WO2007148713A1 - リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤 - Google Patents

リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤 Download PDF

Info

Publication number
WO2007148713A1
WO2007148713A1 PCT/JP2007/062384 JP2007062384W WO2007148713A1 WO 2007148713 A1 WO2007148713 A1 WO 2007148713A1 JP 2007062384 W JP2007062384 W JP 2007062384W WO 2007148713 A1 WO2007148713 A1 WO 2007148713A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
vascular disease
cell growth
vascular
Prior art date
Application number
PCT/JP2007/062384
Other languages
English (en)
French (fr)
Inventor
Takaoki Saneyasu
Masaki Ichimura
Shinji Hayashi
Masaji Kawatsu
Kazunori Hosoe
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2007148713A1 publication Critical patent/WO2007148713A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/18Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus

Definitions

  • An agent for treating vascular diseases or a cell growth regulator comprising a rifamycin derivative as an active ingredient
  • the present invention relates to a vascular disease treatment agent and a cell growth regulator.
  • rapamycin belonging to a macrolide compound may be used. Rapamycin and the like are known to exhibit growth inhibitory activity of vascular smooth muscle by inhibiting proliferation stimulation by various site force ins, etc., thereby preventing vascular restenosis (Non-Patent Document). 1).
  • Non-Patent Document l Konstantinos Toutouzas, et al. Z Kardiol, 2002, Suppl. 3, 49-57. Disclosure of the Invention
  • rabamycin which is highly cytotoxic, has a problem in that various side effects occur because administration of it reduces the immunity of the animal. Furthermore, ravamycin has a stronger growth inhibitory effect on vascular endothelial cells than vascular smooth muscle cells (Paul J. Mohacsi, MD, et al. The Journal of Heart and Lung Transplantation, 1997, 16 (5) , 484-492), there is also a problem that thrombus formation is caused by delayed endothelium formation.
  • a rifamycin derivative is different from ravamycin, It has been found that it has an inhibitory effect on the proliferation of vascular smooth muscle without strongly suppressing the proliferation of vascular endothelial cells, and has completed the present invention.
  • the present invention provides a vascular disease treatment agent or cell proliferation characterized by comprising a rifamycin derivative as an active ingredient and exhibiting a potent growth inhibitory effect on vascular smooth muscle cells compared to vascular endothelial cells. It relates to a regulator. Of these, those that do not show cell growth suppression for vascular endothelial cells are preferred.
  • the rifamycin derivative has the following formula (I):
  • rifamycin derivatives are rifalazil ⁇ Rifalazil, 3'-Hydroxy-5 '-(4-isobuty ⁇ 1-pipraziazinybenzoxazinorifamycin, KRM1648 ⁇ , KRM1657, KRM1671, KRM1689, KRM1690 or their physiologically acceptable salts. Note that the KRM1648, KRM1657, KRM1671, KRM1689, and KRM1690 equations will be described in the section of the embodiment described later.
  • the vascular disease treatment agent or cell growth regulator of the present invention is preferably used for the prevention or treatment of spontaneous vascular disease or non-natural vascular disease. .
  • the spontaneous vascular disease is arteriosclerosis, aneurysm, pseudoaneurysm, arterial dissection
  • it is a therapeutic agent for vascular disease or a cell growth regulator, which is selected from the group consisting of inflammatory arterial disease, non-inflammatory arterial disease, and dialysis shunt.
  • the non-naturally occurring vascular disease is preferably a vascular disease treatment agent or a cell growth regulator characterized by vascular restenosis or reocclusion after percutaneous angioplasty.
  • the therapeutic agent for vascular disease or cell growth regulator that is effective in the present invention is that oral release or intramuscular administration, intravenous administration, subcutaneous administration of rifamycin derivative into the blood is possible. It is preferably carried out by intraperitoneal administration, transdermal administration, mucosal administration, inhalation administration, and parenteral administration selected from the group that also has an application power using an implant.
  • the implant is preferably a stent, a stent graft, an artificial blood vessel, a force stenter, an artificial heart valve, a pacemaker lead, a bone screw, an artificial bone, an artificial trachea, or a suture.
  • Another aspect of the present invention is an implant containing the vascular disease treatment agent or cell growth regulator.
  • Another aspect of the present invention is the use of the rifamycin derivative for producing a vascular disease treatment agent.
  • Another embodiment of the present invention is a method for inhibiting cell growth using the rifamycin derivative.
  • Another embodiment of the present invention is a method for treating a vascular disease using the rifamycin derivative.
  • vascular disease treatment agent and cell growth regulator containing the rifamycin derivative according to the present invention strongly inhibits the proliferation of vascular smooth muscle cells compared to vascular endothelial cells. Therefore, smooth muscle hypertrophy is suppressed without inhibiting vascular endothelial regeneration, and vascular stenosis or restenosis is prevented. Therefore, vascular disease (e.g., arteriosclerosis, aneurysm, pseudoaneurysm, arterial dissection, inflammatory arterial disease, non-inflammatory arterial disease, dialysis shunt, restenosis and reocclusion after percutaneous angioplasty ) Is useful for prevention or treatment.
  • arteriosclerosis, aneurysm, pseudoaneurysm, arterial dissection, inflammatory arterial disease, non-inflammatory arterial disease, dialysis shunt, restenosis and reocclusion after percutaneous angioplasty Is useful for prevention or treatment.
  • FIG. 1 is a developed view of a stent.
  • FIG. 2 is a schematic diagram of a stent.
  • FIG. 3 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory effect of CASMC.
  • FIG. 4 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory action of CAEC.
  • FIG. 5 is a graph showing the relationship between each concentration of ravamycin and the growth inhibitory effect of CASMC.
  • FIG. 6 is a graph showing the relationship between each concentration of rabamycin and the growth inhibitory action of CAEC.
  • FIG. 7 is a graph showing the relationship between each concentration of KRM1657 and the growth inhibitory action of CASMC and CAEC.
  • FIG. 8 is a graph showing the relationship between each concentration of KRM1671 and the growth inhibitory action of CASMC and CAEC.
  • FIG. 9 is a graph showing the relationship between each concentration of KRM1689 and the growth inhibitory action of CASMC and CAEC.
  • FIG. 10 is a graph showing the relationship between each concentration of KRM1690 and the growth inhibitory action of CASMC and CAEC.
  • vascular disease treatment agent and a cell growth regulator using a rifamycin derivative are examples of vascular disease treatment agent and a cell growth regulator using a rifamycin derivative, and an ability to explain in detail an implant using them, the present invention is limited to these is not.
  • the rifamycin derivative used in the present invention has the following formula (I)
  • X 1 represents an oxygen atom or a sulfur atom
  • R 1 represents a acetyl group or a hydrogen atom
  • R 2 represents a methyl group or a hydroxymethyl group
  • R 4 is the same or different and represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the following formula (II), or a group represented by the following novel (IV).
  • a physiologically acceptable salt thereof is preferred! /.
  • R 5 and R 6 are the same or different and represent an alkyl group having 1 to 3 carbon atoms or a group represented by the following formula ( ⁇ ).
  • R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 represents an oxygen atom, a sulfur atom, a carbonyl group
  • a group represented by (V) or a group represented by the following formula (VI) is shown.
  • R 9 and R 1Q are the same or different, and are represented by the following formula by combining a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or R 9 and R 1Q. Indicates a group.
  • k represents an integer of 1 to 4.
  • m represents 0 or 1
  • R 11 represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a group represented by the following formula.
  • n represents an integer of 1 to 4
  • X 3 represents an alkoxy group having 1 to 3 carbon atoms, a vinyl group, an ethyl group, or a group represented by the following formula (VII).
  • the kill group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cyclohexyl group.
  • the alkyl group having 1 to 6 carbon atoms of R 11 include a methyl group, an ethyl group, and a propyl group.
  • Examples of the alkoxy group having 1 to 3 carbon atoms of X 3 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a cyclopropoxy group.
  • X 1 in the formula (I) is an oxygen atom
  • R 1 represents a acetyl group or a hydrogen atom
  • R 2 represents a methyl group or a hydroxymethyl group.
  • Show R 4 is the same or different and is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a formula (VIII):
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms) or a physiologically acceptable salt thereof.
  • the alkyl group having 1 to 7 carbon atoms of R 12 includes methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, cyclobutyl.
  • X 1 in the formula (I) is an oxygen atom
  • R 1 is a acetyl group
  • R 2 is a methyl group
  • R 3 is a hydroxyl group
  • R 4 is of formula (IX):
  • X 1 in the formula (I) is an oxygen atom
  • R 1 is a acetyl group
  • R 2 is a methyl group
  • R 3 is a hydroxyl group
  • R 4 is the formula (X):
  • KRM1657 represented by or a physiologically acceptable salt thereof.
  • X 1 in the formula (I) is an oxygen atom
  • R is a hydroxyl group
  • R 3 is a hydroxyl group
  • R 4 is formula (IX):
  • KRM1671 represented by or a physiologically acceptable salt thereof.
  • An exemplary rifamycin derivative has the formula (I) wherein X 1 is an oxygen atom, R 1 is a acetyl group, R 2 force S methyl group, R 3 and R 4 is the formula (IX):
  • KRM1689 represented by or a physiologically acceptable salt thereof.
  • An exemplary rifamycin derivative has the formula (I) wherein X 1 is an oxygen atom, R is a acetyl group, R 2 is a hydroxymethyl group, and R 3 is a hydroxyl group R 4 is the formula (IX)
  • KRM1690 or a physiologically acceptable salt thereof.
  • a rifamycin derivative is used as a vascular disease treatment agent or a cell growth regulator, and at this time, it has a strong inhibitory effect on vascular smooth muscle cells compared to vascular endothelial cells.
  • Rifamycin derivatives are conventionally known to be antibiotics with extremely strong antibacterial activity against pneumonia chlamydia and Helicopacter pylori, and have been used at very low concentrations during use.
  • the present invention has been made for the first time when the rifamycin derivative has an unexpected effect not related to the antibacterial activity, that is, has the above-described cell growth inhibitory action.
  • the therapeutic agent for vascular disease can be expected to have an antibacterial effect, which has been conventionally known, in addition to the cell growth inhibitory action.
  • rifamycin derivative can be adjusted so as not to exhibit growth inhibitory activity against vascular endothelium cells, although it exhibits growth inhibitory activity against vascular smooth muscle cells by adjusting the concentration (amount). Is possible. The appropriate amount varies depending on the form of the treatment for vascular diseases and cytostatics. It is necessary to adjust the amount appropriately according to the form.
  • showing cell growth inhibitory action refers to a case of showing statistically significant growth inhibition.
  • not exhibiting cell growth-inhibiting action means a case where it is not statistically significant.
  • the rifamycin derivative is a vascular disease (for example, arteriosclerosis (atherosclerosis, medial calcification sclerosis), microarteriosclerosis, aneurysm, pseudoaneurysm, arterial dissection, Prevention of inflammatory arterial disease, non-inflammatory arterial disease, or spontaneous vascular disease including dialysis shunt, non-natural vascular disease including vascular restenosis or reocclusion after percutaneous angioplasty Or used for treatment.
  • angioplasty include balloon dilation, stent placement, atherectomy, and laser angioplasty.
  • a vascular disease treatment agent comprising a rifamycin derivative as an active ingredient is a concept including a composition or preparation (medicine) for treating a vascular disease comprising a rifamycin derivative as an active ingredient.
  • the “cell growth regulator containing a rifamycin derivative as an active ingredient” is a concept including a cell growth regulating composition or preparation (medicine) containing a rifamycin derivative as an active ingredient.
  • Treatment of vascular disease is a concept for treating vascular disease or reducing its progression
  • anticoagulants In the preparation of preparations for the prevention or treatment of vascular diseases, other drugs (anticoagulants, antiplatelet substances, antispasmodics, antibacterial drugs, antitumor drugs, antimicrobial drugs, anti-inflammatory drugs, It may be combined with an anti-metabolite, an immunosuppressant, etc.
  • the rifamycin derivative is used so as to more strongly suppress proliferation of vascular smooth muscle cells than vascular endothelial cells.
  • endothelium regeneration of blood vessels Smooth muscle hypertrophy is suppressed without inhibition, and stenosis or restenosis of blood vessels is prevented.
  • the administration route is not particularly limited, and oral administration or parenteral administration (for example, intramuscular administration, intravenous administration, subcutaneous administration, intraperitoneal administration) , Transdermal administration, mucosal administration to the nasal cavity etc. or inhalation administration, administration using implants).
  • oral administration or parenteral administration for example, intramuscular administration, intravenous administration, subcutaneous administration, intraperitoneal administration
  • Transdermal administration for example, Transdermal administration, mucosal administration to the nasal cavity etc. or inhalation administration, administration using implants.
  • Examples of the “implant” include a stent, a stent graft, an artificial blood vessel, a force stenter (including a balloon catheter), an artificial heart valve, a pacemaker lead, a bone screw, an artificial bone, an artificial trachea, and a suture.
  • a stent that is placed in a vessel such as a blood vessel, a ureter, a urethra, or a lymph vessel that causes stenosis of a living body and used to ensure a sufficient lumen is preferable.
  • the rifamycin derivative is not limited to a stent but can be applied to implants well known to those skilled in the art.
  • methods known to those skilled in the art disclosed in JP-A-9-38195 and JP-A-2003-24452 can be employed.
  • FIG. 1 is a developed view of the stent
  • FIG. Fig. 2 is a schematic view.
  • a method for producing a stent and a method for fixing a drug to the stent which will be described later, for example, methods known to those skilled in the art disclosed in JP 2005-65981 A and JP 2004-222953 A may be employed. it can.
  • stents are used to expand the stenosis or occlusion site and reduce the lumen size. It is a medical device that is placed there for maintenance. A stent is typically inserted into a blood vessel by a catheter and expanded to contact an unhealthy part of the arterial wall to provide mechanical support for the blood vessel lumen. In addition, stent expansion is performed by either self-expansion due to its own physical characteristics (shape memory property, superelasticity, etc.) or forced expansion due to the expansion force of the balloon catheter. [0071] (6-1) Material
  • the stent used as the base for coating the drug layer can be made of metallic forces such as stainless steel, Ni-Ti alloy, Cu-Al-Mn alloy, Co-Cr alloy, magnesium alloy, iridium, iridium oxide, and niobium. is there.
  • the stent can be manufactured by cutting a cylindrical metal material tube into a stent design by laser cutting and performing electropolishing in the same manner as a method normally manufactured by those skilled in the art.
  • the manufacturing method is not limited to this method, and methods such as a processing method by etching, a method in which a flat plate metal is laser cut and then rolled and welded, and a processing method in which a metal wire is knitted are also possible.
  • the polymer is not limited to a metal material, but is a high molecule such as polyolefin, polyolefin elastomer, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyester, polyester elastomer, polyimide, polyamideimide, polyetheretherketone.
  • Inorganic materials such as materials, ceramics, hydroxyapatite can also be used.
  • a polymer layer may be provided on the stent surface for the purpose of fixing a drug or the like.
  • the polymer is used in a living body, it is preferable to use a biocompatible polymer or a biodegradable polymer as the polymer.
  • a method of providing the polymer layer on the stent surface a method such as a method of dying the stent into a polymer solution, a method of spraying the polymer solution onto the stent by spraying, or the like can be used.
  • the above-described methods are all coating methods, but a separately prepared polymer sheet may be attached to the stent surface.
  • an arbitrary solvent having a polymer solubility can be selected as the solvent used in preparing the polymer solution.
  • a mixed solvent using two or more solvents may be used.
  • the concentration of the polymer solution is not particularly limited, and can be set to any concentration in consideration of the surface properties of the polymer layer, the required amount of drug retained, the release behavior of the retained drug, and the like.
  • a polymer layer can be provided on the stent.
  • the distance between the spray nozzle and the stent is preferably 50 cm or less in order to make the surface of the polymer layer uniform, more preferably 10 cm or more and 30 cm or less. Also, 50rpm or more is preferred to make the surface of the polymer layer even when the stent is rotated during spray coating or dating!
  • the excess polymer solution may be removed during and after the polymer solution is applied to the stent or after the application.
  • the removing means include vibration, rotation, and decompression, and a plurality of these may be combined.
  • the drug (rifamycin derivative) is coated on the stent.
  • the drug can be attached to the stent by removing the solvent after the drug is added to the stent in a solution state. It is also possible to attach the drug to the stent using biocompatible or biodegradable polymers.
  • biocompatible polymers and Z or biodegradable polymers with drugs can be used in liquid or suitable solvents such as water, buffer, acetic acid, hydrochloric acid, methanol, ethanol, acetone, acetonitrile, methylene chloride,
  • suitable solvents such as water, buffer, acetic acid, hydrochloric acid, methanol, ethanol, acetone, acetonitrile, methylene chloride,
  • a drug-coated stent using a biocompatible polymer or a biodegradable polymer can be prepared by contacting the stent as a solution such as black mouth form or tetrahydrofuran and then removing the solvent.
  • a stent is coated with a solution obtained by dissolving or suspending a drug in a solution prepared by dissolving a biocompatible polymer and Z or a biodegradable polymer in a low boiling point solvent.
  • a coating method a method of dating a stent into a solution or a method of spraying with a spray can be used.
  • the thickness of the coating layer when the coating layer is thickened, the unevenness in blood vessels , There is a possibility of promoting the formation of thrombus and the possibility of increasing the rate of restenosis. However, a certain amount of thickness is required to coat the sufficient dose required for treatment. From this viewpoint, the thickness of the coating layer is preferably 1 m or more and 10 ⁇ m or less, more preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • CASMC human coronary artery smooth muscle cells
  • C human coronary artery endothelial cells
  • rifamycin derivative as an embodiment exhibits a stronger growth inhibitory action on vascular smooth muscle cells than vascular endothelial cells using the cell growth inhibition test of AEC), S of the present invention
  • the range is not limited by the following examples.
  • CASMC manufactured by Takara Bio Inc.
  • CASMC reaches 70-80% confluence in 5% CO at 37 ° C in a 100mm dish using the attached medium (SmGM-2 BulletKit)
  • CAEC manufactured by Takara Bio Inc.
  • CASMC and CAEC that reached 70-80% confluence were collected from a 100 mm dish using a subculture reagent set (manufactured by Takara Bio Inc.). The obtained cells were seeded in a 96-well plate and cultured for 24 hours at 37 ° C in 5% CO. Next, 24 hours
  • BrdU uptake ability represents DNA synthesis ability, which is a parameter of cell proliferation.
  • FIG. 3 and FIGS. 4 to 6 described later are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells.
  • the vertical axis represents the absorbance indicating the BrdU uptake ability, and no drug added group ( The value at each concentration with respect to the absorbance at the control was graphed. In the graph, ** indicates statistical significance.
  • Dunnett's test was performed as an example.
  • rifalazil showed statistically significant inhibition of CASMC growth at 100 and 1, OOOnM, compared to the rifalazil-free group.
  • Example 4 CASMC and CAEC growth inhibition were performed in the same manner as in Example 3 above, except that KRM1657, KRM1671, KRM1 689, and KRM1690 were used instead of rifalazil, and the incubation time after addition of the test substance was 72 hours. A test was conducted.
  • FIGS. 7 to 10 are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells.
  • the solid line (including the portion plotted in the diamond shape in the graph) indicates CASMC, and the broken line (including the portion plotted in the square shape in the graph) indicates CAEC.
  • the vertical axis represents the absorbance indicating the BrdU uptake ability, and the value at each concentration with respect to the absorbance in the rifalazil non-added group (control) was graphed.
  • ** indicates statistical significance.
  • Dunnett's test was performed as an example.
  • Comparative Example 1 a CASMC and CAEC cell proliferation inhibition test was performed in the same manner as in Example 3 except that the test substance was rapamycin instead of rifalazil.
  • rapamycin was statistically significant at all concentrations (1, 10, 100, 1, OOOnM) compared to the group without addition of rapamycin. Inhibited growth.
  • rapamycin has a statistically significant increase in CAEC growth at all concentrations (1, 10, 100, 1, OOOnM) compared to the group without rapamycin. Intentionally, growth suppression was shown.
  • rifalazil, KRM1657, KRM1671, KRM1689, and KRM1690 were more potent than CAEC in selectively suppressing cell growth. Therefore, implants coated with rifalazil, KRM1657, KRM1671, KRM1689, and KRM1690 (including the above-mentioned indwelling stents) are thought to inhibit vascular smooth muscle cell proliferation while not inhibiting endothelial regeneration. . That is, it is considered that the above-mentioned implant is excellent in antithrombogenicity and tissue compatibility and can suppress stenosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本願は、血管性疾患、例えば経皮的血管形成術後の再狭窄等に対する予防及び治療のための血管性疾患処置剤または細胞増殖調節剤を提供することを課題とする。この課題は、血管内皮細胞に比べ、血管平滑筋増殖を強く抑制する、リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤とすることにより解決される。リファマイシン誘導体を有効成分として含有する製剤等は、血管性疾患(例えば、動脈硬化症、動脈瘤、仮性瘤、動脈解離症、炎症性動脈疾患、非炎症性動脈疾患、透析シャント、経皮的血管形成術後の再狭窄及び再閉塞)の予防または治療に有用である。                                                                               

Description

明 細 書
リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増 殖調節剤
技術分野
[0001] 本発明は、血管性疾患処置剤および細胞増殖調節剤に関する。
背景技術
[0002] 冠動脈硬化性血管狭窄等にお!、て、最近、バルーンカテーテルゃステント等のィ ンプラント (生体内留置器具)を利用した、血管閉塞を拡張する経皮的血管形成術が 行われている。しかし、この方法においては、血管の平滑筋が肥大することにより術 後に再狭窄が起き、これが臨床上の問題となっている。
[0003] そのような術後の再狭窄を防止するために、マクロライド系化合物に属するラバマイ シン (rapamycin)が使用される場合がある。ラパマイシン等は、種々のサイト力イン 等による増殖刺激を阻害することで、血管平滑筋の増殖抑制活性を示すことが知ら れており、これにより、血管の再狭窄が防止される (非特許文献 1)。
非特許文献 l : Konstantinos Toutouzas, et al. Z Kardiol, 2002, Suppl.3, 49-57. 発明の開示
発明が解決しょうとする課題
[0004] しかし、ラバマイシンは細胞毒性が強ぐこれを投与すると動物の免疫力が低下す るために、種々の副作用が生じるという問題点がある。さらに、ラバマイシンは、血管 平滑筋細胞に比べ血管内皮細胞に対して強い増殖抑制作用を有することから (Paul J. Mohacsi, MD, et al. The Journal of Heart and Lung Transplantation, 1997, 16(5), 484-492)、内皮形成が遅延することにより血栓が形成するという問題点もある。
課題を解決するための手段
[0005] 本願では、血管内皮細胞の増殖を強く抑制することなく血管平滑筋細胞の増殖を 抑制する作用(または新生内膜の肥大防止)に基づき、有効でかつ実用的な疾患の 治療剤を提供することに想到した。
[0006] 本発明者は鋭意研究した結果、リファマイシン誘導体が、ラバマイシンとは異なり、 血管内皮細胞の増殖を強く抑制することなく血管平滑筋増殖抑制作用を有すること を見出し、本発明を完成させるに至った。
[0007] すなわち、本発明は、リファマイシン誘導体を有効成分とし、血管内皮細胞に比べ 、血管平滑筋細胞に対して強く増殖抑制作用を示すことを特徴とする血管性疾患処 置剤または細胞増殖調節剤に関する。このうち、血管内皮細胞に対して細胞増殖抑 制作用を示さな 、ものがより好ま 、。
[0008] また、上記リファマイシン誘導体は、下記式 (I):
[0009] [化 14]
Figure imgf000003_0001
[0010] で表される化合物またはその生理学的に許容される塩であるのが好ましい。このうち 、リファマイシン誘導体は、リファラジル {Rifalazil、 3'- Hydroxy- 5'- (4- isobuty卜 1- piper azinyDbenzoxazinorifamycin, KRM1648} , KRM1657、 KRM1671、 KRM1689 、 KRM1690またはそれらの生理学的に許容される塩であるのが好ましい。なお、 K RM1648、 KRM1657, KRM1671, KRM1689, KRM1690のィ匕学式は、後述 の実施形態の項目で説明する。
[0011] また、本発明の血管性疾患処置剤または細胞増殖調節剤は、自然発生的血管性 疾患または非自然発生的血管性疾患の予防または治療のために使用するものであ るのが好ましい。
[0012] また、前記自然発生的血管性疾患が、動脈硬化症、動脈瘤、仮性瘤、動脈解離症 、炎症性動脈疾患、非炎症性動脈疾患、および透析シャントからなる群力 選ばれる ことを特徴とする血管性疾患処置剤または細胞増殖調節剤であるのが好まし 、。この うち、前記非自然発生的血管性疾患が、経皮的血管形成術後の血管再狭窄または 再閉塞であることを特徴とする血管性疾患処置剤または細胞増殖調節剤であるのが 好ましい。
[0013] また、本発明に力かる血管性疾患処置剤または細胞増殖調節剤は、リファマイシン 誘導体の血中への徐放が、経口投与、あるいは、筋肉内投与、静脈内投与、皮下投 与、腹腔内投与、経皮投与、粘膜投与、吸入投与、およびインプラントを利用した投 与力もなる群より選択される非経口投与により実施されるのが好ましい。このうち、イン プラントが、ステント、ステントグラフト、人工血管、力テーテノレ、人工心弁、ペースメー カーのリード線、骨ネジ、人工骨、人工気管、または縫合糸であるのが好ましい。
[0014] 本発明の別の態様として、前記血管性疾患処置剤または細胞増殖調節剤を含むィ ンプラントがある。
[0015] 本発明の別の態様として、血管性疾患処置剤製造のための、前記リファマイシン誘 導体の使用がある。
[0016] 本発明の別の態様として、前記リファマイシン誘導体を使用する細胞の増殖抑制方 法がある。
[0017] 本発明の別の態様として、前記リファマイシン誘導体を使用する血管性疾患の治療 方法がある。
[0018] 本発明のその他の態様およびこれらの効果は、以下に説明する実施形態および図 面によって明らかにされる。
発明の効果
[0019] 本発明にかかるリファマイシン誘導体を含有する血管性疾患処置剤および細胞増 殖調節剤は、血管内皮細胞に比べ、血管平滑筋細胞の増殖を強く抑制する。このた め、血管の内皮再生を阻害することなく平滑筋の肥大が抑制され、血管の狭窄また は再狭窄が防止される。従って、血管性疾患 (例えば、動脈硬化症、動脈瘤、仮性瘤 、動脈解離症、炎症性動脈疾患、非炎症性動脈疾患、透析シャント、経皮的血管形 成術後の再狭窄及び再閉塞)の予防または治療に有用である。 図面の簡単な説明
[0020] [図 1]図 1はステントの展開図である。
[図 2]図 2はステントの模式図である。
[図 3]図 3は、リファラジルの各濃度と CASMCの増殖抑制作用との関係を示すグラフ である。
[図 4]図 4は、リファラジルの各濃度と CAECの増殖抑制作用との関係を示すグラフで ある。
[図 5]図 5、ラバマイシンの各濃度と CASMCの増殖抑制作用との関係を示すグラフ である。
[図 6]図 6は、ラバマイシンの各濃度と CAECの増殖抑制作用との関係を示すグラフ である。
[図 7]図 7は、 KRM1657の各濃度と CASMCおよび CAECの増殖抑制作用との関 係を示すグラフである。
[図 8]図 8は、 KRM1671の各濃度と CASMCおよび CAECの増殖抑制作用との関 係を示すグラフである。
[図 9]図 9は、 KRM1689の各濃度と CASMCおよび CAECの増殖抑制作用との関 係を示すグラフである。
[図 10]図 10は、 KRM1690の各濃度と CASMCおよび CAECの増殖抑制作用との 関係を示すグラフである。
発明を実施するための最良の形態
[0021] 以下、本発明の実施形態として、リファマイシン誘導体を利用した血管性疾患処置 剤および細胞増殖調節剤、およびこれらを利用したインプラントについて詳細に説明 する力 本発明はこれらに限定されるものではない。
[0022] 1.リファマイシン誘導体
(1)本願発明で用いられるリファマイシン誘導体は、以下の式 (I)
[0023] [化 15]
Figure imgf000006_0001
[0024] (式 (I)中、 X1は酸素原子または硫黄原子を示し、 R1はァセチル基または水素原子を 示し、 R2はメチル基またはヒドロキシメチル基を示し、
Figure imgf000006_0002
R4は同一または相異なり、 水酸基、水素原子、炭素数 1から 3のアルキル基、下記式 (II)で表される基、または、 下記新規 (IV)で表される基を示す。 )で表される化合物またはその生理学的に許容 される塩であるのが好まし!/、。
[0025] [化 16]
Figure imgf000006_0003
[0026] [化 17]
R7 R8
- X2 (IV)
[0027] 上記式 (II)中、 R5、 R6は同一または相異なり、炭素数 1から 3のアルキル基、または 下記式 (ΠΙ)で表される基を示す。
[0028] [化 18]
— (CH2) , (I")
Figure imgf000006_0004
[0029] (式(III)中、 jは 1から 3の整数を示す。)
[0030] 上記式 (IV)中、 R7、 R8は同一または相異なり、水素原子または炭素数 1から 3のァ ルキル基を示し、 X2は酸素原子、硫黄原子、カルボニル基、下記式 (V)で表される基 、または、下記式 (VI)で表される基を示す。
[0031] [化 19]
Figure imgf000007_0001
[0032] [化 20]
Figure imgf000007_0002
[0033] 上記式 (V)中、 R9、 R1Qは同一または相異なり、水素原子、炭素数 1から 3のアルキ ル基、または R9と R1Qが結合して下記式で表される基を示す。
(CH ) —
2 k
(式中、 kは 1から 4の整数を示す。)
[0034] 上記式 (VI)中、 mは 0または 1を示し、 R11は水素原子、炭素数 1から 7のアルキル基 、または下記式で表される基を示す。
(CH ) X3
2 n
(式中、 nは 1から 4の整数を示し、 X3は炭素数 1から 3のアルコキシ基、ビニル基、ェ チュル基、または下記式 (VII)で表される基を示す。
[0035] [化 21]
Figure imgf000007_0003
[0036] で表される基を示す)で表される基を示す }で表される基を示す]で表される基を示す
)で表される化合物またはその生理学的に許容される塩であるのが好ましい。
[0037] 上記式 (I)にお 、て、 R3
Figure imgf000007_0004
R9および R1Qの炭素数 1から 3のアル キル基としては、メチル基、ェチル基、プロピル基、イソプロピル基およびシクロプロピ ル基が挙げることができ、 R11の炭素数 1から 6のアルキル基としては、メチル基、ェチ ル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、シクロブチル基、シクロプロピルメチル基、ペンチル 基、イソペンチル基、 sec ペンチル基、 tert ペンチル基、シクロペンチル基、シク ロブチルメチル基、へキシル基、 4ーメチルペンチル基、シクロへキシル基、 3—メチ ルシクロペンチル基、ヘプチル基、イソへプチル基などの鎖状または環状アルキル 基を挙げることができる。
[0038] X3の炭素数 1から 3のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、 イソプロポキシ基およびシクロプロポキシ基を挙げることができる。
[0039] (2)好ましくは、リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァ セチル基または水素原子を示し、 R2はメチル基またはヒドロキシメチル基を示し、
Figure imgf000008_0001
R4は同一または相異なり、水酸基、水素原子、炭素数 1から 3のアルキル基、または 式(VIII):
[0040] [化 22]
—— N N R12 (VIII)
[0041] (式 (VIII)中、 R12は水素原子、または炭素数 1から 7のアルキル基を示す)で表される リファマイシン誘導体またはその生理学的に許容される塩である。
[0042] R12の炭素数 1から 7のアルキル基としては、メチル基、ェチル基、プロピル基、イソ プロピル基、シクロプロピル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブ チル基、シクロブチル基、シクロプロピルメチル基、ペンチル基、イソペンチル基、 sec ペンチル基、 tert ペンチル基、 1, 2—ジメチルプロピル基、 1 ェチルプロピル 基、シクロペンチル基、シクロブチルメチル基、へキシル基、 4ーメチルペンチル基、 シクロへキシキル基、 3—メチルシクロペンチル基、ヘプチル基、イソへプチル基など の鎖状または環状のアルキル基を挙げることができる。
[0043] (3)以下、上記リファマイシン誘導体の例示として、 5つの具体的な化合物を説明す る。ただし、本発明で用いられるリファマイシン誘導体は、これらの化合物に限定され るものではない。
[0044] (3— 1)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1 がァセチル基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX):
[0045] [化 23] 一 N CH„CH (CH,)„ (IX)
2 3 2
[0046] で表されるリファラジル {Rifalazil、 3'- Hydroxy- 5'- (4- isobuty卜 1- piperazinyl)benzoxaz inorifamycin, KRM 1648 }またはその生理学的に許容される塩である。
[0047] (3— 2)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1 がァセチル基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (X):
[0048] [化 24]
—— N CH,CH.CH„ (X)
2 2 3
[0049] で表される KRM1657またはその生理学的に許容される塩である。
[0050] (3— 3)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R が水酸基であり、 R2カ チル基であり、 R3が水酸基であり、 R4が式 (IX):
[0051] [化 25] 一 N CH„CH (CH,)„ (IX)
2 3 2
[0052] で表される KRM1671またはその生理学的に許容される塩である。
[0053] (3— 4)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R がァセチル基であり、 R2力 Sメチル基であり、 R3および R4が式 (IX):
[0054] [化 26] 一 N CH„CH (CH,)„ (IX)
2 3 2
[0055] で表される KRM1689またはその生理学的に許容される塩である。
[0056] (3— 5)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R がァセチル基であり、 R2がヒドロキシメチル基であり、 R3が水酸基であり、 R4が式 (IX)
[0057] [化 27] 一 N CH„CH (CH,)„ (IX)
2 3 2
[0058] で表される KRM1690またはその生理学的に許容される塩である。
[0059] 2.リファマイシン誘導体による作用
本願では、血管性疾患処置剤や細胞増殖調節剤にリファマイシン誘導体を用い、 この際、血管内皮細胞に比べ、血管平滑筋細胞に対して強く増殖抑制作用を示すよ うにする。リファマイシン誘導体は、従来、肺炎クラミジァやへリコパクター 'ピロリに対 して極めて強い抗菌活性を有する抗生物質であることが知られており、使用の際は、 極めて低濃度で用いられていた。本願発明は、リファマイシン誘導体が上記のような 細胞増殖抑制作用を有するという、抗菌活性とは関連のない意外な効果を有するこ とを初めて見出したことによりなされたものである。また、肺炎クラミジァやへリコバクタ 一 ·ピロリと血管狭窄との関連性が指摘されていることから (John Danesh, et al. Lance t, 1997, 350, 430-436)、リファマイシン誘導体を有効成分とする血管性疾患処置剤 は、細胞増殖抑制作用に加え、従来力も知られている抗菌作用も期待できる。
[0060] ここで、「内皮細胞に比べ、血管平滑筋細胞に対して強く増殖抑制作用を示す」と は、「血管内皮細胞に対しては細胞増殖抑制作用を示さず、血管平滑筋細胞に対す る細胞増殖抑制作用を示す」場合を含む。例えば、リファマイシン誘導体は、濃度( 量)を調節する等により、血管平滑筋細胞に対して増殖抑制活性を示すが、血管内 皮細胞に対して増殖抑制活性を示さないように調節することが可能である。なお、血 管性疾患処置剤や細胞増殖抑制剤の形態によって適切な量が変化するため、その 形態に応じて適宜その量を調節する必要がある。
[0061] また、「細胞増殖抑制作用を示す」とは統計学的に有意に増殖抑制を示す場合を いう。一方、「細胞増殖抑制作用を示さない」とは、統計学的に有意でない場合をいう
[0062] 3.血管性疾患の例
本発明においては、リファマイシン誘導体は、血管性疾患 {例えば、動脈硬化症 (ァ テローム性動脈硬化症、中膜石灰化硬化症)、細小動脈硬化症、動脈瘤、仮性瘤、 動脈解離症、炎症性動脈疾患、非炎症性動脈疾患、または透析シャントを含む自然 発生的血管性疾患、経皮的血管形成術後の血管再狭窄または再閉塞を含む非自 然発生的血管性疾患 }の予防または治療のために利用される。血管形成術としては 、例えば、バルーン拡張術、ステント留置術、ァテレクトミー、レーザー血管形成術が 挙げられる。
[0063] 4.血管性疾患処置剤または細胞増殖調節剤
「リファマイシン誘導体を有効成分とする血管性疾患処置剤」とは、リファマイシン誘 導体を有効成分とする血管性疾患治療用組成物または製剤(医薬品)を含む概念で ある。同様に、「リファマイシン誘導体を有効成分とする細胞増殖調節剤」とは、リファ マイシン誘導体を有効成分とする細胞増殖調節用組成物または製剤(医薬品)を含 む概念である。
[0064] 「血管性疾患処置」とは、血管性疾患を治療する、またはその進行を軽減する概念
(血管性疾患治療剤)のほか、その血管性疾患を治療するための作用と同様の作用 を利用することにより、その血管性疾患を予防する概念 (血管性疾患予防剤)を含む
[0065] (4 1)他の薬剤を含む実施形態
血管性疾患の予防または治療を目的とした製剤を製造する際に、他の薬剤 (抗凝 固薬、抗血小板物質、抗痙薬、抗菌薬、抗腫瘍薬、抗微生物剤、抗炎症剤、抗物質 代謝剤、免疫抑制剤等)と組み合わせてもよい。
[0066] 本実施態様において、リファマイシン誘導体は、血管内皮細胞に比べ、血管平滑 筋細胞に対してより強く増殖を抑制するように用いる。これにより、血管の内皮再生を 阻害することなく平滑筋の肥大が抑制され、血管の狭窄または再狭窄が防止される。
[0067] (4 2)血中に徐放させる実施形態
リファマイシン誘導体を予防及び治療の目的で血中に徐放させる場合、投与経路 は特に限定されず、経口投与若しくは非経口投与 (例えば、筋肉内投与、静脈内投 与、皮下投与、腹腔内投与、経皮投与、鼻腔などへの粘膜投与または吸入投与、ィ ンプラントを利用した投与)の 、ずれでもよ 、。
[0068] 5.血管性疾患処置剤を含むインプラントの実施形態
「インプラント」としては、例えば、ステント、ステントグラフト、人工血管、力テーテノレ( バルーンカテーテルも含む)、人工心弁、ペースメーカーのリード線、骨ネジ、人工骨 、人工気管、縫合糸等が挙げられ、中でも、生体の狭窄が起こるような血管、尿管、 尿道、リンパ管等の脈管に留置して、十分に内腔を確保するために使用されるステン トが好適である。ただし、リファマイシン誘導体は、ステントに限らず、当業者に周知の インプラントに適用可能である。そのようなインプラントの作製方法等として、例えば、 特開平 9— 38195号公報、特開 2003— 24452号公報に開示されている当業者に 公知の方法を採用することができる。
[0069] 6.ステントの実施形態
以下、本発明の実施形態としての生体留置用ステントの全体的な構造の一例を図 1および図 2を参照して説明する。図 1はステントの展開図、図 2は模式図である。後 述するステントの作製方法およびステントに薬剤を固定する方法等として、例えば特 開 2005— 65981号公報、特開 2004— 222953号公報に開示されている当業者に 公知の方法を採用することができる。
[0070] ステントとは、血管あるいは他の生体内管腔が狭窄もしくは閉塞することによって生 じる様々な疾患を治療するために、その狭窄もしくは閉塞部位を拡張し、その管腔サ ィズを維持するためにそこに留置する医療用具である。ステントは一般的には、血管 内にカテーテルによって挿入され、血管内腔の機械的支持を行なうために動脈壁の 不健全な部分と接触するように拡張される。また、ステントの拡張は、自身の物理的 特性 (形状記憶性、超弾性等)による自己拡張か、バルーンカテーテルの拡張力に よる強制的拡張か、いずれかの方法で拡張される。 [0071] (6— 1)材料
薬剤層をコーティングするためのベースとなるステントは、ステンレス鋼、 Ni— Ti合 金、 Cu—Al—Mn合金、 Co— Cr合金、マグネシウム合金、イリジウム、イリジウムォキ サイド、ニオブ等の金属力 作製可能である。ステントの作製は、当業者が通常作製 する方法と同様に、筒状の金属材料チューブをレーザーカットによりステントデザイン にカットし、電解研磨を施すことで作製することが可能である。しかし、作製方法はこ の方法に限定されず、エッチングによる加工方法や、平板金属をレーザーカットして から丸めて溶接する方法、金属ワイヤーを編みこむ加工方法等の手法も可能である
[0072] また、金属材料に限定されず、ポリオレフイン、ポリオレフインエラストマ一、ポリアミド 、ポリアミドエラストマ一、ポリウレタン、ポリウレタンエラストマ一、ポリエステル、ポリエ ステルエラストマー、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトンのような高 分子材料、セラミック、ハイドロキシアパタイト等の無機材料も使用され得る。
[0073] (6— 2)ポリマー層
ステント表面には、薬剤を固定する等の目的のためにポリマー層を設けてもよい。
[0074] 生体に用いられるものであるため、ポリマーとしては、生体適合性ポリマーや生分解 性ポリマーを用いるのが好まし 、。
[0075] ステント表面にポリマー層を設ける方法としては、ステントをポリマー溶液にディツビ ングする方法、ポリマー溶液をスプレーによりステントに噴霧する方法等の方法が使 用可能である。上述した方法はいずれもコーティングによる方法であるが、別途作製 したポリマーのシートをステント表面に貼り付けても構わない。コーティングによる場合 、ポリマー溶液を作製する際に使用する溶媒はポリマーの溶解性を有する任意の溶 媒を選択することができる。溶媒の揮発性等を調整するために 2つ以上の溶媒を用 いた混合溶媒としてもよい。ポリマー溶液の濃度は特に制限されず、ポリマー層の表 面性、必要となる薬剤保持量、保持させた薬剤の放出挙動等を勘案して任意の濃度 とすることができる。
[0076] このような溶媒を用いて作製したポリマー溶液をステントに塗布し乾燥させる操作ま たは当該液にステントを浸漬し乾燥させる操作を少なくとも 1回以上繰り返すことによ り、ステントへポリマー層を設けることができる。スプレーによりコーティングを行う際、 ポリマー層の表面を均一化するためスプレーノズルとステントとの距離を 50cm以下と することが好ましぐ 10cm以上、 30cm以下がより好ましい。また、スプレーコーティン グまたはデイツビングを行う際ステントを回転させてもよぐポリマー層の表面を均一化 するためには 50rpm以上が好まし!/、。
[0077] さらに、ポリマー層の表面性を制御するために、ステントにポリマー溶液を塗布する 途中および Zまたは塗布した後に余分なポリマー溶液を除去してもよい。除去する 手段としては、振動、回転、減圧等が挙げられ、これらを複数組み合わせてもよい。
[0078] (6 3)薬剤(リファマイシン誘導体)のコーティング
ステントを利用した血管性疾患処置剤や細胞増殖調節剤においては、薬剤(リファ マイシン誘導体)がステントにコーティングされる。
[0079] ステントに薬剤(リファマイシン誘導体)をコーティングする方法としては、薬剤を溶 液状態でステントに添加した後、溶媒を除去することによってステントに付着させるこ とができる。また、生体適合性ポリマーや生分解性ポリマーを用いて、薬剤をステント に付着させることも可能である。例えば、薬剤(リファマイシン誘導体)と共に生体適合 性ポリマーおよび Zまたは生分解性ポリマーを、液状または適切な溶媒、例えば、水 、緩衝液、酢酸、塩酸、メタノール、エタノール、アセトン、ァセトニトリル、塩化メチレン 、クロ口ホルム、テトラヒドロフラン等の溶液としてステントに接触させた後、溶媒を除去 することにより、生体適合性ポリマーもしくは生分解性ポリマーを用いた薬剤コーティ ングステントを作製することができる。
[0080] より具体的な例としては、生体適合性ポリマーおよび Zまたは生分解性ポリマーを 低沸点溶媒に溶解して調製した溶液に薬剤を溶解または懸濁して得られる液でステ ントをコーティングし、乾燥させる操作または当該液にステントを浸漬し乾燥させる操 作を少なくとも 1回以上繰り返すことにより、ステントへの薬剤の付着および生体適合 性ポリマーおよび Zまたは生分解性ポリマーによるコーティングをすることができる。 コーティングの方法としては、ステントを溶液にデイツビングする方法、もしくはスプレ 一により噴霧する方法などが実施可能である。
[0081] コーティング層の厚みに関しては、コーティング層を厚くすると血管内での凹凸から 、血栓の生成を促進してしまう可能性があり、再狭窄率を上昇させてしまう可能性が 存在する。しかし、治療に必要な十分な薬量をコーティングするためにはある程度の 厚みを必要とすることになる。この観点から、コーティング層の厚みは 1 m以上、 10 μ m以下、更には 3 μ m以上、 5 μ m以下であることが好ましい。
実施例
[0082] 以下の実施例ではヒト冠動脈平滑筋細胞 (CASMC)及びヒト冠動脈内皮細胞 (C
AEC)の細胞増殖抑制試験を利用して、実施形態としてのリファマイシン誘導体が血 管内皮細胞に比べ血管平滑筋細胞に対して強い増殖抑制作用を示すことを説明す る力 S、本発明の範囲は下記の実施例により限定されるものではない。
[0083] (実施例 1) CASMCの培養
CASMC (タカラバイオ社製)を、付属の培地(SmGM— 2 BulletKit)を用いて、 100mmディッシュにて 37°Cの 5%CO条件下で 70〜80%コンフルェントに達する
2
. ί·口 し/こ o
[0084] (実施例 2) CAECの培養
CAEC (タカラバイオ社製)を、付属の培地(EGM— 2— MV BulletKit)を用い て、 100mmディッシュにて 37°Cの 5%CO条件下で 70〜80%コンフルェントに達
2
するまで培養した。
[0085] (実施例 3) CASMC及び CAEC増殖抑制試験
前記 70〜80%コンフルェントに達した CASMC及び CAECを、サブカルチャー試 薬セット (タカラバイオ社製)を用いて 100mmディッシュより回収した。得られた細胞 を 96穴プレートに播種し、 37°Cの 5%CO条件下で 24時間培養した。次に、 24時間
2
の血清非存在条件下による細胞の栄養枯渴状態を設定した後、種々の濃度(10、 1 00、 1, OOOnM)のリファラジルを含む上述の培地で 48時間培養を行った。培養を 行った後、ロシュ'ダイァグノスティック社の細胞増殖 ELISA(BrdU) (発色)を用いて BrdU取り込み能を測定した。 BrdU取り込み能は、細胞増殖のパラメーターである D NA合成能を表す。
[0086] 図 3および後述する図 4〜6は、薬剤の各濃度と両細胞の増殖抑制作用との関係を 示すグラフである。縦軸は BrdU取り込み能を表す吸光度であり、薬剤非添加群 (コ ントロール)での吸光度に対する各濃度における値をグラフにした。また、グラフ中の 、 * *は統計学的に有意であることを示す。統計処理は、例示としてダネット検定を 行った。
[0087] 図 3にわカゝるように、リファラジルは、リファラジル非添加群と比較して、 100および 1 , OOOnMにおいて、統計学的に有意に CASMCの増殖抑制を示していた。
[0088] 一方、図 4からわ力るように、試験した濃度において、リファラジルは、リファラジル非 添加群と比較して、統計学的に有意には CAECの増殖抑制を示さな力つた。
[0089] このように、リファラジルは、 100および 1, OOOnMにおいて CAECに対して全く増 殖を抑制しないが、 CASMCに対しては増殖を抑制することがわ力つた。
[0090] (実施例 4)
実施例 4では、被験物質をリファラジルに代えて KRM1657、 KRM1671, KRM1 689、 KRM1690とし、被験物質添加後の培養時間を 72時間とした他は、上記実施 例 3と同じ方法で CASMC及び CAEC増殖抑制試験を行つた。
[0091] 図 7〜10は、薬剤の各濃度と両細胞の増殖抑制作用との関係を示すグラフである 。実線 (グラフ中、ひし形形状でプロットした部分を含む)が CASMC、破線 (グラフ中 、正方形形状でプロットした部分を含む)が CAECを示す。縦軸は BrdU取り込み能 を表す吸光度であり、リファラジル非添加群 (コントロール)での吸光度に対する各濃 度における値をグラフにした。また、グラフ中の、 * *は統計学的に有意であることを 示す。統計処理は、例示としてダネット検定を行った。
[0092] 図 7〜10に示されるように、リファラジル同様、試験を実施した 4種類のリファマイシ ン誘導体は、 CAECに比べ CASMCに対して強く増殖を抑制した。
[0093] (比較例 1)
比較例 1では、被験物質をリファラジルに代えてラパマイシン (Rapamycin)とした 他は、上記実施例 3と同じ方法で CASMC及び CAEC細胞増殖抑制試験を行った
[0094] 図 5に示されるように、ラパマイシンは CASMCの増殖をラパマイシン非添加群と比 ベて、実施した全ての濃度(1、 10、 100、 1, OOOnM)において、統計学的に有意に 増殖抑制を示した。 [0095] また、図 6に示されるように、ラパマイシンは CAECの増殖をラパマイシン非添加群 と比べて、実施した全ての濃度(1、 10、 100、 1, OOOnM)において、統計学的に有 意に増殖抑制を示した。
[0096] これらのことから、ラパマイシンは CAEC及び CASMCのいずれの細胞の増殖も抑 制することが示された。
[0097] 以上より、リファラジル、 KRM1657, KRM1671, KRM1689, KRM1690は CA ECに比べ CASMCに対して選択的に強く細胞増殖を抑制することがわ力つた。従つ て、リファラジル、 KRM1657, KRM1671, KRM1689, KRM1690をコーティン グしたインプラント (例えば、上述の生体留置用ステントを含む)は、内皮再生を阻害 しない一方で血管平滑筋細胞の増殖を抑制すると考えられる。つまり、上記インブラ ントは抗血栓性及び組織適合性に優れ、狭窄を抑制することが可能であると考えら れる。

Claims

請求の範囲
[1] リファマイシン誘導体を有効成分とし、血管内皮細胞に比べ、血管平滑筋細胞に対 して強く増殖抑制作用を示すことを特徴とする血管性疾患処置剤。
[2] リファマイシン誘導体を有効成分とし、血管内皮細胞に比べ、血管平滑筋細胞に対 して強く増殖抑制作用を示すことを特徴とする細胞増殖調節剤。
[3] 血管内皮細胞に対して細胞増殖抑制作用を示さないことを特徴とする請求項 1に記 載の血管性疾患処置剤または請求項 2に記載の細胞増殖調節剤。
[4] 前記リファマイシン誘導体は、下記式 (I)
[化 1]
Figure imgf000018_0001
(式 (I)中、 X1は酸素原子または硫黄原子を示し、 R1はァセチル基または水素原子を 示し、 R2はメチル基またはヒドロキシメチル基を示し、
Figure imgf000018_0002
R4は同一または相異なり、 水酸基、水素原子、炭素数 1から 3のアルキル基、下記式 (II)で表される基、または、 下記式 (IV)で表される基を示す)で表される化合物またはその生理学的に許容され る塩であることを特徴とする請求項 1〜3のいずれかに記載の血管性疾患処置剤また は細胞増殖調節剤。
[化 2]
(II)
Figure imgf000018_0003
[化 3]
Figure imgf000019_0001
上記式 (II)中、 R5、 R6は同一または相異なり、炭素数 1から 3のアルキル基、または式 (III)で表される基を示す。
[化 4] 、
— (CH2) i CH (I")
(式 (III)中、 jは 1から 3の整数を示す)
上記式 (IV)中、 R7、 R8は同一または相異なり、水素原子または炭素数 1から 3のアル キル基を示し、 X2は酸素原子、硫黄原子、カルボニル基、下記式 (V)で表される基、 または、下記式 (VI)で表される基を示す。
[化 5]
R9
(V)
R10
[化 6]
(0) m
A
(VI)
: N R" 上記式 (V)中、 R9、 R1Qは同一または相異なり、水素原子、炭素数 1から 3のアルキル 基、または R9と R1()が結合して下記式で表される基を示す。
(CH ) —
2 k
(式中、 kは 1から 4の整数を示す)
上記式 (VI)中、 mは 0または 1を示し、 R11は水素原子、炭素数 1から 7のアルキル基、 または下記式で表される基を示す。
Figure imgf000020_0001
(式中、 nは 1から 4の整数を示し、 X3は炭素数 1から 3のアルコキシ基、ビニル基、ェ チニル基、または下記式 (VII)で表される基を示す。 )
[化 7]
Figure imgf000020_0002
[5] 前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基ま たは水素原子を示し、 R2はメチル基またはヒドロキシメチル基を示し、
Figure imgf000020_0003
R4は同一ま たは相異なり、水酸基、水素原子、炭素数 1から 3のアルキル基、または式 (VIII):
[化 8]
— N N R12 (VIII)
(式 (VIII)中、 R12は水素原子、または炭素数 1から 7のアルキル基を示す)で表される リファマイシン誘導体またはその生理学的に許容される塩であることを特徴とする請 求項 4に記載の血管性疾患処置剤または細胞増殖調節剤。
[6] 前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX):
[化 9] 一 N N CH„CH (CHj , (IX)
\ _ / で表 れるリファフンノレ {Rifalazil、 3—Hydroxy— 5— (4— isobutyl— 1— piperazinyl)benzoxaz inorifamycin, KRM 1648 }またはその生理学的に許容される塩であることを特徴とす る請求項 5に記載の血管性疾患処置剤または細胞増殖調節剤。
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R メチル基であり、 R3が水酸基であり、 R4が式 (X):
[化 10] 一 N N CH,CH,CH„ (X)
2 2 3 で表される KRM1657またはその生理学的に許容される塩であることを特徴とする請 求項 5に記載の血管性疾患処置剤または細胞増殖調節剤。
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1が水酸基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX):
[化 11]
Figure imgf000021_0001
で表される KRM1671またはその生理学的に許容される塩であることを特徴とする請 求項 5に記載の血管性疾患処置剤または細胞増殖調節剤。
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2力 Sメチル基であり、 R3および R4が式 (IX):
[化 12]
Figure imgf000021_0002
で表される KRM1689またはその生理学的に許容される塩であることを特徴とする請 求項 5に記載の血管性疾患処置剤または細胞増殖調節剤。
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2がヒドロキシメチル基であり、 R3が水酸基であり、 R4が式 (IX):
[化 13]
Figure imgf000021_0003
で表される KRM1690またはその生理学的に許容される塩であることを特徴とする請 求項 6に記載の血管性疾患処置剤または細胞増殖調節剤。
自然発生的血管性疾患または非自然発生的血管性疾患の予防または治療のため に使用することを特徴とする請求項 1〜10のいずれかに記載の血管性疾患処置剤 または細胞増殖調節剤。
[12] 前記自然発生的血管性疾患が、動脈硬化症、動脈瘤、仮性瘤、動脈解離症、炎症 性動脈疾患、非炎症性動脈疾患、および透析シャントからなる群力 選ばれる請求 項 11に記載の血管性疾患処置剤または細胞増殖調節剤。
[13] 前記非自然発生的血管性疾患が、経皮的血管形成術後の血管再狭窄または再閉 塞である請求項 11に記載の血管性疾患処置剤または細胞増殖調節剤。
[14] 血中への徐放が、経口投与、あるいは、筋肉内投与、静脈内投与、皮下投与、腹腔 内投与、経皮投与、粘膜投与、吸入投与、およびインプラントを利用した投与力ゝらな る群より選択される非経口投与により実施される請求項 1〜13のいずれかに記載の 血管性疾患処置剤または細胞増殖調節剤。
[15] 前記インプラントが、ステント、ステントグラフト、人工血管、力テーテノレ、人工心弁、ぺ ースメーカーのリード線、骨ネジ、人工骨、人工気管、または縫合糸であることを特徴 とする請求項 14に記載の血管性疾患処置剤または細胞増殖調節剤。
[16] 血管性疾患処置剤製造のための、請求項 1〜: LOのいずれかの前記リファマイシン誘 導体の使用。
[17] 請求項 1〜10のいずれかの前記リファマイシン誘導体を使用する細胞の増殖抑制方 法。
[18] 請求項 1〜10のいずれかの前記リファマイシン誘導体を使用する血管性疾患の治療 方法。
PCT/JP2007/062384 2006-06-21 2007-06-20 リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤 WO2007148713A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-171656 2006-06-21
JP2006171656 2006-06-21
JP2006321176 2006-11-29
JP2006-321176 2006-11-29

Publications (1)

Publication Number Publication Date
WO2007148713A1 true WO2007148713A1 (ja) 2007-12-27

Family

ID=38833453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062384 WO2007148713A1 (ja) 2006-06-21 2007-06-20 リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤

Country Status (1)

Country Link
WO (1) WO2007148713A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502179A (ja) * 1990-02-28 1993-04-22 メドトロニック インコーポレーテッド 管状器官内薬剤溶出装具
JPH09216824A (ja) * 1995-12-08 1997-08-19 Kanegafuchi Chem Ind Co Ltd クラミジア感染症治療剤
JP2004075665A (ja) * 2002-06-21 2004-03-11 Japan Science & Technology Corp アンサマイシン系抗生物質の新規用途及び新規血管新生抑制物質のスクリーニング方法
JP2006507021A (ja) * 2002-03-18 2006-03-02 メドトロニック・エイヴイイー・インコーポレーテッド 再狭窄の危険のある解剖学的部位へ抗増殖性組成物を送付するための医療用具
JP2006515294A (ja) * 2002-12-12 2006-05-25 アクティブバイオティクス インコーポレイティッド アテローム性動脈硬化症およびその関連疾患を治療または予防するための方法および試薬
WO2007044435A2 (en) * 2005-10-06 2007-04-19 Activbiotics, Incorporated Treatment of peripheral arterial occlusive disease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502179A (ja) * 1990-02-28 1993-04-22 メドトロニック インコーポレーテッド 管状器官内薬剤溶出装具
JPH09216824A (ja) * 1995-12-08 1997-08-19 Kanegafuchi Chem Ind Co Ltd クラミジア感染症治療剤
JP2006507021A (ja) * 2002-03-18 2006-03-02 メドトロニック・エイヴイイー・インコーポレーテッド 再狭窄の危険のある解剖学的部位へ抗増殖性組成物を送付するための医療用具
JP2004075665A (ja) * 2002-06-21 2004-03-11 Japan Science & Technology Corp アンサマイシン系抗生物質の新規用途及び新規血管新生抑制物質のスクリーニング方法
JP2006515294A (ja) * 2002-12-12 2006-05-25 アクティブバイオティクス インコーポレイティッド アテローム性動脈硬化症およびその関連疾患を治療または予防するための方法および試薬
WO2007044435A2 (en) * 2005-10-06 2007-04-19 Activbiotics, Incorporated Treatment of peripheral arterial occlusive disease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAMPBELL L.A. ET AL.: "Chlamydia pneumoniae - An infectious riks factor for atherosclerosis?", NATURE REVIEW MICROBIOLOGY, vol. 2, no. 1, January 2004 (2004-01-01), pages 23 - 32, XP003020236 *
HAMMERSCHLAG M.R.: "Advances in the management of Chlamydia pneumoniae infections", EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, vol. 1, no. 3, 2003, pages 493 - 503, XP003020238 *
RUPP J. ET AL.: "RIfalazil, a novel benzoxazinorifamycin, is active against Chlamydia pneumoniae and reduces transmission of chlamydial infection from monocytes to endothelium", ABSTRACTS OF THE INTERSCIENCE CONFERENCE ON ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 43, 2003, pages 208 + ABSTR. NO. E-1710, XP003020237 *
SANDERSON S. ET AL.: "Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis", MOL. CANCER THER., vol. 5, no. 3, March 2006 (2006-03-01), pages 522 - 532, XP003020239 *

Similar Documents

Publication Publication Date Title
JP4894519B2 (ja) 生体留置用ステント
JP4371653B2 (ja) 体内埋込医療器具
JP5056013B2 (ja) 生体留置用ステント
US8968392B2 (en) Method of inhibiting vascular intimal hyperplasia using stent
EP1652550A1 (en) Stent to be placed in vivo
JP5329435B2 (ja) 非対称性の薬剤放出が制御されたコーティングを有する冠状動脈ステント
CN105833358B (zh) 一种颅内药物洗脱支架系统及其制备方法
WO2009076272A2 (en) Drug coated stent with endosome-disrupting conjugate
JP2004222953A (ja) 生体留置用ステント
JP6761547B2 (ja) アンレキサノクスの新たな使用
WO2007148714A1 (ja) リファマイシン誘導体を用いたインプラント
JP2015154925A (ja) 耐食性に優れたステント
US20050214343A1 (en) Medical devices comprising a protein-tyrosine kinase inhibitor to inhibit restonosis
CN112023125A (zh) 结晶型涂层及其制备方法、载药植入医疗器械及其制备方法
US20120239140A1 (en) Medical product comprising an active coating
US20110313514A1 (en) Drug-eluting stent
EP1523345A1 (en) Medical devices comprising a protein-tyrosine kinase inhibitor to inhibit restonosis
WO2007148713A1 (ja) リファマイシン誘導体を有効成分とする血管性疾患処置剤または細胞増殖調節剤
WO2006027994A1 (ja) 生体留置用ステント
JP4379044B2 (ja) 生体留置用ステント
JP2015154921A (ja) 薬剤徐放性ステント
CN114051417A (zh) 药剂溶出型支架
JP2016163619A (ja) 防食効果を利用したマグネシウムの分解速度制御
CN107865983B (zh) 一种药物支架及其制备方法
TW201620551A (zh) 藥劑溶出型支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP