の調整器 62a— 1, 62a— 2, 62b— 1, 62b— 2における位ネ目の調整に ついて説明する。受信対象の符号が「1100」、受信対象外の符号が「1010 」を一例として適用する。簡単のためにマークとスペースの 2値伝送であり、且つ「1」 の値の光周波数チップを送信し「0」の光周波数チップを送信しないものとする。また
、復号器の出力は、図 4の復号器 54に示すように光周波数チップ毎に独立している とし、検波器は、図 4の検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2に示すように復 号器 54の出力毎に独立に接続され、調整器は、図 4の調整器 62a— 1, 62a— 2, 6 2b— 1, 62b— 2【こ示すよう【こ検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2毎【こ接続 しているとする。また、光合分波器 53における符号光と局部発振光とのチップ iは、以 下の数式(7)で示されるとする。チップ番号の 1から 4は、それぞれ順に検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2で検波される光周波数チップに対応する。
[0063] [数 7] 符号光 : E s c o S [ 2 T f 丄 — τ f 十 φ 5 ]
局部発振光: E L C O s T^ f i + f ! t + ^ L]
[0064] ここで、 iは 1から 4のチップ番号を示し、 E 、 Eはそれぞれ符号光及び局部発振光
の各光周波数チップの電界強度を示し、 Φ 、 Φ
しはそれぞれ符号光及び局部発振 光の初期位相を示し、 fは符号光のチップ iの周波数を示し、 Fは符号光と局部発振 光それぞれの隣接する光周波数チップ間の周波数差を示し、 f
IFは中間周波数を示 し、 Riま検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2の効率を示す。 τ 、 て 、 τ 及
fi d e び τ は、それぞれ光送信機 21から光合分波器 53までの光伝送路 81の遅延と、光 合分波器 53から検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2までの遅延と、検波器 61a— 1, 61a— 2, 61b— 1, 61b— 2から加減算器 63までの遅延及び調整器 62a - 1, 62a— 2, 62b— 1, 62b— 2の遅延を示し、 て 以外は光周波数チップによらず 同一値とする。
[0065] 4つの光周波数チップは、復号器 54により分岐されそれぞれ検波器 61a— 1, 61a
- 2, 61b— 1, 61b— 2に入力され検波され出力される。加減算器 63において、光 周波数チップ 1, 2に対応する信号は加算され、光周波数チップ 3, 4に対応する信号 は減算される。各光周波数チップの加減算器 63における加減算と濾波器 44におけ る濾波後の中間周波数信号は、次の数式 (8)と表せる。
[0066] [数 8] R E s E L c o s [ 2 π f I F(t_T ά6c i)
+ φ1_-φ 5+2π ί ί τ {]
[0067] 受信対象の符号光がマークのとき、光周波数チップ 1と光周波数チップ 2の信号と が加減算器 63において加算されるので、両者を加算した値は、次の数式(9)と表せ る。一方、受信対象外の符号光がマークのとき光周波数チップ 1が加算され光周波 数チップ 3の信号が減算されるので両者を減算した干渉成分の値は、次の数式(10) と表せる。そして、調整器 62a— 1, 62a— 2, 62b— 1, 62b— 2は、それぞれ数式(1 0)で示された干渉成分を最小化し、信号成分を最大化するように設定して前述した 受信対象の符号光と受信対象外の符号光との関係を満たせばよい。
[0068] [数 9]
R E s E L c o s [ 2 π I I F(t 0. 5 τ cl 0. 5 2) + φ L
— φ s+27c(f 1 + F/2)T f]c o s [7i(F τ 厂 f I F c l+ τ c 2)) ]
[0069] [数 10]
-R E s E L s i n [ 2 π f i F( t - τ d- τ e-0. 5 τ cl 0. 5 τ c 3) + φ
L— φ5+2π(ί + f]s i n[7i(F τ厂 f IF cl+ τ c3)) ]
[0070] 本実施形態では、変調方式によらないが、代表例として ASK2値伝送でマークのとき のみ符号光を送信する場合の符号誤り率について示す。符号 i(iは 1から K (但し、 K は 2以上の自然数とする。;))の符号光 E及び局部発振光 Eは、例えばそれぞれ次
i し
の数式(11)で表せる。
[0071] [数 11]
Figure imgf000025_0001
[0072] 数式(11)において、 Ε , Ε とは、それぞれ符号光と局部発振光の光周波数チッ
im Lm
プ m(mは 1から M (但し、 Mは 2以上の自然数とする。))の電界強度を示し、 ,
i φ は、それぞれ符号 iの符号光と局部発振光との光周波数チップの初期位相を示す。 f , f は、それぞれチップ mの周波数と中間周波数を示す。
m IF
[0073] 符号 pの符号光の加減算器後の出力電流は、次の数式(12)と表せる。
[0074] [数 12]
Figure imgf000026_0001
[0075] ここで、 Rは検波器の感度を示し、 C 、 C' は符号 pを受信対象の復号器 54の光
pm pm
周波数チップ mのパワー伝達関数を示し、 n(t)は光受信機 22の雑音を示す。第 1, 第 2項は出力電流の式の局部発振光と符号光の直接検波成分であり、第 3項は受信 対象の信号成分であり、第 4及び第 5項は符号間干渉成分 (MAI)である。第 1、第 2 及び第 5項は中間周波数を透過する濾波器 44により除去される。第 4項は符号の直 交性により理想的には抑圧される。ここで受信対象信号の電流成分 i
dataに対する第 4 項の MAI電流の残留成分の符号間干渉抑圧比(CMR) aは以下の数式(13)で示 せるとする。
[0076] [数 13]
Figure imgf000026_0002
[0077] 更に簡略化のため MAI電流と符号間干渉抑圧比は同一とすると出力電流は次の 数式(14)と表せる。
[0078] [数 14] i。 = 2RACPI„ - CJEP,,,EL {2 + φρ - φ)
Figure imgf000027_0001
A+xj+y =x + = ^_
1 (; mark)
:
Figure imgf000027_0002
0 ( space)
[0079] 数式(14)において、 ΓΊま包絡線を示し、 φ .'は位相差を示し、 Αは信号強度を示し 、 N(t)は濾波器 44を透過した雑音を示し、 aは符号間干渉抑圧比を示し、 D (t)は 0又は 1の値をとる時刻 tにおける符号 iのデータ値を示し、 Xと yは同相成分と直交成 分の雑音を示す。同相の MAI成分が最大の条件として位相差が πの場合と 0の場 合は、 A'は、 ΜΑΙ電流強度 ζを用いて次の数式(15)と書き換えられる。
[0080] [数 15]
Figure imgf000027_0003
z = ∑ ΑΌί{ήαβι , Qi 1, Φ=
_1, φ-π
[0081] また、 ζの確率密度は次の数式(16)と表せる。
[0082] [数 16] ― (2,― u)aA)
Figure imgf000028_0001
[0083] 数式(16)において、 uと sはデータ値がマークと位相が 0の場合の受信対象外の符 号光の数である。 x'と yが互いに無相関のガウス分布であると想定すると、雑音の分 散 σ 2は次の数式(17)と表せる。
[0084] [数 17] び = is + + iL + id + isb + ibb + ie iL + i( 2eBR∑{ppm+Cpn E +ic
[0085] 数式(17)において、第 1項から順に受信対象の符号光のショット雑音、受信対象 外の符号光のショット雑音、局部発振光のショット雑音、暗電流のショット雑音、受信 対象の符号光と受信対象外の符号光とのビート雑音、受信対象外の符号光同士の ビート雑音、受信系のその他の雑音のそれぞれの分散を示す。また、 eは素電荷であ り、 Bは受信系の電気の帯域である。 zを与えたときの条件付確率密度は次の数式(1 8)と表せる。
[0086] [数 18]
Figure imgf000028_0002
[0087] よって、 zを与えたときの結合確率密度は次の数式(19)となる。
[0088] [数 19]
_ r +A
e 2び2 , ム
Figure imgf000028_0003
w二 ' o e d(p
[0089] 数式(19)において、 I (ν)は零次の第 1種の変形ベッセル関数である。このとき、符 号誤り率は次の数式(20)で表せる。
[0090] [数 20] BER =丄 £ ί— : Ρ^) pz (r)dzdr + Π—: p(z) pz {r)dzdr
2
1 ん -i « c Γ r(A + (2s - u)aA) r A+{2S-U
1 1 V — 1し M Mし S
つ Ζ—ι ん-- 1+« 2 β 2σ dr «=0 ,s=0 . σ σ ノ
σ σ
Figure imgf000029_0001
t +a
Q(a,b) ^ i- l0(at)e 2 dt
T = A / 2
[0091] 数式(20)において、 Q (a, b)はマーカムの Q関数であり、 Tはマークとスペースの 閾値である。 符号数がガウス分布により 2項分布近似するのに十分な場合は、更に 次の数式(21)のように近似することができる。
[0092] [数 21]
Figure imgf000029_0002
ィ曰-し、 MAI = とする。
[0093] 数式(21)において、 MAIは MAI電流の分散であり、その値は(K 1) (i ) 2 « 2 data
Z2である。更に、本実施形態において「2光送信機— 1光受信機」の構成とした場合 の測定結果について説明する。図 5を基に説明する。
[0094] 前提条件として光送信機 21側の光源 31及び局部発振光源 41は、種光を出力す るレーザダーオード (LD) (不図示)、シンセサイザ (不図示)及び強度変調器 (不図 示)で構成される。当該強度変調器は、当該シンセサイザからの 12. 5GHzの正弦波 で駆動し当該 LD力 の種光自身とダブルサイドバンドの周波数間隔 Fが 12. 5GHz の 3光周波数チップを構成する。符号光と局部発振光との位相はシンセサイザからの サイドバンド生成用の強度変調器までの電気の遅延線またはサイドバンド生成用の 強度変調器後段の光の遅延線により調整した。これらの遅延線は本構成の調整器の 一部をなす。符号光と局部発振光との光周波数は、中間周波数 2. 5GHzだけ離れ ている。符号器 33は、 FSR力 0GHzと 20GHzのマッハツェンダー干渉計を用いた 。光送信機 21は、これらの符号器 33において受信対象の符号「0011」及び受信対 象外の符号「0101」の符号光を構成する。符号光は lGbitZsの 27— 1の擬似ランダ ムパターンでデータ変調用の強度変調器(図 5の変調器 32)により変調した。光受信 機 22では、復号器 54として 25GHz間隔の 2chの光フィルタを用いた。復号器 54と 当該差動検波器の間は両経路の位相差と強度差を補正するための光遅延線 (不図 示)と光減衰器 (不図示)をそれぞれ挿入してある。調整器 51, 52, 62a, 62bは、光 遅延線と前述の電気又は光の遅延線とにより構成される。
[0095] 図 6a、図 6b、図 6cに、復号器 54に入力される受信対象の符号光,受信対象外の 符号光及び局部発振光の光スペクトルをそれぞれ示す。また、図 7a、図 7b、図 7cに 、検波器 64aに入力される受信対象の符号光,受信対象外の符号光及び局部発振 光の光スペクトルをそれぞれ示す。また、図 8a、図 8b、図 8cに、検波器 64bに入力さ れる受信対象の符号光、受信対象外の符号光及び局部発振光の光スペクトルをそ れぞれ示す。具体的には、図 6a,図 7a及び図 8aは、受信対象の符号光の光スぺク トルを示し、図 6b,図 7b及び図 8bは、受信対象外の符号光の光スペクトルを示し、 図 6c,図 7c及び図 8cは、局部発振光の光スペクトルを示している。
[0096] 差動検波器 64a, 64bの出力は、中間周波数増幅器で増幅した後、 1. 25GHzか ら 3. 75GHzを透過する濾波器 44により濾波し、ダイオードと低域濾波器力もなる包 絡線検波器 45で復調される。光周波数チップの強度の不均一性を考慮した符号間 干渉抑圧比(CMR) αは、 30. 7dBである。
[0097] 図 9に受信対象外の符号光がある場合とない場合の受信対象の符号光の符号誤り 率を示す。白丸は受信対象外の符号光がない場合で、黒丸、白三角、黒ひし形はそ れぞれ受信対象外の符号光がない場合に符号誤り率が 10_9となる符号光の強度よ りも 0, 5, 10dBだけ大きな強度の受信対象外の符号光がある場合の符号誤り率で あり、符号光の数が多い場合を模擬している。実線と点線は数式(20)に基づき、実 測したパラメータを用いた受信対象外の符号光の強度が OdBと 10dBのときのそれぞ れの計算値である。
[0098] 図 2に符号多重数を横軸にした数式(20)に従う符号誤り率 10_9でのパワーペナ ルティを示す。一点鎖線、二点鎖線及び実線は、符号間干渉抑圧比 aが 25, 30. 7 , 35dBの場合である。点線に示す従来例の計算値と比べて改善効果は明らかであ る。黒丸は受信対象外の符号光強度が 0, 5, 10dBの場合の実測値であり、計算値 と略一致している。なお、数式(20)に基づいた計算値を示したが、数式(21)に基づ いた計算値でも略一致する。
[0099] 本実施形態について一般的な式を用いて示せば、以下となる。簡単化のため、送 信データの値はマークとスペースの 2値伝送で且つ受信対象外の符号光のない状 況にて示すが、多値であっても受信対象外の符号光があっても同様である。検波器 61aに到達する局部発振光を構成する i番目の光を eA とし、送信データの値がマ
LI— i
ークのときの符号光を構成する j番目の光を eA とし、送信データの値がスペース
ml _ ]
のときの符号光を構成する j番目の光を eA とし、検波器 61bに到達する局部発振
si_i
光を構成する i番目の光を eB とし、送信データの値がマークのときの
LI— i 符号光を構 成する j番目の光を eB とし、送信データの値がスペースのときの符号光を構成す
ml _ ]
る j番目の光を eB とし、濾波器 44の導通帯域を Be、 iと jに関する総和を∑∑と表
sl」
すと、送信データの値がマークのときの符号光と局部発振光とのビート電流のうち濾 波器 44の導通帯域 Be内にあるビート電流の iと jに関する総和であるマークのときの ビート電流総和の二乗は、局部発振光と送信データの値がスペースのときの符号光 とのビート電流のうち濾波器 44の導通帯域 Be内にあるビート電流の iと jに関する総 和であるスペースのときのビート電流総和の二乗よりも大きく数式(24)で表せる。ここ で、マークのときの符号光と局部発振光とのビート電流の iと jに関する総和は、数式( 22)と表せ、スペースのときの符号光と局部発振光とのビート電流の iと jに関する総和 は、数式(23)と表せる。
[0100] [数 22]
∑∑t e Α τ , i · e Am l j B e - e iS j^ ; · e B m l j β e }
[0101] [数 23] ∑∑{e AL1一 e As B e_e BL1j . e B s B e} [0102] [数 24]
(∑∑{eAL1_; - eAml Be- eBL1— i · e Bml B e}) 2>
(∑∑{eAL1_; · eAs l B e- eBL1— i · eBsl B e}) 2
[0103] 数式(24)に示す関係式により、本実施形態では、異なる光周波数の複数の光によ るデータ伝送をコヒーレント検波で検波することが可能となる。以下、変調方式に即し て説明する。
[0104] a) ASKの場合
検波器 61aに到達する局部発振光を構成する i番目の光 eA の電界強度を EA
1— i 1— とし、周波数を f とし、初期位相を ΦΑ とし、送信データの値がマークのときの i l_i l_i
符号光を構成する j番目の光 eA の電界強度を DAm EA とし、周波数を f ml _ ] si _ ] si _ ] si とし、位相を ΦΑ とし、対応する局部発振光を構成する光に対する偏波面の角
sl
度差の余弦を PA とし、送信データの値がスペースのときの符号光を構成する j番
si_i
目の光 eA の電界強度を DAs EA とし、周波数を f とし、位相を Φ A と
sl _ ] si _ ] si _ ] si _ ] si _ ] し、対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PA とし
si_i
、検波器 61bに到達する局部発振光を構成する i番目の光 eB の電界強度を EB l_i 1 とし、周波数を f とし、初期位相を ΦΒ とし、送信データの値がマークのときの
_i l_i l_i
符号光を構成する j番目の光 eB の電界強度を DBm EB とし、周波数を f ml _ ] sl _ ] sl _ ] sl _ ] とし、位相を ΦΒ とし、対応する局部発振光を構成する光に対する偏波面の角度
si_i
差の余弦を PB とし、送信データの値がスペースのときの符号光を構成する j番目
si_i
の光 eB の電界強度を DBs EB とし、周波数を f とし、位相を ΦΒ とし、 sl _ ] sl _ ] sl _ ] sl _ ] sl _ ] 対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PB とすると
si_i
、局部発振光と送信データの値がマークのときの符号光とのビート電流の iと jに関す る総和で濾波器 44の導通帯域 Be内にあるマークのときのビート総和の二乗は、局部 発振光と送信データの値がスペースのときの符号光とのビート電流の iと jに関する総 和で濾波器 44の導通帯域 Be内にあるスペースのときのビート総和の二乗よりも大き く数式(27)が成り立てばよい。ここで、マークのときの符号光と局部発振光とのビート 電流の iと jに関する総和は、数式(25)と表せ、スペースのときの符号光と局部発振光 とのビート電流の iと jに関する総和は、数式(26)と表せる。
[0105] [数 25]
∑∑{PAs l— j EAL1—【DAms l i E As x c o s [2 π 〔 f s
「 f L1_J t +ΦΑ5 1— AL 1— e-PB s l_J EBL 1_i
DBms E B s c o s [2 π f s f L1; t +Φ B s l
^ -ΦΒ^_;]Β β}
[0106] [数 26]
∑∑(PAs l」 EAL 1_;DA s s l— j EAs l—』 c o s [2 π 〔 f s
f L 1_〖〕 t + As l_ AL1— B e- P B S 1 EBL 1
DB s s l_J EB s l_J c o 8 [2 π 〔f s l—「 f L 1_J t +ΦΒ
i - L·1 【]B e}
[0107] [数 27]
(∑∑{PAs l— E AL 1— iDAms EAs l c o s [2 π [ f s
i— f L1j t + As l_j - AL 1_i]B e-PB s l_j EBL1_
iDBms l_j EB s l_j c o s [2 π 〔 f s f Li i t +Φ B s
BL 1— JB e}) 2> (∑∑{PAS 1— j EAL1— ;DA s s l
EAS 1_J c o 8 [2 π [ f s l f L 1_J +ΦΑ6 ΐ ΦΑ
— ]B e_PB s l— j EBL1— ;DB s s l— j EB s l— j c o s [2 π 〔f
s l — f L1_J t + B s l BL1 B e}) 2
B)FSK (その 1)の場合
マークの場合と、スペースの場合で同一の局部発振光を用いる場合の例を初めに示 す。検波器 61aに到達する局部発振光を構成する i番目の光 eA の電界強度を E
LI— i
A とし、周波数を f とし、位相を ΦΑ とし、送信データの値がマークのときの し 1 し 1 し 1
符号光を構成する j番目の光 eA の電界強度を EA とし、周波数を fm とし、
ml _ ] si _ ] sl _ ] 位相を ΦΑ とし、対応する局部発振光を構成する光に対する偏波面の角度差の
sl_) 余弦を PA とし、送信データの値がスペースのときの符号光を構成する j番目の光 eA の電界強度を EA とし、周波数を fs とし、位相を ΦΑ とし、対応する局 sl _ ] si _ ] si _ ] si _ ]
部発振光を構成する光に対する偏波面の角度差の余弦を PA とし、検波器 61bに
到達する局部発振光を構成する i番目の光 eB の電界強度を EB とし、周波数
し し
を f とし、位相を ΦΒ とし、送信データの値がマークのときの符号光を構成する j し し
番目の光 eB の電界強度を EB とし、周波数を fm とし、位相を ΦΒ とし、 対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PB とし、送 信データの値がスペースのときの符号光を構成する j番目の光 eB の電界強度を E
B とし、周波数を fs とし、位相を ΦΒ とし、対応する局部発振光を構成する 光に対する偏波面の角度差の余弦を PB とすると、局部発振光と送信データの値 がマークのときの符号光とのビート電流の iと jに関する総和で濾波器 44の導通帯域 B e内にあるマークのときのビート総和の二乗は、局部発振光と送信データの値がスぺ ースのときの符号光とのビート電流の iと jに関する総和で濾波器 44の導通帯域 Be内 にあるスペースのときのビート総和の二乗よりも大きく数式(30)が成り立てばよい。こ こで、マークのときの符号光と局部発振光とのビート電流の iと jに関する総和は、数式 (28)と表せ、スペースのときの符号光と局部発振光とのビート電流の iと jに関する総 和は、数式(29)と表せる。
[0109] [数 28]
∑∑{PAs l_J EAL1_1EAs l_J c o s [2 π ms l—「 ί L1_J
t +ΦΑ5 ΐ_]-ΦΑί1_ί]Β θ-ΡΒ 5 ΐ_] E B L^. E B , ^, C O S [
2 π [: ί ms l―, _ ί L1―,〕 t +ΦΒ5 ΐ_ί-ΦΒ1,1_1]Β e}
[0110] [数 29]
∑∑{PAs l_] EAL1_1EAs l_] c o s[2 π [f s s l iL1 J
1 +ΦΑ5 ΐ_ί-ΦΑ^_ί]Β θ-ΡΒ5 ΐ_ί ΕΒ^_ίΕΒ 5 ΐ_ί c o s [
2 Cf s L1_ t + Bs l BL1 ] B e}
[0111] [数 30] (∑∑{P As E AL1— ; E As j c o s [2 π [ f msl_j - f L
t+ Asl_J- AL1_i]B e- PBS1 EBL1— EBS 1_
j c o s [2 π f msl f L1 J t + Bs l j- BLl i]B
e}) 2> (∑∑{P Asl EAL1; EAsl c o s [2 π [f s s l
— f L1— t + As l_J- AL1_i]B e-PBs l_JEBL1_i
EB S 1 C 0 S[2TI f s s l f L1; t+ B S L j — ΦΒ
L1_;]B e}) 2 C)FSK (その 2)の場合
周波数の偏移が大きぐマークの場合とスペースの場合で異なる局部発振光を用 いる場合の例を次に示す。検波器 61aに到達する局部発振光を構成する i番目の光 eA の内で送信データの値がマークのときの符号光に対応する場合の電界強度
LI— i
を EAm とし、周波数を fm とし、位相を ΦΑπι と表し、送信データの値がス し l_i し l_i し l_i
ペースのときの符号光に対応する場合の電界強度を EAs とし、周波数を fs と
LI— i Ll_i し、位相を Φ As と表し、送信データの値がマークのときの符号光を構成する j番目
LI— i
の光 eA の電界強度を EAm とし、周波数を fm とし、位相を ΦΑπι とし、 ml _ ] si _ ] si _ ] si _ ] 対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PAm とし、
si_i 送信データの値がスペースのときの符号光を構成する j番目の光 eA の電界強度
si_i
を EAs とし、周波数を fs とし、位相を ΦΑ3 とし、対応する局部発振光を構成 sl _ ] si _ ] si _ ]
する光に対する偏波面の角度差の余弦を PAs とし、検波器 61bに到達する局部
si_i
発振光を構成する i番目の光 eB の内で送信データの値がマークのときの符号光
LI— i
に対応する場合の電界強度を EBm とし、周波数を fm とし、位相を ΦΒπι と
し l_i し l_i し l_i 表し、送信データの値がスペースのときの符号光に対応する場合の電界強度を EBs とし、周波数を fs とし、位相を ΦΒ3 と表し、送信データの値がマークのとき し l_i し l_i し l_i
の符号光を構成する j番目の光 eB の電界強度を EBm とし、周波数を fm と
ml _ ] sl _ ] sl _ ] し、位相を ΦΒπι とし、対応する局部発振光を構成する光に対する偏波面の角度
sl」
差の余弦を PBm とし、送信データの値がスペースのときの符号光を構成する j番
si_i
目の光 eB の電界強度を EBs とし、周波数を fs とし、位相を ΦΒ3 とし、対
sl _ ] sl _ ] sl _ ] sl _ ] 応する局部発振光を構成する光に対する偏波面の角度差の余弦を PBs とすると
sl_) 、局部発振光と送信データの値がマークのときの符号光とのビート電流の iと jに関す る総和で濾波器 44の導通帯域 Be内にあるマークのときのビート総和の二乗は、局部 発振光と送信データの値がスペースのときの符号光とのビート電流の iと jに関する総 和で濾波器 44の導通帯域 Be内にあるスペースのときのビート総和の二乗よりも大き く数式(33)が成り立てばよい。ここで、マークのときの符号光と局部発振光とのビート 電流の iと jに関する総和は、数式(31)と表せ、スペースのときの符号光と局部発振光 とのビート電流の iと jに関する総和は、数式(32)と表せる。
[0113] [数 31]
∑∑{PAms l j E AmL1_; E Ams c o s [ 2 π 〔f ms l j―
f m t +Φ Ams j -Φ Am, 【]B e-PBms l j EBm
L1 _i EBms c o s [2 π C f ms f mL1 t +Φ Bm
s l ί- BmL·1 【]B e}
[0114] [数 32]
∑∑{P A s sし j EA s iE A s s l c o s [ 2 π [ f s , Ί j―
f s L1_J t +ΦΑ s ΦΑ 3 ;]B e— PB s s l」 EB
s L ± ; E B s s x j c o s [ 2 π [ f s ; , - f s L1 J t +Φ B
s s l 「ΦΒ s L1 ;]B e}
[0115] [数 33]
(∑∑{P Ams 1_j E
Figure imgf000036_0001
EAms 1_j c o s [2 π [ f ms 1_j - f
t + Φ AmE Φ AmL1 '] B e -P BmE 1_J E BmL1_i E Bms c o s [2 π 〔 f ms 」 一 ί mLし J t+$Bms l—「 Φ
BmL1;コ Be}) 2> (∑∑{P A s s E A s L1―】 E A s s c o s
[2 π [f s 5 ΐ_3- f s L1_J t + ΦΑ s s —,一 ΦΑ s L1_;]B e— P
B s s ij EB s L1; EB s s ij c o s [2 π [ f s s l_j - f s L1_;
〕 t + ΦΒ s s l ΦΒ s L1 e}) 2
[0116] (第 2実施形態)
図 10及び図 11に、本実施形態に係る光受信機の概略構成図を示す。第 1実施形 態で説明した図 3と図 4の光受信機 22に対応する。図 10及び図 11の光受信機 22は 、局部発振光と符号光をそれぞれ復号器 54a, 54bで受信対象の符号に応じて分岐 した後にそれぞれ光合分波器 53a, 53bで混合する点力 図 3及び図 4の光受信機 2 2と異なる。図 11では、復号器 54a, 54bからの出力は、光周波数チップ毎に分割し て出力され、光合分波器 53a— 1, 53a— 2, 53b— 1, 53b— 2は、各周波数チップ 毎に光を混合して出力する。図 10及び図 11では、図 3及び図 4と符号が同一の構成 要素は相互に同一の構成要素を示すため説明は省略する。
[0117] 図 3及び図 4の光受信機 22では、各光周波数チップに対応する透過帯域として符 号光の変調拡がりに加えて中間周波数だけ離れた局部発振光までの透過帯域が必 要であるが、図 10及び図 11の光受信機 22では、局部発振光と符号光とをそれぞれ 個別に復号器 54a, 54bを通すので、符号光に用いる復号器 54aは、透過帯域が符 号光の線幅に加えて変調拡がり程度でよぐ局部発振光に用いる復号器 54bは、透 過帯域が局部発振光の線幅程度でよい効果がある。但し、図 10及び図 11の光受信 機 22では、局部発振光と符号光とを復号器 54a, 54bそれぞれ分岐した後に光合分 波器 53a, 53b混合するので、分岐点から混合点までの経路長により局部発振光と 符号光の位相差が異なる。そのため、光の波長オーダで位相差が同程度になるよう に調整する必要がある。この調整のために局部発振光側の復号器と光合分波器の 間に調整器 57, 58を有する。局部発振光側ではなく符号光側であっても両側であつ てもよ 、。図 10にしか記載して ヽな 、が図 11及び以降の形態で用いる図 12から図 1 5、図 19から図 24でも同様である。
[0118] (第 3実施形態)
図 12及び図 13に、本実施形態に係る光受信機の概略構成図を示す。第 1実施形 態で説明した図 3と図 4の光受信機 22に対応する。図 12及び図 13の光受信機は、 図 10及び図 11の光受信機 22における符号光側の復号器 54aを復号器 54に置き換 え、光受信機 22における局部発振光側の復号器 54bを光分波器 55に置き換えた構 成である。図 12及び図 13では、図 10及び図 11と符号が同一の構成要素は相互に 同一の構成要素を示すため説明は省略する。
[0119] 図 12及び図 13の光受信機 22は、局部発振光を分割する光分波器 55の光損失に 対して、図 10及び図 11の光受信機 22における局部発振光側の復号器 54bの光損 失が大きいときは、図 10及び図 11の光受信機 22と比較して光損失を小さくすること ができる。その他の効果は、図 10及び図 11の光受信機 22で得られる効果と同様で 図 3及び図 4の光受信機 22と比較して復号器 54の透過帯域の要求を軽減できる。
[0120] (第 4実施形態)
図 14及び図 15に、本実施形態に係る光受信機の概略構成図を示す。第 1実施形 態で説明した図 3と図 4の光受信機に対応する。図 14及び図 15の光受信機 22は、 図 10及び図 11の光受信機 22における符号光側の復号器 54aを光分波器 55に置き 換え、光受信機 22における符号光側の復号器 54bを復号器 54に置き換えた構成で ある。図 14及び図 15では、図 10及び図 11と符号が同一の構成要素は相互に同一 の構成要素を示すため説明は省略する。
[0121] 図 14及び図 15の光受信機 22は、符号光を分割する光分波器 55の光損失に対し て、図 10及び図 11の光受信機 22における局部発振光側の復号器 54bの光損失が 大きいときは、図 10及び図 11の光受信機 22と比較して光損失を小さくすることがで きる。また、図 12及び図 13の光受信機 22と比較して復号器 54の透過帯域の要求を より軽減できる。その他の効果は、図 10及び図 11の光受信機 22で得られる効果と同 様で図 3及び図 4の光受信機 22と比較して復号器 54の透過帯域の要求を軽減でき る。
[0122] (第 5実施形態)
図 16に、本実施形態に係る光受信機の概略構成図を示す。図 16の光受信機 22 は、局部発振光と符号光とを混合する光合分波器及び検波器の構成が図 10と異な る。つまり、図 16の光合分波器は、それぞれ 2出力を出力する光合分波器 53a, 53b であり、検波器は光合分波器 53a, 53bの 2出力を受ける差動検波器 64a— 1, 64a - 2, 64b - 1, 64b— 2である。また、図 16の光受信機 22は、図 10の調整器 62a, 6 2bに相当する調整器 57, 58を備える。図 16では、図 10及び図 11と符号が同一の 構成要素は相互に同一の構成要素を示すため説明は省略する。
[0123] 例えば、 2つの入力である符号光と局部発振光とを π位相差が異なる 2出力として 出力する理想的な 2 X 2光合分波器とした場合、光合分波器 53a, 53bが略等しい光 路長で混合光を差動検波器 64a— 1, 64a - 2, 64b - 1, 64b— 2に入力し差動検 波することで、これにより、信号成分に対して雑音となる符号光及び局部発振光の直 接検出成分と符号光間のビート成分等のコモンモード雑音の軽減が可能となる。
[0124] 同様の構成は、図 11、図 12、図 13、図 14及び図 15の復号器 54, 54a, 54bより 後段で光合分波器 53a, 53b, 53a— 1, 53a— 2, 53b— 1, 53b— 2により符号光と 局部発振光を混合する各光受信機 22の構成でも適用可能である。つまり、光合分波 器 53a, 53b, 53a— 1, 53a— 2, 53b— 1, 53b— 2力それぞれ 2出力し、各光合分 波器の当該 2出力をそれぞれ図 16の差動検波器 64a— 1, 64a— 2, 64b— 1, 64b 2により検波する構成とする。
[0125] (第 6実施形態)
本実施形態では、光受信機の検波方法が図 3から図 5及び図 10から図 15で説明 した光受信機 22における検波方法と異なる。図 3から図 5及び図 10から図 15の光受 信機 22では包絡線検波器 45による二乗検波を適用しているが、本実施形態では、 包絡線検波に代えて同期検波を行う。まず、符号光を構成する各光周波数チップと 局部発振光を構成する各光周波数チップの光周波数と位相を同期する光段でのホ モダインの場合について説明する。この場合、図 3から図 5及び図 10から図 15の光 受信機 22の包絡線検波器 45に代えて光位相同期のための局部発振光源 41の位 相を調整する位相調整回路 (不図示)を具備する。位相調整回路は、加減算器 63の 出力信号について位相同期を行うことが望ましいが、図 4、図 11、図 13及び図 15の ように光周波数チップ毎に光検波する構成の場合は、検波器 61a— 1, 61a— 2, 61 b - 1, 61b— 2から加減算器 63までの位相をそれぞれ出力信号にカ卩味して位相を 調整してちょい。
[0126] また、図 3から図 5及び図 10から図 15の光受信機 22では送信データの値に対して 加減算器 63の出力の絶対値の差が異なることが必要であつたが、本実施形態では、 包絡線検波を行わないので負の値もとりうるため出力の値が異なればよい。そのため 、図 3力ら図 5及び図 10力ら図 15の調整器 62a, 62b, 62a— 1, 62a— 2, 62b— 1, 62b— 2は、送信データの値に応じて出力の絶対値ではなく出力の値が異なるように 調整する。マークの場合とスペースの場合で送信する光周波数チップを入れ替える ような送信データを伝送する場合は、一方の値の場合のみ送信するのに比べて信号 強度が差し引きで 2倍になる効果がある。
[0127] 本実施形態について第 1実施形態と同様に一般的な式を用いて示せば、以下とな る。簡単化のため、送信データの値はマークとスペースの 2値伝送で且つ受信対象 外の符号光のな 、状況にて示すが、多値であっても受信対象外の符号光があっても 同様である。検波器 61a, 61a— 1, 6 la— 2に到達する局部発振光を構成する i番目 の光を eA とし、送信データの値がマークのときの符号光を構成する j番目の光を e
Ll_i
A とし、送信データの値がスペースのときの符号光を構成する j番目の光を eA ml _ ] si _ ] とし、検波器 61b, 61b— 1, 61b— 2に到達する局部発振光を構成する i番目の光を eB とし、送信データの値がマークのときの符号光を構成する j番目の光を eB
L1― i ml _ ] とし、送信データの値がスペースのときの符号光を構成する j番目の光を eB とし、
si_i 濾波器 44の導通帯域を Be、 iと jに関する総和を∑∑と表すと、送信データの値がマ ークのときの符号光と局部発振光とのビート電流のうち濾波器 44の導通帯域 Be内に あるビート電流の iと jに関する総和であるマークのときのビート電流総和は、局部発振 光と送信データの値がスペースのときの符号光とのビート電流のうち濾波器 44の導 通帯域 Be内にあるビート電流の iと jに関する総和であるスペースのときのビート電流 総和よりも大きく数式 (36)で表せる。ここで、マークのときの符号光と局部発振光との ビート電流の iと jに関する総和は、数式(34)と表せ、スペースのときの符号光と局部 発振光とのビート電流の iと jに関する総和は、数式(35)と表せる。
[0128] [数 34]
∑∑t e AT, ; · e AM L j B e-e Bu ; · e B ml j B e | [0129] [数 35]
∑∑{e AL1_; · eAs l」 B e- e BL 1_ e B s l」 B e}
[0130] [数 36] ∑∑{ e AL 1_; · e Am l」 B e - e B L 1j · e B m l_J B e }>∑∑{
e AL 1_; - e A s l— j B e - e B L 1; · e B s j B d
[0131] 数式(36)に示す関係式により、本実施形態では、異なる光周波数の複数の光によ るデータ伝送をコヒーレント検波で検波することが可能となる。以下、変調方式に即し て説明する。
[0132] a) ASKの場合
検波器 61a, 61a— 1, 61a— 2に到達する局部発振光を構成する i番目の光 eA
Ll_i の電界強度を EA とし、周波数を f とし、初期位相を ΦΑ とし、送信データの
LI— i Ll_i LI— i
値がマークのときの符号光を構成する j番目の光 eA の電界強度を DAm EA ml _ ] si _ ] si とし、周波数を f とし、位相を ΦΑ とし、対応する局部発振光を構成する光に
」 sl」 sl」
対する偏波面の角度差の余弦を PA とし、送信データの値がスペースのときの符 si_i
号光を構成する j番目の光 eA の電界強度を DAs EA とし、周波数を f と sl _ ] si _ ] si _ ] si _ ] し、位相を ΦΑ とし、対応する局部発振光を構成する光に対する偏波面の角度差 si_i
の余弦を PA とし、検波器 61b, 61b— 1, 61b— 2に到達する局部発振光を構成 si_i
する i番目の光 eB の電界強度を EB とし、周波数を f とし、初期位相を ΦΒ
し l_i し l_i し l_i し 1 とし、送信データの値がマークのときの符号光を構成する j番目の光 eB の
ml」 電界 強度を DBm EB とし、周波数を f とし、位相を ΦΒ とし、対応する局部発 sl _ ] sl _ ] sl _ ] sl _ ] 振光を構成する光に対する偏波面の角度差の余弦を PB とし、送信データの値が si_i
スペースのときの符号光を構成する j番目の光 eB の電界強度を DBs EB と sl _ ] sl _ ] sl _ ] し、周波数を f とし、位相を ΦΒ とし、対応する局部発振光を構成する光に対す sl _ ] sl _ ]
る偏波面の角度差の余弦を PB とすると、局部発振光と送信データの値がマーク si_i
のときの符号光とのビート電流の iと jに関する総和で濾波器 44の導通帯域 Be内にあ るマークのときのビート総和は、局部発振光と送信データの値がスペースのときの符 号光とのビート電流の iと jに関する総和で濾波器 44の導通帯域 Be内にあるスペース のときのビート総和よりも大きく数式(39)が成り立てばよい。ここで、マークのときの符 号光と局部発振光とのビート電流の iと jに関する総和は、数式(37)と表せ、スペース のときの符号光と局部発振光とのビート電流の iと jに関する総和は、数式(38)と表せ る。
[0133] [数 37]
Figure imgf000042_0001
EAL1_iDAms l_j EAs l」 c o s [2 π [f s
「 f L 1 〕 t + As l_J - AL1_i]B e- PB S 1」E BL 1
DBms l」 E B s l」 c o s [2 π [ f s x_j - f L1_J t +Φ B
-*BL 1_;]B e}
[0134] [数 38]
∑∑{PAs l— j EAL1—【DA s s l」 EAs l— j c o s [2 π 〔f s
j _ f L1 〕 t + Φ As - AL1_;]B e-PB s l_j E BL 1
DB s s l_J EB s l_J c o 8 [2 π [ f sェ—」 f Lェ— J t +ΦΒ
, - BL1 ;]B e}
[0135] [数 39]
∑∑{P As l_j EAL 1_iDAms l_j EAs l—」 c o s [2 π (ί s l_
j _ f L i— i〕 t + ΦΑ51— j Φ AL1—【]B e_PB s l j EBL 1— ;
DBms l_J EB s l_J c o 8 [2 π [ f s l—「f L1— J ΐ +ΦΒ 5 ΐ
ΦΒ ]B e}>∑∑{PAS 1 j E AL 1 ;DA E A(
』 c o s [2 π 〔 f s l j f L1—【〕 t +Φ As l J -Φ A
PB ^^ EBL 1_;DB s ΕΒ 51^ c o s [2 π
【〕 t + B s l , -ΦΒ^ B e}
[0136] B)PSKの場合
検波器 61a, 61a— 1, 61a— 2に到達する局部発振光を構成する i番目の光 eA
Ll_i の電界強度を EA とし、周波数を f とし、位相を ΦΑ とし、送信データの値が
LI— i Ll_i LI— i
マークのときの符号光を構成する j番目の光 eA の電界強度を EA とし、周波数
ml _ ] si _ ]
を f とし、位相を ΦΑηι とし、対応する局部発振光を構成する光に対する偏波 sl _ ] si _ ]
面の角度差の余弦を PA とし、送信データの値がスペースのときの符号光を構成
si_i
する j番目の光 eA の電界強度を EA とし、周波数を f とし、位相を Φ As と
si _ ] sl _ ] sl _ ] sl _ ] し、対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PA とし
sl_) 、検波器 61b, 61b— 1, 61b— 2に到達する局部発振光を構成する i番目の光 eB
し 1 の電界強度を EB とし、周波数を f とし、位相を ΦΒ とし、送信データの値が
し 1 し 1 し 1
マークのときの符号光を構成する j番目の光 eB の電界強度を EB とし、周波数
mi _ ] si _ ]
を f とし、位相を ΦΒπι とし、対応する局部発振光を構成する光に対する偏波面 sl _ ] si _ ]
の角度差の余弦を PB とし、送信データの値がスペースのときの符号光を構成す si_i
る j番目の光 eB の電界強度を EB とし、周波数を f とし、位相を ΦΒ3 とし、
si _ ] sl _ ] sl _ ] sl _ ] 対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PB とすると si_i
、局部発振光と送信データの値がマークのときの符号光とのビート電流の iと jに関す る総和で濾波器 44の導通帯域 Be内にあるマークのときのビート総和は、局部発振光 と送信データの値がスペースのときの符号光とのビート電流の iと jに関する総和で濾 波器 44の導通帯域 Be内にあるスペースのときのビート総和よりも大きく数式 (42)が 成り立てばよい。ここで、マークのときの符号光と局部発振光とのビート電流の iと jに 関する総和は、数式 (40)と表せ、スペースのときの符号光と局部発振光とのビート電 流の iと jに関する総和は、数式 (41)と表せる。
[0137] [数 40]
∑∑{PAs l_i EAL1_iEAs l_i c o 3 [2 π ί ί ε ί t
+ Φ Am ] — AL1―'] B e PBs l―] EBL11EBs l―] c o s [
2 π 〔 —〕 ί L1 ュ〕 t +i>Bms l <iBL1 ] B e}
[0138] [数 41]
∑∑{PAs l_J EAL1_1EAs l_i c o s[2 π [ί ε 1_,~ ί
+ ΦΑ s s 」 一 Φ AL 1―'] B e-PBE l_J EBL1_iEB s l
2 π [f ε 1 L1 Λ t +ΦΒ s ε 1 ,-ΦΒ^ B e}
[0139] [数 42] ∑∑{PAs l_i EAL1_iEAs l_i c o s[2 π s l—, 一 i L1―,〕 t
+ Ams l— ]— AL1— ^B e— PBs l―] EBL11EB s l―」 c o s [
2 π〔f s —コ— f L1—ュ〕 +ΦΒηιε - ΦΒ]^1_1]Β e}>∑∑{PA
s l_JEAL1_1EAs l_J c o s [2 π ί ί s ί l_; j ί +ΦΑ5 ε
1_]-$AL1_1]B e-PBE l_JEBL1_1EBE l_] c o s[2 π [f s l
—「 i L1―'〕 t +ΦΒ s 5 ΐ_ί-ΦΒ^_ί]Β β} C)FSK (その 1)の場合
マークの場合と、スペースの場合で同一の局部発振光を用いる場合の例を初めに示 す。検波器 61a, 61a-l, 6 la— 2に到達する局部発振光を構成する i番目の光 eA し の電界強度を EA とし、周波数を f とし、位相を ΦΑ とし、送信データの l_i し l_i し l_i し l_i
値がマークのときの符号光を構成する j番目の光 eA の電界強度を EA とし、周 ml _ ] si _ ] 波数を fm とし、位相を ΦΑ とし、対応する局部発振光を構成する光に対する sl _ ] sl _ ]
偏波面の角度差の余弦を PA とし、送信データの値がスペースのときの符号光を si_i
構成する j番目の光 eA の電界強度を EA とし、周波数を fs とし、位相を Φ A si _ ] sl _ ] sl _ ] s とし、対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PA
1」 sl— とし、検波器 61b, 61b— 1, 61b— 2に到達する局部発振光を構成する i番目の光 e B の電界強度を EB とし、周波数を f とし、位相を ΦΒ とし、送信データ
LI— i Ll_i LI— i LI— i
の値がマークのときの符号光を構成する j番目の光 eB の電界強度を EB とし、 ml _ ] sl _ ] 周波数を fm とし、位相を ΦΒ とし、対応する局部発振光を構成する光に対する sl _ ] sl _ ]
偏波面の角度差の余弦を PB とし、送信データの値がスペースのときの符号光を si_i
構成する j番目の光 eB の電界強度を EB とし、周波数を fs とし、位相を ΦΒ sl _ ] sl _ ] sl _ ] sl とし、対応する局部発振光を構成する光に対する偏波面の角度差の余弦を PB
」 sl」 とすると、局部発振光と送信データの値がマークのときの符号光とのビート電流の に関する総和で濾波器 44の導通帯域 Be内にあるマークのときのビート総和は、局部 発振光と送信データの値がスペースのときの符号光とのビート電流の iと jに関する総 和で濾波器 44の導通帯域 Be内にあるスペースのときのビート総和よりも大きく数式( 45)が成り立てばよい。ここで、マークのときの符号光と局部発振光とのビート電流の i と jに関する総和は、数式 (42)と表せ、スペースのときの符号光と局部発振光とのビ ート電流の iと jに関する総和は、数式 (43)と表せる。
[0141] [数 43]
∑∑{PA5 l J EAL1 ,EA5 l 3 c o s[2 π [ f ms l 3~ f L1 J
ί + ΦΑ5 ΐ_]-ΦΑ1_1_ί]Β e- PBs l―〕 EBL1―】 EB s l— ^ c o s [
2 π 〔f ms l ί L1―,〕 t + <I Bsし】— <! BL1— jB e}
[0142] [数 44]
∑∑{PAs l_jEAL1_iEAs l_i c o s [2 π [f s s l_3 - t +ΦΑ5し ΦΑυ―,] B e- PB s l3 EBL1— iEBs l
π [f s s l L1 J 1 +ΦΒ51 ,-ΦΒ^ ;]Β β}
[0143] [数 45]
∑∑{PAs l EAL1— iEAs l5 c o 8 [2 π 〔i ms l—「 i L1―,〕
t +*As l -ΦΑ^_1]Β e-PB s l_j EBL1_1EBs l_i c o s[
2 π [ f ms f L1_ t + ΦΒ 5 ΐ_]-ΦΒ^_1]Β e}>∑∑{PA
s l_,EAL: EAs l― C O S[2 TC 〔f s s l f L1―】〕 ΐ. + ΦΑ,
ΦΑΤ ] B e-PBc l EBT 1 ,EB , c o s [2 π [ f s r f Lし J t十 ΦΒ51—「 BLし,] B e]
[0144] D)FSK (その 2)の場合
周波数の偏移が大きぐマークの場合とスペースの場合で異なる局部発振光を用 いる場合の例を次に示す。検波器 61a, 61a— 1, 61a— 2に到達する局部発振光を 構成する i番目の光 eA の内で送信データの値がマークのときの符号光に対応す
LI— i
る場合の電界強度を EAm ,周波数を fm とし、位相を ΦΑηι と表し、送信
し l_i し l_i し l_i
データの値がスペースのときの符号光に対応する場合の電界強度を EAs とし、周
LI— i 波数を fs とし、位相を ΦΑ3 と表し、送信データの値がマークのときの符号光を
し 1 し 1
構成する j番目の光 eA の電界強度を EAm とし、周波数を fm とし、位相を ml _ ] sl _ ] sl _ ]
ΦΑπι とし、対応する局部発振光を構成する光に対する偏波面の角度差の余弦 si_i
を PAm とし、送信データの値がスペースのときの符号光を構成する j番目の光 eA si_i
の電界強度を EAs とし、周波数を fs とし、位相を ΦΑ3 とし、対応する局 sl _ j sl _ ] sl _ ] sl _ ] 部発振光を構成する光に対する偏波面の角度差の余弦を PAs とし、検波器 61b
si_i
, 61b— 1, 61b— 2に到達する局部発振光を構成する i番目の光 eB の内で送信
LI— i
データの値がマークのときの符号光に対応する場合の電界強度を EBm とし、周
LI— i 波数を fm とし、位相を ΦΒπι と表し、送信データの値がスペースのときの符号
LI— i Ll_i
光に対応する場合の電界強度を EBs とし、周波数を fs とし、位相を ΦΒ3 と
LI— i Ll_i LI— i 表し、送信データの値がマークのときの符号光を構成する j番目の光 eB の電界強
ml _ ] 度を EBm とし、周波数を fm とし、位相を ΦΒπι とし、対応する局部発振光
sl _ ] si _ ] si _ ]
を構成する光に対する偏波面の角度差の余弦を PBm とし、送信データの値がス
si_i
ペースのときの符号光を構成する j番目の光 eB の電界強度を EBs とし、周波
sl _ ] sl _ ]
数を fs とし、位相を ΦΒ3 とし、対応する局部発振光を構成する光に対する偏 sl _ ] sl _ ]
波面の角度差の余弦を PBs とすると、局部発振光と送信データの値がマークのと
si_i
きの符号光とのビート電流の iと jに関する総和で濾波器 44の導通帯域 Be内にあるマ ークのときのビート総和は、局部発振光と送信データの値がスペースのときの符号光 とのビート電流の iと jに関する総和で濾波器 44の導通帯域 Be内にあるスペースのと きのビート総和よりも大きく数式 (48)が成り立てばよい。ここで、マークのときの符号 光と局部発振光とのビート電流の iと jに関する総和は、数式 (46)と表せ、スペースの ときの符号光と局部発振光とのビート電流の iと jに関する総和は、数式 (47)と表せる
[0145] [数 46]
∑∑{PAms l_j EAmL1 _; E Ams x c o s[27i [f m j―
f mL1_J t +Φ Ams -Φ AmT - 【]B e_PBms l」 EBm
L1 ; E B m s c o s [ 2 π [f ms l f mL1 J t +Φ Bm
」一 BmL1 ;]B e}
[0146] [数 47]
∑∑{PA s s EA s L1_tE A s s l_ c o s [ 2 π [ f s s x 」一
f s L1_J t +Φ A s s -Φ A s L; 【]B e P B s s E B
s L1 ; E B s s c o s [ 2 [ f s , — j f s L1_J t +ΦΒ
s s l 」一 ΦΒ s L1 ;]B e} [0147] [数 48]
∑∑{P Am s 1 j EAmL1 ; E Am s x j c o s [ 2 π 〔f ms l i
f mL1—【〕 t +Φ Ams u -Φ AmL1_;]B e-PBms l j E Bm
L1 j β m s x j c o s [ 2 π 〔f ms l j— ί mL1 J t + Φ B m
su— BmujB e}>∑∑{PA s s l」 EA sL1—〖EA s s l
_j c o s [2 π 〔f s s l」— f sL1一;〕 t +Φ A s s x_j -Φ A s L
し;コ B e PB s s丄」 E B s L1j EB s s丄」 c o s [2 π [f s s
i」 _ f s Li i〕 t +ΦΒ s s l」—ΦΒ s L1」]B e}
[0148] 更に図 10から図 15の光受信機 22では包絡線検波であつたので中間周波数がデ ータレートに比べて十分大きいヘテロダイン検波にし力適用できないが、本実施形態 では、同期検波であるのでヘテロダインとホモダインの両方に適用することができる。 これに伴い、図 10から図 15の濾波器 44は、透過帯域が略データレートの半分以上 でありかつ、直流成分を導通しない濾波器である。このような濾波器 44としては、例 えば直流成分をカットする DCブロックと低域濾波器の組合せにより構成することがで きる。また、第 2実施形態から第 4実施形態で説明した図 10から図 15の光合分波器 53a, 53b, 53a— 1, 53a— 2, 53b— 1, 53b— 2と検波器 61a, 61b, 61a— 1, 61 a-2, 61b— 1, 61b— 2についても図 16の光受信機 22と同様に差動検波器 64a, 64b, 64a- 1, 64a— 2, 64b— 1, 64b— 2に置き換える構成も可能である。
[0149] (第 7実施形態)
本実施形態では、光受信機の検波方法が第 6実施形態で説明した光受信機にお ける検波方法と異なる。第 6実施形態で説明した光受信機では局部発振光源 (図 3 力も図 5及び図 10から図 15の局部発振光源 41)の位相を同期させる光位相同期ル ープにより同期検波を行ったが、本実施形態では、第 6実施形態で説明した位相調 整回路に代えて、中間周波数信号の位相を同期させる電気の位相同期ループによ り位相同期させた中間周波数信号を発生する発生器 (不図示)と、当該発生器により 発生した中間周波数信号と符号光及び局部発振光により発生した中間周波数信号 とを混合させる混合器 (不図示)と、カゝらなる復調器を、具備する。本実施形態でも、 包絡線検波を行わないので負の値もとり得るため出力の値が異なればよい。そのた め、本実施形態の調整器(図 3から図 5及び図 10から図 15の調整器 62a, 62b, 62a -1, 62a— 2, 62b— 1, 62b— 2)は、送信データの値に応じて出力の絶対値では なく出力の値が異なるように調整する。マークの場合とスペースの場合で送信する光 周波数チップを入れ替えるような送信データを伝送する場合は、一方の値の場合の み送信するのに比べて信号強度が差し引きで 2倍になる効果がある。また、本実施 形態に係る光受信機では、光周波数における位相と同期する第 6実施形態で説明し た光受信機と比較して、中間周波数信号の位相に同期するので当該同期を容易に することができる。また、第 2実施形態から第 4実施形態で説明した図 10から図 15の 光合分波器 53a, 53b, 53a— 1, 53a— 2, 53b— 1, 53b— 2と検波器 61a, 61b, 6 la-1, 61a-2, 61b— 1, 61b— 2につ!/、ても図 16の光受信機 22と同様に差動検 波器 64a, 64b, 64a— 1, 64a— 2, 64b— 1, 64b— 2に置き換える構成も可能であ る。
[0150] ここで、自符号を(1100)の符号とし、 2チップ力もなる自符号の中間周波数信号を 数式(51)とする。また、他符号を(1010)の符号とし、 2チップからなる他符号の中間 周波数信号を数式 (52)とする。
[0151] [数 51]
Ax c o s (2 π f IF_A1 t + ΔΦΑ1)+Α2 c o s (2 π f IF_A2 t +Δ ΦΑ2) [0152] [数 52]
B J c o s (2兀 f IFB1 t + Δ ΦΒ1)— B3 c o s (2 π f tFB3 t +厶 ΦΒ3)
[0153] 上記の条件で両符号の中間周波数信号の合計は、数式(51)及び数式(52)より、 数式(53)となる。
[0154] [数 53]
Aj c o s (2 π f 1 FA1 t +厶 ΦΑ1) + Α2 c o s (2 π f IF_A2 t + Δ Φ A2) + B J c o s (2 π f IF_B1 t +Δ ΦΒ1)— B3 c o s ( 2 π f Ϊ F B3 t +厶 ΦΒ3)
[0155] ここで、各チップに対応する中間周波数信号の振幅電圧 A、 A、 B、 Bはそれぞれ 略等しぐまた中間周波数 f 、f 、f 、f はそれぞれ略等しいとする。
IF-A1 IF-A2 IF-B1 IF— B3
他符号による MAIがなくなるためには、他符号の中間周波数信号が相殺してその出 力が零となればよい。そのために、本実施形態では、他符号光と局部発振光のそれ ぞれを構成する光周波数チップの位相差、即ち中間周波数の位相項が少なくとも Δ Φ ^ Δ Φ となるように揃えている。
Bl Β3
[0156] 前述の第 6実施形態では、光 PLLにより、符号光と局部発振光とのそれぞれを構成 する光周波数チップ毎に位相同期して、理想的には位相差を Δ Φ = Δ Φ = Δ
Al Α2
Φ = Δ Φ =0となるように揃える。従って、両符号の中間周波数信号の合計は、
Bl Β3
数式(54)と表せる。
[0157] [数 54]
A1 c o s ( 2 π f I F_A 1 t )+A2 c o s ( 2 π r , F_A2 t )
+ B ! c o s ( 2 π f I F_B 1 t )— B 3 c o s ( 2 π f t F_B 2 t )
Figure imgf000049_0001
[0158] そのため、他符号による中間周波数信号成分がなくなり、自符号の中間周波数信号 成分だけとなる。
[0159] 中間周波数が略零のホモダイン検波の場合は、復調器は不要である。上数式(54) のうち「cos」の項の括弧の中が略零となり、中間周波数信号がベースバンド信号とな る力らである。一方、中間周波数が有限の値となるヘテロダイン検波の場合は、中間 周波数信号をベースバンド信号にするために、復調器が必要である。復調器は、デ ータの値に応じて絶対値の異なる出力となる設定であれば、第 1実施形態と同様に 包絡線検波器としてよい。包絡線検波器としては、例えば入力を二乗して出力するダ ィオード検波器、ダイオードブリッジ又はアンプ等のデバイスの組合せで構成される 全波整流検波器や、予め分割した入力をミキサ等の混合器の複数の入力にそれぞ れ入力する構成としたミキサ等の混合器でもよい。入力を二乗して出力する復調器の 場合、そのベースバンド信号の出力は、 2A 2となる。しかし、負の値をとることはでき ない。なお、復調器のアナログ回路としての処理について説明をしたが、光検波の後 段で、アナログ—デジタル変換し、デジタル回路として復調器を構成してもよい。 [0160] 一方、本実施形態では、符号光と局部発振光のそれぞれを構成する光周波数チッ プ毎の位相差は必ずしも零とはならない。本実施形態では、光 PLLを用いていない 力 である。しかし、他の実施形態と同様に、他符号光と局部発振光のそれぞれを構 成する光周波数チップの位相差、即ち中間周波数信号の位相が少なくとも Δ Φ ^
B1
Δ Φ となるように揃えている。従って、両符号の中間周波数信号の合計は、数式(5
B3
5)と表せる。
[0161] [数 55]
Aj c o s (2 π f IFA1 t +厶 ΦΑ1)+Α2 c o s (2 π f IF_A2 t +Δ ΦΑ2) +B1c o s (2 π f IFB1 t +厶 ΦΒ1)_Β3 c o s ( 2 π f t B2 t +厶 ΦΒ1) = 2 Ax c o s (2 π f IF_A1 t + ΔΦΑ1)
[0162] そのため、他符号による中間周波数信号成分がなくなり、自符号の中間周波数信号 成分だけとなる。本実施形態では、中間周波数信号をベースバンド信号に復調する 復調器は、前述の第 1実施形態と異なり電気の PLLを用いた同期検波器である。同 期検波器は、例えば、中間周波数信号を発振して出力する発振器と、自符号の符号 光に起因する中間周波数信号の位相に当該発振器の出力する中間周波数信号の 位相を同期させる電気の PLL中に設けられるミキサ等の混合器と、で構成される。当 該ミキサ等の混合器は、当該発振器からの中間周波数信号と符号光に起因する中 間周波数信号とを掛け合わせる。また、光検波以降でアナログ—デジタル変換して、 デジタル回路として復調器を構成してもよ ヽ。
[0163] なお、前述の第 6実施形態で用いる復調器を包絡線検波器として例示したが、当該 復調器としては、出力の値として負の値をとりうる本実施形態の同期検波器を用 、る ことが望ましい。前述の第 6実施形態では、中間周波数信号の位相項が零となって いるので、発振器力ゝらの中間周波数信号も位相項が零で混合器に到着するように設 定すればよいので本実施形態の電気の PLLよりも位相同期は容易である。
[0164] また、本実施形態の他の構成として、位相調整についても中間周波数信号の電気の PLLで行う構成がある。この構成では、各光周波数チップの中間周波数信号に発振 器力もの中間周波数信号を掛け合わせる際に位相を同期させる電気の PLLを用い た復調器により、中間周波数信号を光周波数チップ毎にそれぞれ復調する。このとき 、復調後のベースバンド信号を加減算器により加減算する。加減算後の両符号の中 間周波数信号の振幅電圧の合計は、 A +A +B -B = 2Aとなる。この構成では、
1 2 1 2 1
各光周波数チップ間の位相差を光段で調整する代わりに、光検波した後の光周波 数チップ毎の中間周波数信号をそれぞれ同期検波して復号し、その後に加減算す ることで、光段での処理を電気段での処理にできる効果がある。
[0165] (第 8実施形態)
図 17及び図 18に、本実施形態に係る光受信機の概略構成図を示す。第 1実施形 態で説明した図 3と図 4の光受信機 22に対応する。図 17及び図 18の光受信機 22で は、図 3及び図 4の光受信機 22における光合分波器 53に代えて光ハイブリット 56を 適用する。光ハイブリッド 56は、入力光を所定の複数の位相差で複数に分岐して出 力する。そして、図 17では、光ハイブリッド 56で分岐した経路ごとに復号器 54— 1, 5 4 2と検波器 61— la, 61— lb, 61— 2a, 61— 2bとカロ減算器 63— 1, 63— 2の糸且 を備え、各組の出力を加算して出力する加算器 46を備える構成が図 10及び図 11の 光受信機 22と異なっている。図 18では、復号器 54— 1, 54— 2は、混合光をそれぞ れ光周波数チップ毎に分割して出力し、検波器 61— la— 1, 61— la— 2, 61— lb - 1, 61— lb— 2, 61— 2a— 1, 61— 2a— 2, 61— 2b— 1, 61— 2b— 2は、復号器 54 - 1, 54— 2からの混合光を光周波数チップ毎に検波する。図 17及び図 18では 、図 10及び図 11と符号が同一の構成要素は相互に同一の構成要素を示すため説 明は省略する。
[0166] 本実施形態では、図 3及び図 4の光受信機 22におけるホモダイン検波として位相 ダイバシチを適用した例である。図 17及び図 18の光受信機 22では、光ハイブリッド 56として光 90° ハイブリットを想定し、復号器と検波器と加減算器の組は、(復号器 5 4—1、検波器 61— la, 61— lb、加減算器 63— la, 63— lb)及び (復号器 54— 2 ,検波器 61— 2a, 61— 2b、加減算器 63— 2a, 63— 2b)の二組である。従って、図 3及び図 4の光受信機 22における光合分波器 53、復号器 54、検波器 61a, 61b及 び加減算器 63が、光ハイブリッド 56と、二組の(復号器 54— 1、検波器 61— la, 61 — lb、加減算器 63— la, 63— lb)及び (復号器 54— 2,検波器 61— 2a, 61— 2b 、加減算器 63— 2a, 63 - 2b)に置き換わった構成である。なお、光ハイブリッド 56と して 3 X 3結合回路による 120° ハイブリットを適用する場合には、図 3及び図 4の復 号器 54、検波器 61a, 61b及び加減算器 63の組が 3組となる。なお、図 18では、光 周波数チップ毎に検波器 61— la— 1, 61— la— 2, 61— lb— 1, 61— lb— 2及び 調整器 62— la— 1, 62— la— 2, 62— lb— 1, 62— lb— 2を備えている。
[0167] 光ハイブリッド 56として適用する光 90° ハイブリッドは、入力される 2つの入力光の 位相差が 2つの出力で 90° 位相差が異なる関係で出力する。濾波器 44—1, 44 2は、中間周波数がデータレートに比べて小さいので、ホモダイン検波又はホモダイ ン検波に類した検波となる。そのため、透過帯域が略データレートの半分以上であり かつ、直流成分を導通しない。このような濾波器 44—1, 44 2としては、例えば直 流成分をカットする DCブロックと低域濾波器の組合せにより構成することができる。 本実施形態で中間周波数力 SOHzの場合の図 3及び図 4の光受信機 22で説明した数 式 (12)の各加減算器出力における中間周波数成分 i 、i は雑音項を除くと次の数
i 2
式 (49)で表せる。
[0168] [数 49]
: - ^2 _CJ c。^― )
/P2=2 - Jn cO 2)+2 ΆΟ -^Ε^ φ-φ^Ι2)
[0169] 数式 (49)において、 i 、i のそれぞれの第 2項が符号の直交性により十分小さい
i 2
とすると両者を加算した後に包絡線検波器 45— 1, 45— 2で二乗すると、数式 (49) は、局部発振光と符号光の対応する光周波数チップ同士の位相差によらず一定とな る。本実施形態では図 3及び図 4の光受信機 22と比較して中間周波数が小さい分だ け符号光の条件として必要となる光周波数帯域を狭くすることができる。
[0170] (第 9実施形態)
図 19から図 24に、本実施形態に係る光受信機の概略構成図を示す。第 2実施形 態力も第 4実施形態で説明した図 10から図 15の光受信機 22に対応する。図 19から 図 24の光受信機 22では、図 10, 12及び 14の光受信機 22における光合分波器 53 a, 53bに代えて光ノヽイブジッ卜 56— 1, 56— 2を適用し、図 11, 13及び図 15の光合 分波器 53a— 1, 53a— 2, 53b— 1, 53b— 2【こ代えて光ノヽイブリツド 56— la, 56— lb, 56 - 2a, 56— 2bを適用する。図 19力ら図 24の光ノヽイブリツ 56 1, 56 - 2, 56— la, 56— lb, 56— 2a, 56— 2bのそれぞれは、入力光を所定の複数の位相差 で複数に分岐して出力する。そして、本実施形態では、光ハイブリッド 56— 1, 56 - 2, 56— la, 56— lb, 56 - 2a, 56— 2bで分岐した経路ごとに(検波器 61— la, 61 lb、加減算器 63— 1 )と (検波器 61— 2a, 61— 2b、加減算器 63— 2)との二組を 備え、各組の出力を加算して出力する加算器 46を備える構成が図 10から図 15の光 受信機 22と異なっている。また、図 19から図 24の光受信機 22は、各経路に濾波器 44 - 1, 44— 2を備えている。さらに、各経路に調整器 62— 1, 62— 2を備えている 。なお、図 20,図 22,図 24では、光周波数チップ毎に (検波器 61— la— 1, 61— 1 a- 2, 61— lb— 1, 61— lb— 2、カロ減算器 63— 1)及び (検波器 61— 2a— 1, 61 2a— 2, 61— 2b— 1, 61— 2b— 2、カロ減算器 63— 2)を備免、さらに調整器 62— la— 1, 62— la— 2, 62— lb— 1, 62— lb— 2, 62— 2a— 1, 62— 2a— 2, 62— 2 b - 1, 62 - 2b - 2を備えている。図 19から図 24では、図 10から図 15と符号が同一 の構成要素は相互に同一の構成要素を示すため説明は省略する。
[0171] 本実施形態では、図 10から図 15の光受信機 22におけるホモダイン検波として位 相ダイバシチを適用した例である。図 19から図 24の光受信機 22では、光ハイブリツ ド 56— 1, 56 - 2, 56— la, 56— lb, 56— 2a, 56— 2bとして光 90° ノヽイブリットを 想定し、検波器と加減算器の組は二組である。従って、図 10から図 15の光受信機 2 2における光合分波器、検波器、加減算器が光ハイブリット 56— 1, 56 - 2, 56— la , 56— lb, 56 - 2a, 56— 2bと、二糸且の(検波器 61—1 a, 61— lb、カロ減算器 63— 1)及び (検波器 61— 2a, 61— 2b、加減算器 63— 2)に置き換わった構成である。図 19から図 24の光受信機 22においても光ハイブリットの出力が π Z2異なる出力に対 応してそれぞれと位相差が π異なる出力を有する光ハイブリット 56— 1, 56 - 2, 56 - la, 56— lb, 56— 2a, 56— 2bを適用すれば検波器 61— 1, 61— 2をそれぞれ 図 16の光受信機 22と同様に差動検波器 64a, 64bに置き換えてそれぞれ π位相差 が異なる 2入力を差動検波する構成も可能である。
[0172] (第 10実施形態) 第 1実施形態から第 9実施形態で説明した光受信機 22では、符号光と局部発振光 の偏波が合致したシステムあるいは合致させる手段を具備するシステムであることを 前提に説明した。本実施形態では、第 1実施形態から第 9実施形態で説明した光受 信機を偏波無依存に動作させるための構成について説明する。本実施形態に係る 光受信機と第 1実施形態から第 9実施形態で説明した光受信機との違いは、直交す る 2偏波の符号光又は局部発振光が一つの送信データに対応する時間であるビット 時間内に半分ずつ存在する偏波スクランブルを符号光又は局部発振光に施してい ること、及びビット時間単位で出力を積分する積分器 (不図示)を具備することにある 。不図示の積分器は、第 1実施形態力ゝら第 8実施形態で説明した光受信機 22の電 気段に設けることができる。例えば、図 3の検波器の 61a, 61bの後段に検波器 61a, 61b毎に設けることができる。他の光受信機 22においても同様である。このように偏 波スクランブルを施すことにより、光受信機 22の出力を偏波によらず略一定の出力と することができる。以下、本実施形態における偏波無依存ィ匕について、局部発振光 を偏波スクランブルして 、る場合で説明する。
[0173] 局部発振光の直交する偏波を TEと TMとし、強度はそれぞれ 0. 5Lとし、符号光と TEの偏波の角度を Θとし、強度を Sとすると、信号強度は次の数式(50)と表せる。
[0174] [数 50]
O.5 LS cos2( 0 ) + 0.5 L S sin2 ( θ ) [0175] よって、符号光の偏波によらず一定の信号が得られる。
[0176] なお、符号光に対する偏波スクランブルは、ビット時間の半分の時間のタイミング、 又は送信データによる変調のタイミングと 1Z2ビット時間ずらしたタイミングで偏波変 調器 (不図示)において符号光を変調することで施すことができる。一方、局部発振 光に対する偏波スクランブルは、ビット時間の半分の時間で偏波変調器 (不図示)に より符号光を変調することでかけることができる。また、ビット時間に対してノ ルス幅が 小さいパルス光を用いるのであれば、ビット時間内に複数のノ ルス光を用いる。複数 のパルス光を用いる場合は、局部発振光または符号光の略同数の各偏波のパルス 光力 対応する符号光又は局部発振光のパルス光にっ 、てそれぞれコヒーレント検 波する必要がある。複数のパルス光の生成方法としては、例えばパルス周期がビット 時間の 2の自然数倍のパルス光源を用いて、パルス光の半分の偏波を偏波変調器 ( 不図示)を用いて π Ζ2変調すればょ 、。またパルス周期がビット時間の自然数倍以 上のパルス光源を用いて、ノ ルス光を分岐し、半数のパルスの偏波を π Ζ2回転さ せてパルス光同士が衝突しないように遅延して合波すればよい。なお、符号光と局部 発振光の両光ともパルス光である場合は、パルス同士がビートを生ずるように時間的 に衝突させるためにスクランブルを施さない側の光も分岐して同様の遅延を与えた上 で合波することも必要である。
[0177] なお、本実施形態で適用した偏波スクランブルに加えて、位相スクランブルをかけ、 濾波器の透過帯域を第 8又は第 9実施形態で説明した光受信機 22の濾波器 44—1 , 44 2の透過帯域に合わせれば、第 1実施形態から第 5実施形態で説明した光受 信機 22でホモダイン検波を行うことができる。位相スクランブルは 1ビット時間を 4分 割してそれぞれに π Ζ2ずつ位相の異なる光が必要となる。それぞれ偏波スクランプ ルのニ偏波が必要なので、 1ビット時間を 8分割する必要がある。スクランブルは位相 変調器 (不図示)や分岐した光に必要回数だけ 45度ファラデー鏡 (不図示)で反射 するなどにより実施することができる。以上のようにして、本実施形態に係る光受信機 では、偏波無依存化することができる。
[0178] (第 11実施形態)
本実施形態では、第 10実施形態で説明した光受信機と同様に第 1実施形態から 第 9実施形態で説明した光受信機を偏波無依存に動作させるための構成について 説明する。本実施形態に係る光受信機では、符号光又は局部発振光の一方を構成 する各光周波数チップの偏波が互いに直交した異なる光周波数の 2光力もなる。こ れらの 2光と対応する光の光周波数チップとの中間周波数は、検波器 6 la, 61b (例 えば、図 3)で検波した後の中間周波数信号同士の少なくとも変調のメインローブが 重ならないような中間周波数である必要がある。中間周波数の差としては、シンボル レートの 2. 5倍以上であることが望ましい。本実施形態に係る光受信機では、中間周 波数を透過する濾波器 44 (例えば、図 3)は、それぞれの中間周波数の少なくとも変 調のメインローブを透過させる透過帯域が必要である。直交する 2光の光周波数チッ プと 1光の光周波数チップとのビートによる信号強度の和は一定となるので本実施形 態に係る光受信機も第 10実施形態で説明した光受信機と同様に偏波無依存ィ匕の 効果がある。また、第 10実施形態で説明した光受信機と比較してシンボルレートの 2 倍の動作速度の偏波変調器 (第 10実施形態で説明した偏波変調器)を不要とするこ とがでさる。
[0179] (第 12実施形態)
本実施形態では、第 10実施形態で説明した光受信機と同様に第 1実施形態から 第 9実施形態で説明した光受信機 22を偏波無依存に動作させるための構成につい て説明する。本実施形態に係る光受信機 22では、第 1実施形態から第 8実施形態で 説明した光受信機 22で適用した符号に代えて 2つの符号を光周波数軸上に連結し た連結符号を用いる。ここで、連結符号としては、符号の利用効率から同じ符号を 2 回繰り返し用いることが望ましい。本実施形態では、連結符号を構成する一方の符号 に用いる符号光を構成する光周波数チップと他方の符号に用いる符号光を構成す る光周波数チップとはそれぞれ偏波が直交している。また、局部発振光は連結符号 を構成する両方の符号で偏波が同一である。また、図 3から図 5及び図 10から図 24 の光合分波器 53, 53a, 53b, 53a— 1, 53b— 1, 53a— 2, 53b— 2及び光ノヽイブジ ッド 56, 56 - 1, 56— 2は、符号光及び局部発振光について連結符号を構成する一 つの符号毎に略同じ偏波状態で且つ 2つの符号間で相対的に π Ζ2又は 3 π /2l け異なる偏波状態で混合する。
[0180] これにより、符号光の偏波状態によらず一定の出力信号をうることができる。なお、 ここでは連結符号を構成する各符号同士の偏波状態は、符号光では異なり、局部発 振光では同一としたが、逆でもよい。本実施形態に係る光受信機は、偏波無依存ィ匕 することができる。また、第 10実施形態で説明した光受信機のようにスクランブルによ る変調で復号器における符号光の透過帯域が拡大したり、第 11実施形態で説明し た光受信機のように光周波数チップ毎に 2倍の中間周波数波数以上離れた 3光を透 過する光受信機と比較して光周波数チップ毎の透過帯域を狭くすることができる。
[0181] (第 13実施形態)
本実施形態では、第 10実施形態で説明した光受信機と同様に第 1実施形態から 第 9実施形態で説明した光受信機を偏波無依存に動作させるための構成について 説明する。第 1実施形態で説明した光受信機の構成に即して説明するが、本実施形 態に係る光受信機 22の構成は、他の第 2実施形態力も第 8実施形態で説明した光 受信機においても同様に適用できる。
[0182] 図 25に、本実施形態に係る光受信機 22の概略構成図を示す。本実施形態では、 光合分波器 59は、符号光と局部発振光を混合する際の偏波関係が π Ζ2あるいは 3 π Ζ2異なる 2つの偏波関係で混合する光合分波器であり、光合分波器 59から包絡 線検波器 45— 1, 45— 2までの構成は二組の偏波関係で混合した光を個別に処理 する構成である。また、濾波器 44— 1, 44— 2の出力を加算する加算器 46を具備し て偏波ダイバシチを実現している。図 25では、図 3から図 5及び図 10から図 24と符 号が同一の構成要素は相互に同一の構成要素を示すため説明は省略する。
[0183] 図 25の光受信機 22において適用される光合分波器 59は、例えば、図 25に示すよ うに、一つの光偏波分波器 73と、 3つの 2 X 2の偏波保持光分波器 71, 72, 74と、を 偏波保持光ファイバ 82で結合して構成することができる。なお、局部発振光は、互い に直交する偏波の同じ強度の 2つの光として光偏波分波器 73が出力するように調整 されている。偏波保持光分波器 71は、偏波を保持したまま同じ強度の 2つの光として 出力する。本実施形態では、光偏波分波器 73によって分岐された上の組の局部発 振光と下の の局部発振光とのビート信号の強度が符号光の偏波状態によって異な る力 両方の加算器 46における和は同一である。よって、図 25の光受信機 22は、第 10実施形態で説明した光受信機と同様に偏波無依存化することができる。なお、図 25では一つの局部発振光源 41と光偏波分波器 73を用いて、一つの局部発振光を 偏波の直交する同じ強度の二つの光として出力するとして 、るが、互 、の光周波数 が略等しく同じ強度で且つ符号光に対する偏波状態が π Ζ2ずれた偏波状態で混 合するようにすれば、二つの局部発振光源に置き換えることも可能である。
[0184] 本実施形態では、光合分波器 59は、復号器 54—1, 54— 2の前段に設けた。
[0185] 図 4及び図 5の光受信機においても同様である。
[0186] 図 10力ら図 16の光受信機 22にお!/ヽて ίま、光合分波器 53a, 53b, 53a— 1, 53b
- 1, 53b— 2を図 25の光合分波器 59と同様の構造の光合分波器に差替える。そし て、同じ偏波関係の出力ごとに光検波加減算濾波器 44と包絡線検波器 45を備えて 、それぞれの出力を加算器 46にて加算し出力する。
[0187] 図 17及び図 18の光受信機 22においては、光ハイブリッド 56の代わりに光合分波 器 59を変形した構造の光合分波器に差替える。光合分波器 59の変形した構造の光 合分波器は光合分波器 59の偏波保持光分波器 72と偏波保持光分波器 74とを偏波 保持する光ハイブリッドに差替えたものである。光合分波器 59の変形した構造の光 合分波器を構成する光ハイブリッドの出力にはそれぞれ復号器を備え、復号器の出 力毎に光検波加減算濾波器 43と包絡線検波器 45を備えて、それぞれの出力をカロ 算器 46にて加算し出力する。
[0188] 図 19から図 24の光受信機 22においては、光ハイブリッド 56— 1, 56- 2, 56— la , 56— lb, 56 - 2a, 56— 2bの代わりに光合分波器 59を変形した構造の光合分波 器に差替える。光合分波器 59の変形した構造の光合分波器は偏波保持光分波器 7 2と偏波保持光分波器 74とを偏波保持する光ハイブリッドに差替えたものである。そ して、同じ偏波関係且つ同じ位相関係の出力毎に光検波加減算濾波器 44と包絡線 検波器 45を備えて、それぞれの出力を加算器 46にて加算して出力する。
産業上の利用可能性
[0189] 本発明の光符号通信システムは、符号化した信号光を送受信する OCDM方式の 光符号通信システムとして利用することができる。

Claims

請求の範囲
光源力 の異なる光周波数の複数の光を所定の符号で符号化した複数の光周波 数チップを送信データで変調した符号光を送信する光送信機と、前記光送信機から の符号光を受信し、受信した符号光の光強度よりも大きく前記異なる光周波数の複 数の光周波数チップのそれぞれとの光周波数差が略中間周波数に設定された複数 の光を含む局部発振光を用いて前記受信した符号光を処理して前記光送信機にお ける送信データを取り出して出力する光受信機と、前記光送信機と前記光受信機と を接続し前記光送信機力 の符号光を前記光受信機に向けて伝送する光伝送路と 、を備える光符号通信システムであって、
前記光受信機は、前記光送信機からの符号光と前記局部発振光とを混合すると共 に前記光送信機からの符号光又は前記局部発振光の少なくとも一方を前記光受信 機の受信対象の符号の値が「1」の光周波数チップに応じた対象光周波数と前記受 信対象の符号の値が「0」の光周波数チップに応じた非対象光周波数とに分岐し前 記光送信機からの符号光と前記局部発振光とが混合した前記対象光周波数及び前 記非対象光周波数をそれぞれ出力する光混合復号器と、
前記光混合復号器からの対象光周波数と非対象光周波数とをそれぞれ検波し、前 記対象光周波数と前記非対象光周波数とのそれぞれの中間周波数信号を透過する と共に前記中間周波数信号の一方力 他方を減算して出力する検波加減算濾波器 と、
を備え、
前記光送信機からの符号光は、前記検波加減算濾波器において検波される際に 前記光送信機力 の符号光を構成する光周波数チップ間でコヒーレンス性があり、 前記局部発振光は、前記検波加減算濾波器において検波される際に前記局部発 振光を構成する光周波数チップ間でコヒーレンス性があり、
前記光混合復号器又は前記検波加減算濾波器は、前記受信対象の符号で符号 化され送信データの 1の値で変調された符号光を前記光受信機が受信したときと前 記受信対象の符号で符号化され送信データの他の値で変調された符号光を前記光 受信機が受信したときとで前記検波加減算濾波器の出力のうち前記検波加減算濾 波器における濾波の際の導通帯域内にある中間周波数信号の出力値又は絶対値 が異なるように、前記中間周波数信号を減算する際の前記導通帯域内にある中間周 波数信号の位相を調整することを特徴とする光符号通信システム。
[2] 請求項 1に記載の光符号通信システムにお 、て、
受信対象外の符号光の符号の値が「1」に対応する光周波数チップは、前記導通帯 域内にある前記中間周波数信号の半分が加算され他の半分が減算されて互いに打 ち消しあう関係にあり、
前記局部発振光は、さらに前記他の符号に応じた符号光の符号の値力 S「l」に対応 する光周波数チップの光周波数差が略中間周波数に設定された光を含み、 前記光混合復号器又は前記検波加減算濾波器は、
送信データの 1の値で変調された前記受信対象とする符号の符号光を前記光受信 機が受信したときの前記検波加減算濾波器の出力のうち前記導通帯域内にある出 力から前記受信対象としない符号の符号光を前記光受信機が受信したときの前記検 波加減算濾波器の出力のうち前記導通帯域内にある中間周波数信号の電流値に各 電流値の発生確率を乗じたものの総和を減じた出力が、送信データの他の値で変調 された前記受信対象とする符号の符号光を前記光受信機が受信したときの前記検 波加減算濾波器の出力のうち前記導通帯域内にある出力に前記受信対象としな 、 符号の符号光を前記光受信機が受信したときの前記検波加減算濾波器の出力のう ち前記導通帯域内にある中間周波数信号の電流値に各電流値の発生確率を乗じた ものの総和を加算した出力と比べてその値又はその絶対値より大きくなるように位相 を調整することを特徴とする光符号通信システム。
[3] 請求項 1又は 2に記載の光符号通信システムにおいて、
前記光混合復号器は、
前記受信した符号光と前記局部発振光とを混合して混合光を出力する光合分波器 と、前記光合分波器からの混合光をそれぞれ前記対象光周波数と前記非対象光周 波数とに分岐して出力する復号器を備え、
前記検波加減算濾波器は、前記復号器からの前記対象光周波数及び前記非対象 光周波数を検波し、濾波し及び加減算することを特徴とする光符号通信システム。
[4] 請求項 1又は 2に記載の光符号通信システムにおいて、
前記光混合復号器は、
前記受信した符号光と前記局部発振光のそれぞれを前記対象光周波数と前記非 対象光周波数とに分岐して出力する復号器と、前記復号器からの対象光周波数同 士及び非対象光周波数同士をそれぞれ混合して出力する光合分波器と、を備え、 前記検波加減算濾波器は、前記光合分波器からの前記対象光周波数及び前記非 対象光周波数を検波し、濾波し及び加減算することを特徴とする光符号通信システ ム。
[5] 請求項 1又は 2に記載の光符号通信システムにおいて、
前記光混合復号器は、
前記受信した符号光を前記対象光周波数と前記非対象光周波数とに分岐して出 力する復号器と、前記局部発振光を前記復号器の分岐数に対応する数だけ分岐し て出力する光分波器と、前記復号器からの対象光周波数と前記光分波器からの局 部発振光とを混合して出力する光合分波器と、前記復号器からの非対象光周波数と 前記光分波器力 の局部発振光とを混合して出力する光合分波器と、を備え、 前記検波加減算濾波器は、前記光合分波器からの前記対象光周波数及び前記非 対象光周波数を検波し、濾波し及び加減算することを特徴とする光符号通信システ ム。
[6] 請求項 1又は 2に記載の光符号通信システムにおいて、
前記光混合復号器は、
前記局部発振光を前記対象光周波数と前記非対象光周波数とに分岐して出力する 復号器と、前記受信した符号光を前記復号器の分岐数に対応する数だけ分岐して 出力する光分波器と、前記復号器からの対象光周波数と前記光分波器からの符号 光とを混合して出力する光合分波器と、前記復号器からの非対象光周波数と前記光 分波器力 の符号光とを混合して出力する光合分波器と、を備え、
前記検波加減算濾波器は、前記光合分波器からの前記対象光周波数及び前記非 対象光周波数を検波し、濾波し及び加減算することを特徴とする光符号通信システ ム。
[7] 請求項 3に記載の光符号通信システムにおいて、
前記受信した符号光と前記局部発振光とは、互いの光周波数が略一致する関係に あり、
前記光合分波器は、前記受信した符号光と前記局部発振光を混合すると共に分 岐して前記受信した符号光と前記局部発振光の位相差が所定値異なる複数の混合 光を出力する光ハイブリッドであり、
前記復号器は、前記光ハイブリッドからの複数の混合光をそれぞれ前記対象光周 波数及び前記非対象光周波数として分岐して出力し、
前記検波加減算濾波器は、前記光混合復号器からの位相差の異なる混合光のそ れぞれにつ 、て、前記光ハイブリッドからの複数の混合光のそれぞれに対応する前 記対象光周波数と前記光ノ、イブリツドからの複数の混合光のそれぞれに対応する前 記非対象光周波数とをそれぞれ検波しそれぞれの中間周波数信号を透過すると共 に位相差が等しい対象光周波数と非対象光周波数の該中間周波数信号の一方力 他方を減算してそれぞれ出力し、
前記光受信機は、前記検波加減算濾波器からそれぞれ出力される中間周波数信 号を加算して出力する加算器を備えることを特徴とする光符号通信システム。
[8] 請求項 4から 6のいずれかに記載の光符号通信システムにおいて、
前記受信した符号光と前記局部発振光とは、互いの光周波数が略一致する関係に あり、
前記光合分波器は、前記光合分波器に入力される複数の入力光を混合すると共 に分岐して前記受信した符号光と前記局部発振光の位相差が所定値異なる複数の 混合光を出力する光ハイブリッドであり、
前記検波加減算濾波器は、前記光混合復号器からの位相差の異なる混合光のそ れぞれについて、前記光ハイブリッドからの受信した符号光と局部発振光の少なくと もいずれか一方が対象光周波数に応じた混合光と前記光ハイブリッドからの前記混 合光と位相差の等し 、受信した符号光と局部発振光の少なくとも 、ずれか一方が非 対象光周波数に応じた混合光とをそれぞれ検波しそれぞれの中間周波数信号を透 過すると共に該中間周波数信号の一方力 他方を減算してそれぞれ出力し、 前記光受信機は、前記検波加減算濾波器からそれぞれ出力される中間周波数信 号を加算して出力する加算器を備えることを特徴とする光符号通信システム。
[9] 請求項 1から 6のいずれかに記載の光符号通信システムにおいて、
前記光混合復号器は、前記光送信機からの符号光及び前記局部発振光を混合する 際に前記符号光と前記局部発振光とを相対的に π Ζ2又は 3 π Ζ2だけ異なる 2つ の偏波関係で混合し前記符号光と前記局部発振光の偏波関係が異なる複数の対象 光周波数に応じた混合光と非対称光周波数に応じた混合光を出力し、
前記検波加減算濾波器は、前記光混合復号器からの偏波関係が異なる混合光の それぞれつ 、て、前記光混合復号器からの複数の混合光のそれぞれに対応する前 記対象光周波数と前記非対象光周波数とをそれぞれ検波しそれぞれの中間周波数 信号を透過すると共に偏波関係が等しい対象光周波数と非対象光周波数の該中間 周波数信号の一方力 他方を減算してそれぞれ出力し、
前記光受信機は、前記検波加減算濾波器からの中間周波数信号を加算して出力 する加算器と、をさらに備えることを特徴とする光符号通信システム。
[10] 請求項 7又は 8に記載の光符号通信システムにおいて、
前記光混合復号器は、前記光送信機からの符号光及び前記局部発振光を混合する 際に前記符号光と前記局部発振光とを相対的に π Ζ2又は 3 π Ζ2だけ異なる 2つ の偏波関係で混合し前記符号光と前記局部発振光の偏波関係と位相差の組合わせ に対応する複数の対象光周波数に応じた混合光と非対象光周波数に応じた混合光 を出力し、
前記検波加減算濾波器は、前記光混合復号器からの偏波関係と位相差の組合せ に対応する混合光のそれぞれについて前記光混合復号器力ゝらの混合光のそれぞれ に対応する前記対象光周波数と前記非対称光周波数とをそれぞれ検波しそれぞれ の中間周波数信号を透過するとともに偏波関係と位相差の等しい対象光周波数と非 対称光周波数の中間周波数の一方から他方を減算してそれぞれ出力し、
前記光受信機は、前記検波加減算濾波器力 の中間周波数信号をそれぞれ前記 加算器にて加算することを特徴とする光符号通信システム。
[11] 請求項 1から 8のいずれかに記載の光符号通信システムにおいて、 前記局部発振光又は前記符号光の!、ずれか一方のみは、一つの送信データの値 に対応する時間スロット内に前記局部発振光又は前記符号光を構成する各光周波 数チップに対応する光が直交する 2偏波の光から構成されることを特徴とする光符号 通信システム。
[12] 請求項 1から 8のいずれかに記載の光符号通信システムにおいて、
前記光受信機は、請求項 1から 8で用いる 2つの符号を連結した符号で前記光受信 機における光周波数チップを構成し、
前記受信した符号光及び前記局部発振光のそれぞれは、前記連結した符号を構成 するそれぞれの符号を構成する光周波数チップは偏波が同一であり、
前記光混合復号器は、前記受信した符号光と前記局部発振光とを混合する際に連 結符号を構成する符号毎に前記符号光と前記局部発振光とを相対的に π Ζ2又は 3 π Ζ2だけ異なる 2つの偏波関係で前記受信した符号光と前記局部発振光とを混 合することを特徴とする光符号通信システム。
[13] 請求項 4から 12のいずれかに記載の光符号通信システムにおいて、
前記光混合復号器が前記光送信機からの符号光又は前記局部発振光の少なくとも 一方を対象光周波数と非対象光周波数に分岐した後に混合する場合において、 前記光合分波器はそれぞれ位相差が略 π異なる 2つの混合光の組を出力し、 前記検波加減算濾波器は、前記光合分波器から分割して出力された前記位相差 の略 π異なる 2つの混合光の組をそれぞれ差動検波し対象光周波数と非対象光周 波数の中間周波数信号を透過し相対応する対象光周波数と非対象光周波数の一 方力も他方を減算して出力することを特徴とする光符号通信システム。
[14] 請求項 1から 13のいずれかに記載の光符号通信システムにおいて、
前記光混合復号器は、前記復号器にお!ヽて前記対象光周波数と前記非対象光周 波数とをそれぞれ前記複数の光周波数チップ毎に分岐して前記複数の光周波数チ ップ毎の前記対象光周波数及び前記非対象光周波数として出力し、
前記検波加減算濾波器は、前記光混合復号器からの対象光周波数と非対象光周 波数とのそれぞれについて前記複数の光周波数チップ毎に検波することを特徴とす る光符号通信システム。
[15] 請求項 1から 14のいずれかに記載の光符号通信システムにおいて、 前記光受信機は、前記検波加減算濾波器における検波、濾波及び加減算よりも後 段で且つ前記検波加減算濾波器からそれぞれ出力される中間周波数信号を加算し て出力する加算器を備える場合は前記加算器より前段に前記検波加減算濾波器か らの中間周波数信号を復調して出力する復調器をさらに備えることを特徴とする光符 号通信システム。
[16] 請求項 1から 13のいずれかに記載の光符号通信システムにおいて、
前記光混合復号器又は前記検波加減算濾波器は、前記異なる光周波数の複数の 光周波数チップが前記光送信機において送信データで変調されてから前記光受信 機の前記検波加減算濾波器において加減算されるまでの光周波数による伝送遅延 を調整する分散調整器と、前記光源から前記異なる光周波数の複数の光が出射さ れて力 前記検波加減算濾波器において検波されるまでの光周波数チップ間の周 波数間隔に応じた位相差を所定の範囲に収めるように前記光送信機における変調 前の符号光の伝搬時間を調整する位相調整器と、前記光混合復号器にお!ヽて前記 符号光と前記局部発振光とを混合する前段又は前記光混合復号器の前段で前記局 部発振光の伝搬時間を調整する位相調整器と、のうち少なくとも 1つを備えることを特 徴とする光符号通信システム。
PCT/JP2007/057754 2006-06-29 2007-04-06 Système de communication par code optique WO2008001531A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/302,245 US8032034B2 (en) 2006-06-29 2007-04-06 Optical code communication system
EP07741190A EP2034647B1 (en) 2006-06-29 2007-04-06 Optical code communication system
CN2007800196763A CN101455017B (zh) 2006-06-29 2007-04-06 光码通信系统
JP2008522326A JP4746676B2 (ja) 2006-06-29 2007-04-06 光符号通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-179997 2006-06-29
JP2006179997 2006-06-29

Publications (1)

Publication Number Publication Date
WO2008001531A1 true WO2008001531A1 (fr) 2008-01-03

Family

ID=38845304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057754 WO2008001531A1 (fr) 2006-06-29 2007-04-06 Système de communication par code optique

Country Status (5)

Country Link
US (1) US8032034B2 (ja)
EP (1) EP2034647B1 (ja)
JP (1) JP4746676B2 (ja)
CN (1) CN101455017B (ja)
WO (1) WO2008001531A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029698A (ja) * 2009-07-21 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> 符号変換器、光符号分割多重用光送信機、及び光符号分割多重伝送システム
US8133718B2 (en) 2008-10-17 2012-03-13 Actherm Inc Analytical strip and detecting method using the same
WO2012154923A3 (en) * 2011-05-12 2013-01-24 Alcatel Lucent Optical receiver for amplitude-modulated signals
CN106209253A (zh) * 2015-05-06 2016-12-07 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022130478A1 (ja) * 2020-12-15 2022-06-23 日本電信電話株式会社 光給電システム、スリープ制御方法及び受電光通信装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971036A1 (en) * 2007-03-14 2008-09-17 Dtu A method and a device for detection of a first signal superimposed on a second signal
KR20090087805A (ko) * 2008-02-13 2009-08-18 주식회사 케이티 Wdm-pon에서의 광 검출 장치 및 그 방법
JP5365315B2 (ja) * 2009-04-03 2013-12-11 富士通株式会社 光受信機および光受信方法
KR20110030136A (ko) * 2009-09-17 2011-03-23 한국전자통신연구원 편광 분리기, 광학 하이브리드 그리고 그것들을 포함하는 광 수신기
US8498542B2 (en) * 2010-01-21 2013-07-30 Ciena Corporation Multi-channel optical transceiver with offset quadrature amplitude modulation
WO2011109982A1 (zh) * 2010-07-20 2011-09-15 华为技术有限公司 光线路终端、光信号处理方法及光网络系统
US8725006B2 (en) * 2011-02-25 2014-05-13 Nec Laboratories America, Inc. Digital signal-to-signal beat noise reduction for filter-less coherent receiving system
US8849130B2 (en) * 2011-09-20 2014-09-30 Alcatel Lucent Coherent optical receivers for colorless reception
JP5870751B2 (ja) * 2011-12-22 2016-03-01 住友電気工業株式会社 空間多重光ファイバ伝送システム
US9225453B2 (en) * 2013-04-09 2015-12-29 Futurewei Technologies, Inc. Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
CN103856432B (zh) * 2014-01-03 2017-05-10 东南大学 Ampsk调制信号的微带谐振相干解调器
US9806813B2 (en) 2014-10-01 2017-10-31 Futurewei Technologies, Inc. Optical receiver with optical transmitter-specific dispersion post-compensation
JP6791645B2 (ja) * 2016-03-29 2020-11-25 本田技研工業株式会社 光通信装置、光通信システム、および光通信方法
EP3451931A1 (en) 2016-05-27 2019-03-13 Schafer Aerospace, Inc. System and method for high speed satellite-based free-space laser communications using automatic gain control
CN106209247B (zh) * 2016-07-10 2019-01-15 山东大学(威海) 光码生成器及其应用
CN106788702B (zh) * 2016-11-16 2019-02-12 武汉邮电科学研究院 一种基于120度光混频器的相干光检测装置及方法
KR20190127783A (ko) * 2017-03-21 2019-11-13 비프로스트 커뮤니케이션즈 에이피에스 고성능 광수신기를 포함한 광학 통신 시스템, 장치 및 방법
GB2582300A (en) * 2019-03-14 2020-09-23 Univ York Methods and apparatus for coherent signal amplification and detection
KR20210051049A (ko) * 2019-10-29 2021-05-10 한국전자통신연구원 시분해 코딩을 이용한 분광 장치 및 분광 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653906A (ja) * 1992-08-03 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> コヒーレント光通信用受信機及び送受信機
JPH1013306A (ja) 1996-06-24 1998-01-16 Yuseisho Tsushin Sogo Kenkyusho 光パルススペクトル拡散符号分割多重伝送方式及び装置
WO2005008923A2 (ja) * 2003-07-16 2005-01-27 Nippon Telegraph & Telephone 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653906A (ja) * 1992-08-03 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> コヒーレント光通信用受信機及び送受信機
JPH1013306A (ja) 1996-06-24 1998-01-16 Yuseisho Tsushin Sogo Kenkyusho 光パルススペクトル拡散符号分割多重伝送方式及び装置
WO2005008923A2 (ja) * 2003-07-16 2005-01-27 Nippon Telegraph & Telephone 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Coherent Optical Communication Engineering", THE OHMSHA, LTD.
C.F. LAM ET AL.: "Experimental Demonstration of bipolar optical CDMA System Using a Balanced Transmitter and Complimentary Spectral Encoding", IEEE PHOTON. TECHNOL. LETT., vol. 10, no. 10, pages 1504 - 1506
See also references of EP2034647A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133718B2 (en) 2008-10-17 2012-03-13 Actherm Inc Analytical strip and detecting method using the same
JP2011029698A (ja) * 2009-07-21 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> 符号変換器、光符号分割多重用光送信機、及び光符号分割多重伝送システム
WO2012154923A3 (en) * 2011-05-12 2013-01-24 Alcatel Lucent Optical receiver for amplitude-modulated signals
CN106209253A (zh) * 2015-05-06 2016-12-07 青岛海信宽带多媒体技术有限公司 一种光模块
CN106209253B (zh) * 2015-05-06 2019-03-29 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022130478A1 (ja) * 2020-12-15 2022-06-23 日本電信電話株式会社 光給電システム、スリープ制御方法及び受電光通信装置

Also Published As

Publication number Publication date
EP2034647A1 (en) 2009-03-11
CN101455017B (zh) 2012-05-30
US8032034B2 (en) 2011-10-04
JPWO2008001531A1 (ja) 2009-11-26
EP2034647A4 (en) 2009-08-19
EP2034647B1 (en) 2011-05-25
JP4746676B2 (ja) 2011-08-10
US20090274470A1 (en) 2009-11-05
CN101455017A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4746676B2 (ja) 光符号通信システム
US7167651B2 (en) System and method for code division multiplexed optical communication
EP2330759B1 (en) Method and arrangement for transmitting signals in a point to multipoint network
US10750257B2 (en) Data encoding and channel hopping using orbital angular momentum modes
WO2006018952A1 (ja) 多モード光伝送装置
EP1329047A1 (en) System and method for code division multiplexed optical communication
JP4726078B2 (ja) 光ofdm受信回路、光ofdm受信装置、及び光ofdm伝送システム
Zhai et al. An ultraefficient broadband photonic channelizer based on polarization-division multiplexing and integrated dual-polarization coherent detection receiver
JP7348582B2 (ja) 光送信器及び光送信における周波数制御方法
JP5334747B2 (ja) 光符号分割多重伝送システム及び光符号分割多重伝送方法
Tseng Modified multiphotodiode balanced detection technique for improving SAC-OCDMA networks
JP2011019198A (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
Huang et al. Double sideband with optical carrier suppression scheme for broadcasting transmission
JP2011130504A (ja) 光ofcdm伝送システム
JP5090382B2 (ja) 光受信機、光通信システム及びヘテロダイン検波方法
JP5507341B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
CA2653991C (en) Coherent gated receiver
WO2022029832A1 (ja) 光伝送システム、光受信装置及び光送信装置
JP4843633B2 (ja) 光cdm伝送システム、送信装置及び受信装置
WO2023218589A1 (ja) 送信装置及び信号生成方法
JP5437223B2 (ja) 光受信機、光通信システム及びコヒーレント検波方法
JP5487052B2 (ja) 光cdm送信回路、光cdm受信回路及び光cdm伝送システム
Yang et al. Simulation and experimental demonstration of coherent OCDMA using spectral line pairing and heterodyne detection
Lv et al. A novel digital coherent receiver for wireless signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019676.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12302245

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007741190

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU