WO2005008923A2 - 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置 - Google Patents

光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置 Download PDF

Info

Publication number
WO2005008923A2
WO2005008923A2 PCT/JP2004/010228 JP2004010228W WO2005008923A2 WO 2005008923 A2 WO2005008923 A2 WO 2005008923A2 JP 2004010228 W JP2004010228 W JP 2004010228W WO 2005008923 A2 WO2005008923 A2 WO 2005008923A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
function
signal
intensity
light
Prior art date
Application number
PCT/JP2004/010228
Other languages
English (en)
French (fr)
Other versions
WO2005008923A1 (ja
Inventor
Manabu Yoshino
Noriki Miki
Original Assignee
Nippon Telegraph & Telephone
Manabu Yoshino
Noriki Miki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph & Telephone, Manabu Yoshino, Noriki Miki filed Critical Nippon Telegraph & Telephone
Priority to JP2005511869A priority Critical patent/JP4436323B2/ja
Priority to US10/562,431 priority patent/US7555216B2/en
Priority to EP20040747693 priority patent/EP1646165B1/en
Priority to CN200480018390.XA priority patent/CN1813429B/zh
Priority to DE200460029166 priority patent/DE602004029166D1/de
Publication of WO2005008923A1 publication Critical patent/WO2005008923A1/ja
Publication of WO2005008923A2 publication Critical patent/WO2005008923A2/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • H04J14/007Orthogonal Optical Code Multiplex

Definitions

  • Optical code multiplexing for multiplexing a plurality of data sequences so that they can be separated by different optical codes, quadrature phase modulation (QPSK, QUADRATURE Phase Shift Keying) or quadrature
  • QPSK quadrature phase modulation
  • quadrature phase modulation QPSK, QUADRATURE Phase Shift Keying
  • quadrature phase modulation QPSK, QUADRATURE Phase Shift Keying
  • quadrature phase modulation QPSK, QUADRATURE Phase Shift Keying
  • the present invention relates to an optical communication system in which amplitude modulation (QAM, Quadrature Amplitude Modulation) technology is applied to optical communication, and an optical transmission device, an optical reception device, and a reflection type optical communication device used in the system.
  • QAM Quadrature Amplitude Modulation
  • PON Passive Optical Network
  • pseudorandom spreading codes that are orthogonal to each other are assigned to each accommodation station, and It has been proposed that a station modulates and transmits an optical signal according to an assigned spreading code, and multiplexes these optically modulated signals at a central station and transmits the signal further away.
  • a conventional technique for performing optical frequency encoding in the optical frequency domain using each of the spreading codes will be described below.
  • Figure 1 schematically shows the configuration and optical frequency coding (wavelength coding) for one channel in the optical code multiplexing optical communication system.
  • an optical signal 20 with a broadband wavelength from the light source 10 is incident on the encoder 11, and only the wavelength component of the selected wavelength 31 of the encoder 11 is cut out as the passing wavelength light 21 and the optical signal is wavelength-encoded. Is done.
  • the encoded passing wavelength light 21 is transmitted to the decoder 12 on the receiving side through the optical fiber 13.
  • the passing wavelength light 21 only the code from the corresponding encoder 11 in the decoder 12 passes through the selected wavelength 32 of the decoder as the passing wavelength light 22 and is decoded.
  • the passing wavelength light from the encoder of the spreading code not corresponding to the decoding code of the decoder 12 becomes, for example, the passing wavelength light 2 depending on the selected wavelength, and this passing wavelength light Depending on the selected wavelength 32 of the decoder 12, all the chips (optical frequencies or wavelengths) in the code do not pass, and only some of them pass, As a result, the light is not decoded and becomes the noise light 22 '.
  • the encoder 11 and the decoder 12 are described in, for example, Non-Patent Document 1.
  • the wavelengths used for them are specific wavelengths, and the wavelength of the input optical signal 20 to the encoder 11 and the selected wavelength 31 of the encoder 11 are respectively different from the specified absolute wavelength. Fluctuation is almost unacceptable. For this reason, the receiving side notifies the transmitting side of the wavelength of the transmission optical signal and the selected wavelength 31 of the encoder 11, and the transmitting side determines the outgoing light 20 of the light source 10 and the selected wavelength 31 of the encoder 11 according to this notification. There was a problem that had to be calibrated.
  • Non-Patent Document 2 and Patent Document 1 (issued on February 2, 1999) have been proposed.
  • a Mach-Zehnder filter or a Fabry-type filter in which light emitted from a broadband light source such as an LED (light emitting diode) having a wavelength width of several tens of nm is made of a material having a small temperature dependence of a selected wavelength is used.
  • a wavelength is selected by a sign function using a filter and wavelength coding is performed, that is, a wavelength is assigned to each data sequence at a different cycle.
  • a binary data sequence is transmitted by intensity modulation that interrupts an optical signal depending on whether each data is a space or a mark.
  • Non-Patent Document 2 T. Pfeiffer et al., Electronics Letters vol.33 No.25 pp 2441-2442, 1997, "High Speed optical network for asynchronous multiuser access applying periodic spectral coding of broadband sources"
  • Non-patent Document 3 Takeyuki Imai et al., "Interoperability of WDN-PON System Terminal Using Reflective SOA” 2003 IEICE Communications Society Conference B-10-50
  • Non-patent Document 4 J11 S. et al., "Fiber transmission characteristics of wavelength channel data rewriter using semiconductor optical amplifier” 2003 IEICE Communications Society Conference B-10-51 Disclosure of Invention
  • the frequency difference of light allocated to the first data sequence is ⁇ 1 and the reference optical frequency wavelength is 10; a number of periods that are not only one period of the optical frequency ⁇ ⁇ — ⁇ ⁇ + ⁇ Includes: 1 0; 1 0 + 2 ⁇ 1, ⁇ 0- ⁇ 0 + 3 ⁇ 1, ... and assigned with a wide optical frequency width including a plurality of periods, and the optical frequency ⁇ ⁇ - ⁇ 0 + ⁇ is assigned to the second data sequence. Including a large number of periods, not just one period of 2, 0— ⁇ 0 +2 ⁇ 2, ⁇ 0— ⁇ 0 + 3 ⁇ 2, etc.
  • a series includes not only one period of optical frequency ⁇ 0— ⁇ ⁇ + ⁇ 3 but also multiple periods ⁇ ⁇ — ⁇ 0 +2 ⁇ 3, 30— ⁇ 0 + 3 ⁇ 3,... Are assigned in a wide optical frequency width including, and so on. In this way, the S / N is improved.
  • Non-Patent Document 4 Although the information transmission efficiency of the device shown in Non-Patent Document 4 is better than that of Non-Patent Document 3 in that unmodulated continuous light is not transmitted from the central station, the extinction ratio of the downstream optical signal transmitted by the central station is deteriorated.
  • the downstream optical signal having a low extinction ratio can be used as an upstream optical signal for information transmission at the accommodation station. For this reason, the communication quality deteriorates because the extinction ratio of the downstream optical signal is poor.
  • the present invention has the first surface and the third surface, each uses the Ban-me code function Ci (f) and its inversion function (l_Ci (f)), which satisfy the following conditions. Fulfill.
  • the optical frequency width FSR is the optical frequency width of a common multiple of the repetition period of the function of each code in the range from the predetermined optical frequency Fst to the predetermined optical frequency Fla.
  • the inversion function of the function Ci (f) is a function (1-Ci (f)) obtained by subtracting this function Ci (f) from 1, and the function Ci (f) and the function (1-Ci (f)) between
  • Ci (f) -Cj (f) df ⁇ Ci (f) ⁇ (1-1 Cj (f)) df holds.
  • the i-th code function Ci (f) and its inverse function corresponding to the value are applied to each data of a binary data sequence on the transmitting side, applied to optical code communication.
  • (L_Ci (f)) generates and transmits an optical code signal having at least one of the optical intensity frequency characteristics at least for a period FSR in which the functions are orthogonal to each other;
  • the first difference signal corresponding to the difference between the optical intensity of the optical signal whose optical intensity frequency characteristic is (l_Ci (f)) and the corresponding second intensity signal Replay the data sequence.
  • quadrature phase modulation is performed in a pseudo manner
  • the binary data sequence is separated into a plurality of separated data sequences, and for each of the separated data sequences, at least one of the function corresponding to the value and the inversion function for each data with respect to the function of the code different from each other is used.
  • An optical signal having an intensity frequency characteristic is synthesized, and these optical signals are combined and transmitted as an optical code signal.
  • the light intensity differences of the optical signals having these functions as the light intensity frequency characteristics are respectively obtained.
  • the present invention is applied to reflection type optical communication and has at least an optical frequency width FSR
  • a received optical signal whose light intensity frequency characteristic is the function Ci (f) or the inversion function (1 Cj (f)) is input, and the received signal is filtered by the encoder whose frequency characteristic is the function Ci (f).
  • the received optical signal is input to the inverted encoder having the inverted function (1 Ci (f)), and the inverted optical signal is output.
  • An optical signal and an inverted optical signal are selected and multiplexed according to the value of each data of the input binary data sequence and transmitted as an optical code signal.
  • the function Ci (f) is continuously repeated, and the optical code signal corresponding to the optical frequency width FSR at any position within the frequency range of Fst—Fla Therefore, even if the optical frequency of the light source or encoder of the optical transmitter or the decoder of the optical receiver drifts, it is necessary to notify the receiver of the transmission optical frequency and adjust the optical frequency on the transmitter. No need.
  • many optical code signals can be optical code multiplexed by using a plurality of data sequences in which the optical intensity frequency characteristics Ci (f) of the optical code signals are orthogonal to each other. It is not necessary to widen the optical frequency width as long as the optical frequency width of the optical code signal is equal to the FSR.
  • the function of the light intensity frequency characteristic is controlled for each data of the separated data series, the function is compared with the case where the optical phase of the optical frequency signal is modulated.
  • the control accuracy of the modulation is extremely coarse and can be easily realized.
  • the configuration of the third aspect of the present invention it is not necessary to send an unmodulated downstream optical signal for returning as an upstream optical signal, and both the optical intensity frequency characteristic functions of the downstream optical signal and the upstream optical signal are orthogonal to each other. Regardless of whether the downlink data is a mark or a space, it is possible to output an upstream optical signal of the same mark or space with the same light intensity, which may degrade the communication quality without lowering the extinction ratio of the downstream optical signal. Absent.
  • FIG. 1 (a) shows a system configuration of a conventional optical code multiplexing method
  • FIGS. 1 (b) and 1 (c) respectively show a light source light wavelength, a code amount selection light wavelength
  • FIG. 2 shows a configuration example of a multiplex communication system to which the first embodiment of the present invention is applied
  • FIG. FIG. 2 is a diagram showing the optical transmitting device
  • FIG. 2B is a diagram showing the optical receiving device.
  • FIG. 3A is a diagram illustrating an optical transmitting device
  • FIG. 3B is a diagram illustrating an optical receiving device.
  • FIG. 4 is a diagram showing a configuration example of a communication system to which the first embodiment of the present invention is applied.
  • FIG. 5 (a) is a diagram showing a drift of a light source frequency
  • FIG. 5 (b) is a diagram showing an example of a coded optical frequency domain
  • FIG. 5 (c) is a diagram showing an example of a decoded optical frequency domain.
  • FIG. 6 (a), FIG. 6 (b), and FIG. 6 (c) are diagrams illustrating examples of spreading codes in the first embodiment, respectively.
  • FIG. 7 is a diagram showing a configuration example of an encoder according to a second embodiment.
  • FIG. 8 is a diagram showing a configuration example of a decoder according to a second embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a filter of an encoder Z decoder according to a second embodiment.
  • FIG. 10 shows a first-order Hadamard matrix
  • FIG. 10 (b) shows a second-order Hadamard matrix
  • FIG. 10 (c) shows a recurrence formula of a Hadamard matrix It is.
  • FIGS. 11 (a) and 11 (b) are diagrams showing an example of a coding code (concatenated code) corresponding to a second-order Hadamard matrix used in the third embodiment.
  • FIG. 12 is a diagram showing a configuration example of a decoder according to a third embodiment.
  • FIG. 13 (a) shows the case where the light source frequency drift does not occur
  • FIGS. 13 (b) and 13 (c) show the light source light frequency and the coded light when the light source frequency drift occurs, respectively.
  • FIG. 3 is a diagram illustrating examples of a frequency domain, an encoded optical signal, a decoded optical frequency domain, and a decoded filtered optical signal, respectively.
  • FIG. 15 is a diagram showing another configuration example of the decoder according to the third embodiment.
  • FIG. 16 is a diagram showing another configuration example of the filter of the encoder Z decoder according to the third embodiment.
  • Garden 17 is a diagram showing still another configuration example of the filter of the encoder / Z decoder in the third embodiment.
  • FIG. 20 (a) in Embodiment 3 shows the encoded optical frequency domain.
  • Figure 2 without drift 0 (b) and (c) are diagrams showing a relationship example between each light source optical frequency, an encoded optical frequency domain, an encoded optical signal, a decoded optical frequency domain, and a decoded signal when there is a drift.
  • FIG. 21 is a diagram showing still another configuration example of the filter of the encoder / decoder according to the third embodiment.
  • FIG. 22 is a diagram showing another configuration example of the encoder according to the third embodiment.
  • FIG. 23 is a diagram showing still another configuration example of the decoder of the third embodiment.
  • FIG. 24 is a diagram showing still another configuration example of the encoder according to the third embodiment.
  • FIG. 25 is a diagram showing still another configuration example of the decoder of the third embodiment.
  • FIG. 26 is a diagram showing still another configuration example of the decoder according to the third embodiment.
  • FIG. 27 is a diagram showing still another configuration example of the decoder of the third embodiment.
  • FIG. 28 is a diagram showing a configuration example of a combination of an encoder and a decoder according to the second embodiment.
  • FIG. 31 (a) shows the phase 0
  • FIG. 31 (b) shows the phase ⁇ / 2
  • FIG. 31 (c) Is the phase ⁇
  • Fig. 31 (d) is the phase ⁇ / 2 case.
  • FIG. 32-3 is a diagram showing an example in the case of the ⁇ -phase modulation output of FIG. 32-1.
  • FIG. 33 shows a configuration example of the phase modulation section 130 in FIG. 30.
  • FIG. 35 (a) is a diagram showing a configuration example of an optical transmission device in the embodiment 2-3
  • FIG. 35 (b) is a diagram showing a modification of the modulator 132 in FIG. 35 (a).
  • FIG. 36 is a diagram showing signal points on coordinates in QPSK
  • FIG. 36 (b) is a diagram showing a relationship among a data set, coordinate points, and a selected filtering phase.
  • FIG. 37-2 is a diagram showing a configuration example of an optical receiving device according to embodiments 2-4.
  • Fig. 38 shows the signal points on the coordinates in QAM, and Fig. 38 (b) shows the data set and
  • FIG. 7 is a diagram showing a relationship between selected phases and intensities and respective outputs of comparators 241 and 242.
  • FIG. 41 shows an example of a filtering characteristic in Examples 2-5, and FIG. 41 (a), FIG. 41 (b), and FIG.
  • FIG. 41 (d) are diagrams for the cases of phase 0, phase ⁇ 2, phase ⁇ , and phase 3 ⁇ / 2, respectively.
  • FIG. 42-2 is a diagram showing an example of the ⁇ / 2-phase modulation output of FIG. 42-1.
  • FIG. 45 is a diagram showing a configuration example of an optical transmission device according to embodiments 2-8.
  • FIG. 46 is a view showing an example of an optical chip of each S-chip light source in FIG. 45.
  • FIG. 48-1 is a diagram showing a configuration example of an optical transmission device in a communication system to which Embodiment 2-11 is applied.
  • FIG. 48-2 is a diagram showing a configuration example of an optical receiving device according to embodiments 2-11.
  • FIG. 49 is a functional configuration diagram showing an example of a reflection type optical communication device according to a third embodiment of the present invention.
  • FIGS. 50 (a) and 50 (b) are diagrams showing an example in which the optical frequency characteristic in the third embodiment is a chip function.
  • FIG. 51 is a diagram showing a configuration example having a chip function as encoders 440M and 440S in FIG. 49.
  • FIG. 52 is a functional configuration diagram showing another example of the device of the third embodiment.
  • FIG. 53 is a functional configuration diagram showing an example in which a transmitting circuit and a receiving circuit are juxtaposed in the device of the present invention.
  • FIG. 54 is a view showing an example of a chip function in the third embodiment.
  • FIG. 55 is a functional configuration diagram showing an example of an optical communication device facing the reflection type optical communication device of the third embodiment.
  • FIG. 56 is a functional configuration diagram showing an example in which a transmission circuit and a reception circuit having trigonometric function filtering characteristics are provided side by side in the third embodiment.
  • FIG. 57 is a functional configuration diagram showing another example of the light combiner in FIG. 53.
  • FIG. 58 is a functional configuration diagram showing another example in which a transmission circuit and a reception circuit are provided side by side in the third embodiment.
  • FIG. 59 is a functional configuration diagram showing an example in which a receiving circuit is cascaded after a transmitting circuit in Embodiment 3-5.
  • FIG. 60 is a functional configuration diagram showing another example in which the receiving circuit is cascaded after the transmitting circuit in the embodiment 3-4.
  • FIG. 61 is a functional configuration diagram showing an example in which a transmission circuit is cascaded after a reception circuit in Embodiment 3-5.
  • FIG. 62 is a functional configuration diagram showing another example in which a transmission circuit is cascaded after a reception circuit in Embodiment 3-5.
  • the first embodiment of the present invention enables optical code multiplexing, it does not require optical multiplexing, that is, the power applicable to optical communication of one data series. (Optical code multiplexing) is added in parentheses so that it can be easily distinguished from the state.
  • a transmitting device and a receiving device to which the present invention can be applied will be described.
  • Fig. 2 ( a ) An example of an optical transmission side device to which the first embodiment is applied will be described.
  • n l, 2, ..., N (N is an integer of 2 or more), and the pair of the light source 10 and the encoder 11 is connected to the multiplexer 15 through the optical fiber 14.
  • the data sequence D is input to each encoder 11, the data sequence D is encoded into an optical code signal by the encoder 11nnnn, and input to the multiplexer 15 through the optical fiber 14, and the other optical signals are transmitted.
  • the signal and the code signal are combined, and the optical code multiplexed signal is output from the multiplexer 15.
  • the multiplexer 15 is separated from the encoders 11,,.
  • the distances between may be different.
  • the light source 10 may be provided in common for the light units 11,..., 11. As shown in Fig. 2 (a)
  • the configuration and the configuration shown in FIG. 3A may be combined.
  • the optical receiving side device splits the optical code multiplexed signal input to the splitter 16 into N optical signals, and decodes them through optical fibers 18, 12
  • the distributor 16 and the decoders 12, ..., 12 may be provided at the same location.
  • FIG. 4 shows one communication system to which Example 11 of the first embodiment can be applied.
  • This embodiment 11 includes a light source 10, an encoder 11, a decoder 12, and an optical transmission line (optical fiber) 13, similarly to a conventional optical communication system. Since there is a difference in the dependent propagation delay time, the dispersion compensator 17 for leveling and compensating for the delay time between the transmission and reception of each frequency component constituting the optical code signal to be the same is used in this embodiment. Now we have.
  • the optical frequency band to be compensated by the dispersion compensator 17 is at least wider than the optical frequency band used as an optical code signal.
  • the light source 10 generates an optical signal having an optical frequency width at least corresponding to the code length FCL (corresponding to FSRi described later) in the optical frequency range (optical frequency Fst—Fla) to be encoded by the encoder 11. Output.
  • the optical signal 20 from the light source 10 is encoded by the encoder 11 into an optical code signal in the optical frequency domain. Is done.
  • the encoder 11 used in the embodiment 11-1 differs from the encoder in the conventional optical communication system in that an optical code signal having the same code length FCL of all code-codes (codewords) used in the optical communication system is used. , Generated in the optical frequency domain.
  • the optical code signal in the optical frequency domain has the following properties.
  • the intensity of the n-th optical code signal is a function of the optical frequency f (also referred to as an encoding code) Cn (f), and the function value Cn (f) is a value from 0 to 1, and
  • the integral value of the function value Cn (f) in the section of an arbitrary code length FCL in the optical frequency domain Fst—Fla in the encoding target is a value obtained by dividing FCL by 2, and the light having the light transmittance in the encoder 11 is obtained.
  • the same function C n (f) is repeated at a period of the code length FCL in the encoding target frequency region Fst-Fla. Also, the following equation is established.
  • an optical code signal whose optical frequency characteristic function of light intensity is Cn (f) is also denoted as Cn (f), that is, Cn (f) represents the n-th encoded code or the n-th optical code signal.
  • Cn (f) represents the n-th encoded code or the n-th optical code signal.
  • n-th (optical code signal) corresponds to the term “n-th (optical code signal)” in other embodiments
  • the notation “(function or coding code) Cn (f)” is used in other embodiments. This corresponds to “(optical frequency characteristic function or sign) Cn (f)” in the embodiment.
  • the decoder 12 that decodes the optical code signal generated by the encoder 11 has one cycle corresponding to the n-th optical code signal Cn (f).
  • a function (also referred to as a decoding code) Dn (f) equal to the FCL is continuously repeated in the optical frequency domain to be decoded, and Dn (f) is represented by the following equation.
  • C (f) is a value obtained by inverting the magnitude of the light intensity of the n-th code Cn (f), and its function value C (f) is an inverted value of the function value Cn (f).
  • the inner product of the value Cn (f) at the optical frequency f of the n-th optical code signal and the decryption code Dn (f) of the decoder that decodes the n-th optical code signal is expressed by the encoder optical frequency domain.
  • the integrated value of the optical frequency f over the continuous optical frequency range of the code length FCL included in the decrypted optical frequency domain of the decoder and the decoder is a non-zero finite value FCL / 4, and the following equation holds.
  • J Cn (f) -Dn (f) df FCL / 4 (5)
  • Equation (5) is performed using the optical frequency width FSR of the light source.
  • the FSR is just a natural number times the code length FCL.
  • the area is set to be larger than the code length FCL of the optical code signal.
  • an optical signal having an optical frequency width of at least the code length FCL input from the light source is encoded in the optical frequency domain to generate and output an optical code signal Cn (f).
  • the length of the output optical code signal Cn (f) is one code length FCL for one data. For example, when the data is "1" (mark), the optical code signal Cn (f) is output for one code length, and when the data is "0" (space), the optical code signal Cn (f) is not output. Marks and spaces correspond to one and the other of the two types of modulation unit signals.
  • the input light is understood as understood from Expressions (3) and (5).
  • the first to eleventh embodiments have the same code length FCL, which is the optical frequency width in which all optical code signals are orthogonal to each other, and
  • the optical frequency characteristic of the transmittance is Cn (f) continuously repeated in the optical frequency range FSR to be encoded, and the optical frequency characteristic of the transmittance of the decoder 12 is also subject to the decoding. Since Dn (f) is continuously repeated in the optical frequency domain Fst—Fla, each optical code signal has the properties shown in Equations (1) and (2), and the integration interval is Even if it is changed, the integral value of the inner product of each optical code signal at the decoder does not change.
  • the optical frequency width of the light source encoded by the code is constant, and the optical frequency is included in the encoded optical frequency domain of the encoder and the decoded optical frequency domain of the decoder. Therefore, the optical code signal of the corresponding encoder is received by the decoder as an optical code signal having the same input strength due to a change in the optical frequency of the light source, and other optical code signals not corresponding to this decoder are received. Interference does not increase. For example, as shown in FIG. 5 (a), the optical frequency of the output optical signal from the light source 10 is f
  • 1 f is the coded optical frequency domain of the encoder 11 and the decoder 12 shown in Figs. 5 (b) and 5 (c), respectively.
  • decoding of the optical code signal with the drifted optical frequency is performed by the input optical frequency domain. This is performed by integrating the inner product of the code multiplexed signal and the decoded code Dn (f) with the FSR corresponding to the optical frequency width of the light source (equal to the code length FCL in this example). Because of the relationship (2), the same decoding result as before the drift is obtained, and there is no increase in interference. Similarly, good decoding is performed even if the encoded optical frequency domain and the decoded optical frequency domain shift due to drift.
  • the optical transmission band of the optical fiber that transmits the optical code multiplexed signal generated by the multiplexer 15 sufficiently covers the optical frequency fluctuation of the light source due to the optical frequency width FSR of the light source. It is sufficient if the degree is large.
  • the coded optical frequency domain and the decrypted optical frequency domain may be the same as the optical transmission band. That is, in the first embodiment, since the codes are orthogonal to each other, the optical frequency width FSR of the light source is the same as the code length FCL of all the codes, and in this case, the optical frequency width required for transmission over the optical fiber is the code length The optical frequency width obtained by adding the optical frequency variation of the light source to the FCL.
  • the conventional technology shown in Reference 2 uses a periodic code having a different code length between spreading codes.Because it is necessary to cancel intersymbol interference, a broadband light source for extracting a sufficient number of sine function light periods is required.
  • the optical band The light source 10 is not required, and the light emitted from the light source 10 needs only the optical frequency width (period width) corresponding to the same code length FCL. It is possible to suppress waveform deterioration due to the influence of dispersion and the problem of transmission band limitation. Further, by providing the dispersion compensator 17, it is possible to reduce collapse of orthogonality between codes due to a difference in transmission distance.
  • the optical frequency region to be encoded by the encoder has an optical frequency width larger than the code length FCL of the optical code signal.
  • An optical code signal having the characteristic shown in (6) is used, and the dispersion compensator 17 is provided, for example, immediately before the decoder as shown by a broken line in FIG. 2 (b), or by a broken line in FIG. 2 (b). As shown in Fig.
  • Example 12 of the first embodiment is an example that embodies example 11 and uses a trigonometric function as the encoding function C (f).
  • a when using the smallest possible value of a (positive integer) and generating a number of codes with the same a value, a is from 1 to the maximum number of codes (the maximum number of accommodated encoders).
  • N can be expressed as the n-th optical code signal Cn (f) where N is an integer value up to ⁇ / and r is the remainder of 0, 1,..., _1.
  • the optical code signal function value Cn (f) is a value from 0 to 1, and the integral value of the encoder 11 for an arbitrary code length FCL at the optical frequency to be encoded is FCLZ2.
  • the optical transmission characteristic repeats the function value Cn (f) at a period of the code length FCL, and satisfies the equations (1) and (2) in the embodiment 1-1.
  • FIG. 6 shows an example of the optical code signal Cn (f) of the embodiment 1-2.
  • the horizontal axis in FIG. 6 is the optical frequency normalized by the code length FCL, and the vertical axis is the intensity.
  • This optical code signal Cn (f) has an intensity in which the single-frequency optical signal corresponding to each chip changes analogously in the order of arrangement when Cn (f) is not equal to 0. This is different from a spread code having a single-frequency optical signal of "1" or "0".
  • the decoding code Dn (f) of the decoder 12 for decoding the n-th optical code signal Cn (f) is expressed by the following equation.
  • the inner product of the ⁇ -th optical code signal Cn (f) and the n-th decoded Eich code Dn (f) that decodes the n-th optical code signal is obtained by dividing The value integrated over the continuous frequency domain for the code length FCL included in the frequency domain becomes a non-zero finite value FCL / 4, and the n-th optical code signal Cn (f) and the m-th optical code other than the n-th optical code signal.
  • the inner product of the signal and the decoding code Dm (f) of the decoder that decodes the signal is integrated over the continuous frequency domain of the code length FCL included in the coded optical frequency domain of the encoder and the decoded optical frequency domain of the decoder. Is zero, which satisfies Expressions (5) and (6) in Example 11-1.
  • FIG. 7 shows a configuration example of the encoder 11 used in the embodiment 1-2.
  • a Mach-Zehnder interferometer consisting of two sets of paths 41 and 42 having different lengths, and two sets of power brass 43 and 44 optically coupled to these and multiplexing and demultiplexing each input light to two sets of paths is provided. Used as n for encoder 11. Light input to one of the input ports of the coupler 43 is input to the routes 41 and 42 from the two output ports, respectively.
  • One output port of the power bra 44 mainly outputs light having an optical frequency determined by the optical path length difference between the routes 41 and 42 and an optical frequency component that is an integral multiple thereof, and the other output port mainly outputs other optical frequency components. Is output. Since the selection characteristic of the optical frequency is not an on-off characteristic but a gradual characteristic, for example, in FIG.
  • the selected optical frequency (standardized) is set to fl, and the intensity is selected at the selected optical frequency fl.
  • fl Becomes a cosine wave light output of 1. Therefore, the light of the n-th optical code signal Cn (f) shown in the equation (7) is output as the output A from one output port of the force bra 44.
  • the inverted optical code signal Cr ⁇ (f) is output as the output B from the other output port.
  • FIG. 8 shows a configuration example of the decoder 12 used in the first and second embodiments.
  • An optical code multiplexed signal is input to a Mach-Zehnder interferometer 55 composed of two sets of paths 51 and 52 having different optical path lengths and couplers 53 and 54 for optically coupling light to the two sets of paths.
  • An optical frequency signal of the n-th code Cn (f) shown in equation (7) is output as one output A on the output side, and the light intensity of the output is detected as an electric signal by the detector 56a. .
  • an optical code signal Ct ⁇ (f) obtained by inverting the n-th optical code signal Cn (f) shown in Expression (7) is output, and the light of the output Ci ⁇ (f) is output.
  • the intensity is detected as an electric signal by the detector 56b.
  • Output A corresponds to the inner product value of the input optical code multiplexed signal and code code Cn (f)
  • output B outputs the input optical code multiplexed signal and the encoded code Cn (f) from 1.
  • the output of the detector 56a includes the output A within the range of the optical frequency domain Fst—Fla to be decoded.
  • the output of the detector 56b corresponds to the value integrated with respect to the optical frequency f of the optical frequency width FSR of the light source, and the output of the detector 56b is the optical frequency width FSR of the light source included in the optical frequency range Fst—Fla to be decoded.
  • the intensity obtained by subtracting the light intensity detected by the detector 56b from the light intensity detected by the detector 56a by the intensity difference detector 57 is output, and the decoded output from the decoder 12 is obtained. For example, if the output of the intensity difference detector 57 is equal to or greater than the threshold, data "1" is output, and if not, data "0" is output.
  • Embodiment 1-2 as in Embodiment 1-1, unlike the conventional example of Reference 2 using a periodic code having a different code length between different optical codes, the optical code signals are different from each other. Since they are orthogonal, the sum of the inner products of the code lengths of the different optical code signals is zero, and there is less intersymbol interference than the conventional example using a non-orthogonal periodic code.
  • the optical frequency width of the optical output of the light source encoded by the encoding code is constant, and the optical frequency of the output light from the light source is equal to the encoded optical frequency range of the encoder and the optical frequency of the decoder. If it is included in the decoding frequency range, it is not affected by the change in the optical frequency of the light source, as in Example 1-1.
  • the conventional example using a non-orthogonal periodic code it is not necessary to have a light source that outputs light over multiple periods so that intersymbol interference can be neglected sufficiently.In other words, the optical frequency bandwidth of the output light from the light source does not need to be particularly wide. It is not necessary to make the width wider enough to cover the optical frequency fluctuation of the light source than the width FSR, so it is possible to suppress the problem of waveform degradation and transmission band limitation due to the influence of the chromatic dispersion of the transmission line. .
  • the optical code signal is output only at the time of data “(mark)” in the data series in the example described above as the embodiment 1_2, the optical code signal may be output at the time of data “0” (space).
  • the n-th optical code signal Cn (f) is output with data "1" (mark) in the n-th data series, and the inverted optical code signal C (n) of the n-th optical code signal Cn (f) with data "0" (space) f), and the encoder 11 for this purpose is shown in FIG.
  • the switch 45 is controlled by each data of the data series Dn, and when the data is "1" (mark), the output A is output. When it is "0" (space), output B is output as a non-return-to-zero optical modulation signal.
  • Equations (11) and (12) hold when there is space.
  • the integration is performed with the optical frequency width FSR of the light source, and the width FSR is equal to the code repetition optical frequency width FCL.
  • a switch 45 is provided in front of the input-side force bra 43 so that the input light is transmitted to one of the two input ports of the force bra 41 and the other of the data Dn mark and space. And the output light may be output only from one output port of the output-side coupler 44.
  • the sign of the mark ("1") and the sign of the space ("0") may be exchanged. That is, the association between the mark ("1") and the space ("0") and the optical code signals Cn (f) and Ci ⁇ (f) may be arbitrary.
  • the encoder 11 may be configured as shown in FIG. Like the LN modulator,
  • planar lightwave circuit board 46 made of, for example, a LiNbO crystal having an optical effect, two
  • Waveguides 47 and 48 are constructed, and these are brought close to each other near both ends of the waveguides 47 and 48 to form force bras 43 and 44, respectively.
  • An electric field is applied to at least one of the paths 41 (or 42) in order to provide a delay difference between the two sets of paths 41 and 42 formed by the waveguides 47 and 48 between the force bras 43 and 44.
  • a pair of electrodes 49 is provided. The voltage applied to the path (waveguide) between the pair of electrodes 49 is such that an optical frequency (wavelength) signal satisfying the equation (7) corresponding to each optical code signal Cn (f) is selectively output by the encoder 11. Is adjusted as follows.
  • routes 51 and 52 and force bras 53 and 54 are configured on a planar lightwave circuit board, and the decoder 12 is similarly used as a Mach-Zehnder interferometer, that is, a filter.
  • the voltage applied to the electrode 49 is adjusted so as to satisfy the expression (8).
  • the coding code Cn (f) or the decoding code Dn (f) can be changed by changing the voltage applied to the electrode 49, which differs for each coding code. Since it is not necessary to create an encoder / decoder pair, the manufacturing cost of the device can be reduced.
  • two sets of encoders 11 and 11 are formed on the same planar lightwave circuit board 46 in which the temperature changes homogeneously. (7) nmnm
  • the n-th optical code signal Cn (f) and the m-th optical code signal Cm (f) having the same value of a and different values of r are generated.
  • the two optical code signals Cn (f) and Cm (f) have the same optical frequency characteristics and ⁇ / 2 Because of the phase difference, the encoders 11 and 11 that encode each
  • the intensity of the chip which is each optical frequency component constituting the optical code signal, is 1 or 0.
  • a configuration example of a communication system to which this embodiment 13 can be applied may be the same as that shown in FIG.
  • optical code signal generated by the encoder 11 in the embodiment 13 is equivalent to the optical code signals in the embodiments 1_1 and n.
  • the first and Nth optical code signals have the same code length FCL and are orthogonal to each other.
  • Such an optical code signal has the following properties.
  • the number of "1" chips and the number of "1" in a chip string obtained by arbitrarily extracting consecutive chips of the code length FCL from the concatenated code obtained by consecutively repeating the concatenated code Cn (f) of the code length FCL The same position of the chip arrangement between the chip rows in which consecutive chips of the code length FCL are arbitrarily extracted from the different concatenated codes generated from the different coded codes, with the number of chips balanced (the same number) In this case, the number at which the chip value becomes "1" at the same time is equal to the number at which the chip value becomes "1" at the same time.
  • the code length is simply an infinite number without a unit. From this point, the code length can be said to be the optical frequency width FCL where the code repeats, including the above-mentioned embodiment
  • Such a code can be created using, for example, a Hadamard code.
  • a first-order Hadamard matrix H is shown in FIG. 10 (a)
  • a second-order Hadamard matrix H is shown in FIG. (c)
  • the Hadamard code is the n of the Hadamard matrix
  • Lines other than the first line are fetched and 0 is replaced by 1 and 1 is replaced by -1.
  • the Hadamard codes are code 2 [0101] in the second row, code 3 [0 011] in the third row, and code 4 [0110] in the fourth row.
  • the concatenated codes obtained by concatenating these codes 2-4 continuously and repeatedly are [ ⁇ ⁇ '0101010101 ⁇ ⁇ ⁇ ], [ ⁇ ⁇ ⁇ ⁇ 0011001100 11 ⁇ ⁇ ⁇ ], [— 011001100110 ⁇ ⁇ ⁇ ].
  • the concatenated code of code 3 and the concatenated code of code 4 have a relationship in which the one-chip code is shifted, the same coded code is used in this embodiment 13 and therefore, only one of them is used.
  • Wavenumbers are sequentially assigned, and an optical frequency component corresponding to a chip of “1” in the input light is selectively output and encoded.
  • Code C (0101) concatenated code and corresponding selected optical frequency of encoder
  • the selected optical frequency is as shown in FIG.
  • Encoder 11 is a natural number multiple of the code length FCL from the light source or slightly wider than this
  • the input light with the continuous optical frequency width F is input, and therefore the concatenated code of the coding code Cn (f) is input.
  • the decoder 12 also corresponds to the concatenated code and corresponds to the optical frequency component of the input light (
  • FIG. 12 shows a configuration example of the decoder 12.
  • Optical code multiplexed signal is filtered by splitter 61
  • An optical frequency signal that is, an optical frequency signal corresponding to the same chip is filtered and selected by a filter 62b, and a code obtained by inverting the coding code of the corresponding encoder 11 and the corresponding optical frequency n
  • the optical intensity of the optical frequency signal selected by the filter 62a is detected by the detector 63a, and the optical intensity of the optical frequency signal selected by the filter 62b is detected by the detector 63b.
  • the output of 63b is subtracted by the intensity difference detector 64 and output. In this way, from among the lights output from the encoder 11, at least consecutive n
  • FIGS. 13A and 13B it will be described that Embodiment 13 is not affected by the drift of the light source light frequency.
  • Figure 13 (a) shows the state without drift of the light source wavelength.
  • the light source outputs an optical signal 20 having a code length FCL or a continuous light source frequency width F slightly wider than the code length FCL.
  • the optical signal 20 is converted by the encoder 11 in the optical frequency domain 31 into an optical signal n whose chip value corresponds to "1".
  • the frequency signal is filtered (encoded) and an optical code signal 21 is generated and output.
  • This optical code signal 21 is filtered and decoded as decoded light 22 by the decoder 12 in the decoded optical frequency domain 32 and decoded.
  • the encoder 11 encodes the optical signal 20 in the encoded optical frequency domain 31 and outputs only A F
  • the optical code signal 21 is output after being shifted in the same direction, and the decoding part of the input optical multiplexed signal is shifted in the same direction in the decoder 12, and the decoded light 22 is output.
  • the code shift and the decode shift are performed at the portions shifted by ⁇ F in the respective ranges.
  • the optical code signal 21 maintains an orthogonal relationship with a different optical code signal.
  • FIG. 14 shows an example.
  • Variable force bras 71 that can set the coupling ratio arbitrarily are connected in multiple stages via delay lines 72, and the optical output of the output port of each force bra 71 that is not connected to the delay line 72 out of the two output ports is phased.
  • the light is aggregated by the combining power bra 74 via the shifter 73 and output as a filtered optical output signal. It is.
  • the optical frequency selected by this filter can be set as desired, for example, as shown in Journal of Lightwave technology, vol. 12, No. 4, 1994, pp.
  • the optical code signal can be transmitted in the optical frequency width corresponding to the code length FCL before the connection at most, the encoding method is required compared to the conventional sine function encoding method.
  • the width of the optical frequency of the light source can be reduced, and the effect of chromatic dispersion on the transmission line can be reduced.
  • the provision of the dispersion compensator 17 can reduce the collapse of orthogonality between a plurality of optical code signals due to the difference in transmission distance.
  • the light source frequency is within the range of the optical frequency to be encoded which is configured by the concatenated code of the encoder, at least the code is obtained even if the light source optical frequency is shifted.
  • the optical input has a frequency width equivalent to the code length FCL of the Dani code, regardless of the distance between the encoder and the decoder, the optical code signal from the encoder is transmitted to the corresponding decoder by the light source. It receives as the same input strength as before the frequency shift, and cancels intersymbol interference in order to maintain orthogonality to the optical input from other encoders that do not correspond to the decoder. Therefore, it is also possible to realize an optical communication system that does not require calibration of the light source frequency.
  • FIG. 15 shows a modification of the decoder 12 in the first to thirteenth embodiments.
  • the filter 62 outputs the optical frequency signal in the same order as the corresponding encoder 11, that is, the optical signal corresponding to the same chip of each "1".
  • the frequency signal is selected and filtered as output A, and the corresponding encoder 11 and optical frequency selection
  • the optical frequency signal n corresponding to the chip whose characteristics are inverted, that is, the encoder 11 does not select and filter.
  • the signal is selected and filtered as output B and output.
  • These outputs A and B from the filter 62 are input to the detectors 63a and 63b, and their light intensities are detected, respectively, and are detected from the output of the detector 63a.
  • the output of the detector 63b is subtracted by the intensity difference detector 64 and output.
  • the output of the intensity difference detector 64 is also branched and input to the control unit 65, and the control unit 65 shifts the selected filtered light frequency of the filter 62 in accordance with the input to maximize the output of the intensity difference detector 64. To do.
  • FIG. 16 shows a specific example of the filter 62 in FIG.
  • the filter 62 can be used as an encoder.
  • the filter 62 is connected to two sets of paths 76a and 76b having different optical path lengths by a delay line 75, and these two sets of paths 76a and 76b.
  • It is composed of a multi-stage Mach-Zehnder interferometer composed of a power bra 77 for demultiplexing and a phase shifter 73 inserted into one of the routes 76a and 76b, and periodically selects an optical frequency.
  • the selected filtered light frequency (light filtered frequency characteristic function) by the filter 62 is, for example, Journal of Lightwave technology, vol.1 J, No.
  • both ports of the output of the power bra in each stage are supplied to the next stage, and the output A is 1/2 of the input at the final stage power plug 77.
  • the filter shown in FIG. Since the output of the filter is one-fourth of the number of stages of the coupler 74, when used as an encoder, the filter shown in FIG. 16 has less branch loss due to a power bra.
  • the filter 62 shown in FIG. 15 can use the filter shown in FIG. 16 or the filter shown in FIG. 14, for example.
  • One or more of the line delay, the phase shifter shift, and the branching ratio of the variable force bra may be adjusted.
  • the optical frequency width required for orthogonality is FCL
  • this adjustable maximum value is equal to FCL.
  • FIG. 17 shows an example of the filter 62 that can adjust the selected light frequency.
  • the amount of delay can be changed by using an electrode or a heater to generate a change in the refractive index using the birefringence change due to an electric field or using the thermo-optic effect due to temperature as described with reference to FIG.
  • Delay line 75 ' is used to adjust the optical path difference between routes 76a and 76b It is made possible.
  • a multi-stage consisting of these routes 76a and 76b, two force brass 77 for multiplexing and demultiplexing light to two sets of routes, and a delay line 75 'inserted into one route and capable of changing the delay amount.
  • a filter is constituted by the Mach-Zehnder interferometer. The optical frequency selected by this filter is changed by changing the delay amount of the delay line 75 'whose delay amount can be changed, so that the optical frequency selected by each Mach-Zehnder interferometer constituting the filter is shifted.
  • a variable delay line is provided between a plurality of routes and two switches or force bras 77 and 78 for selectively connecting one route.
  • Delay lines 75 75 (75 is zero delay) are connected in parallel.
  • variable delay line further includes a route provided with a delay line 81, a route provided with no delay line, and a switch 82 connected to one of these routes. May be connected in multiple stages, and the switching state of the plurality of switches 82 may be changed to change the optical input delay amount.
  • the delay lines 81 preferably have different delay amounts.
  • the delay amount is adjusted by changing the combination of the delay lines 81 through which the optical input passes. In this configuration, the same effect can be obtained by using less delay lines and delay lines than those shown in FIG.
  • FIG. 20 (a) shows a case where the drift of the encoder selection optical frequency (optical filtering frequency characteristic) is zero, and the operation is the same as the case shown in FIG. 13 (a). If the selected optical frequency drifts as shown in FIG. 20 (b), the optical input is filtered and encoded as the optical code signal 2. As shown in FIG. 20 (c), the selected optical frequency is relatively large When drifted, the optical input is filtered encoded as in optically encoded signal 21 ".
  • the code length of each of the optical code signals, 21 " is FCL. Therefore, as described above, a chip continuous from the concatenated code is represented by the light source frequency FSR (expressed as F in FIG. 20).
  • optical code signals 21 'and 21 "have the same properties. Therefore, as shown in FIGS. 20 (b) and (c), the optical code signals twenty one
  • the decoded coded signals 22 'and 22 "in which the respective optical frequency components of' and 2 ⁇ " are selected are obtained, and decoding can be performed well. If the decoding selective optical frequency drifts, the decoding selective optical frequency is shifted by using the decoder 12 described with reference to FIG.
  • FIG. 1 Another example of the filter of the encoder 11 and the decoder 12 of the embodiment 13 is shown in FIG.
  • the power is input to the filter 84, which outputs the optical frequency signal of each chip constituting the code to a different port, and which is separated by the optical frequency corresponding to the code length. Output signals to the same port. For example, if the optical frequency F, F, F, and F are composed of chips and the chip frequencies are sequentially assigned in the order of the chip arrangement,
  • a filter that repeatedly outputs a continuous optical frequency to different ports is a product of the number of light at the split optical frequency and the interval between the optical frequencies of each split light and the optical frequency output to the same port.
  • An array waveguide grating type optical multiplexer / demultiplexer (AWG) in which the interval (Free Space Range) is equal to the code length FCL can be used.
  • the Free Space Range defined by the AWG is different from the force S, which is abbreviated as FSR, and the optical frequency width FSR used in this specification, and according to the FSR in this specification, C / FCL ( C: speed of light) and expressed.
  • the port for outputting the selected optical frequency of the encoded code of the filter 84, that is, the optical frequency signal corresponding to the “1” chip is connected to the power bra or the multiplexer 86 a via the path 85.
  • the output of the power blur or multiplexer 86a is output as the output A.
  • the optical frequency signal corresponding to the “1” chip of the code, ie, the port from which the unselected optical frequency signal is output, is connected to the power bra or the multiplexer 86b via the path 87, and the power bra is connected.
  • the output of the multiplexer 86b is output as the output B.
  • the coding code C (0011) shown in FIG.
  • Ports 3 and 4 that output F + qFCL and F + qFCL to multiplexer 86b are connected to multiplexer 86a.
  • the filter of encoder 11 and the decoder 1 According to the filter having the configuration shown in FIG. 21, the filter of encoder 11 and the decoder 1
  • an array waveguide grating type optical multiplexer / demultiplexer AWG is used as compared to the above example, rather than a power bra that branches and combines light regardless of the optical frequency to generate a branch loss.
  • using a multiplexer instead of a demultiplexer is advantageous in that optical loss due to branch loss can be reduced.
  • This filter has fewer components and thus has the advantage of less light loss than the filter shown in FIG.
  • the encoder 11 can also be configured as shown in FIG. A filter similar to the filter 84 in Fig. 21 is used, and whether each port is allowed to pass light through the routes 89, 89
  • the chip of the code 91 in switch 91, ..., 91 is "
  • FIG. 23 shows an example in which a decoder is configured using the filter 84. Switch the routes 89, ..., 89 connected to each port of the filter 84 to either the multiplexer 92a or the multiplexer 92b.
  • ⁇ 93 are provided, and the switches 93, ⁇ , 93 are connected to the chip of the coding code “1”.
  • the corresponding one is connected to the multiplexer 92a, and the corresponding one is connected to the multiplexer 92b.
  • the outputs of the multiplexers 92a and 92b are supplied to detectors 63a and 63b, respectively.
  • the subsequent configuration is the same as that shown in FIGS.
  • FIG. 1 Another example of an encoder using the filter 84 is shown in FIG.
  • the optical input is input to the filter 84 through the optical circulator 94, and routes 89, ⁇ ⁇ -, 89 connected to each port of the filter 84.
  • the light is separated from the optical input and output from the urator 94a.
  • Selective reflectors 95, ..., 95 are signs
  • FIG. 25 Another example of the decoder using the filter 84 is shown in FIG. 25, and portions corresponding to those in FIGS. 23 and 24 are denoted by the same reference numerals. Select whether to reflect or conduct light at the end of the route 89,..., 89
  • 96 are combined by a multiplexer 92a and supplied to a detector 63a. Passing
  • the chip corresponding to the "1" chip is set to conduction, and the chip corresponding to the "1" chip is set to reflection. With this configuration, the number of multiplexers can be reduced by one with respect to the decoder shown in FIG.
  • loss units 90 As shown by the broken lines in FIG. 21-FIG. 25, loss units 90,.
  • 1 E 1 E is inserted to give an optical loss according to the light intensity ratio for each output path of the filter 48, and for each path that may be generated based on the array waveguide grating type optical multiplexer / demultiplexer AWG. It is desirable to level the light intensity difference of several dB. By doing so, noise due to the intensity of light intensity for each optical frequency can be reduced.
  • the optical intensity output of the optical frequency signal is set to a positive output, and the optical intensity output of the optical frequency signal corresponding to "-1" is supplied to the intensity difference detector as a negative output.
  • the outputs of the detectors 63 and 63 are supplied to the positive input terminal of the detector 64, and the n 1 3 2 4 outputs of the detectors 63 and 63 are supplied to the negative input terminal. Is the addition input n
  • the input at the negative input terminal is used as a subtraction input, and the result of addition / subtraction is used as a decoded signal output.
  • the outputs of detectors 63 and 63 are
  • the signal is added and subtracted by the output unit 64 and output as a decoded signal.
  • FIG. 27 shows still another example of the decoder using the filter 84. This is the case where an electric delay time adder is used as the dispersion compensator. Detector 63 for each output route of filter 84
  • the detection output corresponding to each chip is electrically electrically delayed individually by the delay time adder 98, and the difference in the arrival time of each chip due to the different delay time for each optical frequency on the transmission line is leveled.
  • Detector output after delay time leveling is intensity difference detector
  • a filter that outputs an output A and its inverted code output B is used as a filter of the encoder 11,
  • a switch 45 is connected to the output side of the filter, and the switch 45 is controlled by the data sequence D.
  • the data is a mark ("1")
  • the output A is output.
  • the output of output B is switched and output as a non-return zero signal.
  • Output In this case as well, the switch 45 may be provided on the input side instead of the output side of the filter as described with reference to FIG. Also, a gain of 3 dB can be obtained as in the case where the configuration shown by the broken line is added in FIG.
  • a pair of encoder 11 and decoder n 12 are mounted on the same planar lightwave circuit board 46.
  • the signs have the same value of a and the different value of r in equation (7).
  • a pair of the encoder 11 and the decoder 12 is provided at one position of the communication system, and the communication system as a communication partner is provided.
  • a pair of an encoder 11 and a decoder 12 is provided at the other position of the system.
  • M for example, the set of planar m according to the optical frequency of the optical code signal received at m
  • the temperature of the lightwave circuit board is adjusted as described with reference to FIG. Encoder 11
  • the decoder 12 are mounted on the same planar lightwave circuit board where the temperature changes homogeneously.
  • the optical frequency to be selectively filtered by the filter of the encoder 11 is controlled by the temperature adjustment.
  • the optical frequency of the signal can be adjusted so that the cross-correlation value with the m-th decoded code whose temperature is not adjusted is low.
  • FIG. 9 as in the case where two encoders 11 and 11 are configured on the same substrate 46, if an individual temperature change occurs, a code for encoding an optical code signal whose cross-correlation value is degraded respectively. Since the devices are mounted on the same planar lightwave circuit board whose temperature changes homogeneously, deterioration of the cross-correlation value can be suppressed.
  • the temperature of the planar lightwave circuit board may be controlled by detecting the intensity of light transmitted through the encoder and detecting the intensity of the transmitted light.
  • an optical signal whose light intensity frequency characteristic is a function Cm (f) is used for one value of the binary data, and an optical signal whose light intensity frequency characteristic function is (11 Cm (f)) is used for the other value.
  • the temperature should be adjusted according to the difference between the intensities of the respective transmitted lights of both encoders.
  • the one shown in Fig. 9 is used, the number of users that can be accommodated in the entire system is reduced by half because two coding codes are assigned to one user (user). According to the configuration shown in FIG.
  • the first embodiment is also applied to the optical code signals having the relationship shifted to each other in the Hadamard code of Example 13 because the chip shift can be suppressed. I can do it.
  • devices of a plurality of accommodation stations a plurality of optical fibers 13, 13, 13 for transmitting signals from these accommodation stations, and a signal from the plurality of optical fibers 13, 13, 13
  • An optical communication system including a concentrator circuit 99 for concentrating the signal to the single optical fiber 13 and a central office device Cst receiving the optical signal after the concentrator from the concentrator circuit 99 via the single optical fiber 13 is assumed.
  • the coder of each accommodation unit is arranged in a concentrator circuit 99 for concentrating optical signals from a plurality of optical fibers to a single fiber 13. That is, in this case, the configuration shown in FIG. In this way, regardless of the difference in the distance between the central office apparatus and the central office apparatus, the optical signal of the power of all the central office apparatuses can be made to have the same chromatic dispersion. The same dispersion compensation can be achieved for optical code signals.
  • a single dispersion compensator that compensates so as to equalize the delay time depending on the optical frequency of the optical fiber 13 connecting the central station device from the concentrator 99, and the dispersion compensation of the optical code signals from all the encoders is achieved. it can.
  • the encoders are centrally arranged, adjustment of the encoding characteristic optical frequency of all the encoders can be easily performed in one place.
  • the description so far is based on the fact that an optical signal is input from the light source 10 to the encoder 11, and the optical filtering frequency characteristic of the encoder 11 corresponding to the code code Cn (f) is obtained.
  • Cn (f) was added, and the nth optical code signal was generated intermittently according to the mark and the space.
  • the coded code was changed.
  • a chip light source for outputting an optical signal of a single optical frequency is provided corresponding to each of the constituent chips, and the chip light sources corresponding to 1 of the chips constituting the coding code Cn (f) are output. If the chip light source corresponding to 0 is not output, the chip light source is output at the time of marking according to the encoding code Cn (f), the space light is output, and the chip light source is not output even if it is shifted.
  • the chip light source corresponding to 0 is not output, the chip light source is output at the time of marking according to the encoding code Cn (f), the space light is output, and the chip light
  • the properties of the codes of Embodiment 13 are as follows. When any two coded codes are selected from the coded codes having different code lengths FCL, the first coded code and the second coded code are simultaneously set to "1" as the value of the corresponding chip on the chip array. Chip position Is equal to the number of chip positions where the first encoding code is "1" and the second encoding code is "1 1"
  • a first chip row and a second chip each of which arbitrarily extracts consecutive chips of the code length FCL from each of different concatenated codes successively and repeatedly concatenated for any two different encoded codes.
  • the number of chip positions where the first chip row and the second chip row are simultaneously "1" and the number of chip positions where the first chip row is "1" and the second chip row is "1 1" Are equal, or the number of chip positions where the first chip row and the second chip row are simultaneously "1 1", the first chip row is "1 1", and the second chip row is "1"
  • the code is a code that satisfies at least one of the same number of chip positions, and consecutive optical frequencies are sequentially assigned to the chips that make up the code, corresponding to the arrangement.
  • the light source light frequency width FSR is a natural number multiple of the code length FCL of each coding code Cn (f), and the light frequency range 31 to be coded by each coder 11 and the decoding light of each decoder 12 Both frequency regions 32 are within the optical frequency Fst-Fla, and Fla-Fst> FSR.
  • Cn (f) Cn (f + FCL) is satisfied in the FSR of Fst-Fla, and the above-mentioned equation (13) is obtained between the inverted sign (l_Cn (f)) of Cn (f) and Cn (f).
  • ⁇ dt represents the definite integral of f in any interval FSR from Fs to Fla.
  • the second embodiment of the present invention is an embodiment in which the conventional problems are solved by performing phase modulation or phase amplitude modulation on a carrier in the optical frequency axis.
  • FIG. 30 shows an optical communication system of Example 2-1 to which the second embodiment is applied.
  • a transmission signal from the input terminal 101 is converted into a phase shift (phase shift value) system of less than one cycle in accordance with data of each V (V is an integer of 1 or more) data.
  • the signal phase amount converter 110 converts the signal into an IJ, that is, a modulation phase sequence (also referred to as a modulation unit sequence).
  • the optical signal from the light source 120 starts on the basis of a predetermined optical frequency (wavelength).
  • the phase of the quasi-carrier on the optical frequency (wavelength) axis is converted by the signal phase amount converter 110 into each phase amount. Shift by 130.
  • a pseudo carrier is sometimes simply called a carrier below.
  • the term “pseudo-carrier” corresponds to the terms “optical frequency characteristic (function)”, “coding code or decoding code”, or “optical filtering frequency characteristic (function)” in other embodiments.
  • the second embodiment is similar to QPSK or QAM modulation for a carrier on the time axis used in wireless communication technology, etc., but performs the same for a pseudo carrier on the optical frequency axis.
  • the term “pseudo carrier” is mainly used.
  • the shift amount means this).
  • each of the data sets (0, 0), (0, 1), (1, 0), (1, 1) is converted to a phase amount 0, ⁇ 2, ⁇ , 3 ⁇ / 2 less than one cycle .
  • the optical frequency difference from the reference optical frequency fs is the phase f
  • one cycle 1 is 400 GHz
  • 1 is added to the trigonometric function having the intensity of each optical frequency signal as a variable and divided by 2.
  • the phase amounts 0, ⁇ / 2, ⁇ , and 3 ⁇ 2 have optical frequency characteristics in which the optical frequency is sequentially shifted by 100 GHz as shown in FIGS. 31 (a) and 31 (d).
  • the light source 120 outputs an optical signal having an optical frequency width of at least the FSR.
  • the received light is split by the splitter 210 into four filters 221, 222, 223, and 224 corresponding to the phase shift amounts of 0, ⁇ / 2, ⁇ , and 3 ⁇ 2, respectively.
  • , 224 are detected by detectors 231,..., 234, respectively.
  • the outputs of the detectors 231 and 233 and 232 and 234, which detect the phase shift amounts that are shifted from each other by a half-period phase and the corresponding filter intensities, are subtracted by comparators 241 and 242, respectively.
  • the outputs of the comparators 241 and 242 are converted by the code signal converter 250 into a data set corresponding to the phase shift amount of the pseudo carrier, and output as a decoded data sequence.
  • FIG. 32-1—FIG. 32-4 show the wavelength characteristic of the light source 120 of the embodiment 2_1, the intensity-time characteristic when a pulse light source is used, and the optical output of the modulation unit 130 according to each phase shift amount ⁇ .
  • the leftmost column in each figure is the output light of the light source 120.
  • the optical frequency width of the output light is 400 GHz, and the output light assumes a flat intensity over the entire wavelength.
  • the optical frequency characteristics of the output light of the phase modulator 130 corresponding to the phase shift amounts 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 are shown in the second column from the left in Fig. 32-1 to Fig. 32-4, respectively. Is shown.
  • the third column from the left of each figure shows the filtering frequency characteristics of the filters 221, 223, 222, and 224 of the optical receiver 200.
  • Fig. 32-1-Fig. 32-4 shows the frequency characteristics of the transmitted light that has passed through each of the filters 221, 223, 222, and 224 when receiving the output light from the modulator in each of Figs. Shown in the fourth column from the left.
  • Fig. 32-1 The rightmost system IJ in Fig.
  • FIGS. 32-1 and 32-4 shows the time change of the intensity detected by detectors 231, ⁇ -, and 234, respectively.
  • the power of the light source output light is 1, the same as the optical frequency characteristic of the output light of the modulating unit according to the phase shift amount with respect to the reference in the phase modulating unit 130 is obtained.
  • the detector intensity of the filter with filtering characteristics is 0.375 (the first line in Fig. 32-1;
  • the detector intensity corresponding to the filter whose filtering characteristics are shifted by ⁇ is 0.125 (3rd line in Fig. 32-1 and 4th line in Fig. 32-2).
  • a comparator that compares the two outputs 0.25.
  • the detector intensity of the filter in which the filtering characteristics are shifted by ⁇ / 2 and 3 ⁇ / 2, respectively, with respect to the frequency characteristics of the output light of the phase shift amount with respect to the reference in the phase modulation unit 130 is 0.25. (2nd and 4th rows in Fig. 3-1 and 3rd and 1st rows in Fig. 3-2). Therefore, a comparator that compares these detector outputs will obtain an output of 0.
  • the detector and the comparator detect the transmitted light intensity for each optical frequency and compare these intensities.
  • the output intensity of the comparator in the case of comparing the light intensity of each light pulse of the transmitted light of the filter is as follows. Shown in
  • the output light of the phase modulator 130 is represented by the following equation.
  • f means an optical frequency difference from the reference optical frequency.
  • n l.
  • One item on the left side corresponds to, for example, the output of the detector 231, and two items correspond to the output of the detector 233.
  • the number M of possible phase shifts (phase shift values) of the pseudo carrier is an even number 4, and these phase shift amounts (phase shift values) are sequentially different by ⁇ / 2.
  • Side uses the same number of filters as ⁇ , but if the possible phase shifts (values) of the quasi-carrier are not ⁇ shifted from each other, the A filter having the same characteristics as that of the output light and a filter having characteristics in which the phase is shifted by a half cycle ( ⁇ ) are used. Therefore, the optical receiver 200 requires 2 ⁇ filters and the same number of comparators as ⁇ .
  • the value of ⁇ is arbitrary, but the phase shift amount (phase shift value) given to the carrier by the phase modulation unit 130 is different from the phase shift amount (phase shift value) in which the remainder ⁇ f in one cycle of the trigonometric function is different. Need to be
  • the optical frequency characteristic of the output light of the light source 120 is flat.
  • the transmission-side phase modulation unit or the reception-side filter may be used.
  • weights may be assigned so as to equalize the intensity of each optical frequency.
  • a single optical transmitting device 100 and optical receiving device 200 are shown in combination, and the present invention is also applicable when other optical transmitting devices and optical receiving devices share the same optical transmission line 300. Yes, in that case, set as follows.
  • phase shift amount phase shift value
  • the optical frequency of the light source 120 used is the same for the same FSR, and the same light is used for the optical frequency outside the FSR of the optical transmitter.
  • the carrier frequency FSRZn differs for each optical transmitter. If the value of the period FSR / n is the same, if the number of phase shifts (shift values) to be modulated by the phase modulator 130 is set to M including the 0 phase, FSRZn / M is calculated as the reference optical frequency fs. The value must be unique among all-optical transmitters. However, if the same n is used by a different set of optical transmitter and receiver, only those that are shifted by 1/4 cycle are orthogonal. In this case, M becomes 4 and those shifted by half a cycle are used by the same pair of optical transmitter and receiver.
  • the carrier function is a periodic function within the FSR, so the optical frequency outside the FSR is also modulated with the same function as the pseudo carrier. If a filter is used and the optical frequency of the light source is almost the same, the integral of the inner product of the two becomes zero, and they are orthogonal to each other and do not interfere between the carrier waves.
  • the phase modulator 130 used in this embodiment includes a filter 131 and a modulator 132 that changes the filtering characteristic.
  • the filter 131 is configured as shown in FIG.
  • a Mach-Zehnder interferometer that splits input light into two sets of optical paths 131b and 131c having a predetermined optical path length difference by a coupler 131a and combines them again by a power bra 131d is used.
  • the one provided on one path 131b and modulating the optical path length difference can be applied.
  • Light passing through the routes 131b and 131c interferes with the power blur 131d, and a component at an optical frequency interval corresponding to the difference in route length is output. Since the optical frequency characteristic of this output light is periodic, if the frequency difference of the output light is, for example, 100 GHz, the filtering characteristic shown at the right end of FIG. 31 (a) can be obtained.
  • the filter 131 that periodically filters an optical frequency like a Mach-Zehnder interferometer, interference can be removed even when the reference optical frequency fs is different from the FSR below the FSR.
  • a phase shift amount signal from a signal phase amount converter 110 is applied to an electrode 49 on a planar lightwave circuit board, Is changed.
  • the filter 131 and the modulator 132 are an integral component connected in series. That is, the modulator 132 is incorporated in the filter 131. As shown in FIG. 9,
  • the signal phase amount converter 110 in the optical transmission device 100 distributes a data series from the input terminal 101 into two series in this example by a serial / parallel converter 110a, and the serial / parallel converter 110a
  • the two data of the two series from are converted by the D / A converter 110b into a digital value 0 according to the combination (0, 0), (0, 1), (1, 0), (1, 1) of the input data. , 1, 2, and 3, respectively, and for example, a voltage having a magnitude corresponding to these values is applied to the electrode 49 in FIG.
  • the phase of the pseudo carrier of the output light of the phase modulation section 130 changes as shown in FIGS. 31 (a) and 31 (d).
  • the filter 131 in the optical transmission device 100 filters at least the optical frequency width FSR with the frequency of the light from the light source 120, and the filtering characteristic, that is, the transmittance (light intensity) of one light.
  • the frequency characteristics are as follows.
  • the transmittance (light intensity) of each phase is calculated by adding 1 to the trigonometric function of the period obtained by dividing the FSR by a natural number n, and calculating It follows the divided function.
  • the code signal converter 250 in the optical receiver 200 receives the outputs 0 or 1 of the comparators 241 and 242 in parallel to the parallel-to-serial converter 251 and outputs them as a series of data signals. Output to terminal 201.
  • the transmission signal input to the input terminal 101 of the optical transmission device 100 is restored and output to the output terminal 201.
  • a carrier wave having positive and negative polarities and having no correlation between the carrier waves does not have positive and negative polarities obtained by cutting out a desired frequency repetition on the optical frequency axis.
  • broadband light with an optical frequency width that is a natural number multiple of the period of the pseudo carrier is used, and the receiving side cancels the input of another pseudo carrier that is not to be received.
  • differential detection even when using light with the same optical frequency, the correlation between pseudo carrier waves caused by trigonometric functions that are not orthogonal with a finite optical frequency width is removed, and a carrier wave without correlation is simulated.
  • By modulating the phase of the simulated carrier it is possible to realize MPSK with control accuracy that reduces the control accuracy of the optical wavelength order. It will be described later that the second embodiment is basically based on the same concept as the first embodiment.
  • the light filtered by the The modulator 132 controlled the phase of the pseudo carrier of the light.
  • a plurality of filters 133a, 133b, 133c which filter an optical frequency according to a phase shift amount (value) which is a modulation amount at the time of modulation.
  • the light from the light source 120 is split and input to the filter 133a-133d by the optical splitter 134.
  • Light transmitted through these filters 133a-133d is selectively output by the modulator 131 in accordance with the modulation phase amount (value).
  • the filters 133a and 133d have the filtering characteristics shown in Fig. 31 (a) and Fig.
  • Each transmitted light of the filters 133a-133d is input to the optical switches 135a-135d constituting the modulator 132.
  • the signal phase amount converter 110 two data of the output of the serial-parallel converter 110a are decoded by the decoder 110c, and the data sets (0, 0), (0, 1), (1, 0), (1, Outputs are generated at the output terminals 11a, 111b, 111c, and lld in accordance with 1), respectively, and the output of the output terminals 11 la—11 Id is set to the corresponding one of the switches 135a and 135d.
  • Output light from the switches 135a and 135d is output to the transmission line 300 through the multiplexer 136.
  • the switches 135a-135d of the modulator 132 are inserted between the splitter 134 and the filters 133a-133d, and the transmitted light of the filters 133a-133d is input to the multiplexer 136. You can combine them.
  • the modulator 132 may be a modulator that inputs light from a light source only to a selected filter and transmits light from the selected filter.
  • the embodiment 2-2 is different from the embodiment 2-1 in that there is no need to select a material that can be switched by a switching time for modulating the optical path length difference.
  • the optical receiver 200 having the configuration shown in FIG. 30 can be used.
  • the case where the number M of possible phase shifts (values) of the pseudo carrier wave is 4 is described as an example, but M can be arbitrarily set.
  • Example 2_3 two sets of pseudo carriers having a phase shift of ⁇ are used as one set, and a different set of pseudo carriers having a phase shift of ⁇ / 2 is different from that of the two data sets of the transmission signal.
  • FIG. 35 (a) shows an example of an optical transmission device to which Embodiment 2-3 is applied.
  • the conditions for the light source 120 and the filter are the same as in the case of Examples 2-1 and 2-2.
  • the two filters in each set differ in the phase shift of their filtering characteristics by ⁇ , Is shifted by FSR / 2 / ⁇ .
  • Fig. 36 (a) shows an example of QPSK signal points (coordinate points) on complex coordinates
  • Fig. 36 (b) shows an example of signal data sets for simulating QPSK, and sets of coordinate points and selected filtering phases.
  • the phase shift of one set is 0 and ⁇
  • the phase shift of the other set is ⁇ / 2 and 3 ⁇ / 2
  • each coordinate point is shown in Fig. 36 (a). Shown on a circle.
  • 0 and ⁇ in the set of phase shifts 0 and ⁇ correspond to 1 and _1 on the X axis, respectively, and ⁇ / 2, 371/2 in the set of phase shifts ⁇ / 2 and 3 ⁇ / 2 Equivalent to 1 and _1.
  • the values on the ⁇ axis are shown on the left in parentheses, and the values on the y axis are shown on the right in parentheses.
  • Phase modulation section 130 performs 0 phase shift or ⁇ phase shift in accordance with 0 or 1 of the upper bit (data) in the example of FIG. And the pseudo carrier light of ⁇ / 2 phase shift or 3 ⁇ / 2 phase shift according to the lower bit (data) 0 or 1 is output.
  • it can be said that it is an optical code signal representing a combination code of two data in the data sequence for each modulation unit of the outputted pseudo carrier light.
  • a zero-phase filter 133a and a ⁇ -phase filter 133c are combined to form a ⁇ / 2-phase filter 133b and a 3 ⁇ / 2-phase filter 133d. Are paired.
  • Switching switches are provided as the modulators 132a and 132b, and the higher bit of the serial / parallel converter 110a of the signal phase converter 110 controls the switch of the modulator 132a. If the higher bit (data) power is 0 ", the modulation is performed. The switch of the modulator 132a is connected to the 0-phase filter 133a, and if "1", it is connected to the ⁇ -phase filter 133c. The lower-order bit (data) of the serial-parallel converter 110a is used as the switch as the modulator 132b. But If this lower bit is "0", it is connected to the ⁇ / 2-phase filter 133b, and if it is "1", it is connected to the 3 ⁇ / 2-phase filter 133d. The transmitted light of each filter, which is switched and output by each of the switching switches as the modulators 132a and 132b, is output to the optical transmission line 300 through the multiplexer 136.
  • the input data sequence from terminal 101 is converted into a first separated data sequence (lower bit sequence) and a second separated data sequence (higher bit sequence) for each data by serial-parallel conversion unit (sequence conversion unit) 110a. ), And the modulation section 132b is controlled according to the value for each data of the first separated data series, and the modulation section 132a is controlled according to the value for each data of the second separated data series.
  • the optical code signals of the corresponding pseudo carrier are output, and these optical code signals are combined and output as an optical code signal.
  • the modulators 132a and 132b it is possible to select to which filter light is input. That is, as shown in FIG. 35 (b), the light from the light source 120 is split into two by a splitter 134, and one of the splitters is switched by a switch as a modulator 132a to a zero-phase filter 133a and a ⁇ -phase filter 13a. Switch to 3c, switch the other split light to ⁇ / 2-phase filter 132b and 3 ⁇ / 2-phase filter 132d by switch as modulator 132b, and pass through each filter 133a-133d The light may be output to the optical transmission line 300 through the multiplexer 136. Filters 133a- 133d Both the input and output sides of the switch are used as modulators of the switching switches so that light from the light source is input only to the selected filter and light from the selected filter is transmitted. Moore.
  • the optical receiver corresponding to this embodiment can have the same configuration as that shown in FIG. However, since the comparators 241 and 242 output +1 or 1 1, one of the outputs from the comparators 241 and 242 is output by the conversion units 241 a and 242 a in the optical receiving device 200 in FIG. 1 is supplied to the code converter 250 as 0. Thus, it will be easily understood that the same signal sequence as the input transmission signal sequence of optical transmission device 100 can be obtained from code converter 250.
  • Example 2-4 simulates 16QAM using a pseudo carrier, and in this example, 16 types of Two sets are simulated, in which the light from the light source is simulated into a pseudo carrier having a phase shifted by half a period ( ⁇ ) according to the data set.
  • the phase shift amount differs by a quarter period ( ⁇ / 2) and has a phase shift relationship that is orthogonal.
  • the optical intensity (amplitude) of these four pseudo carrier waves is binary, Transmit.
  • Figs. 37-1 and 37-2 show configuration examples of Example 2-4. This is a case where the optical transmitter 100 shown in FIG. 37-1 uses four quasi-carrier generation filters 133a 133d of 0 phase, ⁇ 2 phase, ⁇ phase, and 3 ⁇ / 2 phase. The conditions for the light source 120 and the filters 133a-133d are the same as those of the embodiment 2-3.
  • Figure 38 (a) shows the signal points (coordinate points) and data sets on the 16QAM coordinates (x-axis is the real part and y-axis is the imaginary part).
  • Figure 38 (b) shows the pseudo carrier for each data set. The relationship between the phase shift and the light intensity (amplitude) is shown. For example, when the data set is (0000), light having a phase shift of 0 and an optical intensity of 3 and a light having an intensity of 3 and a phase shift of ⁇ / 2 are output to the transmission line 300, and the data set is (0101). In the case of), light having a phase shift of 0 and an intensity of 3 and a light having a phase shift of 3 ⁇ / 2 and an intensity of 1 are output to the optical transmission line 300.
  • the signal transmitted from the terminal 101 is converted by the signal-phase-to-amplitude converter 140 into the phase-amplitude information indicating the phase shift and the intensity shown in FIG.
  • the phase and amplitude modulating section 150 modulates the optical signal into two optical signals of a pseudo carrier phase and light intensity according to the phase amplitude information, and outputs the modulated signal to the optical transmission line 300.
  • the input transmission signal sequence is divided into four signal sequences by, for example, the serial-parallel converter 110c.
  • the phase-amplitude modulation section 150 is a filter 133a, 133b, 133c, 133d having zero, ⁇ / 2, ⁇ , and 3 ⁇ / 2 phase shift powers of the pseudo carrier, and two modulators 151 and 152. And a multiplexer 136. For each 4-bit (data) set obtained by sequentially extracting 1 bit (data) from the four signal sequences from the serial-to-parallel converter 110b, the modulator 151 outputs the highest order of the 4 data sets (Fig. 38 (b)).
  • the switching switch 151a is controlled by the data on the left side).
  • the switch 151a is connected to the 0-phase filter 133a when the data is 0, and is connected to the ⁇ -phase filter 133c when the data is 1 and outputs light from the switch 151a.
  • the intensity is controlled by the third data from the top in the data set in the amplitude changing section 15 lb, and the data is output to the multiplexer 136 after being converted to the intensity 3 when the data is 0 and to the intensity 1 when the data is 1.
  • Modulator 152 has four data sets
  • the switching switch 152a is controlled by the data from the second position, and the switch 152a is connected to the ⁇ / 2-phase filter 133b when the data is 0, and is connected to the 3 ⁇ / 2-phase filter 133d when the data is 1.
  • the intensity of the output light from the switch 152a is controlled by the lowest-order data in the data set in the amplitude changing unit 152b, and the data is output to the multiplexer 136 after being converted to the intensity 3 when the data is 0 and to the intensity 1 when the data is 1. .
  • the input data sequence from the terminal 101 is sequentially sorted and separated into first to fourth separated data sequences by a serial-parallel conversion unit (referred to as a sequence conversion unit) 110c,
  • the phase modulator 152a is controlled for each data of the third separated data series according to the value, and the phase modulator 15la is controlled for each data of the fourth separated data series according to the value.
  • the amplitude changing unit 152b is controlled for each data of the separated data series according to the value, and the amplitude changing unit 15lb is controlled for each data of the second separated data series according to the value.
  • modulators 151 and 152 may be inserted between the light source 120 and the filters 133a and 133d.
  • the light from the light source 120 is split into two by the splitter 134, and one of the two lights is controlled by the modulator 151 to have the intensity of 3 or 1 according to the third data from the top by the amplitude changing unit 151b. Then, the controlled light is switched to the 0-phase filter 133a or the ⁇ -phase filter 133b by the switching switch 151a according to the most significant data and output.
  • the intensity of the other light from the splitter 134 is controlled to 3 or 1 by the amplitude changing unit 151b in the modulator 152 according to the least significant data, and the controlled light is transmitted from the upper switch by the switching switch 152a. Switch to ⁇ / 2-phase filter 133b or 3 ⁇ / 2-phase filter 133d according to the second data and output.
  • the input light is subjected to intensity control by the third data and the least significant data in the amplitude changing sections 151b and 152b, respectively, and any one of the two sets of filters is used. May be selected and output by the switching switches 151a and 152a according to the most significant data and the second data, respectively.
  • the light from the light source is input to one of the filters of each set by the two switching switches 151a and 152a, and the output lights of the filters of each set are output to the amplitude change sections 15 lb and 15 2b, respectively.
  • the intensity may be controlled and output.
  • the optical receiver 200 is a power code signal converter 250 using the same filters as the filters 221 224, detectors 231-234, and comparators 241 and 242 shown in FIG. Instead, two levels including the polarity (positive or negative) of each output of comparators 241 and 242 (Intensity), that is, a code signal converter (data generating means) 260 that converts the data into four data sets corresponding to the four levels and outputs the data in series with the four data sets is used. That is, as the output of the comparators 241 and 242, any one of 3, 1, -1 and _3 shown in FIG. 38 (b) is output, and corresponding to the combination of these, the data set in FIG. Is output.
  • a code signal converter data generating means
  • a code signal converter 260 for example, as shown in the optical receiver 200 of Fig. 37-2, the outputs of the comparators 241 and 242 are respectively signed by A / D converters 261 and 262. Is converted to a 3-bit digital value including the (sign), and by reading the conversion memory 265 with these 3-bit digital values (total of 6 bits) as addresses, the correspondence shown in FIG. 38 (b) can be obtained.
  • a 4-bit data set is output, and the output data set is converted to serial data by a parallel / serial converter (data generation means) 266 and output to an output terminal 201. It is assumed that the relationship between the address and the data to be read is stored in advance in the conversion memory 265 so that the relationship between the comparator output and the data set shown in FIG. 38 (b) can be obtained.
  • a carrier having positive and negative polarities and having no correlation between the carriers is converted to a desired frequency on the optical frequency axis.
  • a broadband light with an optical frequency width that is a natural number times the period of the simulated carrier is used, and By performing differential detection that cancels the input of another pseudo carrier, even if the same optical frequency is used, the correlation of the pseudo carrier that is caused by a trigonometric function that is not orthogonal with a finite optical frequency width is removed.
  • Simulate uncorrelated carriers modulate the intensity of multiple simulated carriers that are orthogonal to each other in half a cycle, and transmit them at the same time to realize QAM with control accuracy that relaxes the control accuracy of the wavelength order of light. Can be.
  • the optical transmitter 100 includes a signal phase converter 110, a filter 137 that divides the light from the light source 120 into a plurality of chips on the optical frequency (wavelength) axis and transmits the chips, A phase modulator 160 including a modulator 132 is provided.
  • the optical frequency width of the light output from the light source 120 is defined as FSR.
  • the filter 137 receives the light from the light source 120, filters at least the optical frequency width FSR with the optical frequency of the light output from the light source 120, and filters the light having the optical frequency width FSR from the light source into a multiple of 4. Is divided on the optical frequency axis into L chips, and the chips are selectively transmitted.
  • the selection of the chip that transmits the light of the filter is mapped to the phase value as follows.
  • the divisor of L / 4 is S.
  • Fig. 41 shows an example of the filtering characteristics.
  • Filter with phase 0 137a Filters by repeatedly turning on (passing) successive 2S chips and turning off (cut off) the next 2S chips until L.
  • Filter 137b having a phase of ⁇ / 2 Turns off the continuous S chip, turns off (cuts) the next 2S chip, and turns off (cuts off) the next S chip until L Repeat and filter.
  • Filter with a phase of ⁇ 137c Repeatedly turns off (blocks) 2S chips consecutively and turns on (passes) the next 2S chips until L, and performs filtering.
  • Filter 137d with a phase of 3 ⁇ / 2: Turn on (pass) the next S chip, turn off (cut off) the next 2S chip, and turn on (pass) the next S chip until L. Waves.
  • the period is FSR / n equivalent to a 4S chip
  • 2S chips equivalent to half the width of the period are equivalent to 2S chips, that is, one period is 2 ⁇
  • 2S chips with a ⁇ width are 0, ⁇ / 2
  • ⁇ / 2 shifted to the respective 2S chip positions
  • the filters 137a, 137b, 137c, and 137d are filters 137a, 137b, and 137c, respectively, which have filtering characteristics of transmitting light.
  • 137d are shown in Fig. 41 (a), Fig. 41 (b), Fig. 41 (c), and Fig. 41 (d), respectively. Therefore, the light transmitted through these filters 137a, 137b, 137c, and 137d is a square wave with a ⁇ -width pseudo-carrier with a period of FSR / n on the optical frequency (wavelength) axis, that is, a duty ratio of 50%. Respectively, and are phase-modulated to 0, ⁇ 2, ⁇ , and 3 ⁇ / 2, respectively.
  • QPSK modulation is enabled by associating two pseudo carrier waves with such a phase with two data sets.
  • the filters 137a,..., 137d are respectively associated with 0,..., 3 ⁇ 2, so that the signal phase conversion is performed in the same manner as in the optical transmitter 100 shown in FIG.
  • the modulator 132a and 132b in FIG. 40 determine whether the output light of the zero-phase filter 137a or the output light of the ⁇ -phase And the output light of the ⁇ / 2-phase filter 137b or the output light of the 3 ⁇ / 2-filter 137d, respectively, and output to the optical transmission line 300 through the multiplexer 136.
  • Fig. 35 (b) As shown here, the modulators 132a and 132b may be inserted into the manpower law of the filters 137a-137d. Modulators may be inserted on the input side and output side of the filters 137a and 137d, respectively.
  • the optical receiver 200 according to Embodiment 2-5 has a zero-phase filter having the same filtering characteristics as the filters 137a to 137d, instead of the filters 221 to 224 of the optical receiver 200 shown in FIG.
  • the filter 225, the ⁇ / 2-phase filter 226, the ⁇ -phase filter 227, and the 3 ⁇ 2-phase filter 228 are used.
  • the corresponding components are given the same reference numerals as in FIG. 30, and the filters are shown in FIG. 37-1 with the reference numerals in parentheses.
  • FIG. 42_1 and FIG. 42_4 show the optical frequency characteristics of the light source 120 of the embodiment 2_5 and the intensity-time characteristics of light when a pulsed light source is used, the output of the modulator corresponding to each phase (output of the transmitting device), and the reception.
  • Examples of the filtering characteristics of each filter of the device, the transmission output by each filter of the receiving device with respect to the transmission output at each phase of the pseudo carrier, and the time change of the intensity detected by each detector are shown below. .
  • the leftmost column in each figure is the light source output.
  • the optical frequency width of the light source 120 is 400 GHz
  • the intensity is shown as an optical frequency difference from the reference optical frequency fs, assuming a flat intensity over the entire optical frequency of the output of the light source.
  • Fig. 42-1 shows the output of the modulator corresponding to the phase shift of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 by each modulator in the second column from the left.
  • the third column from the left shows the filtering characteristics (functions) of the filters 225 to 228 included in the optical receiving device 200 in the first to fourth rows of the column, respectively.
  • Figure 42-4 the optical frequency characteristics that pass through each filter 225 228 when the modulation section output shown here is input are shown in the first row of the fourth column from the left. Shown on the fourth line.
  • the rightmost column shows the time change of the detection intensity detected by each detector 231-234 in the first row and the fourth row, respectively.
  • a filter having the same filtering characteristics as the optical frequency characteristics of the modulation unit output As shown in Fig. 42-1 and Fig. 42-4, assuming that the power at the detector during transmission through all chips is 1, a filter having the same filtering characteristics as the optical frequency characteristics of the modulation unit output.
  • the detector strength corresponding to the filter is 0.5, and the filter with the filtering characteristic shifted by ⁇ from the optical frequency characteristic of the modulation section output.
  • the corresponding detector intensity is 0, and a comparator that compares these two outputs an output of 0.5.
  • the output of the modulator in the first row is input, and the detection intensity for the output light of the filter 231 becomes 0.5 as shown in the first row, The detected intensity becomes 0 as shown in the third row.
  • the filter strengths of the corresponding filters and the corresponding detector strengths are 0.25, which are shifted by ⁇ and 3 ⁇ / 2, respectively.
  • the output of the vessel is 0.
  • the detection intensities of the filters 232 and 234 for the respective output lights are 0.25 as shown in the second and third rows, respectively.
  • the transmission characteristics on the optical frequency axis of each chip are desirably rectangular, but are shown as triangles for ease of distinguishing the chips in the figure.
  • the power of the detector at the time of transmission through all chips is normalized as 1 and the transmission characteristics on the optical frequency axis are triangular or Gaussian distribution, generality is maintained.
  • Embodiments 2-5 operate as described above.
  • FIG. 40 shows only a single combination of the optical transmitter 100 and the optical receiver 200, when another optical transmitter and the optical receiver share the same optical transmission line 300 with the same optical frequency, , Choose a different value for L.
  • L is a multiple of 4 corresponding to the number ⁇ of phase shifts, and is a value obtained by dividing the number of chips constituting the optical frequency band FSR by an arbitrary integer ⁇ .
  • the PS obtained by multiplying the number ⁇ of this phase shift amount by S is 1 to L / It is repeated at least ⁇ times that the chip corresponding to the remainder of L obtained by adding 2 to the transmittance is set to 1 and the transmittance of the other chips is set to 0.
  • the remainder obtained by dividing ⁇ by L is MOD If (A, L), Q is changed from 1 to n by (Q_l) L + M ⁇ D (PS + 1, L) one (Q_l) L + MOD (PS + L / 2, L) Let the transmittance of the chip that is the chip number be 1 and the transmittance of the remaining chips be 0. Since the product of the selected L value and the corresponding n value is constant, By differential detection, the inner product of the pseudo carriers is integrated in the FSR section. If becomes zero, the input of the other pseudo-carrier out of the receiving object can be canceled.
  • the filter used in Example 2_5 has the same function as the pseudo carrier for the optical frequency outside the FSR and follows the periodic function in the FSR. If the optical frequency range used by the optical transmission device is also subject to filtering, the integral of the mutual inner product in FSR becomes zero, and the two products are orthogonal to each other and do not interfere with each other. In this embodiment 2_5, for example, those shown in FIG. 16 are used as the filter and the filter.
  • Example 2-5 the positive and negative carrier waves having positive and negative polarities and having no correlation between the carrier waves were obtained by repeatedly cutting out a broadband light at a desired frequency on the optical frequency axis.
  • QPSK QPSK with control accuracy that relaxes the control accuracy of the optical wavelength order can be realized.
  • the pseudo carrier is phase-modulated on the optical frequency (wavelength) axis by a phase shift of 0, ⁇ / 2, ⁇ , or 3 ⁇ / 2 by a chip series having a width of ⁇ .
  • QPSK modulation can be simulated by the same method as shown in FIG.
  • ⁇ Ci (0) (Ci (0) -Ci (0)) ⁇ Ci ( ⁇ + ⁇ ) (Ci (0 + ⁇ )- ⁇ ( ⁇ + ⁇ ))
  • Expressions (22) and (23) are arithmetic expressions in a case where the integration operation of Expressions (20) and (21) is digitally processed, respectively.
  • the optical transmitter 100 uses filters 137a-137d instead of the filters 133a-133d.
  • the modulator 151 selects one of the filters 137a and 137c according to the two bits in the data set from the signal phase and amplitude converter 111, controls the light intensity to either 1 or 3, and sets the data
  • the modulator 152 selects one of the filters 137b and 137d according to the other two bits, and controls the light intensity to either 1 or 3.
  • a filter 225-228 is used in place of the filter 221-22, and the others need not be changed.
  • MPSK modulation can be simulated by using the pseudo carrier shown in Embodiment 2_5 to perform phase modulation with a square wave having a width of ⁇ to any phase shift of an arbitrary M shift. That is, when the number of phase shifts is ⁇ , the number of chips for one cycle, L, is a multiple of ⁇ and a multiple of 2, and is a value obtained by dividing all the chips constituting the optical frequency band FSR by ⁇ . Becomes.
  • the filter 131 is replaced by four filters of 0 phase, ⁇ phase, ⁇ / 2 phase, and 3 ⁇ / 2 phase, Equipped with three filters of 0 phase, 2 ⁇ 3 phase and 4 ⁇ / 3 phase.
  • the optical receiver of this embodiment is connected to four filters of 0-phase, ⁇ -phase, 71 / 2-phase, and 371-two-phase, and to these four filters having different ⁇ -phase shift amounts.
  • comparators instead of two sets of comparators that compare outputs, there are three filters of 0 phase, 27173 phase, and 4 peak / 3 phase, and ⁇ phase with different ⁇ phase shift amount for each. , 5 ⁇ / 3 phase, ⁇ ⁇ 3 phase, and three sets of comparators for comparing detector outputs connected to filters with different ⁇ phase shifts.
  • a carrier wave having positive and negative polarities and having no correlation between the carrier waves does not have positive and negative polarities obtained by repeatedly cutting out light having a wide optical frequency at a desired frequency on the optical frequency axis.
  • MPSK can be realized with control accuracy that relaxes the control accuracy of the optical wavelength order.
  • the ⁇ -phase filter 133c (137c) and the 3 ⁇ / 2-phase filter 133d (137d) in the optical transmitter 100 shown in FIG. 37-1 are omitted, and the ⁇ -phase modulators 151 and 152 are omitted.
  • the 0-phase filter 133a (137a) and the ⁇ / 2-phase filter 133b (137b) are connected to the amplitude changing sections 151b and 152b in the modulators 151 and 152, respectively, omitting the switching switches 151a and 152a.
  • the signal-phase-to-amplitude converter 111 is a signal-to-amplitude converter 112, and two data sets, ie, a serial-parallel converter 110a in the signal-phase-to-parameter converter 110 in FIG. ) And the other bit (data) are associated with the modulators 151 and 152 so that the light intensity is controlled to 3 when the bit is 0 and to 1 when the bit is 1.
  • the optical receiving device 200 if the output intensity of the comparators 241 and 242 in the code converter 260 is 3, the data is set to 0, and if the output intensity is 1, the data is set to 1 and these are output in series.
  • the optical frequency (wavelength) axis described in Embodiment 2-6 can be applied to the pseudo carrier wave of the trigonometric function on the optical frequency (wavelength) axis described in Embodiment 2-4.
  • QAM modulation is also performed on the upper square-wave pseudo carrier, using the signal points as the four signal points in the first quadrant in Fig. 38 (a). That can be S.
  • QAM modulation of four signal points uses two sets of filters, 133b (137b) and 133c (137c), 133c (137c) and 133d (137d), 133a (137a) and 133d (137d).
  • QAM modulation having four signal points in any of the second, third and fourth quadrants in FIG. 38 (a) can be achieved.
  • the absolute value is converted to data 0 when the absolute value is 3, and to data 1 when the absolute value is 1.
  • Example 2-8 of the second embodiment uses a plurality of light sources that output light of the optical frequency characteristic function of each phase.
  • FSRZn on the optical frequency axis, where n l, and FSR as one period, 2S chips for each of the phase shift amounts of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 in each period
  • the QPSK or the QAM modulation performed in the embodiment 2-5 or the embodiment 2-6 is enabled by using a plurality of light sources that output light having the optical frequencies described above.
  • each light source can control the light transmission intensity.
  • the set comprises a single broadband light source with an optical frequency width of 2S or a set of light sources consisting of 2S light sources.
  • the L / 2S set of light sources that transmit the optical frequency of each S chip is used to simulate a carrier wave of phase 0 or phase ⁇ . That is, as shown in FIG. 46, the output light of each of the 0-phase, ⁇ / 2-phase, ⁇ -phase, and 3 ⁇ / 2-phase S-chips, each of the first continuous optical frequencies of each cycle on the optical frequency axis
  • the output light from the S chip that is, the light source 120a that outputs the 0-phase S chip, and the light output from the next S chip, that is, the light source 120b that outputs the ⁇ / 2-phase S chip, simulate the 0-phase carrier
  • the ⁇ -phase carrier is simulated by the output light of the S chip, that is, the light source 120c that outputs the ⁇ -phase S chip, and the output light of the next S chip, that is, the light source 120d that outputs the 3 ⁇ 2-phase S chip.
  • the light source 120e that outputs the S chip next to the first S chip of each cycle on the optical frequency axis, that is, the ⁇ / 2-phase S chip, and the light source that outputs the next S chip, that is, the ⁇ -phase S chip
  • a light source that simulates a ⁇ / 2-phase carrier with the output light of 120f and outputs the next S chip, that is, 3 ⁇ 2 phase S chip, 120g, and the next S chip, that is, 0 phase Simulate a 3 ⁇ / 2-phase carrier with the output light from the light source 120h that outputs the S-chip.
  • 1, when ⁇ is an integer of 2 or more, 0 phase chip light source, ⁇ / It may be arranged in a two-phase light source, a ⁇ -phase light source, or a 3 ⁇ / 2-phase light source.
  • the source is set to 1 and the light source corresponding to the other chips is set to 0 at least n times.
  • FIG. 45 shows a case where the QAM modulation shown in FIG. 38 (a) is simulated, and the transmission signal from terminal 101 is simulated.
  • the (data) sequence is distributed to four sequences by the serial / parallel conversion unit 110c in the signal phase amplitude amount converter 113.
  • the third data (bit) from the top of the four data sets (the data array in the serial-to-parallel converter 110c is the same as the bit order for each data set shown in Fig. 38 (a)) )
  • the connected register (drive signal generation unit) 153c is connected to the switch 153d, and this switch 153d is controlled by the most significant data (bit) of the data set.
  • the switch 153a is set to the 0-phase light source. 120a and a ⁇ / 2-phase light source 120b, and both light sources 120a and 120b output light of intensity 3, that is, light of phase 0 pseudo carrier is output at intensity 3 and the most significant data (bit ) Is 1, set switch 153a to ⁇ -phase light source 1 20c and 3 ⁇ / 2-phase light source 120d are connected, and light of intensity 1 is output from both light sources 120c and 120d, that is, light of ⁇ -phase pseudo carrier is output with intensity 1.
  • the switching switch 154a is controlled by the least significant data (bit) in the data group. If the data is 0, the register 154b storing the value 3 is connected to the switching switch 154d, and the data output is controlled. For example, the register 154c storing the value 1 is connected to the switch 154d, and the switch 154 is controlled by the second data (bit) from the upper bit of the data set. If the data power is ⁇ , the switch 154a is connected. Connected to the ⁇ / 2-phase light source 120e and the ⁇ -phase light source 120f, light having an intensity of 3 is output from both light sources 120e and 120f, that is, the light of the ⁇ / 2-phase pseudo carrier is output at an intensity of 3, and the data is output.
  • the switch 154a is connected to the 3 ⁇ / 2-phase light source 120g and the 0-phase light source 120h, and both light sources 120g and 120h output light of intensity 1, that is, the 3 ⁇ / 2-phase pseudo carrier wave. Light is output at intensity 1.
  • the optical receiver 200 may be the same as that shown in FIG.
  • the light source can be directly modulated, for example, the magnitude of the drive current of the laser light source can be controlled by using an expensive phase amplitude composed of the filter and modulator shown in Embodiment 2-6. It does not require the modulation unit 150.
  • the switches 153a and 154a in FIG. 45 are omitted, and the registers 153b and 154b are connected directly to the switching switches 153d and 154d, respectively, and switched by each data of the two data sets of the signal amplitude converter 112 in FIG.
  • QPSK modulation can be performed in the same manner as described in Embodiment 2-3.
  • the switching switches 153d and 154d are omitted, and the switching switches 153a and 154a are replaced by two sets of light sources that output light of a pseudo carrier in an orthogonal relationship.
  • the QAM modulation described in Embodiment 2-7 can also be performed by controlling the switching switches 153a and 154a by connecting them to a total of four light sources.
  • the serial / parallel converter 110a in the signal phase converter 110 in FIG. 30 is used instead of the serial / parallel converter 110c.
  • Two light sources having different ⁇ / 2 phase shift amounts for example, a 0-phase chip light source and a ⁇ / 2-phase chip QAM modulation can also be performed using two sets of light sources.
  • the phase is reduced by half compared to the QAM modulation of the embodiment described in FIG. 45, the intensity modulation is twice as fine as that of the embodiment of FIG. By doing so, the same signal transmission becomes possible.
  • Modulation similar to MPSK modulation in which the number of phase shifts is arbitrary M described in Embodiment 2_6 can also be performed using a plurality of light sources.
  • M 4
  • a signal phase amount converter 110 shown in FIG. 30 is used instead of the signal phase amplitude amount converter 113 shown in FIG.
  • the 0 phase corresponding to the 0 shift amount Power to output light of intensity 1 from chip light source and ⁇ / 2-phase chip light source ⁇ ⁇ ⁇ Output light of intensity 1 from ⁇ / 2-phase chip light source and ⁇ -phase chip light source corresponding to 2 shift amount, or ⁇ shift Output a light of intensity 1 from the ⁇ -phase chip light source and 3 ⁇ / 2-phase chip light source corresponding to the amount of light 3
  • two S chip light sources are used to output one pseudo carrier wave light.
  • one light source of a 2S chip can be used.
  • four types of relatively broadband 2S light sources are used as is clear from FIG.
  • the number of types of light sources is 4, and the optical frequency width is S chip, which can be made much cheaper than 2S width.
  • QPSK modulation can also be performed using four types of S-chip light sources.
  • 4 ⁇ carriers are required to simulate a carrier having a phase of 0 or ⁇ and to simulate a carrier having a phase of ⁇ / 2 or 3 ⁇ 2.
  • each chip light source Since two carrier light beams that are orthogonal to each other are output, the output light from the in-phase chip light source among these output lights is superimposed on each other, so that the output light of the superimposed light source has an intensity of 2. Therefore, if the intensity of the output light of the light source on which the output light is superimposed is doubled in advance, four types of S-chip light sources can be used to output four carrier lights.
  • the output of each chip light source is as follows.
  • the number of light sources can be reduced by half compared to the embodiment of FIG. 45, and the width of intensity modulation can be made larger than that of the QAM modulation in which the number of light sources is reduced as compared to the case of FIG. This has a strong effect on the effect of noise.
  • Embodiments 2-9 include each of the above-described embodiments, and are more generalized pseudo-carriers. In this embodiment, this embodiment is applied to QAM modulation. An example of a communication system to which this is applied will be described with reference to FIG.
  • the optical transmission device 100 is provided with two yarns S including a set of an i-th filter 161 and a turn filter, and a yarn of a j-th filter 162 and a turn filter 162 '.
  • These filters 161, 161 ′, 162 and 162 ′ filter at least the optical frequency width of the FSR with the frequency (wavelength) of the light output from the light source 120.
  • the filtering function can also be called a parameter representing the phase
  • the values Ci '(f) at the phase f of the wave characteristic function are mutually inverted values, and the same relationship as the above equation (4) holds.
  • Ci (f) + Ci r (f) l (4)
  • Wave filter 161, 1QV, 162, 162 each filtering characteristic function r constitutes a pseudo-carrier as described above.
  • the optical receiving device 200 of the embodiment 2-9 is different from the optical receiving device 200 in FIG.
  • the waver is different and the others are the same.
  • the Ban filter 271 having the same filtering characteristics as the Ban filter 161 of the optical transmission device to be received, the No. filter having the same filtering characteristics as the No. filter, and the j-th filter 162.
  • the j-th filter 272 and the j'-th filter 272 'having the same filtering characteristics are used for the second filter 162' and the second filter 162 ', respectively.
  • the comparator 241 compares the detected light intensity corresponding to the transmitted light of the i-th filter with the detected light intensity corresponding to the transmitted light of the i-th filter 271. Assuming that the output of the comparator 241 is a value Di (f) at the standardized optical frequency f, Expression (3) shown in the first embodiment is obtained.
  • the detector 231 detects each optical frequency component of the light transmitted through the i-th filter 271 as the overall light intensity. The same applies to other detectors. Therefore, the value Ci (f) at the normalized optical frequency f in the filtering characteristic function of the i-th filter 161 on the transmitting side and the normalized optical frequency f in the filtering characteristic function of the i-th filter 271 on the receiving side
  • the integral of the inner product with the value Di (f) at over the continuous optical frequency domain for the FSR included in the filtering target of the Ban filter 271 is a non-zero limit value P, and the following equation (5 The relationship holds.
  • Equation (5) corresponds to a generalization of equation (5) shown in the first embodiment.
  • the output of the comparator obtained by subtracting the detector 23 for detecting the intensity of the transmitted light from the filter 27 from the output of the detector 231 for detecting the intensity of the transmitted light of the i-th filter 271 is included in the output of the comparator j.
  • the light component transmitted through the wave device 162 is not included. In this manner, in the embodiment 2-9, similarly to the embodiment 2-4, the input of the other pseudo carrier wave which is not to be received on the receiving side can be canceled by the differential detection.
  • the filtering characteristic function of the i-th filter 161 is a periodic function using the optical frequency as a variable.
  • Ci (f) Ci (f + FSRi) (1)
  • the receiving side can cancel the input of another pseudo carrier that is not to be received by differential detection, regardless of the difference in the optical frequency of each light source and the difference in the reference optical frequency fs.
  • the embodiment 2_9 realizes QAM with control accuracy in which the control accuracy of the optical wavelength order is relaxed.
  • the pseudo carrier of the trigonometric function used in Example 2-1 1 2-4 and 2_7, and the pseudo carrier of the chip configuration used in Example 2-5-2-8 are also the same as those of the above equations (1) and (3)-. (5) It will be understood that r holds. In the case of a chip configuration, an equation in which ⁇ is replaced by ⁇ holds. Furthermore, the integral value in the section from arbitrary f to f + FSR at the optical frequency to be filtered by the filter is a value obtained by dividing FSR by 2, and the equation (2) shown in the first embodiment also holds. Will be understood.
  • Embodiment 2-1 The 0-phase and ⁇ -phase pseudo carriers in 1-8 correspond to the i-th and i'-th pseudo carriers in Example 2-9, respectively. These correspond to the jth and quasi-carriers in Examples 2-9, respectively. That is, the embodiment 2-9 shows the general characteristics of the pseudo carrier in the present invention, and it can be said that the other embodiments specialize the embodiment 2-9.
  • the i-th filter 161 provided in the optical transmitter has an optical frequency range of FSR / n (n is an integer equal to or greater than 1) to be filtered, and
  • the i-th filter 161 provided and the j-th filter 162 provided for the optical transmission device other than the i-th optical transmission device or another optical transmission device sharing the same transmission line Simultaneously turned on (transmission) in optical frequency domain
  • the i-th filter 161 included in the optical transmitter is turned on (transmitted) in the optical frequency region of the FSR to be filtered, and the other i-th optical transmitter or the same transmission path
  • the number of chips that are turned off (non-transparent) in the optical frequency range of the FSR to be filtered by the j-th filter 162 included in the other optical transmitters shared is the same.
  • the number of chips that are turned on (transmitted) at the same time (at the same chip position) in the i-th filter 161 and the j-th filter 162 and the i-th filter 161 is turned on at the same chip position
  • the number of chips turned off by the filter 162 is the same.
  • FSRZS ⁇ _1 is the finite value of the total FSR of the section FSR, and the k-th carrier other than the i-th carrier (k is the pseudo carrier other than the i-th carrier)
  • k is the pseudo carrier other than the i-th carrier
  • the optical receiver 200 is the same as that described in the embodiment 2-7. In this way, Q AM can be realized.
  • an equation is obtained in which the equation (1)-(4) is changed to ⁇ .
  • the filter used in this embodiment for example, the number of chips obtained by dividing the number of chips corresponding to FSR / n by the code length of the Hadamard code is adjusted to the value of 1 bit constituting the Hadamard code. It is possible to use a filter that has been described. Furthermore, when applying a filter that filters an optical frequency higher than the FSR corresponding to a code obtained by continuously combining Hadamard codes, the above equation (1)-(5) Then, an equation in which ⁇ d ⁇ is changed to ⁇ holds.
  • the i-th filter 271 transmitting the on-chip light included in the optical frequency to be filtered of the i-th filter 161 on the transmitting side of the receiving target, and the i-th filter 161
  • the i'th filter 27 that transmits the off-chip light included in the optical frequency to be filtered, and the first detection that detects the transmitted light intensity of each first filter (271, 272) (231, 232), a second detector group (233, 234) for detecting the transmitted light intensity of each second filter (271 ', 212'), and a first detector
  • a comparison is made by subtracting the intensity detected by the second detector from the obtained intensity and comparing the comparators (241, 242) and the amplitude modulated by the modulator of the corresponding transmitting station output from the comparators into a transmission signal.
  • an amplitude signal converter (260) for conversion.
  • the output of the detector 231 that detects the transmitted light intensity of the i-th filter 271 is two chips in the signal (101).
  • the chip which transmits the signal (101) through the filter 271 'whose filtering characteristic is (010) is 0, and the output of the detector 233 which detects the transmitted light intensity of the filter 272' is 0. Is 0, and the output of the comparator 241 for comparing the intensity detected by the detector 233 with the intensity detected by the detector 231 is two chips.
  • Only one chip transmits the received light (101) through the j-th filter 272 for selecting the signal light (011) corresponding to the j-th filter 162 on the transmission side.
  • the output of the detector 232 that detects the transmitted light intensity of the filter 272 is one chip, and the transmitted light intensity of the filter 272 ′ for selecting the off-chip light of the signal light (011).
  • the output of the detector 234 for detecting the signal is one chip for the received light (101), and the output of the comparator 242 for comparing the intensity detected by the detector 234 by subtracting the intensity detected by the detector 232 from the intensity detected by the detector 232 Means 0 chips.
  • MPSK and QA ⁇ can be performed relatively easily on an optical carrier in the frequency domain.
  • the pseudo carrier is defined as a square wave periodic function of a chip having an intensity of 1 and a chip having an intensity of 0 in the FSR region, and corresponds to the filtering characteristics of the i-th filters 161 and 271 j-filters 162 and 272.
  • the i-th carrier and the j-th carrier have the same number of chips with intensity 1 (or intensity 0) at the same optical frequency position, and the j-th carrier has the intensity 1 (or intensity 0) at the same optical frequency position. Is equal to the number of chips whose strength is equal to 0 (or 1). Further, even when the light source for each chip shown in Embodiment 2-8 is used, this square wave periodic function can be applied.
  • either intensity 1 or 3 is selected by the third and fourth parameters, respectively, and a combination of four data of 1 and 0, ie, 16 Forces representing any of the combinations
  • the combinations may represent any of 17 or more combinations.
  • the light intensity of any one of the predetermined multi-values is assigned to the i-th (or n),]-(or j'-th) light intensity.
  • Selective control is performed by the third and fourth parameters so that light corresponding to the carrier wave is obtained.
  • each of the predetermined multi-valued powers including the respective polarities from the A / D converters 261 and 262 in FIG. 37-2 corresponds to each possible combination of one digital value.
  • the corresponding one of four or more possible combinations of data 0 or data 1 may be output from code signal converter 260.
  • One of the predetermined multi-valued digital values from the AZD converters 263 and 264 is The digital value includes the case where the polarity is taken into consideration and the case where the polarity is not taken into consideration. If the case is not taken into account, for example, as described in Example 2-7, one quadrant in FIG. For example, when only signal points in the first quadrant are used, the output of the code signal converter 260 is converted into one of two possible combinations of data, and therefore the A / D converter When the polarity is taken into account as the output digital value of 263, 264, it becomes a combination of four or more data, and when the polarity is taken into account, it becomes a combination of two or more data. Therefore, in general, it can be said that one of multiple values is a combination of two or more data.
  • FIGS. 48A and 48B show a communication system to which the embodiment 2-11 of the present invention is applied.
  • the optical transmitter 100 includes K optical transmitters 100 (K is an integer of 2 or more) 100,..., 100 in FIG. Housed in and input
  • the transmission signal (data system IJ) from the terminal 101 is converted into K parallel sequences by the serial / parallel converter 170 and input to the signal phase converter 110 of each of the optical transmitters 100,.
  • Each output from the transmission devices 100, 100, 100 is multiplexed by the multiplexer 171 and output to the optical transmission line 300.
  • K optical receivers 200 used in the embodiment 2-3 that is, K optical receivers 200 in FIG. Housed in a light transmission
  • the optical signal from the transmission path 300 is K-branched by the branching unit 270, and each of the branched optical signals is input to the branching unit 210 of the optical receiving device 200,.
  • the output signal of “0” is serial-converted by the parallel / serial converter 273 and returned to the original transmission signal.
  • optical transmitters 100, 100, and 100 and the optical receivers 200, 200, 200 are shown in Embodiment 2-3.
  • optical transmitters 100,..., 100 and the optical receivers 200 are identical to the optical transmitters 100,..., 100 and the optical receivers 200,.
  • a filter is used in which the period of the trigonometric function included in the filtering characteristic function of the filter is a period obtained by dividing the reference period by a natural number. That is, the reference cycle and the cycle of the filter provided in each of the optical transmitters 100,..., 100 are based on the Fourier transform.
  • the value of the number N from which the FSR is divided is 1 to K, and these FSR, FSR / 2,..., FSR / K are respectively referred to as the optical transmitters 100, 100, ⁇ -, 100
  • the optical signal obtained by multiplexing the above optical signals in the multiplexer 171 is equivalent to the signal subjected to the inverse discrete Fourier transform.
  • Embodiment 2-11 realizes pseudo OFDM (orthogonal frequency division multiplexing) by using a plurality of pseudo carriers corresponding to the discrete inverse Fourier transform using the orthogonal relationship between pseudo carriers.
  • the optical transmitters 100,..., 100 each having a filter having a filtering characteristic in which the optical transmitter 100 has a period from the fundamental period to a period of KZ2 times the fundamental period and the phase is shifted by ⁇ 2 in each period.
  • n is a multiple of the filter period with respect to the basic period
  • an and bn are transmission signals carried by the respective pseudo carriers.
  • the wavelengths to be used can be overlapped with each other, so that a guard band is not required as compared with normal WDM, so that the wavelength use efficiency can be improved.
  • Embodiment 2-11 the power using a plurality of optical transmitters 100,..., 100 to which pseudo QPSK is applied
  • the pseudo MPSK or pseudo QAM described above is applied.
  • a plurality of optical transmission devices may be used.
  • the filtering characteristic function is not limited to the trigonometric function, and may be a function having the properties described in Embodiment 2-9. Therefore, a plurality of optical transmitters 100 and optical receivers 200 using the pseudo carrier of the chip configuration described in the embodiment 2-5 2-8 may be used.
  • S which is a predetermined divisor of L / 4
  • an optical device having a filter having a filtering characteristic using S corresponding to the divisor of the reference S is used.
  • S of the filtering characteristics of the optical transmitters 100,..., 100 is generated by Fourier transform.
  • the optical transmitting apparatus 100 of the eleventh embodiment also transmits the signal subjected to the inverse discrete Fourier transform, and the optical receiving apparatus 200 performs the discrete Fourier transform to return to the original transmission signal.
  • each of the filters used in the optical transmitter 100 in each of the above-described embodiments controls the filtering characteristics of the filter by the output of the modulator.
  • the configuration may be such that a plurality of filters having fixedly set filtering characteristics are selected. Therefore, controlling the filter with the modulator means controlling the filtering characteristics and controlling the selection of the filter.
  • the signal phase amount converter 110, the signal phase amplitude amount converter 111, and the signal amplitude amount converter 112 control the filtering characteristics, select the filter, and control the light output from the optical transmitter according to the signal data. Since these are converted into parameters for controlling the intensity of the signal, these can be collectively referred to as signal modulation value converters, and the amount of phase and amplitude output from these converters is referred to as the modulation value. Each component can be called a parameter.
  • the i-th optical frequency characteristic function Ci (f) is the least common multiple of the integer Ni corresponding to the repetition period in the range of the optical frequency width FSR from the optical frequency Fst to Fla by one or more light sources. If the value obtained by dividing the frequency width FSR is the optical frequency width FSRi,
  • Ci (f) Ci (f + FSRi),
  • Ci (f) Cj (f) df ⁇ Ci (f) (1-Cj (f)) df
  • Ci r (f) Ci (f + A f)
  • Ci (f) is different from Ci (f) in phase by 2 ⁇ ( ⁇ f / FSRi).
  • Ci '(f)-Cj (f) df I Ci' (f) '(l-Cj (f)) df,
  • the input binary data series is sequentially and repeatedly sorted and separated into a plurality of separated data series for each data, and the above-described processing is performed for each of the separated separated data series and for each data in accordance with the value.
  • the first optical signal and the second optical signal whose phases and / or amplitudes are controlled are synthesized with the i-th optical signal of the Ban's optical frequency characteristic function and the j-th optical signal of the j-th optical frequency characteristic function. Transmit as an optical code signal.
  • different FSRi are the same FSR and are trigonometric functions of FSRiZ4 or one FSRi / 4.
  • Another example is the FSR divided by 2SNi, which is twice the product of any integer S and Ni, and the FSR is divided into consecutive optical frequency parts of L, and the optical frequency parts of each length L are consecutive
  • the number be Ci (f).
  • the third embodiment is also applicable to the one-to-N optical communication network PON shown in FIGS. 2 (a), 2 (b), 3 (a), and 3 (b).
  • the i-th encoder is used for the planar lightwave circuit board using the transmitted light of one of the j-th decoders in the single-planar lightwave circuit board described with reference to FIGS.
  • the temperature control technique can also be applied to the third embodiment.
  • the optical coding method using the arrayed waveguide grating type optical multiplexer / demultiplexer AWG described with reference to FIGS. 21 and 22 can be applied to the optical transmitter of the third embodiment. .
  • FIG. 2 or FIG. 3 A third embodiment of the present invention is shown in FIG. 2 or FIG. 3, for example, a point-to-multipoint connection optical network (Passive Optical Network: PON) in which a plurality of subscriber units are accommodated in a central office via an optical fiber transmission system.
  • PON Passive Optical Network
  • the present invention is applied to an optical communication system.
  • the downstream signal light modulated (encoded) according to the binary data is input to the port 420a of the optical input / output duplexer 420 via the optical fiber 410 and further via the optical input / output port 412, and Shared device 4
  • the data is input to the switch 430 from the 20 port 420b.
  • the switch 430 is controlled by the upstream data sequence from the terminal 431, and the downstream signal light is input to the mark encoder 440M or the space encoder 440S.
  • the output light of the mark encoder 440M and the space encoder 440S is input to the port 420c of the optical I / O duplexer 420 through the optical combiner 450, and is transmitted as the upstream signal light from the port 420a of the optical I / O duplexer 420 as the optical input / output port 412. Is output to the optical fiber 410 via the.
  • an optical circulator is used as the optical input / output device 420 as shown by a broken line in FIG. 49, an optical directional coupler, an optical multiplexer / demultiplexer, or the like may be used.
  • the optical input / output duplexer 420 is preferably an optical circulator.
  • An optical multiplexer / demultiplexer 450 can use an optical multiplexer / demultiplexer or a switcher that is controlled in conjunction with a switcher 430 as shown by a broken line.
  • the output light from the mark encoder 440M and the output light from the space encoder 440S can be used. Any device may be used as long as it can input light to the port 420c of the optical input / output device 420.
  • the switch 430 inputs the input light to the mark encoder 440M if the data from the terminal 431 is a mark, and inputs it to the space encoder 440S if the data is a space.
  • the switch 430 may be an optical splitter.
  • the mark encoder 440M and the space encoder 440S output signal light represented by different functions using the optical frequency (wavelength) as a variable in the entire section of the optical frequency (wavelength) of the downstream signal light.
  • the optical frequency characteristics (optical codes) of the input downstream signal light and the output upstream signal light are functions having the following relationship.
  • IM (f) denotes the light intensity function for
  • OS (f) the space function.
  • the integral or sum of the product of the function IM (f) and the function (M (f) with respect to f is equal to the integral or the sum of the product of the function IM (f) and the function ⁇ S (f) with respect to f.
  • ⁇ df means integration in the section of the optical frequency of the downstream signal
  • means the sum in the section of the optical frequency of the downstream signal
  • the intensity fluctuation frequency is 1, 2, or 3
  • the solid line and the broken line are out of phase by ⁇ / 2, respectively, or as shown in Fig. 6 (a)
  • the one-dot chain line is shifted by about ⁇ / 4 from the solid line.
  • the function of the mark is the function of the space
  • the other function having the relationship shown in Fig. 6 for the different directions or different optical communication devices is the mark function.
  • a function whose phase differs from this by ⁇ is a space function.
  • the frequency section fO-fL (normalized frequency 0-1) is divided into L chips and the number of chips (optical frequency) is set to 1 or 0, and the light intensity is set to 1 or 0 for each chip.
  • the function shown in Fig. 5 is a mark function
  • the space function is the same as that in Fig. 50 (b)
  • the number of chips having the intensity of 1 is the same
  • the mark or space function of the downlink signal light is the same.
  • Half of the chip with intensity 1 can be used for upstream signal light.
  • the first half of FIG. 50 (b) is the same as the first half of FIG. 50 (a), and the second half is the reverse of the latter half of FIG. 50 (a).
  • the light intensity is shown as a triangle as an example of each chip, ideally, a flat rectangle is preferred for the optical frequency characteristics of each chip.
  • FIG. 51 shows a configuration example of an encoder in the case of configuring a chip system as shown in FIG. 50 as a filtering function of the mark or space encoder 440M or 440S.
  • the input light is input to the optical multiplexer / demultiplexer 5, and the optical multiplexer / demultiplexer 5 outputs the frequency optical signal of each chip to a different port, and outputs an optical component separated by an integer multiple of the optical frequency AF to the same port.
  • the optical frequency F + q AF, F + q AF, and F + q AF are output from ports 1, 2, 3, and 4 of the optical multiplexer / demultiplexer 5.
  • the output of the port corresponding to the tap may be multiplexed by the power bracket 6 and output.
  • an optical multiplexer / demultiplexer 5 an AWG (Array Wavequide Graiting: array-waveguide grating optical multiplexer / demultiplexer) can be used as in the case of the filter 84 in FIG.
  • the switch 430 inputs the input light to the mark encoder 440M if the data from the terminal 431 is a mark, and inputs it to the space encoder 440S if the data is a space.
  • the switch 430 may be an optical splitter.
  • the upstream signal light and the downstream signal light may be transmitted by different optical fibers. For example, as shown by a broken line in FIG. 49, the upstream signal light output from the optical combiner 450 may be input to the optical fiber 411, and the optical input / output duplexer 420 may be omitted. Alternatively, as shown in FIG.
  • total reflectors 451M and 451S that totally reflect the respective output lights of the mark encoder 440M and the space encoder 440S are provided, and the respective output lights of the mark encoder 440M and the space encoder 440S are provided. May be input to the optical fiber 410 through the mark encoder 440M and the space encoder 440S, respectively, and further through the switch 430.
  • the device shown in FIG. 52 can omit the optical input / output duplexer 420, and can further reduce the number of parts by reducing the number of optical combiners 450, as compared with the device shown in FIG.
  • 49 and 52 do not show the receiving circuit for the downstream signal light.
  • a part of the downstream signal light may be branched to a downstream signal light receiving circuit at a stage prior to the device 430 to decode the downstream data sequence. Similar reception decoding will be described later with reference to FIG. 53, for example.
  • the light source is a partner optical transmission device that generates a downstream signal light (optical code signal), and the downstream signal light is an optical signal from the light source.
  • the present embodiment is configured to receive light encoded with a mark or space having the same light intensity and to receive half of the light included in the optical frequency constituting the downstream signal light of the received mark or space. Is sent back as the upstream signal light of the mark or space. For this reason, in addition to downstream signal light, unmodulated CW light for modulation as upstream signal light is sent, or light that is modulated as upstream signal light without deteriorating the extinction ratio of the downstream signal is supplied. I can do it.
  • the central station has the central office return as an upstream signal light modulated by its own information (data), separately from the downstream signal light for transmitting its own information (data).
  • data unmodulated continuous light
  • CW Continuous Wave
  • the central station sends the information (data) of the station itself with the extinction ratio of the down-link signal light being reduced, and the accommodation station transmits the optical signal to the information (data) of the station itself.
  • the accommodation station transmits the optical signal to the information (data) of the station itself.
  • the accommodation station transmits the optical signal to the information (data) of the station itself.
  • no useless continuous light is used.
  • the extinction ratio of both the downstream signal light from the central office and the upstream signal light from the accommodation station deteriorated, and the communication quality deteriorated.
  • the encoder has the optical intensity frequency characteristic of the optical signal based on the code Eich function and the optical intensity frequency characteristic of the encoding function in the optical intensity frequency characteristic of the downstream optical signal.
  • the decoder outputs a component whose light intensity frequency characteristic is a decoding function from the optical signal based on the decoding Eich function. Means.
  • Embodiment 3-2 the respective optical frequency characteristic functions are set to be orthogonal to each other and set to chip codes. This is an example. Embodiment 3-2 will be described with reference to FIG.
  • the downstream signal light from the optical fiber 410 is further branched and input to the downstream mark decoder 461M and the downstream space decoder 461S from the optical input / output port 412 through the optical input / output duplexer 420 and further sequentially through the optical splitters 421 and 422.
  • the light passing through the decoders 461M and 461S is converted into electric signals by the photodetectors 470M and 470S, and the electric signals are compared by a comparator 480. If the value is greater than or equal to the value, the data is output to the output terminal 481 as a downlink data sequence.
  • the other downstream signal light split by the first optical splitter 421 is input to the switch 430, and
  • the signal is modulated by the upstream data sequence from the input terminal 431, and is output as upstream signal light via the optical input / output duplexer 420 and further to the optical fiber 410 from the optical input / output port 412.
  • an optical splitter may be used instead of the switch 430.
  • Example 3-1 the integral or sum of the optical frequency of the signal obtained by subtracting the upstream signal light power of the mark from the upstream signal light of the space and the downstream signal light of the mark or the space becomes zero, that is, their optical frequency characteristics
  • the functions are quasi orthogonal to each other.
  • the downstream signal light is the input light of a set of natural numbers NI having the same optical frequency characteristics as the optical frequency function of either the mark or the space
  • the function of the light intensity of the i-th mark is IMi ( f)
  • the function of the light intensity of the space is ISi (f)
  • the relationship between the i-th downstream signal light included in the NI set and the j-th downstream signal light other than the i-th signal is expressed by the following equation (26). Or, satisfy equation (27).
  • Equation (26) and (28) are obtained by digital computation, the same computations as Equations (27) and (29) are performed, respectively.
  • the Hadamard code shown in FIG. 10 can be used as a function having such characteristics. If the optical frequency characteristic function of the signal light is a filtering function, the mark passes through the optical frequency chip that is 0 and the mark 1 passes through the optical frequency chip. , 0 are opaque. That is, in the case of the same sign, the light intensity 1 and the light intensity 0 are inverted between the mark signal light and the space signal light.
  • Code 2 [0101 codes, code 3 [0011 codes] and code 4 [0110] satisfy Expressions (22) and (29).
  • the ports for outputting the optical wavelengths (optical frequencies) ⁇ and ⁇ of the optical multiplexer / demultiplexer 5 are connected to the power bra 6 as shown in FIG. (Optical frequency) ⁇
  • the output of the power bra 6 and the output of the switch 450 serving as a photosynthesizer can be switched and output.
  • each of the downlink mark decoder 461M and the downlink space decoder 461S The filtering characteristic functions are IMi (f) and ISi (f), and the optical frequency function of the input light is I Mj (f) or ISj (f). Equation (26) or Equation (27) holds. Since the difference between the light intensities detected via the decoders 461M and 461S is canceled by the comparator 480, no signal light other than the i-th signal light to be received is output to the output terminal 481.
  • the filtering characteristic functions of the upstream mark encoder 441M and the upstream space encoder 441S are ⁇ Mi (f) and OSi (f), and the upstream signal is reflected on the optical transmission line, and the reflected light Is input to the downstream mark decoder 461M and the downstream space decoder 461S, Equation (28) or Equation (29) holds, and the respective detected light intensities of the photodetectors 470M and 470S are canceled by the comparator 480 and output. Terminal 481 does not appear. In other words, even if there is reflected light, reception of signal light of the desired code It does not hinder the religion.
  • the function Si (f) repeats n 2 times that the first s chip is transmitted (light intensity 1) and the next s chip is opaque (light intensity 0).
  • it is a filtering characteristic function (light intensity frequency characteristic function) indicated by the optical frequency of the L chip that divides fL from fO in the optical frequency section into L, and is a multiple of the power that divides L by 2.
  • the filtering characteristic function for the i-th mark is IMi (f) and the filtering characteristic function for the space is ISi (f)
  • the i-th filtering characteristic function IMi (f) is s This is a function that repeats making the chip transparent and the subsequent s chip opaque at least L times divided by 2 s (n times)
  • the s0 chip is a transparent chip or an opaque chip
  • the s chip is made opaque or transparent
  • the subsequent s chip is made transparent or opaque, which is obtained by subtracting 1 from the number obtained by dividing L by 2s. May be repeated only after that, followed by a function of (s ⁇ s0) chip transmission or non-transmission.
  • the one having the above relationship for example, the one shown in FIG. 54 (c) whose phase is shifted from the function shown in FIG. 54 (b) may be used.
  • IMj (f) Ci (f)
  • ISi (f) is (11-Ci (f))
  • OMj (f) corresponds to Cj (f)
  • DSj (f) corresponds to (l_Cj (f)).
  • These filtering characteristics have encoders 441M and 441S and decoders 461M and 461M having these functions. It can be easily understood that the 461S and 461S can be similarly configured using the optical multiplexer / demultiplexer 5 and the power brass 6 and as shown in FIG.
  • the uplink mark encoder 441M and the uplink space encoder 441S are integrally configured as an uplink encoder 441, and the switch 430 is omitted, as shown by the dashed line in FIG.
  • the optical combiner 450 is a switch, the downlink mark decoder 461M and the downlink space decoder 461S are integrally formed as the downlink decoder 461, and the optical splitter 422 is omitted.
  • Embodiment 3-2 shown in FIG. 53 as in the embodiment shown in FIG. 52, total reflectors 451M and 451S are used after the upstream mark encoder 441M and the upstream space encoder 441S.
  • the switch 430 may be an optical splitter, and the optical combiner 450 may be a switch.
  • FIG. 55 shows a configuration example of an optical communication device facing the optical communication device shown in FIG.
  • the optical signal of the optical frequency f0-fL from the light source 495 is changed by the switch 435 to the downstream mark encoder 445M or the downward space code depending on the mark power space of each data of the downstream data sequence from the input terminal 436. Input to the 445S.
  • the filtering characteristic functions of the downlink mark encoder 445M and downlink space encoder 445S are the filtering characteristic functions IMi (f) and ISi (f) of the downlink mark decoder 461M and downlink space decoder 461S of the opposing optical communication device. ).
  • the downstream signal light from the downstream mark encoder 445M and the downstream space encoder 445S is input to the optical fiber 410 through the optical combiner 455 and further through the optical input / output multiplexer 425.
  • the upstream signal light input from the optical fiber 410 passes through the optical input / output
  • the signal is input to the upstream mark decoder 465M and the upstream space decoder 465S by 426.
  • the filtering characteristics of these decoders 465M and 465S are equal to the respective filtering characteristic functions OMi (f) and ⁇ Si (f) of the upstream mark encoder 441M and upstream space encoder 441S of the opposing optical communication device. Is done.
  • the output signal lights of the upstream mark decoder 465M and the upstream space decoder 465S are input to the photodetectors 475M and 475S, respectively, and the output electric signals from the photodetectors 475M and 475S are compared by the comparator 485. , And output to an output terminal 486 as an upstream data sequence.
  • the optical communication device of Embodiment 3-2 even if the optical fiber 410 is shared by a plurality of sets of the optical communication device outputting the downstream signal light and the optical communication device outputting the upstream signal light, According to each group
  • a different code filtering characteristic function
  • signal light from an optical communication device other than the optical communication device in the pair also becomes noise and noise due to orthogonality.
  • the downstream signal light and the upstream signal light in the set have different codes, there is an effect that at least half the optical frequency component of the downstream signal light can be modulated as the upstream signal light.
  • This effect is particularly effective for a configuration such as a passive optical network (P ⁇ N), which is a one-to-N connection network as specified in the ITU-T Recommendations G.983 and G.984 series. is there.
  • P ⁇ N passive optical network
  • WDM-PON wavelength-division multiplexing passive optical communication network
  • the downstream signal light that normally communicates with the optical terminal unit ( ⁇ NU) is simply noise and light.
  • the noise is just enough to be discarded by a filter.
  • the force S can be effectively used as light for modulating as upstream signal light.
  • This embodiment 3-3 shows the relationship of the formula (22) or the formula (23), the formula (24) or the formula (25), the formula (26) or the formula (27), and the formula (28) or the formula (29).
  • a trigonometric function is used as a function to have.
  • the function used in Example 3-3 is a triangular function having a relationship in which the periods of the light intensity changes in the optical frequency light domain are integral multiples of each other, or in the case of the same period, the ⁇ / 2 phase is different. It is. That is, for example, the optical frequency characteristic function Mi (f) of the signal light of the mark is expressed by Expression (30).
  • Mi (f) (1 + cos (2 ⁇ sf / (fL-fO) + r ⁇ / 2)) / 2 (30)
  • the optical frequency characteristic function Si (f) of the signal light in the space is l_Mi (f), that is, equation (31).
  • Si (f) l_ (l + cos (2 sf / (fL— f0) + ⁇ ⁇ / 2)) (31)
  • a filter having such an optical frequency characteristic function is, for example, a pine as shown in FIG. It can be easily configured using a Hatsuenda interferometer or the like.
  • Figure 56 shows an example of an optical communication device in that case.
  • the downstream signal light from the optical fiber 410 passes through an optical input / output duplexer 420, and is further branched and input by an optical splitter 421 to a downstream decoder 461 and an upstream encoder 441.
  • the downlink decoder 461 and the uplink encoder 441 are each configured by a Mach-Zehnder interferometer.
  • the optical path length difference between the paths 41 and 42 of the Mach-Zehnder interferometer of the decoder 461 and the encoder 441 is determined in correspondence with the functions IMi (f) and OMi (f), respectively. Assuming that the signal light of the mark is output from one output port of the coupler 44 in the decoder 461, the signal light of the space is output from the other output port, and these are input to the photodetectors 470M and 470S, respectively. Is done. On the other hand, the signal light of the mark is input from one output port of the coupler 44 in the encoder 441, and the signal light of the space is input to the switch 450 from the other output port. Other configuration operations are the same as those shown in FIG.
  • Example 3-4 the light intensity of the downstream signal light is insufficient, or the downstream signal light is received at a light intensity within the dynamic range of the photodetector, or the upstream signal light is transmitted with a sufficient light intensity.
  • an optical amplifier 423 is inserted between the optical input / output duplexer 420 and the optical splitter 421, and the downstream signal light is amplified.
  • the optical amplifier 423 amplifies input light from both directions.
  • an SOA semiconductor Optical Amplifier
  • an optical amplifier 423 may be inserted into the optical fiber 410 as indicated by a broken line to amplify the downstream signal light and the upstream signal light.
  • the optical amplifiers 423a and 423b are inserted into the two branch output sides of the optical branching device 421, respectively, so that the downstream signal light used for reception is converted to the light intensity within the dynamic range of the photodetectors 470M and 470S. Select the amplification factor of the optical amplifier 423a so that the upstream signal light has sufficient light intensity. The amplification factor of the optical amplifier 423b that amplifies the downstream signal light used for transmission is selected.
  • the optical amplifier 423b may be inserted at the output side of the optical combiner 450. In this case, since only the light encoded by the encoders 441M and 441S is amplified, it can be effectively amplified.
  • optical amplifiers 423aM and 423aS are inserted at the output side of the downlink mark decoder 461M and the downlink space decoder 461S instead of the optical amplifier 423a, only the decoded signal light can be efficiently amplified.
  • the mark optical amplifier 423aM and the space optical amplifier 423aS can be used as independent hard limiters.
  • the optical combiner 450 combines the output signal lights of the upstream mark encoder 441M and the upstream space encoder 441S with the optical multiplexer 453 through the optical amplifiers 452M and 452S, respectively. If the data from 431 is a mark, the amplification factor of the optical amplifier 452M is increased and the amplification factor of the optical amplifier 452S is decreased. If the data is space, the amplification factor of the optical amplifier 452M is decreased and the amplification factor of the optical amplifier 452S is decreased.
  • Both the amplification factors of the optical amplifiers 452M and 452S may be controlled by the data of the terminal 431 so that the amplification factor is increased and the code light corresponding to the mark and the space is selectively output. In this manner, the light intensity of the upstream signal light can be sufficiently increased.
  • an optical splitter may be used as the switch 430. In that case, there is an effect that it is not necessary to use a switch as an optical communication device at all.
  • the embodiment using the optical amplifier in the optical communication apparatus shown in FIG. 53 has been described.
  • the filtering characteristic functions of the encoder and the decoder used in the optical communication apparatus the optical frequency chip sequence function is used.
  • the trigonometric function described in Embodiment 3-3 may be used.
  • an optical communication apparatus using a total reflector at the subsequent stage of the encoder, omitting the optical input / output duplexer 420, and having a receiving circuit for decoding the downstream signal light is also provided in various places.
  • An amplifier can be inserted and work equally well.
  • optical amplifiers that can be introduced into FIG. 58 are indicated by broken lines with the same reference numerals as in FIGS. 52, 53, and 57, and redundant description is omitted.
  • the optical branching device directly connected to the optical input / output port 412 is an optical multiplexer / demultiplexer 421, which is inserted into the mark encoder 441M and the space encoder 441S on the side opposite to the total reflectors 451M and 451S.
  • the switch 430 is an optical multiplexer / demultiplexer. Mark encoder 441M and space encoder 441S are integrated into encoder 441.
  • optical amplifiers 451M and 451S are inserted between the mark signal light output port and space signal light output port of the encoder 441 and the total reflectors 451M and 451S, and these optical amplifiers 451M and 451S are controlled by the upstream data sequence.
  • the input port of the encoder 441 is directly connected to the optical multiplexer / demultiplexer 421, and the optical multiplexer / demultiplexer 430 can be omitted.
  • switches that are turned on and off in opposite directions by upstream data may be used.It is important to select either the mark signal light or the space signal light according to the upstream data. Bye ,.
  • the reception decoding circuit for the downlink signal light and the transmission encoding circuit for the uplink signal light are provided in parallel, but these may be provided in cascade.
  • An optical multiplexer / demultiplexer 430 is connected to the optical input / output port 412 via an optical amplifier 442 as necessary. Accordingly, the downstream signal light from the optical fiber 410 is input to the encoders 441M and 441S via the optical multiplexer / demultiplexer 430.
  • the mark signal light and the space signal light have complementary optical intensities at each optical frequency, and the average optical intensities in the optical frequency range fO-fL are equal to each other.
  • An optical frequency corresponding to half of the optical frequency component constituting the signal or space signal light is defined as mark signal light or space signal light as upstream signal light.
  • the encoders 441M and 441S half of the effective optical frequency component in the downstream signal light passes through the encoders 441M and 441S, and these transmitted lights are combined by the switch 450 and input to the optical multiplexer / demultiplexer 424, where they are transmitted by the optical multiplexer / demultiplexer 424.
  • the light is split into a total reflector 451 and an optical splitter 422.
  • the downstream signal light input to the optical splitter 422 is input to the decoders 461M and 461S. If the optical frequency characteristic of this downstream signal light matches the filtering characteristic function of these decoders 461M or 461S, at least half of the downstream signal light in the optical fiber 410 as described above.
  • the frequency component is transmitted correctly, and thus the decoded data can be obtained from the comparator 480.
  • the light reflected by total reflector 451 passes through optical multiplexer / demultiplexer 424 and is input to optical combiner 450.
  • the switching of the switch 450 is controlled by the upstream data series from the terminal 431. From the above, when the downstream signal light passes through the encoder 441M or 441S earlier, the encoded signal light is reflected by the total reflector 451, receives the same encoding, and is input to the optical multiplexer / demultiplexer 430. It is input to the optical fiber 410 as more upstream signal light.
  • This upstream signal light is encoded twice by the encoder 441M or 441S, and the encoding has the same characteristics, but the encoding as the final upstream signal light is performed from the optical fiber 410 to the switch 450.
  • the optical frequency characteristics of the upstream signal light may be disturbed by being affected by the light that is encoded when passing through the optical path and reflected by the total reflector 451.
  • the upstream signal light input to the optical fiber 410 may be amplified by the optical amplifier 442 until it is saturated.
  • the chip sequence is used as a function of the signal light.
  • the optical multiplexer / demultiplexer 430 may be a switch, and the switch 450 may be an optical multiplexer / demultiplexer. Other various modifications described above can be similarly applied.
  • the switch 450 may be configured as shown in FIG. 57, and the optical amplifiers 452M and 452S may saturate and amplify the upstream signal light input to the optical fiber 410, and may also serve as a substitute for the optical amplifier 442. Les ,.
  • an optical amplifier 442 may be arranged in front of the total reflector 451 as shown by a broken line in FIG. In this case, a total reflection coating is applied to one end of the SOA, and the optical amplifier and the total reflector can be configured as a single component.
  • the optical multiplexer / demultiplexer 424 and the total reflector 451 in the embodiment 3-5 are omitted, for example, as shown in FIG.
  • the downstream signal light transmitted through the encoders 441M and 441S is input from the switch 450 to the partial reflector 454, and a part of the downstream signal light is reflected by the partial reflector 454, and a part of the light is transmitted.
  • the signal is input to the branching device 422. Also in this case, it can be easily understood that the downlink signal light can be correctly decoded and the uplink signal light can be generated by using a part of the downlink signal light. In this example, as compared with the case shown in FIG.
  • the optical multiplexer / demultiplexer 424 can be omitted, and there is an effect that loss in the optical multiplexer / demultiplexer 424 is eliminated.
  • the optical amplifier 442 may be partially inserted into the switch 450 side of the reflector 454.
  • the optical amplifier and the partial reflector can be configured as a single component, for example, by applying a partially reflective coating to one end of the SOA.
  • the switch 450 may be configured as shown in FIG. 57, and the optical amplifiers 451M and 451S may also be used as the optical amplifier 442.
  • the above-described various modifications can be similarly performed. [Example 3-7]
  • a transmitting circuit is cascaded after a receiving circuit.
  • the photodetectors 470M and 470S in the receiving circuit for example, as shown in FIG. 61, photodetectors 471M and 471S composed of optical amplifiers capable of extracting an electric signal proportional to the input light intensity are used.
  • S ⁇ A can be used as such photodetectors 471M and 471S, and the light intensity of each signal light output from the mark decoder 461M and the space decoder 461S output from the photodetectors 471M and 471S.
  • Each electric signal proportional to is input to the comparator 480.
  • the amplified signal lights from the photodetectors 471M and 471S are multiplexed by the optical multiplexer 472 and input to the switch 430.
  • the other configuration operations are the same as those shown in FIG. Also in this case, since the optical frequency characteristics of the mark signal light and the space signal light are made as described above, the signal light transmitted through the downlink decoder 461 includes half of the optical frequency component of the downlink signal light.
  • the upstream encoder 441 can generate upstream mark signal light or upstream space signal light. With this configuration, unlike the configuration shown in FIG. 53, the optical splitter 421 for separating the downstream signal light into the receiving side and the transmitting side becomes unnecessary, and the downstream signal light input to the encoders 441M and 441S is not required. It can be amplified by the photodetectors 471M and 471S.
  • FIG. 62 shows an embodiment in which the optical amplifiers 471M and 471S are used as photodetectors when the Mach-Zehnder interferometer is used as the downlink decoder 461 and the uplink encoder 441 as shown in FIG.
  • the downstream signal light from the optical I / O duplexer 420 is directly input to the downstream decoder 461, and the decoded downstream mark signal light and downstream space signal light from the downstream decoder 461 are photodetectors 471M composed of optical amplifiers. And 471S.
  • An electric signal proportional to the light intensity from the photodetectors 471M and 471S is input to the comparator 480, and is optically amplified by the photodetectors 471M and 471S, and the mark signal light and the space signal light are supplied to the Mach-Zehnder of the downstream decoder 461.
  • the signal is input to a correction multiplexer 473 consisting of a Mach-Zehnder interferometer with an interferometer and ports replaced.
  • the difference between the optical path lengths of the paths 41 and 42 in the downlink decoder 461 is corrected by the difference in the optical path lengths of the paths 41 and 42 in the correction multiplexer 473, and the downlink mark signal light and the downlink space signal light have the same length.
  • This multiplexed downstream signal light is an upstream code composed of a Mach-Zehnder interferometer. Is input to the container 441.
  • Other configurations and operations are the same as those shown in FIG. Since each output light of the photodetectors 471M and 471S is multiplexed by the Mach-Zehnder interferometer, the loss can be reduced as compared with the case where the optical multiplexer 472 in FIG. 61 is used.
  • the third embodiment described above is generally described as follows.
  • the downlink signal light from the optical transmitter is transmitted, the downlink signal light is received by the reflection type optical communication device, the downlink data sequence is reproduced by using a part of the received downlink signal light, and a part of the received downlink signal is reproduced. It is assumed that an optical communication system that modulates the signal with an uplink data sequence and transmits the signal as an uplink signal to the optical transmitter is used.
  • the function and its inverse function do not necessarily have to have periodicity. Therefore, the optical intensity frequency characteristic of the received optical code signal is assumed to be the function Ci (f) or Ck (f), the upstream encoder 441, the filtered optical frequency characteristic function is assumed to be Cj (f) or Cm (f), and the optical frequency Fst Satisfy the inner product integral of the following formula of the optical frequency width FSR in an arbitrary range up to Fla,
  • Ck (f) ⁇ (l-Ci (f)), (l-Ci (f)) and (l-Ck (f))
  • Cm (f) ⁇ (l-Cj (f)
  • (1-Cj (f)) and (1-Cm (f)) are not used in the same system.
  • At least one of the inner product integral ⁇ Ci (f) * Cj (f) df and J Ck (f) * Ci (f) df is not zero. That is, either Ci (f)> 0 or Ck (f)> 0 holds.
  • the optical frequency width FSR is the common multiple of the repetition period FSRi of the function of each code in the range from the optical frequency Fst to Fla, and the optical frequency width FSRi is the value obtained by dividing the optical frequency width FSR by the common multiple of the function repetition period FSRi.
  • Ci (f) Ci (f + FSRi)
  • the optical frequency characteristic is modulated into a function Cj (f) or (1-1 Cj (f)), and space If so, the optical frequency characteristic is modulated into a function (11-Cj (f)) or Cj (f) and transmitted as upstream signal light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

明 細 書
光周波数符号を用いる光通信システム、その光送信装置及び光受信装 置、反射型光通信装置
技術分野
[0001] この発明の複数のデータ系列を異なる光符号により分離できるように多重化する光 符号多重(〇CDM, Optical Code Division Multiplex)や、 4相位相変調(QPSK, QUADRATURE Phase Sift Keying)あるいは直交振幅変調(QAM, Quadrature Amplitude Modulation)技術を光通信に適用した光通信システムとそのシステムに使 用される光送信装置及び光受信装置、反射型光通信装置に関する。
背景技術
[0002] 複数の収容局を光ファイバを介して中央局に収容する 1対多接続網 PON (Passive Optical Network)において、各収容局に互いに直交関係にある擬似ランダム拡散符 号を割当て、各収容局では割当てられた拡散符号に応じ光信号を変調して送信し、 これら光変調信号を中央局で多重化して更に遠方に送信することが提案されている 。その各拡散符号により光周波数領域の光周波数符号化する従来技術を以下に説 明する。
図 1にその光符号多重光通信システムにおける 1チャネルについて構成と光周波 数符号化 (波長符号化)を模式的に示す。送信側では光源 10からの波長が広帯域 な光信号 20が符号器 11に入射され、その入射光信号は符号器 11の選択波長 31の 波長成分のみが通過波長光 21として切り出されて波長符号化される。この符号化さ れた通過波長光 21は光ファイバ 13を通じて受信側の復号器 12へ伝送される。通過 波長光 21は復号器 12で対応する符号器 11からの符号のみが復号器の選択波長 3 2により通過波長光 22として通過して復号される。
[0003] 一方図 1 (c)に示すように、復号器 12の復号符号と対応しない拡散符号の符号器 からの通過波長光は、例えばその選択波長 により通過波長光 2 となり、この 通過波長光は復号器 12の選択波長 32によっては符号中の全てのチップ (光周波数 又は波長)は通過せず、通過するものがあっても一部のみであって、適正な光信号と して復号されず雑音光 22' となる。ここで符号器 11及び復号器 12は、例えば非特 許文献 1に示されている。
これらの従来の符号器及び復号器では、それらに用いる波長は特定の波長であり 、符号器 11への入力光信号 20の波長及び符号器 11の選択波長 31はそれぞれ所 定の絶対波長からの変動はほとんど許容されなレ、。このため、受信側から送信側に 対して送出光信号の波長及び符号器 11の選択波長 31を通知し、送信側はこの通 知に従って光源 10の出射光 20、符号器 11の選択波長 31の校正をしなければなら ない問題があった。
[0004] この問題を解決するために例えば非特許文献 2や特許文献 1 (1999年 2月 2日発 行)に示される方法が提案されている。この提案されている方法では、波長幅が数十 nmの LED (発光ダイオード)等の広帯域光源の出射光を、選択波長の温度依存性 が少ない素材で構成したマッハツエンダろ波器又はフアブリ一^ ^口ろ波器を用いてサ イン関数で波長を選択して波長符号ィ匕する、つまり各データ系列ごとに異なる周期 で波長を割り当てる。
従来の光通信方法において、 2値データ系列を、その各データごとにスペースであ るかマークであるかにより光信号を断続させる強度変調により送信している。
[0005] また無線通信方法で行われている 4相位相変調技術を光通信において行うことが 提案されている。これは 1波長の光信号に対し、その光位相を 2つのデータに応じて 、予め決めた 4つの位相の 1つに制御するものである。
複数のデータ系列を多重化して光伝送するために、「光周波数多重 (光 FDM、ま たは Optical FDM:Optical frequency division multiplex)または波長多重(WDM : wavelength division multiplex)」する光通信方法がある。この光波長多重通信方法を 適用した WDM— P〇Nにおいては、正しく多重分離できるように、各収容局より送信 する光信号の波長をそれぞれ調整する必要がある。このような波長調整を省略する ため、各収容局では中央局から受信した光をデータに応じて変調して中央局へ送り 返す光通信システムが提案されている (例えば非特許文献 3及び非特許文献 4参照) 特許文献 1 :日本国特許公開平 11 - 32029号公報 非特許文献 1 :大柴小枝子他著 2002年電子情報通信学会総合大会 B-10 - 80「デ ータレート拡張型時間拡散/波長ホップ光符号分割多重の実験検討」
非特許文献 2 : T.Pfeiffer他著, Electronics Letters vol.33 No.25 pp 2441-2442, 1997, "High Speed optical network for asynchronous multiuser access applying periodic spectral coding of broadband sources"
非特許文献 3:今井健之他著「反射型 SOAによる WDN—PONシステム用端末のィ ンターオペラピリティ」 2003年電子情報通信学会通信ソサエティ大会 B—10—50 非特許文献 4:成 J 11聖他著「半導体光増幅器を用いた波長チャネルデータリライタの ファイバ伝送特性」 2003年電子情報通信学会通信ソサエティ大会 B—10—51 発明の開示
発明が解決しょうとする課題
[0006] 文献 2や文献 3に示す従来の技術は各データ系列に符号に相当する異なる周期で 切り出した波長を割り当てる〇CDM (Optical code division multiplex)である力 各デ ータ系列(チャネル)と対応する光符号には互いに直交性がなレ、ために、少なレ、周期 を含む狭い光周波数幅での割当では互いに干渉を受け S/N (信号/雑音)が悪く なる。そこで例えば第 1データ系列に割当てる光の周波数差を λ 1、基準となる光周 波数波長を; 1 0とすると、光周波数 λ θ— λ θ + λ ΐの 1周期だけでなぐ多数の周期 を含む; 1 0 ; 1 0 + 2 λ 1、 λ 0—λ 0 + 3 λ 1、…と複数の周期を含む広い光周波数 幅で割当て、第 2データ系列に光周波数 λ θ— λ 0 + λ 2の 1周期だけではなぐ多 数の周期を含むえ 0— λ 0 + 2 λ 2、 ぇ0—ぇ0 + 3ぇ2、…と複数の周期を含む広い 光周波数幅で割当て、第 3データ系列に光周波数 λ 0— λ θ + λ 3の 1周期だけで はなく、多数の周期を含む λ θ— λ 0 + 2 λ 3、 ぇ0—ぇ0 + 3ぇ3、…と複数の周期を 含む広い光周波数幅で割当て、以下同様に割当てる。このようにして S/Nを向上さ せている。
[0007] このため、サイン関数の周期で切り出される波長数が少ない場合はチャネル光信 号間干渉が無視できず、誤り率を劣化させることなく多くのデータ系列対応のチヤネ ル光信号を多重することは困難である。従って、チャネル光信号間干渉を抑止するた めには、波長幅を無限大として近似するに充分な数の波長で多重するために、光源 の出射光の周波数を広帯域とする必要がある。広帯域光源を用いるために、伝送路 の波長分散の影響による波形劣化、伝送帯域制限の問題が発生し、高速伝送がで きない問題がある。また広い周波数幅の光を必要とするため、波長分散の影響で、 送受信間の距離が長い場合は信号対雑音比が劣化する問題があった。更に、周期 のみでチャネルを分離しているため、光源の出射光の周波数幅と、ろ波器で選択で きる光周波数に限りがあり、最大のチャネル数が増やせない問題があった。
[0008] また従来の無線通信方法で実用化されている 4相位相変調技術を光通信に適用し 光周波数信号の光位相を変調信号 (データ)に応じて制御しょうとすると、 βメートノレ オーダの光波長と比べて十分正確なオーダである数十分の 1の数十ナノメートノレオ ーダの精度で光の位相を制御することを実用化することは現在の所困難である。 また非特許文献 3に示す光波長多重 ΡΟΝでは収容局で中央局へデータを送信す るために用いる光信号を、無変調の連続光として中央局から収容局へ送信してレ、る 。従ってこの無変調連続光は中央局から収容局への伝送においては情報伝送に活 用されていなぐそれだけ情報伝送効率が悪いものとなる。非特許文献 4に示す装置 では、無変調連続光を中央局から送信しない点で情報伝送効率は非特許文献 3に 示す装置よりよいが、中央局で送信する下り光信号の消光比を悪くし、この消光比が 悪い下り光信号を収容局で上り光信号として情報伝送に利用可能としている。このた め、下り光信号の消光比が悪ぐ通信品質が劣化する。
課題を解決するための手段
[0009] この発明は第 1面一第 3面があるが、いずれも潘目符号の関数 Ci (f)及びその反 転関数(l_Ci (f) )を用レ、、これらは以下の条件を満たす。
関数 Ci (f)は Ci (f) =Ci (f + FSRi)が成立する周期関数であり、関数 Ci (f)の関数 値が 0から 1の値をとり、
光周波数幅 FSRは所定の光周波数 Fstから所定の光周波数 Flaまでの範囲にお いて、各符号の関数の繰り返し周期の公倍数の光周波数幅であり、
関数 Ci (f)の反転関数は、 1からこの関数 Ci (f)を減じた関数(1一 Ci (f) )であり、 関数 Ci (f)と関数 ( 1-Ci (f) )との間に
I ci(f) -ci(f)df> I ci(f) · (i- (f))dfの関係が成立し、 J"dfは Fstから Flaまでの任意の区間 FSRにおける fに関する定積分であり、 関数 Ci(f)と i番目符号以外の任意の j番目符号の関数 Cj (f)及びこの関数 Cj (f)の 反転関数 (l-Cj(f))との間に
ί Ci(f) -Cj(f)df= ί Ci(f) · (1一 Cj(f))dfの関係が成立する。
[0010] この発明の第 1面によれば光符号通信に適用され、送信側では 2値データ系列の 各データごとに、その値に応じた i番目符号の関数 Ci(f)及びその反転関数(l_Ci(f ))の少なくとも一方を、光強度周波数特性とした光符号信号を、少なくとも関数同士 が直交する周期 FSR分生成送信し、
受信側では受信した光信号から、関数 Ci(f)に基づき光強度周波数特性が Ci(f) の光信号の光強度と対応する第 1強度信号と、
受信光信号から、反転関数 (l_Ci(f))に基づき、光強度周波数特性が(l_Ci(f)) の光信号の光強度と対応する第 2強度信号との差と対応した第 1差信号力 データ系 列を再生する。
[0011] この発明の第 2面によれば擬似的に例えば直交位相変調を行うもので、
光周波数幅 FSR以下の任意の光周波数幅を、関数 Ci(f)の繰り返し周期 FSRiで 除した剰余を Δ fとし、位相 2 π ( Δ f/FSRi)を関数 Ci (f)に対する位相差とし、 上記剰余 Δ fだけ異なる光周波数 (f + Δ f)での i番目符号の関数 Ci (f + Δ f)と等し い関数を Ci' (f)=Ci(f+Af)とし、
関数 Ci' (f)と関数 Cj (f)及びその反転関数(1一 Cj (f))との間に
ic (f)-cj(f)df= ic (f)'(l_Cj' (f))dfの関係が成立し、
送信側では 2値データ系列を複数の分離データ系列に分離し、その分離データ系 列ごとの、互いに異なる符号の関数についてデータごとにその値に応じたその関数 及びその反転関数の少なくとも一方を光強度周波数特性とした光信号とし、これら光 信号を合成して光符号信号として送信し、
受信側では上記各分離データ系列と対応する関数及びその反転関数に基づき、こ れら各関数をそれぞれ光強度周波数特性とする光信号の光強度差をそれぞれ求め
、それぞれ分離データ系列を再生する。
[0012] この発明の第 3面によれば反射型光通信に適用され、少なくとも光周波数幅 FSR の光周波数帯で光強度周波数特性が関数 Ci (f)又は反転関数 (1 Cj (f) )の受信光 信号が入力され、その受信信号はろ波光周波数特性が関数 Ci (f)の符号器に入力 されて光信号が出力され、ろ波光周波数特性が反転関数 (1 Ci (f) )の反転符号器 にも受信光信号が入力されて反転光信号が出力され、
入力 2値データ系列の各データごとにその値に応じて光信号と反転光信号を選択 合波して光符号信号として送信される。
発明の効果
[0013] この発明の第 1面の構成によれば関数 Ci (f)が連続して繰り返され、 Fst— Fla内の 周波数範囲であれば任意の位置での光周波数幅 FSR分の光符号信号を送信すれ ばよぐ従って光送信装置の光源や符号器、光受信装置の復号器などの光周波数 がドリフトしても受信側から送信光周波数を通知し、送信側で光周波数を調整する必 要がない。しかも複数のデータ系列に対し、光符号信号の光強度周波数特性 Ci (f) を互いに直交させたものを用いることにより多くの光符号信号を光符号多重化するこ とができ、その場合、いずれの光符号信号の光周波数幅は FSRと同一値であればよ ぐ光周波数幅を特に広くする必要はない。
[0014] この発明の第 2面の構成によれば分離データ系列のデータごとに光強度周波数特 性の関数を制御するものであるから、光周波数信号の光位相を変調する場合と比較 して、変調する制御精度は著しく粗レ、ものでよぐ容易に実現することができる。
この発明の第 3面の構成によれば上り光信号として送り返すための無変調下り光信 号を送る必要がなぐしかも下り光信号と上り光信号の両光強度周波数特性関数が 互いに直交化しているため下りデータがマークの場合もスペースの場合も、同一の光 強度のマークあるいはスペースの上り光信号を出力することができ、下り光信号の消 光比を悪くすることなぐ通信品質を劣化するおそれがない。
図面の簡単な説明
[0015] [図 1]図 1 (a)は従来の光符号多重化方法のシステム構成を、図 1 (b)及び図 1 (c)は それぞれ光源光波長、符号量の選択光波長、その透過光、復号器の選択光波長、 その透過光の例を示す図である。
[図 2]この発明の第 1実施形態が適用される多重通信システム構成例を示し、図 2 (a) はその光送信装置、図 2 (b)は光受信装置をそれぞれ示す図である。
園 3]この発明の第 1実施形態が適用される他の多重通信システム構成例を示し、図
3 (a)は光送信装置、図 3 (b)は光受信装置をそれぞれ示す図である。
[図 4]この発明の第 1実施形態が適用される通信システム構成例を示す図。
[図 5]図 5 (a)は光源周波数のドリフトを、図 5 (b)は符号化光周波数領域を、図 5 (c) は復号化光周波数領域の例を示す図である。
[図 6]図 6 (a)、図 6 (b)、図 6 (c)はそれぞれ実施例 1における拡散符号の例を示す図 である。
[図 7]実施例 2の符号器の構成例を示す図。
[図 8]実施例 2の復号器の構成例を示す図。
[図 9]実施例 2の符号器 Z復号器のろ波器の構成例を示す図。
[図 10]図 10 (a)は 1次のアダマール行列を示す図、図 10 (b)は 2次のアダマール行 列を示す図、図 10 (c)はアダマール行列の漸化式を示す図である。
園 11]図 11 (a)及び図 11 (b)は実施例 3に用いる 2次のアダマール行列に対応する 符号化符号 (連結符号)の例を示す図である。
[図 12]実施例 3の復号器の構成例を示す図。
園 13]実施例 3において図 13 (a)は光源周波数ドリフトが生じない場合、図 13 (b)及 び図 13 (c)はそれぞれ光源周波数ドリフトが生じた場合の光源光周波数、符号化光 周波数領域、符号化光信号、復号化光周波数領域、復号ろ波光信号の例をそれぞ れ示す図である。
園 14]実施例 2の符号器/復号器のろ波器の構成例を示す図。
園 15]実施例 3の復号器の他の構成例を示す図。
[図 16]実施例 3の符号器 Z復号器のろ波器の他の構成例を示す図。
園 17]実施例 3の符号器 Z復号器のろ波器の更に他の構成例を示す図。
園 18]実施例 3の符号器 Z復号器のろ波器に用レ、る可変遅延線の例を示す図。 園 19]実施例 3の符号器 Z復号器のろ波器に用レ、る可変遅延線の他の例を示す図 園 20]実施例 3における図 20 (a)は符号化光周波数領域のドリフト無しの場合、図 2 0 (b)及び (c)はドリフト有りの場合の各光源光周波数、符号化光周波数領域、符号 化光信号、復号化光周波数領域、復号化信号の関係例を示す図である。
[図 21]実施例 3の符号器/復号器のろ波器の更に他の構成例を示す図。
[図 22]実施例 3の符号器の他の構成例を示す図。
[図 23]実施例 3の復号器の更に他の構成例を示す図。
[図 24]実施例 3の符号器の更に他の構成例を示す図。
[図 25]実施例 3の復号器の更に他の構成例を示す図。
[図 26]実施例 3の復号器の更に他の構成例を示す図。
[図 27]実施例 3の復号器の更に他の構成例を示す図。
[図 28]実施例 2の符号器及び復号器の組み合わせ構成例を示す図。
園 29]第 1実施形態を適用することができる通信システム構成例を示す図。
園 30]この発明の第 2実施形態における実施例 2— 1を適用した通信システムの構成 例を示す図。
園 31]2個のデータと対応する位相と、三角関数の擬似搬送波との関係例を示し、図 31 (a)は位相 0、図 31 (b)は位相 π /2、図 31 (c)は位相 π、図 31 (d)は位相 3 π / 2の場合の図である。
園 32-1]実施例 2-1における光源出力と、変調出力と、ろ波特性と、受信側のろ波 出力と、検出強度との 0相変調出力の場合の関係例を示す図。
園 32-2]図 32-1の π /2相変調出力の場合の例を示す図。
[図 32-3]図 32— 1の π相変調出力の場合の例を示す図。
園 32-4]図 32-1の 3 π /2相変調出力の場合の例を示す図。
園 33]図 30中の位相変調部 130の構成例を示す図。
園 34]実施例 2— 2における光送信装置の構成例を示す図。
園 35]図 35 (a)は実施例 2—3における光送信装置の構成例を示す図、図 35 (b)は 図 35 (a)中の変調器 132の変形例を示す図である。
[図 36]図 36 (a)は QPSKにおける座標上の信号点を示す図、図 36 (b)はデータ組と 座標点と選択ろ波位相との関係を示す図である。
園 37-1]実施例 2— 4を適用した通信システムにおける光送信装置の構成例を示す 図。
[図 37-2]実施例 2 - 4の光受信装置の構成例を示す図。
[図 38]図 38 (a)は QAMにおける座標上の信号点を示す図、図 38 (b)はデータ組と
、選択位相及び強度と、比較器 241及び 242の各出力との関係を示す図。
園 39]実施例 2-4における光送信装置の他の構成例を示す図。
園 40]実施例 2_5を適用した通信システムの構成例を示す図。
[図 41]図 41は実施例 2—5におけるろ波特性の例を示し、図 41 (a)、図 41 (b)、図 41
(c)、図 41 (d)はそれぞれ位相 0、位相 π Ζ2、位相 π、位相 3 π /2の各場合の図 である。
園 42- 1]実施例 2-5における光源出力と、変調出力と、ろ波特性と、受信側のろ波 出力と、検出強度との 0相変調出力の場合の関係例を示す図。
[図 42-2]図 42— 1の π /2相変調出力の場合の例を示す図。
園 42-3]図 42-1の π相変調出力の場合の例を示す図。
園 42-4]図 42-1の 3 π /2相変調出力の場合の例を示す図。
[図 43]図 43 (a)に実施例 2_5におけるチップ数 L= 24、 P=4、 n= l、 S = 6の場合 の光周波数特性関数の例を示す図、図 43 (b)は図 43 (a)の例に対し S = 3とした場 合の例を示す図である。
[図 44]実施例 2-5におけるチップ数 Lと、位相シフト量 Pと、約数 Sと、 Qと nとの関係 例を示し、図 44 (a)は P = 0、図 44 (b)は P= l、図 44 (c)は P = 2の各々の図である
[図 45]実施例 2 - 8の光送信装置の構成例を示す図。
[図 46]図 45中の各 Sチップ光源の光チップの例を示す図。
園 47]実施例 2_9を適用した通信システムの構成例を示す図。
[図 48-1]実施例 2— 11を適用した通信システムにおける光送信装置の構成例を示す 図。
[図 48-2]実施例 2 - 11の光受信装置の構成例を示す図。
[図 49]この発明の第 3実施形態における反射型光通信装置の実施例を示す機能構 成図。 [図 50]図 50 (a)及び図 50 (b)はこの第 3実施形態における光周波数特性をチップ関 数とした例を示す図。
[図 51]図 49中の符号器 440M及び 440Sとしてチップ関数をもつ構成例を示す図。
[図 52]この第 3実施形態の装置の他の実施例を示す機能構成図。
[図 53]この発明装置で送信回路及び受信回路を並設した例を示す機能構成図。
[図 54]第 3実施形態においてチップ関数の例を示す図。
[図 55]第 3実施形態の反射型光通信装置と対向する光通信装置の例を示す機能構 成図。
[図 56]第 3実施形態で三角関数ろ波特性をもつ送信回路と受信回路を並設した例を 示す機能構成図。
[図 57]図 53中の光合成器の他の例を示す機能構成図。
[図 58]第 3実施形態で送信回路と受信回路を並設する他の例を示す機能構成図。
[図 59]実施例 3— 5における送信回路の後に受信回路を縦続した例を示す機能構成 図。
[図 60]実施例 3— 4における送信回路の後に受信回路を縦続した他の例を示す機能 構成図。
[図 61]実施例 3— 5における受信回路の後に送信回路を縦続した例を示す機能構成 図。
[図 62]実施例 3— 5における受信回路の後に送信回路を縦続した他の例を示す機能 構成図。
発明を実施するための最良の形態
以下この発明の実施形態を図面を参照して説明するが、以下の説明において対応 する部分には図面に同一参照番号を付けて重複説明は省略する。 この発明の第 1実施形態は光符号多重化を可能としたものであるが、光多重化しな レ、、つまり 1つのデータ系列の光通信にも適用できる力 この項の表題は他の実施形 態と区別し易いように括弧書きで (光符号多重)を付け加えた。
まずこの発明を適用できる送信側装置及び受信側装置の例を説明する。図 2 (a)に この第 1実施形態が適用される光送信側装置の例を示す。 n= l , 2,…, N (Nは 2以 上の整数)とし、光源 10 と符号器 11 の組は光ファイバ 14 を通じて合波器 15に接
n n n
続される。各符号器 11 にはデータ系列 D が入力され、データ系列 D が符号器 11 n n n n で光符号信号に符号化され、光ファイバ 14 を通じて合波器 15へ入力され、他の光
n
符号信号と合成され、合波器 15から光符号多重化信号が出力される。図 2 (a)に示 す例では合波器 15と各符号器 11 ,…, 11 とが離れ、かつこれら合波器と符号器と
1 N
の間の距離が互レ、に異つていてもよレ、場合である。
[0017] 図 3 (a)に示すように符号器 11 ,…, 11 と合波器 15は同一個所に設けられ、符
1 N
号器 11 ,…, 11 に対し、光源 10が共通に設けられていてもよい。図 2 (a)に示す
1 N
構成のものと、図 3 (a)に示す構成のものとが組み合わされたものでもよい。
光受信側装置は図 2 (b)に示すように、分配器 16に入力された光符号多重化信号 は N個の光信号に分配され、それぞれ光ファイバ 18 , ·■·, 18 を通じて復号器 12
1 N 1
, · · · , 12 に入力され、各データ系列 D,…, D が分離復号される。分配器 16と復
N 1 N
号器 12 , · · ·, 12 とが離れ、その距離は互いに異なっていてもよレ、。図 3 (b)に示す
1 N
ように分配器 16と復号器 12 ,…, 12 が同一個所に設けられていてもよぐ図 2 (b)
1 N
に示す構成のものと、図 3 (b)に示す構成のものとが組み合わされたものでもよい。
[実施例 1一 1]
第 1実施形態の実施例 1一 1を適用できる 1系統の通信システムを図 4に示す。この 実施例 1一 1は、従来の光通信システムと同様に光源 10、符号器 11、復号器 12、光 伝送路 (光ファイバ) 13を具備し、更に、光伝送路の周波数分散により周波数に依存 する伝播遅延時間に違いが存在するので、光符号信号を構成する各周波数成分の 送受信間での遅延時間が同一となるように平準化して補償する分散補償器 17をこの 実施例 1一 1では具備している。この分散補償器 17の補償対象とする光周波数帯域 は少なくとも光符号信号として用レ、られる光周波数帯域よりも広い。
[0018] 光源 10は、符号器 11の符号ィ匕対象光周波数領域(光周波数 Fst— Fla)で少なくと も符号長 FCL (後で述べる FSRiと対応)に相当する光周波数幅の光信号を出力す る。
光源 10からの光信号 20は、符号器 11により光周波数領域で光符号信号に符号化 される。この実施例 1一 1で用いられる符号器 11は、従来の光通信システムにおける 符号器と異なり、光通信システムにおいて用いる全ての符号ィヒ符号 (符号語)の符号 長 FCLが等しい光符号信号を、光周波数領域で生成する。前記光周波数領域での 光符号信号は次の性質をもつものである。第 n光符号信号の強度は光周波数 fの関 数 (符号化符号ともいう) Cn(f)であって、この関数値 Cn(f)は 0から 1の値であり、符 号器 11の符号ィ匕対象光周波数領域 Fst— Flaにおける任意の符号長 FCLの区間で の関数値 Cn(f)の積分値は、 FCLを 2で除した値であり、符号器 11 における光透過 率の光周波数特性はその符号化対象周波数領域 Fst— Flaにおいて、同一の関数 C n(f)が符号長 FCLの周期で繰り返す。また、次式が成り立つ。
[0019] Cn(f) =Cn(f + FCL) n=l,…, N (1)
ί Cn(f) =FCL/2 (2)
なお以下では光強度の光周波数特性関数が Cn(f)の光符号信号も Cn(f)と表記 する、つまり Cn(f)は第 n符号化符号又は第 n光符号信号を表わす。また用語「第 n( 光符号信号)は他の実施形態における用語「n番目(光符号信号)」と対応し、更に表 記「(関数又は符号化符号) Cn (f)」は他の実施形態における「(光周波数特性関数 又は符号) Cn(f)」と対応する。
[0020] 符号器 11で生成された光符号信号を復号する復号器 12は、この実施例 1 - 1では 、第 n光符号信号 Cn(f)に対し、復号器 12は 1周期が符号長 FCLと等しい関数 (復 号化符号ともいう) Dn(f)を、その復号ィ匕対象光周波数領域で連続して繰り返すもの であり、 Dn(f)は次式で表される。
Dn(f)=Cn(f) - Cn' (f) (3)
ここで、 C (f)は、第 n符号ィ匕符号 Cn(f)の光強度の大小を反転したものであり、 その関数値 C (f)は関数値 Cn(f)の反転値であり、次式の関係が成り立つ。
[0021] Cn(f)+Cnr (f)=l (4)
第 n光符号信号の光周波数 fでの値 Cn(f)と、第 n光符号信号を復号する復号器の 複号化符号 Dn(f)との内積を、符号器の符号化光周波数領域と復号器の複号化光 周波数領域に含まれる符号長 FCL分の連続する光周波数領域にわたり光周波数 f に関し積分した値が、零でない有限値 FCL/4であり、次式の関係が成り立つ。 J Cn (f) -Dn (f) df=FCL/4 (5)
なお、式(5)の積分は光源の光周波数幅 FSRで行うが、この実施例では FSRが符 号長 FCLの丁度自然数倍である。
[0022] 第 n光符号信号 Cn (f)と、第 n光符号信号 Cn (f)以外の第 m光符号信号 Cm (f) ( m= l,■· - , Nかつ m=nを除く)を復号する復号器 12の複号化符号 Dm (f)との内 積を、符号器の符号ィ匕光周波数領域とその復号器の復号ィ匕光周波数領域に含まれ る符号長 FCL分の連続する周波数領域にわたり積分した値が零であり、次式の関係 が成り立つ。
ί Cn (f) -Dm (f) df=0 m≠n, m= l ,…, N (6)
図 2及び図 3に示したように多重化するデータ系列は複数個 Nであり、これら第 1, …,第 Nデータ系列に第 1,…,第 N符号化符号が割り当てられ、第 1 ,…,第 N符号 化符号の符号長 FCLは互いに等しい値とする。符号器 11 の符号化対象光周波数 n
領域を光符号信号の符号長 FCLより大とし、通常は符号器 11 で第 nデータ系列の
11
データに応じて、光源から入力された少くとも符号長 FCLの光周波数幅の光信号を 、光周波数領域で符号化した光符号信号 Cn (f)を生成出力する。この出力される光 符号信号 Cn (f)の長さは 1データについて 1符号長 FCLとされる。例えばデータが" 1" (マーク)の時に光符号信号 Cn (f)が 1符号長分出力され、データが" 0" (スペース )の時は光符号信号 Cn (f)は出力されない。なおマーク、スペースは 2種類の変調単 位信号の一方と他方に対応する。
[0023] N個のデータ系列が光符号信号が多重化された光信号から第 nデータ系列を復号 する復号器 12 では式(3)、式(5)から理解されるように入力された光符号多重化信 n
号と第 n符号信号 Cn (f)及びその反転光符号信号 C (f)との各内積の積分をそ れぞれとり、これら積分値の差をとり、その差が所定値以上であれば復号データとし で Τを出力し、所定値以上でなければ復号データとしで' 0"を出力する。
このようにこの実施例 1一 1では、データ系列ごとに異なる波長周期を用いた従来例 と異なり、全光符号信号が互いに直交する光周波数幅である符号長 FCLが同一で、 符号器 11の透過率の光周波数特性はその符号化対象光周波数領域 FSR内で Cn (f)が連続して繰り返され、復号器 12の透過率の光周波数特性もその複号化対象 光周波数領域 Fst— Fla内で Dn (f)が連続して繰り返されるものであるため、各光符 号信号は式(1)と式 (2)で示される性質が保たれ、その積分区間を変更しても、各光 符号信号の復号器での内積の積分値は変化しない。従って、この実施例 1一 1では、 符号で符号化される光源の光周波数幅が一定であり、その光周波数が符号器の符 号化光周波数領域と復号器の復号化光周波数領域に含まれるならば、光源の光周 波数変化によって、対応する符号器による光符号信号は復号器で同一の入力強度 の光符号信号として受信し、この復号器と対応しなレ、他の光符号信号による干渉は 増加しない。例えば図 5 (a)に示すように光源 10よりの出力光信号の光周波数は f
1 一 f =FSRであり、この光周波数幅はほぼ符号が繰り返す光周波数幅 FCLの自然 2
数倍であり、(この実施例は自然数として 1を選択した例である。)この光周波数幅 f
1 一 f は図 5 (b) , (c)にそれぞれ示す符号器 11 の符号化光周波数領域、復号器 12
2 n
の複号化光周波数領域にそれぞれ含まれている。従って光源 10の出力光の光周 n
波数がドリフトにより、例えば破線で示すようにずれても、これが符号化光周波数領域 及び復号化光周波数領域内であれば、この光周波数がドリフトした光符号信号に対 する復号化は、入力光符号多重化信号と復号化符号 Dn (f)との内積を、光源の光 周波数幅に相当する FSR (この例では符号長 FCLに等しい)で積分して行われ、か つ式(1)及び(2)の関係があるから、ドリフト前と同一復号結果が得られ、また干渉の 増加もない。同様に符号化光周波数領域及び復号化光周波数領域がドリフトにより ずれても、良好な復号が行われる。この合波器 15 (図 2、図 3参照)により生成された 光符号多重化信号を伝送する光ファイバの光伝送帯域は光源の光周波数幅 FSRよ り、光源の光周波数変動を十分カバーする程度大であればよい。前記符号化光周 波数領域及び前記複号化光周波数領域も前記光伝送帯域と同一とすればよい。つ まりこの第 1実施形態では符号同士が直交しているので、光源の光周波数幅 FSRは 全符号の符号長 FCLと同一でよぐその場合光ファイバで伝送に要する光周波数幅 は、符号長 FCLに光源の光周波数変動分を加えた光周波数幅でょレ、。
このため、文献 2に示す従来技術では拡散符号同士の符号長が異なる周期符号を 用いたものであり、符号間干渉を打ち消す必要上、サイン関数光を充分多数周期分 取り出すための広帯域な光源を必要としたが、この実施例 1一 1ではそのように光帯域 の光源は不要となり、光源 10出射光は、同一の符号長 FCLと対応した光周波数幅( 周期幅)だけあればよぐ伝送周波数 (波長)帯域幅がそれだけ狭くて済み、光伝送 路の波長分散の影響による波形劣化、伝送帯域制限の問題を抑止することができる 更に、分散補償器 17を設けることにより伝送距離の違いによる符号間の直交性の 崩れも軽減すること力 Sできる。
[0025] 以上示したように、この実施例 1一 1では、符号器の符号ィ匕対象の光周波数領域が 光符号信号の符号長 FCLより大きな光周波数幅であり、式(1)から式 (6)で示す特 性を有する光符号信号を用い、且つ分散補償器 17を、例えば図 2 (b)中に破線で示 すように復号器の直前、あるいは図 2 (b)中に破線で示すように符号器の直後に具備 することで、符号器と復号器間の距離によらず、光源の出力信号光周波数が符号器 で符号化対象とする光周波数範囲で変化した場合に、光源の出力光信号の光周波 数幅が変化しなければ、対応する符号器の出力光符号信号は復号器で同一の入力 強度の光符号信号として受信し、この復号器と対応しなレ、他の光符号信号による干 渉は増加しないため、光源の出力信号光周波数は所定の絶対周波数からの変動を 許容し、光源の出力信号光周波数の校正を不要とすることができる。
[実施例 1 - 2]
この第 1実施形態の実施例 1 2は実施例 1 1を具体化し、符号ィ匕関数 C (f)として 三角関数を用いる例である。この実施例 1-2では、可能な限り小さな aの値 (正整数) を用いかつ同一の a値で 個の符号を生成する場合に、 aは 1から最大符号数 (最 大収容符号器数) Nを で除した値 Ν/ までの整数値をとり、 rを の剰余であ る 0, 1 ,…, _1とした場合に、第 n光符号信号 Cn (f)として次式で表せるものを用 いる。
[0026] Cn (f) = (l +cos (2 - π - a-f/FCL + r- π /2) ) /2 (7)
この光符号信号関数値 Cn (f)は 0から 1の値であり、符号器 11 の符号化対象光周 波数における任意の符号長 FCLの区間での積分値は FCLZ2であり、符号器 11 は符号ィ匕対象とする光周波数領域において、光透過特性が関数値 Cn (f)を符号長 FCLの周期で繰り返し、実施例 1-1における式(1)と式(2)を満たす。 以下では = 2、従って rを で割算した余りは 0又は 1であり、 aは 1 , · · · , N/2 の値をとる場合を例として説明する。
[0027] この実施例 1一 2の光符号信号 Cn (f)の例を図 6に示す。図 6の横軸は、符号長 FC Lで規格化した光周波数、縦軸は強度であり、図 6 (a) ,図 6 (b) ,図 6 (c)はそれぞれ a= l, 2, 3に対応し、点線力 Sr = 0、実線力 に対応する光符号信号である。この 光符号信号 Cn (f)は Cn (f) =0以外では各チップと対応する単一周波数光信号が その配列順にアナログ的に変化する強度をもち、従来の図 1に示したチップ対応に" 1 "か" 0"の単一周波数光信号をもつ拡散符号とは異なる。
第 n光符号信号 Cn (f)を復号化する復号器 12 の複号化符号 Dn (f)は次式で表さ
11
れるものを用いる。
[0028] Dn (f) = (l + cos (2 - π - a-f/FCL + r- π /2) )-1 (8)
第 η光符号信号 Cn (f)と第 n光符号信号を復号化する第 n復号ィヒ符号 Dn (f)との 内積を、符号器の符号ィヒ光周波数領域と復号器の復号化光周波数領域に含まれる 符号長 FCL分の連続する周波数領域にわたり積分した値が零でない有限値 FCL/ 4となり、第 n光符号信号 Cn (f)と、第 n光符号信号以外の第 m光符号信号を復号化 する復号器の復号化符号 Dm (f)との内積を符号器の符号化光周波数領域と復号 器の復号化光周波数領域に含まれる符号長 FCL分の連続する周波数領域にわたり 積分した値が零であり、実施例 1一 1における式(5)と(6)を満たす。
[0029] この実施例 1一 2に用いられる符号器 11 の構成例を図 7に示す。光入力を、光路 n
長の異なる 2組の方路 41, 42と、これらと光結合され、入力された各光を 2組の方路 に合分波する 2組の力ブラ 43, 44とからなるマッハツエンダ干渉計が符号器 11 とし n て用いられる。カプラ 43の入力ポートの一方に入力された光は 2つの出力ポートより それぞれ方路 41, 42に入力される。力ブラ 44の一方の出力ポートには方路 41と 42 の光路長差で決る光周波数とその整数倍の光周波数成分の光が主として出力され、 他方の出力ポートから他の光周波数成分が主として出力される。この光周波数の選 択特性はオンオフ的ではなぐなだらかな特性であるため、例えば図 5 (a)では選択 光周波数 (規格化された)が flとされた場合であり、選択光周波数 flで強度が 1の余 弦波状の光出力となる。 [0030] 従って力ブラ 44の一方の出力ポートから出力 Aとして式(7)に示す第 n光符号信号 Cn (f)の光が出力される。他方の出力ポートから出力 Bとして反転光符号信号 Cr^ (f)が出力される。
実施例 1一 2に用いられる復号器 12の構成例を図 8に示す。光路長の異なる 2組の 方路 51 , 52と光を 2組の方路に光結合するカプラ 53, 54とからなるマッハツエンダ 干渉計 55に光符号多重化信号が入力され、マッハツエンダ干渉計 55の出力側の一 方の出力 Aとして式 (7)に示す第 n符号ィ匕符号 Cn (f)の光周波数信号が出力され、 その出力の光強度が検出器 56aにて電気信号として検出される。マッハツエンダ干 渉計 55の他方の出力 Bとして式(7)に示す第 n光符号信号 Cn (f)を反転した光符号 信号 Ct^ (f)が出力され、その出力 Ci^ (f)の光強度が検出器 56bにて電気信号 として検出される。出力 Aは入力光符号多重化信号と符号ィヒ符号 Cn (f)との内積値 と対応したものであり、出力 Bは入力光符号多重化信号と、 1から符号化符号 Cn (f) を減じた Cn (f)の反転符号(l-Cn (f) )との内積と対応したものであり、検出器 56aの 出力は出力 Aを復号化対象光周波数領域 Fst— Flaの範囲に含まれる光源の光周波 数幅 FSRの光周波数 fに関して積分した値と対応し、検出器 56bの出力は出力 Bを 復号化対象光周波数領域 Fst— Flaに含まれる光源の光周波数幅 FSRで、 fに関し て積分した値と対応する。検出器 56aの検出した光強度から検出器 56bが検出した 光強度が強度差検出器 57で減算された強度が出力されて復号器 12での復号出力 が得られる。例えば強度差検出器 57の出力がしきい値以上であればデータ "1 "が、 しきい値より大でなければデータ" 0"が出力される。
[0031] このように、実施例 1-2も実施例 1-1と同様に、異なる光符号同士の符号長が異な る周期符号を用いた文献 2の従来例と異なり、光符号信号同士が直交しているため、 異なる光符号信号同士の符号長分の内積の総和は零であり、直交していない周期 符号を用いた従来例より符号間干渉が少ない。
この実施例 1 - 2では、符号化符号で符号化される光源の光出力の光周波数幅が 一定であり、光源よりの出力光の光周波数が符号器の符号化光周波数領域と復号 器の復号ィ匕光周波数領域に含まれるならば、光源の光周波数変化の影響を受けな レ、ことも実施例 1-1と同様である。また、直交していない周期符号を用いた従来例と 異なり、符号間干渉を十分無視できるだけの多周期にわたる光を出力する光源を必 要とせず、つまり光源よりの出力光の光周波数帯域幅は特に広くする必要がなぐ伝 送帯域は光源の光周波数幅 FSRより、光源の光周波数変動分をカバーする程度広 ければよぐそれ程広くする必要がないため伝送路の波長分散の影響による波形劣 ィ匕、伝送帯域制限の問題を抑止することができる。
[0032] また、この実施例 1_2では、周波数 f、つまり式(7)中の aの変更に加えて、光符号 信号の光周波数軸上での開始位置における位相を π Ζ2変化させる、つまり式(7) 中の rを 0又は 1に変化させることで、単なる周期(a)のみを変更して符号ィ匕する場合 に比べて倍の符号化符号数を実現することができる。
[実施例 1 - 2の変形例]
実施例 1_2として前述したものではデータ系列中のデータ" (マーク)の時のみ 光符号信号を出力したが、データ" 0" (スペース)時にも光符号信号を出力してもよい 。つまり、第 nデータ系列中のデータ "1 " (マーク)で第 n光符号信号 Cn (f)を出力し、 データ" 0" (スペース)で第 n光符号信号 Cn (f)の反転光符号信号 C (f)を出力す る。このための符号器 11 としては図 7中に出力側力ブラ 44の後段に破線で示すよう
n
に切替器 45を設け、これに出力 Aと Bを入力し、切替器 45をデータ系列 Dnの各デ ータで制御してデータが "1 " (マーク)のときは出力 Aを出力し、 "0" (スペース)のとき は出力 Bを出力して、ノンリターンッゥゼロの光変調信号とする。
[0033] この実施例では光符号信号は、マークのときに式(9)と(10)が成り立ち
J Cn (f) Dn (f) =FCL/4 (9)
J Cn (f) Dm (f) = 0 (10)
スペースのときに式(11)と(12)が成り立つ。
ί C (f) Dn (f) =-FCL/4 (11)
ί C (f) Dm (f) = 0 (12)
この実施例においても積分は光源の光周波数幅 FSRで行うが、その幅 FSRが符 号の繰り返し光周波数幅 FCLと等しい場合である。
[0034] 従って、マークの光信号しか送らず、強度差検出器 57の出力がマークで FCLZ4 、スペースで 0となる前記例と比べてマークとスペースの符号で 2倍の(3dB)大きな信 号が強度差検出器 57の出力として得られる。従って信号対雑音比も 3dB向上するた め、それだけ符号長 FCLを小さくすることが可能となり、伝送路の波長分散の影響を 軽減すること力できる。なお、図 7中に破線で示すように、入力側力ブラ 43の前段に 切替器 45を設けて、入力光を力ブラ 41の 2つの入力ポートの一方と他方にデータ D nのマークとスペースに応じて切替え入力し、出力側カプラ 44の一方の出力ポートの みから出力光を出力してもよい。またマーク("1")とスペース("0")の符号を入替えし ても良い。つまりマーク("1")及びスペース("0")と光符号信号 Cn (f)及び Ci^ (f) との対応づけは任意でよい。
[0035] 符号器 11 としては、図 9に示すように構成してもよい。 LN変調器と同様に、電気
11
光学効果を有する例えば LiNbO結晶よりなるプレーナ光波回路基板 46上に 2本の
3
導波路 47, 48を構成し、これら導波路 47, 48の両端部の近くでこれらを互いに接近 させてそれぞれ力ブラ 43, 44を構成し、電気光学効果を用いて電界による複屈折率 変化により、これら力ブラ 43, 44間の導波路 47, 48により構成される 2組の方路 41 , 42間に遅延差を与えるために、少なくとも一方の方路 41 (又は 42)に電界を印加す るための一対の電極 49を設ける。一対の電極 49間により方路(導波路)に印加する 電圧は、各光符号信号 Cn (f)に対応した式 (7)を満たす光周波数 (波長)信号を符 号器 11 により選択出力するように調整される。
n
[0036] 図 9中に括弧書きで示すように、プレーナ光波回路基板上に方路 51 , 52、力ブラ 5 3, 54を構成して復号器 12 を、マッハツエンダ干渉計つまりろ波器として同様に構 n
成できる。この場合は式(8)を満すように電極 49に印加する電圧を調整する。
この図 9に示した構成とすることにより、電極 49に印加する電圧を変更して符号化 符号 Cn (f)又は復号化符号 Dn (f)を変更することができ、符号化符号毎に異なる符 号器/復号器の組を作成しなくて済むため、装置の製作コストを削減することができ る。
また図 9に示すように、温度が均質に変化する同一プレーナ光波回路基板 46上に 2つ組の符号器 11 と 11 (n≠m)とを構成し、これら符号器 11 と 11 により、式(7) n m n m
中の aの値が同じで rの値が異なる第 n光符号信号 Cn (f)第 m光符号信号 Cm (f)を 生成する。この二つの光符号信号 Cn (f) , Cm (f)は、同一光周波数特性で π /2の 位相数差であるため、それぞれを符号化する符号器 11 と 11 が同期しないで温度 n m
変動すると、温度変化による屈折率及び光路長変化でろ波する光周波数がドリフトし 、これら光符号信号 Cn (f)と Cm (f)の相互相関値が劣化する。しかし図 9に示す構 成によれば符号器 11 と 11 が温度が均質に変化する同一のプレーナ光波回路基 板上に実装されているため温度変動による相互相関値の劣化を抑止することができ る。
[実施例 1一 3]
第 1実施形態の実施例 1 - 3は光符号信号を構成する各光周波数成分であるチッ プの強度が 1又は 0をとる。この実施例 1一 3を適用することができる通信システムの構 成例は図 4に示したものと同様でよい。
[0037] この実施例 1一 3における符号器 11 により生成された光符号信号は実施例 1_1及 n
び 1-2と同様に、第 1一第 N光符号信号はその符号長が同一長 FCLであり、かつ、 互いに直交性がある。そのような光符号信号であり、更に次の性質をもつものである 。符号長 FCLの符号化符号 Cn (f)を連続して繰り返して連結した連結符号から符号 長 FCL分の連続するチップを任意に抜き出したチップ列中の" 1 "のチップ数と" 1 " のチップ数が均衡し(同一数)、かつ互いに異なる符号化符号からそれぞれ生成した 互いに異なる連結符号から符号長 FCL分の連続するチップをそれぞれ任意に抜き 出したチップ列間で、チップ配列の同一位置でチップの値が同時に" 1 "となる数と同 時に" 1 "となる数とが等しい。このようにチップで構成される符号の場合は、符号長 は単位のない無名数の単なる数である。この点から符号が先の実施例も含め、符号 長は符号が繰り返す光周波数幅 FCLといえる。
[0038] このような符号は、例えばアダマール符号を用いて作ることができる、図 10 (a)に 1 次のアダマール行列 H を、図 10 (b)に 2次のアダマール行列 Hを、図 10 (c)にァダ
1 2
マール行列の漸化式 H とをそれぞれ示す。アダマール符号は、アダマール行列の n
第 1行以外の行を取り出し、 0を 1、 1を— 1に置き換えたものである。 2次のアダマール 行列の場合、アダマール符号は、行列の 2行目の符号 2 [0101]、 3行目の符号 3 [0 011]、 4行目の符号 4 [0110]となる。これら符号 2— 4をそれぞれ連続的に繰り返し 連結させた各連結符号はそれぞれ [ · · ' 010101010101 · · · ] , [ · · · 0011001100 11 · · · ] , [— 011001100110 · · · ]となる。ここで、符号 3の連結符号と符号 4の連 結符号は 1チップ符号がシフトした関係になるので、この実施例 1一 3では同一の符号 化符号となるから、その一方のみを用いる。
[0039] 符号器 11 ではこのような連結符号の各チップ対応にその配列順に連続する光周
n
波数を順次割り当て、入力光中の" 1 "のチップと対応する光周波数成分が選択出力 されて符号化される。符号 C = (0101)の連結符号と対応する符号器の選択光周波
1
数は図 11 (a)に示すようになり、符号 C = (0011)の連結符号と対応する符号器の
2
選択光周波数は図 11 (b)に示すようになる。
符号器 11 としては光源よりの符号長 FCLの自然数倍又はこれよりわずかに広い
11
連続する光周波数幅 F の入力光を入力し、従って符号化符号 Cn (f)の連結符号の
W
各チップと対応して光周波数信号 (成分)をろ波選択し、そのろ波選択された光周波 数信号を第 Nデータ系列と対応する光符号信号 Cn (f)として出力し、あるいは前記 チップと対応する光周波数信号 (成分)を第 Nデータ系列のデータ "1 "で出力し、 "0 "で断にして第 Nデータ系列の光符号信号 Cn (f)としてもよレ、。このようにして符号ィ匕 された各光符号信号は、前述した連結符号力 任意に抜き出したチップ列のもつ性 質を備え、互いに異なる光符号信号間の直交性が保たれる。
[0040] 復号器 12も、符号器 11 と同様に連結符号と対応して入力光の光周波数成分(
n n
信号)をろ波選択し、少なくとも符号長 FCLに相当する周波数幅を復号の対象とする 。復号器 12 の構成例を図 12に示す。光符号多重化信号はスプリッタ 61によりろ波
n
器 62aとろ波器 62bに分配され、ろ波器 62aにより対応する符号器 11 と同じ順番の n
光周波数信号すなわち同じチップに対応する光周波数信号がろ波選択され、ろ波 器 62bにより、対応する符号器 11 の符号化符号を反転した符号と対応する光周波 n
数信号、すなわち符号器 11 が選択しないチップに対応する光周波数信号がろ波選
n
択される。ろ波器 62aが選択した光周波数信号の光強度が検出器 63aで、ろ波器 62 bが選択した光周波数信号の光強度が検出器 63bでそれぞれ検出され、検出器 63a の出力から検出器 63bの出力が強度差検出器 64で減算されて出力される。このよう にして符号器 11 の出力する光の内から、少なくとも符号化符号を構成する連続する n
チップに相当する光符号信号が復号される。 [0041] 実施例 1一 3によれば光源光周波数のドリフトに影響されないことを図 13を参照して 説明する。光源波長のドリフトがない状態を図 13 (a)に示す。光源から符号長 FCL 又はこれよりわずか広い連続する光源周波数幅 F の光信号 20が出力され、符号ィ匕
W
光周波数領域 31の符号器 11 により光信号 20がそのチップ値が" 1 "と対応する光 n
周波数信号がろ波選択 (符号化)されて光符号信号 21が生成出力される。この光符 号信号 21は、復号化光周波数領域 32の復号器 12 により復号光 22としてろ波選択 されて復号化される。
[0042] 図 13 (b)に示すように、光源周波数が A Fだけドリフトすると、符号器 11 において 符号化光周波数領域 31において光信号 20を符号化して出力する部分が A F だけ
1 同一方向にシフトされ、光符号信号 21が出力され、また復号器 12 において入力光 多重化信号を復号する部分が だけ同一方向にシフトされて、復号光 22が出力 される。
同様に図 13 (c)に示すように光源周波数のドリフトが大きく A F であっても、そのド
2
リフトした光信号 20が、符号化光周波数領域 31内かつ復号化光周波数領域 32内で あればそれぞれその領域内で Δ F だけシフトした部分で符号ィヒ及び復号ィ匕が行わ
2
れ、何れの場合も、先に述べたように光符号信号 21は異なる光符号信号との直交関 係が保持される。
[0043] なお光信号においてはその強度として負の成分はあり得ないから、チップ "一 1 "を" 0"とすると、符号 Cn (f)と復号化符号 Cn (f)及びその反転符号(1一 Cn (f) )との各内 積を、それぞれ光源周波数 F だけ光周波数 fに関しての定積分した値は次式(13)
W
の関係が成立つことは容易に理解されよう。
ί Cn (f) - Cn (f) df > ί Cn (f) - (1-Cn (f) ) df (13)
[実施例 1一 3の符号器/復号器のろ波器例]
この実施例 1一 3で用いる光信号を連続的に符号化/復号化する符号器 Z復号器 に用いるろ波器の例を以下に説明する。図 14にその一例を示す。結合率を任意に 設定できる可変力ブラ 71が遅延線 72を介して多段に接続され、各力ブラ 71の 2つの 出力ポート中の遅延線 72が接続されていない出力ポートの光出力がそれぞれ位相 シフタ 73を介して合成用力ブラ 74にて集約されてろ波選択光出力信号として出力さ れる。このろ波器による選択光周波数は、例えば Journal of Lightwave technology, vol.12, No.4, 1994, pp 664 - 669「Photonic FDM Multichannel selector using coherent optical transversal filter」 Sasayama他著に示されるように任意の 1噴番の光周 波数を選択して、所定の周期(FCL)で連続して繰り返すものとすることが可能である 。つまり符号ィヒ符号の各 " 1 "のチップと対応した光周波数を選択したものを符号長 F CLを周期として連続的に繰り返すもの、つまり符号ィ匕光ろ波周波数特性関数 Cn (f) とすることができる。
この実施例 1一 3では、高々連結前の符号ィ匕符号長 FCLに相当する光周波数幅に て光符号信号を伝送することができるため、従来のサイン関数で符号化する方法に 比べて必要とする光源の光周波数の幅を小さくすることができ、伝送路の波長分散 の影響を少なくすることができる。更に、実施例 1-1と同様に、分散補償器 17を設け ることにより、伝送距離の違いによる、複数の光符号信号間の直交性の崩れも軽減 すること力 Sできる。
以上示したように、この実施例 1一 3では、光源周波数が、符号器の連結符号で構 成されている符号化対象光周波数範囲であれば、光源光周波数がシフトした場合も 、少なくとも符号ィ匕符号の符号長 FCLに相当する周波数幅の光入力であれば、符号 器と復号器間の距離によらず、符号器よりの光符号信号はその符号器と対応する復 号器で光源周波数がシフトする前と同一の入力強度として受信し、その復号器と対 応しない他の符号器よりの光入力に対し直交性を保持するため、符号間干渉をキヤ ンセルする。よって光源周波数の校正が不要な光通信システムを実現することも可能 となる。
[実施例 1 - 3の変形復号器]
実施例 1一 3における復号器 12の変形例を図 15に示す。ろ波器 62は、対応する 符号器 11 と同じ順番の光周波数信号、すなわち同じ各 " 1 "のチップに対応する光
11
周波数信号を出力 Aとして選択ろ波し、また対応する符号器 11 と光周波数選択特 n
性が反転した、すなわち符号器 11 が選択ろ波しないチップに対応する光周波数信 n
号を出力 Bとして選択ろ波して出力する。ろ波器 62よりのこれら出力 Aと Bは検出器 6 3aと 63bに入力され、その光強度がそれぞれ検出され、検出器 63aの出力から検出 器 63bの出力が強度差検出器 64で減算されて出力される。この強度差検出器 64の 出力は制御部 65にも分岐入力され、制御部 65はその入力に応じてろ波器 62の選 択ろ波光周波数をずらして強度差検出器 64の出力が最大になるようにする。
[0045] 図 16に図 15中のろ波器 62の具体例を示す。このろ波器 62は符号器としても用い ること力 Sできる。このろ波器 62は、遅延線 75により異なる光路長とされた 2組の方路 7 6a, 76bと、これら方路 76a, 76bを介して接続され、これら 2組の方路の光を合分波 する、力ブラ 77と、方路 76a, 76bの一方に揷入された位相シフタ 73とからなる多段 のマッハツエンダ干渉計にて構成されて、光周波数を周期的に選択する。このろ波 器 62による選択ろ波光周波数(光ろ波周波数特性関数)は、例えば Journal of Lightwave technology, vol.1 J, No. l, 1995,pp c 3-82 Tsyntnesis of coherent two-port lattice form optical delay-line circuit」 Jinguji他著に示されるように任意の順番の光周 波数信号を選択ろ波し、所定の周期 FCLで連続して繰り返すようにすることが可能 である。このろ波器 62の終段のカプラ 77の 2つの出力ポートの一方から出力 A力 他 方から出力 Bが出力される。符号器として用いる場合は一方の出力ポートから、例え ば出力 Aのみが光符号信号として選択ろ波される。
[0046] 図 16に示したろ波器は各段の力ブラの両ポート出力が次段へ供給され、終段の力 プラ 77で出力 Aは入力の 1/2である力 図 14に示したろ波器では出力は、カプラ 7 4の段数分の 1が出力となるため、符号器として用いる場合は、図 16に示したろ波器 の方が力ブラによる分岐損が少ない。
なお図 15中のろ波器 62としては前述したように、図 16に示したもの、図 14に示し たものなどを用いることができる力 選択光周波数をずらす(シフトさせる)ためには遅 延線の遅延量、位相シフタのシフト量、可変力ブラの分岐比の 1つないし複数を調整 すればよい。この調整可能最大値はこの例では直交するに要する光周波数幅が FC Lであるので符号長 FCLあればょレ、。
[0047] 選択光周波数を調整することができるろ波器 62の例を図 17に示す。この例では図
9を参照して説明したと同様な電界による複屈折率変化を用いて又は温度による熱 光学効果を用いて屈折率変化を発生させるための電極又はヒータを具備することで 遅延量を変更可能な遅延線 75' が用いられ、方路 76aと 76bとの光路差を調整する ことが可能とされる。この方路 76a, 76bと、 2組の方路に対し光を合分波する 2つの 力ブラ 77と、一方の方路に挿入された遅延量を変更可能な遅延線 75' とからなる多 段のマッハツエンダ干渉計にてろ波器が構成される。このろ波器による選択光周波 数は、遅延量を変更可能な遅延線 75' の遅延量を変更することで、ろ波器を構成 する各マッハツエンダ干渉計の選択する光周波数をシフトして符号器 11 や復号器 1 n
2 の符号化符号、複号化符号の変更や符号化符号、復号化符号の選択光周波数 n
のシフトを行う。
[0048] 符号器 11 あるいは復号器 12 に用いるろ波器の遅延線の遅延量が変更、調整で n n
きるもの、つまり可変遅延線としては図 18に示すように複数の方路と一つの方路を選 択接続する二つの切替器又は力ブラ 77と 78との間に、遅延量が異なる複数の遅延 線 75 75 (75 は遅延量ゼロ)が並列接続される。光入力を選択した一つの遅延
1 p ρ
線 75 (p= l ,…, P)を通って光信号を出力する。力ブラよりも切替器を用いるとカブ
P
ラの分岐損による光損失が減少する利点がある。所望の遅延量を得るために熱光学 効果又は電界による複屈折率変化を用いないで遅延量が異なる複数の遅延線を切 り替えるために、より大きな遅延量変化を実現することが可能となる。
[0049] このような可変の遅延線としては更に図 19に示すように、遅延線 81を備える方路と 遅延線を備えなレ、方路と、これらの一方に切替え接続する切替器 82とが多段接続さ れ、これら複数の切替器 82の切替え状態を変更して、光入力の遅延量を変更するよ うにしてもよい。
各遅延線 81は遅延量が互いに異なるものにするとよい。光入力が通過する遅延線 81の組合せを変更して遅延量を調整する。この構成では図 18に示したものより少な レ、遅延線により同等の効果が得られる。
[0050] 次に実施例 1一 3によれば符号器 11 の選択光周波数がドリフトしても良好に復号が n
行えることを図 20を参照して説明する。図 20において図 13と対応する部分に同一 参照番号を付けてある。図 20 (a)は符号器選択光周波数 (光ろ波周波数特性)のドリ フトがゼロの場合であり、図 13 (a)に示した場合と同様に動作する。図 20 (b)に示す ように符号ィ匕選択光周波数が ドリフトすると、光入力は光符号信号 2 のように ろ波符号化される。図 20 (c)に示すように、符号ィ匕選択光周波数が比較的大きく A F ドリフトすると、光入力は光符号信号 21 " のようにろ波符号化される。
2
[0051] 光符号信号 , 21 " のいずれも、その符号長は FCLであり、従って、先に述べ たように連結符号から連続するチップを光源周波数 FSR (図 20中では F と表現する
W
)だけ切り出したチップ列と、光符号信号 21' , 21 " は同一の性質をもつものとなつ ている。そのため図 20 (b) , (c)にそれぞれ示すように復号器 12 で光符号信号 21
n
' , 2\ " の各光周波数成分を選択した復号化符号信号 22' , 22" が得られ、良好 に復号することができる。なお、複号化選択光周波数がドリフトした場合は、図 15を 参照して説明した復号器 12 を用い、複号化選択光周波数をシフトして良好な復号
11
を行うこと力 sできる。
[0052] 以上述べたように実施例 1 - 3によれば、光源周波数、符号化対象光周波数領域 3 1、複号化対象周波数領域 32の一方または双方がドリフトしても光源より光信号の光 周波数帯がこれら領域 31及び 32 (復号ィ匕対象光周波数領域 32はそのシフト制御に よる領域を含む)内にあれば、復号器での入力光強度の劣化がなぐ他の光符号信 号との直交性も保持され、良好に復号することができる。
[実施例 1 - 3の変形符号器、復号器]
実施例 1一 3の符号器 11 及び復号器 12 のろ波器の他の例を図 21に示す。光入 n n
力はろ波器 84に入力され、このろ波器 84は符号ィ匕符号を構成する各チップの光周 波数信号を異なるポートに出力し、かつ符号長に相当する光周波数だけ離れた光周 波数信号を同一のポートに出力する。例えば符号ィ匕符号力 つのチップで構成され 、そのチップ配列順に光周波数 F, F, F , Fが順次割り当てられているとすると、
1 2 3 4
ポート 1には光周波数 F + qFCL (q = 0, 1 , 2,…;)の光信号が、ポート 2, 3及び 4に
1
はそれぞれ F + qFCL, F + qFCL及び F + qFCLの各光信号が出力される。この
2 3 4
ように連続する光周波数を繰り返し異なるポートに出力するろ波器としては、分岐す る光周波数の光の数と各分岐光の光周波数の間隔との積及び同じポートに出力す る光周波数の間隔(Free Space Range)が符号長 FCLに等しいアレー導波路格子形 光合分波器 (AWG : Array Waveguide Graiting)を用いることができる。なお、 AWG で定義されている Free Space Rangeは FSRと略される力 S、この明細書で用いられてい る光周波数幅の FSRとは異なり、この明細書での FSRに従えば C/FCL (C :光速)と 表される。
[0053] このろ波器 84の符号化符号の選択光周波数、つまり" 1 "のチップと対応する光周 波数信号が出力されるポートを方路 85により力ブラ又は合波器 86aに接続し、その力 ブラ又は合波器 86aの出力を出力 Aとして出力する。符号ィ匕符号の "一 1 "のチップに 対応する光周波数信号、つまり非選択光周波数信号が出力されるポートを方路 87に より力ブラ又は合波器 86bに接続して、その力ブラ又は合波器 86bの出力を出力 Bと して出力する。図 21の例では図 11 (b)に示した符号化符号 C = (0011)について
2
の方路接続を示している。 F +qFCL, F +qFCLを出力するポート 1と 2は方路 87
1 2
に合波器 86bに、 F +qFCL, F +qFCLを出力するポート 3, 4は合波器 86aにそ
3 4
れぞれ接続される。
[0054] その図 21に示した構成のろ波器によれば符号器 11 のろ波器として、また復号器 1
2 中のろ波器として使用できることは容易に理解できる。
なお、符号器 11 としては力ブラ又は合波器 86a, 86bの一方とそれに対する方路 n
85又は 87を省略しても良レ、。また、カプラ又は合波器 86a, 86bとしては、光周波数 に関わらず光を分岐合波して分岐損が発生する力ブラよりも、アレー導波路格子形 光合分波器 AWGを前記例とは逆に分波器ではなく合波器として用いた方が分岐損 による光損失が軽減できる点でよい。このろ波器は図 14に示されたろ波器より構成 部品が少なレ、ため光損失が少なレ、利点がある。
[0055] 符号器 11 としては図 22に示すように構成することもできる。図 21中のろ波器 84と 同様のものを用い、その各ポートを方路 89 , · · ·, 89 を通じて光を通過させるか否
1 E
か選択するスィッチ 91 , · · · , 91 (Eは符号化符号を構成するチップ数)をそれぞれ
1 E
通じて合波器 92に接続する。スィッチ 91 ,…, 91 中の符号ィ匕符号のチップが"
1 E
と対応するものはオンにし、 "-1 "に対応するものはオフとする。
ろ波器 84を用いて復号器を構成した例を図 23に示す。ろ波器 84の各ポートに接 続された方路 89 ,…, 89 を合波器 92aと合波器 92bのいずれかに切替接続する
1 E
切替器 93 , ·■·, 93 を設け、切替器 93 , ·■·, 93 を、符号化符号の" 1"のチップと
1 E 1 E
対応するものは合波器 92a、 "一 1"のチップと対応するものは合波器 92bにそれぞれ 接続する。合波器 92a, 92bの各出力は検出器 63a, 63bにそれぞれ供給され、その 後の構成は図 12、図 15に示したものと同様である。
[0056] 図 22、図 23に示した構成によれば単一の符号器/復号器で任意の光符号/復 号信号を生成/復号できるように設定することができる。
ろ波器 84を用いる符号器の他の例を図 24に示す。光入力は光サーキユレータ 94 を通じてろ波器 84に入力され、ろ波器 84の各ポートに接続された方路 89 ,■· - , 89
1 E の端に光を反射するか否か選択設定することができる選択反射器 95 ,…, 95 が接
1 E 続され、反射器 95 ,…, 95 により反射された光はろ波器 84により合波され、サーキ
1 E
ユレータ 94aより、光入力と分離されて出力される。選択反射器 95 ,…, 95 は符号
1 E 化符号の " 1 "のチップ対応するものは反射に、 "-1 "のチップに対応するものは非反 射に設定する。
[0057] ろ波器 84を用いる復号器の他の例を図 25に、図 23、図 24と対応する部分に同一 参照符号を付けて示す。方路 89 ,…, 89 の端に光を反射するか導通するか選択
1 E
設定することができる通過/反射切替器 96 ,…, 96 を接続する。通過/反射切替
1 E
器 96 , · · ·, 96 を通過した光を合波器 92aで合波して検出器 63aへ供給する。通過
1 E
/反射切替器 96 ,…, 96 で反射された光はろ波器 84で合波してサーキユレータ 9
1 E
4を通じて検出器 63bへ供給する。通過/反射切替器 96 , · · ·, 96 は符号化符号
1 E
の" 1 "のチップと対応するものは導通に、 "一 1 "のチップと対応するものは反射に設定 する。この構成では図 23に示した復号器に対し合波器を一つ削減できる。
[0058] 図 21—図 25中に破線で示すように方路 89 , · · · , 89 ごとに損失器 90 ,…, 90
1 E 1 E を挿入してろ波器 48の出力方路毎の光強度比に応じた光損失を付与して、アレー 導波路格子形光合分波器 AWGに基づき生じるおそれがある方路毎の数 dBの光強 度差を平準化することが望ましい。このようにすることにより光周波数毎の光強度の強 弱による雑音を削減できる。
図 26に、ろ波器 84を用いる復号器の更に他の例を示す。この例は図 11 (a) , (b) に示した符号語 C = (0101)と C = (1100)の各光符号信号を復号する場合に適
1 2
用した例である。検出器 63 , ·■·, 63 中の光符号信号中の" 1"のチップに対応する
1 4
光周波数信号の光強度出力を正の出力とし、 "-1 "に対応する光周波数信号の光強 度出力を負の出力として強度差検出器へ供給する。符号語 c に対する強度差検出
1 器 64 の正入力端には検出器 63 と 63 の出力が、負入力端に検出器 63 と 63 の n 1 3 2 4 出力がそれぞれ供給され、強度差検出器 64 でこれら正入力端の入力は加算入力 n
とされ、負入力端の入力が減算入力とされ、これらの加減算結果が復号信号出力と される。符号語 C に対する強度差検出器 64 の正入力端には検出器 63 と 63 の出
2 m 1 2 力が、負入力端に検出器 63 と 63 の出力がそれぞれ供給され、これらが強度差検
3 4
出器 64 で加算、減算され、復号信号として出力される。強度差検出器 64で、符号 m
化符号中の" 1"のチップに対応する各検出器の出力の和をとり、 "一 1"のチップに対 応する各検出器の和をとり、前者の和から後者の和を差し引いて復号信号出力とし てもよい。
この構成によれば、符号ィ匕符号 (符号語)毎に光を分岐して復号しなくて良いので 、それだけ光損失が少ないものとなる。なお図 15を参照して説明したように、この場 合も 1つの復号信号出力が最大となるようにろ波器 84のろ波光周波数を制御するこ とが好ましい。
図 27はろ波器 84を用いる復号器の更に他の例を示す。分散補償器として電気的 遅延時間付加器を用いた場合である。ろ波器 84の各出力方路毎の検出器 63 , · · ·
1
, 63 が切替器 97により正と負の符号を付与して符号語毎に出力され、符号化符号
4
を構成する各チップ対応検出出力に対し遅延時間付加器 98により、個別に電気的 に遅延され、伝送路での光周波数毎に異なる遅延時間による各チップの到着時間の 違いが平準化され、これら遅延時間の平準化を受けた検出器出力が強度差検出器
64, 64 でそれぞれ加算される。この例では電気信号とされた状態で分散補償を行 うため、光信号での分散補償の必要性が軽減できる。また切替器 97の切替を設定変 更することにより任意の符号化符号を復号することができる。遅延時間付加器 98は 省略してもよい。
[他の変形例]
符号器 11 のろ波器として出力 Aとその反転符号出力 Bとを出力するものを用い、
11
例えば図 16に破線で示すように、ろ波器の出力側に切替器 45を接続して、データ 系列 D で切替器 45を制御してデータがマーク("1")のときは出力 Aの出力を、スぺ n
ース("一 1")のときは出力 Bの出力を切替えて出力し、ノンリターンッゥゼロ信号として 出力する。この場合も図 7を参照して説明したようにろ波器の出力側ではなく入力側 に切替器 45を設けてもよい。また図 7において破線の構成を付加した場合と同様に 3 dBの利得が得られる。
図 28に示すように同一のプレーナ光波回路基板 46上に一組の符号器 11 と復号 n 器 12 を実装する。これら符号器 11 の第 n符号化符号と復号器 12 の第 m復号ィ匕 m n m
符号は式(7)中の aの値が同じで rの値が異なるものである。これら符号器 11 及び復 n 号器 12 の組を通信システムの一方の位置に設け、この通信相手となる通信システ m
ムの他方位置に符号器 11 及び復号器 12 の組を設ける。その一方に位置する復 m n
号器、例えば 12 で受信する光符号信号の光周波数に合わせてその組のプレーナ m
光波回路基板の温度を図 15を参照して説明したように温度を調整する。符号器 11
11 と復号器 12 とが、温度が均質に変化する同一のプレーナ光波回路基板上に実装さ m
れているため、前記温度調整により、符号器 11 のろ波器の選択ろ波する光周波数
n
が復号器 12 のろ波器の選択ろ波する光周波数と同期制御される。従って前記温度
m
を調整することで温度を調整した側の符号器、この例では 11 から送出する第 n光符 n
号信号の光周波数は温度を調整しない側の第 m復号化符号と相互相関値を低く調 整すること力 Sできる。図 9を参照して同一基板 46上に 2つの符号器 11 と 11 を構成 する場合と同様に、個別に温度変化が発生すると、相互相関値が劣化する光符号信 号をそれぞれ符号化する符号器同士を、温度が均質に変化する同一のプレーナ光 波回路基板上に実装するために相互相関値の劣化を抑止することができる。前記プ レーナ光波回路基板の温度調整は符合器の透過光の強度を検出し、これに基づい て制御してもよい。この場合符号器として 2値データの一方の値で光強度周波数特 性が関数 Cm (f)の光信号を、他方の値で光強度周波数特性関数が(1一 Cm (f) )の 光信号をそれぞれ出力する二つの符号器を用いる場合は、両符号器の各透過光の 強度の差に応じて前記温度調整をするとよい。更に、図 9に示したものを用いる場合 は 1ユーザ (利用者)に 2符号化符号を割り当てるために、システム全体として収容可 能なユーザ数が半減する。し力、し図 28に示す構成によれば、復号器と符号器の組合 わせを用いるため、反射光による干渉が無い符号化符号を用いながら、システム全 体として使用可能なユーザ数が半減することはない。なお、この実施例では実施例 1 2で用いた符号ィヒ符号について示した力 この実施例は、実施例 1 3のァダマー ル符号で互レ、にシフトした関係に有る光符号信号もチップのシフトが抑制できるので 同様に適用することが出来る。
[0061] 図 29に示すように複数収容局の装置と、これら収容局装置からの信号を伝達する 複数の光ファイバ 13 , 13, 13 と、これら複数の光ファイバ 13 , 13, 13からの信
A B C A B C
号を単一光ファイバ 13に集線する集線回路 99と、集線回路 99から単一光ファイバ 1 3を介して集線後の光信号を受ける中央局装置 Cstとからなる光通信システムが想定 される。このような構成において、複数の光ファイバからの光信号を単一ファイバ 13 に集線する集線回路 99に各収容局装置の符号器を配置する。つまりこの場合は図 3 (a)に示した構成となる。このようにして収容局装置と中央局装置との距離の違いによ らず、全収容局装置力 の光信号を同一の波長分散とすることができるため、各収容 局装置に対応する各符号器力 光符号信号に対して同一の分散補償とすることがで きる。従って集線回路 99から中央局装置を接続する光ファイバ 13の光周波数に依 存する遅延時間を平準化するように補償する単一の分散補償器で、全符号器からの 光符号信号の分散補償ができる。また符号器を集中配置しているために全符号器の 符号化特性光周波数の調整が一ヶ所で簡易にできる。
[0062] 更にこれまでの説明は光源 10より光信号を符号器 11に入力して、符号器 11のそ の符号ィヒ符号 Cn (f)に応じた光ろ波周波数特性により、光周波数特性 Cn (f)を付与 し、これに対しマーク、スペースに応じて断続させて第 n光符号信号を生成したが、第 2実施形態の実施例 2 - 8で説明するように、符号化符号を構成する各チップと対応 する、例えば単 1光周波数の光信号を出力するチップ光源を設け、これらチップ光源 を、符号化符号 Cn (f)を構成するチップ中の 1と対応するチップ光源は出力し、 0と 対応するチップ光源は出力させなレ、ようにチップ光源を符号化符号 Cn (f)に応じて マーク時に出力し、スペース時はレ、ずれのチップ光源からも出力させなレ、ようにして あよい。
[0063] また実施例 1一 3の符号ィ匕符号の性質は次の通りである。同一符号長 FCLの異なる 符号化符号から任意の二つの符号化符号を選択した場合にその第 1の符号化符号 と第 2の符号ィ匕符号が同時にチップ配列上の対応チップの値で" 1 "となるチップ位置 の数と、第 1の符号化符号が" 1 "となり第 2の符号ィ匕符号が "一 1 "となるチップ位置の 数が等しいか
第 1の符号ィ匕符号と第 2の符号化符号が同時に"一 1 "となるチップ位置の数と第 1の 符号化符号が "一 1"となり第 2の符号ィ匕符号が" 1 "となるチップ位置の数が等しいか の少なくとも一方を満たし、
上記符号化符号を連続して繰り返して連結した連結符号力 前記符号長 FCL分 の連続するチップを任意に抜出したチップ列中の" 1 "のチップ数と "一 1 "のチップ数 が抜出したチップ列によらず同一で、
互いに異なる任意の二つの符号化符号についてそれぞれ連続して繰り返し連結し た互いに異なる連結符号のそれぞれから前記符号長 FCL分の連続するチップを任 意に抜出した第 1のチップ列と第 2のチップ列間で第 1のチップ列と第 2のチップ列が 同時に" となるチップ位置の数と第 1のチップ列が" 1 "となり第 2のチップ列が "一 1" となるチップ位置の数が等しいか、第 1のチップ列と第 2のチップ列が同時に "一 1 "と なるチップ位置の数と第 1のチップ列が "一 1 "となり第 2のチップ列が "1 "となるチップ 位置の数が等しいかの少なくとも一方を満たす符号ィ匕符号であり、符号ィ匕符号を構 成するチップにその配列と対応して連続する光周波数が順次割り当てられる。
[0064] 更に光源光周波数幅 FSRは各符号化符号 Cn(f)の符号長 FCLの自然数倍であり 、各符号器 11の符号化対象光周波数領域 31、各復号器 12の復号化光周波数領 域 32は共に光周波数 Fst— Fla内にあり、かつ Fla— Fst >FSRである。また Fst— Fla における FSR内で Cn (f) = Cn (f+FCL)が成立し、 Cn (f)の反転符号(l_Cn (f) ) と Cn(f)との間で前記式(13)、つまり
ί Cn(f)-Cn(f) df> ί Cn(f)-(1-Cn(f))df (14)
が成立することは明らかである。 ί dtは Fs も Flaまでの任意の区間 FSRにおける f に関する定積分を表わす。
[0065] また Cn(f)は符号化符号 Cm (f)との間で次式(15)の関係が成立することも明らか である。
ί Cn(f)-Cm(f) df= ί Cn(f)-(1-Cm(f))df (15)
なお実施例 1-2では式(7)より明らかなように各 Cn(f)について 個(典型的な例 は = 2)の符号ィ匕符号を用いることができ、 a = nである。
[第 2実施形態] (光位相,振幅変調)
この発明の第 2実施形態は光周波数軸の搬送波に対し、位相変調や位相振幅変 調を行って、従来の問題点を解決した実施形態である。
[実施例 2 - 1 ]
この第 2実施形態を適用した実施例 2— 1の光通信システムを図 30に示す。光送信 装置 100では入力端子 101よりの伝送信号、一般に 2値データ系列信号をその V個 (Vは 1以上の整数)ごとのデータに応じた 1周期未満の位相シフト (位相シフト値)系 歹 IJ、つまり変調位相系列 (変調単位系列ともいう)に信号位相量変換器 1 10で変換す る。光源 120からの光信号を、あらかじめ決めた光周波数 (波長)を基準として開始す る光周波数 (波長)軸上で擬似搬送波の位相を信号位相量変換器 1 10より各位相量 に位相変調部 130でシフトする。擬似搬送波を以下では単に搬送波ということもある
[0066] なお用語「擬似搬送波」は他の実施形態における用語「光周波数特性(関数)」や「 符号化符号又は復号化符号」あるいは「光ろ波周波数特性 (関数)」と対応する。しか しこの第 2実施形態は無線通信技術などに用いられている時間軸上の搬送波に対し 、 QPSKや QAM変調と同様なことを光周波数軸上の擬似搬送波に対し行うもので あるから、理解し易いように用語として「擬似搬送波」を主に用いる。
例えば図 31に示すように、データ系列を V= 2個ずつのデータに分割し、その異な るデータ組ごとに異なる位相シフト量、つまり基準位相 0に対しずらされた位相量 (以 下、位相シフト量はこのことを意味する)を割り当てる。例えばデータ組 (0, 0) , (0, 1 ) , (1 , 0), (1, 1)のそれぞれを、 1周期未満の位相量 0、 π Ζ2、 π、 3 π /2に変換 する。
[0067] 前記擬似搬送波として、基準光周波数 fsからの光周波数差を位相 fとすると 400G Hzを 1周期 Λとし、各光周波数信号の強度を変数とする三角関数に 1をくわえて 2で 除した関数を想定すると、位相量 0、 π /2、 π、 3 π Ζ2は図 31 (a) 図 31 (d)に示 すように光周波数が 100GHzづっ順次シフトした光周波数特性となる。図 31 (a) 図 31 (d)において左から 1番目は擬似搬送波を複素平面上でのベクトルを表わし、 左から 2番目は擬似搬送波の瞬時位相に対する光強度特性を、各左端は光周波数 に対する光強度特性をそれぞれ示してレ、る。
[0068] 擬似搬送波の周期 Λの n倍を FSR、つまり FSR=n A (n= 1 , 2,…;)とすると、光 源 120は、少なくとも FSRの光周波数幅の光信号を出力する。位相変調部 130の出 力光信号は((l + cos (2 fn/FSR+ © ) ) ) /2、位相シフト量 Θ =0、 π /2、 π、 3 π /2のいずれかとなる。
光受信装置 200では受信光が分配器 210で位相シフト量 0、 π /2、 π、 3 π Ζ2と それぞれ対応した 4つのろ波器 221, 222, 223, 224に分酉己され、ろ波器 221 , …, 224の各透過光の強度が検出器 231, ·■·, 234で検出される。互いに半周期位相が ずれた位相シフト量と対応したろ波器の強度を検出した検出器 231と 233、 232と 23 4の各出力がそれぞれ比較器 241, 242で互いに引き算される。比較器 241 , 242の 出力から、擬似搬送波の位相シフト量と対応したデータ組に符号信号変換器 250で 変換して復号データ系列として出力される。
[0069] 図 32-1—図 32-4に、この実施例 2_1の光源 120の波長特性とパルス光源とした 場合の強度時間特性、各位相シフト量 Θに応じた変調部 130の光出力(光送信装置 100の光出力)、受信装置 200の各ろ波器のろ波特性、各位相シフト量での各ろ波 器による透過強度特性、各検出器の検出強度の時間変化の例を示す。各図の最左 の列は光源 120の出力光であり、出力光の光周波数幅を 400GHzとし、出力光がそ の全波長にわたり平坦な強度を想定している。図 32-1—図 32-4の各左から 2列目 に、それぞれ位相シフト量 0、 π /2、 π、 3 π /2に対応した、位相変調部 130の出 力光の光周波数特性を示す。各図の左から 3列目は、光受信装置 200のろ波器 221 , 223, 222, 224のろ波周波数特性を示す。図 32—1—図 32—4毎の変調部出力光 を受けた場合の各ろ波器 221, 223, 222, 224を透過した透過光の周波数特性を 図 32—1 図 32—4の各左から 4列目にそれぞれ示す。図 32—1 図 32—4の各最右 歹 IJは、検出器 231,■· - , 234で検出する強度の時間変化をそれぞれ示す。これら図 3 2—1 図 32— 4に示されるように、光源出力光のパワーを 1とすると、位相変調部 130 における基準に対する位相シフト量に応じた変調部出力光の光周波数特性と同一 のろ波特性を有するろ波器の検出器強度は 0. 375となり(図 32-1では 1行目、図 3 2— 2では 2行目)、それとろ波特性が πずれたろ波器に対応する検出器強度は 0. 1 25となり(図 32-1では 3行目、図 32-2では 4行目)、両者を比較する比較器では、 0 . 25の出力が得られる。一方、位相変調部 130における基準に対する位相シフト量 の出力光の周波数特性に対し、ろ波特性が π /2及び 3 π /2それぞれずれたろ波 器の検出器強度はそれぞれ 0. 25である(図 3— 1では 2行目と 4行目、図 3—2では 3 行目と 1行目)、このためこれら検出器出力を比較する比較器では 0の出力が得られ る。
検出器及び比較器が光周波数毎に透過光強度を検出してこれら強度を比較する のではなぐろ波器の透過光の各光パルス分の光強度を比較する場合における比較 器の出力強度について以下に示す。
位相変調部 130の出力光を次式で表す。
(ΐ/2π) ί ( (1 + cos (2 π f/FSR+ Θ ) ) /2) df (16)
ここで、 fは基準光周波数からの光周波数差を意味する。ここでは n=lとしている。
(1)位相変調部 130の入力位相シフト量に応じた位相変調部出力光の光周波数特 性と同一のろ波特性を有するろ波器に対応する比較器出力の場合:
(ΐ/2π) J ( (1 + cos (2 π f/FSR+ Θ ) ) /2) ( (1 + cos (2 π f/FSR+ Θ ) ) /2)df
_(1/2π) J ( (1 + cos (2 π f/FSR+ Θ ) ) /2) ( (1 + cos (2 π f/FSR+ Θ +
Figure imgf000037_0001
= (ΐ/8π) J (1 +cos2 (2 π f/FSR+ Θ) + 2cos (2 π f/FSR+ Θ) ) df = 0. 25 (17)
左辺 1項目は例えば検出器 231の出力、 2項目は検出器 233の出力と対応する。
(2)位相変調部 130の入力位相シフト量に応じた位相変調部出力光の光周波数特 性と位相が πΖ2異なるろ波特性を有するろ波器に対応する比較器出力の場合:
(ΐ/2π) ί ( (1 + cos (2 π f/FSR+ Θ ) ) /2) ( (1 + cos (2 π f/FSR+ Θ + π/2))/2)άί (18)
-(ΐ/2π) ί ( (1 + cos (2 π f/FSR+ Θ ) ) /2) ( (1 + cos (2 π f/FSR+ Θ- π/2))/2)άί = (ΐ/8 π ) J (-2sin (2 π f/FSR+ Θ ) + sin2 (2 π f/FSR+ Θ ) ) df = 0
(19)
なお、この実施例では、擬似搬送波が取り得る位相シフト量 (位相シフト値)の数 M が偶数の 4であり、これら位相シフト量 (位相シフト値)は順次、 π /2異ならせたので 受信側で、 Μと同数のろ波器を用いているが、擬似搬送波が取り得る位相シフト量( 値)が互いに πずれた関係にない場合は、擬似搬送波が取り得る位相シフト量 (値) の出力光とそれぞれ同特性のろ波器とそれと半周期( π )位相がシフトした特性のろ 波器とを用いる。従って光受信装置 200では 2Μ個のろ波器と、 Μと同数の比較器が 必要となる。この場合は Μの値は任意であるが、位相変調部 130が搬送波に与える 位相シフト量 (位相シフト値)が三角関数の 1周期での剰余 Δ fがそれぞれ異なる位相 シフト量 (位相シフト値)である必要がある。
[0071] また、この実施例では光源 120の出力光の光周波数特性が平坦であることを仮定 しているが、平坦でなく例えばガウシアンである場合は、送信側位相変調部又は受 信側ろ波器又は比較器又は検出器において、各光周波数の強度を平準化するよう に重みをつければよい。
また、この実施例では単一の光送信装置 100と光受信装置 200の組合せを示した 力、他の光送信装置と光受信装置とが同一の光伝送路 300を共用する場合にも適 用でき、その場合は以下の設定とする。
[0072] 1)光送信装置における基準光周波数 fsが FSR以上ずれている場合: FSRも取り 得る位相シフト量 (位相シフト値)も任意。
2)光送信装置における基準光周波数 fsが FSR未満のずれの場合:同一の FSRで 、用いる光源 120の光周波数は同一であり、光送信装置の FSRの外の光周波数に 対しても同一光伝送路を共用する他の光送信装置で用レ、る光周波数域もろ波の対 象として連続的にろ波するろ波器であること。搬送波の周期 FSRZnの値が光送信 装置毎に異なる。周期 FSR/nの値が同一であれば、位相変調部 130で変調する 位相シフト量 (シフト値)の数を 0位相も含めて Mとおくと基準光周波数 fsに FSRZn /Mをカ卩えた値が全光送信装置でユニークな値となること。ただし、同一の nを異な る光送信装置と受信装置の組が用いる場合は 1/4周期ずれたもののみ直交するの で Mは 4となり、半周期ずれたものは同一光送信装置と受信装置の組が用いる。
[0073] 1)の場合、複数の光送信装置で用いる基準光周波数 fsが FSR以上離れている場 合は、使用する光周波数が異なるため、擬似搬送波によらず、搬送波間で干渉しな レ、。
2)の場合、複数の光送信装置で用いる基準光周波数 fsが同一である場合、使用 する光周波数が一致する。しかし、各光送信装置が用いる擬似搬送波の周波数は、 FSRの自然数分の 1であるため、相互の内積を FSRの区間で積分すると零となり、相 互に直交し、搬送波間で干渉しない。
複数の光送信装置で用いる基準光周波数 fsが FSR以下で異なる場合、搬送波の 関数が FSR内での周期関数であるため、 FSRの外の光周波数に対しても擬似搬送 波と同じ関数で変調するろ波器を用レ、、光源の光周波数がほぼ同一であれば、相互 の内積の積分は零となり、相互に直交し搬送波間で干渉しない。
[0074] この実施例で用レ、る位相変調部 130は図 30中に示すように、ろ波器 131とそのろ 波特性を変化させる変調器 132とにより構成される。
例えば、ろ波器 131としては図 33に示すように構成される。入力光をカプラ 131aに より所定の光路長差を有する二組の光路 131bと 131cに分岐して力ブラ 131dにより 再度合波するマッハツエンダ干渉計を用レ、、変調器 132としてはマッハツエンダ干渉 計の一方の方路 131bに設けられ、光路長差を変調するものを適用することができる 。方路 131bと 131cを通った光は力ブラ 131dで干渉し、方路長差に応じた光周波数 間隔の成分が出力される。この出力光の光周波数特性は周期的であるため、出力す る光の周波数差を例えば 100GHzとすれば図 31 (a)の右端に示すろ波特性が得ら れる。このようにマッハツエンダ干渉計のように周期的に光周波数をろ波するろ波器 1 31を用いれば、基準光周波数 fsが FSR以下で異なる場合も、干渉を除去することが できる。
[0075] 光路長の変更例としては、図 9に示したようにプレーナ光波回路基板上に構成し、 その電極 49に信号位相量変換器 110からの位相シフト量信号を印加してその方路 の遅延量を変化させる。この場合はろ波器 131と変調器 132は直列接続でなぐ一 体の構成部品となる。つまり変調器 132はろ波器 131に組み込まれる。 光送信装置 100における信号位相量変換器 110は例えば図 30中に示すように、 入力端子 101からのデータ系列は直並列変換器 110aによりこの例では 2系列に分 配され、直並列変換器 110aからの 2系列の 2つのデータが D/A変換器 110bにより その入力データの組み合せ(0, 0), (0, 1) , (1 , 0), (1, 1)に応じてディジタル値 0 , 1 , 2, 3にそれぞれ変換され、例えばこれらの値に応じた大きさの電圧が図 9中の 電極 49に印加される。これらの印加電圧値に応じて、位相変調部 130の出力光の擬 似搬送波の位相が図 31 (a) 図 31 (d)に示すように変化する。
[0076] また光送信装置 100中のろ波器 131は光源 120からの光の周波数で少なくともそ の光周波数幅 FSRをろ波し、そのろ波特性、つまり透過率(光強度)一光周波数特性 は、基準光周波数 fsからの光周波数差を位相とした場合に、各位相の透過率(光強 度)が、 FSRを自然数 nで除した周期の三角関数に 1を加えて 2で除した関数に従う ものである。
光受信装置 200における符号信号変換器 250は例えば図 1中に示すように比較器 241 , 242の各出力 0又は 1が並直列変換器 251に並列に入力され、 1系列のデー タ信号として出力端子 201に出力される。光送信装置 100の入力端子 101に入力さ れた伝送信号が、出力端子 201に復元出力されることになる。
[0077] このようにこの実施例 2— 1は、正負の極性を有し、搬送波の間に相関がない搬送波 を、光周波数軸上で所望の周波数の繰り返しで切り出した正負の極性を有しない光 周波数軸上の強度変調で模擬するために、擬似搬送波の周期の自然数倍の光周 波数幅の広帯域な光を用い、受信側で受信対象外の他の擬似搬送波の入力をキヤ ンセルする差動検出を行うことで、同一光周波数の光を用いる場合でも、有限の光周 波数幅では直交しない三角関数に起因する擬似搬送波同士の相関を除去して、相 関のない搬送波を模擬し、模擬した搬送波を位相変調することで、光の波長オーダ の制御精度を緩和した制御精度での MPSKを実現することができる。なお第 2実施 形態が第 1実施形態と技術的には基本的に同一思想に基づくものであることは後で 説明する。
[実施例 2 - 2]
実施例 2-1では、位相変調部 130において、ろ波器 131がろ波した光又はろ波す る光の擬似搬送波の位相を変調器 132で制御した。この実施例 2-2では例えば図 3 4に示すように、変調時の変調量である位相シフト量 (値)に応じた光周波数をろ波す る複数のろ波器 133a, 133b, 133c, 133dを具備し、これらろ波器 133a— 133dに 光源 120からの光が光分岐器 134により分岐入力される。これらろ波器 133a— 133 dの透過光が変調器 131により変調位相量 (値)に応じて選択出力される。例えばろ 波器 133a 133dは図 31 (a) 図 31 (d)にそれぞれ示すろ波特性、つまり搬送波 の位相力 S0、 π /2、 π、 3 π /2の特十生をもち、これらろ波器 133a一 133dの各透過 光は変調器 132を構成する光スィッチ 135a— 135dへ入力される。信号位相量変換 器 110において直並列変換器 1 10aの出力の 2つのデータがデコーダ 110cによりデ コードされ、データ組 (0, 0), (0, 1) , (1 , 0), (1, 1)にそれぞれ応じて出力端子 1 11a, 111b, 111c, l l ldに出力が生じ、出力端子 11 la— 11 I dの各出力によりス イッチ 135a 135dの対応する 1つ力 S才ンにされる。スィッチ 135a 135dの出力光 は合波器 136を通じて伝送路 300へ出力される。
図 34中に破線で示すように変調器 132のスィッチ 135a— 135d部分を分岐器 134 とろ波器 133a— 133dとの間に挿入し、ろ波器 133a— 133dの透過光を合波器 136 で合波してもよレ、。分岐段及び合波段ともに、変調器 132として、選択したろ波器に のみ光源からの光を入力し、選択したろ波器からの光を透過させる変調器であっても よい。
この実施例 2 - 2は実施例 2 - 1と異なり、光路長差を変調すべき切り替え時間で切り 替えられる素材を選択しなくてもよい効果がある。なお光受信装置 200は図 30に示 した構成のものを用いることができる。擬似搬送波が取り得る位相シフト量 (値)の数 Mが 4の場合を例としたが Mは任意とすることができる。
[実施例 2 - 3]
実施例 2_3では位相シフト量が πずれた擬似搬送波の二つを一組として用い、位 相シフト量が互いに π /2ずれた擬似搬送波の異なる組が伝送信号の 2つのデータ 組の異なるものと対応付ける。実施例 2— 3が適用される光送信装置の例を図 35 (a) に示す。光源 120、ろ波器に対する条件は実施例 2—1 , 2— 2の場合と同様である。 各組をなす 2つのろ波器はそのろ波特性の位相シフト量が π異なる、即ち、それぞれ の透過光周波数が FSR/2/ηずれている。本実施例で用いる擬似搬送波を i番搬 送波とし、 2 π f = Θとすると、各組の特性関数は Ci ( Θ )又は Ci (Θ + π)及び Ci ( Θ + π/2)又は、 α(Θ+3π/2)となり、 J を区間 FSRの定積分とすると次式が 成立つ。
[0079] ί Ci(0) (Ci(0 + π/2)-ΟΪ (Θ + π/2))άΘ= ί Οϊ(Θ) (Οϊ(Θ+3π/2 )-Cir (Θ + π/2))άΘ=0 (20)
ί ci(@) (ci(0)-ci(©))d©= ί α(Θ + π) (α(Θ + π)-α (Θ + π))ά
Θ (21)
図 36 (a)に複素座標上における QPSKの信号点(座標点)を、図 36 (b)に QPSK を模擬する場合の信号データ組と、座標点と選択ろ波位相の組の例を示す。ここで 組数 M/2 = 2とし、一方の組の位相シフトが 0と π、他方の組の位相シフトが π /2 と 3π/2とし、その各座標点を図 36 (a)に単位円上で示している。位相シフトが 0と πの組における 0と πは X軸上の 1と _1にそれぞれ相当し、位相シフトが π /2と 3 π /2の組における π/2, 371/2は 軸上の1と_1に相当する。座標点は χ軸の値を 括弧内における左に、 y軸の値は括弧内の右にそれぞれ記載した。
[0080] 位相変調部 130は、信号位相量変換器 110よりのデータ組の一方、図 36(b)の例 では上位ビット(データ)の 0又は 1に応じて、 0位相シフト又は π位相シフトの擬似搬 送波の光と、下位ビット(データ)の 0又は 1に応じて π /2位相シフト又は 3 π /2位 相シフトの擬似搬送波の光とを出力する。つまりこの出力される擬似搬送波光の変調 単位ごとにデータ系列中の 2つのデータの組合せ符号を表わす光符号信号といえる 図 35 (a)に示す例では図 34と同様に各擬似搬送波対応のろ波器 133a 133dが 設けられ、 0相のろ波器 133aと π相のろ波器 133cとが組とされ、 π/2相のろ波器 1 33bと 3 π/2相のろ波器 133dとが組とされる。変調器 132aと 132bとして切替スイツ チが設けられ、信号位相変換器 110の直並列変換器 110aの上位ビットにより変調器 132aのスィッチが制御され、この上位ビット(データ)力 0"であれば変調器 132aの スィッチは 0相ろ波器 133aに接続され、 "1 "であれば π相ろ波器 133cに接続される 。直並列変換器 110aの下位ビット(データ)により変調器 132bとしてのスィッチが制 御され、この下位ビットが" 0"であれば π /2相ろ波器 133bに接続され、 "1 "であれ ば 3 π /2相ろ波器 133dに接続される。これら変調器 132a, 132bとしての各切替ス イッチにより切替え出力された各ろ波器の透過光は合波器 136を通じて光伝送路 30 0へ出力される。
[0081] つまり端子 101よりの入力データ系列は直並列変換部(系列変換部という) 110aで 各データごとに第 1分離データ系列(下位ビット系列)と第 2分離データ系列(上位ビ ット系列)と振り分けられ、第 1分離データ系列の各データごとにその値に応じて変調 部 132bが、第 2分離データ系列の各データごとにその値に応じて変調部 132aがそ れぞれ制御され、それぞれ対応する擬似搬送波(光強度周波数特性)の光符号信号 が出力され、これら光符号信号が合成されて光符号信号として出力される。
変調器 132a, 132bとしてはどのろ波器に光を入力するか選択するようにしてもよ レ、。つまり図 35 (b)に示すように光源 120よりの光を分岐器 134により 2分岐し、その 一方の分岐器を変調器 132aとしてのスィッチにより 0相ろ波器 133aと π相ろ波器 13 3cに切替え入力し、他方の分岐光を変調器 132bとしてのスィッチにより π /2相ろ 波器 132bと 3 π /2相ろ波器 132dに切替え入力し、ろ波器 133a— 133dの各透過 光を合波器 136を通じて光伝送路 300へ出力してもよい。ろ波器 133a— 133dの入 力側と出力側ともに、切替スィッチの変調器として、選択したろ波器にのみ光源から の光を入力し、選択したろ波器からの光を透過させるようにしてもょレ、。
[0082] この実施例と対応する光受信装置は図 30に示したものと同様の構成とすることがで きる。ただし比較器 241と 242は + 1又は一 1を出力するため図 30中の光受信装置 2 00中に破線枠で示すように変換部 241a, 242aにより、比較器 241 , 242の出力中 の一 1を 0として符号変換器 250へ供給する。これにより符号変換器 250から光送信 装置 100の入力伝送信号系列と同一の信号系列が得られることは容易に理解されよ う。
このようにして、光の波長オーダの制御精度を緩和した制御精度での QPSKを実 現すること力 Sできる。
[実施例 2 - 4]
実施例 2— 4は擬似搬送波により 16QAMを模擬したもので、この例では 16種類の データ組に応じて光源からの光を、位相が半周期( π )ずれた擬似搬送波に模擬す る二つを一組とした二組で、一方の組、他方の組との擬似搬送波は互いに位相シフ ト量が 4分の 1周期( π /2)異なり直交する位相シフト関係にあり、これら 4つの擬似 搬送波の光強度 (振幅)を 2値のレ、ずれかである光信号を合波伝送する。
[0083] 実施例 2— 4の構成例を図 37— 1及び図 37— 2に示す。図 37— 1に示す光送信装置 100において、 0相、 π Ζ2相、 π相、 3 π /2相の 4つの擬似搬送波生成用ろ波器 1 33a 133dを用いた場合である。光源 120、ろ波器 133a— 133dに対する条件は 実施例 2— 3のそれと同様である。
図 38 (a)に 16QAMの座標 (x軸を実数部、 y軸を虚数部とした)上の信号点(座標 点)とデータ組を示し、図 38 (b)に各データ組に対する擬似搬送波の位相シフトと光 強度 (振幅)との関係を示す。例えばデータ組が(0000)の場合、模擬搬送波の位相 シフトが 0で光強度が 3の光と、位相シフト π /2で強度が 3の光を伝送路 300に出力 し、データ組が(0101)の場合、擬似搬送波の位相シフトが 0で強度が 3の光と、位相 シフトが 3 π /2で強度が 1の光を光伝送路 300へ出力する。端子 101よりの伝送信 号系列を信号位相振幅量変換器 140で 4データの組ごとに図 38 (b)に示す位相シ フトと強度を示す位相振幅情報に変換し、光源 120よりの光を、位相振幅変調部 15 0で前記位相振幅情報に応じた擬似搬送波位相及び光強度の 2つの光信号に変調 して光伝送路 300へ出力する。
[0084] 信号位相振幅量変換器 140では例えば直並列変換部 110cにより、入力伝送信号 系列が 4つの信号系列に分けられる。位相振幅変調部 150はこの例では擬似搬送 波の位申目シフト力 0、 π /2、 π、 3 π /2の各ろ波器 133a, 133b, 133c, 133dと 2 つの変調器 151及び 152と、合波器 136とにより構成される。直並列変換器 110bよ りの 4つの信号系列から順次 1ビット(データ)を取り出した各 4ビット(データ)組ごとに 、変調器 151では 4データ組の最上位(図 38 (b)の最も左側)のデータにより切替ス イッチ 151aが制御され、スィッチ 151aはデータが 0で 0相ろ波器 133aに、データが 1で π相ろ波器 133cに接続され、このスィッチ 151 aよりの出力光は、振幅変化部 15 lbでデータ組中の上位から 3番目のデータにより強度が制御され、データが 0で強度 3に、 1で強度 1にされて合波器 136へ出力される。変調器 152では 4データ組の上 位から 2番目のデータにより切替スィッチ 152aが制御され、スィッチ 152aはデータが 0で π /2相ろ波器 133bに接続され、データが 1で 3 π /2相ろ波器 133dに接続さ れ、スィッチ 152aよりの出力光は振幅変化部 152bでデータ組中の最下位データに より強度が制御され、データが 0で強度 3に、 1で強度 1にされて合波器 136に出力さ れる。
[0085] つまり端子 101よりの入力データ系列は直並列変換部(系列変換部という) 110cに より第 1一第 4分離データ系列にデータごとに順次振分け分離され、
第 3分離データ系列の各データごとにその値に応じて位相変調部 152aが、第 4分 離データ系列の各データごとにその値に応じて位相変調部 15 laがそれぞれ制御さ れ、第 1分離データ系列の各データごとにその値に応じて振幅変化部 152bが第 2分 離データ系列の各データごとにその値に応じて振幅変化部 15 lbが制御される。 図 39に示すように、光源 120とろ波器 133a 133dとの間に変調器 151及び 152 を挿入してもよい。この場合は光源 120よりの光を分岐器 134で 2分岐し、その一方 の光を、変調器 151でまず振幅変化部 151bにより、上位から 3番目のデータに応じ て強度が 3又は 1に制御し、その制御された光を、切替スィッチ 151aで最上位データ により 0相ろ波器 133a又は π相ろ波器 133bに切り替え出力する。分岐器 134よりの 他方の光を、変調器 152でまず振幅変化部 151bにより、最下位データに応じて強 度が 3又は 1に制御し、その制御された光を、切替スィッチ 152aで上位から 2番目の データにより π /2相ろ波器 133b又は 3 π /2相ろ波器 133dに切り替え出力する。
[0086] ろ波器の各 2組について、その入力光を 3番目のデータ、最下位データによりそれ ぞれ振幅変化部 151b, 152bで強度制御し、各 2組のろ波器中の何れかの選択を、 最上位データ、 2番目のデータにより切替スィッチ 151a, 152aでそれぞれ行って出 力してもよレ、。逆に光源からの光を 2つの切替スィッチ 151 a, 152aにより、各組のろ 波器の何れかに入力し、各組のろ波器の出力光を、それぞれ振幅変化部 15 lb, 15 2bで強度制御して出力してもよい。
光受信装置 200は図 37—2に示すように、図 30に示したろ波器 221 224、検出 器 231— 234、比較器 241, 242とそれぞれ同様のものが用いられる力 符号信号 変換器 250の代りに、比較器 241, 242の各出力の極性(正負)を含む 2つのレベル (強度)、つまり各 4つのレベルに対応した 4個のデータの組に変換し、これと直列に 出力する符号信号変換器 (データ生成手段) 260が用いられる。つまり比較器 241, 242の出力としては、図 38 (b)に示す 3, 1,—1 , _3の何れかが出力され、これらの 組み合せと対応して、図 38 (b)中のデータ組が出力される。
[0087] このような符号信号変換器 260としては例えば図 37—2の光受信装置 200中に示 すように、比較器 241 , 242の各出力は A/D変換器 261 , 262でそれぞれサイン( 符号)を含む 3ビットのディジタル値に変換され、これら 3ビット、(全部で 6ビット)のデ イジタル値をアドレスとして変換メモリ 265を読み出せば、図 38 (b)に示した対応関係 をもつ 4ビットのデータ組が出力され、出力データ組を並直列変換器(データ生成手 段) 266で直列データに変換して出力端子 201へ出力する。なお、変換メモリ 265に はアドレスと読み出されるデータの関係を図 38 (b)に示す比較器出力とデータ組の 関係が得られるように予め記憶しておくものとする。
[0088] このようにしてこの実施例 2-4は、実施例 2-1と同様に、正負の極性を有し、搬送 波の間に相関がない搬送波を、光周波数軸上で所望の周波数の繰り返しで切り出し た正負の極性を有しない光周波数軸上の強度変調で模擬するために、模擬搬送波 の周期の自然数倍の光周波数幅の広帯域な光を用い、受信側で受信対象外の他 の擬似搬送波の入力をキャンセルする差動検出を行うことで、同一光周波数を用い る場合でも、有限の光周波数幅では直交しない三角関数に起因する擬似搬送波同 土の相関を除去して、相関のない搬送波を模擬し、互いに直交する複数の模擬搬送 波を半周期で強度変調し、同時に伝送することで、光の波長オーダの制御精度を緩 和した制御精度での QAMを実現することができる。
[実施例 2 - 5]
前記実施例では擬似搬送波として光周波数軸上でアナログ的に変化するものを用 いたが、実施例 2_5は擬似搬送波として、光周波数軸上でディジタル的に断続され るものを用いる。光送信装置 100は図 40に示すように、信号位相量変換器 110、光 源 120からの光を光周波数 (波長)軸上で複数のチップに分割して透過するろ波器 1 37と、変調器 132とからなる位相変調器 160を備える。
[0089] 光源 120が出力する光の光周波数幅を FSRとする。 ろ波器 137は、光源 120の光を受けて、光源 120の出力する光の光周波数で少な くとも光周波数幅 FSRをろ波し、光源からの光周波数幅 FSRの光を、 4の倍数である L個のチップに光周波数軸上で分割してそのチップを選択的に透過させる。以下の ようにろ波器の光を透過するチップの選択を位相の値にマッピングする。ここで L/4 の約数を Sとする。図 41にろ波特性の例を示す。
位相 0のろ波器 137a :連続する 2Sチップをオン (通過)としその次の 2Sチップをォ フ(遮断)とすることを Lまで繰り返してろ波する。
[0090] 位相 π /2のろ波器 137b:連続する Sチップをオフ(遮断)としその次の 2Sチップを オン (通過)としその次の Sチップをオフ(遮断)とすることを Lまで繰り返してろ波する。 位相 πのろ波器 137c:連続する 2Sチップをオフ(遮断)としその次の 2Sチップをォ ン (通過)とすることを Lまで繰り返してろ波する。
位相 3 π /2のろ波器 137d:連続する Sチップをオン (通過)としその次の 2Sチップ をオフ(遮断)としその次の Sチップをオン (通過)とすることを Lまで繰り返してろ波す る。
[0091] 例えば L=4, S = lの場合のろ波器 137a, 137b, 137c, 137dの各ろ波光周波 数特性を図 41に示す。光周波数軸上で 4Sチップ相当の FSR/nを周期とし、その 周期の 1/2の幅の 2Sチップ相当、つまり 1周期を 2 πとし、 π幅で 2Sチップを 0, π /2, π , 3 π /2の各位相位置にシフトしたその各 2Sチップ部分をろ波器 137a, 13 7b, 137c, 137dはそれぞれ光を透過させるろ波特性であるろ波器 137a, 137b, 1 37c, 137dの各ろ波特性を図 41 (a)、図 41 (b)、図 41 (c)、図 41 (d)にそれぞれ示 す。従ってこれらろ波器 137a, 137b, 137c, 137dを透過した光は、光周波数(波 長)軸上で FSR/nを周期とする擬似搬送波が π幅の方形波、つまりデュティ比が 5 0%でそれぞれ 0、 π Ζ2、 π、 3 π /2に位相変調されたものとなる。
[0092] この実施例 2_5ではこのような位相の擬似搬送波 2つと、 2個のデータの組とを対 応づけて QPSK変調を可能とする。この実施例 2—5ではろ波器 137a,…, 137dを 0 ,…, 3 π Ζ2にそれぞれ対応づけているから、図 35 (a)に示した光送信装置 100と 同様に信号位相量変換器 110よりの 2個のデータにより、図 40において変調器 132 a, 132bにより、それぞれ 0相ろ波器 137aの出力光か π相ろ波器 137cの出力光か を、また π /2相ろ波器 137bの出力光か 3 π /2ろ波器 137dの出力光かをそれぞ れ選択して、合波器 136を通じて光伝送路 300へ出力すればよい。
[0093] 図 35 (b) ίこ示したよう【こ、変調器 132a, 132bをろ波器 137a一 137dの人力ィ則へ 挿入してもよレ、。ろ波器 137a 137dの入力側と出力側とにそれぞれ変調器を挿入 してもよい。
この実施例 2—5における光受信装置 200は、図 30中に示した光受信装置 200の ろ波器 221— 224の代りに、ろ波器 137a— 137dとそれぞれ同一ろ波特性の 0相ろ 波器 225、 π /2相ろ波器 226、 π相ろ波器 227、 3 π Ζ2相ろ波器 228を用レ、、そ の他は図 30の光受信装置と同一構成とすればよい。従って対応する構成には、図 3 0で付けた参照番号と同一番号を付け、またろ波器には参照番号を括弧を付けて図 37—1に示した。
[0094] 図 42_1 図 42_4に、この実施例 2_5の光源 120の光周波数特性とパルス光源と した場合の光の強度-時間特性、各位相に応じた変調部出力(送信装置の出力)、 受信装置の各ろ波器のろ波特性、擬似搬送波の各位相での送信出力に対する受信 装置の各ろ波器による透過出力、各検出器で検出する強度の時間変化の例をそれ ぞれ示す。各図中の最左の列は光源出力である。ここで、光源 120の光周波数幅を 400GHzとし、光源の出力の全光周波数にわたり平坦な強度を想定し基準光周波 数 fsからの光周波数差で示している。図 42-1—図 42-4はそれぞれの変調部による 位相シフト 0、 π /2、 π、 3 π /2にそれぞれ対応した変調部出力を左から 2列目に 示す。左から 3列目は、光受信装置 200に具備するろ波器 225— 228のろ波特性( 関数)を、その列の 1行目一 4行目にそれぞれ示す。各図 42-1—図 42-4ごとに、そ こに示す変調部出力が入力された場合の各ろ波器 225 228を透過する光周波数 特性を左から 4列目の、第 1行目一第 4行目にそれぞれ示す。最右列は、各検出器 2 31— 234が検出する検出強度の時間変化を、それぞれ第 1行目一第 4行目に示す
[0095] 各図 42—1 図 42— 4に示されるように、全チップ透過時の検出器でのパワーを 1と すると、変調部出力の光周波数特性と同一のろ波特性を有するろ波器と対応する検 出器強度は 0. 5となり、変調部出力の光周波数特性と πずれたろ波特性のろ波器と 対応する検出器強度は 0となり、これら両者を比較する比較器では、 0. 5の出力が得 られる。例えば図 42-1においては 1行目の変調部出力が入力され、ろ波器 231の 出力光に対する検出強度は 1行目に示すように 0. 5になり、ろ波器 233の出力に対 する検出強度は 3行目に示すように 0になる。変調部出力の光周波数特性に対し、ろ 波特性がそれぞれ π及び 3 π /2ずれたろ波器と対応する各検出器強度はそれぞ れ 0. 25であるため、これら両者を比較する比較器では 0の出力が得られる。例えば 図 42— 1においてはろ波器 232及び 234の各出力光に対する検出強度は 2行目及 び 3行目にそれぞれ示すように 0. 25になる。
ここで、各チップの光周波数軸上の透過特性は、矩形であることが望ましいが、図 中でのチップの区別の容易さから三角形にて示している。但し、全チップ透過時の検 出器でのパワーを 1として規格化してレ、るため、光周波数軸上の透過特性が三角で あっても、ガウス分布であっても一般性を失うことなく実施例 2—5は先に説明したよう に作用する。
図 40では単一の光送信装置 100と光受信装置 200の組合せしか示していないが 、他の光送信装置と光受信装置とが同一の光伝送路 300を同一の光周波数で共用 する際は、異なる Lの値を選択する。 Lは位相シフトの数 Μに対応する 4の倍数であり 、かつ光周波数帯 FSRを構成するチップ数を任意の整数 ηで除した値である。 Sの値 は、 Lを位相シフトの数 Μ即ち 4で除した値である。位相シフト量の番号を Ρとすると Ρ =0, 1 , 2, 3であり、 Ρ = 0は位相シフト (TP: :!は位相シフト π /2'Ρ = 2は位相シ フト π 'Ρ = 3は位相シフト 3 π /2に対応する。即ち 2 π Ρ/Μ (Μ = 4)である。 Lチッ プ毎に、この位相シフト量の番号 Ρに Sを乗じた PSに 1から L/2をカ卩えた値の Lに関 する剰余に相当するチップを透過率 1とし、それ以外のチップを透過率 0とすることを 少なくとも η回繰り返す。即ち Αを Lで割算した剰余を MOD (A、 L)とすると、(Q_l) L + M〇D (PS + 1、 L)一(Q_l) L + MOD (PS + L/2、 L)で Qを 1から上記 nまで 変化させたチップ番号となるチップの透過率を 1とし、残りのチップの透過率を 0とす る。ここで選択した Lの値とそれに対応する nの値との積は一定であるため、受信側の 差動検出により、擬似搬送波同士の内積が FSRの区間で積分すると零となり、受信 対象外の他の擬似搬送波の入力をキャンセルすることができる。 [0097] 上記 L, M, n, S, P, Qの関係例として n=l, M = 4, S = 6, L = 24の場合の透過 率を 1とするチップを図 43 (a)に薄墨色を付けて示し、 n=2, M = 4, S = 3, L=12 の場合の透過率 1のチップを図 43 (b)に示す。
なお、実施例 2_5で用いるろ波器が、 FSRの外の光周波数に対しても擬似搬送波 と同じ関数でかつ FSRでの周期関数に従うろ波器であり、同一光伝送路を共用する 他の光送信装置が用いる光周波数域もろ波の対象とするならば、相互の内積の FS Rでの積分は零となり、相互に直交し搬送波間で干渉しなレ、。この実施例 2_5で用 レ、るろ波器としては例えば、図 16に示したものを用いる。
[0098] このようにして実施例 2—5では、正負の極性を有し、搬送波の間に相関がない搬送 波を、広帯域な光を光周波数軸上で所望の周波数の繰り返し切り出した正負の極性 を有しなレ、光周波数軸上の強度変調で模擬し、模擬した搬送波を位相変調すること で、光の波長オーダの制御精度を緩和した制御精度での QPSKを実現することがで きる。
[実施例 2 - 6]
実施例 2— 5で述べたように、光周波数 (波長)軸上で擬似搬送波を 0, π/2, π, 3 π/2のいずれかの位相シフトに、幅 πのチップ連で位相変調し、図 35に示したと 同様の手法により QPSK変調を模擬することができる。本実施例で用いる擬似搬送 波を i番搬送波とし、 2πί=Θとすると、各組のろ波特性関数は Ci(@)又は (Θ + π)及び (Θ + π/2)又は (Θ+3π/2)となり、∑を Θ=1ιδ Θとして、 h = 0 力 FSR/ δ Θ_1まで加えた区間 FSRの総和とすると、次式が成立つ。
[0099] ∑Ci(0) (Ci(0 + π/2)-ϋΐ (Θ + π /2) ) =∑ Ci(0) (ϋΐ(Θ+3π/2)- Ci' (Θ+3π/2)) =0 (22)
∑Ci(0) (Ci(0)-Ci(0)) =∑Ci(© + π) (Ci(0 + π)-^ (Θ + π))
(23)
式(22)及び式(23)は、それぞれ式(20)及び式(21)の積分演算をディジタル処 理する場合の演算式である。
実施例 2— 5で示した擬似搬送波を用い、図 37— 1及び図 37— 2を参照して説明した 実施例 2— 4の手法と同様にして、 QAM変調を模擬することができることは容易に理 解されよう。この QAM変調の場合は、図 37-1及び図 37-2中に括弧書きで示すよう に、光送信装置 100においては、ろ波器 133a— 133dの代りにろ波器 137a— 137d を用い、信号位相振幅量変換器 111からのデータ組中の 2ビットに応じて、変調器 1 51でろ波器 137aと 137cの一方を選択し、光強度を 1又は 3のいずれかに制御し、 データ組中の他の 2ビットに応じて変調器 152で、ろ波器 137bと 137dの一方を選択 し、光強度を 1又は 3のいずれかに制御する。光受信装置 200ではろ波器 221— 22 4の代りにろ波器 225— 228を用レ、、その他は変更する必要はなレ、。変調器 151 , 1 52の揷入位置などについても実施例 2— 4と同様のことがいえる。またこの実施例 2_ 6の効果は実施例 2— 5と同様の理由により同様に得られる。
[0100] また実施例 2_5で示した擬似搬送波を用いて、任意の Mシフトのいずれかの位相 シフトに、幅 πの方形波で位相変調して、 MPSK変調を模擬することができる。 即ち位相シフトの数が Μである場合、一周期分のチップ数である Lは、 Μの倍数で あり、かつ 2の倍数であり、光周波数帯 FSRを構成する全チップを ηで除した値となる 。 L = MSとすると、 Lチップ毎に、位相シフト量の番号 P (P = 0, · · · · , M-1 , 1周期 を 2 πとすると位相シフト量は 2 π Ρ/Μと表わされる)に Sを乗じた PSに 1から L/2を 加えた値の Lに関する剰余に相当するチップを 1とし、それ以外のチップを 0とするこ とを少なくとも η回繰り返す。即ち Αを Lで割算した剰余を Mod (A, L)とすると、(Q- l) L + Mod (PS + l , L)—(Q_l) L + Mod (PS + L/2, L)で Qを 1から上記 nまで 変化させた番号となるチップを 1とし、残りのチップを 0とする。
[0101] 従って、 nの異なる i番搬送波と k番搬送波(kは i以外の搬送波番号)に対応する擬 似搬送波の関数をそれぞれ ( Θ ) , Ck(®)とし、∑を Θ =1ι δ Θとして、 h = 0から FSR/ δ Θ_1までカ卩えた区間 FSRの総和とし、 Pを零以外の有限値とすると次式が 成立つ。
∑ (ci(@) (α ( Θ ) -α' (θ) ) =ρ,∑ck(©) ( (θ) - ' (Θ ) ) =Ο
(24)
この実施例で、光周波数帯 FSRを構成する全チップ数 nL = 24で、 M = 3の例を以 下に示す。 Lは Mの倍数であり、かつ 2の倍数であり、かつ 24の約数であるので、 24 力、 12力、 6となり、 nはそれぞれ 1, 2, 4、 Sはそれぞれ 8, 4, 2となる。 (n, L, M, S) = (1, 24, 3, 8)と(2, 12、 3, 4)の場合を図 44に示す。図で、薄墨色が 1のチップを 意味する。 (n, L, M, S) = (l, 24, 3, 8)の場合、 n= 1である力 Q = 1だけであり 、図 44(a)の左側の図に示すように、位相シフト 0(P = 0)で(l_l)24 + Mod(0'8 +1, 24)=1番目のチップ a力も(1— l)24 + Mod(0-8 + 24/2, 24)=12番目の チップ bまで 1、位相シフト 2 π · (1/3) (P=l)で、図 44(c)の左側の図に示すように (1-1) 24 + Mod (1 -8 + 1, 24) = 9番目のチップ a力も(1—1) 24 + Mod (1 -8 + 24 /2, 24) = 20番目のチップ bまで 1、位相シフト 2 π · (2/3) (Ρ = 2)で図 44 (c)の 左側の図に示すように(l_l)24 + Mod(2'8 + l, 24) = 17番目のチップ aから(1— l)24 + Mod(2-8 + 24/2, 24) =4番目のチップ bまでがチップ 1となる。つまりチ ップが最も大きレ、番号は 24番目までであるからチップ 1番目力 4番目とチップ 17番 目から 24番目までのチップが 1となる。
(n, L, M, S) = (2, 12, 3, 4)の場合、 n = 2であるから Q =lと Q = 2とがあり、図 44 (a)—図 44(c)の各右側の図に示すように位相シフト P = 0で、かつ Q =lで(1—1 )12 + Mod(0-4+l, 12)=1番目のチップ aから(l_l)12 + Mod(0'4+12/2, 12) = 6番目のチップ bまでと、 Q = 2で(2-1 ) 12 + Mod (0-4+1, 12) = 13番目の チップ cから(2—1) 12 + Mod (0*4 + 12/2, 12) = 18番目のチップ dまで 1、 Q = 2 で位相シフト 2 π · (1/3) (P=l)、かつ Q =lで(l_l)12 + Mod(l'4 + l, 12) = 5番目のチップ aから(1—1) 12 + Mod(l -4+12/2, 12) =10番目のチップ bまで と Q = 2で(2_l)12 + Mod(l'4 + l, 12) = 17番目のチップ cから(2—1) 12 + Mo d(l '4+12/2, 12) =17番目のチップ dまで 1、位相シフト 2 π '(2/3) (Ρ = 2)力 つ Q = 1で 1番目のチップから 2番目のチップまでと、 9番目チップから 12番目のチッ プまでと、 Q = 2で 13番目のチップから 14番目のチップまでと、 21番目のチップから 24番目のチップまで 1、つまり Q =lで(1— l)12 + Mod(2-4 + l, 12) =9番目のチ ップ aから(1—1)12 + Mod (2 · 4 + 12/2, 12) = 2番目のチップ bまでが 1、 Q = 2で (2-l)12 + Mod(2-4 + l, 12) =21番目のチップ c力も(2— 1) 12 + Mod (2·4 + 1 2/2, 12) =14番目のチップ dまでが 1となる。ここで Q =lでは 1のチップがシフトで きる範囲は 1番目から 12番目であり、 Q = 2で 1のチップがシフトできる範囲は 13番目 力 24番目である。この実施例でも図から明らかなように、 nが異なる他方の信号を 受けても受信装置側で擬似搬送波間の干渉はキャンセルされ、それぞれ独立に受 信可能である。
[0103] この実施例の光送信装置のろ波器は例えば、図 2-5でろ波器 131が、 0相、 π相、 π /2相、 3 π /2相の 4個の代わりに、 0相、 2 π Ζ3相、 4 π /3相の 3個のろ波器を 具備する。この実施例の光受信装置は、 0相、 π相、 71 /2相、 3 71 2相の4個のろ 波器とこれらに対しそれぞれ π位相シフト量の異なる 4個のろ波器に接続する検出器 出力同士を比較する二組の比較器の代わりに、 0相、 2 71 73相、4兀 /3相の3個の ろ波器と、それぞれに対し π位相シフト量の異なる π相、 5 π /3相、 π Ζ3相の 3個 のろ波器と、互いに π位相シフト量の異なるろ波器に接続する検出器出力同士を比 較する 3組の比較器を具備してレ、る。
[0104] このようにして、正負の極性を有し、搬送波の間に相関がない搬送波を、光周波数 が広帯域な光を光周波数軸上で所望の周波数の繰り返し切出した正負の極性を有 しない光周波数軸上の強度変調で模擬し、模擬した搬送波を位相変調することで、 光の波長オーダの制御精度を緩和した制御精度で MPSKを実現することができる。
[実施例 2 - 7]
図 37-1に示した光送信装置 100中の π相ろ波器 133c (137c)と 3 π /2相ろ波 器 133d (137d)を省略し、これ ίこ伴レヽ変調器 151 , 152中の切替スィッチ 151a, 15 2aを省略して 0相ろ波器 133a (137a) , π /2相ろ波器 133b (137b)をそれぞれ変 調器 151 , 152中の振幅変化部 151b, 152bに接続し、信号位相振幅量変換器 11 1は信号振幅量変換器 112とし、 2個のデータ組、つまり図 30中の信号位相量変換 器 110内の直並列変換部 110aとし、一方のビット(データ)と他方のビット(データ)を 変調器 151 , 152に対応づけて光強度をビットが 0で 3に、ビットが 1で 1に制御するよ うにする。光受信装置 200では、符号変換器 260において比較器 241 , 242の出力 強度が 3であればデータ 0とし、強度が 1であればデータ 1とし、これらを直列に出力 する。
[0105] このようにすれば実施例 2— 4で述べた光周波数 (波長)軸上の三角関数の擬似搬 送波に対しても、実施例 2 - 6で述べた光周波数 (波長)軸上の方形波状擬似搬送波 に対しても、信号点を図 38 (a)中の第 1象限の 4つの信号点とする QAM変調を行う こと力 Sできる。
このように 4つの信号点の QAM変調は、用いる 2組のろ波器を 133b (137b)と 13 3c (137c) , 133c (137c)と 133d (137d) , 133a (137a)と 133d (137d)のレヽずれ 力、にすることにより図 38 (a)中の第 2象限、第 3象限、第 4象限のいずれかにおける 4 つの信号点をもつ QAM変調とすることができる。なおこれらの場合に比較器 241, 2 42の出力が負の時は、その絶対値が 3でデータ 0に、 1でデータ 1に変換する。
[実施例 2 - 8]
この第 2実施形態の実施例 2— 8は各相の光周波数特性関数の光を出力する複数 の光源を用いる。この実施例 2—8を適用した光送信装置 100を L = 4Sの場合につい て図 45を参照して説明する。この実施例 2-8は光周波数軸上で FSRZn、ここでは n= lとして FSRを 1周期とし、各周期における 0、 π /2、 π、 3 π /2の位相シフト量 のそれぞれで 2Sチップの光周波数の光を出力する複数の光源を用いて、実施例 2— 5又は実施例 2— 6で行った QPSK又は QAM変調を可能とするものである。
図 45に示した例では各 Sチップの光周波数の光源を二組ずつ用い、各光源は、光 の送出強度を制御できるものであり、合計 L/2Sの 2倍の L/S組 (各組は光周波数 幅 2Sの単一の広帯域光源また 2S個の光源からなる光源の組)の光源を備える。
L/S組の光源の内、各 Sチップの光周波数を送出する L/2S組の光源は、位相 0 又は位相 πの搬送波を模擬するために用いる。即ち、図 46に 0相、 π /2相、 π相、 3 π /2相の各 Sチップの出力光を示すように、光周波数軸上の各周期の最初の連 続する光周波数の各 Sチップ、つまり 0相 Sチップを出力する光源 120aと、次の Sチッ プ、つまり π /2相 Sチップを出力する光源 120bとの出力光により、 0相搬送波を模 擬し、その次の Sチップ、つまり π相 Sチップを出力する光源 120cと、その次の Sチッ プ、つまり 3 π Ζ2相 Sチップを出力する光源 120dとの出力光により、 π相搬送波を 模擬する。また残りの LZ2S個の光源により π /2相搬送波又は 3 π Ζ2相搬送波を 模擬するために用いる。即ち、光周波数軸上の各周期の初めの Sチップの次の Sチ ップつまり π /2相 Sチップを出力する光源 120eと、その次の Sチップ、つまり π相 S チップを出力する光源 120fとの出力光により π /2相搬送波を模擬し、その次の Sチ ップ、つまり 3 π Ζ2相 Sチップを出力する光源、 120gと、その次の Sチップ、つまり 0相 Sチップを出力する光源 120hとの出力光により 3 π /2相搬送波を模擬する。これら 0相、 π /2相、 π相、 3 π /2相の各搬送波光はそれぞれ図 43 (&)中の? = 0, Ρ = 1 , Ρ = 2, Ρ = 3の各透過光と対応する。
[0107] 以上 η= 1の例にて説明したが、 ηが 2以上の整数である場合は、光周波数の順で その ηに対応する Sの値で Sチップずつ 0位相チップ光源、 π /2位相光源、 π位相 光源、 3 π /2位相光源に配置すればよい。用い得る ηは、使用する光周波数帯 FS Rを ηで除した 1周期に相当するチップ数 Lとの関係で定まる。 FSR= 24, n = 2, L = 24/2 = 12、 S = 12/4 = 3の場合、 0位 t目、 π /2、 π、 3 π /2t目の各 t目の擬似搬 送波光は図 43 (b)の P = 0, P = l, P = 2, P = 3の各透過光と同様になる。 Lは位相 シフトの数 Mの対応する 4の倍数であり、 Sの値は、 Lを位相シフトの数 M即ち 4で除 した値である(L = 4S)。 Lチップ毎に、位相シフト量の番号 P (P = 0, 1 , 2, 3)に Sを 乗じた PSに 1から L/2を加えた値の Lに関する剰余に相当するチップに相当する光 源を 1とし、それ以外のチップに相当する光源を 0とすることを少なくとも n回繰り返す 。即ち Aを Lで割った余り(剰余)を MOD (A、 L)とすると、(Q_l) L + MOD (PS + l 、 L)一(Q-l) L + M〇D (PS + L/2、 L)で Qを 1から上記 nまで変化させた番号とな るチップに相当する光源 (この例では 2組)を 1とし、残りのチップに相当する光源を 0 とすればよい。
[0108] 図 45は図 38 (a)に示した QAM変調を模擬する場合で、端子 101からの伝送信号
(データ)系列は信号位相振幅量変換器 113で直並列変換部 110cにより 4系列に分 配される。その各 4個のデータの組中の上位から 3番目のデータ(ビット)(直並列変 換器 110c内のデータ配列は図 38 (a)に示した各データ組についてのビット順と同一 とする)により、切替スィッチ 153aを制御してそのデータが 0であれば値 3が格納され たレジスタ(駆動信号発生部) 153bを切替スィッチ 153dに接続し、そのデータが 1で あれば値 1が格納されたレジスタ(駆動信号発生部) 153cを切替スィッチ 153dに接 続し、このスィッチ 153dをデータ組の最上位データ(ビット)により制御し、そのデータ 力 ¾であれば切替スィッチ 153aを 0相光源 120aと π /2相光源 120bとに接続し、こ れら両光源 120aと 120bから強度 3の光が出力され、つまり 0相擬似搬送波の光が強 度 3で出力され、最上位データ(ビット)が 1であれば切替スィッチ 153aを π相光源 1 20cと 3 π /2相光源 120dとに接続し、これら両光源 120cと 120dから強度 1の光が 出力され、つまり π相擬似搬送波の光が強度 1で出力される。
[0109] データ組中の最下位データ(ビット)により切替スィッチ 154aが制御され、そのデー タが 0であれば値 3が格納されたレジスタ 154bを切替スィッチ 154dに接続し、データ 力^であれば、値 1が格納されたレジスタ 154cを切替スィッチ 154dに接続し、切替ス イッチ 154がデータ組の上位から 2番目のデータ(ビット)により制御され、そのデータ 力 ¾であれば切替スィッチ 154aを π /2相光源 120eと π相光源 120fとに接続し、 両光源 120eと 120fとから強度が 3の光が出力され、つまり π /2相擬似搬送波の光 が強度 3で出力され、データが 1であれば、切替スィッチ 154aを 3 π /2相光源 120g と 0相光源 120hとに接続し、これら両光源 120gと 120hから強度 1の光が出力され、 つまり 3 π /2相擬似搬送波の光が強度 1で出力される。
[0110] このようにして、実施例 2—6で図 37を参照して説明した光送信装置 100と同様の光 QAM変調信号を出力することができることは容易に理解されよう。従って光受信装 置 200としては図 36中に示したものと同様のものとすればよレ、。この図 45に示した光 送信装置 100では光源を直接変調、例えばレーザ光源の駆動電流の大きさを制御 すればよぐ実施例 2 - 6で示したろ波器及び変調器よりなる高価な位相振幅変調部 150を必要としなレヽ。
図 45中のスィッチ 153aと 154aを省略し、レジスタ 153b, 154bをそれぞれ切替ス イッチ 153d, 154dに直接接続し、図 6中の信号振幅量変換器 112の 2個データの 組の各データで切替スィッチ 153d, 154dを制御することにより、実施例 2-3で説明 したと同様に QPSK変調を行うことができる。また実施例 2-7で説明したと同様に、 切替スィッチ 153d, 154dを省略して、切替スィッチ 153a, 154aを互レヽ ίこ直交関ィ系 にある擬似搬送波の光を出力する 2組の光源(計 4つの光源)にそれぞれ接続して、 切替スィッチ 153a, 154aを制御することにより、実施例 2—7で説明した QAM変調を 行うこともできる。なおスィッチ 153aと 154aを省略した f列及びスィッチ 153dと 154d を省略した例においては直並列変換部 110cの代りに図 30中の信号位相量変換器 110内の直並列変換部 110aが用いられる。
[0111] π /2位相シフト量の異なる二つの光源、例えば、 0相チップ光源と π /2相チップ 光源の 2組の光源を用いて QAM変調を行うこともできる。この場合は図 45で説明し た実施例の QAM変調よりも、位相が半分に減少しているので、実施例 2— 7と同様に 、図 45の実施例の倍の細かさの強度変調とすることにより同じ信号伝送が可能となる 。し力、も必要とする光源の数が半分でよい効果がある。
実施例 2_6で説明した位相シフト数が任意の Mである MPSK変調と同様の変調を 、複数光源を用いて行うこともできる。この例を M = 4の場合につき図 45を参照して 説明する。この場合は図 45の信号位相振幅量変換器 113の代わりに、図 30の信号 位相量変換器 110を用いる。光周波数上で FSR/nを周期とし、各周期における 0、 π /2、 π、 3 π Ζ2の位相シフト量ごとの各 2Sチップの光周波数の光を出力する複 数の光源を用いる。 Μ = 4であるから、各位相シフトに応じた擬似搬送波は図 45で説 明した実施例と同じであり、信号位相量変換器 110の出力に応じて、 0シフト量に対 応する 0相チップ光源と π /2相チップ光源から強度 1の光を出力する力 \ π Ζ2シフ ト量に対応する π /2相チップ光源と π相チップ光源から強度 1の光を出力するか、 πシフト量に対応する π相チップ光源と 3 π /2相チップ光源から強度 1の光を出力 するカ 3 π /2シフト量に対応する 0相チップ光源と 3 π /2相チップ光源から強度 1 の光を出力する。
このようにして、ろ波器と変調器よりなる高価な位相変調部を用いることなぐ MPS K変調を行うことができる。
図 45に示した実施例においては 1つの擬似搬送波光を出力するため、 2個の Sチ ップ光源を用いている。この各 2個の光源代りに、 2Sチップの 1個の光源を用いること ができる。し力 この場合は図 45から明らかなように比較的広帯域 2Sの光源を 4種類 用いることになる。し力、し図 45に示したようにすれば光源の種類の数は 4である力 そ の光周波数幅は Sチップであり、 2S幅よりも可成り安価に作ることができる。 4種類の Sチップ光源を用いて QPSK変調を行うこともできる。図 45の実施例では位相 0又は 位相 πの搬送波を模擬するためと、位相 π /2又は位相 3 π Ζ2の搬送波を模擬す る為とで各 4η個の搬送波を必要とし、その各相の搬送波に対し各 2個の Sチップ光 源を用い、合計 2 X 4η個の光源を用いた。各搬送波を出力する同じ光周波数を出力 する 2光源の代わりに、各搬送波の 1又は 0の出力を重ねあわせた強度で光を出力 することで 1光源で代用する。つまり、図 45に示した場合は各相の搬送波に対し、 0 相チップ光源、 π /2相チップ光源、 π相チップ光源、 3 π /2相チップ光源 (各光源 は Sチップ光である力 表記を簡単にするために「S」を省略しチップ光源と表わした) の強度 1の光を出力させる光源を「1」で、光を出力しない光源を「0」で表わすと各チ ップ光源の出力は以下である。
0相搬送波:
(0相チップ光源、 π Ζ2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (1100)
π /2相搬送波:
(0相チップ光源、 π Ζ2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (0110)
π相搬送波:
(0相チップ光源、 π /2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (0011)
3 π /2相搬送波:
(0相チップ光源、 π /2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (1001)
互いに直交関係の 2つの搬送波光が出力されるから、これら出力光のうち同相のチ ップ光源よりの出力光は互いに重ね合わされるから重ね合った光源の出力光は強度 が 2となる。よって出力光が重ね合わさる光源の出力光の強度を予め 2倍にしておけ ば 4種類の Sチップ光源を各 1個用いて 4つの搬送波光を出力することができる。各 チップ光源の出力は以下となる。
0相搬送波 + π /2相搬送波:
(0相チップ光源、 π Ζ2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (1210)
0相搬送波 + 3 π /2相搬送波:
(0相チップ光源、 π Ζ2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (2101) π相搬送波 + π /2相搬送波:
(0相チップ光源、 π /2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = (0121 )
π相搬送波 + 3 π /2相搬送波:
(0相チップ光源、 π Ζ2相チップ光源、 π相チップ光源、 3 π /2相チップ光源) = ( 1012)
このようにして光源数を減少させることは前述した複数光源を用いた MPSK変調に も同様に適用可能である。
[0114] このようにして図 45の実施例に比べて半分に光源の数を削減でき、かつ図 45の場 合より光源数を減らした前記 QAM変調よりも強度変調のきざみ幅を大きくすることが でき、それだけノイズの影響に強い効果がある。
[実施例 2 - 9]
この実施例 2— 9は上述した各実施例を含み、擬似搬送波をより一般化したものであ り、この例では QAM変調に適用した場合である。これを適用した通信システムの例 を図 47を参照して説明する。
[0115] 光送信装置 100に i番ろ波器 161、 番ろ波器 の組と、 j番ろ波器 162、 番ろ波器 162' の糸且との 2糸且カ S設けられる。これらろ波器 161 , 161' , 162, 162' は光源 120の出力する光の周波数 (波長)で少なくとも FSRの光周波数幅をろ波す る。光周波数を基準光周波数 fs ( = C/ s ; Cは光速)からの光周波数差を、つまり 基準光周波数で規準化した光周波数 (ろ波関数を位相を表わすパラメータともいえる )とした場合に、前記 1組中の一方の ¾ ^ろ波器 161のろ波特性関数の位相 fでの値 C i (f)と、 i番ろ波器 161と組となる 番ろ波器 16 のろ波特性関数の位相 fでの値 Ci' (f)は互いに反転値であり、前記式 (4)と同様な関係が成り立つ。
[0116] Ci (f) + Cir (f) = l (4)
他の組の j番ろ波器 162、 番ろ波器 162' もそのろ波特性は同様の関係がある。 ろ波器 161 , 1QV , 162, 162r の各ろ波特性関数は前述した擬似搬送波を構成 する。
この実施例 2—9の光受信装置 200は図 37中の光受信装置 200に対し、用いるろ 波器が異なり、その他は同様である。受信対象の光送信装置の潘ろ波器 161と同一 のろ波特性をもつ潘ろ波器 271と 番ろ波器 と同一ろ波特性の 番ろ波 器 と、 j番ろ波器 162、 番ろ波器 162' をそれぞれ同一ろ波特性の j番ろ波 器 272、j' 番ろ波器 272' が用いられる。
[0117] この構成においては比較器 241では i番ろ波器 271の透過光と対応する検出光強 度から i' 番ろ波器 の透過光と対応した検出光強度とが比較されることとなり比 較器 241の出力を、規準化光周波数 fでの値 Di (f)を想定すると第 1実施形態で示し た式(3)となる。
Di (f) =Ci (f)-Ci/ (f) (3)
検出器 231では i番ろ波器 271の透過光の各光周波数成分が全体としての光強度 として検出される。他の検出器も同様である。従って送信側の i番ろ波器 161のろ波 特性関数における規準化光周波数 fでの値 Ci (f)と、受信側の i番ろ波器 271のろ波 特性関数における規準化光周波数 fでの値 Di (f)との内積を、潘ろ波器 271のろ波 対象に含まれる FSR分の連続する光周波数領域にわたり積分した値が零でない有 限値 Pで、次式(5 の関係が成り立つ。
[0118] i Ci (f) Di (f) df = P (5) '
式(5)は第 1実施形態で示した式(5)を一般化したものに相当する。
潘ろ波器のろ波特性関数における位相 fでの値 Ci (f)と、潘以外の j番ろ波器のろ 波特性関数に対応する比較器の規準化光周波数 fでの値 Dj (f)との内積をろ波器の ろ波対象に含まれる FSR分の連続する光周波数領域にわたり積分した値が零で、第 1実施形態で示した式 (6)の関係が成り立つ。
i Ci (f) Dj (f) df = 0 (6)
従って i番ろ波器 271の透過光の強度を検出する検出器 231の出力から 番ろ波 器 27 の透過光の強度を検出する検出器 23 を減じた比較器の出力中には j 番ろ波器 162を透過した光成分は含まれない。このようにして、この実施例 2— 9は、 実施例 2 - 4と同様に、受信側で受信対象外の他の擬似搬送波の入力を差動検出に よりキャンセルすることができる。
[0119] 更に、 i番ろ波器 161のろ波特性関数は、光周波数を変数とする周期関数であって 、その周期における規準化光周波数 fで透過率 (値) Ci(f)が FSRi( = FSR/n=A )の周期で繰り返し、第 1実施形態で示した式(1)の関係が成り立つようにすることが 好ましい。
Ci(f)=Ci(f + FSRi) (1)
このようにすると、光源毎の光周波数の違い及び基準光周波数 fsの違いによらず、 受信側で受信対象外の他の擬似搬送波の入力を差動検出によりキャンセルすること ができる。 このようにしてこの実施例 2_9は、光の波長オーダの制御精度を緩和し た制御精度での QAMを実現する。実施例 2 - 1一 2 - 4, 2_7で用いた三角関数の擬 似搬送波、また実施例 2— 5— 2— 8で用いたチップ構成の擬似搬送波も前記式(1) , (3)-(5)r が成立することは理解されよう。なお、チップ構成の場合は ί を∑に おきかえた式が成立する。更にろ波器のろ波対象の光周波数における任意の fから f + FSRまでの区間の積分値が FSRを 2で除した値となり、第 1実施形態で示した式( 2)も成立つことは理解されよう。
[0120] J Ci(f)df=FSR/2 (2)
実施例 2— 1一 2-8における 0相、 π相擬似搬送波はそれぞれ実施例 2— 9の i番, i ' 番擬似搬送波と対応し、 π/2相、 3 π/2相擬似搬送波はそれぞれ実施例 2 - 9 の j番, 番擬似搬送波と対応している。つまりこの実施例 2—9がこの発明において 擬似搬送波の一般的特性を示したものであり、その他の実施例は実施例 2— 9を特化 したものともいえる。
[実施例 2 - 10]
チップ構成の擬似搬送波を用いる場合の他の例を説明する。図 47中のろ波器 16 ' , 162' を省略し、信号位相振幅量変換器 111の代りに括弧書きで示すように信 号振幅量変換器 112を用いる。その他の構成は同様であるがろ波器 161, 162のろ 波特性を次のようにする。
[0121] 光源の光を受けて、光送信装置の具備する i番ろ波器 161がろ波対象とする FSR /n(n=l以上の整数)の光周波数領域で、その光送信装置の具備する i番ろ波器 1 61と、 i番以外のその光送信装置又は同一伝送路を共有する他の光送信装置の具 備する j番ろ波器 162とがろ波対象とする FSRの光周波数領域で同時にオン (透過) となるチップの数と、光送信装置の具備する i番ろ波器 161がろ波対象とする FSRの 光周波数領域でオン (透過)となり、 i番以外のその光送信装置又は同一伝送路を共 有する他の光送信装置の具備する j番ろ波器 162がろ波対象とする FSRの光周波数 領域でオフ(非透過)となるチップの数とが同一である。つまり i番ろ波器 161と j番ろ 波器 162とで同時(同一チップ位置)でオン (透過)となるチップ数と、同一チップ位置 で i番ろ波器 161でオンになり、 j番ろ波器 162でオフとなるチップ数とが同一となる。
[0122] 従って、基準波長 (基準周波数)からの波長差 (周波数差)に相当する位相 Θのチ ップでの i番搬送波の値を Ci ( Θ )、 Θ = 2 π fとすると、 Ci ( Θ ) = Ci ( θ + FSR/n) であり、 Ci' (Θ)=1_〇ί(Θ)とすると、∑Ci(0) (Ci(0)_Ci' (0))(∑は 0=h δ Θとして、 h=0力、ら FSRZS θ_1まで加えた区間 FSRの総禾口)が有限値であり、 i 番搬送波以外の k番搬送波 (kは i以外の擬似搬送波の番号)を表わす関数の位相 Θにおける強度を Ck(©)とすると、∑Ck(0) (Ci(©)-Cir (Θ))=0(Σは 0=h 5 Θとして、 h=0力ら FSR/δ Θ_1まで加えた区間 FSRの総禾口)の関係が成り立ち 、 j番搬送波を表わす関数の位相 Θにおける強度を Cj (Θ)とすると、 Cj(0)=Cj(0 + FSR/n)であり、 Cj' (Θ)=1— Cj(©)とすると、
∑Cj(0) (Cj (Θ)) (∑は Θ=1ιδ Θとして、 h=0から FSR/δ Θ_1ま で加えた区間 FSRの総和)が有限値であり、 j番搬送波以外の m番搬送波 (mは j以 外の擬似搬送波の番号)を表わす関数の位相 Θにおける強度を Cm ( Θ )とすると、 ∑Cm(0) (Cj(©)— C (Θ))=0(Σは Θ=1ιδ Θとして、 h = 0から FSR/ δ Θ— 1まで加えた区間 FSRの総禾口)が成り立つ。
[0123] 光受信装置 200は実施例 2-7で説明したものと同様のものとする。このようにして Q AMを実現することができる。この実施例 2-10に示すものも、前式(1)一(4)にて を∑に変更した式が成立する。この実施例で用いるろ波器として、例えば FSR/ nに相当するチップ数をアダマール符号の符号長で除した数のチップをアダマール 符号を構成する 1ビットの値に合わせて透過率 1Z透過率 0としたろ波器が適用でき る。更に、アダマール符号を連続して結合した符号に対応して FSR以上の光周波数 をろ波するろ波器を適用する場合、任意の FSRの光周波数の領域で前式(1)一(5) にて ί d Θを∑に変更した式が成立する。 [0124] この実施例 2-10で別の符号を用いた具体例を以下に説明する。ろ波器のオンの チップを 1としオフのチップを 0とした系列が Lを符号長(周期長)とする最長系列の系 列に相当する。例えば L = 3の場合であれば、 1番ろ波器 161の系列を(101)とする こと力 Sできる。この場合、他のろ波器(2番及び 3番ろ波器)は、 1番ろ波器 161の系列 をシフトした系列である(011), (110)とすることができる。
光受信装置 200では、受信対象の送信側の i番ろ波器 161のろ波対象の光周波数 に含まれるオンのチップの光を透過する i番ろ波器 271と、 i番ろ波器 161のろ波対象 の光周波数に含まれるオフのチップの光を透過する i' 番ろ波器 27 と、各第 1の ろ波器(271 , 272)の透過光強度を検出する第 1の検出器群(231 , 232)と、各第 2 のろ波器(271' , 212' )の透過光強度を検出する第 2の検出器群(233, 234)と 、第 1の検出器が検出した強度から第 2の検出器の検出した強度を減じて比較する 比較器群(241 , 242)と、比較器群の出力する対応する送信局の変調器が変調した 振幅の組合せから伝送信号に変換する振幅信号変換器(260)とを具備する。
[0125] 動作の例として、潘ろ波器 161を具備する送信装置による信号(101)を対応する 受信装置により受信した場合の比較器強度と、 j番ろ波器 162に対応する信号 (011 )を受信した場合の比較器強度を考える。 i番ろ波器 161に対応する受信装置のオン のチップの光を透過する i番ろ波器 271の透過光強度を検出する検出器 231の出力 は信号(101)中の 2チップ分であり、ろ波特性が(010)である 番ろ波器 271' を 信号(101)が透過するチップは 0であり、 番ろ波器 272' の透過光強度を検出す る検出器 233の出力は 0であり、検出器 231が検出した強度から検出器 233の検出 した強度を減じて比較する比較器 241の出力は 2チップ分となる。
[0126] 送信側の j番ろ波器 162に対応する信号光(011)を選出するための j番ろ波器 272 を、受信光(101)が透過するのは 1チップだけであり、 j番ろ波器 272の透過光強度 を検出する検出器 232の出力は 1チップ分であり、信号光(011)のオフのチップの光 を選出するための 番ろ波器 272' の透過光強度を検出する検出器 234の出力は 、受信光(101)に対しては 1チップ分であり、検出器 232が検出した強度から検出器 234の検出した強度を減じて比較する比較器 242の出力は 0チップ分となる。
[0127] 以上示したようにこの実施例も、実施例 2-7と同様に、受信側で受信対象外の他の 擬似搬送波の入力を差動検出によりキャンセルすることができ、光の波長オーダの 制御精度を緩和した制御精度での QAMを実現することができる。なお 従来の光信 号の位相を制御する光通信方法においては、 βメートルオーダの波長と比べて十分 正確なオーダである数十分の 1の数十ナノメートルオーダの精度で単一波長(周波 数)の光信号の位相を制御する必要があり、現在ではその実験的には実現可能であ る力 経済的に見合ったものを実現することは困難であり、いまの所、 QPSK, QAM などの位相変調を行う光通信システムは実用化されていない。
[0128] し力、しこの第 2実施形態によれば、周波数領域での光搬送波に対し、 MPSKや QA Μを比較的簡単に行うことができる。
この実施例 2—10に示すものも、所定の FSRの区間で前記式(1)一(4)にて i d© を∑に変更した式が成立することは理解されよう。従って、擬似搬送波を FSRの領域 で強度 1のチップと強度 0のチップとの方形波状周期関数とし、前記 i番ろ波器 161、 271j番ろ波器 162、 272のろ波特性と対応する i番搬送波、 j番搬送波は、同一光周 波数位置で共に強度 1 (又は強度 0)となるチップ数と、同一光周波数位置で j番搬送 波が強度 1 (又は強度 0)で j番搬送波が強度 0 (又は強度 1)となるチップ数とが等し レ、ものとなる。更に実施例 2-8で示したチップごとの光源を用いる場合にも、この方 形波状周期関数を適用することができる。
[0129] 上述した各種実施例において QAM変調を行う場合は第 3、第 4パラメータによりそ れぞれ強度 1又は 3のいずれかを選択し、 1 , 0の 4個のデータの組み合せ、つまり 16 通りの組み合せのいずれかを表わした力 17通り以上の組み合せのいずれかを表 わすようにしてもよい。つまり光送信装置では表わしたい 1 , 0のデータの組み合せ数 に応じて、あらかじめ決めた多値のいずれかの 1つの値の光強度に、 i番 (又は 番) 、】番 (又は j' 番)搬送波と対応する光がなるように第 3、第 4パラメータにより選択制 御すればよレ、。光受信装置では、図 37—2中の上記 A/D変換器 261、 262よりの各 極性を含めたあらかじめ決めた多値のいずれ力、 1つのディジタル値の各取り得る組 み合せと対応した 4個以上のデータ 0又はデータ 1の取り得る組み合せ中の対応する 1つを符号信号変換器 260から出力させればよい。
[0130] 前記 AZD変換器 263、 264よりのあらかじめ決めた多値のいずれかの 1つのディ ジタル値とは、その極性を加味する場合と、加味しない場合とがあり、加味しない場 合は、例えば実施例 2— 7中で述べたように、図 38 (a)中の 1つの象限、例えば第 1象 限のみの信号点を用いる場合であり、符号信号変換器 260の出力としては 2つのデ ータの取り得る組み合せの 1つに変換されることになり、従って A/D変換器 263、 2 64の出力ディジタル値として極性を加味する場合は 4個以上のデータの取り得る組 み合せとなり、極性を加味する場合は、 2個以上のデータの組み合せとなる。従って 一般には多値のいずれかの 1つの値で、 2個以上のデータの組み合せといえる。
[実施例 2 - 11]
この発明の実施例 2—11を適用した通信システムを図 48—1及び図 48—2に示す。 光送信装置 100には、図 48—1に示すように実施例 2—3で説明した図 35中の光送 信装置 100が K個(Kは 2以上の整数) 100 , …, 100 として並列に収容され、入力
1
端子 101よりの伝送信号 (データ系歹 IJ)を直並列変換器 170で K個の並列系列に変 換して光送信装置 100 , …, 100 の各信号位相量変換器 110へ入力する。光送
1
信装置 100 , · · ·, 100 より各出力は合波器 171で合波され光伝送路 300へ出力さ
1 K
れる。
[0131] 光受信装置 200では、図 48-2に示すように実施例 2-3に用いる光受信装置、つ まり図 30中の光受信装置 200が K個 200 , · · · , 200 として並列に収容され、光伝
1 K
送路 300よりの光信号は分岐器 270で K分岐され、分岐された各光信号は光受信装 置 200 , · · ·, 200 の分岐器 210にそれぞれ入力される。光受信装置 200 , · · · , 20
1 K 1
0 の出力信号は並直列変換器 273で直列変換されて元の伝送信号に戻される。
K
光送信装置 100 , · · · , 100 と光受信装置 200 , · · ·, 200 は実施例 2— 3で示し
1 K 1 K
たように、相互干渉することなく送受信する。
[0132] ここで、光送信装置 100 , …, 100 、光受信装置 200 , …, 200 は、所定の周
1 K 1 K
期を基準周期とした場合に、ろ波器のろ波特性関数に含まれる三角関数の周期が 前記基準周期を自然数で除した周期となるろ波器を用いる。即ち、前記基準周期と 各光送信装置 100 , …, 100 が備えるろ波器の周期はフーリエ変換の生成する基
1
本周期と倍周期の組に対応する。例えば、 FSRを除する数 Nの値を 1から Kとし、こ れら FSR, FSR/2, …, FSR/Kをそれぞれ光送信装置 100 , 100 ,■· - , 100 の光信号が合波器 171で合波された光信号は逆離散フーリエ変換された信号と等 価になる。
[0133] 光受信装置 200に用いるろ波器のろ波特性関数の周期とする。このような関係では 受信光信号が分岐されて光受信装置 200 ,■· - , 200 により離散フーリエ変換され
1 K
て元の伝送信号に戻されたと同等の作用をすることになる。
このようにして、この実施例 2— 11は、擬似搬送波同士の直交関係を用いて、離散 逆フーリエ変換に対応する複数擬似搬送波を用レ、て擬似 OFDM (直交周波数分割 多重)を実現することができる。光送信装置 100が基本周期から基本周期の KZ2倍 の周期までの周期で、その各周期毎に位相が π Ζ2ずれたろ波特性のろ波器を具 備する光送信装置 100 ,…, 100 を用いた場合、各光送信装置 100 ,…, 100
1 Κ 1
におレ、て π /2位相がずれたろ波特性の一方がコサイン関数とすると他方はサイン 関数となり、光送信装置 100の出力は∑ (an cos ( (n/FSR) Θ ) +bn sin ( (n/FSR ) Θ ) )で表せる。ここで、 nは基本周期に対するろ波器周期の倍数の値、 anと bnはそ れぞれの擬似搬送波で搬送する伝送信号である。
[0134] なお、基本周期を含む任意の周期 nに対応する光送信装置 100η及び光受信装置 200ηを備えない場合も、該当する an又は bnの値が 0であることに対応し、光送信装 置 100の出力の式が成り立ち、この実施例の一般性を損なわない。
この実施例は通常の WDM (波長分割多重)と異なり用いる波長同士を重ねること ができるので、通常の WDMと比べてガードバンドが不要であるため、波長利用効率 を向上できる効果がある。
なお、図 48_1において光送信装置 100 , · · · , 100 の光源 120を単一の光源で
1 K
共用してもよい。また、この実施例 2—11では擬似 QPSKを適用した光送信装置 100 ,…, 100 を複数用いた力 前述した擬似 MPSKあるいは擬似 QAMを適用した
1 K
光送信装置を複数用いてもよい。更にろ波特性関数としては三角関数のみならず、 実施例 2—9で説明した性質をもつ関数であってもよレ、。従つて実施例 2—5 2-8で 説明したチップ構成の擬似搬送波を用いる光送信装置 100、光受信装置 200を複 数用いてもよい。この場合は、 L/4の所定の約数である Sを基準の Sとした場合に、 その基準の Sの約数に相当する Sを用いたろ波特性をもつろ波器を具備する光送信 装置 100 , · · ·, 100 、光受信装置 200 , · · ·, 200 を用いる。即ち、基準の Sと各
1 K 1 K
光送信装置 100 ,…, 100 のろ波器のろ波特性の Sは、フーリエ変換により生成さ
1 K
れる基本周期と倍周期の組に対応する。このようにして、この実施例 11の光送信装 置 100も逆離散フーリエ変換した信号を送出し、光受信装置 200は離散フーリエ変 換して元の伝送信号に戻すものとなる。
[0135] 上述した各実施例における光送信装置 100に用いられるろ波器は、何れも図 33を 参照して説明したように、ろ波器のろ波特性を変調器の出力により制御するようにし たものでもよく、固定的に設定されたろ波特性をもつ複数のろ波器を選択する構成で あってもよレ、。従ってろ波器を変調器により制御するということはろ波特性を制御する という場合と、ろ波器の選択を制御する場合とを意味するものである。
信号位相量変換器 110、信号位相振幅量変換器 111及び信号振幅量変換器 112 は信号データに応じて、ろ波特性の制御やろ波器の選択制御、光送信装置から出 力される光の強度を制御するためのパラメータに変換するものであるから、これらを総 称して信号変調値変換器ということができ、これらから出力される位相量、振幅量など は変調値とレ、え、かつその各成分はパラメータと呼ぶことができる。
[0136] 以上のように、光周波数軸上の周期関数により、 MPSK, QAMなどを行う第 2実施 形態は先にも一般的な構成を説明したが次のようにも説明できる。 1又は複数の光源 により光周波数 Fstから Flaまでの間における、光周波数幅 FSRの範囲で、 i番目の光 周波数特性関数 Ci (f)が、その繰り返し周期に対応する整数 Niで最小公倍数の光 周波数幅 FSRを除した値を光周波数幅 FSRiとすると、
Ci (f) =Ci (f + FSRi)であり、
ί Ci (f) · Ci (f) df > ί Ci (f) - (1-Ci (f) ) dfであり、
i#目以外の j番目の光周波数特性関数 Cj (f)に対し、
ί Ci (f) · Cj (f) df = ί Ci (f) (1-Cj (f) ) dfであり、
Ci (f) FSR以下の任意の光周波数幅を、 Ci (f)の周期 FSRiで割算した余りを A fと し、位相 2 π ( Δ f/FSRi)を Ci (f)に対する位相差とすると、
Cir (f) =Ci (f + A f)であり、
つまり (f)は Ci (f)に対し、位相が 2 π ( Δ f/FSRi)異なるものであり、 ί Ci' (f) - Cj (f) df= I Ci' (f) ' (l-Cj (f) ) dfであり、
入力 2値データ系列を、各データごとに複数の分離データ系列に順次繰り返し振分 けて分離し、これら分離された各分離データ系列ごとに、かつその各データごとにそ の値に応じて上記潘目の光周波数特性関数の第 i光信号及び上記 j番目の光周波 数特性関数の第 j光信号に対し、位相又は/及び振幅を制御した第 1光信号及び第 2光信号を合成し光符号信号として送信する。
[0137] 光周波数特性関数 Ci (f)の例としては異なる FSRiが同一の FSRで が FSRiZ4 又は一 FSRi/4の三角関数である。
他の例としては、任意の整数 Sと Niの積の 2倍 2SNiで FSRを割算した値 Lの連続 する光周波数部分に FSRを分割し、その各長さ Lの光周波数部分を連続する S個の 光周波数を強度 1と、それに続く S個の光周波数を強度 0とすることを Ni回繰り返す 関数、あるいは強度 1の連続する S個の光周波数の位置を所定量順次移動させた関 数を Ci (f)とする。
[0138] この第 3実施形態も、図 2 (a) ,図 2 (b) ,図 3 (a) ,図 3 (b)に示した 1対 N光通信網 P ONに対して適用できる。また第 1実施形態において、図 15や図 28を参照して説明 した単一プレーナ光波回路基板に i番目の符号器が j番目の復号器のいずれかの透 過光を用いるプレーナ光波回路基板に対する温度制御技術も第 3実施形態に適用 できる。更に第 1実施形態において、図 21,図 22を参照して説明したアレー導波路 格子形光合分波器 AWGを用いる光符号化方法を、第 3実施形態の光送信装置に 適応することちできる。
[第 3実施形態] (反射型光通信)
この発明の第 3実施形態は複数の加入者装置を光ファイバ伝送系を介して、中央 局に収容する 1対多接続光網(Passive Optical Network : PON)、例えば図 2又は図 3に示した光通信システムにこの発明を適用したものである。
[実施例 3 - 1]
この第 3実施形態の基本概念の機能構成を図 49を参照して説明する。 2値データ に応じて変調(符号化)された下り信号光が、光ファイバ 410を通じ、更に光入出力ポ ート 412を介して光入出力共用器 420のポート 420aに入力され、光入出力共用器 4 20のポート 420bより切替器 430に入力される。切替器 430は、端子 431よりの上りデ ータ系列により制御され、下り信号光はマーク符号器 440Mあるいはスペース符号器 440Sに入力される。マーク符号器 440M及びスペース符号器 440Sの出力光は光 合成器 450を通じて光入出力共用器 420のポート 420cに入力され、光入出力共用 器 420のポート 420aより上り信号光として光入出力ポート 412を介して光ファイバ 41 0へ出力される。光入出力共用器 420として図 49では破線で示すように光サーキュ レータを用いているが、光方向性結合器、光合分波器などを用レ、てもよい。しかし、 反射光とのコヒーレントクロストークにより上り信号光の強度変調を避けるため、また光 損失を少くするために光入出力共用器 420としては光サーキユレータが好ましい。光 合成器 450は光合分波器あるいは切替器 430と破線で示すように連動制御される切 替器などを用いることができ、要はマーク符号器 440Mの出力光と、スペース符号器 440Sの出力光とを光入出力共用器 420のポート 420cへ入力するものであればよい 。切替器 430は端子 431よりのデータがマークであれば入力された光をマーク符号 器 440Mに入力し、スペースであればスペース符号器 440Sに入力する。光合成器 4 50として入力端子 431のデータにより制御される切替器を用いる場合は切替器 430 は光分岐器としてもよい。
マーク符号器 440M及びスペース符号器 440Sは下り信号光の光周波数 (波長)の 全区間において、光周波数 (波長)を変数とする互いに異なる関数で表わされる信号 光を出力し、例えば光ろ波器として構成される。入力する下り信号光と出力する上り 信号光の光周波数特性 (光符号)は次に示す関係をもつ関数である。
下り信号光がマークであるときの光周波数 fに対する光強度の関数を IM (f)、スぺ ースであるときの関数を IS (f)、上り信号光がマークであるときの光周波数 fに対する 光強度の関数を OM (f)、スペースであるときの関数を OS (f)とそれぞれする。関数 I M (f)と関数〇M (f)との積の fに関する積分又は総和と、関数 IM (f)と関数を〇S (f) の積の fに関する積分又は総和とが等しぐかつ、関数 IS (f)と関数を〇M (f)の積の f に関する積分又は総和と、関数 IS (f)と関数を OS (f)の積の fに関する積分又は総 禾ロとが等しレ、。即ち次に示す(22)式と(23)式のレ、ずれかと(24)式と(25)式のレ、ず れかとが成立する関係にある。 [0140] J IM (f ) OM (f) df = J IM (f ) OS (f) df (22)
∑ IM (f ) OM (f ) =∑ IM (f ) OS (f ) (23)
I IS (f) OM (f) df = J IS (f) OS (f ) df (24)
∑ IS (f ) OM (f ) =∑ IS (f ) OS (f ) (25)
ここで、 ί dfは下り信号の光周波数の区間での積分を、∑は下り信号の光周波数 の区間での総和を意味する。式(22)、式(24)はディジタル演算により求める場合は それぞれ式 (23)、式 (25)と同様な演算を行うことになる。
[0141] これらの関係はマーク関数の光強度とスペース関数の光強度が互いに等しぐかつ マーク又はスペースの下り信号光を構成する周波数成分の光の半分に相当する成 分をマーク又はスペースの上り信号光として構成することができることを表している。 従ってこの光通信装置は、下り信号光の変調度を下げることなぐ下り信号光がマー クでもスペースでも、同一の光パワーで変調した上り信号光を出力することが出来る。 前記関数の例としては図 6に示したものを用いることができる。図 6 (a)—(c)は三角 関数の例であり、同一振幅であり、光周波数区間 fO— fLを光基準周波数 fO = fsで規 格化して光周波数 0— 1において、光周波数の強度変動周波数が 1 , 2, 3の場合で それぞれ位相が π /2ずれた実線と破線あるいは、図 6 (a)中に示すように実線に対 し、 π /4程度ずれた 1点鎖線などの中の 1つをマークの関数とし、これに対し πずれ た関数をスペースの関数とし、異なる方向又は異なる光通信装置に対するものは図 6 中に示す関係をもつ他の関数をマーク関数とし、これと位相が π異なる関数をスぺー ス関数とする。あるいは図 50に示すように周波数区間 fO— fL (規格化周波数 0— 1) を L分割した L個のチップ (光周波数)とし、チップごとに光強度を 1又は 0とし、図 50 ( a)に示す関数を例えばマークの関数とする時、スペースの関数は例えば図 50 (b)に 示すように、強度が 1のチップ数は同一であり、かつ下り信号光のマーク又はスぺー ス関数の強度 1のチップの半分を上り信号光に用いることができる。図 50 (b)はその 前半は図 50 (a)の前半と同一であり、後半は図 50 (a)の後半を反転したものとなって いる。各チップの例として光強度を三角形にて図示したが、理想的には光周波数特 性が各チップでフラットな矩形がのぞましい。
[0142] マーク又はスペース符号器 440M又は 440Sのろ波関数として、三角関数を用いる 場合の符号器としては例えば図 7に示した光路長が異なる 2組の方路 41 , 42とこれ ら両端にそれぞれ結合した力ブラ 43, 44とからなるマッハツエンダ干渉計を用いるこ とができる。マーク又はスペース符号器 440M又は 440Sのろ波関数として図 50に示 したようなチップ歹を構成する場合の符号器の構成例を図 51に示す。入力光は光合 分波器 5に入力され、光合分波器 5は各チップの周波数光信号を異なるポートに出 力し、かつ光周波数 A Fの整数倍離れた光成分を同一ポートに出力する。例えば符 号器 440M又は 440Sの出力光が 4つのチップごとに同一パターンを繰り返す場合、 光合分波器 5のポート 1 , 2, 3, 4から光周波数 F + q A F、 F + q A F、 F + q A F
1 2 3 、 F
+ q A F (q = 0, 1 , 2, ·■·)の各成分がそれぞれ出力される。これらのうち強度 1のチ
4
ップと対応するポートの出力を力ブラ 6で合波して出力すればよい。このような光合分 波器 5としては、図 21中のろ波器 84と同様に AWG (Array Wavequide Graiting :ァレ 一導波路格子形光合分波器)を用いることができる。
[0143] 切替器 430は端子 431よりのデータがマークであれば入力された光をマーク符号 器 440Mに入力し、スペースであればスペース符号器 440Sに入力する。光合成器 4 50として入力端子 431のデータにより制御される切替器を用いる場合は切替器 430 は光分岐器としてもよい。上り信号光と下り信号光が異なる光ファイバにより伝送され てもよレ、。例えば図 49中に破線で示すように光合成器 450より出力される上り信号光 を光ファイバ 411に入力し、光入出力共用器 420を省略してもよい。あるいは図 52に 示すように、マーク符号器 440M及びスペース符号器 440Sの各出力光をそれぞれ 全反射する全反射器 451M及び 451 Sを設け、マーク符号器 440M及びスペース符 号器 440Sの各出力光がそれぞれマーク符号器 440M及びスペース符号器 440Sを 通り、更に切替器 430を通って光ファイバ 410に入力されるようにしてもよい。
[0144] 図 52に示した装置は図 49に示したものと比べ、光入出力共用器 420を省略でき、 し力、も光合成器 450を削減して部品点数を更に削減することが出来、図 49に示した もので切替器と切替器の組合せを用レ、る場合に比べれば、変調のために操作する 部品が減少する効果があり、また図 49で二組の切替器の替わりに、切替器と光合波 器の組合せを用いる場合と比べれば、光合波器による光損失がなくなる効果がある。 また、図 49及び図 52では、下り信号光の受信回路について示していなレ、が、切替 器 430よりも前段で下り信号光の一部を下り信号光の受信回路に分岐して下りデー タ系列を復号するようにしてもよい。これと同様な受信復号については後で例えば図 53を参照して述べる。なお第 3実施形態では光源は下り信号光 (光符号信号)を生 成する相手光送信装置であり、この下り信号光は光源よりの光信号である。
[0145] 以上述べたように本実施例は、互いに光強度が等しいマーク又はスペースで符号 化された光を受信し、受信したマーク又はスペースの下り信号光を構成する光周波 数に含まれる半分の光周波数をマーク又はスペースの上り信号光として送り返す。こ のため、下り信号光とは別に、上り信号光として変調するための無変調の CW光を送 つたり、下り信号の消光比を悪くすることなぐ上り信号光として変調する光を供給す ることが出来る。
文献 3に示す装置では、中央局はその局自身の情報 (データ)を送る下り信号光と は別に、収容局がその局自身の情報 (データ)で変調した上り信号光として返しても らうために無変調の連続光(CW: Continuous Wave)を返送用に下り方向に送信する 。このため、その返送用の下り信号光は中央局からの情報伝送に活用されていない 。また、文献 4に示す装置では、中央局はその局自身の情報 (データ)を送る下り信 号光の消光比をわざわざ悪くして送り、その光信号を収容局はその局自身の情報( データ)で変調して上り信号光として送り返し、無駄な連続光を用いていない。しかし 中央局からの下り信号光および収容局からの上り信号光とも消光比が悪くなり、通信 品質が悪くなる問題があった。
[0146] しかしこの第 3実施形態によれば、無変調光を伝送する必要がなぐしかも下り信号 光の消光比を悪くすることなぐ上り信号光を変調することができる。なお、この第 3実 施形態では符号器は符号ィヒ関数に基づいて光信号に対してその光強度周波数特 性が、下り光信号の光強度周波数特性に符号化関数の光強度周波数特性を乗じた 光強度周波数特性となるように変調を行う符号化手段であり、復号器は復号ィヒ関数 に基づいて、光信号から光強度周波数特性が複号化関数である成分を出力する復 号化手段である。
[実施例 3 - 2]
この実施例 3— 2は各光周波数特性関数を互いに直交的とし、かつチップ符号とす る例である。図 53を参照して実施例 3-2を説明する。光ファイバ 410よりの下り信号 光は、光入出力ポート 412より光入出力共用器 420を通じ更に光分岐器 421と 422 を順次通じて下りマーク復号器 461Mと下りスペース復号器 461Sに分岐入力され、 これらの復号器 461M及び 461Sをそれぞれ通過した光は光検出器 470M及び 470 Sにより電気信号に変換され、これら電気信号は比較器 480で比較され、例えば差 分がとられ、その大きさが所定値以上であれば下りデータ系列として出力端子 481に 出力される。
[0147] 第 1の光分岐器 421で分岐された他方の下り信号光は切替器 430に入力され、図
49に示したと同様に、入力端子 431よりの上りデータ系列により変調されて上り信号 光として光入出力共用器 420を介し、更に光入出力ポート 412より光ファイバ 410に 出力される。光合成器 450として端子 431のデータにより制御される切替器を用いる 場合は切替器 430の代りに光分岐器を用いてもょレ、。
この実施例 3— 1ではマークの上り信号光力 スペースの上り信号光を引いたものと マークあるいはスペースの下り信号光との光周波数についての積分又は総和が零と なり、つまりこれらの光周波数特性関数は互いに擬似的に直交とされる。更に詳しく 述べると、下り信号光は、マーク又はスペースの何れか一方の光周波数関数と同一 の光周波数特性をもつ自然数 NI組の入力光であり、 i番目のマークの光強度の関数 を IMi(f)、スペースの光強度の関数を ISi(f)とすると、 NI組に含まれる i番目の下り 信号光と i番以外の j番目の下り信号光との関係が次に示す(26)式又は(27)式を満 たす。
[0148] JIMi(f) (iMj(f)-ISj (f) ) df = J ISi(f) (iMj (f)-ISj (f) ) df = JIMj (f) (iMi(f) -ISi(f))df= ί ISj(f) (IMi(f)-ISi(f))df = 0 (26)
∑ IMi (f) (IMj (f)— ISj (f)) =∑ ISi (f) (IMj (f)— ISj (f)) =∑ IMj (f) (IMi (f)— ISi (f)) =∑ ISj (f) (IMi (f) -ISi (f))=0 (27)
かつ、 NI組に含まれる i番目の下り信号光と i番目の上り信号との関係は次に示す(2 8)式又は(29)式を満たす。
[0149] ί IMi(f) (OMi(f)-OSi(f))df= ί ISi(f) (OMi(f)-OSi(f) ) df = ί OMi(f) (I Mi(f)-ISi(f))df= ί OSi(f) (IMi(f)— ISi(f))df = 0 (28) ∑ IMi (f) (OMi (f) -OSi (f ) ) =∑ ISi (f) (OMi (f) -〇Si (f ) ) =∑ OMi (f) (iMi (f ) -ISi (f ) ) =∑ OSi (f) (IMi (f) -ISi (f ) ) = 0 (29)
Iは下り信号の光周波数区間での積分、∑は下り信号の光周波数区間での総和 である。なお同一の光通信装置で検出すべき下り信号光と、出力すべき上り信号光 とは異なる関数とされる。なお式(26)、式(28)はディジタル演算により求める時はそ れぞれ式 (27)、式 (29)と同様な演算を行うことになる。
[0150] このような特性を有する関数として、例えば、図 10に示したアダマール符号を用い ること力 Sできる。信号光の光周波数特性関数は、ろ波関数とする場合マークで 0となる 光周波数チップを透過し、 1となる光周波数チップを不透過とすると、スペースでは 1 となる光周波数チップを透過し、 0となる光周波数チップを不透過とする。つまり同一 符号の場合マーク信号光とスペース信号光で光強度 1と光強度 0とが反転する。符 号 2 [0101コ、符号 3 [0011コ、符号 4[0110]は、式(22) (29)を満たす。例えば 符号 2 [0101]の信号光を生成するには図 51に示すように光合分波器 5の光波長( 光周波数) λ と λ を出力するポートを力ブラ 6と接続し、また光波長(光周波数) λ
2 4 1 とえ を出力するポートを破線で示すように力ブラ 6' と接続し、マーク力スペースかに
3
より、力ブラ 6と の出力を光合成器としての切替器 450を切替えて出力すればよ レ、。
[0151] このような符号であるから受信しょうとする符号が例えば i番目であり、これ以外の例 えば j番目の信号光が入力した場合、下りマーク復号器 461M及び下りスペース復号 器 461Sの各ろ波特性関数は IMi (f)及び ISi (f)であり、入力光の光周波数関数は I Mj (f)又は ISj (f)であり、式(26)又は式(27)が成立し、復号器 461M及び 461Sを 経由して検出された光強度はその差が比較器 480で相殺されるため受信しようとす る i番目の信号光以外の信号光は出力端子 481に出力されない。またこの上りマーク 符号器 441M及び上りスペース符号器 441 Sの各ろ波特性関数は〇Mi (f)及び OSi (f)であり、この上り信号が光伝送路上で反射が生じ、その反射光が下りマーク復号 器 461M及び下りスペース復号器 461Sに入力されても、式(28)又は式(29)が成り 立ち光検出器 470M及び 470Sの各検出光強度は比較器 480で相殺され、出力端 子 481には現われない。つまり、反射光があつたとしても、所望の符号の信号光の受 信の障害とならない。
[0152] このような特性をもつ他の関数として、下り信号光の光周波数区間 fO— fL (規格化 光周波数 0— 1)を例えば図 54 (a)に示すように L = 4s分割し、 i番目マークの関数 M i (f)は最初の sチップを透過(光強度 1)、次の sチップを不透過(光強度 0)とすること を n = 2回繰り返し、 i番目のスペースの関数 Si (f)は最初の sチップを透過(光強度 1) 、次の sチップを不透過(光強度 0)とすることを n= 2回繰り返す。図 54 (b)に示すよう に fO fLを L = 6s分割し、 i番目のマークの関数 Mi (f)は最初の sチップを透過、次 の sチップを不透過とすることを n = 3回繰り返し、 i番目のスペースの関数 Si (f)は最 初の sチップを透過、次の sチップを不透過とすることを n = 3回繰り返す。一般的には 光周波数区間の fOから fLを L分割した Lチップの光周波数で示されるろ波特性関数 (光強度周波数特性関数)であり、 Lを 2で割った数力 の倍数とし、 i番目のマークの ときのろ波特性関数を IMi (f)としスペースのときのろ波特性関数を ISi (f)とするとき、 i番目のろ波特性関数 IMi (f)は sチップを透過とし、それに続く sチップを不透過とす ることを少なくとも Lを 2sで除した回数 (n回)繰り返す関数であり、潘目のろ波特性関 数 ISi (f)は sチップを不透過とし、それに続く sチップを透過とすることを少なくとも Lを sで除した回数 (n回)繰り返す関数である。なお、例示した関数は fOから、連続 sチッ プ透過チップ又は不透過チップが続いている力 図 54 (c)に L = 6s、 n= 3の場合に 示すように sに満たない任意の整数 s0のチップだけ透過チップ又は不透過チップ続 いてから、 sチップを不透過又は透過とし、それに続く sチップを透過又は不透過とす ることを、 Lを 2sで除した数から 1引いた数だけ繰り返し、その後に(s— s0)チップ透過 又は不透過とする関数でもよい。つまり前記関係があるもの、例えば図 54 (b)に示す 関数に対し図 54 (c)のように位相をずらしたものでもよレ、。前記 2次のアダマール行 列の符号 2は L = 4、 s = l、 n= 2であり、符号 3は L = 4、 s = 2、 n= lであり、符号 4は 符号 3を位相 π Ζ4だけ左に巡環シフトしたものである。なおこれらの関係は第 2実施 形態における実施例 2_6で示した特性関数と同様であり、例えば IMj (f)は Ci (f)と、 ISi (f)は(1一 Ci (f) )と、 OMj (f)は Cj (f)と、 DSj (f)は(l_Cj (f) )とそれぞれ対応す る。
[0153] これらのろ波特性がこれら関数をもつ符号器 441M及び 441S、復号器 461M及 び 461Sも図 51に示したような光合分波器 5と力ブラ 6及び を用いて同様に構成 できることは容易に理解されよう。このような構成の符号器を用いる場合は図 53中に 1点鎖線で示すように上りマーク符号器 441M及び上りスペース符号器 441Sは上り 符号器 441として一体に構成され、切替器 430は省略され、光合成器 450は切替器 とされ、また下りマーク復号器 461M及び下りスペース復号器 461Sも下り復号器 46 1として一体に構成され、光分岐器 422は省略される。
[0154] 図 53に示した実施例 3— 2においても、図 52に示した実施例と同様に上りマーク符 号器 441M及び上りスペース符号器 441Sの後段に全反射器 451M及び 451Sを用 レ、ることで、光入出力共用器 420と光合成器 450を削減して部品点数を削減すること が出来る。また切替器 430を光分岐器とし、光合成器 450を切替器としてもよい。 図 53に示した光通信装置と対向する光通信装置の構成例を図 55に示す。光源 49 5からの光周波数 f0— fLの光信号は切替器 435により、入力端子 436からの下りデ ータ系列の各データのマーク力スペースかに応じて下りマーク符号器 445M又は下 りスペース符号器 445Sに入力される。下りマーク符号器 445M及び下りスペース符 号器 445Sのろ波特性関数は対向光通信装置の下りマーク復号器 461M及び下りス ペース復号器 461Sのろ波特性関数 IMi (f)及び ISi (f)と等しくされる。下りマーク符 号器 445M及び下りスペース符号器 445Sよりの下り信号光は光合成器 455を通じ、 更に光入出力共用器 425を通じて光ファイバ 410へ入力される。
[0155] 光ファイバ 410より入力された上り信号光は光入出力共用器 425を通じて光分岐器
426により上りマーク復号器 465M及び上りスペース復号器 465Sに入力される。こ れら復号器 465M及び 465Sのろ波特性は対向光通信装置の上りマーク符号器 44 1M及び上りスペース符号器 441Sの各ろ波特性関数 OMi (f)及び〇Si (f)と等しくさ れる。上りマーク復号器 465M及び上りスペース復号器 465Sの各出力信号光はそ れぞれ光検出器 475M及び 475Sに入力され、光検出器 475M及び 475Sよりの各 出力電気信号が比較器 485で比較され、出力端子 486に上りデータ系列として出力 される。
[0156] 実施例 3 - 2の光通信装置によればこの下り信号光を出力する光通信装置と上り信 号光を出力する光通信装置との複数組により光ファイバ 410を共用しても、各組によ り異なる符号 (ろ波特性関数)、つまり前記関係がある光周波数特性関数を用いるこ とにより、組となっている光通信装置以外の光通信装置からの信号光も直交性により 、雑音とならず、また組となっている下り信号光と上り信号光とも異なる符号であるた め、下り信号光の少なくとも半分の光周波数成分を上り信号光として変調することが できる効果もある。この効果は特に ITU— T勧告 G. 983及び G. 984シリーズに規定 されているような 1対 N接続網である受動光通信網(P〇N, Passive Optical Network) のような構成に有効である。従来提案されている形式の波長分割多重受動光通信網 (WDM-PON)では通常他の利用者宅内装置である光端末装置(〇NU)に対して 通信する下り信号光は単なる雑音であり光ろ波器等で廃棄するだけの雑音でしかな レ、。し力 この実施例 3_2では上り信号光として変調するための光として有効に利用 すること力 Sできる。なお他の光端末装置に対して通信する下り光通信光を活用するこ とを前提に、光強度設計をする場合、接続光端末装置の数が少なぐ十分な光強度 の下り信号光が確保できない場合は、接続されていない光端末装置の分の下り光を 対向光通信装置は出力する必要がある。
[実施例 3 - 3]
この実施例 3— 3は式(22)又は式(23)、式(24)又は式(25)、式(26)又は式(27) 、及び式(28)又は式(29)の関係をもつ関数として三角関数を用いるものである。つ まりこの実施例 3— 3で用いる関数は光周波数光領域での光強度変化の周期が互い に整数倍の関係にあるか又は同一周期の場合は π /2位相が異なる関係の三角関 数である。つまり例えばマークの信号光の光周波数特性関数 Mi (f)は式(30)であり
Mi (f) = ( 1 + cos (2 π sf/ (fL-fO) + r π /2) ) /2 ( 30)
スペースの信号光の光周波数特性関数 Si (f)は l_Mi (f)、つまり式(31 )である。
Si (f) = l_ ( l + cos (2 sf/ (fL— f0) + τ π /2) ) (31 )
sは 1から、最大 NI (所要符号数)を 2で除した値 NI/2までの整数値、 rは 0又は 1で あり、また fL_f0 = FSRである。図 6中の(a), (b), (c)はそれぞれ Mi (f)の s = 1, 2 , 3と対応し、点線力 Sr = 0、実線力 Sr = lと対応する三角関数である。
このような光周波数特性関数のろ波器は先に述べたように例えば図 7に示したマツ ハツエンダ干渉計などを用いて簡易に構成することができる。その場合の光通信装 置の例を図 56に示す。光ファイバ 410よりの下り信号光は光入出力共用器 420を通 じ、更に光分岐器 421で下り復号器 461と上り符号器 441に分岐入力される。下り復 号器 461及び上り符号器 441はそれぞれマッハツエンダ干渉計で構成されている。 これら復号器 461及び符号器 441のマッハツエンダ干渉計の方路 41と 42の光路長 差は関数 IMi (f)及び OMi (f)と対応してそれぞれ決められてレ、る。復号器 461にお けるカプラ 44の一方の出力ポートからマークの信号光が出力されるとすると、他方の 出力ポートからスペースの信号光が出力され、これらはそれぞれ光検出器 470M及 び 470Sへ入力される。一方符号器 441におけるカプラ 44の一方の出力ポートから はマークの信号光が他方の出力ポートからはスペースの信号光が切替器 450へ入 力される。その他の構成動作は図 53に示した場合と同様である。
[0158] この三角関数を用いる場合も各符号間の直交性が保たれ、他符号の干渉が除去さ れ、かつ反射光の影響を受けず、 1対 N接続網などでは、対向光通信装置以外の他 の光通信装置からの下り信号光も、上り信号光として変調するための光として有効に 利用することもできるなどの実施例 3-2と同様の効果を奏する。
[実施例 3 - 4]
この実施例 3— 4は、下り信号光の光強度が不足するため、あるいは下り信号光を、 光検出器のダイナミックレンジ内の光強度で受信するために、又は上り信号光を十分 な光強度で出力するためのいずれか、あるいはそれらの複数を実現する光増幅器を 設ける。
[0159] 図 53中に破線で示すように、光入出力共用器 420と光分岐器 421との間に光増幅 器 423が揷入され、下り信号光が増幅される。この光増幅器 423は双方向からの入 力光を増幅するもので、例えば SOA (Semiconductor Optical Amplifier,半導体光増 幅器)を使用することができる。この場合は光ファイバ 410に破線で示すように光増幅 器 423を揷入して下り信号光と上り信号光を増幅するようにしてもよい。又は光分岐 器 421の 2つの分岐出力側にそれぞれ光増幅器 423aと 423bを揷入して、受信に用 レ、る下り信号光を、光検出器 470M及び 470Sのダイナミックレンジ内の光強度にな るように光増幅器 423aの増幅率を選定し、また上り信号光が充分な光強度になるよ うに送信に用いる下り信号光を増幅する光増幅器 423bの増幅率を選定する。光増 幅器 423bは光合成器 450の出力側に挿入してもよい。この場合、符号器 441M及 び 441Sで符号ィ匕された光のみを増幅するため、効果的に増幅することができる。同 様に光増幅器 423aの代りに下りマーク復号器 461M及び下りスペース復号器 461 S の出力側に光増幅器 423aM及び 423aSを揷入すれば復号された信号光のみを効 率的に増幅することができ、かつマーク用光増幅器 423aMとスペース用光増幅器 4 23aSをそれぞれ独立したハードリミッタとして用いることもできる。
光合成器 450として、図 57に示すように、上りマーク符号器 441M及び上りスぺー ス符号器 441Sの各出力信号光をそれぞれ光増幅器 452M及び 452Sを通じて光 合波器 453で合波し、入力端子 431よりのデータがマークであれば光増幅器 452M の増幅率を高くし、光増幅器 452Sの増幅率を低くし、データがスペースであれば、 光増幅器 452Mの増幅率を低くし、光増幅器 452Sの増幅率を高くして、マークとス ペースに応じた符号光を選択出力するように、光増幅器 452M及び 452Sの両増幅 率を端子 431のデータにより制御してもよい。このようにして上り信号光の光強度を十 分大きくすることもできる。この構成の場合は切替器 430として光分岐器を用いてもよ レ、。その場合は光通信装置として切替器を一切使用しないで済む効果がある。以上 のように図 53に示した光通信装置に光増幅器を用いる実施例を述べたが、この光通 信装置に用いる符号器及び復号器のろ波特性関数としては光周波数チップ系列関 数のみならず、実施例 3— 3で述べた三角関数でもよい。更に図 52に示したように符 号器の後段に全反射器を用い、光入出力共用器 420を省略し、かつ下り信号光を 復号する受信回路を備える光通信装置にもその各所に光増幅器を挿入して、同様 に効果的に作用させることもできる。その例を、図 58に揷入可能な光増幅器を破線 で図 52、図 53、図 57と同一参照番号を付けて示し、重複説明は省略する。この場合 光入出力ポート 412と直接接続される光分岐器は光合分波器 421とされ、マーク符 号器 441M及びスペース符号器 441 Sに対し、全反射器 451M及び 451Sと反対側 に揷入した光増幅器 451M及び 451Sの各増幅率をデータにより制御してマーク信 号光及びスペース信号光を選択する場合は、切替器 430の部分は光合分波器とさ れる。マーク符号器 441M及びスペース符号器 441Sを一体化した符号器 441とす る場合は符号器 441のマーク信号光出力ポート及びスペース信号光出力ポートと全 反射器 451M及び 451Sとの間に光増幅器 451M及び 451Sを挿入し、上りデータ 系列によりこれら光増幅器 451M及び 451Sを制御する場合は符号器 441の入力ポ 一トが光合分波器 421に直接接続され、光合分波器 430を省略できる。この場合、 光増幅器 451M及び 451Sの替りに上りデータにより互いに逆にオンオフ制御される スィッチを用いてもよぐ要は上りデータに応じてマーク信号光又はスペース信号光 のレ、ずれかを選択すればょレ、。
[実施例 3 - 5]
上述では下り信号光に対する受信復号回路と、上り信号光のための送信符号化回 路とを並列に設けたが、これらを縦続的に設けてもよい。以下に送信符号化回路を 光入出力ポート 412つまり光ファイバ 410側として、その送信符号化回路に対し、受 信復号回路を縦続的に設ける実施例 3— 5を図 59を参照して以下に説明する。
[0161] 光入出力ポート 412には必要に応じて光増幅器 442を介して光合分波器 430が接 続される。従って光ファイバ 410からの下り信号光は光合分波器 430を介して符号器 441M及び 441Sに入力される。先に述べたようにマーク信号光とスペース信号光は 各光周波数の光強度が相補的であり、かつ光周波数範囲 fO— fLの平均光強度は互 いに等しぐ下り信号光中のマーク信号又はスペース信号光を構成する光周波数成 分の半分に相当する光周波数を上り信号光としてのマーク信号光又はスペース信号 光としている。
従って下り信号光中の有効光周波数成分の半分は符号器 441M及び 441Sを透 過し、これら透過光は切替器 450で合成されて光合分波器 424に入力され、光合分 波器 424にて全反射器 451と光分岐器 422に分岐される。光分岐器 422に入力され た下り信号光は復号器 461M及び 461Sに入力される。この下り信号光の光周波数 特性がこれら復号器 461M又は 461 Sのろ波特性関数と整合したものであれば、前 述したように、少くとも光ファイバ 410における下り信号光中の半分の光周波数成分 が正しく透過し、従って比較器 480より復号したデータを得ることができる。
[0162] 一方、全反射器 451で反射された光は光合分波器 424を通過して光合成器 450に 入力される。切替器 450は端子 431より上りデータ系列により、切替制御されている から、先に下り信号光が符号器 441M又は 441Sを通過した際に符号化された信号 光が全反射器 451で反射され、同一の符号化を受けて光合分波器 430に入力され 、これより上り信号光として光ファイバ 410に入力される。この上り信号光は符号器 44 1M又は 441Sにより 2回符号化され、その符号化は同一特性であるが、最終的の上 り信号光としての符号化が、先の光ファイバ 410から切替器 450へ通過する際に符 号化され、全反射器 451により反射された光により影響されて上り信号光の光周波数 特性が乱だされるおそれがある。そのような場合は光ファイバ 410へ入力する上り信 号光を光増幅器 442により飽和するまで増幅するとよい。ただしこの場合は信号光の 関数としてチップ系列を用いる場合に限られる。光合分波器 430を切替器とし、切替 器 450を光合分波器としてもよい。その他前述した各種変形を同様に施すことができ る。なお切替器 450を図 57に示した構成とし、その光増幅器 452M及び 452Sにより 、光ファイバ 410へ入力される上り信号光を飽和増幅して、光増幅器 442の代用も兼 ねるようにしてもよレ、。更に光増幅器 442を図 59中に破線で示すように、全反射器 4 51の前段に配してもよい。この場合は SOAの一端に全反射コーティングを施し、光 増幅器と全反射器を単一部品として構成することができる。
[実施例 3 - 6]
この実施例 3— 6は実施例 3— 5における光合分波器 424と全反射器 451を省略し、 例えば図 60に示すようにする。符号器 441M及び 441Sを透過した下り信号光は切 替器 450より一部反射器 454に入力され、一部反射器 454で下り信号光の一部が反 射され、一部が透過して光分岐器 422に入力される。この場合も、下り信号光を正し く復号することができ、かつ下り信号光の一部を利用して上り信号光を生成できること は容易に理解されよう。この例では図 59に示した場合と比較して光合分波器 424を 省略でき、光合分波器 424における損失がなくなる効果がある。破線で示すように光 増幅器 442を一部反射器 454の切替器 450側に揷入してもよい。この場合は、例え ば SOAの一端に一部反射するコーティングを施すことにより光増幅器と一部反射器 を単一部品として構成することができる。切替器 450を図 57に示した構成とし、その 光増幅器 451M及び 451Sを光増幅器 442として兼用させてもよい。その他、前述し た各種変形を同様に行うこともできる。 [実施例 3 - 7]
この実施例は受信回路の後に送信回路を縦続させた場合である。また受信回路に おける光検出器 470M及び 470Sとして、例えば図 61に示すように入力光強度に比 例した電気信号を取り出すことができる光増幅器よりなる光検出器 471M及び 471S を用いる。このような光検出器 471M及び 471Sとしては例えば S〇Aを用いることが でき、光検出器 471M及び 471Sで出力された、マーク復号器 461M及びスペース 復号器 461 Sよりの各信号光の光強度に比例した各電気信号は比較器 480へ入力 される。一方、光検出器 471M及び 471Sよりの増幅された信号光は光合波器 472 で合波されて、切替器 430へ入力される。その他の構成動作は図 53に示した場合と 同様である。この場合も各マーク信号光、スペース信号光の光周波数特性が前述し たように作られているため、下り復号器 461を透過した信号光は下り信号光の光周波 数成分の半分が含まれ、上り符号器 441により上りマーク信号光又は上りスペース信 号光を生成することができる。この構成により、図 53に示した構成に対し、下り信号光 を受信側と送信側とに分離するための光分岐器 421が不要となり、かつ符号器 441 M及び 441Sに入力する下り信号光を光検出器 471M, 471Sにより増幅することが できる。
図 56に示したようにマッハツエンダ干渉計を下り復号器 461及び上り符号器 441と して用いる場合に、光検出器として光増幅器 471M及び 471Sを用いる実施例を図 6 2に示す。光入出力共用器 420よりの下り信号光は下り復号器 461に直接入力され、 下り復号器 461よりの復号された下りマーク信号光及び下りスペース信号光は光増 幅器よりなる光検出器 471M及び 471Sにそれぞれ入力される。光検出器 471M及 び 471Sよりの光強度に比例した電気信号は比較器 480へ入力され、光検出器 471 M及び 471Sより光増幅されマーク信号光及びスペース信号光は、下り復号器 461 のマッハツエンダ干渉計とポートを入れかえたマッハツエンダ干渉計よりなる補正合 波器 473に入力される。下り復号器 461における方路 41及び 42の光路長の差が、 補正合波器 473における方路 41及び 42の光路長の差により補正され、下りマーク 信号光と下りスペース信号光がそれぞれ同一長の光路を通過した状態で力ブラ 44 で合波される。この合波された下り信号光はマッハツエンダ干渉計よりなる上り符号 器 441に入力される。その他の構成及び動作は図 56に示したものと同様である。光 検出器 471M及び 471Sの各出力光をマッハツエンダ干渉計により合波しているた め、図 61中の光合波器 472を用いる場合より損失を減少できる。
[0164] 以上述べた第 3実施形態を一般的に説明すると以下のようになる。光送信装置から の下り信号光を送信し、その下り信号光を反射型光通信装置で受信し、受信下り信 号光の一部を用いて下りデータ系列を再生すると共に、受信下り信号の一部に対し 、上りデータ系列により変調して上り信号として上記光送信装置へ送信する光通信シ ステムを前提とする。
この第 3実施形態では、関数とその反転関数とは必ずしも周期性がなくてもよい。従 つて受信光符号信号の光強度周波数特性が関数 Ci(f)または Ck(f)とし、上り符号 器 441、ろ波光周波数特性関数を Cj(f)又は Cm (f)とし、光周波数 Fstから Flaまで の任意の範囲における光周波数幅 FSRの次式の内積積分を満たす、
I Ci (f) · Cj (f) df = J Ci (f) · Cm (f) df
I Ck(f) -Ci(f) df= J Ck(f) -Cm(f) df
し力し必ずしも Ck(f) = (1-Ci(f))、 Cm(f) = (1-Cj (f))でない。ただし Ck(f)≠ ( l-Ci(f))の場合は、(l-Ci(f))及び(l-Ck(f))は同一システム内は用いない。同 様に Cm(f)≠(l— Cj(f))の場合は、 (1-Cj(f))、(l-Cm(f))は同一システム内で 用いない。
[0165] 更に内積積分 ί Ci(f) *Cj(f)dfと J Ck(f) *Ci(f)dfの少なくとも一方はゼロでない 。つまり Ci(f) >0, Ck(f) >0のいずれかが成立つ。
関数 Ci(f)、 Cj (f)が周期性があれば、次のようになる。
光周波数 Fstから Flaまでの範囲において各符号の関数の繰り返し周期 FSRiの公 倍数を光周波数幅 FSRとし、関数の繰り返し周期 FSRiの公倍数で光周波数幅 FSR を除した値を光周波数幅 FSRiとすると、
Ci(f)=Ci(f + FSRi)であり、
ί Ci (f) · Ci (f) df> ί Ci (f) - (1-Cj (f) ) dfであり、
i#目以外の j番目の光周波数特性関数 Cj (f)に対し、
ί Ci (f) · Cj (f) df = ί Ci (f) · (1-Cj (f) ) dfであり、 このような関係の光周波数特性関数に対し、受信下り信号光は 2値データ系列の各 データごとにそれがマークであればその光周波数特性関数が Ci (f)とされ、スペース であればその光周波数特性関数が(1一 Ci (f) )とされたものである。この下り信号光 の一部はろ波特性関数が Ci (f)と(l_Ci (f) )の復号器を通し、その透過光の光強度 をそれぞれ検出し、これら光強度の差から受信下り信号光がマーク力^ペースに再 生される。
また下り信号光の一部に対し符号器により、上りデータ系列の各データごとにそれ がマークであれば光周波数特性が関数 Cj (f)又は(1一 Cj (f) )に変調され、スペース であれば光周波数特性が関数(1一 Cj (f) )又は Cj (f)に変調されて上り信号光として 送信される。

Claims

請求の範囲
[1] 2値データ系列の各データごとに、その値に応じた、 i番目符号の関数 Ci(f)及びそ の反転関数(1一 Ci(f))の少なくとも一方を、光強度周波数特性とした光符号信号を 、少なくとも光周波数幅 FSR分送信する光送信装置と、
関数 Ci(f)は光周波数 fを変数とし、 Ci(f) =Ci(f + FSRi)が成立する周期関数で あり、
光周波数幅 FSRは所定の光周波数 Fstから所定の光周波数 Flaまでの範囲にお いて、各符号の関数中の繰り返し周期 FSRiの公倍数の光周波数幅であり、
関数 Ci (f)の反転関数は、 1からこの関数 Ci (f)を減じた関数であり、
関数 Ci (f)と、反転関数(1-Ci (f) )との間に
I ci(f) -ci(f)df> I ci(f) · (i-ci(f))dfの関係が成立し、
J" dfは Fstから Flaまでの任意の区間 FSRにおける fに関する定積分であり、 関数 Ci(f)と i番目符号以外の任意の j番目符号の関数 Cj (f)及びこの関数 Cj (f)の 反転関数 (l-Cj(f))との間に
I ci(f) -cj(f)df= I ci(f) · (i-cj(f))dfの関係が成立し、
受信した光信号から、関数 Ci(f)に基づき光強度周波数特性が Ci(f)の光信号の 光強度と対応する第 1強度信号と、
受信光信号から、反転関数 (l_Ci(f))に基づき、光強度周波数特性が(l_Ci(f)) の光信号の光強度と対応する第 2強度信号との差に応じた第 1差信号力 データ系 歹 IJを再生する光受信装置とを備えることを特徴とする光符号を用いる光通信システム
[2] 請求項 1のシステムにおいて、
周期 FSRiは関数 Ci(f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅 であり、
光周波数幅 FSR以下の任意の光周波数幅を関数 Ci(f)の繰り返し周期 FSRiで除 した剰余を Afとし、位相 2π (Af/FSRi)を関数 Ci(f)に対する位相差とし、 上記剰余 Δ fだけ異なる光周波数 (f + Δ f)での i番目符号の関数 Ci (f + Δ f)と等し い関数を Ci' (f)=Ci(f+Af)とし、 関数 Ci' (f)と関数 Cj (f)及びその反転関数(1 Cj (f))との間に
ic (f)-cj(f)df= ic (f)'(i_cj' (f))dfの関係が成立し、
光送信装置は 2値データ系列の各データごとに、その値に応じた Δ fの値の関数 Ci ' (f)を少なくとも光周波数幅 FSRだけ送信する装置であり、
光受信装置において、受信した光信号から、送信装置で送信しうる Afの値に対応 する各関数 Ci' (f)に基づき、光強度周波数特性が (f)の光信号の光強度と対 応する第 1強度信号と、反転関数 (1一 Ci' (f))に基づき光強度周波数特性が(1一 Ci ' (f) )の光強度と対応する第 2強度信号との差に応じた上記各 Δ fの値に対応する 各第 1差信号からデータ系列を再生する装置であることを特徴とする光通信システム 請求項 1のシステムにおいて、
周期 FSRiは関数 Ci(f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅 であり、
光周波数幅 FSR以下の任意の光周波数幅を周期 FSRiで除した剰余を Δ fとし、位 相 2π (Af/FSRi)を関数 Ci(f)に対する位相差とし、 Δί=π/2とし、
上記剰余 Δ fだけ異なる光周波数 (f + Δ f)での i番目符号の関数 Ci (f + Δ f)と等し い関数を Ci' (f)=Ci(f+Af)とし、
関数 Ci' (f)と関数 Cj (f)及びその反転関数(1 Cj (f))との間に
ic (f)-cj(f)df= ic (f)'(l_Cj' (f))dfの関係が成立し、
光送信装置は 2値データ系列を第 1分離データ系列と第 2分離データ系列とに分 離し、その第 1分離データ系列により上記光強度周波数特性が Ci(f)又は(l-Ci(f)
)とされた光信号と、
第 2分離データ系列の各データごとにその値に応じた関数 C (f)及びその反転 関数(l—C (f) )の少なくとも一方又は関数 Cj (f)及びその反転関数(l_Cj (f) )の 少なくとも一方を光強度周波数特性とした光信号の、少なくとも関数 (f)又は Cj( f)の 1周期 FSRi又は FSRj分の光信号とを合成した光信号を光符号信号として出力 する装置であり、
上記光受信装置において、受信した光信号から、関数 Ci' (f)及びその反転関数 (ι-α' (f) )に基づき、光強度周波数特性が (f)の光信号及び光強度周波数 特性が(l-Ci, (f) )又は関数 Cj (f)及びその反転関数(l-Cj (f) )に基づき、光強 度周波数特性が Cj (f)の光信号及び光強度周波数特性が(1 - Cj (f) )の各光強度と それぞれ対応する第 3強度信号及び第 4強度信号間の差に応じた第 2差信号を検出 し、この第 2差信号と上記第 1差信号とから第 1分離データ系列及び第 2分離データ 系列を再生する装置であることを特徴とする光通信システム。
[4] 請求項 3のシステムにおいて、
光送信装置は入力 2値データ系列を第 1分離データ系列と第 2分離データ系列と、 第 3分離データ系列と第 4分離データ系列とに分離し、
第 1分離データ系列により上記光強度周波数特性が関数 Ci (f)又は(1一 Ci (f) )と された第 1光信号及び第 2分離データ系列により上記光強度周波数特性が関数 Ci ' (f)又は(l—C^ ))ぁるぃは0^)又は(1_0] ))とされた第2光信号をそれぞ れ第 3分離データ系列の各データごとの値及び第 4分離データ系列の各データごと の値にそれぞれ応じた光強度とした両信号の合成信号を光符号信号として送信する 装置であり、
光受信装置は上記第 1差信号及び上記第 2差信号をそれぞれディジタル値に変換 し、これらディジタル値により第 1分離データ系歹 lj、第 2分離データ系列、第 3分離デ ータ系列、第 4分離データ系列をそれぞれ再生する装置であることを特徴とする光通 信システム。
[5] 請求項 1のシステムにおいて、
光送信装置には光周波数幅が少なくとも FSRで、光強度周波数特性が Cj (f)また は(1一 Cj (f) )の光符号信号が受信入力され、
その受信光符号信号に対し、 2値データ系列の各データごとに、その値に応じて、 光強度周波数特性として Ci (f)、(l_Ci (f))又は零のいずれ力 ^乗じて出力する装 置であることを特徴とする光通信システム。
[6] 請求項 1一 5のいずれかのシステムにおいて、
周期 FSRiは関数 Ci (f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅 とし、 FSR以下の任意の周波数幅を、関数 Ci (f)の繰返し周期 FSRiで除した剰余を △ fとし、関数 Ci (f)と Cj (f)は、異なる周期 FSRiと周期 FSRjであるか又は周期 FSRi と周期 FSRjは同一値であり FSR以下の任意の周波数幅を、 Cj (f)は関数 Ci (f)の繰 返し周期 FSRiで除した剰余を とし、関数 Ci (f)の位相 2 π ( A f/FSRi)が 4分の πの (f)である正弦関数を含む関数又は余弦関数を含む関数であることを特徴 とする光通信システム。
[7] 請求項 1一 5のいずれかのシステムにおいて、
関数 Ci (f)に対応する任意の整数 Siと Niとに、整数 2を乗じた値 L = 2Si'Niで光周 波数幅 FSRを分割してチップとし、関数 Ci (f)は連続する S個のチップを光強度 1とし 、それに続く S個のチップを光強度 0とすることを Ni回繰り返す、又はその光強度を 1 とする連続 S個のチップの光周波数位置を、所定値づっ順次移動した関数であるこ とを特徴とする光通信システム。
[8] 請求項 1一 5のいずれかのシステムにおいて、
当該光通信システムは双方向通信システムであり、
その少なくとも一方の側の光送信装置は、光ろ波周波数特性関数 Ci (f)又は反転 関数(l-Ci (f) )の少なくとも一方の符号ィヒ用光ろ波器により光信号に対し光強度周 波数特性を付与する装置であり、かつ光受信装置は、光ろ波周波数特性関数 Ci' ( f)及び(1 Ci' (f) )あるいは Cj (f)及び(1 Cj (f) )の各復号化用光ろ波器により、 光強度周波数特性が ci' (f)又は(ι- ' (0)ぁるぃは¾ ( 及び(1-〇 ))の光 符号信号を受信光信号から分離する装置であり、ここで (f)は Ci (f)に対しその 4分の 1周期ずれた関数であり、
上記符号化用光ろ波器及び上記両復号化用光ろ波器が単一プレーナ光波回路 基板上に構成され、
上記符号化用光ろ波器及び上記複号化用光ろ波器の一方の透過光信号の光強 度を検出する強度検出手段と、
その検出された光強度が最大になるように、上記プレーナ光波回路基板の温度を 制御する制御手段とが備えられていることを特徴とする光通信システム。
[9] 請求項 1一 5のいずれかのシステムにおいて、
光受信装置は、 光符号信号の符号を構成するチップ毎に受信光信号を分波し、
これら分波した各光チップの光強度をチップ毎にチップ強度信号として検出し、 入力受信光信号の伝送路における到着時間が異なる光チップの時間と対応し、こ れらが同一到着時間となるような遅延を対応チップ強度信号に与え、これら到着時間 が同一とされたチップ強度信号を、関数 Ci (f)が 1に相当するチップの出力の総和か ら関数(1一 Ci (f) )が 1に相当するチップ強度信号の総和を減じて上記第 1差信号を 得る装置であることを特徴とする光通信システム。
[10] 2値データ系列と光信号が入力され、
2値データ系列の各データごとに、その値に応じた i番目符号の関数 Ci (f)及びそ の反転関数(ι_ ω)の少なくとも一方を、光強度周波数特性とした光符号信号を
、少なくとも光周波数幅 FSR分生成送信する光送信装置。ここで関数 Ci (f)は光周 波数 fを変数とし、 Ci (f) =Ci (f + FSRi)が成立する周期関数であり、
光周波数幅 FSRは所定の光周波数 Fstから所定の光周波数 Flaまでの範囲にお いて、各符号の関数中の繰り返し周期 FSRiの公倍数の光周波数幅であり、 関数 Ci (f)の反転関数は、 1からこの関数 Ci (f)を減じた関数であり、
関数 Ci (f)と、反転関数(1-Ci (f) )との間に
I ci(f) -ci(f)df> I ci(f) · (i-ci(f))dfの関係が成立し、
J" dfは Fstから Flaまでの任意の区間 FSRにおける fに関する定積分であり、 関数 Ci (f)と i番目符号以外の任意の j番目符号の関数 Cj (f)及びこの関数 Cj (f)の 反転関数 (l-Cj (f) )との間に
I ci(f) -cj (f)df= I ci(f) · (i-cj (f))dfの関係が成立する。
[11] 請求項 10の装置において、
互いに異なる関数の光強度周波数特性の光符号信号をそれぞれ生成出力する N 個の符号器と、 Nは 2以上の整数であり、
上記 N個の光符号信号を合成して送信する合成器とを備えることを特徴とする光送 信装置。
[12] 請求項 11の装置において、
1から、符号数 Nを整数 qで除した値 N/qまでの整数値を aとし、 rを 2の剰余とし、 関数 Ci(f)は、
(l+cos(2- π -a-f/FSR + r- π/2))/2
であることを特徴とする光送信装置。
[13] 請求項 11の装置において、
任意の整数 Sで光周波数幅 FSRを分割してチップとし、
関数 Ci(f)及び関数 Cj (f)はそれぞれ "1"のチップと "一 1"のチップとよりなることを 特徴とする光送信装置。
[14] 請求項 11の装置において、
各符号器は、それぞれその符号器に決められた符号関数の光強度周波数特性の 第 1光符号信号を生成する第 1変調部と、第 1変調部の関数の反転関数の光強度周 波数特性の第 2光符号信号を生成する第 2変調部と、入力された 2値データの一方 で第 1光符号信号及び第 2光符号信号との少なくとも一方を、 2値データの他方で上 記第 1光符号信号及び第 2光符号信号の少なくとも他方を出力する切替器を備える ことを特徴とする光送信装置。
[15] 請求項 10の装置において、
周期 FSRiは Ci(f)と対応する整数 Niで FSRを除した光周波数幅であり、
FSR以下の任意の光周波数を、関数 Ci(f)の周期 FSRiで除した剰余を Afとし、 位相 2 π ( Δ f/FSRi)を関数 Cj (f)に対する位相差とし、
上記剰余 Δ fだけ異なる光周波数 (f + Δ f)での i番目符号の関数 Ci (f + Δ f)と等し い関数を Ci' (f)=Ci(f+Af)とし、
関数 Ci' (f)と関数 Cj (f)及びその反転関数(1一 Cj (f))との間に
ί Cir (f)-Cj(f)df= iCi/ (f)'(l_Cj(f))dfの関係が成立し、 上記 2値データ系列の各データごとに、その値に応じた Afの値の関数 (f)を 少なくとも光周波数幅 FSRだけ送信する装置であり、
入力 2値データ系列を複数の分離データ系列に分離する系列変換部と、 各分離データ系列について、上記関係条件を満たす符号関数について、データご とにその値に応じた、位相 のみが異なる関数の一つを光強度周波数特性とした 光符号信号を生成する符号変調部と、 これら符号変調部より光符号信号を合成して光符号信号として出力する合成器とを 備えることを特徴とする光送信装置。
[16] 請求項 10の装置において、
FSRiは Ci(f)と対応する整数 Niで FSRを除した光周波数幅であり、
FSR以下の任意の光周波数を FSRiで除した剰余を とし、位相 2π (Af/FSRi
)を関数 Ci(f)に対する位相差とし、
上記剰余 だけ異なる光周波数 (f+ Af)での i番目符号の関数 Ci(f+ ^ϊ)と等し い関数を Ci' (f)=Ci(f+Af)とし、
関数 ' (f)と関数 Q (f)及びその反転関数(1一 cj ω)との間に
ί Cir (f)-Cj(f)df= iCi/ (f)'(l_Cj(f))dfの関係が成立し、
Δί=πΖ2とし、
入力 2値データ系列を第 1分離データ系列と第 2分離データ系列に分離する系列 変換部と、
第 1分離データ系列により上記光強度周波数特性が関数 Ci (f)又は(1一 Ci (f) )と された第 1光信号を生成する第 1変調部と、
第 2分離データ系列の各データごとにその値に応じた関数 (f)及びその反転 関数(1一 (f) )の少なくとも一方又は関数 Cj (f)及びその反転関数(1一 Cj (f) )の 少なくとも一方を光強度周波数特性とした第 2光信号の少なくとも関数 Ci' (f)又は Cj (f)の 1周期 FSRi又は FSRj分の第 2光信号を生成する第 2変調部と、
第 1光信号と第 2光信号を合成して光符号信号として出力する合成器とを備えるこ とを特徴とする光送信装置。
[17] 請求項 16の装置において、
系列変換部は入力 2値データ系列を第 1,第 2,第 3及び第 4分離データ系列に分 離する変換部であり、
上記第 1光信号及び第 2光信号をそれぞれ、第 3分離データ系列及び第 4分離デ ータ系列の各データごとにその値にそれぞれ応じた光強度とする第 3変調部及び第 4変調部とを備え、
上記合成器は第 3変調部及び第 4変調部の出力光を合成する合成器であることを 特徴とする光送信装置。
[18] 請求項 15— 17のいずれかの装置において、
周期 FSRiは関数 Ci (f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅 とし、関数 Ci (f)の繰返し周期である FSRiで、 FSR以下の任意の周波数幅を除した 時の剰余を とし、関数 Ci (f)と Cj (f)は、異なる周期 FSRiと周期 FSRjであるか又 は周期 FSRiと周期 FSRjは同一値であり Cj (f)は関数 Ci (f)の繰返し周期である FS Riで FSR以下の任意の周波数幅を除した時の剰余を とし、関数 Ci (f)の位相 2 π ( Δ f/FSRi)力 ¾分の πの C (f)である正弦函数を含む函数あるいは余弦関数を 含む関数であることを特徴とする光送信装置。
[19] 請求項 15— 17のいずれかの装置において、
任意の整数 Sと、符号関数 Ci (f)に対応する任意の整数 Siと Niとに、整数 2を乗じ た値 L = 2Si'Niで光周波数幅 FSRを分割してチップとし、関数 Ci (f)は連続する S 個のチップを光強度 1とし、それに続く S個のチップを光強度 0とすることを Ni回繰り 返す、又はその光強度を 1とする連続 S個のチップの光周波数位置を所定値ずつ順 次移動した関数であることを特徴とする光送信装置。
[20] 請求項 15— 17のいずれかの装置において、
所定の光周波数 Fst—所定の光周波数 Flaの範囲に含まれる所定の光周波数幅( FSR)で光周波数信号を出力する光源と、
光源よりの出力光信号を複数に分岐する光分岐器と、
分岐された光が入力され、光透過周波数特性が符号関数の複数の光ろ波器と、 これら光ろ波器の透過光を合成して光符号信号として出力する光合成器と、 これら複数の光ろ波器と光分岐器又は光合成器との間に挿入され、複数の分離デ ータ系列により制御される符号変調手段とを備える光送信装置。
[21] 請求項 15— 17のいずれかの装置において、
光周波数幅 FSRを、自然数 Nと 3以上の整数 Lで除した単位光周波数幅をチップ 幅とし、 NLのチップに対応する光周波数の光信号を出力する少なくとも NL個の光 源と、
NL個の光源を駆動する駆動信号を発生する駆動信号発生器と、 これら NL個の光源の出力光を合成して光符号信号として出力する光合成器と、
NL個の光源と駆動信号発生器又は光合成器との間に挿入され、複数の分離デー タ系列により制御される符号変調手段とを具備する光送信装置。
[22] 関数に従った光強度周波数特性の光信号を透過するろ波手段と、光信号の光強 度を検出する強度検出手段と、強度信号を加減算する手段とを備え、
受信光信号が入力され、周波数特性関数 Ci(f)に基づき光強度周波数特性が Ci( f)の光信号の光強度と対応する第 1強度信号と、
受信光信号が入力され、反転周波数関数(1 - Ci(f))に基づき光強度周波数特性 が(1一 Ci (f) )の光信号の光強度と対応する第 2強度信号との差に応じたデータを再 生することを特徴とする光受信装置。
ここで関数 Ci(f)は Ci(f) =Ci(f + FSRi)が成立する周期関数であり、関数 Ci(f) の関数値が 0から 1の値をとり、
光周波数幅 FSRは所定の光周波数 Fstから所定の光周波数 Flaまでの範囲にお いて、各符号の関数中の繰り返し周期 FSRiの公倍数の光周波数幅であり、
関数 Ci(f)の反転関数は、 1から関数 Ci(f)を減じた関数(l-Ci(f))であり、 関数 Ci (f)と関数 ( 1-Ci (f) )との間に
I ci(f) -ci(f)df> I ci(f) · (i-ci(f))dfの関係が成立し、
J" dfは Fstから Flaまでの光周波数幅 FSRの任意の区間における fに関する定積分 であり、
関数 Ci(f)と i番目符号以外の任意の j番目符号の関数 Cj (f)及びこの関数 Cj (f)の 反転関数 (l-Cj(f))との間に
ί Ci(f) -Cj(f)df= ί Ci(f) · (l_Cj(f))dfの関係が成立する。
[23] 請求項 22の装置において、
上記受信光信号は、直交性を満足する光強度周波数特性で符号化された複数の 光符号信号であり、
受信光信号が入力され、受信光信号を複数に分配する分配器と、
分配器より分配された各受信光信号がそれぞれ入力され、ろ波光周波数特性が関 数 Ci(f)の第 1ろ波器と、 第 1ろ波器の出力が入力され、その光強度を第 1強度信号として検出する第 1強度 検出器と、
受信光信号が入力され、ろ波光周波数特性が関数 (1 Ci(f))の第 2ろ波器と、 第 2ろ波器の出力が入力され、その光強度を第 2強度信号として検出する第 2強度 検出器と、
第 1強度信号及び第 2強度信号が入力され、その一方から他方の差の強度に基づ き 2値データを再生する強度差検出器とを備える複数の復号器とを具備する光受信 装置。ただし複数の復号器間におレ、て関数 Ci (f)及び (1-Ci (f) )は互いに異なる。
[24] 請求項 23の装置において、
1から、符号数 Nを整数 qで除した値 N/qまでの整数値を aとし、 rを 2の剰余とし、 関数 Ci(f)は、
(l+cos(2- π -a-f/FSR + r- π/2))/2
であることを特徴とする光受信装置。
[25] 請求項 23の装置において、
任意の整数 Sで光周波数幅 FSRを分割してチップとし、
関数 Ci(f)及び関数 Cj (f)はそれぞれ "1 "のチップと" 1 "のチップとよりなり、 受信光信号が入力され、その受信入力信号をチップごとに分割出力するろ波器と、 このろ波器の各チップごとの出力がそれぞれ入力され、そのチップごとの光強度と 対応したチップ強度信号をそれぞれ検出する複数のチップ強度検出器と、
これら各チップ強度信号が入力され、関数 Ci(f)の各" 1"のチップと対応するチップ 強度信号を正とし、関数(l-Ci(f))のチップ各 "1 "のチップと対応するチップ強度信 号を負として全入力の総和に基づき 2値データを出力する強度差検出器とを備える ことを特徴とする光受信装置。
[26] 請求項 22の装置において、
FSRiは Ci(f)と対応する整数 Niで FSRを除した光周波数幅であり、
FSR以下の任意の光周波数を FSRiで除した剰余を とし、位相 2π (Af/FSRi )を関数 Ci(f)に対する位相差とし、
上記剰余 だけ異なる光周波数 (f+ Af)での i番目符号の関数 Ci(f+ ^ϊ)と等し い関数を Ci' (f)=Ci(f+Af)とし、
関数 Ci' (f)と関数 Cj (f)及びその反転関数(1 Cj (f))との間に
ic (f)-cj(f)df= ic (f)'(i-cj(f))dfの関係が成立し、
受信光信号が入力され、相手送信装置が送信しうる Δ fの値に対応するろ波光周 波数特性が関数 Ci' (f)の各第 1ろ波器と、
受信光信号が入力され、相手送信装置が送信しうる Δ fの値に対応するろ波光周 波数特性が関数(1一 ' ω)の各第 2ろ波器と、
第 1ろ波器の出力が入力され、その出力の光強度と対応した第 1強度信号を検出 する第 1強度検出器と、
第 2ろ波器の出力が入力され、その出力の光強度と対応した第 2強度信号を検出 する第 2強度検出器と、
第 1強度信号と第 2強度信号が入力され、これら間の差を求めて 2値データ系列を 再生出力する手段とを備える光信号受信装置。
請求項 22の装置において、
FSRiは Ci(f)と対応する整数 Niで FSRを除した光周波数幅であり、
FSR以下の任意の光周波数を FSRiで除した剰余を Afとし、位相 2π (Af/FSRi
)を関数 Ci(f)に対する位相差とし、
上記剰余 Δ fだけ異なる光周波数 (f + Δ f)での i番目符号の関数 Ci (f + Δ f)と等し い関数を Ci' (f)=Ci(f+Af)とし、 Δί=π/2とし、
関数 Ci' (f)と関数 Cj (f)及びその反転関数(1 Cj (f))との間に
lei' (f)-Cj(f)df= lei' (f)'(l-Cj(f))dfの関係が成立し、
受信光信号が入力され、ろ波光周波数特性が関数 Ci(f)の第 1ろ波器と、 受信光信号が入力され、ろ波光周波数特性が関数 (1一 Ci(f))の第 2ろ波器と、 第 1ろ波器の出力が入力され、その出力の光強度と対応した第 1強度信号を検出 する第 1強度検出器と、
第 2ろ波器の出力が入力され、その出力の光強度と対応した第 2強度信号を検出 する第 2強度検出器と、
受信光信号が入力され、ろ波周波数特性が関数 Ci' (f)又は Cj(f)の第 3ろ波器と 受信光信号が入力され、ろ波光周波数特性が関数 (1一 ))又は(1_¾ )) の第 4ろ波器と、
第 3ろ波器の出力が入力され、その出力の光強度と対応した第 3強度信号を検出 する第 3強度検出器と、
第 4ろ波器の出力が入力され、その出力の光強度と対応した第 4強度信号を検出 する第 4強度検出器と、
第 1強度信号と第 2強度信号が入力され、これらの差を第 1差信号として出力する 第 1減算器と、
第 2強度信号と第 4強度信号が入力され、これらの差を第 2差信号として出力する 第 2減算器と、
第 1差信号と第 2差信号が入力され、 2値データ系列を出力するデータ生成手段と を備えることを特徴とする光受信装置。
[28] 請求項 27の装置において、
データ生成手段は、第 1差信号を第 1の 2値データとし、第 2差信号を第 2の 2値デ ータとし、これら第 1の 2値データと第 2の 2値データを順次配列して上記 2値データ 系列とする手段であることを特徴とする光受信装置。
[29] 請求項 27の装置において、
データ生成手段は第 1差信号を第 1ディジタル値に変換する第 1A/D変換器と、 第 2差信号を第 2ディジタル値に変換する第 2A/D変換器と、
第 1ディジタル信号と第 2ディジタル信号が入力され、これらの各ディジタル値の組 み合わせについてあらかじめ決めた 4個以上のデータ 0又はデータ 1の組み合わせ 中の対応する 1つを出力する 2値系列手段とを備えることを特徴とする光受信装置。
[30] 請求項 26— 29のレ、ずれかの装置にぉレ、て、
周期 FSRiは関数 Ci (f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅と し、関数 Ci (f)の繰返し周期である FSRiで、 FSR以下の任意の周波数幅を除した時 の剰余を とし、関数 Ci (f)と Cj (f)は、異なる周期 FSRiと周期 FSRjであるか又は 周期 FSRiと周期 FSRjは同一値であり Cj (f)は関数 Ci (f)の繰返し周期である FSRi で FSR以下の任意の周波数幅を除した時の剰余を A fとし、関数 Ci (f)の位相 2 π (
Δ f/FSRi)力 分の πの C (f)であることを特徴とする光受信装置。
[31] 請求項 26— 29のレ、ずれかの装置にぉレ、て、
関数 Ci (f)に対応する任意の整数 Siと Niに、整数 2を乗じた値 L = 2Si'Niで光周 波数幅 FSRを分割してチップとし、
関数 Ci (f)及び関数 Cj (f)はそれぞれ" 1"のチップと "一 1"のチップとよりなり、 受信光信号が入力され、その受信入力信号をチップごとに分割出力するろ波器と、 このろ波器の各チップごとの出力がそれぞれ入力され、そのチップごとの光強度と 対応したチップ強度信号をそれぞれ検出する複数のチップ強度検出器と、
これら各チップ強度信号が入力され、関数 Ci (f)の各" 1 "のチップと対応するチップ 強度信号を正とし、関数(l_Ci (f) )のチップ各" 1 "のチップと対応するチップ強度信 号を負として全入力の総和に基づき 2値データを出力する強度差検出器とを備える ことを特徴とする光受信装置。
[32] 受信光信号と、 2値データ系列が入力され、その受信光信号に対し光強度周波数 特性を光周波数 fを変数とする関数に変調して送信する反射型光通信装置において 少なくとも光周波数幅 FSRの光周波数幅の受信光信号が入力され、ろ波光周波数 特性が第 1関数 Ci (f)で光信号を出力する符号器と、
受信光信号が入力され、ろ波光周波数特性が反転関数 (1一 Ci (f) )で反転光信号 を出力する反転符号器と、
各データの値に応じて光信号と反転光信号を選択合波して光符号信号として送信 する選択合波手段とを備える反射型光通信装置。
ここで関数 Ci (f)は Ci (f) =Ci (f+FSRi)が成立する周期関数であり、関数 Ci (f) の関数値が 0から 1の値をとり、
光周波数幅 FSRは所定の光周波数 Fstから所定の光周波数 Flaまでの範囲にお いて、各符号の関数中の繰り返し周期 FSRiの公倍数の光周波数幅であり、
関数 Ci (f)の反転関数は、 1からこの関数 Ci (f)を減じた関数(l_Ci (f) )であり、 関数 Ci (f)と関数 ( l_Ci (f) )との間に I ci(f) -ci(f)df> I ci(f) · (i-ci(f))dfの関係が成立し、
J" dfは Fstから Flaまでの任意の区間 FSRにおける fに関する定積分であり、 関数 Ci (f)と i番目符号以外の任意の j番目符号の関数 Cj (f)及びこの関数 Cj (f)の 反転関数 (l_Cj (f) )との間に
ί Ci (f) - Cj (f) df= ί Ci (f) · (l_Cj (f) ) dfの関係が成立する。
[33] 請求項 32の装置において、
受信光信号が入力され、ろ波光周波数特性が関数 Cj (f)の復号器と、 受信光信号が入力され、ろ波光周波数特性が関数 (1一 Cj (f) )の反転復号器と、 復号器の出力光が入力され、その光強度に応じた強度信号を出力する第 1光検出 器と、
反転復号器の出力光が入力され、その光強度に応じた反転強度信号を出力する 反転光検出器と、
強度信号及び反転強度信号が入力され、これらのレベル差が所定値以上のものに ついてその差に応じて 2値データの一方を出力する比較器とを備えることを特徴とす る反射型通信装置。
[34] 請求項 33の装置において、
選択合波手段は、符号器及び反転符号器に全反射する全反射器及び反転全反 射器と、符号器及び反転符号器と全反射器及び反転全反射器との間にそれぞれ挿 入され、入力データの値に応じて光信号及び反転光信号のレ、ずれかを選択する選 択器及び反転選択器とを備えることを特徴とする反射型光通信装置。
[35] 請求項 33の装置において、
光検出器及び反転光検出器として、入力光信号を光増幅して出力すると共に入力 光信号の光強度に応じた強度信号を出力する光増幅器が用いられ、
上記光検出器及び上記反転光検出器の各増幅光信号を合波して上記受信光信 号として符号器及び反転符号器に入力する光合波器を備えることを特徴とする反射 型光通信装置。
[36] 請求項 33の装置において、
上記光信号と反転光信号を入力データの値に応じて選択する切替器と、 その切替器の出力が入力され、その出力を 2分岐してその一方を復号器及び反転 復号器に入力する光合分波器と、
上記光合分波器の他方の分岐光が入力され、これを全反射する全反射器とを備え ることを特徴とする反射型光通信装置。
[37] 請求項 33の装置において、
光信号と反転光信号を入力データの値に応じて選択する切替器と、
上記切替器の出力光が入力され、その一部を反射し、残りを復号器及び反転復号 器へ入力する一部反射器とを備えることを特徴とする反射型光通信装置。
[38] 請求項 33— 37のレ、ずれかの装置にぉレ、て、
周期 FSRiは関数 Ci (f)に対応する整数 Niで光周波数幅 FSRを除した光周波数幅 とし、関数 Ci (f)の繰返し周期である FSRiで、 FSR以下の任意の周波数幅を除した 時の剰余を とし、関数 Ci (f)と Cj (f)は、異なる周期 FSRiと周期 FSRjであるか又 は周期 FSRiと周期 FSRjは同一値であり Cj (f)は関数 Ci (f)の繰返し周期である FS Riで FSR以下の任意の周波数幅を除した時の剰余を Δ fとし、関数 Ci (f)の位相 2 π ( Δ f/FSRi)力 分の πの Ci' (f)である三角関数であり、
符号器と反転符号器は出力符号器として一体化され、復号器と反転復号器は入力 復号器として一体化されていることを特徴とする反射型光通信装置。
[39] 請求項 33— 37のレ、ずれかの装置にぉレ、て、
関数 Cj (f)に対応する任意の整数 Siと Niとに、整数 2を乗じた値 L = 2Si'Niで光周 波数幅 FSRを分割してチップとし、関数 Ci (f)は連続する S個のチップを光強度 1とし 、それに続く S個のチップを光強度 0とすることを Ni回繰り返す、又はその光強度を 1 とする連続 S個のチップの光周波数位置を、所定値ずつ順次移動した
関数であり、
符号器と反転符号器は出力符号器として一体化され、復号器と反転復号器は入力 復号器として一体化されていることを特徴とする反射型光通信装置。
PCT/JP2004/010228 2003-07-16 2004-07-16 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置 WO2005008923A2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005511869A JP4436323B2 (ja) 2003-07-16 2004-07-16 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置
US10/562,431 US7555216B2 (en) 2003-07-16 2004-07-16 Optical communication system using optical frequency code, optical transmission device and optical reception device thereof, and reflection type optical communication device
EP20040747693 EP1646165B1 (en) 2003-07-16 2004-07-16 Optical communication system using optical frequency code, optical transmission device and optical reception device thereof, and reflection type optical communication device
CN200480018390.XA CN1813429B (zh) 2003-07-16 2004-07-16 使用光频率编码的光通信系统、其光发送装置以及接收装置、反射型光通信装置
DE200460029166 DE602004029166D1 (de) 2003-07-16 2004-07-16 Optisches kommunikationssystem mit einem optischen frequenzcode, optische sendeeinrichtung und optische empfangseinrichtung dafür und optische kommuni

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003275601 2003-07-16
JP2003-275601 2003-07-16
JP2003-303234 2003-08-27
JP2003303234 2003-08-27
JP2003-401734 2003-12-01
JP2003401734 2003-12-01

Publications (2)

Publication Number Publication Date
WO2005008923A1 WO2005008923A1 (ja) 2005-01-27
WO2005008923A2 true WO2005008923A2 (ja) 2005-01-27

Family

ID=34084268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010228 WO2005008923A2 (ja) 2003-07-16 2004-07-16 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置

Country Status (6)

Country Link
US (1) US7555216B2 (ja)
EP (1) EP1646165B1 (ja)
JP (1) JP4436323B2 (ja)
CN (1) CN1813429B (ja)
DE (1) DE602004029166D1 (ja)
WO (1) WO2005008923A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311686C (zh) * 2005-02-21 2007-04-18 长飞光纤光缆有限公司 光纤到户网络中数字电视信号的终端转换传输系统
WO2008001531A1 (fr) * 2006-06-29 2008-01-03 Nippon Telegraph And Telephone Corporation Système de communication par code optique
US7630587B2 (en) 2007-06-22 2009-12-08 Fujitsu Limited Optical waveguide device
JP4870076B2 (ja) * 2005-06-27 2012-02-08 Kddi株式会社 マルチチャネル伝送システム、送信装置および送信方法
WO2012070686A1 (ja) * 2010-11-22 2012-05-31 日本電気株式会社 光通信システム、光通信方法、光通信装置およびその制御方法と制御プログラム

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143255B2 (en) * 2002-10-18 2015-09-22 Microsoft Technology Licensing, Llc Orthogonal signaling for CDMA
JP3914236B2 (ja) * 2003-01-30 2007-05-16 富士通株式会社 光増幅器
JPWO2006018952A1 (ja) * 2004-08-20 2008-05-08 松下電器産業株式会社 多モード光伝送装置
JP4539230B2 (ja) * 2004-08-23 2010-09-08 沖電気工業株式会社 光符号多重通信システム及び復号装置
US8488967B2 (en) * 2005-02-18 2013-07-16 Telcordia Technologies, Inc. System and method for OCDMA-based photonic layer security robustness to archival attack
US7778547B2 (en) * 2006-06-01 2010-08-17 Telcordia Technologies, Inc. Code grouping for optical networks
US7710572B2 (en) * 2006-11-30 2010-05-04 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US8219023B1 (en) * 2007-08-01 2012-07-10 The United States Of America As Represented By The Secretary Of The Navy Remotely operated illumination device
JP4888567B2 (ja) * 2007-11-08 2012-02-29 富士通株式会社 コヒーレント光受信機
WO2010033286A1 (en) * 2008-06-26 2010-03-25 Telcordia Technologies, Inc. System and method for ocdm-based photonic layer security robustness to archival attack
US20100074444A1 (en) * 2008-06-26 2010-03-25 Telcordia Technologies, Inc. Method and System for OCDM-Based Photonic Layer Security Robustness to Spoof Data Integrity
JP2010010614A (ja) * 2008-06-30 2010-01-14 Fujitsu Ltd 光検出装置および出力光強度制御装置
US8290371B2 (en) * 2008-09-19 2012-10-16 Telcordia Technologies, Inc. OCDM-based all optical multi-level security
US8032023B2 (en) * 2008-11-07 2011-10-04 Alcatel Lucent Reconfigurable DWDM wavelength switch based on complementary bandpass filters
CN101414890B (zh) * 2008-11-25 2013-01-02 南京师范大学 一种多维类正交伪随机矩阵的构成方法
US8244137B1 (en) * 2009-06-30 2012-08-14 Verizon Patent And Licensing Inc. Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks
EP2925013B1 (en) * 2009-10-16 2018-07-11 Xieon Networks S.à r.l. Optical network and method for processing data in an optical network
US10353774B2 (en) * 2015-10-30 2019-07-16 International Business Machines Corporation Utilizing storage unit latency data in a dispersed storage network
KR20200085931A (ko) 2011-02-18 2020-07-15 선 페이턴트 트러스트 신호생성방법 및 신호생성장치
US10235237B2 (en) 2011-09-06 2019-03-19 Intertnational Business Machines Corporation Decoding data streams in a distributed storage network
US11907060B2 (en) 2011-09-06 2024-02-20 Pure Storage, Inc. Coding of data streams in a vast storage network
US8930649B2 (en) * 2011-09-06 2015-01-06 Cleversafe, Inc. Concurrent coding of data streams
US20190179696A1 (en) 2011-09-06 2019-06-13 International Business Machines Corporation Demultiplexing decoded data streams in a distributed storage network
US9136969B2 (en) * 2012-01-27 2015-09-15 Futurewei Technologies, Inc. Spectral encoding of an optical label or destination
US20140024931A1 (en) * 2012-07-20 2014-01-23 Lightlab Imaging, Inc. Data Encoders for Medical Devices and Related Methods
US9312962B2 (en) * 2012-11-13 2016-04-12 Infinera Corporation Intensity-based modulator
JP6123883B2 (ja) * 2013-03-22 2017-05-10 富士通株式会社 波長多重光受信器
US9225453B2 (en) * 2013-04-09 2015-12-29 Futurewei Technologies, Inc. Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
US9948391B2 (en) * 2014-03-25 2018-04-17 Osram Sylvania Inc. Techniques for determining a light-based communication receiver position
CN104104379B (zh) * 2014-07-08 2017-09-22 惠州华阳通用电子有限公司 一种逻辑电平信号传输方法及装置
WO2016190866A1 (en) 2015-05-27 2016-12-01 Hewlett Packard Enterprise Development Lp Bias-based mach-zehnder modulation (mzm) systems
RU2015139057A (ru) 2015-09-14 2017-03-17 ИЭмСи КОРПОРЕЙШН Способ и система распределенного хранения данных
JP6652760B2 (ja) * 2015-10-30 2020-02-26 国立大学法人京都大学 通信方法及び通信機
US10146600B2 (en) 2015-12-16 2018-12-04 EMC IP Holding Company LLC Mutable data objects content verification tool
US10061697B2 (en) 2015-12-16 2018-08-28 EMC IP Holding Company LLC Garbage collection scope detection for distributed storage
US10133770B2 (en) 2015-12-16 2018-11-20 EMC IP Holding Company LLC Copying garbage collector for B+ trees under multi-version concurrency control
US10067696B2 (en) 2015-12-18 2018-09-04 Emc Corporation Capacity exhaustion prevention for distributed storage
US10379780B2 (en) 2015-12-21 2019-08-13 EMC IP Holding Company LLC Statistics management for scale-out storage
US10291265B2 (en) 2015-12-25 2019-05-14 EMC IP Holding Company LLC Accelerated Galois field coding for storage systems
US10152248B2 (en) 2015-12-25 2018-12-11 EMC IP Holding Company LLC Erasure coding for elastic cloud storage
WO2017134483A1 (en) 2016-02-01 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Reconfigurable optical modulator
US10110258B2 (en) 2016-03-30 2018-10-23 EMC IP Holding Company LLC Accelerated erasure coding for storage systems
CN106059676B (zh) 2016-05-12 2018-04-24 山西大学 基于单光子探测的多通道频率编码信息传输系统
US10248326B2 (en) 2016-06-29 2019-04-02 EMC IP Holding Company LLC Incremental erasure coding for storage systems
US10152376B2 (en) * 2016-06-29 2018-12-11 EMC IP Holding Company LLC Data object recovery for storage systems
US10795872B2 (en) 2016-06-29 2020-10-06 EMC IP Holding Company LLC Incremental bloom filter rebuild for B+ trees under multi-version concurrency control
US9806807B1 (en) * 2016-07-12 2017-10-31 Adtran, Inc. Automatic rogue ONU detection
CN107769857B (zh) * 2016-08-22 2021-05-11 中兴通讯股份有限公司 一种光信号调制处理方法、装置及系统
US10693562B2 (en) * 2016-10-18 2020-06-23 Nippon Telegraph And Telephone Corporation Encoding device and decoding device
CN106485011A (zh) * 2016-10-19 2017-03-08 何桂崧 一种光通讯Filter带宽参数计算软件及其设计方法
US10831742B2 (en) 2016-12-09 2020-11-10 EMC IP Holding Company LLC Data set verification
US10564883B2 (en) 2016-12-13 2020-02-18 EMC IP Holding Company LLC Efficient migration to distributed storage
US10776322B2 (en) 2016-12-13 2020-09-15 EMC IP Holding Company LLC Transformation processing for objects between storage systems
TWI650962B (zh) * 2017-08-04 2019-02-11 財團法人工業技術研究院 光通訊系統及其方法、傳送裝置、接收裝置
CN110463090B (zh) * 2017-08-16 2021-02-23 华为技术有限公司 一种光发射机、光接收机及光传输方法
WO2020028409A1 (en) * 2018-07-30 2020-02-06 The Regents Of The University Of California Transmitter architecture for generating 4n-qam constellation with no digital-to-analog converters (dac) in signal path requirement
US10783022B2 (en) 2018-08-03 2020-09-22 EMC IP Holding Company LLC Immediate replication for dedicated data blocks
US10419109B1 (en) * 2018-09-07 2019-09-17 Ciena Corporation Pseudo frequency division multiplexing
CN109981174B (zh) * 2019-04-09 2020-10-23 中国科学院半导体研究所 基于光环形器的光跳频系统及发送机
CN111988090B (zh) * 2020-10-26 2021-01-26 南京信息工程大学 码片模式载波复合关联光编码方法
CN115189715B (zh) * 2021-04-02 2024-06-21 湖南工商大学 一种基于直接扩谱时分复用的光传输装置及方法
KR102696734B1 (ko) * 2021-11-29 2024-08-21 (주)노티스 레이저 다이오드의 파장 변조를 이용한 분포형 온도 감시 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132029A (ja) 1987-11-17 1989-05-24 Nec Corp 放電型表示パネル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933421A (en) * 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
DE19722560A1 (de) 1997-05-28 1998-12-03 Alsthom Cge Alcatel Empfänger für ein optisches Nachrichtenübertragungssystem, Filtervorrichtung und Verfahren zu dessen Betrieb
JP3616532B2 (ja) 1999-09-14 2005-02-02 日本電信電話株式会社 光cdma逆拡散復調器
JP3374174B2 (ja) * 1999-12-15 2003-02-04 独立行政法人通信総合研究所 フォトニックネットワークのパケットルーティング方法およびフォトニックネットワーク用パケットルータ
TW469712B (en) * 2000-06-23 2001-12-21 Nat Science Council Fiber Bragg grating-based optical CDMA encoder/decoder
US6424444B1 (en) * 2001-01-29 2002-07-23 Stratalight Communications, Inc. Transmission and reception of duobinary multilevel pulse-amplitude-modulated optical signals using finite-state machine-based encoder
EP1283612A1 (de) * 2001-08-06 2003-02-12 Alcatel OCDM-Detektionvorrichtung
EP1286487A1 (de) * 2001-08-20 2003-02-26 Alcatel Kaskadierte optische Filter
US7630456B2 (en) * 2002-09-09 2009-12-08 Lsi Corporation Method and/or apparatus to efficiently transmit broadband service content using low density parity code based coded modulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132029A (ja) 1987-11-17 1989-05-24 Nec Corp 放電型表示パネル

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SAEKO OSHIBA ET AL.: "Experimental Study on Bit Rate Enhancement Using Time-Spread/Wavelength-Hop Optical Code Division Multiplexing", 2002 ANNUAL GENERAL CONFERENCE OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS OF JAPAN, vol. B-10-80, 2002
SATOSHI NARUKAWA ET AL.: "Transmission Characteristics of Wavelength Channel Data Rewriter Using Semiconductor Optical Amplifier", SOCIETY CONFERENCE OF COMMUNICATION SOCIETY OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS OF JAPAN, vol. B-10-51, 2003
T. PFEIFFER ET AL.: "High Speed Optical Network for Asynchronous Multiuser Access Applying Periodic Spectral Coding of Broadband Sources", ELECTRONICS LETTERS, vol. 33, no. 25, 1997, pages 2141 - 2142, XP006008300, DOI: doi:10.1049/el:19971463
TAKESHI IMAI ET AL.: "The Inter-Operability of WDN-PON System ONU Using a Reflective SOA", SOCIETY CONFERENCE OF THE COMMUNICATION SOCIETY OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS OF JAPAN, vol. B-10-50, 2002

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311686C (zh) * 2005-02-21 2007-04-18 长飞光纤光缆有限公司 光纤到户网络中数字电视信号的终端转换传输系统
JP4870076B2 (ja) * 2005-06-27 2012-02-08 Kddi株式会社 マルチチャネル伝送システム、送信装置および送信方法
WO2008001531A1 (fr) * 2006-06-29 2008-01-03 Nippon Telegraph And Telephone Corporation Système de communication par code optique
JPWO2008001531A1 (ja) * 2006-06-29 2009-11-26 日本電信電話株式会社 光符号通信システム
JP4746676B2 (ja) * 2006-06-29 2011-08-10 日本電信電話株式会社 光符号通信システム
US8032034B2 (en) 2006-06-29 2011-10-04 Nippon Telegraph And Telephone Corporation Optical code communication system
US7630587B2 (en) 2007-06-22 2009-12-08 Fujitsu Limited Optical waveguide device
WO2012070686A1 (ja) * 2010-11-22 2012-05-31 日本電気株式会社 光通信システム、光通信方法、光通信装置およびその制御方法と制御プログラム
US9240858B2 (en) 2010-11-22 2016-01-19 Nec Corporation Optical communication system, optical communication method, optical communication device, and method and program for controlling the same

Also Published As

Publication number Publication date
CN1813429A (zh) 2006-08-02
CN1813429B (zh) 2011-09-21
JP4436323B2 (ja) 2010-03-24
EP1646165A1 (en) 2006-04-12
EP1646165B1 (en) 2010-09-15
US20060147219A1 (en) 2006-07-06
US7555216B2 (en) 2009-06-30
EP1646165A4 (en) 2007-07-04
DE602004029166D1 (de) 2010-10-28
JPWO2005008923A1 (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4436323B2 (ja) 光周波数符号を用いる光通信システム、その光送信装置及び光受信装置、反射型光通信装置
US9553675B2 (en) Frequency domain coded modulation with polarization interleaving for fiber nonlinearity mitigation in digital sub-carrier coherent optical communication systems
CN101621336B (zh) 一种差分正交相移键控系统、方法及设备
Evans et al. Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength
US9312962B2 (en) Intensity-based modulator
US20140092924A1 (en) Channel carrying multiple digital subcarriers
US8521036B2 (en) Code grouping for optical networks
US8971719B2 (en) Nonlinearity compensation using pilot tones
US20020191256A1 (en) Method and system for 80 and 160 gigabit-per-second QRZ transmission in 100 GHz optical bandwidth with enhanced receiver performance
US11539430B2 (en) Code division multiple access optical subcarriers
US8699883B2 (en) Variable spectral phase encoder/decoder based on decomposition of hadamard codes
US20100196005A1 (en) Optical Multiport Spectral Phase Encoder
Proietti et al. Elastic optical networking by dynamic optical arbitrary waveform generation and measurement
WO2015192601A1 (zh) 光信号探测与解调装置及系统
CN109804574B (zh) 用于光传输的编码
JP5334747B2 (ja) 光符号分割多重伝送システム及び光符号分割多重伝送方法
JP2011019198A (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
JP3447664B2 (ja) 光送信器および光送信器制御方法
JP5507341B2 (ja) 光符号分割多重用送信回路及び光符号分割多重用受信回路
US9768877B2 (en) Multi-bit digital to analog-optical converter
JP5487052B2 (ja) 光cdm送信回路、光cdm受信回路及び光cdm伝送システム
JP2013081077A (ja) 光cdm送信回路および光cdm受信回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511869

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004747693

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006147219

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10562431

Country of ref document: US

Ref document number: 2004818390X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004747693

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10562431

Country of ref document: US