WO2007148614A1 - 移動通信システム - Google Patents

移動通信システム Download PDF

Info

Publication number
WO2007148614A1
WO2007148614A1 PCT/JP2007/062058 JP2007062058W WO2007148614A1 WO 2007148614 A1 WO2007148614 A1 WO 2007148614A1 JP 2007062058 W JP2007062058 W JP 2007062058W WO 2007148614 A1 WO2007148614 A1 WO 2007148614A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
mobile communication
cell
frequency band
cells
Prior art date
Application number
PCT/JP2007/062058
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Ofuji
Kenichi Higuchi
Mamoru Sawahashi
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to CN2007800303479A priority Critical patent/CN101507311B/zh
Priority to BRPI0713130-5A priority patent/BRPI0713130A2/pt
Priority to MX2008016057A priority patent/MX2008016057A/es
Priority to US12/305,144 priority patent/US8520608B2/en
Priority to EP07745315.7A priority patent/EP2037601A4/en
Publication of WO2007148614A1 publication Critical patent/WO2007148614A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to a mobile communication system that avoids collision of a reference signal RS (Reference signal).
  • RS Reference signal
  • E-UTRA Evolved UMTS (Universal Mobile Telecommunications system)
  • P—APR Peak to Average Power Ratio
  • SC—FDMA Single Carrier Frequency
  • D Figure 1 is a diagram showing an example of uplink frequency allocation in the SC—FDMA radio access method, and the signals of user terminals UE1 to UE4 are placed on the frequency axis.
  • the frequency band used by each user terminal UE1 to UE4 is appropriately changed according to the channel state or the like.
  • FIG. 1 shows an example of the uplink subframe format in the SC-FDMA radio access system. 14 SC-F DMA symbols (Symbol # 0 to Symbol # 13) across the gap CP (Cyclic Prefix) Is arranged. At the timing of Symbo O, Symbol # 3, and SymboWlO, RS is transmitted from each user terminal.
  • the RS sequence used for channel estimation and reception quality measurement in synchronous detection can be expected to improve channel estimation accuracy due to its excellent autocorrelation characteristics, so a CAZAC (Constant Amplitude Zero Auto Correlation) sequence is used. It has been proposed to use.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • the effect of suppressing interference from other cells is obtained. Therefore, between users using the same frequency band in the same cell, it is possible to orthogonalize signals between users by using a sequence obtained by cyclically shifting the same CAZAC sequence.
  • Non-Patent Document 1 "3GPP TR 25.813" V1.0.1 (2006-06), 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)
  • the number of CAZAC code sequences is characterized by the fact that there are only N-1 sequences with respect to the sequence length N, and is proposed in the SC-FDMA scheme in the E-UTRA uplink.
  • the RS sequence length is set to Because it cannot be made large, there are problems with many series! /, And! /.
  • Fig. 3 is a diagram showing an example of repeated cell allocation of CAZAC sequences (in the case of 3-cell repeated allocation), and # 1 to # 3 indicate CAZAC sequences.
  • a plurality of CAZAC sequences having a sequence length corresponding to the frequency band are prepared in advance, and are appropriately assigned according to the frequency band.
  • the CAZAC sequences of adjacent cells are different, there are cells to which the same CAZAC sequence is allocated within a not far range, and interference due to RS collision occurs.
  • the transmission signal power of the user terminal UE1 existing in the cell C1 centered on the base station device BS1 The transmission signal strength from the user terminal UE2 existing in the cell C2 centered on the base station device BS2 to the base station device BS2 Interference.
  • SC—FDMA radio access scheme radio subframe configuration in which SC-FDMA symbol in which RS is multiplexed and SC-FDMA symbol in which data signal is multiplexed are multiplexed in TDM, and CAZAC code
  • the present invention has been proposed in view of the above-described conventional problems, and an object of the present invention is to repeat a finite number of RS sequences used for uplink channel estimation and the like in a plurality of cells.
  • an object of the present invention is to repeat a finite number of RS sequences used for uplink channel estimation and the like in a plurality of cells.
  • the assigned mobile communication system even when the number of RS sequences is small, it is intended to provide a mobile communication system that can prevent RS collision by preventing RS collision.
  • a gist of a mobile communication system comprising means for setting a frequency band used by a user terminal to which a reference signal sequence having a predetermined sequence length is assigned in each cell within a range to be different from a frequency band used in other cells.
  • the frequency band to be used is set to be different from the frequency band used in all other cells in the interference range for all the cells in the interference range. be able to.
  • the same reference signal sequence within the interference range is assigned to the cell to which the same reference signal sequence within the interference range is assigned. It is possible to set the frequency band to be different from the frequency band used in this cell.
  • the setting of the frequency band used in each cell can be performed semi-statically gradually in time.
  • the setting of the frequency band used in each cell can be dynamically performed for each radio subframe.
  • the setting of the frequency band used in each cell can be performed based on information signaling with other cells.
  • the setting of the frequency band used in each cell can be autonomously performed in each cell without signaling information with other cells.
  • the frequency band used in each cell is set semi-statically in terms of time, and the frequency band used in each cell is set as information with other cells. It is possible to select the frequency band to be used by sharing the frequency band used or not used in each cell by the above signaling.
  • the frequency band used in each cell is set semi-statically in terms of time, and the frequency band used in each cell is set in another cell. It is possible to select the frequency band to be used by sharing the priority of using the frequency band in each cell by the above signaling.
  • the same reference signal sequence is assigned to other cells.
  • Means can be provided for autonomously switching to another reference signal sequence in which no interference occurs when interference is detected.
  • a predetermined sequence length in each cell within the interference range There may be provided means for randomly setting a frequency band or a reference signal sequence used by a user terminal to which the reference signal sequence is assigned.
  • means for detecting a collision between the reception timing of the reference signal in the own cell and the reception timing of the reference signal of the other cell power, and when a collision of the reference signals is detected Means for shifting the transmission timing can be provided.
  • means for notifying other cells of information for shifting transmission timing can be provided.
  • the transmission timing can be shifted in consideration of the control delay.
  • information for shifting transmission timing in the mobile communication system is included in control bits used when synchronizing reception timing between users in an uplink cell. be able to.
  • Method of autonomous switching to another reference signal sequence that does not cause interference when interference is detected use of user terminal to which a reference signal sequence of a predetermined sequence length is assigned in each cell within the interference range, frequency band or reference signal Use a method that sets the sequence randomly or a method that shifts the transmission timing of radio subframes in each cell within the interference range. As a result, even when the number of reference signal sequences is small, it is possible to avoid collision of reference signals and prevent deterioration in communication quality.
  • FIG. 1 is a diagram showing an example of an uplink frequency arrangement in an SC-FDMA radio access scheme.
  • FIG. 2 is a diagram showing an example of an uplink subframe format in the SC-FDMA radio access scheme.
  • FIG. 3 is a diagram showing an example of repeated CAZAC cell allocation (in the case of 3-cell repeated allocation).
  • FIG.4 Shows an example of selecting a frequency band to be used by sharing a Z unused frequency band that is used semi-statically by signaling for all cells within the interference range. It is a figure.
  • FIG. 5 is a diagram showing an example of selecting a frequency band to be used by sharing the priority order of using the frequency band by semi-static signaling for all cells within the interference range.
  • FIG. 6 A diagram showing an example of selecting a frequency band to be used based on measurement of interference of other cells without semi-statically or dynamically signaling for all cells within the interference range.
  • FIG. 7 is a diagram illustrating an example in which a central frequency band is dynamically allocated to all cells within an interference range by signaling.
  • FIG. 8 is a diagram showing an example of selecting a frequency band to be used by sharing a Z unused frequency band used by signaling semi-statically for cells of the same CAZAC sequence within the interference range.
  • FIG. 9 is a diagram showing an example of selecting a frequency band to be used by sharing the priority order of using the frequency band by semi-static signaling for cells of the same CAZAC sequence within the interference range.
  • FIG. 10 is a diagram showing an example of selecting a frequency band to be used based on measurement of interference of other cells without semi-static or dynamic signaling for cells of the same CAZAC sequence within the interference range.
  • FIG. 11 is a diagram illustrating an example of a case where a central frequency band is dynamically allocated by signaling for cells of the same CAZAC sequence within an interference range.
  • FIG. 12 is a diagram illustrating a configuration example of a control station apparatus that manages frequency bands not used by Z used in each cell in the case of FIG. 4 or FIG. 8.
  • FIG. 13 is a diagram illustrating a configuration example of a control station apparatus that manages the priority order of using the frequency band in each cell in the case of FIG. 5 or FIG.
  • FIG. 14 is a diagram showing a configuration example of a base station apparatus in the case of FIG. 4, FIG. 5, FIG. 8, or FIG.
  • FIG. 15 is a diagram showing a configuration example of a base station apparatus in the case of FIG. 6 or FIG.
  • FIG. 16 is a diagram illustrating a configuration example of a control station apparatus that performs centralized frequency band allocation in the case of FIG. 7 or FIG.
  • FIG. 17 is a diagram illustrating a configuration example of a base station apparatus in the case of FIG. 7 or FIG. 11.
  • FIG. 18 is a diagram showing an example of the difference in channel response between the Sounding RS and the channel estimation RS depending on the presence or absence of interference of the same CAZAC sequence.
  • FIG. 19 is a diagram showing an example of a pattern in a case where collision randomization is attempted by hopping a frequency band to be used.
  • FIG. 20 is a diagram showing a pattern example in a case where randomization of collision is attempted by switching the CAZAC sequence used for each radio subframe.
  • FIG. 21 is a diagram showing a pattern example when randomizing collisions by hopping frequency bands to be used and switching CAZAC sequences for each radio subframe.
  • FIG. 22 is a diagram showing a configuration example of a control station apparatus in the case of FIGS. 19 to 21.
  • FIG. 23 is a diagram illustrating a configuration example of a base station apparatus in the case of FIGS. 19 to 21.
  • FIG. 24 is a diagram showing another configuration example of the base station apparatus in the case of FIGS. 19 to 21.
  • FIG. 25 is a diagram illustrating an example of avoiding an RS collision by shifting the transmission timing of radio subframes.
  • FIG. 26 is a diagram illustrating a configuration example of a control station device and a base station device in the case of FIG.
  • FIG. 27 is a diagram showing detection results of RS reception timing from other base station devices in each base station device.
  • FIG. 28 is a diagram showing interference associated with the user terminal in the case of FIG. 27.
  • FIG. 29 is a diagram illustrating a configuration example of a base station apparatus that autonomously controls transmission timing in the case of FIG.
  • FIG. 30 is a diagram illustrating a configuration example of a base station device when information transmission is performed between base station devices and transmission timing is controlled in the case of FIG.
  • Radio resource allocation unit 222 Receiver
  • the frequency band to be used is set different from the frequency band used in all other cells in the interference range, and the same in the interference range.
  • the frequency band to be used may be set to be different from the frequency band to be used by other cells to which the same CAZAC sequence is assigned within the interference range.
  • the frequency band used in each cell is set to semi-static mode that is gradual in time and dynamic for each radio subframe. There is a case to do.
  • the setting of the frequency band used in each cell There is a case where it is performed in an autonomous manner and a case where it is autonomously performed in each cell without signaling information with other cells.
  • the frequency band used in each cell is set semi-statically in a gradual manner, and the frequency band used in each cell is set with other cells via the control station device.
  • select a frequency band to be used by sharing a frequency band used or not used in each cell by signaling, and use a frequency band in each cell by signaling. In some cases, the frequency band to be used is shared.
  • Fig. 4 is a diagram showing an example of selecting a frequency band to be used by sharing a Z unused frequency band used semi-statically by signaling for all cells within the interference range of (1) above. Frequency used in each cell in cell C1 centered on base station device BS1 and cell C2 centered on base station device BS2 and cell C3 centered on base station device BS3 The figure shows a state in which the frequency band to be used is set so that the frequency bands to be used do not overlap by signaling and sharing the band between cells.
  • FIG. 5 shows semi-static signaling for all cells within the interference range of (2) above.
  • FIG. 5 is a diagram illustrating an example of selecting a frequency band to be used by sharing the priority order of using the frequency band, and cell C1 centered on base station apparatus BS1 and cell C2 centered on base station apparatus BS2 In the cell C3 centering on the base station device BS3, information on the priority of using each frequency band in each cell is signaled and shared between the cells so that the frequency bands used do not overlap as much as possible. This shows the state where the frequency band to be used is set. The number above the frequency band indicates the priority, and “1” is the highest priority.
  • Fig. 6 shows the case of selecting the frequency band to be used based on the measurement of other cell interference without semi-static or dynamic signaling for all cells within the interference range of (3) and (5) above.
  • the cell C1 centered on the base station device BS1
  • the cell C2 centered on the base station device BS2
  • the cell C3 centered on the base station device BS3, another cell for each frequency band
  • interference interference power
  • the frequency band that is supposed to be used in other cells is autonomously avoided, and the frequency band to be used is shown.
  • the speed of measurement of other cell interference and the control speed based on it are different.
  • the power to control based on the average measured value within a predetermined period (5) is instantaneous. Control is performed for each radio subframe based on typical measurement values.
  • FIG. 7 is a diagram showing an example of the case where the centralized frequency band is dynamically allocated by signaling for all cells within the interference range of (4) above, and the cell centered on the base station apparatus BS1 In the cell C3 centered on the C1 and the base station device BS2 and the cell C3 centered on the base station device BS3, the frequency bands to be used do not overlap by centrally allocating (scheduling) the frequency bands between the cells. As shown, the frequency band to be used is set.
  • Fig. 8 shows an example of selecting a frequency band to be used by sharing a Z unused frequency band that is used semi-statically by signaling for cells of the same CAZAC sequence within the interference range of (6) above.
  • cell C1 centered on base station device BS1 to which the same CAZAC sequence is assigned
  • cell C2 centered on base station device BS2
  • cell C3 centered on base station device BS3
  • the frequency bands to be used (not used) for each cell should be shared between the cells by signaling, and the frequency bands to be used should not overlap.
  • the frequency band to be used is set.
  • the frequency band to be used is also set for other CAZAC sequences.
  • FIG. 9 is a diagram showing an example of selecting a frequency band to be used by sharing the priority order of using the frequency band by semi-static signaling for cells of the same CAZAC sequence within the interference range of (7) above.
  • the cell C1 centered on the base station device BS1 to which the same CAZAC sequence is assigned
  • the cell C2 centered on the base station device BS2 and the cell C3 centered on the base station device BS3, each frequency in each cell
  • This figure shows the state in which the frequency band to be used is set so that the frequency bands to be used do not overlap as much as possible by signaling and sharing information on the priority of using the band between cells.
  • the number above the frequency band indicates the priority, and “1” is the highest priority.
  • the frequency band to be used is also set for other CAZAC series.
  • Figure 10 selects the frequency band to be used based on the measurement of other cell interference without semi-static or dynamic signaling for cells of the same CAZAC sequence within the interference range of (8) and (10) above.
  • each cell C3 by measuring the other cell interference (interference power) of the same CAZAC sequence for each frequency band, autonomously use the frequency band that is expected to be used in other cells to which the same CAZAC sequence is assigned. This shows a state where the frequency band to be used is selected.
  • the speed of the other cell interference measurement and the control speed based on it are different.
  • the control is performed based on the average measured value within the predetermined period.
  • the frequency band to be used is set in the same way for other CAZAC sequences.
  • FIG. 11 is a diagram showing an example of the case where the central frequency band is dynamically allocated by the sirenarding for cells of the same CAZAC sequence within the interference range of (9) above.
  • Centralized frequency band allocation (scheduling) between cells in cell C1 centered on base station device BS1 and cell C2 centered on base station device BS2 and cell C3 centered on base station device BS3 To use This shows a state in which the frequency band to be used is set so that the wave number bands do not overlap.
  • the frequency band to be used is similarly set for other CAZAC sequences.
  • FIG. 12 is a diagram showing a configuration example of a control station apparatus that manages frequency bands not used by Z used in each cell in the case of FIG. 4 or FIG.
  • the control station apparatus CS obtains information of each cell such as traffic volume via the base station apparatus power transmission path of each cell, determines a frequency band to be used, and a used band determining unit 101.
  • a use band information holding unit 102 that holds the frequency band determined by the determination unit 101, and a control signal are generated based on the frequency band held in the use band information holding unit 102, and each control signal is generated via a transmission path.
  • a control signal generation unit 103 that transmits the cell base station apparatus.
  • FIG. 13 is a diagram illustrating a configuration example of a control station apparatus that manages the priority order of using the frequency band in each cell in the case of FIG. 5 or FIG.
  • the control station apparatus CS obtains information about each cell such as traffic volume from the base station apparatus of each cell via a transmission path and determines the priority order for using the frequency band. Based on the priority stored in the bandwidth usage priority information holding unit 112 and the bandwidth usage priority information holding unit 112 that holds the priority levels determined by the bandwidth usage priority level determination unit 111! / And a control signal generation unit 113 that generates a control signal and transmits the control signal to the base station apparatus of each cell via the transmission path.
  • FIG. 14 is a diagram illustrating a configuration example of the base station apparatus in the case of FIG. 4, FIG. 5, FIG. 8, or FIG.
  • the base station apparatus BS receives a control signal from the control station apparatus via the transmission path and allocates a radio resource, and a receiving section 202 that receives a signal from the user terminal UE. And a transmission unit 203 that transmits a signal to the user terminal UE.
  • the radio resource allocating unit 201 receives a control signal (information on a frequency band to be used or information on a priority to be used) that also receives control signals from a control station apparatus via a transmission path, and a received signal from the receiving unit 202
  • Channel state measuring unit 205 that measures the channel state between user terminal UE and base station apparatus BS, control information received by control information receiving unit 204, information acquired from receiving unit 202 (traffic type, data amount Based on the propagation path state measured by the propagation path state measurement unit 205 and the radio resource state.
  • a scheduler 206 that performs scheduling, and a control signal generation unit 207 that generates a control signal related to uplink radio resource allocation based on the scheduling result of the scheduler 206 and transmits the control signal to the transmission unit 203.
  • FIG. 15 is a diagram illustrating a configuration example of the base station apparatus in the case of FIG. 6 or FIG.
  • the base station apparatus BS includes a radio resource allocation unit 211 that allocates radio resources, a reception unit 212 that receives a signal from the user terminal UE, and a transmission unit that transmits a signal to the user terminal UE. And 213.
  • the radio resource allocating unit 211 includes a channel state measuring unit 214 that measures a channel state between the user terminal UE and the base station apparatus BS from the received signal of the receiving unit 212, and a received signal power of the receiving unit 212 for each frequency band.
  • Interference power measurement unit 215 that measures interference power, information acquired from the reception unit 212 (traffic information such as traffic type and amount of data), propagation path state measurement unit 214, and propagation path state and interference power measurement unit A scheduler 216 that schedules radio resources based on the interference power measured in 215, and a control signal that generates a control signal related to uplink radio resource allocation based on the scheduling result of the scheduler 216 and sends the control signal to the transmitter 213 A generation unit 217.
  • FIG. 16 is a diagram illustrating a configuration example of a control station apparatus that performs centralized frequency band allocation in the case of FIG. 7 or FIG. 11.
  • the control station apparatus CS transmits information about each cell, such as traffic volume of each cell, information on propagation path status, traffic type, data volume, etc., from the base station apparatus of each cell via a transmission path.
  • a scheduler 121 that acquires terminal information and schedules radio resources, and a control signal generator that generates a control signal based on the scheduling result of the scheduler 121 and transmits the control signal to the base station apparatus of each cell via a transmission path And 122.
  • FIG. 17 is a diagram illustrating a configuration example of the base station apparatus in the case of FIG. 7 or FIG. 11.
  • the base station apparatus BS includes a radio resource allocation unit 221 that allocates radio resources, a reception unit 222 that receives a signal from the user terminal UE, and a transmission unit that transmits a signal to the user terminal UE. 223.
  • the radio resource allocation unit 221 includes a propagation path state measurement unit 224 that measures a propagation path state between the user terminal UE and the base station apparatus BS from the reception signal of the reception unit 222, and the traffic type and data amount acquired from the reception unit 222.
  • Traffic information And a control signal generation unit 225 that generates a control signal based on the measurement result of the propagation path state measurement unit 224 and sends the control signal to the control station apparatus via the transmission path, and the control signal from the control station apparatus via the transmission path.
  • a control signal receiving unit 226 that receives a control signal including link radio resource allocation information, and a control signal related to uplink radio resource allocation based on the control signal received by the control signal receiving unit 226 is generated and transmitted. And a control signal generation unit 227 to be sent to the unit 223.
  • FIG. 18 is a diagram showing an example of the difference in channel response between the Sounding RS and the channel estimation RS depending on the presence or absence of interference of the same CAZAC sequence.
  • the channel response obtained using So unding RS with respect to the frequency axis is as shown by curve a
  • the channel response obtained using the channel estimation RS does not interfere with the same CAZAC sequence.
  • the curve a matches the curve a like the curve b, and when there is interference of the same CAZAC sequence, the deviation occurs as the curve c. Therefore, each cell uses the same CAZAC sequence in other cells by measuring the difference between the channel estimation value using the broadband Sounding RS and the channel estimation value using the channel estimation RS. It is possible to measure (estimate) the frequency band considered to be.
  • This method measures the other cell interference (interference power) of the same CAZAC sequence for each frequency band in Fig. 10 described above, and is assumed to be used in other cells to which the same CAZAC sequence is assigned. If it becomes clear, it switches to another CAZAC series stocked for that frequency band.
  • the interference measurement method described in Fig. 18 can be used.
  • the device configuration is the same as in FIG. 15, and the scheduler 216 receives information acquired from the receiving unit 212 (traffic information such as traffic type and data amount), and the channel state measured by the channel state measuring unit 214 Based on the interference power measured by the interference power measurement unit 215, CAZA Schedule radio resources including c-sequence switching.
  • traffic information such as traffic type and data amount
  • CAZA Schedule radio resources including c-sequence switching.
  • Fig. 19 is a diagram showing an example of a pattern for randomizing collisions by hopping the frequency band to be used. Cells X, Y, and ⁇ using the same CAZAC sequence are shown in each cell. By hopping the frequency band used by the user terminal to which a CAZAC sequence of a predetermined sequence length is assigned, collisions with signals using the same CAZAC sequence are randomized.
  • the frequency hopping pattern may be random, or may be a pattern determined in advance so as to be orthogonal between cells.
  • FIG. 20 is a diagram showing a pattern example when randomizing the collision by switching the CAZAC sequence to be used for each radio subframe.
  • a predetermined example is given for each radio subframe.
  • the CAZAC sequence switching pattern may be random or V, and may be a pattern determined in advance to be orthogonal between cells!
  • FIG. 21 is a diagram showing an example of a pattern for randomizing collisions by hopping the frequency band to be used and switching the CAZAC sequence for each radio subframe.
  • Each cell has a CAZAC of a predetermined sequence length. Randomized collisions with signals using the same CAZAC sequence by randomly hopping the frequency band used by the user terminal to which the sequence is assigned and switching the CA ZAC sequence used for each radio subframe .
  • the frequency hopping pattern and the CAZAC sequence switching pattern may be random, or may be a pattern determined in advance so as to be orthogonal between cells.
  • FIG. 22 is a diagram illustrating a configuration example of the control station apparatus in the case of FIG. 19 to FIG.
  • the control station apparatus CS is a frequency hopping unit that determines a frequency band hopping pattern.
  • a control signal is generated according to the patterns held in the code switching pattern holding unit 134 that holds the switching pattern determined by the pattern determining unit 133, the frequency hopping pattern holding unit 132, and the code switching pattern holding unit 134, and the transmission path is set.
  • a control signal generation unit 135 that transmits to the base station apparatus of each cell.
  • FIG. 23 is a diagram illustrating a configuration example of the base station apparatus in the case of FIG. 19 to FIG.
  • the base station apparatus BS receives a control signal from the control station apparatus via the transmission path and performs radio resource allocation by a radio resource allocation unit 231 and user terminal UE power reception.
  • Unit 232 and a transmission unit 233 that transmits a signal to the user terminal UE.
  • the radio resource allocating unit 231 includes a control information receiving unit 234 that receives control signals (frequency hobbing pattern and code switching pattern information) via the transmission path, and a user terminal from the received signal of the receiving unit 232.
  • a channel state measuring unit 235 that measures a channel state between the UE and the base station apparatus BS, control information received by the control information receiving unit 234, information acquired from the receiving unit 2 32 (traffic such as traffic type and data amount) Information) and propagation path state scheduler 236 performs radio resource scheduling based on the propagation path state measured by measurement unit 235, and generates and transmits a control signal related to uplink radio resource allocation based on the scheduling result of scheduler 236.
  • a control signal generation unit 237 to be sent to the unit 233.
  • FIG. 24 is a diagram showing another configuration example of the base station apparatus in the case of FIG. 19 to FIG. 21, in which autonomous control is performed without going through the control station apparatus.
  • the base station apparatus BS includes a radio resource allocation unit 241 that allocates radio resources, a reception unit 242 that receives a signal from the user terminal UE, and a transmission unit 243 that transmits a signal to the user terminal UE.
  • the radio resource allocation unit 241 includes a use frequency determination unit 244 that determines a frequency band to be used, a code determination unit 245 that determines a CAZAC sequence to be used, and a reception signal power of the reception unit 242 between the user terminal UE and the base station apparatus BS.
  • the channel state measuring unit 246 for measuring the channel state of the channel, the frequency band determined by the used frequency determining unit 244, and the code decision Radio resource scheduling based on the CAZAC sequence determined by the fixed unit 245, information acquired from the receiving unit 242 (traffic information such as traffic type and data amount), and the channel state measured by the channel state measuring unit 246 And a control signal generation unit 248 that generates a control signal related to uplink radio resource allocation based on the scheduling result of the scheduler 247 and transmits the control signal to the transmission unit 243.
  • FIG. 25 is a diagram illustrating an example of avoiding RS collision by shifting the radio subframe transmission timing.
  • shifting the transmission timing (radio subframe timing) between the cells Cl, C2, ⁇ assigned with the same CAZAC sequence collision between RSs can be avoided.
  • setting is required at the start of operation of each base station apparatus, so setting change is not performed during operation.
  • FIG. 26 is a diagram illustrating a configuration example of the control station apparatus and the base station apparatus in the case of FIG. 25, and the transmission timing of each base station apparatus BS1, BS2,.
  • a timing setting unit 141 is provided.
  • FIG. 27 is a diagram illustrating a result of detection of RS reception timing of other base station apparatus power in each base station apparatus.
  • Each base station apparatus controls the transmission timing for each user terminal so that the reception timing in the RS base station is the same for the user terminals in its own cell, and the same for the user terminals in its own cell. Realizes orthogonality between RSs using CAZAC sequences.
  • interference occurs between the RSs. /!
  • each base station apparatus instructs a user terminal in its own cell to shift the transmission timing.
  • the transmission timing should be set so that the RS that transmits the RS overlaps the RS reception timing of other cells! /, Or the time or!
  • each base station apparatus performs autonomous control
  • interference may occur in another cell C2 as a result of the base station apparatus in cell C1 shifting the transmission timing. If the transmission timing is shifted in another cell C2, as a result, interference may occur again in the cell C1.
  • information is exchanged between base station devices using the same CAZAC sequence, and RS is transmitted. RS does not overlap with RS reception timing of other cells, and time or collision is reduced. You can control the transmission timing in time.
  • the transmission timing is controlled within a range in which a control delay such as hybrid ARQ (Automatic Repeat Request) and AMC (Adaptive Modulation and Coding) does not occur.
  • a control delay such as hybrid ARQ (Automatic Repeat Request) and AMC (Adaptive Modulation and Coding) does not occur.
  • transmission timing control information for avoiding interference from other cell powers may be realized by reusing control bits used when synchronizing reception timing among users in the uplink cell. .
  • FIG. 29 is a diagram showing the base station apparatus BS when autonomously controlling the transmission timing.
  • the base station apparatus BS includes a collision detection unit 251 and a transmission timing control unit 252.
  • the collision detection unit 251 detects a collision between the RS of the own cell and the RS of the user terminal of another cell.
  • the transmission timing control unit 252 sets the time when the RS that transmits the RS does not overlap with the RS reception timing of another cell, or a time when the collision is reduced.
  • FIG. 30 is a diagram showing the base station device BS when information is exchanged between the base station devices to control the transmission timing.
  • the base station apparatus BS includes a collision detection unit 261, a transmission timing control unit 262, and an information exchange unit 263.
  • the collision detection unit 251 detects a collision between the RS of the own cell and the RS from the user terminal of another cell.
  • the transmission timing control unit 252 sets the time at which the RS that transmits the RS does not overlap with the RS reception timing of another cell or the time when the collision is reduced.
  • the set information is the same from the information exchange section 263. It is notified to other base station apparatuses that use the AZAC sequence.
  • the transmission timing unit 262 controls the transmission timing.
  • priority may be provided to the base station apparatus. That is, the transmission timing may be set from the base station apparatus with high priority, and the set information may be notified to the base station apparatus with low priority.
  • a method of setting the frequency band used by a user terminal to which a CAZAC sequence of a predetermined sequence length in each cell of the cell is assigned to be different from the frequency band used by other cells, interference of other cell power assigned the same CAZAC sequence A method that autonomously switches to another CAZAC sequence that does not cause interference when a signal is detected, a frequency band used by a user terminal that can be assigned a CAZAC sequence of a predetermined sequence length in each cell within the interference range, or a CAZAC sequence at random Depending on the method of setting or the method of shifting the transmission timing of radio subframes in each cell within the interference range Even when the number of CAZAC sequences is small, RS collisions can be avoided to prevent deterioration in communication quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセルに繰り返し割り当ててなる移動通信システムにおいて、干渉範囲内の各セルで所定の系列長の参照信号系列を割り当てられるユーザ端末が使用する周波数帯域を、他のセルで使用する周波数帯域と異なるものに設定する手段を備える。また、同一の参照信号系列が割り当てられた他セルからの干渉を検出した場合に干渉の生じない他の参照信号系列に自律的に切り替える手段、干渉範囲内の各セルで所定の系列長の参照信号系列を割り当てられるユーザ端末が使用する周波数帯域もしくは参照信号系列をランダムに設定する手段、干渉範囲内の各セルにおける無線サブフレームの送信タイミングをずらす手段を備える。

Description

明 細 書
移動通信システム
技術分野
[0001] 本発明は、参照信号 RS (Reference signal)の衝突回避を図った移動通信システム に関する。
背景技術
[0002] 3GPP (3rd Generation Partnership Project)にお!/、て標準化が進められて!/、る E - UTRA (Evolved UMTS(Universal Mobile Telecommunications systemノ Terrestrial R adio Access) (例えば、非特許文献 1を参照。)の上りリンク無線アクセス方式として、 ユーザ端末の送信電力の制限の観点から、 P APR (Peak to Average Power Ratio) が小さく、送信アンプの効率を高くできる、 SC— FDMA (Single Carrier Frequency D ivision Multiple Access)方式が提案されている。図 1は SC— FDMA無線アクセス方 式における上りリンクの周波数配置の例を示す図であり、周波数 (Frequency)軸上に ユーザ端末 UE1〜UE4の信号が配置された状態を示している。なお、個々のユー ザ端末 UE 1〜UE4の使用する周波数帯域はチャネル状態等に応じて適宜に変更 される。
[0003] また、上述した SC— FDMA無線アクセス方式における上りリンクのサブフレームと しては、 RSが多重される SC- FDMA symbolとデータ信号が多重される SC- FDMA sym bo TDM (Time Division Multiplex)で多重されるような無線サブフレーム構成が提 案されている。図 2は SC— FDMA無線アクセス方式における上りリンクのサブフレー ムフォーマットの例を示す図であり、ギャップ CP (Cyclic Prefix)を挟んで 14個の SC-F DMA symbol (Symbol #0〜Symbol#13)が配置されている。 Symbo Oおよび Symbol#3 および SymboWlOのタイミングでは各ユーザ端末から RSが送信される。
[0004] また、同期検波でのチャネル推定や受信品質測定に用いる RS系列としては、その 優れた自己相関特性によりチャネル推定精度の向上が期待できるため、 CAZAC (C onstant Amplitude Zero Auto Correlation)系列を用いることが提案されている。ここ で、セル間で異なる CAZAC系列を用いることにより、他セル干渉の抑圧効果が得ら れ、同一セル内の同一周波数帯域を用いるユーザ間では、同一の CAZAC系列を サイクリックシフトした系列を用いることにより、ユーザ間の信号を直交化することが可 能となる。
[0005] 一方、上述した SC— FDMA無線アクセス方式では、送信帯域幅を狭くし、帯域あ たりの信号電力密度を高くすることにより、カバレッジを拡大することができる。すなわ ち、より遠くまで送信信号が届くようにすることができる。
非特許文献 1 : "3GPP TR 25.813" V1.0.1 (2006-06), 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC)
発明の開示
発明が解決しょうとする課題
[0006] ところで、 CAZAC符号の系列数は、系列長 Nに対して N— 1の系列数しか存在し ないという特徴を持ち、 SC— FDMA方式において、 E— UTRAの上りリンクで提案 されているような、 RSが多重される SC-FDMA symbolとデータ信号が多重される SC-F DMA symbolが TDMで多重されるような無線サブフレーム構成(図 2)の場合には、 R Sの系列長を大きくできな 、ため、系列数が多く取れな!/、と!/、う問題がある。
[0007] さらに、カバレッジを拡大するために送信帯域幅を狭くした場合には、シンボルレー トが低くなるため、 RSの系列長、すなわち CAZAC符号の系列数はさらに小さくなる。
[0008] このとき、各セルへの CAZAC系列の繰り返し割り当て周期が小さくなるため、セル 間で同一の CAZAC系列を用いる信号が衝突してしまう確率が増大し、通信品質を 悪ィ匕させる要因となる。図 3は CAZAC系列のセル繰り返し割り当ての例を示す図(3 セル繰り返し割り当ての場合)であり、 # 1〜# 3は CAZAC系列を示している。なお、 CAZAC系列は周波数帯域に応じた系列長のものが予め複数用意されており、周波 数帯域に応じて適宜に割り当てられる。
[0009] 図 3において、隣接するセルの CAZAC系列は異なっているものの、遠くない範囲 内に同じ CAZAC系列が割り当てられたセルが存在し、 RSの衝突による干渉が生じ る。例えば、基地局装置 BS1を中心とするセル C1に存在するユーザ端末 UE1の送 信信号力 基地局装置 BS2を中心とするセル C2に存在するユーザ端末 UE2から基 地局装置 BS2への送信信号に対する干渉となる。 [0010] なお、 SC— FDMA無線アクセス方式と、 RSが多重される SC- FDMA symbolとデー タ信号が多重される SC-FDMA symbolが TDMで多重されるような無線サブフレーム 構成と、 CAZAC符号を用いた RS系列とを例に説明したが、同様な問題は他の環境 下でも生じ得る。
[0011] 本発明は上記の従来の問題点に鑑み提案されたものであり、その目的とするところ は、上りリンクのチャネル推定等に用いられる有限数の RS系列を複数のセルに繰り返 し割り当ててなる移動通信システムにおいて、 RSの系列数が小さい場合でも、 RSの 衝突を回避して通信品質の低下を防止することのできる移動通信システムを提供す ることにめる。
課題を解決するための手段
[0012] 上記の課題を解決するため、本発明にあっては、上りリンクのチャネル推定等に用 いられる有限数の参照信号系列を複数のセルに繰り返し割り当ててなる移動通信シ ステムにおいて、干渉範囲内の各セルで所定の系列長の参照信号系列を割り当てら れるユーザ端末が使用する周波数帯域を、他のセルで使用する周波数帯域と異なる ものに設定する手段を備える移動通信システムを要旨として 、る。
[0013] また、前記の移動通信システムにおいて、干渉範囲内の全てのセルにつき、使用 する周波数帯域を干渉範囲内の他の全てのセルで使用する周波数帯域と異なるも のに設定するようにすることができる。
[0014] また、前記の移動通信システムにおいて、干渉範囲内の同一の参照信号系列が割 り当てられたセルにつき、使用する周波数帯域を干渉範囲内の同一の参照信号系 列が割り当てられた他のセルで使用する周波数帯域と異なるものに設定するようにす ることがでさる。
[0015] また、前記の移動通信システムにおいて、各セルで使用する周波数帯域の設定を 、時間的に緩やかなセミスタティックに行うようにすることができる。
[0016] また、前記の移動通信システムにおいて、各セルで使用する周波数帯域の設定を 、無線サブフレーム毎にダイナミックに行うようにすることができる。
[0017] また、前記の移動通信システムにおいて、各セルで使用する周波数帯域の設定を 、他のセルとの情報のシグナリングに基づ 、て行うようにすることができる。 [0018] また、前記の移動通信システムにおいて、各セルで使用する周波数帯域の設定を 、他のセルとの情報のシグナリングなしに各セルにおいて自律的に行うようにすること ができる。
[0019] また、前記の移動通信システムにおいて、各セルで使用する周波数帯域の設定を 、時間的に緩やかなセミスタティックに行い、各セルで使用する周波数帯域の設定を 、他のセルとの情報のシグナリングに基づいて行い、上記シグナリングにより各セル で使用するもしくは使用しない周波数帯域を共有して使用する周波数帯域を選択す るよう〖こすることがでさる。
[0020] また、前記の移動通信システムにお 、て、各セルで使用する周波数帯域の設定を 、時間的に緩やかなセミスタティックに行い、各セルで使用する周波数帯域の設定を 、他のセルとの情報のシグナリングに基づいて行い、上記シグナリングにより各セル での周波数帯域を使用する優先順位を共有して使用する周波数帯域を選択するよう にすることができる。
[0021] また、上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセ ルに繰り返し割り当ててなる移動通信システムにおいて、同一の参照信号系列が割 り当てられた他セル力もの干渉を検出した場合に、干渉の生じない他の参照信号系 列に自律的に切り替える手段を備えるようにすることができる。
[0022] また、上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセ ルに繰り返し割り当ててなる移動通信システムにお 、て、干渉範囲内の各セルで所 定の系列長の参照信号系列を割り当てられるユーザ端末が使用する周波数帯域も しくは参照信号系列をランダムに設定する手段を備えるようにすることができる。
[0023] また、上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセ ルに繰り返し割り当ててなる移動通信システムにおいて、干渉範囲内の各セルにお ける無線サブフレームの送信タイミングをずらす手段を備えるようにすることができる。
[0024] また、前記の移動通信システムにおいて、 自セル内の参照信号の受信タイミングと 他セル力 の参照信号の受信タイミングとの衝突を検出する手段、及び参照信号の 衝突が検出された場合に、送信タイミングをずらす手段を備えるようにすることができ る。 [0025] また、前記の移動通信システムにお ヽて、送信タイミングをずらす情報を他セルに 通知する手段を備えるようにすることができる。
[0026] また、参照信号衝突が検出された場合に、制御遅延を考慮して送信タイミングをず らすようにすることができる。
[0027] また、前記の移動通信システムにお!/、て、送信タイミングをずらす情報は、上りリン クのセル内ユーザ間で受信タイミングを同期させるときに用いられる制御ビットに含ま れるようにすることができる。
発明の効果
[0028] 本発明の移動通信システムにあっては、上りリンクのチャネル推定等に用いられる 有限数の参照信号系列を複数のセルに繰り返し割り当ててなる移動通信システムに おいて、干渉範囲内の各セルにおける所定の系列長の参照信号系列を割り当てら れるユーザ端末の使用周波数帯域を他のセルの使用周波数帯域と異なるものに設 定する手法、同一の参照信号系列が割り当てられた他セル力 の干渉を検出した場 合に干渉の生じない他の参照信号系列に自律的に切り替える手法、干渉範囲内の 各セルにおける所定の系列長の参照信号系列を割り当てられるユーザ端末の使用 周波数帯域もしくは参照信号系列をランダムに設定する手法、あるいは、干渉範囲 内の各セルにおける無線サブフレームの送信タイミングをずらす手法を使い分けるこ とにより、参照信号の系列数が小さい場合でも、参照信号の衝突を回避して通信品 質の低下を防止することができる。
図面の簡単な説明
[0029] [図 1]SC—FDMA無線アクセス方式における上りリンクの周波数配置の例を示す図 である。
[図 2]SC—FDMA無線アクセス方式における上りリンクのサブフレームフォーマット の例を示す図である。
[図 3]CAZAC系列のセル繰り返し割り当ての例を示す図(3セル繰り返し割り当ての 場合)である。
[図 4]干渉範囲内の全てのセルにつきセミスタティックにシグナリングにより使用する Z使用しない周波数帯域を共有して使用する周波数帯域を選択する場合の例を示 す図である。
[図 5]干渉範囲内の全てのセルにつきセミスタティックにシグナリングにより周波数帯 域を使用する優先順位を共有して使用する周波数帯域を選択する場合の例を示す 図である。
[図 6]干渉範囲内の全てのセルにつきセミスタティックもしくはダイナミックにシグナリン グなしで他セル干渉の測定に基づいて使用する周波数帯域を選択する場合の例を 示す図である。
[図 7]干渉範囲内の全てのセルにつきダイナミックにシグナリングにより一元的な周波 数帯域の割り当てを行う場合の例を示す図である。
[図 8]干渉範囲内の同一 CAZAC系列のセルにつきセミスタティックにシグナリングに より使用する Z使用しない周波数帯域を共有して使用する周波数帯域を選択する場 合の例を示す図である。
[図 9]干渉範囲内の同一 CAZAC系列のセルにつきセミスタティックにシグナリングに より周波数帯域を使用する優先順位を共有して使用する周波数帯域を選択する場 合の例を示す図である。
[図 10]干渉範囲内の同一 CAZAC系列のセルにつきセミスタティックもしくはダイナミ ックにシグナリングなしで他セル干渉の測定に基づいて使用する周波数帯域を選択 する場合の例を示す図である。
[図 11]干渉範囲内の同一 CAZAC系列のセルにつきダイナミックにシグナリングによ り一元的な周波数帯域の割り当てを行う場合の例を示す図である。
[図 12]図 4もしくは図 8の場合の各セルで使用する Z使用しない周波数帯域を管理 する制御局装置の構成例を示す図である。
圆 13]図 5もしくは図 9の場合の各セルでの周波数帯域を使用する優先順位を管理 する制御局装置の構成例を示す図である。
[図 14]図 4、図 5、図 8もしくは図 9の場合の基地局装置の構成例を示す図である。
[図 15]図 6もしくは図 10の場合の基地局装置の構成例を示す図である。
圆 16]図 7もしくは図 11の場合の一元的な周波数帯域の割り当てを行う制御局装置 の構成例を示す図である。 [図 17]図 7もしくは図 11の場合の基地局装置の構成例を示す図である。
[図 18]同一 CAZAC系列の干渉の有無による Sounding RSとチャネル推定用 RSによ るチャネル応答の違 、の例を示す図である。
[図 19]使用する周波数帯域をホッピングすることにより衝突のランダム化を図る場合 のパターン例を示す図である。
[図 20]無線サブフレーム毎に使用する CAZAC系列を切り替えることにより衝突のラ ンダム化を図る場合のパターン例を示す図である。
[図 21]使用する周波数帯域のホッピングおよび無線サブフレーム毎の CAZAC系列 の切り替えにより衝突のランダム化を図る場合のパターン例を示す図である。
[図 22]図 19〜図 21の場合の制御局装置の構成例を示す図である。
[図 23]図 19〜図 21の場合の基地局装置の構成例を示す図である。
[図 24]図 19〜図 21の場合の基地局装置の他の構成例を示す図である。
[図 25]無線サブフレームの送信タイミングをずらすことにより RSの衝突を回避する場 合の例を示す図である。
圆 26]図 25の場合の制御局装置および基地局装置の構成例を示す図である。
[図 27]各基地局装置において他の基地局装置からの RS受信タイミングの検出結果を 示す図である。
[図 28]図 27の場合のユーザ端末に伴う干渉を示す図である。
圆 29]図 28の場合に送信タイミングを自律的に制御する基地局装置の構成例を示 す図である。
圆 30]図 28の場合に基地局装置間で情報交換を行って送信タイミングを制御する場 合の基地局装置の構成例を示す図である。
符号の説明
C1〜C4、 X〜Z セル
UE、 UE1〜UE4 ユーザ端末
cs 制御局装置
101 使用帯域決定部
102 使用帯域情報保持部 103 制御信号生成部
111 帯域使用優先順位決定部
112 帯域使用優先順位情報保持部
113 制御信号生成部
121 スケジューラ
122 制御信号生成部
131 周波数ホッピングパターン決定部
132 周波数ホッピングパターン保持部
133 符号切り替えパターン決定部
134 符号切り替えパターン保持部
135 制御信号生成部
141 タイミング設定部
BS、 BS1 -BS3 基地局装置
201 無線リソース割り当て部
202 受信部
203 送信部
204 制御情報受信部
205 伝搬路状態測定部
206 スケジューラ
207 制御信号生成部
211 無線リソース割り当て部
212 受信部
213 送信部
214 伝搬路状態測定部
215 干渉電力測定部
216 スケジューラ
217 制御信号生成部
221 無線リソース割り当て部 222 受信部
223 送信部
224 伝搬路状態測定部
225 制御信号生成部
226 制御信号受信部
227 制御信号生成部
231 無線リソース割り当て部
232 受信部
233 送信部
234 制御情報受信部
235 伝搬路状態測定部
236 スケジューラ
237 制御信号生成部
241 無線リソース割り当て部
242 受信部
243 送信部
244 使用周波数決定部
245 符号決定部
246 伝搬路状態測定部
247 スケジューラ
248 制御信号生成部
251 衝突検出部
252 送信タイミング制御部
261 衝突検出部
262 送信タイミング制御部
263 情報交換部
CP ギャップ
Symbol # 0〜Symbol # 2、 Symbol # 4〜Symbol # 9、 Symbol # 1 l〜Symbol # 13 データ信号
Symbol # 3、 Symbol # 10 RS
PI Sounding RS
P2 チャネル推定用 RS
a〜c 曲線 (チャネル応答)
発明を実施するための最良の形態
[0031] 以下、本発明の好適な実施形態につき説明する。なお、図 1〜図 3で説明した、 SC
— FDMA無線アクセス方式と、 RSが多重される SC-FDMA symbolとデータ信号が多 重される SC- FDMA symbolが TDMで多重されるような無線サブフレーム構成の上で
、 RS系列として CAZAC符号が用いられる移動通信システムを前提として説明する。
[0032] 〈干渉範囲内の各セルで所定の系列長の CAZAC系列を割り当てられるユーザ端 末が使用する周波数帯域を他のセルと異ならせる手法〉
各セルで所定の系列長の CAZAC系列を割り当てられるユーザ端末が使用する周 波数帯域を変えること(Fractionalなセル間周波数繰り返し)により、他セル干渉を回 避するものである。
[0033] この手法には、干渉範囲内の全てのセルにつき、使用する周波数帯域を干渉範囲 内の他の全てのセルで使用する周波数帯域と異なるものに設定する場合と、干渉範 囲内の同一の CAZAC系列が割り当てられたセルにつき、使用する周波数帯域を干 渉範囲内の同一の CAZAC系列が割り当てられた他のセルで使用する周波数帯域 と異なるものに設定する場合とがある。
[0034] また、上記のそれぞれの場合につき、各セルで使用する周波数帯域の設定を、時 間的に緩やかなセミスタティック(Semi-Static)に行う場合と、無線サブフレーム毎に ダイナミック(Dynamic)に行う場合とがある。
[0035] また、上記のそれぞれの場合につき、各セルで使用する周波数帯域の設定を、他
Figure imgf000012_0001
、て行う場合と、他のセルとの情報のシグナリ ングなしに各セルにぉ 、て自律的に行う場合とがある。
[0036] さらに、各セルで使用する周波数帯域の設定を時間的に緩やかなセミスタティック に行い、各セルで使用する周波数帯域の設定を、制御局装置を介した他のセルとの 情報のシグナリングに基づいて行う場合については、シグナリングにより各セルで使 用するもしくは使用しない周波数帯域を共有して使用する周波数帯域を選択する場 合と、シグナリングにより各セルでの周波数帯域を使用する優先順位を共有して使用 する周波数帯域を選択する場合とがある。
[0037] これらを列記すれば次のようになる。 帯域を共有
(2)全セル対象 Zセミスタティック Zシグナリングあり Z周波数帯域の使用する優先 順位を共有
(3)全セル対象 Zセミスタティック Zシグナリングなし
(4)全セル対象 Zダイナミック Zシグナリングあり
(5)全セル対象 Zダイナミック Zシグナリングなし 周波数帯域を共有
(7)同一系列セル対象 zセミスタティック Zシグナリングあり Z周波数帯域の使用す る優先順位を共有
(8)同一系列セル対象 Zセミスタティック Zシグナリングなし
(9)同一系列セル対象 Zダイナミック Zシグナリングあり
(10)同一系列セル対象 Zダイナミック Zシグナリングなし
以下、個々の手法につき図面を用いて説明する。
[0038] 図 4は上記(1)の干渉範囲内の全てのセルにつきセミスタティックにシグナリングに より使用する Z使用しない周波数帯域を共有して使用する周波数帯域を選択する場 合の例を示す図であり、基地局装置 BS1を中心とするセル C1と基地局装置 BS2を 中心とするセル C2と基地局装置 BS3を中心とするセル C3において、各セルにおい て使用する (使用しな 、)周波数帯域をセル間でシグナリングして共有することで、使 用する周波数帯域が重ならないように、使用する周波数帯域を設定した状態を示し ている。
[0039] 図 5は上記(2)の干渉範囲内の全てのセルにつきセミスタティックにシグナリングに より周波数帯域を使用する優先順位を共有して使用する周波数帯域を選択する場 合の例を示す図であり、基地局装置 BS1を中心とするセル C1と基地局装置 BS2を 中心とするセル C2と基地局装置 BS3を中心とするセル C3において、各セルにおい て各周波数帯域を使用する優先順位の情報をセル間でシグナリングして共有するこ とで、使用する周波数帯域ができるだけ重ならないように、使用する周波数帯域を設 定した状態を示している。周波数帯域の上に付した数字は優先順位を示しており、「 1」が最も優先順位が高いものとしている。
[0040] 図 6は上記(3)および(5)の干渉範囲内の全てのセルにつきセミスタティックもしく はダイナミックにシグナリングなしで他セル干渉の測定に基づいて使用する周波数帯 域を選択する場合の例を示す図であり、基地局装置 BS1を中心とするセル C1と基地 局装置 BS2を中心とするセル C2と基地局装置 BS3を中心とするセル C3のそれぞれ において、周波数帯域毎に他セル干渉 (干渉電力)を測定することにより、他セルで 使用していると思われる周波数帯域を自律的に避けて、使用する周波数帯域を選択 した状態を示して 、る。上記(3)と(5)では、他セル干渉の測定およびそれに基づく 制御の速さが異なり、(3)では所定期間内の平均的な測定値に基づいて制御を行う 力 (5)では瞬間的な測定値に基づ 、て無線サブフレーム毎に制御を行う。
[0041] 図 7は上記(4)の干渉範囲内の全てのセルにつきダイナミックにシグナリングにより 一元的な周波数帯域の割り当てを行う場合の例を示す図であり、基地局装置 BS1を 中心とするセル C1と基地局装置 BS2を中心とするセル C2と基地局装置 BS3を中心 とするセル C3において、セル間で周波数帯域の割り当て (スケジューリング)を一元 的に行うことで、使用する周波数帯域が重ならないように、使用する周波数帯域を設 定した状態を示している。
[0042] 図 8は上記(6)の干渉範囲内の同一 CAZAC系列のセルにつきセミスタティックに シグナリングにより使用する Z使用しない周波数帯域を共有して使用する周波数帯 域を選択する場合の例を示す図であり、同一の CAZAC系列が割り当てられた基地 局装置 BS1を中心とするセル C1と基地局装置 BS2を中心とするセル C2と基地局装 置 BS3を中心とするセル C3にお 、て、各セルにぉ 、て使用する(使用しな 、)周波 数帯域をセル間でシグナリングして共有することで、使用する周波数帯域が重ならな いように、使用する周波数帯域を設定した状態を示している。他の CAZAC系列につ いても同様に使用する周波数帯域の設定を行う。
[0043] 図 9は上記(7)の干渉範囲内の同一 CAZAC系列のセルにつきセミスタティックに シグナリングにより周波数帯域を使用する優先順位を共有して使用する周波数帯域 を選択する場合の例を示す図であり、同一の CAZAC系列が割り当てられた基地局 装置 BS1を中心とするセル C1と基地局装置 BS2を中心とするセル C2と基地局装置 BS3を中心とするセル C3において、各セルにおいて各周波数帯域を使用する優先 順位の情報をセル間でシグナリングして共有することで、使用する周波数帯域ができ るだけ重ならないように、使用する周波数帯域を設定した状態を示している。周波数 帯域の上に付した数字は優先順位を示しており、「1」が最も優先順位が高いものとし て 、る。他の CAZAC系列にっ 、ても同様に使用する周波数帯域の設定を行う。
[0044] 図 10は上記(8)および(10)の干渉範囲内の同一 CAZAC系列のセルにつきセミ スタティックもしくはダイナミックにシグナリングなしで他セル干渉の測定に基づ 、て使 用する周波数帯域を選択する場合の例を示す図であり、同一の CAZAC系列が割り 当てられた基地局装置 BS1を中心とするセル C1と基地局装置 BS2を中心とするセ ル C2と基地局装置 BS3を中心とするセル C3のそれぞれにおいて、周波数帯域毎に 同一 CAZAC系列の他セル干渉(干渉電力)を測定することにより、同一の CAZAC 系列を割り当てられた他セルで使用して ヽると思われる周波数帯域を自律的に避け て、使用する周波数帯域を選択した状態を示している。上記 (8)と(10)では、他セル 干渉の測定およびそれに基づく制御の速さが異なり、(8)では所定期間内の平均的 な測定値に基づ 、て制御を行うが、 (10)では瞬間的な測定値に基づ 、て無線サブ フレーム毎に制御を行う。他の CAZAC系列についても同様に使用する周波数帯域 の設定を行う。
[0045] 図 11は上記(9)の干渉範囲内の同一 CAZAC系列のセルにつきダイナミックにシ ダナリングにより一元的な周波数帯域の割り当てを行う場合の例を示す図であり、同 一の CAZAC系列が割り当てられた基地局装置 BS1を中心とするセル C1と基地局 装置 BS2を中心とするセル C2と基地局装置 BS3を中心とするセル C3において、セ ル間で周波数帯域の割り当て (スケジューリング)を一元的に行うことで、使用する周 波数帯域が重ならないように、使用する周波数帯域を設定した状態を示している。他 の CAZAC系列についても同様に使用する周波数帯域の設定を行う。
[0046] 以下、上記の各手法を実現する装置構成について説明する。
[0047] 図 12は図 4もしくは図 8の場合の各セルで使用する Z使用しない周波数帯域を管 理する制御局装置の構成例を示す図である。図 12において、制御局装置 CSは、各 セルの基地局装置力 伝送路を介してトラヒック量等の各セルの情報を取得して使用 する周波数帯域を決定する使用帯域決定部 101と、使用帯域決定部 101で決定さ れた周波数帯域を保持する使用帯域情報保持部 102と、使用帯域情報保持部 102 に保持された周波数帯域に基づ ヽて制御信号を生成し、伝送路を介して各セルの 基地局装置に送出する制御信号生成部 103とを備えている。
[0048] 図 13は図 5もしくは図 9の場合の各セルでの周波数帯域を使用する優先順位を管 理する制御局装置の構成例を示す図である。図 13において、制御局装置 CSは、各 セルの基地局装置から伝送路を介してトラヒック量等の各セルの情報を取得して周波 数帯域を使用する優先順位を決定する帯域使用優先順位決定部 111と、帯域使用 優先順位決定部 111で決定された優先順位を保持する帯域使用優先順位情報保 持部 112と、帯域使用優先順位情報保持部 112に保持された優先順位に基づ!/ヽて 制御信号を生成し、伝送路を介して各セルの基地局装置に送出する制御信号生成 部 113とを備えている。
[0049] 図 14は図 4、図 5、図 8もしくは図 9の場合の基地局装置の構成例を示す図である。
図 14において、基地局装置 BSは、伝送路を介して制御局装置力も制御信号を受信 して無線リソースの割り当てを行う無線リソース割り当て部 201と、ユーザ端末 UEか ら信号を受信する受信部 202と、ユーザ端末 UEに信号を送信する送信部 203とを 備えている。無線リソース割り当て部 201は、伝送路を介して制御局装置力も制御信 号 (使用する周波数帯域の情報もしくは使用する優先順位の情報)を受信する制御 情報受信部 204と、受信部 202の受信信号からユーザ端末 UEと基地局装置 BS間 の伝搬路状態を測定する伝搬路状態測定部 205と、制御情報受信部 204で受信し た制御情報、受信部 202から取得した情報 (トラヒック種別、データ量等のトラヒック情 報)および伝搬路状態測定部 205で測定した伝搬路状態に基づ 、て無線リソースの スケジューリングを行うスケジューラ 206と、スケジューラ 206のスケジューリング結果 に基づいて上りリンクの無線リソース割り当てに関する制御信号を生成して送信部 20 3に送出する制御信号生成部 207とを備えている。
[0050] 図 15は図 6もしくは図 10の場合の基地局装置の構成例を示す図である。図 15に おいて、基地局装置 BSは、無線リソースの割り当てを行う無線リソース割り当て部 21 1と、ユーザ端末 UEから信号を受信する受信部 212と、ユーザ端末 UEに信号を送 信する送信部 213とを備えている。無線リソース割り当て部 211は、受信部 212の受 信信号からユーザ端末 UEと基地局装置 BS間の伝搬路状態を測定する伝搬路状態 測定部 214と、受信部 212の受信信号力 周波数帯域毎の干渉電力を測定する干 渉電力測定部 215と、受信部 212から取得した情報(トラヒック種別、データ量等のト ラヒック情報)、伝搬路状態測定部 214で測定した伝搬路状態および干渉電力測定 部 215で測定した干渉電力に基づいて無線リソースのスケジューリングを行うスケジ ユーラ 216と、スケジューラ 216のスケジューリング結果に基づいて上りリンクの無線リ ソース割り当てに関する制御信号を生成して送信部 213に送出する制御信号生成 部 217とを備えている。
[0051] 図 16は図 7もしくは図 11の場合の一元的な周波数帯域の割り当てを行う制御局装 置の構成例を示す図である。図 16において、制御局装置 CSは、各セルの基地局装 置から伝送路を介して各セルのトラヒック量等の各セルの情報および伝搬路状態の 情報、トラヒック種別、データ量等の各ユーザ端末の情報を取得して無線リソースのス ケジユーリングを行うスケジューラ 121と、スケジューラ 121のスケジューリング結果に 基づいて制御信号を生成し、伝送路を介して各セルの基地局装置に送出する制御 信号生成部 122とを備えて 、る。
[0052] 図 17は図 7もしくは図 11の場合の基地局装置の構成例を示す図である。図 17に おいて、基地局装置 BSは、無線リソースの割り当てを行う無線リソース割り当て部 22 1と、ユーザ端末 UEから信号を受信する受信部 222と、ユーザ端末 UEに信号を送 信する送信部 223とを備えている。無線リソース割り当て部 221は、受信部 222の受 信信号からユーザ端末 UEと基地局装置 BS間の伝搬路状態を測定する伝搬路状態 測定部 224と、受信部 222から取得したトラヒック種別、データ量等のトラヒック情報お よび伝搬路状態測定部 224の測定結果に基づ 、て制御信号を生成し、伝送路を介 して制御局装置へ送出する制御信号生成部 225と、伝送路を介して制御局装置から 上りリンクの無線リソースの割り当て情報を含む制御信号を受信する制御信号受信 部 226と、制御信号受信部 226で受信した制御信号に基づいて上りリンクの無線リソ ース割り当てに関する制御信号を生成して送信部 223に送出する制御信号生成部 2 27とを備えて ヽる。
[0053] 次に、図 10に示した干渉範囲内の同一 CAZAC系列のセルにつきセミスタティック もしくはダイナミックにシグナリングなしで他セル干渉の測定に基づいて使用する周 波数帯域を選択する場合における、他セル干渉の測定手法について説明する。
[0054] 図 18は同一 CAZAC系列の干渉の有無による Sounding RSとチャネル推定用 RSに よるチャネル応答の違いの例を示す図である。図 18において、周波数軸に対して So unding RSを用いて得られたチャネル応答が曲線 aのようになる場合、チャネル推定用 RSを用いて得られたチャネル応答は、同一 CAZAC系列の干渉がな ヽ場合は曲線 b のように曲線 aをなぞるような形で一致し、同一 CAZAC系列の干渉がある場合は曲 線 cのようにずれが生じる。従って、各セルにおいて、広帯域の Sounding RSを用いた チャネル推定値とチャネル推定用 RSを用いたチャネル推定値のずれを測定すること により、同一の CAZAC系列を割り当てられた他セルで使用していると思われる周波 数帯域を測定 (推定)することができる。
[0055] 〈同一の CAZAC系列の他セルからの干渉を検出した場合に、干渉の生じない他 の CAZAC系列に自律的に切り替える手法〉
この手法は、前述した図 10において、周波数帯域毎に同一 CAZAC系列の他セ ル干渉 (干渉電力)を測定し、同一の CAZAC系列を割り当てられた他セルで使用し ていると思われる周波数帯域が判明した場合、その周波数帯域についてストックして ある他の CAZAC系列に切り替えるものである。干渉の測定手法としては、図 18で説 明したものを使用することができる。
[0056] 装置構成としては、図 15と同様になり、スケジューラ 216は受信部 212から取得し た情報 (トラヒック種別、データ量等のトラヒック情報)、伝搬路状態測定部 214で測定 した伝搬路状態および干渉電力測定部 215で測定した干渉電力に基づき、 CAZA c系列の切替を含む無線リソースのスケジューリングを行う。
[0057] 〈干渉範囲内の各セルで所定の系列長の CAZAC系列を割り当てられるユーザ端 末が使用する周波数帯域等をランダムに設定する手法〉
この手法は、ある程度の RSの衝突は容認しつつも、ランダム化により衝突の確率を できるだけ低下させるようにしたものである。
[0058] 図 19は使用する周波数帯域をホッピングすることにより衝突のランダム化を図る場 合のパターン例を示す図であり、同一の CAZAC系列を用いたセル X、 Y、 Ζにっき、 各セルで所定の系列長の CAZAC系列を割り当てられるユーザ端末が使用する周 波数帯域をホッピングすることにより、同一の CAZAC系列を用いた信号との衝突を ランダム化している。なお、周波数ホッピングのパターンは、ランダムでも良いし、予め セル間で直交するように決められたパターンでも良い。
[0059] 図 20は無線サブフレーム毎に使用する CAZAC系列を切り替えることにより衝突の ランダム化を図る場合のパターン例を示す図であり、各セル X、 Υ、 Ζにおいて、無線 サブフレーム毎に所定の系列長の CAZAC系列を割り当てられるユーザ端末が使用 する CAZAC系列を切り替えることにより、同一の CAZAC系列を用いた信号との衝 突をランダム化している。なお、 CAZAC系列の切り替えパターンは、ランダムでも良 V、し、予めセル間で直交するように決められたパターンでも良!、。
[0060] 図 21は使用する周波数帯域のホッピングおよび無線サブフレーム毎の CAZAC系 列の切り替えにより衝突のランダム化を図る場合のパターン例を示す図であり、各セ ルにおいて所定の系列長の CAZAC系列を割り当てられるユーザ端末が使用する 周波数帯域をランダムにホッピングするとともに、無線サブフレーム毎に使用する CA ZAC系列を切り替えることにより、同一の CAZAC系列を用いた信号との衝突をラン ダム化している。なお、周波数ホッピングのパターンおよび CAZAC系列の切り替え パターンは、ランダムでも良いし、予めセル間で直交するように決められたパターンで も良い。
[0061] 以下、上記の各手法を実現する装置構成について説明する。
[0062] 図 22は図 19〜図 21の場合の制御局装置の構成例を示す図である。図 22におい て、制御局装置 CSは、周波数帯域のホッピングパターンを決定する周波数ホッピン グパターン決定部 131と、周波数ホッピングパターン決定部 131で決定されたホッピ ングパターンを保持する周波数ホッピングパターン保持部 132と、 CAZAC系列の切 り替えパターンを決定する符号切り替えパターン決定部 133と、符号切り替えパター ン決定部 133で決定された切り替えパターンを保持する符号切り替えパターン保持 部 134と、周波数ホッピングパターン保持部 132および符号切り替えパターン保持部 134に保持されたパターンに従って制御信号を生成し、伝送路を介して各セルの基 地局装置へ送出する制御信号生成部 135とを備えている。
[0063] 図 23は図 19〜図 21の場合の基地局装置の構成例を示す図である。図 23におい て、基地局装置 BSは、伝送路を介して制御局装置から制御信号を受信して無線リソ ースの割り当てを行う無線リソース割り当て部 231と、ユーザ端末 UE力も信号を受信 する受信部 232と、ユーザ端末 UEに信号を送信する送信部 233とを備えている。無 線リソース割り当て部 231は、伝送路を介して制御局装置力も制御信号 (周波数ホッ ビングパターン、符号切り替えパターンの情報)を受信する制御情報受信部 234と、 受信部 232の受信信号からユーザ端末 UEと基地局装置 BS間の伝搬路状態を測定 する伝搬路状態測定部 235と、制御情報受信部 234で受信した制御情報、受信部 2 32から取得した情報(トラヒック種別、データ量等のトラヒック情報)および伝搬路状態 測定部 235で測定した伝搬路状態に基づいて無線リソースのスケジューリングを行う スケジューラ 236と、スケジューラ 236のスケジューリング結果に基づいて上りリンクの 無線リソース割り当てに関する制御信号を生成して送信部 233に送出する制御信号 生成部 237とを備えている。
[0064] 図 24は図 19〜図 21の場合の基地局装置の他の構成例を示す図であり、制御局 装置を介さずに自律的に制御を行うようにしたものである。図 24において、基地局装 置 BSは、無線リソースの割り当てを行う無線リソース割り当て部 241と、ユーザ端末 U Eから信号を受信する受信部 242と、ユーザ端末 UEに信号を送信する送信部 243と を備えている。無線リソース割り当て部 241は、使用する周波数帯域を決定する使用 周波数決定部 244と、使用する CAZAC系列を決定する符号決定部 245と、受信部 242の受信信号力 ユーザ端末 UEと基地局装置 BS間の伝搬路状態を測定する伝 搬路状態測定部 246と、使用周波数決定部 244で決定された周波数帯域、符号決 定部 245で決定された CAZAC系列、受信部 242から取得した情報(トラヒック種別、 データ量等のトラヒック情報)および伝搬路状態測定部 246で測定した伝搬路状態に 基づ 、て無線リソースのスケジューリングを行うスケジューラ 247と、スケジューラ 247 のスケジューリング結果に基づいて上りリンクの無線リソース割り当てに関する制御信 号を生成して送信部 243に送出する制御信号生成部 248とを備えている。
[0065] く干渉範囲内の各セルにおける無線サブフレームの送信タイミングをずらす手法〉 図 25は無線サブフレームの送信タイミングをずらすことにより RSの衝突を回避する 場合の例を示す図である。同一の CAZAC系列を割り当てられたセル Cl、 C2、 · · · 間で送信タイミング (無線サブフレームタイミング)をずらすことにより、 RSどうしの衝突 を回避することができる。典型的には、この手法では各基地局装置の動作開始時に 設定を行う必要があるため、動作途中での設定変更を行わない。
[0066] 図 26は図 25の場合の制御局装置および基地局装置の構成例を示す図であり、制 御局装置 CSには各基地局装置 BS1、 BS2、 · · ·の送信タイミングをずらすためのタ イミング設定部 141が設けられている。
[0067] 一方、動作途中で送信タイミングをずらす場合について、図 27及び図 28を参照し て説明する。図 27は、各基地局装置において他の基地局装置力 の RS受信タイミン グの検出結果を示す図である。各基地局装置は、 自セル内のユーザ端末に対して、 RSの基地局における受信タイミングが同一になるように各ユーザ端末に対して送信タ イミングを制御し, 自セル内のユーザ端末の同一 CAZAC系列を用いた RS間の直交 を実現する。図 27では、自セル内のユーザ端末からの RS受信タイミングと他セル内 のユーザ端末からの RS受信タイミングとが全ての基地局装置で異なって 、るため、 R S間で干渉 (衝突)が生じて!/、な!/、。
[0068] しかし、予め RSどうしの衝突を回避するように送信タイミングをずらしておいた場合 であっても、ユーザ端末の移動などに伴って RSの衝突が生じる可能性がある。例え ば図 28に示すようにユーザ端末 Eが移動すると、セル C3の基地局装置は、ユーザ 端末 Eとユーザ端末 Fとの RS受信タイミングが同一になるように送信タイミングを制御 する。一方、セル Cl、 C2の基地局装置は、ユーザ端末 Eに対して送信タイミングを 制御しないため、ユーザ端末 Eからの RSと干渉が生じる場合がある。図 27では、セル CIで干渉が生じている。
[0069] このような場合に、各基地局装置は送信タイミングをずらすように自セル内のユーザ 端末に指示する。送信タイミングは、 RSを送信する RSが他セルの RS受信タイミングと 重ならな!/、時間或!、は衝突が少なくなる時間に設定する。このように各基地局装置 で送信タイミングを自律的に制御することで、動作途中で送信タイミングをずらして干 渉を低減することができる。
[0070] ただし、各基地局装置で自律的に制御する場合、セル C1の基地局装置が送信タ イミングをずらした結果として、他のセル C2で干渉を生じる可能性がある。他のセル C2で送信タイミングをずらすと、この結果として、セル C1で再び干渉が生じる場合が ある。このような状態を低減するため、同一の CAZAC系列を使用する基地局装置間 で情報交換を行 、、 RSを送信する RSが他セルの RS受信タイミングと重ならな 、時間 或いは衝突が少なくなる時間に送信タイミングを制御してもよ ヽ。
[0071] なお、送信タイミングをずらすときに、送信タイミングは、ハイブリッド ARQ (Automati c Repeat request)や AMC (Adaptive Modulation and Coding)等の制御遅延が生じ ない範囲で制御されることが好ましい。なお、他セル力 の干渉を回避するための送 信タイミングの制御情報は、上りリンクのセル内ユーザ間で受信タイミングを同期させ るときに用いられる制御ビットを再利用して実現してもよい。
[0072] 図 29は、送信タイミングを自律的に制御する場合の基地局装置 BSを示す図である 。基地局装置 BSは、衝突検出部 251及び送信タイミング制御部 252を有する。衝突 検出部 251は、自セルの RSと他セルのユーザ端末力もの RSとの衝突を検出する。衝 突が検出された場合に、送信タイミング制御部 252は、 RSを送信する RSが他セルの R S受信タイミングと重ならな 、時間或いは衝突が少なくなる時間に設定する。
[0073] 図 30は、基地局装置間で情報交換を行って送信タイミングを制御する場合の基地 局装置 BSを示す図である。基地局装置 BSは、衝突検出部 261、送信タイミング制 御部 262及び情報交換部 263を有する。衝突検出部 251は、自セルの RSと他セル のユーザ端末からの RSとの衝突を検出する。衝突が検出された場合に、送信タイミン グ制御部 252は、 RSを送信する RSが他セルの RS受信タイミングと重ならな 、時間或 いは衝突が少なくなる時間に設定する。設定した情報は、情報交換部 263から同じ C AZAC系列を使用する他の基地局装置に通知される。一方、他セルでタイミングを ずらすという情報を情報交換部 263で受信すると、自セルで衝突が生じる力否かを 判定し、衝突が生じる場合には送信タイミング部 262で送信タイミングを制御する。各 基地局装置で送信タイミングの情報交換が無限に続くことを回避するため、基地局 装置に優先度を設けてもよい。すなわち、優先度の高い基地局装置から送信タイミン グを設定しはじめ、設定した情報を優先度の低い基地局装置に通知してもよい。
[0074] なお、上記の実施形態は、適宜組み合わせて用いることができる。実施形態を組み 合わせて用いることにより、干渉する確率をより低減することが可能になる。
[0075] 〈総括〉
以上のように、本実施形態の移動通信システムにあっては、上りリンクのチャネル推 定等に用いられる有限数の CAZAC系列を複数のセルに繰り返し割り当ててなる移 動通信システムにおいて、干渉範囲内の各セルにおける所定の系列長の CAZAC 系列を割り当てられるユーザ端末の使用周波数帯域を他のセルの使用周波数帯域 と異なるものに設定する手法、同一の CAZAC系列が割り当てられた他セル力 の干 渉を検出した場合に干渉の生じない他の CAZAC系列に自律的に切り替える手法、 干渉範囲内の各セルにおける所定の系列長の CAZAC系列を割り当てられるユー ザ端末の使用周波数帯域もしくは CAZAC系列をランダムに設定する手法、あるい は、干渉範囲内の各セルにおける無線サブフレームの送信タイミングをずらす手法を 使い分けることにより、 CAZAC系列の系列数が小さい場合でも、 RSの衝突を回避し て通信品質の低下を防止することができる。
[0076] 以上、本発明の好適な実施の形態により本発明を説明した。ここでは特定の具体 例を示して本発明を説明したが、特許請求の範囲に定義された本発明の広範な趣 旨および範囲力 逸脱することなぐこれら具体例に様々な修正および変更を加える ことができることは明らかである。すなわち、具体例の詳細および添付の図面により本 発明が限定されるものと解釈してはならない。
[0077] 本国際出願は 2006年 6月 19日に出願した日本国特許出願 2006— 169459号及 び 2006年 10月 3日に出願した日本国特許出願 2006— 272342号に基づく優先権 を主張するものであり、 2006— 169459号及び 2006— 272342号の全内容を本国 際出願に援用する

Claims

請求の範囲
[1] 上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセルに 繰り返し割り当ててなる移動通信システムにお 、て、
干渉範囲内の各セルで所定の系列長の参照信号系列を割り当てられるユーザ端 末が使用する周波数帯域を、他のセルで使用する周波数帯域と異なるものに設定す る手段を備えたことを特徴とする移動通信システム。
[2] 請求項 1に記載の移動通信システムにお 、て、
干渉範囲内の全てのセルにつき、使用する周波数帯域を干渉範囲内の他の全て のセルで使用する周波数帯域と異なるものに設定することを特徴とする移動通信シ ステム。
[3] 請求項 1に記載の移動通信システムにお 、て、
干渉範囲内の同一の参照信号系列が割り当てられたセルにつき、使用する周波数 帯域を干渉範囲内の同一の参照信号系列が割り当てられた他のセルで使用する周 波数帯域と異なるものに設定することを特徴とする移動通信システム。
[4] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、時間的に緩やかなセミスタティックに行う ことを特徴とする移動通信システム。
[5] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、無線サブフレーム毎にダイナミックに行う ことを特徴とする移動通信システム。
[6] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、他のセルとの情報のシグナリングに基づ V、て行うことを特徴とする移動通信システム。
[7] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、他のセルとの情報のシグナリングなしに 各セルにぉ 、て自律的に行うことを特徴とする移動通信システム。
[8] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、時間的に緩やかなセミスタティックに行!ヽ 各セルで使用する周波数帯域の設定を、他のセルとの情報のシグナリングに基づ いて行い、
上記シグナリングにより各セルで使用するもしくは使用しない周波数帯域を共有し て使用する周波数帯域を選択することを特徴とする移動通信システム。
[9] 請求項 1に記載の移動通信システムにお 、て、
各セルで使用する周波数帯域の設定を、時間的に緩やかなセミスタティックに行!ヽ 各セルで使用する周波数帯域の設定を、他のセルとの情報のシグナリングに基づ いて行い、
上記シグナリングにより各セルでの周波数帯域を使用する優先順位を共有して使 用する周波数帯域を選択することを特徴とする移動通信システム。
[10] 上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセルに 繰り返し割り当ててなる移動通信システムにお 、て、
同一の参照信号系列が割り当てられた他セル力もの干渉を検出した場合に、干渉 の生じない他の参照信号系列に自律的に切り替える手段を備えたことを特徴とする 移動通信システム。
[11] 上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセルに 繰り返し割り当ててなる移動通信システムにお 、て、
干渉範囲内の各セルで所定の系列長の参照信号系列を割り当てられるユーザ端 末が使用する周波数帯域もしくは参照信号系列をランダムに設定する手段を備えた ことを特徴とする移動通信システム。
[12] 上りリンクのチャネル推定等に用いられる有限数の参照信号系列を複数のセルに 繰り返し割り当ててなる移動通信システムにお 、て、
干渉範囲内の各セルにおける無線サブフレームの送信タイミングをずらす手段を備 えたことを特徴とする移動通信システム。
[13] 請求項 12に記載の移動通信システムにおいて、
自セル内の参照信号の受信タイミングと他セル力 の参照信号の受信タイミングと の衝突を検出する手段、及び
参照信号の衝突が検出された場合に、送信タイミングをずらす手段を備えたことを 特徴とする移動通信システム。
[14] 請求項 13に記載の移動通信システムにおいて、
送信タイミングをずらす情報を他セルに通知する手段を備えたことを特徴とする移 動通信システム。
[15] 請求項 13に記載の移動通信システムにおいて、
参照信号の衝突が検出された場合に、制御遅延を考慮して送信タイミングをずらす ことを特徴とする移動通信システム。
[16] 請求項 13に記載の移動通信システムにおいて、
送信タイミングをずらす情報は、上りリンクのセル内ユーザ間で受信タイミングを同 期させるときに用いられる制御ビットに含まれることを特徴とする移動通信システム。
PCT/JP2007/062058 2006-06-19 2007-06-14 移動通信システム WO2007148614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800303479A CN101507311B (zh) 2006-06-19 2007-06-14 移动通信系统
BRPI0713130-5A BRPI0713130A2 (pt) 2006-06-19 2007-06-14 sistema de comunicação móvel
MX2008016057A MX2008016057A (es) 2006-06-19 2007-06-14 Sistemas de comunicaciones movil.
US12/305,144 US8520608B2 (en) 2006-06-19 2007-06-14 Mobile communication system
EP07745315.7A EP2037601A4 (en) 2006-06-19 2007-06-14 MOBILE COMMUNICATION SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006169459 2006-06-19
JP2006-169459 2006-06-19
JP2006272342A JP4932419B2 (ja) 2006-06-19 2006-10-03 移動通信システム
JP2006-272342 2006-10-03

Publications (1)

Publication Number Publication Date
WO2007148614A1 true WO2007148614A1 (ja) 2007-12-27

Family

ID=38833356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062058 WO2007148614A1 (ja) 2006-06-19 2007-06-14 移動通信システム

Country Status (10)

Country Link
US (1) US8520608B2 (ja)
EP (1) EP2037601A4 (ja)
JP (1) JP4932419B2 (ja)
KR (1) KR20090033357A (ja)
CN (1) CN101507311B (ja)
BR (1) BRPI0713130A2 (ja)
MX (1) MX2008016057A (ja)
RU (1) RU2009101079A (ja)
TW (1) TW200810411A (ja)
WO (1) WO2007148614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102342053A (zh) * 2009-03-03 2012-02-01 夏普株式会社 无线通信系统、接收装置、发送装置、无线通信系统的通信方法、控制程序和自主分散网络
EP4021025A1 (en) * 2009-02-02 2022-06-29 Mitsubishi Electric Corporation Mobile communication system and base station

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793569B2 (ja) * 2006-06-19 2011-10-12 日本電気株式会社 帯域割当方法および無線通信システム
US8340154B2 (en) 2007-03-15 2012-12-25 Panasonic Corporation Radio transmission device and radio transmission method
CN101766008A (zh) * 2007-08-08 2010-06-30 松下电器产业株式会社 无线发送装置和无线通信方法
US8730933B2 (en) 2008-09-18 2014-05-20 Qualcomm Incorporated Method and apparatus for multiplexing data and reference signal in a wireless communication system
US9288026B2 (en) 2009-06-22 2016-03-15 Qualcomm Incorporated Transmission of reference signal on non-contiguous clusters of resources
KR101642311B1 (ko) 2009-07-24 2016-07-25 엘지전자 주식회사 CoMP 참조신호 송수신 방법
KR101667428B1 (ko) * 2009-08-25 2016-10-18 한국전자통신연구원 스테이션의 프리앰블 생성 방법 및 장치, 데이터 프레임 생성 방법
US8619687B2 (en) * 2010-02-12 2013-12-31 Sharp Laboratories Of America, Inc. Coordinating uplink resource allocation
KR101253197B1 (ko) 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
KR101699493B1 (ko) 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치
KR20120080492A (ko) * 2011-01-07 2012-07-17 주식회사 팬택 다중 요소 반송파를 이용하는 통신 시스템에서의 비주기적 참조신호 송수신 방법 및 장치
KR20120082717A (ko) * 2011-01-14 2012-07-24 주식회사 팬택 이종 통신 시스템에서의 위치 참조 신호 뮤팅 방법과 장치, 및 그를 이용한 위치측정 장치와 방법
EP2487976A1 (en) * 2011-02-09 2012-08-15 Alcatel Lucent Apparatus, system, method and computer program for assigning a radio resource
CN103733583A (zh) * 2011-08-05 2014-04-16 瑞典爱立信有限公司 参考信号生成技术
KR101815946B1 (ko) * 2011-09-26 2018-01-18 삼성전자주식회사 동작 주파수 대역과 다른 주파수 대역에서의 충돌을 검출하는 통신 장치 및 그 통신 방법
US9743343B2 (en) * 2011-12-12 2017-08-22 Intel Deutschland Gmbh Method for receiving information and communication terminal
EP2627051B1 (en) 2012-02-08 2014-08-06 Vodafone IP Licensing Limited Avoidance of reference symbol collision in a cellular radio network
WO2014119246A1 (ja) 2013-01-29 2014-08-07 京セラ株式会社 通信システム、通信方法、及び通信装置
JP6091227B2 (ja) * 2013-01-29 2017-03-08 京セラ株式会社 通信システム、通信方法、及び通信装置
EP3542486B1 (en) * 2016-11-16 2021-03-24 Telefonaktiebolaget LM Ericsson (publ) Listen before talk for reference signals in mimo systems
WO2018125796A1 (en) * 2016-12-27 2018-07-05 Denso International America, Inc. System and method for microlocation sensor communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102917A (ja) * 1991-10-04 1993-04-23 Nec Corp 無線チヤネル割り当て方式
JP2001517047A (ja) * 1997-09-17 2001-10-02 ノキア モービル フォーンズ リミテッド セルラー無線システムの基地局におけるチャネル割当て
JP2002505820A (ja) * 1997-06-24 2002-02-19 テレフォンアクチーボラゲット エル エム エリクソン(パブル) セル式ネットワークにおける方法およびシステム
JP2004112590A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd 無線基地装置、参照信号割当方法および参照信号割当プログラム
JP2006169459A (ja) 2004-12-20 2006-06-29 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2006272342A (ja) 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511233A (en) * 1994-04-05 1996-04-23 Celsat America, Inc. System and method for mobile communications in coexistence with established communications systems
US6038455A (en) * 1995-09-25 2000-03-14 Cirrus Logic, Inc. Reverse channel reuse scheme in a time shared cellular communication system
AU2108597A (en) * 1996-02-27 1997-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Voice channel selection for reduced interference in a frequency reuse cellular system
WO1999003289A1 (en) * 1997-07-07 1999-01-21 Nokia Networks Oy A method for flexible capacity dynamic frequency allocation in cellular radio networks
US6522644B2 (en) * 1998-06-25 2003-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Method for decorrelating background interference in a time-synchronized mobile communications system
US6615047B1 (en) * 1999-04-08 2003-09-02 Mitsubishi Denki Kabushiki Kaisha Radio communications system
US6452962B1 (en) * 1999-06-11 2002-09-17 Trw Inc. Mitigation of co-channel interference in synchronization bursts in a multi-beam communication system
EP1178641B1 (en) * 2000-08-01 2007-07-25 Sony Deutschland GmbH Frequency reuse scheme for OFDM systems
JP2005525725A (ja) * 2002-01-21 2005-08-25 シーメンス モービル コミュニケイションズ ソシエタ ペル アチオニ タイムスロットシステムにおいて初期セルサーチを行う方法及び移動局
US20030198281A1 (en) * 2002-04-17 2003-10-23 Ian Grier Wireless communications system
EP1631109A1 (en) * 2003-06-05 2006-03-01 Keio University Radio communication apparatus, radio communication method, communication channel assigning method and assigning apparatus
EP1762012B1 (en) * 2004-06-18 2008-11-12 Telefonaktiebolaget LM Ericsson (publ) Co-sequence interference detection and treatment
US7643832B2 (en) * 2004-07-12 2010-01-05 Motorola, Inc. Method and apparatus for reference signal selection in a cellular system
JP4619077B2 (ja) * 2004-09-22 2011-01-26 株式会社エヌ・ティ・ティ・ドコモ 周波数帯割当装置
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
JP4309878B2 (ja) * 2005-08-17 2009-08-05 株式会社東芝 無線端末
US8000305B2 (en) * 2006-01-17 2011-08-16 Motorola Mobility, Inc. Preamble sequencing for random access channel in a communication system
KR100913089B1 (ko) * 2006-02-07 2009-08-21 엘지전자 주식회사 다중 반송파 시스템에 적용되는 파일럿 신호 전송 방법
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
US8098745B2 (en) * 2006-03-27 2012-01-17 Texas Instruments Incorporated Random access structure for wireless networks
CN101479951B (zh) * 2006-04-27 2013-10-30 德克萨斯仪器股份有限公司 在无线通信系统中分配参考信号的方法和装置
JP4606494B2 (ja) * 2006-06-07 2011-01-05 富士通株式会社 基地局及びパイロット系列への周波数割り当て方法
JP4793569B2 (ja) * 2006-06-19 2011-10-12 日本電気株式会社 帯域割当方法および無線通信システム
WO2008031037A2 (en) * 2006-09-07 2008-03-13 Texas Instruments Incorporated Antenna grouping for mimo systems
US20090110114A1 (en) * 2007-10-26 2009-04-30 Eko Nugroho Onggosanusi Open-Loop MIMO Scheme and Signaling Support for Wireless Networks
JP5102917B2 (ja) * 2008-02-22 2012-12-19 株式会社日立製作所 ストレージ装置及びアクセス命令送信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102917A (ja) * 1991-10-04 1993-04-23 Nec Corp 無線チヤネル割り当て方式
JP2002505820A (ja) * 1997-06-24 2002-02-19 テレフォンアクチーボラゲット エル エム エリクソン(パブル) セル式ネットワークにおける方法およびシステム
JP2001517047A (ja) * 1997-09-17 2001-10-02 ノキア モービル フォーンズ リミテッド セルラー無線システムの基地局におけるチャネル割当て
JP2004112590A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd 無線基地装置、参照信号割当方法および参照信号割当プログラム
JP2006169459A (ja) 2004-12-20 2006-06-29 Toray Fine Chemicals Co Ltd 硬化型組成物
JP2006272342A (ja) 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2037601A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4021025A1 (en) * 2009-02-02 2022-06-29 Mitsubishi Electric Corporation Mobile communication system and base station
CN102342053A (zh) * 2009-03-03 2012-02-01 夏普株式会社 无线通信系统、接收装置、发送装置、无线通信系统的通信方法、控制程序和自主分散网络

Also Published As

Publication number Publication date
JP2008028977A (ja) 2008-02-07
EP2037601A4 (en) 2014-02-26
RU2009101079A (ru) 2010-07-27
US8520608B2 (en) 2013-08-27
JP4932419B2 (ja) 2012-05-16
EP2037601A1 (en) 2009-03-18
MX2008016057A (es) 2009-03-25
TW200810411A (en) 2008-02-16
CN101507311B (zh) 2013-04-24
US20100027483A1 (en) 2010-02-04
CN101507311A (zh) 2009-08-12
BRPI0713130A2 (pt) 2012-04-17
KR20090033357A (ko) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2007148614A1 (ja) 移動通信システム
US10886967B2 (en) Frequency hopping
US10084508B2 (en) Frequency hopping pattern and method for transmitting uplink signals using the same
CN107736064B (zh) 用于在终端之间发送信号的方法及其设备
EP2139256B1 (en) Base station device, mobile station and wireless communication system, and communication control method
US8767653B2 (en) Random access design for high doppler in wireless network
US11929825B2 (en) Method and apparatus for transmitting and receiving sidelink synchronization signal in wireless communication system
JP5041890B2 (ja) 基地局装置及びユーザ装置並びにリファレンスシグナル系列の割り当て方法
JP5232660B2 (ja) 移動通信システム、無線基地局及び移動局
CN110856256A (zh) 一种用于无线通信中的方法和装置
WO2010110283A1 (ja) 無線基地局及び移動通信方法
KR20220121866A (ko) 무선 통신 시스템에서의 사운딩 참조 신호의 전송 증가
EP3503652A1 (en) Resource determining method, base station, and mobile station
JP5066236B2 (ja) 基地局装置、及び受信方法
JP2012249319A (ja) 移動無線通信システムにおけるパイロット配置方法及びこれを適用する送受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030347.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2008/016057

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 5128/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007745315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097000605

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009101079

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12305144

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081217