WO2007145343A1 - 被検対象物の分析方法および分析装置 - Google Patents

被検対象物の分析方法および分析装置 Download PDF

Info

Publication number
WO2007145343A1
WO2007145343A1 PCT/JP2007/062177 JP2007062177W WO2007145343A1 WO 2007145343 A1 WO2007145343 A1 WO 2007145343A1 JP 2007062177 W JP2007062177 W JP 2007062177W WO 2007145343 A1 WO2007145343 A1 WO 2007145343A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
analysis
flow path
sulfur
analysis method
Prior art date
Application number
PCT/JP2007/062177
Other languages
English (en)
French (fr)
Inventor
Junichi Isegawa
Akira Nakayama
Akira Yamada
Naoko Arashida
Takao Tamura
Izumi Miyazaki
Original Assignee
Ajinomoto Co., Inc.
Gl Sciences Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc., Gl Sciences Incorporated filed Critical Ajinomoto Co., Inc.
Priority to JP2008521283A priority Critical patent/JPWO2007145343A1/ja
Publication of WO2007145343A1 publication Critical patent/WO2007145343A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/40Flow patterns using back flushing
    • G01N2030/402Flow patterns using back flushing purging a device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids

Definitions

  • the present invention relates to an analysis method and an analysis apparatus for a test object, and in particular, an analysis of a sulfur-containing compound contained in a measurement sample, particularly a substance having a thiol group such as cysteine and cystine, or a substance having a disulfide bond. Regarding the method.
  • the present invention also has multi-component strength such as sugar, electrolyte, amino acid, etc. like infusion preparations and biological samples, and is suitable for highly sensitive and highly accurate analysis in sticky measurement samples.
  • cystine which is one of active ingredients such as infusion preparations, is less stable than other amino acids and is changed to cystine or the like during storage and its content is reduced. Therefore, accurate quantification of cysteine, cystine, etc. in pharmaceutical preparations is important for quality control.
  • the conventional standard analysis method for L-cystine is to react L-cysteine with 4,4'-dithiodipyridine (4 PDS) at a maximum absorption wavelength of 324 nm derived from the reaction product 4-thiopyridone.
  • An ultraviolet-visible absorbance measurement method (4 PDS method) for measuring the absorbance can be mentioned.
  • the 4 PDS method requires an analysis operation for a long time, is complicated, and is an inefficient test method.
  • a conventional standard analysis method for L-cystine is an amino acid analysis method, and includes a post-column derivatization method using a derivatization reagent that selectively reacts with an amino group.
  • the post-column derivatization method is a method in which an amino acid is separated by cation exchange chromatography, a derivative reagent (ninhydrin) is fed, reacted with the amino acid, and analyzed with a visible absorbance detector.
  • the analysis time per sample is about 134 minutes, which is an inefficient analysis method.
  • thiol group is more active than hydroxyl groups such as alcohol (mono OH). It can easily become a dimer via a disulfide bond (one S—S—) due to pH change or enzyme. Bind to molecules with other thiol groups.
  • amino acids of the reduced form (one SH) and the acid salt form (one S—S) are cystine cystine, homocystine homocystin, glutathione-glutathione disulfide, and the thiamine thiol type one thiamine disulfide known as vitamin B. (See non-patent documents 1 and 2).
  • a pretreatment using a fluorescent derivatization reagent that selectively reacts with a thiol group, separation by liquid chromatography, and fluorescence detection is then performed.
  • a thiol group is directly detected by an electrochemical detector using a carbon electrode.
  • the derivatization method (pre-column derivatization method) requires the sample to be adjusted to neutral to weak alkaline during the derivatization reaction. Under these conditions, thiol groups form disulfide bonds with each other, and a large number of samples can be accurately obtained immediately. It is very difficult to process. An electrochemical detector using a carbon electrode is very difficult to measure with high accuracy and poor stability as described later.
  • the incense of franchthiol or grapefruit determines the incense of the order of ppb to ppt. ⁇ It has become important to manage the production of products that contain mercaptohexanol and other products that have high added value.
  • mercaptohexanol is produced in the form of a precursor that is S—S bonded to cystine. By measuring these before harvesting, the best time can be determined (see Non-Patent Document 3).
  • the electrochemical detector is often used after the UV-visible, the differential refractive index, and the fluorescence detector, and is characterized by high selectivity and high sensitivity. For this reason, it is being applied to biochemistry and environmental fields that contain a large amount of contaminants and have a very small amount of target components.
  • the main advantages of this electrochemical detector are as follows: (1) Analysis of trace components that require four or more orders of magnitude higher sensitivity than UV-visible light detectors commonly used in liquid chromatography ( 2) From the reaction principle, only oxidation or reduction substances react electrochemically, so the selectivity is high.
  • conductive diamond imparted conductivity by doping the working electrode with boron Diamond electrodes that use these materials have also been widely proposed.
  • the conductive diamond electrode has a wide potential window in an aqueous solution, that is, a wide potential region in which electrolysis of water does not occur, and can perform a stable reaction by applying a high applied voltage.
  • the width of the potential window is determined by the overpotential for hydrogen generation and oxygen generation on the electrode surface.
  • Conductive diamond electrodes are used for various types of detection.
  • Patent Document 1 Some of the present inventors use a conductive diamond electrode for a detector flow cell of liquid chromatography, and enable detection by applying a high potential to a hardly reactive substance.
  • This method in combination with a coulometric cell, improves the separation by removing electrochemically active contaminants and trace substances and converting them to another substance.
  • Patent Document 2 utilizes the property that the diamond electrode is specifically sensitive to hydrogen peroxide, and is applied to the detection of the concentration of substances by enzymatic reaction.
  • Nagaoka et al. provides a detection unit using a flow-type amino acid analyzer that has been subjected to a mirror surface treatment and an oxygen-terminated conductive diamond electrode. Oxygen termination is performed using plasma in an oxygen-saturated atmosphere, but this method cannot be performed while the mobile phase is flowing with the electrode installed and the system is assembled. You need to be offline. For this reason, when multiple samples and continuous repeated analysis are performed, the electrode surface state is inevitably changed, and stable analysis is impossible.
  • Patent Document 1 Pamphlet of International Publication No. 01Z67089
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-121410
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-69692
  • Non-patent literature l Biomed. Chromatogr., 3, 166—172 (1989)
  • Non-Patent Document 2 Cancer Res., 61, 4365 -4370 (2001)
  • Non-Patent Document 3 Takatoshi Tominaga: Aroma incense, Frederance Journal
  • An object of the present invention is to provide an efficient analysis method for a test object contained in a measurement sample and an analysis apparatus therefor.
  • an object of the present invention is to provide a method capable of simultaneously analyzing cystine, cystine and one or more sulfur-containing compounds contained in a measurement sample in a short time. More preferably, it is a multi-component force of sugar, electrolytes, amino acids, etc., such as infusion preparations and biological samples, and it is accurate for sulfur-containing compounds such as cysteine and cystine in viscous samples. The issue is to provide a method that can be analyzed well in a short time.
  • the present inventors have intensively studied in order to solve the above problems, and have completed the present invention.
  • the present invention includes the following items.
  • the flow path P1 is a flow path that passes through the pretreatment column in the forward direction and then passes through the analysis column to the detector, and the flow path P2 does not pass through the pretreatment column and passes through the analysis column.
  • the flow path P3 is a flow path that passes through the pretreatment column in the reverse direction and is discharged without passing through the analysis column and the detector).
  • the step (1) is ended and the step (2) is started after the test object passes through the pretreatment column in the step (1).
  • test object is two or more amino acids.
  • the mobile phase contains water, an electrolyte and an ion-pair compound, and has a pH of 1 to 3.
  • a flow path switching device capable of reversibly switching the direction of the flow path
  • a sample introduction flow path for flowing the mobile phase together with the measurement sample to the flow path switching device
  • a mobile phase introduction flow path for flowing the mobile phase alone to the flow path switching device
  • the flow path switching device is configured to be able to switch between the following states (A) and (B).
  • test object is a sulfur-containing compound.
  • test object is two or more sulfur-containing compounds.
  • test object is two or more amino acids.
  • a highly accurate and stable measurement can be performed by using a low-noise diamond electrode type electrochemical detector with high selectivity and a column switching method.
  • this contaminant can be removed quickly without going through the analytical column, so the next measurement can be started immediately, and as a result, the measurement time can be greatly shortened. . Therefore, continuous analysis of multiple samples is possible.
  • a viscous test sample containing multiple components such as an infusion preparation and a dialysis agent is used as a suitable test subject.
  • a plurality of sulfur-containing compounds, particularly cysteine and cystine, can be clearly separated in a short time and analyzed with high accuracy.
  • the separation method is not limited to reverse phase analysis using an ion pair compound, and can be used in ordinary reverse phase, normal phase and ion exchange methods, and does not depend on the separation mechanism.
  • the preparation of the sample and standard solution, the mobile phase, etc. are all carried out under acidic conditions, and the effects of oxidation and the formation of new disulfide bonds are achieved by simple operations.
  • a plurality of sulfur-containing compound components can be clearly separated in a short time and analyzed with high accuracy.
  • two sulfur-containing amino acids, particularly cystine and cystine, contained in a dialysis agent and the like are clearly separated in a short time, and accurately and simultaneously analyzed. Can do.
  • stable measurement can be performed without recombination of the system by conducting acid-electrolytic electropolishing treatment of the conductive diamond electrode while flowing the mobile phase.
  • FIG. 1 schematically shows a flow path P1.
  • FIG. 2 schematically shows flow paths P2 and P3.
  • FIG. 3 shows a chromatogram obtained by analyzing a standard solution.
  • Example 1 [FIG. 4] FIG. 4 shows a chromatogram of cysteine without acid electropolishing.
  • Example 1 shows the chromatogram of cysteine with acid electropolishing.
  • Example 1 [FIG. 6] FIG. 6 shows a chromatogram obtained by analysis of an infusion preparation.
  • Example 1 [FIG. 7] FIG. 7 shows a chromatogram obtained by analysis of a standard solution.
  • FIG. 8 shows a chromatogram obtained by analysis of an infusion preparation.
  • Example 2 [FIG. 9] FIG. 9 shows a chromatogram obtained by analysis of a standard solution.
  • FIG. 10 shows a chromatogram obtained by analyzing a standard solution.
  • FIG. 11 shows a chromatogram of a mouse plasma sample.
  • FIG. 12 shows a chromatogram of a sample obtained by adding a standard solution to mouse plasma. (Example 4)
  • FIG. 13 shows an enlarged view of FIG. (Example 4)
  • FIG. 14 is an enlarged view of FIG. (Example 4)
  • FIG. 15 shows chromatograms obtained by continuously measuring rat plasma samples.
  • Example 5 [FIG. 16]
  • FIG. 16 shows a chromatogram obtained by analysis of a standard solution.
  • FIG. 17 shows a chromatogram obtained by analysis of red wine.
  • Example 7 shows a chromatogram of red wine.
  • FIG. 18 shows a chromatogram of 3 mercapto-1 hexanol.
  • Example 8) [FIG. 19]
  • FIG. 19 shows a chromatogram of furanthiol.
  • Example 9 shows chromatograms obtained by continuously measuring rat plasma samples.
  • Example 16 shows a chromatogram obtained by analysis of a standard solution.
  • Example 1 shows a chromatogram obtained by analysis of red wine.
  • Example 7 shows a chromatogram obtained by analysis of red wine.
  • FIG. 18 shows a chromatogram of 3 mercapto-1 hexanol.
  • Example 8) [FIG. 19]
  • FIG. 19 shows a chromatogram of furan
  • FIG. 20 shows a chromatogram in HILIC mode. (Example 10)
  • test object is “cystine and cystine”
  • the test object is not particularly limited.
  • the measurement sample of the present invention is not particularly limited as long as it is a sample to be analyzed, and specifically includes an infusion preparation, a dialysis agent, a fermentation broth, a biological sample (plasma 'tissue) and the like. Can be mentioned. Analyzing the test object also includes confirming that the test object does not exist! Therefore, it is not necessary that the test object is included in the measurement sample.
  • the test object is two or more amino acids.
  • the amino acid in the present invention includes not only natural amino acids but also non-natural amino acids, amino acid derivatives and amino acids, and sulfur-containing amino acids are preferred.
  • the two or more sulfur-containing amino acids are preferably cystine and cystine.
  • Cysteine (cysteine) is a type of amino acid with a thiol group in the side chain.
  • Cystine is a kind of amino acid, and has a structure in which two molecules of cysteine are connected via a disulfide (S—S) bond formed by the acid of the thiol group (SH).
  • the test object may be a sulfur-containing compound.
  • a sulfur-containing compound is a compound having a thio atom in its chemical structure, for example, a compound having a sulfur-containing functional group such as a thiol group, a disulfide bond, a sulfide bond, a sulfoxide bond, a sulfone bond, sulfinic acid, sulfonic acid, and sulfuric acid. And a compound having a thiol group or a disulfide bond is preferred.
  • the sulfur-containing compound is preferably a sulfur-containing amino acid.
  • the above-mentioned cystine or cystine is a specific example of a sulfur-containing amino acid.
  • sulfur-containing amino acid examples include methionine, N-acetylenocystine (for example, N-acetylenoyl L-cysteine), and cystesteinolephinic acid. , Homocystine norephinic acid, homocystine, homocystin and the like.
  • sulfur-containing compounds that are not sulfur-containing amino acids include sulfur-containing peptides such as glutathione (including reduced and oxidized dartathione), and other 3-mercapto 1 hexanol and furanthiol. .
  • cysteine cysteine, cystine, N-acetyl cysteine, homocystine, and dartathione are preferable.
  • a method for analyzing a test object, particularly two or more sulfur-containing compounds (especially cysteine and cystine) contained in a measurement sample widely includes finding the state of the test object in the measurement sample. It is a concept to include, and the analysis may be a qualitative analysis or a quantitative analysis. Further, the method of the present invention may be used as a standard test method for pharmaceutical products and a quality control test method in a factory.
  • the method of the present invention may be a method for detecting whether or not a test object is included in a measurement sample, that is, a detection method.
  • the method of the present invention may be a method for measuring at least one concentration of cystine and cystine in a measurement sample.
  • a pretreatment column suitable for cysteine and cystine is significantly longer than cysteine and cystine!
  • the effect is great for measurement samples that contain contaminants that require passage time. That is, the contaminant remains in the vicinity of the inlet of the pretreatment column in step (1), and is quickly removed without passing through the analysis column by flowing the mobile phase in the reverse direction in step (2).
  • impurities include tyrosine, tryptophan, histidine, and methionine, which are electrochemically active amino acids.
  • contaminants such as sugars (such as glucose) and electrolytes (such as sodium chloride sodium, sodium lactate, calcium dalconate, magnesium sulfate and zinc sulfate) contained in the sample are not detected by the method of the present invention.
  • sugars such as glucose
  • electrolytes such as sodium chloride sodium, sodium lactate, calcium dalconate, magnesium sulfate and zinc sulfate
  • a liquid chromatography technique can be used as appropriate.
  • reverse phase column liquid chromatography using a mobile phase containing water and an electrolyte can be employed.
  • embodiments using a reverse phase column will be described, but the present invention is not limited to this.
  • a general acidic mobile phase may be used as the mobile phase.
  • the pH of the mobile phase is preferably 1 to 3.
  • the electrolyte contained in the mobile phase is not particularly limited to dipotassium hydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, sodium kennate, sodium acetate, Examples include sodium carbonate.
  • An example of a suitable mobile phase is a mixture of the following components A and B.
  • the A component is a phosphate buffer ( ⁇ 1-3) having 10 to 100 mM sodium dihydrogen phosphate and 1 to 10 mM sodium octanesulfonate
  • the B component is acetonitrile.
  • the weight ratio (AZB) of the A component and the B component is preferably from 90.0 / 10.0 to 99.0 / 1.0.
  • the accuracy of analysis of cystine and cystine is improved by incorporating an ion pair compound in the mobile phase.
  • ionic substances such as acidic substances and basic substances become dissociated depending on the conditions of the mobile phase and cannot be sufficiently retained on the column.
  • the method of holding the compound by adding an ionic substance having a charge opposite to that of the target component to the mobile phase is called ion pair chromatography, and the ionic substance to be added is called an ion pair compound.
  • the target component and the ion pair compound form an ion pair in the mobile phase, so that the influence of the charge is reduced and the ion component is easily held in the stationary phase.
  • By holding the ion-pair compound in the stationary phase it is expected to have a pseudo ion exchange effect and the effect that the target component is retained in the stationary phase.
  • an acidic ion pair compound such as an alkyl sulfonate or an alkyl sulfate is used.
  • the ion pair compound is preferably selected from the group strength of alkyl sulfonate and alkyl sulfate.
  • the number of carbon atoms in the alkyl moiety of the alkyl sulfonate is preferably 5-12, more preferably 5-8.
  • the “salt” in the alkyl sulfonate is preferably an alkali metal salt, and a sodium salt is particularly preferable. More specific examples of the alkyl sulfonate include sodium octane sulfonate, sodium pentane sulfonate, sodium hexane sulfonate, sodium heptane sulfonate, sodium dodecane sulfonate, and the like.
  • the carbon number of the alkyl moiety of the alkyl sulfate is preferably 5 to 12, more preferably 5 to 8.
  • the “salt” in the alkyl sulfate is preferably an alkali metal salt, and among them, a sodium salt is preferable. More specific examples of alkyl sulfates include sodium dodecyl sulfate.
  • FIG. 1 schematically shows the flow path P1.
  • the present invention is not limited to the illustrated embodiment. is not.
  • the mobile phase and the measurement sample are passed through the flow path P1.
  • the flow path P1 is a flow path that passes through the pretreatment column 1 in the forward direction and then passes through the analysis column 2 to the detector 3.
  • the pretreatment column 1 can be selected from those in which a plurality of sulfur-containing compounds (such as cystine and cystine) can pass in about 4 to 15 minutes.
  • commercially available products for reversed-phase columns include Ina Tosyl ODS-3 (manufactured by GL Sciences Inc.), Develosil ODS-UG (manufactured by Nomura Chemical Co., Ltd.), YMC—PackODS series (manufactured by Samurai YMC), CAPCELL PAK C18 (Shiseido Co., Ltd.) And ZORBAX Eclipse XDB (Agilent).
  • the flow path switching apparatus 6 capable of reversibly switching the flow path direction is used to change the flow path for sample introduction to the flow path switching. Then, it is led to the flow path that returns from the flow path switching apparatus 6 to the flow path switching apparatus 6 through the pretreatment column 1 and then returns to the flow path switching apparatus 6.
  • the piping and the flow path switching device 6 may be arranged so as to reach the detector 3 that can acquire the chromatogram of the test object through
  • the flow path switching device 6 is typically one or more valves, and the flow path of the mobile phase is generally driven by the mobile phase supply source (tank etc.) 51 in the flow path for sample introduction.
  • a liquid feed device (pump, etc.) 41 and an injector 7 into which a measurement sample is to be introduced are provided.
  • the pretreatment column 1 acts as a stationary phase in liquid chromatography.
  • the mobile phase usually flows through analytical column 2 in one direction.
  • the flow direction in the analytical column when flowing the mobile phase to the pretreatment column 1 in the flow path P1 used in the step (1) is defined as “forward direction” and the opposite direction is defined. Is defined as “reverse direction”.
  • the inlet 11 and outlet 12 of the pretreatment column 1 are defined as follows. That is, when the flow direction is “forward”, the liquid enters the column 1 from the “inlet” 11 of the pretreatment column 1 and exits from the “outlet” 12 of the pretreatment column. Therefore, when the flow direction is “reverse direction”, the mobile phase enters the column from the “exit” 12 of the pretreatment column 1 and exits from the “inlet” 11 of the pretreatment column.
  • the solution containing the test object is preferably separated after the measurement sample is passed through the pretreatment column 1 together with the mobile phase, preferably after removing at least some of the contaminants.
  • Analytical column 2 can also act as a stationary phase in liquid chromatography, for example to separate cysteine and cystine. If the test object (a sulfur-containing compound such as cystine or cystine) can be separated, the material and shape of the analytical column 2 are not particularly limited, and the same type of column as the pretreatment column 1 is used. Also good.
  • the present invention is not limited to reverse phase chromatography.
  • analysis can also be performed by Kawasaki phase chromatography or ion exchange chromatography.
  • a component is 10 ⁇ : LOOmM acetic acid and sodium acetate
  • B component is acetonitrile.
  • the volume ratio (AZB) of the A component and the B component is preferably 40.0 / 60.0 to 5.0 / 95.0.
  • a HILIC (Hydrophilic Interaction Chromatography) column that can use an aqueous mobile phase is preferably used. Examples of commercially available HILIC columns include ZIC-HILIC (manufactured by Nomura Chemical Co., Ltd.).
  • An example of a suitable mobile phase for ion exchange chromatography is 0.1M et al. 0.3M sodium taenoate buffer.
  • Examples of commercially available ion exchange columns include Shodex CXpak manufactured by Showa Denko.
  • Detector 3 is a device that receives a chromatogram signal based on the presence of an object to be examined, performs calculations as necessary, and transmits information to a display means (not shown) such as a chart. .
  • the type of detector 3 is an electrochemical detector having a diamond electrode as a working electrode.
  • the electrochemical detector has a working electrode and a reference electrode, and detects a current change due to an oxidation reaction on the surface of the working electrode when a predetermined voltage, preferably 1200 to 200 OmV, is applied to the working electrode.
  • the working electrode is a conductive diamond electrode.
  • As the reference electrode a general silver Z salt / silver electrode can be used.
  • the conductive diamond electrode is an electrode made of diamond that exhibits conductivity like a semiconductor or a metal by adding a Group 3 or Group 5 impurity. It is known that a conductive diamond electrode can be produced by a CVD method or the like, and can be obtained by appropriately referring to known documents such as Patent Document 2.
  • the use of conductive diamond electrodes has the advantage of being able to perform simultaneous analysis with high sensitivity, in a short period of time, without fluctuations in daily accuracy, in a stable, robust manner. Electrode treatment In fact, it is preferable to use online regeneration, which increases the robustness of the system and improves the analysis accuracy.
  • an oxygen termination a method known per se in the art can be adopted without any particular limitation.
  • the electrolytic electrolytic polishing method that can be executed online while feeding the mobile phase in the same way as the analysis state without destroying the configuration of the analysis system is highly reproducible and useful.
  • the mobile phase and the measurement sample can be sent from the mobile phase supply source 51 by using a general pump 41 or the like without particular limitation.
  • the measurement sample is introduced into the flow path P1 in the injector 7.
  • the flow rate per hour is suitably set according to the capacity of the column, etc., and is preferably 0.2 to 1. OmLZmin.
  • step (1) after a plurality of sulfur-containing compounds (such as cysteine and cystine) pass through pretreatment column 1, step (1) is terminated and step (2) is started. . Since the time required for a plurality of sulfur-containing compounds to pass through the pretreatment column 1 is largely determined by the combination of the mobile phase, the flow rate, and the stationary phase, the required time may be measured in advance. Monitoring may be performed by providing detection means (not shown) near the outlet 12 of the processing column 1. In step (2), channel P2 and channel P3 are used.
  • FIG. 2 schematically shows the flow path P2 and the flow path P3.
  • the present invention is not limited to the illustrated embodiment.
  • a mobile phase not containing a measurement sample is passed through the flow paths P2 and P3.
  • the direction of the flow path P2 is indicated by a black arrow in FIG.
  • the flow path P2 is a flow path that does not pass through the pretreatment column 1 but passes through the analysis column 2 to the detector 3.
  • Analytical column 2 and detector 3 are the same as those used for channel P 1! /.
  • the analysis column 2 stays in the analytical column 2 in the step (1) or in the previous pipeline, and a plurality of sulfur-containing compounds to be tested (such as cysteine and cystine) are analyzed. Then, use the chromatographic process to continue the analysis work be able to.
  • a plurality of sulfur-containing compounds to be tested such as cysteine and cystine
  • the direction of the flow path P3 is indicated by a white arrow in FIG.
  • the flow path P3 is a flow path that passes through the pretreatment column 1 in the reverse direction, passes through the analysis column 2, and does not pass through the detector 3.
  • Pretreatment column 1 is the same as that used in channel P1.
  • contaminants remaining in the pretreatment column 1 in step (1) those having a long retention time remain in the vicinity of the inlet 11 of the pretreatment column 1. For this reason, it has been necessary to keep the mobile phase flowing through the pretreatment column 1 for a long time in order to remove contaminants. Since the mobile phase flows from the outlet 12 of the pretreatment column 1 to the inlet 11, contaminants remaining in the vicinity of the inlet 11 can be removed in a relatively short time.
  • steps (1), (2) and (3) are started in the second analysis immediately after completion of step (3) in the first analysis, and this is continuously repeated. To do the analysis.
  • the flow path P2 When the flow path P2 is configured in the analysis apparatus of the present invention, the flow of the sample introduction flow path cover is immediately detected via the analysis column 2 by switching the flow path switching apparatus 6. If you guide it to the flow path leading to vessel 3, Thus, when the flow direction is determined by the flow path switching device 6, it is important that the flow path P3 is formed at the same time. In this case, the flow path P3 guides the flow entering the flow path switching device 6 from the mobile phase introduction flow path to the outlet side 12 of the pretreatment column 1, passes the pretreatment column in the reverse direction, and flows again. The flow path is determined so as to enter the path switching device 6 and then toward the discharge path.
  • the mobile phases passed in step (1) and step (2) are preferably all of the same type. In this case, the possibility of changes in the retention behavior of substances in columns 1 and 2 due to changes in the type of mobile phase is reduced in view of the ease of operation.
  • two mobile phase supply sources 51 and 52 are shown for convenience, but the mobile phase may be supplied to the flow paths P1 to P3 with the same supply source force.
  • the switching of the flow paths P1 to P3 in the steps (1) and (2) can be easily realized by combining the flow switching device (valve etc.) 6 and the piping as shown in the figure. .
  • the test object is guided to the diamond electrode type electrochemical detector after separation in the analytical column 2, and is selectively detected by the electrochemical activity specific to the substance.
  • the Contaminants whose transit time is almost the same as the test object are not detected because the force introduced to the analytical column 2 shows no activity in the diamond electrode type electrochemical detector.
  • contaminants that require a significantly longer transit time than the test object flow out of the pretreatment column 1 in the reverse direction and are discharged. Therefore, by adopting this configuration, it becomes possible to simultaneously detect a plurality of sulfur-containing compounds having electrochemical activity without the influence of contaminants.
  • the present invention enables a highly accurate and stable measurement method for a plurality of compounds in a short time by using a diamond electrode type electrochemical detector having a high selectivity and a low noise level and a column switching method.
  • An acidic (pH 2.2) buffer solution was prepared by adding a predetermined amount of phosphoric acid to 50 mmol ZL sodium dihydrogen phosphate and 5 mmol ZL octane sulfonate sodium solution.
  • a mobile phase was obtained by adding 2.5 parts by weight of acetonitrile to 97.5 parts by weight of this buffer solution.
  • Quantitative L-cysteine dried in a desiccator (vacuum, phosphorus pentoxide) for 3 hours was dissolved in the mobile phase. Separately, dissolve L-cystine for quantification, which has been dried at 105 ° C for 3 hours, in a small amount of ImolZL hydrochloride reagent solution, and add water to make a predetermined amount. Next, a predetermined amount of each of the L cysteine solution and the L-cystine solution was collected, and the mobile phase was added, mixed and diluted to obtain a standard solution.
  • FIGS. 1 and 2 the analysis system represented schematically in FIGS. 1 and 2 was constructed and analyzed. Detailed conditions are as follows.
  • Pretreatment column Inertosyl ODS-3 (manufactured by GL Sciences Inc.)
  • Electrochemical detector Electrochemical detector, conductive diamond electrode 1600mV
  • Acid electropolishing of the diamond electrode was carried out under the above conditions with a mobile phase flowing in a state where a system used for actual measurement was constructed.
  • This condition is an example that was effective for cysteine.
  • the mobile phase was allowed to flow at a rate almost the same as the measurement condition under strongly acidic conditions, and was allowed to stand for 6 hours or more at a high voltage of 2000 mV or higher. It is preferable to complete the electropolishing.
  • the applied voltage of the working electrode of detector 3 was set to 1600 mV in the measurement system schematically shown in FIGS. 1 and 2, and the current change was detected.
  • the region surrounded by the dotted line in FIGS. 1 and 2, that is, the region including the pretreatment column 1, the analytical force ram 2 and the valve 6 was kept constant at 40 ° C.
  • Figure 3 shows the chromatogram obtained by analyzing this standard solution.
  • the cystine peak area value was reduced to approximately 66% after 10 hours from the initial analysis.
  • polishing treatment was performed, the area value of 96% and the area value in the initial state were maintained.
  • FIG. 4 is a chromatogram obtained by performing the same analysis after 5 hours and 10 hours without performing the oxidative electrolytic polishing treatment, and Table 2 shows the area values.
  • FIG. 5 is a chromatogram obtained by performing the same analysis after 5 hours and 10 hours after the oxidative electropolishing treatment, and Table 3 shows the area values.
  • composition of this infusion preparation is as shown in Table 4 (I layer (sugar 'electrolyte solution)) and Table 5 (II layer (amino acid solution)).
  • I layer sucrose 'electrolyte solution
  • Table 5 II layer (amino acid solution)
  • Figure 6 shows the chromatogram when layer II is used as a sample.
  • Glacial acetic acid ( ⁇ regulator) Appropriate amount
  • Amino acid L-leucine 100 g 4. 200 g
  • Glacial acetic acid (pH regulator) Appropriate amount
  • Electrochemical detectors using diamond electrodes are highly selective and equipment, but in addition to cystine and cystine, methionine, tyrosine, histidine, and phenol. Amino acids such as dilauranin are also detected. These amino acids are abundantly contained in infusion preparations and biological samples. Without the column switching method, these amino acids elute between 45 and 280 minutes ( Figure 16). For this reason, the analysis time per sample becomes very long, and it is practically impossible to measure an actual sample.
  • N-acetyl-L-cysteine for quantification dried at 80 ° C for 3 hours was dissolved in the mobile phase. Next, a predetermined amount of this N-acetyl-L-cysteine solution was removed and diluted by adding the mobile phase to obtain a standard solution.
  • the mobile phase was the same as in Example 1.
  • Example 1 the analysis system represented schematically in FIGS. 1 and 2 was constructed and analyzed. The detailed conditions are the same as in Example 1.
  • FIG. 8 is a chromatogram obtained by analysis of this infusion preparation.
  • composition of this infusion preparation is as shown in Table 6 (upper chamber fluid (amino acid / electrolyte solution)) and Table 7 (lower chamber fluid (vitamin B 'sugar' electrolyte solution)).
  • Figure 8 shows the chromatogram when the upper chamber solution is used as the sample.
  • L-cysteine sulfinic acid, L-homocysteine sulfinic acid, DL homocystine, and reduced dartathione dried for 3 hours in a desiccator (reduced pressure, phosphorus pentoxide) were dissolved in the mobile phase to obtain a mixed solution.
  • dry L-homocystine is dissolved in a small amount of ImolZL hydrochloric acid test solution, and water is added to make a predetermined amount.
  • a predetermined amount of each of the mixed solution and L homocystin solution was collected, mixed and diluted by adding a mobile phase to obtain a standard solution of sulfur-containing amino acid and sulfur-containing compound.
  • the mobile phase was the same as in Example 1.
  • Example 1 the analysis system represented schematically in FIGS. 1 and 2 was constructed and analyzed. The detailed conditions are the same as in Example 1.
  • This method is considered to be an effective method for searching for degradation products of amino acids such as L-cysteine.
  • the retention time peak of 2.1 minutes is derived from L-cysteine sulfinic acid, and the peak of 2.5 minutes is derived from homocysteine sulfinic acid.
  • Cysteine, cystine, reduced dartathione, and homocystine were scraped in predetermined amounts and dissolved using dilute hydrochloric acid. Thereafter, water was added and diluted sequentially to obtain a standard solution containing 6 molZL cysteine, 15 ⁇ molZL cystine, 3 ⁇ molZL reduced glutathione, and 6 ⁇ molZL homocystine.
  • the triclonal mouth acetic acid solution was added to the plasma of mice, rats, Inu, and humans, and the protein component was removed by centrifugation. The centrifugal supernatant was diluted with water to obtain a plasma sample.
  • FIGS. 1 and 2 the analysis system represented schematically in FIGS. 1 and 2 was constructed and analyzed. Detailed conditions are as follows.
  • Pretreatment column Inertosyl ODS-3 (manufactured by GL Sciences Inc.)
  • Mobile phase 1 Mixture of 98.5 parts by weight buffer containing sodium heptanesulfonate (20 mM) and phosphoric acid (25 mM) and 1.5 parts by weight acetonitrile
  • Electrochemical detector Electrochemical detector, conductive diamond electrode 1600mV
  • Fig. 10 shows the chromatogram of the standard solution analyzed for cysteine 6 ⁇ mol / L, reduced dartathione 3 molZL, homocystine 6 molZL, and cystine 15 molZL.
  • Figure 11 is a chromatogram obtained by analysis of a mouse plasma sample.
  • FIG. 14 is an enlarged view of the homocystin elution portion of FIG.
  • cysteine, reduced dartathione, homocystine, and cystine are detected by standard solution analysis.
  • cysteine, reduced dartathione and cystine are detected as components contained in plasma.
  • Adjusting selectivity by combining electrochemical selectivity and separation techniques such as column switching is essential when applying this system to materials containing complex matrices.
  • the detection limit in the analysis of pharmaceuticals and foods is defined as 3 ⁇ in the background, and even if the diamond electrode electrochemical detector has excellent detection ability, the selectivity that can be separated from contaminants has been adjusted. Unless you can, the sensitivity will not increase.
  • the same sensitivity as the standard solution analysis was obtained in the plasma blank sample, which is a complex matrix sample and contains contaminants.
  • This is a combination of electrochemical selectivity and column switching technique. It is achieved for the first time by the system.
  • the applied voltage of the working electrode of detector 3 was set to 1600 mV, and the current change was detected.
  • Example 1 The detailed conditions are the same as in Example 1.
  • the analysis cycle was 20 minutes per analysis.
  • Figure 15 shows the initial, 500th, and 1000th chromatograms in 1000 continuous analyses.
  • Table 8 shows the retention time and the variation rate (CV%) of the retention time and the area value in 9 consecutive analyzes of the 21st to 29th, 481 to 489th, and 961 to 969th out of 1000 continuous analyses. is there. Good results were obtained with both cystine and cystine having a variation rate of 1% or less and a maximum CV value of about 3.9%.
  • the column switching method is used to efficiently remove contaminants, the analysis time is shortened and the electrode is prevented from degrading, and the conductive diamond electrode is used. It is thought that the ability to use alkyl sulfonate at a sufficient concentration and that the electrode surface can be cleaned by acid electropolishing with a high applied voltage, and that it can be cleaned at each injection, contributes greatly. Therefore, stable analysis is possible without being affected by contaminants.
  • Electrochemical detector Glassy carbon electrode
  • Tables 11 to 13 show the changes in the area value when the standard solution was adjusted to three concentrations and the day passed.
  • red wine and its forced acid product were analyzed using the system of the present invention.
  • the applied voltage of the working electrode of detector 3 was set to 1600 mV, and the current change was detected.
  • the detailed conditions are the same as in Example 4.
  • red wine About 1Z3 amount of red wine was put into a screw vial, and after capping, ultrasonic waves were applied for 30 minutes. Thereafter, untreated red wine and acid wine-treated red wine were deproteinized with 10% triclonal acetic acid, and the centrifugal supernatant was diluted and measured with the system of the present invention.
  • Figure 17 shows the results.
  • the system of the present invention it becomes possible to measure a fermented broth containing many components in a short time with good reproducibility. Comparison of the two chromatograms shows that the same separation intensity is obtained for signals up to about 10 minutes. On the other hand, peak intensity fluctuates greatly for signals of 10 to: L 1 min and 14 to 15 min. These compounds are signals indicating the acid state of the sample, and can be analyzed with high accuracy in a short time by using the system of the present invention.
  • 3-Mercapto-1-hexanol which has a thiol group in its structure and is known as the scent of grapefruit, is forcibly oxidized and the acid body is analyzed with the system of the present invention. It was.
  • Electrochemical detector Conductive diamond electrode Applied voltage: 1600mV
  • Figure 18 is a chromatogram obtained by analysis of an oxidized sample of 3 mercapto 1 hexanol.
  • Furanthiol which has a thiol group in its structure and is known as a fragrance of persimmon, was forcibly acidified together with the cysteine, and the acid body was analyzed using the system of the present invention.
  • Electrochemical detector Conductive diamond electrode
  • furanthiol 10 L sonicated for 30 minutes, and left at room temperature for 12 hours.
  • Furanthiol 10 L was acidified in the same manner as above and used for analysis.
  • FIG. 19 is a chromatogram obtained by analyzing the furanthiol cysteine mixed acid sample, furanthiol, and cysteine described above.
  • Figure 20 shows the chromatograms of cystine, cystine, reduced dartathione, and oxidized dartathione.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 2種類以上の被検対象物(好ましくは、含硫化合物)を短時間で同時に分析する方法を提供する。  測定試料を移動相とともに流路P1に流す工程(1)、測定試料を含まない移動相を流路P2および流路P3に流す工程(2)、ならびに、工程(1)および工程(2)によって分析カラムから出た2種類以上の被検対象物(好ましくは、含硫化合物)のクロマトグラムを検出器によって取得する工程(3)、を有し(但し、流路P1は、前処理カラムを順方向に通り、次いで分析カラムを経て検出器へ至る流路であり、流路P2は、前処理カラムを通らずに、分析カラムを経て検出器へ至る流路であり、流路P3は、前処理カラムを逆方向に通り、分析カラムを経ず、検出器も経ずに排出される流路である。)、工程(1)において2種類以上の被検対象物が前処理カラムを通過した後に工程(1)を終了して工程(2)を開始する、2種類以上の被検対象物の分析方法。

Description

明 細 書
被検対象物の分析方法および分析装置
技術分野
[0001] 本発明は、被検対象物の分析方法および分析装置に関し、特に、測定試料に含ま れる含硫化合物、特にシスティンおよびシスチンなどのようなチオール基、またはジス ルフイド結合を持つ物質の分析方法に関する。本発明は、輸液製剤や生体試料のよ うに糖、電解質、アミノ酸等の多成分力もなり、粘ちよう性のある測定試料における高 感度及び高精度の分析に適する。
背景技術
[0002] 輸液製剤等の有効成分の一つであるシスティンは、他のアミノ酸などと比較して安 定性が悪ぐ保管中にシスチン等に変化し含量が減少することが知られている。その ため、製剤中のシスティン、シスチン等を正確に定量することは、品質管理上重要な 意味を持つ。
[0003] L—システィンの従来の規格分析法としては、 L システィンと 4,4' -ジチォジピリ ジン (4 PDS)とを反応させ、反応生成物である 4ーチォピリドンに由来する極大吸 収波長 324nmにおける吸光度を測定する、紫外可視吸光度測定法 (4 PDS法) が挙げられる。しかし、 4 PDS法は、長時間の分析操作を要し、操作が煩雑であり 、非効率的な試験方法である。
[0004] L—シスチンの従来の規格分析法としては、アミノ酸分析法であり、アミノ基に対して 選択的に反応するような誘導体化試薬を用いたポストカラム誘導体化法が挙げられ る。ポストカラム誘導体化法は、陽イオン交換クロマトグラフィーによりアミノ酸を分離し た後、誘導体ィ匕試薬 (ニンヒドリン)を送液し、アミノ酸と反応させ、可視吸光度検出器 により分析する方法である。ポストカラム誘導体化法では、 1試料あたりの分析時間が 約 134分と長時間であり、非効率的な分析法である。
[0005] また、上述した従来の分析法では、 L システィンと L シスチンとを同時に分析で きない。
[0006] 一方、含硫アミノ酸、ペプチド、蛋白は生体系の生理活性にぉ 、て重要な役割を果 たしていることが知られている。チオール基( SH)は、アルコールなどの水酸基(一 OH)よりも活性が高ぐ pHの変化や酵素により、容易にジスルフイド結合(一 S— S— )を介して自身が二量体に成ったり、他のチオール基を持つ分子と結合する。
生体系は巧みにチオール基の反応性を利用して、生合成や代謝を行ないながら生 命を維持している。
還元型(一SH)と酸ィ匕型(一 S— S )のアミノ酸は、システィン シスチン、ホモシ スティン ホモシスチン、グルタチオンーグルタチオンジスルフイド、またビタミン Bで 知られるチアミンのチオール型一チアミンジスルフイドなど数多く知られている(非特 許文献 1および 2参照)。
[0007] 生体試料等、複雑な組成を有するサンプルでは、チオール基に選択的に反応する 蛍光誘導体化試薬を用いて前処理を行い、液体クロマトグラフィーで分離した後、蛍 光検出する方法カゝ、カーボン電極を使用した電気化学検出器で直接チオール基を 検出する方法が一般的である。
誘導体化法 (プレカラム誘導体化法)は、誘導体化反応時にサンプルを中性〜弱 アルカリ性に調整する必要がある力 この条件では、チオール基同士がジスルフイド 結合を形成しやすぐ多数のサンプルを正確に処理するのは非常に困難である。 カーボン電極を使用した電気化学検出器は、後述するように安定性が悪ぐ精度良 く測定を行うことは非常に困難である。
[0008] S— S 結合の有用性は、例を挙げれば切がない。たとえば、にんにくの有効成 分として知られているアリシンはジスルファチドである力 ァリシンとチオール型チアミ ンの結合により生成されるァリチアミン類は、脂溶性が適度にあがるので腸管吸収が 向上する。健康食品や医薬品においても、有効成分の体内吸収をさせる手法として 価値がある。体内において、これらの化合物は、酵素により還元される。いわいるプロ ドラッグ的な利用法である。また、植物においても、有効成分の生合成による産生 (有 効成分ができるのは、実は、各種回路→代謝経路の途中)において、これらチォー ル類は重要な役目を担っていることが分力 てきた。近年、興味深い報告がされてい る。低分子のチオール類は、極めて香の閾値が高ぐ良い香を決定付けるのに重要 である。たとえば、珈琲の香として有名なフランチオールやグレープフルーツの香とし て重要なメルカプトへキサノールなどは、 ppb〜pptオーダーでよい香を決定する。ヮ インでは、メルカプトへキサノールなどが含まれる製品が付加価値が高ぐその生産 管理をすることが重要に成ってきた。ブドウ中では、メルカプトへキサノールはシステ インと S— S 結合した前駆体の状態で産生される。収獲前にこれらを測定するこ とにより、最も良い時期が決定できるわけである(非特許文献 3参照)。
[0009] 現状でのこれらの測定法は、 S— S 結合を切断する酵素を固定ィ匕した反応カラ ムにブドウ果汁を流し、有機溶媒でメルカプトへキサノールを回収した後、窒素気流 等で濃縮して GCZMSに供するという極めて前処理に手の力かる操作と高価な分析 装置を必要とする。
[0010] 電気化学検出器は、紫外可視、示差屈折率、蛍光検出器に次いでよく用いられて おり、選択性が高ぐ又高感度であることを特徴とする検出器である。そのため、夾雑 物質を多量に含み、更に目的成分が極微量であるような、生化学分野や環境分野な どへの適用が進みつつある。この電気化学検出器の主な利点は、(1)液体クロマトグ ラフィ一で汎用的に使われている紫外可視吸光検出器よりも 4桁以上の感度が要求 される微量成分の分析が可能、(2)反応原理から電気化学的に酸化又は還元物質 しか反応しな 、ため選択性が高 、、ことに尽きる。
多くの化合物は、作用電極表面上に不活性膜を形成する反応生成物を形成し、こ のため検出器の応答が時間と共に変化する。その中でもフエノールは非常に悪い膜 生成物質として知られ、作用電極に炭素電極 (グラフアイトやグラッシ一カーボンなど )を使用した電気化学検出器では、僅か数時間の操作においても応答は連続的に 低下する。その場合、セルを分解し、作用電極表面を研磨し、新しくしなければなら ない。そして、再度組み立てなおして、微量成分を分析し始めるまで平衡化させるの に数時間を要する。応答が連続的に変わったり、老練なメンテナンスが必要であった りすることは、通常のユーザーにとって煩雑で非常に費用がかかる等の理由から各種 の長所があるにも拘わらず、その利用は限られて 、る。
また、グラッシ一カーボン電極では、高い印加電圧をかけることができないため、反 応電位の高いジスルフイド結合は安定して検出することが困難である。
[0011] 一方、作用電極に、ボロンをドープすることで導電性を付与した導電性ダイヤモンド を使用するダイヤモンド電極も広く提案されてきて 、る。導電性ダイヤモンド電極は、 水溶液中における電位窓が広ぐ即ち、水の電気分解が起こらない電位領域が広く 、高い印加電圧をかけて安定した反応を行うことができる。さらに、電位窓の広さは電 極表面における水素発生、酸素発生に対する過電位により決まるわけである力 これ らの反応は、一般に電極表面に弱く吸着した反応中間体を経由する多段階多電子 移動反応である。導電性ダイヤモンド表面にはそのような中間体が吸着するサイトが 無視できる程度しか存在せず、それゆえバックグラウンド電流値が小さぐノイズレべ ルの低 、高感度分析が可能となる。
導電性ダイヤモンド電極は、各種の検出に使用されている。
本発明者らの一部は、液体クロマトグラフィーの検出器フローセルに導電性ダイヤ モンド電極を使用し、難反応性物質に高電位を印加することで検出可能にしている( 特許文献 1)。この方法は、さらにクーロメトリックなセルとの組み合わせで、電気化学 的に活性な夾雑 '痕跡物質の除去や、別物質への変換を行い、分離の向上を図って いる。
また、藤島ら (特許文献 2)はダイヤモンド電極が過酸化水素に特異的に感応する 性質を利用し、酵素反応による物質の濃度検出に応用している。
さらに、長岡ら (特許文献 3)は、フロー型のアミノ酸分析装置に、鏡面化処理を施し 、酸素終端処理された導電性ダイヤモンド電極を使用した検出部を設けている。酸 素終端化処理は、酸素飽和雰囲気下のプラズマにより行っているが、この方法は、電 極を設置し、システムを組んだ状態で移動相を流しながら行うことができず、検出の 開始以前にオフラインでやっておく必要がある。そのため、多検体、連続繰り返し分 析を行う場合にはどうしても電極表面状態に変化が起こり、安定した分析は不可能で ある。
特許文献 1:国際公開第 01Z67089号パンフレット
特許文献 2 :特開 2003— 121410号公報
特許文献 3:特開 2005— 69692号公報
非特許文献 l : Biomed. Chromatogr. , 3, 166— 172 (1989)
非特許文献 2 : Cancer Res. , 61, 4365 -4370 (2001) 非特許文献 3:富永隆俊: ヽろの香、フレダランスジャーナル社
発明の開示
発明が解決しょうとする課題
[0013] 本発明は、測定試料に含まれる被検対象物のための効率のよい分析方法および そのための分析装置を提供することを課題とする。好ましくは、本発明は測定試料に 含まれるシスティン、シスチンと 1、つた複数の含硫化合物を短時間で同時に分析す ることができる方法を提供することを課題とする。さら〖こ好ましくは、輸液製剤、生体試 料のような糖、電解質、アミノ酸等の多成分力 なり、粘ちよう性のあるサンプルにお けるシスティン、シスチンなどの含硫ィ匕合物を精度良く短時間で分析することができ る方法の提供を課題とする。
課題を解決するための手段
[0014] 本発明者らは、上記課題を解決するために鋭意検討し、本発明を完成した。本発 明は以下の事項を包含する。
[1]測定試料に含まれる被検対象物の分析方法であって、
測定試料を移動相とともに以下の流路 P1に流す工程(1)、
測定試料を含まない移動相を以下の流路 P2および流路 P3に流す工程 (2)、なら びに、
工程(1)および工程(2)によって分析カラムから出た上記被検対象物のクロマトダラ ムを、ダイヤモンド電極を作用電極として有する電気化学検出器によって取得するェ 程 (3)、を有し
(但し、流路 P1は、前処理カラムを順方向に通り、次いで分析カラムを経て検出器へ 至る流路であり、流路 P2は、前処理カラムを通らずに、分析カラムを経て検出器へ至 る流路であり、流路 P3は、前処理カラムを逆方向に通り、分析カラムを経ず、検出器 も経ずに排出される流路である。 )、
工程(1)にお ヽて上記被検対象物が前処理カラムを通過した後に工程(1)を終了 して工程 (2)を開始する、前記分析方法。
[2]測定試料に含まれる被検対象物より大幅に長い通過時間を要する夾雑物質は 分析カラムを経由しない [ 1 ]の分析方法。 [3]被検対象物が含硫ィ匕合物である [1]または [2]の分析方法。
[4]含硫ィ匕合物がチオール基またはジスルフイド結合をもつ化合物である [3]の分析 方法。
[5]含硫化合物が含硫アミノ酸である [3]の分析方法。
[6]含硫ィ匕合物が N—ァセチルシスティンである [3]の分析方法。
[7]含硫ィ匕合物がホモシスティンまたはダルタチオンである [3]の分析方法。
[8]被検対象物が 2種以上の含硫ィ匕合物である上記 [1]または [2]の分析方法。
[9] 2種以上の含硫ィ匕合物がシスティンおよびシスチンである [8]の分析方法。
[10]被検対象物が 2種以上のアミノ酸である上記 [1]または [2]の分析方法。
[11]移動相が、水、電解質を含む [1]〜[10]のいずれかの分析方法。
[12]移動相が、水、電解質およびイオンペア化合物を含み、 pHが 1〜3である [1]
〜 [ 10]の!、ずれかの分析方法。
[13]イオンペア化合物がアルキルスルホン酸塩およびアルキル硫酸塩からなる群か ら選ばれる少なくとも 1種である [ 12]の分析方法。
[14]分析カラムが、逆相カラム、順相カラム、またはイオン交換カラムのいずれかで ある [ 1 ]〜 [ 13]の ヽずれかの分析方法。
[ 15]分析カラムが、逆相カラムである [14]の分析方法。
[ 16]ダイヤモンド電極が導電性ダイヤモンド電極である、上記 [ 1 ]〜 [ 15]の 、ずれ かの分析方法。
[17]導電性ダイヤモンド電極が、酸化電解研磨された電極である、 [16]の分析方 法。
[18]導電性ダイヤモンド電極が、移動相を流した状態で酸化電解研磨された電極 である、 [16]の分析方法。
[19]測定試料が輸液製剤、透析剤、醱酵液、生体試料のいずれかである [1]〜[1 8]のいずれかの分析方法。
[20]工程 (3)の終了後、工程(1)、 (2)および (3)を開始し、連続繰り返し分析を行 う [1]の分析方法。
[21] [1]〜[20]のいずれかの分析方法を用いることを特徴とする測定試料に含ま れる 2種以上の含硫化合物の同時検出方法。
[22]測定試料に含まれる被検対象物の分析装置であって、
流路の方向を可逆的に切り換えることができる流路切換装置と、
移動相を測定試料とともに流路切換装置へ流す試料導入用流路と、
移動相を単独で流路切換装置へ流す移動相導入用流路と、
流路切換装置から出て前処理カラムを経て再び流路切換装置に戻る流路と、 流路切換装置カゝら出て分析カラムを経て被検対象物のクロマトグラムを取得するこ とができるダイヤモンド電極を作用電極として有する電気化学検出器へ至る流路と、 流路切換装置力 出て前処理カラムも分析カラムも経ずに当該装置外へ至る排出 路と、を有し、
流路切換装置は、下記 (A)及び (B)の状態に相互に切り換えることができるように 構成されている、被検対象物の分析装置。
(A)試料導入用流路から、前処理カラムを順方向に通り、次いで分析カラムを経て検 出器へ至る流路 P1を構成する状態、
(B)試料導入用流路から、前処理カラムを通らずに、分析カラムを経て検出器へ至る 流路 P2、および、移動相導入用流路から、前処理カラムを逆方向に通り、排出路へ 至る流路 P3を構成する状態。
[23]被検対象物が含硫ィヒ合物である [22]の装置。
[24]含硫化合物がチオール基またはジスルフイド結合をもつ化合物である [23]の 装置。
[25]含硫化合物が含硫アミノ酸である [23]の装置。
[26]含硫化合物が N—ァセチルシスティンである [23]の装置。
[27]含硫ィ匕合物がホモシスティンまたはダルタチオンである [23]の装置。
[28]被検対象物が 2種以上の含硫化合物である [22]の装置。
[29] 2種以上の含硫ィヒ合物がシスティンおよびシスチンである [28]の装置。
[30]被検対象物が 2種以上のアミノ酸である [22]の装置。
[31]分析カラムが、逆相カラム、順相カラム、またはイオン交換カラムのいずれかで ある [22]〜 [30]の!、ずれかの装置。 [32]分析カラムが、逆相カラムである [31]の装置。
[33]ダイヤモンド電極が導電性ダイヤモンド電極である、 [22]〜 [32]の 、ずれか の装置。
[34]導電性ダイヤモンド電極が、酸化電解研磨された電極である、 [33]の装置。
[35]導電性ダイヤモンド電極が、移動相を流した状態で酸化電解研磨された電極 である、 [33]の装置。
[36]測定試料が輸液製剤、透析剤、醱酵液、生体試料のいずれかである [22]〜[ 36]のいずれかの装置。
発明の効果
[0015] 本発明によれば、選択性が高ぐノイズレベルの低 ヽダイヤモンド電極型電気化学 検出器とカラムスイッチング法を用いることで、精度の高い、安定した測定が可能にな る。すなわち、試料溶液に含まれる可能性があって測定時間を長くする原因となって いた夾雑物質は工程(1)において前処理カラムの入口付近に留まり、工程(2)にお いて移動相を逆方向に流すことでこの夾雑物質が分析カラムを経由することなぐ素 早く除去されることができるので、直ちに次回の測定を開始することができ、結果とし て、測定時間の大幅な短縮が見込まれる。また、それゆえに、多検体の連続分析が 可能となる。
[0016] 本発明の一局面では、イオンペア化合物を使用した逆相クロマトグラフィーを用い て、輸液製剤や透析剤のような多成分を含む粘ちよう性の試料から、好適な被検対 象である複数の含硫化合物、特にシスティン、シスチンを短時間にて明瞭に分離し、 精度良く分析することができる。なお、本発明では分離方法は、イオンペア化合物を 用いた逆相分析に限定されず、通常の逆相、順相、および、イオン交換法での使用 も可能であり、分離メカニズムには依存しない。
[0017] 本発明の一局面では、試料及び標準液の調製液、移動相等すベて酸性条件下で 実施し、簡単な操作であることにより、酸化、および、新たなジスルフイド結合の形成 による影響も受けにくぐ安定的に複数の含硫ィ匕合物成分を短時間にて明瞭に分離 し、精度良く分析することができる。
[0018] 本発明の一局面では、オンライン再生化を用いることにより、堅牢性が高ぐ安定的 に複数の含硫化合物成分を短時間にて明瞭に分離し、精度良くかつ同時に分析す ることがでさる。
[0019] 本発明によれば、申請用の医薬品の規格試験法あるいは品質試験法としての分析 方法が提供されることが見込まれる。
[0020] 本発明の一局面によれば、透析剤などに含まれる 2種の含硫アミノ酸、特にシステ イン、シスチンの両成分を短時間にて明瞭に分離し、精度良くかつ同時に分析する ことができる。
[0021] 本発明の一局面では、移動相を流しながら導電性ダイヤモンド電極の酸ィ匕電解研 磨処理を行うことにより、システムを組替えることなぐ安定した測定をすることができる 表 1に、システィン、シスチン分析における本発明と既存分析法の性能をまとめた。
[0022] [表 1]
表 1 システィンとシスチンの分析における本発明と既存分析法の性能比較
Figure imgf000011_0001
図面の簡単な説明
[0023] [図 1]図 1は流路 P1を模式的に示す。
[図 2]図 2は流路 P2および流路 P3を模式的に示す。
[図 3]図 3は標準溶液の分析によって得られたクロマトグラムを示す。(実施例 1) [図 4]図 4は酸ィ匕電解研磨なしでのシスティンのクロマトグラムを示す。(実施例 1) [図 5]図 5は酸ィ匕電解研磨ありでのシスティンのクロマトグラムを示す。(実施例 1) [図 6]図 6は輸液製剤の分析によって得られたクロマトグラムを示す。(実施例 1) [図 7]図 7は標準溶液の分析によって得られたクロマトグラムを示す。(実施例 2) [図 8]図 8は輸液製剤の分析によって得られたクロマトグラムを示す。(実施例 2) [図 9]図 9は標準溶液の分析によって得られたクロマトグラムを示す。(実施例 3) [図 10]図 10は標準溶液の分析によって得られたクロマトグラムを示す (実施例 4) [図 11]図 11はマウス血漿サンプルのクロマトグラムを示す。(実施例 4)
[図 12]図 12はマウス血漿に標準溶液を添カ卩したサンプルのクロマトグラムを示す。 ( 実施例 4)
[図 13]図 13は図 10の拡大図を示す。(実施例 4)
[図 14]図 14は図 12の拡大図を示す。(実施例 4)
[図 15]図 15はラット血漿サンプルを連続測定したクロマトグラムを示す。(実施例 5) [図 16]図 16は標準溶液の分析によって得られたクロマトグラムを示す。(実施例 1) [図 17]図 17は赤ワインの分析によって得られたクロマトグラムを示す。(実施例 7) [図 18]図 18は 3 メルカプト 1 へキサノールのクロマトグラムを示す。(実施例 8) [図 19]図 19はフランチオールのクロマトグラムを示す。(実施例 9)
[図 20]図 20は HILICモードでのクロマトグラムを示す。(実施例 10)
符号の説明
[0024] 1 前処理カラム
11 人口
12 出口
2 分析カラム
3 検出器
41、 42 ポンプ
51、 52 移動相の供給源
6 バルブ
7 インジェクタ
発明を実施するための最良の形態
[0025] 以下、本発明による、測定試料に含まれる被検対象物の分析方法を単に本発明の 方法と記載することもある。以下、被検対象物が「システィンおよびシスチン」である場 合を中心に説明するが、本発明では、被検対象物は特に限定されない。 [0026] 本発明の測定試料は被検対象物を分析すべき試料であれば特に限定はなぐ具 体的には、輸液製剤、透析剤、醱酵液、生体試料 (血漿'組織)などが挙げられる。被 検対象物の分析は、被検対象物が存在しな!、場合にその不存在を確認することも含 む。よって、測定試料に被検対象物が含まれることを要さない。好ましくは、被検対象 物は 2種以上のアミノ酸である。本発明におけるアミノ酸とは、天然型アミノ酸のみな らず、非天然アミノ酸、アミノ酸誘導体、アミノ酸類をも含み、含硫アミノ酸が好ましい 。例えば、ホモシスティン、スルホシスティン、 N ァセチルシスティン(例えば、 N— ァセチルー L システィン)などを含む。 2種以上の含硫アミノ酸は好ましくはシスティ ンおよびシスチンである。システィン (cysteine)はアミノ酸の一種であり、側鎖にチォ 一ル基を持つ。シスチン(cystine)はアミノ酸の一種であり、 2分子のシスティンが、 チオール基( SH)の酸ィ匕によって生成するジスルフイド( S— S )結合を介して つながった構造をもつ。
[0027] 本発明では、被検対象物は含硫ィ匕合物であってもよい。含硫化合物は化学構造中 にィォゥ原子を有する化合物であり、例えば、チオール基、ジスルフイド結合、スルフ イド結合、スルホキシド結合、スルホン結合、スルフィン酸、スルホン酸、硫酸などの含 硫官能基を有する化合物が挙げられ、チオール基またはジスルフイド結合を有する 化合物が好ましい。含硫化合物は、好ましくは含硫アミノ酸である。上述したシスティ ンゃシスチンは含硫アミノ酸の具体例であり、含硫アミノ酸の具体例としては、他に、 メチォニン、 N ァセチノレシスティン(例えば、 N ァセチノレ一 L システィン)、シス テインスノレフィン酸、ホモシスティンスノレフィン酸、ホモシスティン、ホモシスチン等が 挙げられる。含硫アミノ酸ではない含硫ィ匕合物としては、含硫ペプチドであるグルタ チオン(還元型ダルタチオンおよび酸化型ダルタチオンを含む)、その他の 3—メルカ プトー 1 へキサノール、フランチオール等が想定される。
含硫ィ匕合物としては、システィン、シスチン、 N ァセチルシスティン、ホモシスティ ン、ダルタチオンが好ましい。
含硫化合物は、 1種のみを被検対象としてもよいし、 2種以上を被検対象としてもよ い。後述のように、本発明の分析方法は複数物質の同時分析が可能であるので、 2 種以上の含硫化合物を被検対象とする態様が好ま ヽ。 [0028] 測定試料に含まれる被検対象物、特に 2種以上の含硫化合物(特にシスティンおよ びシスチン)の分析方法は、測定試料中の被検対象物の状態を見出すことを広く包 含する概念であり、分析は定性分析であってもよいし定量分析であってもよい。また、 本発明の方法は、医薬品の規格試験法、工場における品質管理試験法として用い てもよい。本発明の方法は、測定試料に被検対象物が含まれるか含まれないかを見 出す方法、すなわち検出方法であってもよい。本発明の方法は測定試料中のシステ インおよびシスチンの少なくとも一つの濃度の測定方法であってもよい。
[0029] 本発明の一態様によれば、システィンおよびシスチンに適した前処理カラムにおい て、システィンおよびシスチンよりも大幅に長!ヽ通過時間を要する夾雑物質を含む測 定試料において効果が大である。すなわち、該夾雑物質は、工程(1)において前処 理カラムの入口付近に留まり、工程(2)において移動相を逆方向に流すことにより分 析カラムを経由することなぐ素早く除去される。そのような夾雑物質としては、電気化 学的に活性なアミノ酸であるチロジン、トリプトファン、ヒスチジン、メチォニンなどが挙 げられる。
なお、試料中に含まれる糖 (ブドウ糖等)及び電解質 (塩ィ匕ナトリウム、乳酸ナトリウ ム、ダルコン酸カルシウム、硫酸マグネシウム及び硫酸亜鉛等)の夾雑物質について は本発明の方法では検出されない。
[0030] 本発明の方法では、液体クロマトグラフィーの手法を適宜援用することができる。例 えば、水および電解質を含む移動相を使用した逆相カラム液体クロマトグラフィーを 採用することができる。以下、逆相カラムを用いた態様について説明するが、本発明 力 れに限定されな 、ことは 、うまでもな!/、。
移動相は一般的な酸性移動相を用いてもよい。本発明では、移動相の pHは好まし くは 1〜3である。移動相の pHが前記範囲内である場合には、短時間に、精度良ぐ 安定性良ぐ堅牢に分析できるという利点がある。移動相に含まれる電解質としては、 特に限定はなぐリン酸水素二カリウム、リン酸水素ニナトリウム、リン酸三ナトリウム、リ ン酸ニ水素カリウム、リン酸二水素ナトリウム、クェン酸ナトリウム、酢酸ナトリウム、炭 酸ナトリウムなどが例示される。
[0031] 好適な移動相の例は、以下の A成分および B成分の混合物である。 ここで、 A成分は 10〜100mMのリン酸二水素ナトリウムおよび l〜10mMのォクタ ンスルホン酸ナトリウム力もなるリン酸緩衝液 (ρΗ1〜3)であり、 B成分はァセトニトリ ルである。 A成分と B成分の重量比(AZB)は、好ましくは 90. 0/10. 0〜99. 0/ 1. 0である。
[0032] 本発明者らの知見によれば、移動相にイオンペア化合物を含有せしめることによつ てシスティンおよびシスチンの分析精度が向上する。 ODSカラムなどを用いる逆相 系での分析にぉ ヽて、酸性物質や塩基性物質などイオン性の物質は移動相の条件 によって、解離状態となり、十分にカラムに保持することができなくなる。このような場 合に、 目的成分と逆の電荷を有するイオン性物質を移動相に添加することで、化合 物を保持させる手法をイオンペアクロマトグラフィーと 、、添加するイオン性物質を イオンペア化合物という。 目的成分とイオンペア化合物は、移動相中でイオン対を形 成することで、電荷の影響が軽減されて固定相に保持されやすくなる。カロえて、固定 相にイオンペア化合物が保持されることで、疑似的なイオン交換作用を持ち、 目的成 分が固定相に保持される効果も期待される。酸性移動相を用いた場合、アミノ酸のァ ミノ基がイオン化しているので、酸性のイオンペア化合物、例えば、アルキルスルホン 酸塩、アルキル硫酸塩等を用いる。イオンペア化合物は、好適には、アルキルスルホ ン酸塩およびアルキル硫酸塩力 なる群力 選ばれる。
[0033] アルキルスルホン酸塩のアルキル部分の炭素数は好ましくは 5〜 12であり、より好 ましくは 5〜8である。アルキルスルホン酸塩における「塩」は好ましくはアルカリ金属 塩であり、中でも、ナトリウム塩が好ましい。アルキルスルホン酸塩のより具体的な例と しては、オクタンスルホン酸ナトリウム、ペンタンスルホン酸ナトリウム、へキサンスルホ ン酸ナトリウム、ヘプタンスルホン酸ナトリウム、ドデカンスルホン酸ナトリウムなどが挙 げられる。
[0034] アルキル硫酸塩のアルキル部分の炭素数は好ましくは 5〜 12であり、より好ましくは 5〜8である。アルキル硫酸塩における「塩」は好ましくはアルカリ金属塩であり、中で も、ナトリウム塩が好ましい。アルキル硫酸塩のより具体的な例としては、ドデシル硫 酸ナトリウムなどが挙げられる。
[0035] 図 1は流路 P1を模式的に示す。但し、本発明は図示された態様に限定されるわけ ではない。本発明の工程(1)では、流路 P1に移動相と測定試料とを流す。流路 P1 は、前処理カラム 1を順方向に通り、次いで分析カラム 2を経て検出器 3へ至る流路 である。前処理カラム 1は、複数の含硫ィ匕合物(システィンおよびシスチンなど)が 4〜 15分程度で通過することができるものから選ぶことができる。例えば、逆相カラムの巿 販品として、イナ一トシル ODS - 3 (ジーエルサイエンス社製)、 Develosil ODS - UG (野村化学社製)、 YMC— PackODSシリーズ(ヮイエムシイネ土製)、 CAPCELL PAK C18(資生堂社製)、 ZORBAX Eclipse XDB (Agilent社製)などが挙げ られる。
[0036] 本発明の分析装置において流路 P1を構成する場合には、流路の方向を可逆的に 切り換えることができる流路切換装置 6を用いて、試料導入用流路をこの流路切換装 置 6に結合し、次いで、流路切換装置 6から出て前処理カラム 1を経て再び流路切換 装置 6に戻る流路へと導き、さらに、流路切換装置 6から出て分析カラム 2を経て被検 対象物のクロマトグラムを取得することができる検出器 3へ至るように配管および流路 切換装置 6を配置すればよい。ここで、流路切換装置 6は典型的には 1つ以上のバ ルブであり、試料導入用流路には、一般には、移動相の供給源 (タンク等) 51と移動 相の流れを駆動するための送液装置 (ポンプ等) 41と測定試料を投入すべきインジ ェクタ 7とが設けられている。
[0037] 前処理カラム 1は液体クロマトグラフィーにおける固定相として作用する。移動相は 通常は分析カラム 2を一方向に流す。本発明では、工程(1)で使用する流路 P1にお V、て移動相を前処理カラム 1に流すときの分析カラム内における流通方向を「順方向 」と定義して、その反対の方向を「逆方向」と定義する。説明の便宜上、前処理カラム 1の入口 11および出口 12を次のように定義する。すなわち、流通方向が「順方向」で ある場合には、液体は、前処理カラム 1の「入口」 11から該カラム 1に入り、前処理カラ ムの「出口」 12から出る。したがって、流通方向が「逆方向」である場合には、移動相 は、前処理カラム 1の「出口」 12から該カラムに入り、前処理カラムの「入口」 11から出 る。
[0038] 本発明では、測定試料を移動相とともに前処理カラム 1を通過させることによって、 好ましくは少なくとも一部の夾雑物質を除去した後に、被検対象物を含む溶液は分 析カラム 2に到達する。分析カラム 2もまた液体クロマトグラフィーにおける固定相とし て作用し、例えば、システィンおよびシスチンを分離することができる。被検対象物( システィンやシスチンなどの含硫ィ匕合物)が分離可能であれば、分析カラム 2の材質 や形状などは特に限定されず、前処理カラム 1と同じ種類のカラムを用いてもよい。
[0039] 本発明は、逆相クロマトグラフィーに限定されない。例えば、川頁相クロマトグラフィー やイオン交換クロマトグラフィーでも分析は可能である。
順相クロマトグラフィーの好適な移動相の例は、以下の A成分および B成分の混合 物である。ここで、 A成分は 10〜: LOOmMの酢酸、および、酢酸ナトリウム
(pH3〜5)力 なり、 B成分はァセトニトリルである。 A成分と B成分の容量比 (AZB) は、好ましくは 40. 0/60. 0〜5. 0/95. 0である。使用する順相カラムとしては、水 系移動相が使用できる HILIC (Hydrophilic Interaction Chromatography)カラ ムが好ましく使用される。 HILICカラムの市販品として、 ZIC— HILIC (野村化学社 製)などが挙げられる。
イオン交換クロマトグラフィーの好適な移動相の例は、 0. 1力ら 0. 3Mのタエン酸ナ トリウム緩衝液である。イオン交換カラムの巿販品としては、昭和電工社製の Shodex CXpakなどが挙げられる。
[0040] 検出器 3は被検対象物の存在に基くクロマトグラムの信号を受けて必要に応じて演 算を行って、チャート等の表示手段(図示せず)に情報を伝達する装置である。検出 器 3の種類は、作用電極としてダイヤモンド電極を有する電気化学検出器である。電 気化学検出器は作用電極と参照電極とを有し、所定の電圧、好ましくは 1200〜200 OmVの電圧を作用電極に印加したときの、作用電極表面の酸化反応による電流変 化を検出する装置である。好ましくは、作用電極は、導電性ダイヤモンド電極である。 参照電極は一般的な銀 Z塩ィ匕銀電極などを用いることができる。
[0041] 導電性ダイヤモンド電極は、 3族や 5族の不純物が添加されて半導体や金属のよう な導電性を呈するダイヤモンドカゝらなる電極である。導電性ダイヤモンド電極は CVD 法などによって製造できることが公知であり、特許文献 2などの公知文献を適宜参酌 して得ることができる。導電性ダイヤモンド電極を用いると、高感度で、短時間に、精 度良ぐ日差変動もなく安定に、堅牢に、同時分析できるという利点がある。電極の処 理はオンライン再生化を用いることが好ましぐその場合、システムの堅牢性が高まり 、分析精度が向上する。さらに、堅牢性を高めるためには、電極上の酸素終端と水素 終端の比率が徐々に変化しないよう電極表面を高度に酸素終端にしておくと良い結 果が得られる。酸素終端を作る方法は、当該技術分野の自体公知の方法を特に制 限することなく採用することができる。例えば、 Akira Fujishima et. al.編: Diamond Ch emistry, 218 (2005) Elsevierに記載の、 1.高温化で酸素ガスを流す、 2.硫酸-硝酸 の混液中でボイルする、 3.酸素プラズマの照射、 4.酸化剤での処理、 5.酸化電解 研磨、が好ましく採用される。中でも、分析システムの構成を崩さず、分析状態と同様 に移動相を送液しながらオンラインで実行することのできる、酸化電解研磨法が本発 明については、再現性が高く有用である。
[0042] 移動相と測定試料の送液手段は特に限定なぐ一般的なポンプ 41などを用いて移 動相の供給源 51から移動相を送ることができる。図 1の態様では、測定試料はインジ ェクタ 7において流路 P1に投入される。時間あたりの流量は、カラムの能力などに応 じて適宜設定すればよぐ好ましくは 0. 2〜1. OmLZminである。
[0043] 本発明では、工程(1)にお 、て複数の含硫化合物(システィンおよびシスチンなど) が前処理カラム 1を通過した後に工程(1)を終了して工程 (2)を開始する。複数の含 硫ィ匕合物が前処理カラム 1を通過するのに要する時間は移動相、流速、固定相の組 合わせで概ね決まるので、予め所要時間を測定しておいてもよいし、前処理カラム 1 の出口 12の近傍などに検出手段(図示せず)を設けてモニターしてもよい。工程 (2) では流路 P2および流路 P3を用いる。
[0044] 図 2は流路 P2および流路 P3を模式的に示す。但し、本発明は図示された態様に 限定されるわけではない。本発明の工程(2)では、流路 P2および流路 P3に測定試 料を含まない移動相を流す。流路 P2の方向は図 2において黒色の矢印で示されて いる。流路 P2は、前処理カラム 1を通らずに、分析カラム 2を経て検出器 3へ至る流 路である。分析カラム 2および検出器 3は流路 P 1にお!/、て使用するものと同じである 。流路 P2に移動相を流すことによって、工程(1)において分析カラム 2あるいはそれ 以前の管路に留まって 、た被検対象の複数の含硫化合物 (システィンおよびシスチ ンなど)を分析カラム 2にお 、てクロマトグラフィー処理に供して分析作業を続行する ことができる。工程(2)において流路 P2に測定試料を流さないことで、分析カラム 2へ の夾雑物質の進入がな 、ので分析精度の低下が起こり難 、。
[0045] 流路 P3の方向は図 2において白色の矢印で示されている。流路 P3は、前処理カラ ム 1を逆方向に通り、分析カラム 2を経ず、検出器 3も経ずに排出される流路である。 前処理カラム 1は流路 P1で用いるものと同じである。工程(1)において前処理カラム 1に留まる夾雑物質のうち、保持時間の長いものは前処理カラム 1の入口 11の近傍 に留まって 、る。こう!/、つた保持時間の長 、夾雑物質を除去するために従来は長時 間にわたって移動相を前処理カラム 1に流しつづける必要があつたところ、本発明に よれば、流路 P3を流れる移動相は前処理カラム 1の出口 12から入口 11へと流れる ので、入口 11の近傍に留まっていた夾雑物質を比較的に短時間で除去することが できる。したがって、短時間にて次の測定試料に対する測定を開始することができ、 測定の迅速ィ匕が図られる。さらに本発明の好ましい態様は、第 1の分析においてェ 程(3)の終了後、直ちに第 2の分析において工程(1)、(2)および(3)を開始し、これ を連続して繰り返し分析を行うことである。
[0046] 本発明の分析装置において流路 P2を構成する場合には、流路切換装置 6を切り 換えること〖こよって、試料導入用流路カゝらの流れを直ちに分析カラム 2を経て検出器 3へ至る流路へと導くようにすればょ 、。このように流路切換装置 6により流れの方向 を定めたときに、同時に、流路 P3が構成されることが重要である。この場合、流路 P3 は、移動相導入用流路から流路切換装置 6に入る流れを、前処理カラム 1の出口側 1 2に導き、該前処理カラムを逆方向に通過させ、再び流路切換装置 6に入れ、その後 、排出路へ向うように流路が定められる。
[0047] 工程(1)および工程 (2)で流す移動相は好ましくは全て同種類とする。その場合、 操作が簡便になることにカ卩えて、移動相の種類の変化に起因するカラム 1、 2内での 物質の保持挙動が変化するおそれが低減する。図面では、移動相の供給源 51、 52 を便宜上 2つ示しているが、同一の供給源力も移動相を流路 P1〜P3に供給してもよ い。工程(1)および工程(2)における、流路 P1〜P3の切り替えは、図示するように、 流路切換装置 (バルブ等) 6および配管を組合わせることによって容易に実現するこ とがでさる。 [0048] 流路 P2及び P3を構成した場合、被検対象物は、分析カラム 2での分離後にダイヤ モンド電極型電気化学検出器に導かれ、物質固有の電気化学活性により選択的に 検出される。通過時間が被検対象物とほぼ同様の夾雑物質も分析カラム 2に導かれ る力 ダイヤモンド電極型電気化学検出器に活性を示さないため検出されない。一 方、被検対象物より大幅に長い通過時間を要する夾雑物質は前処理カラム 1から逆 方向に流れて排出される。従って、本構成を採用することによって、夾雑物質の影響 を無くした電気化学活性を持つ複数の含硫化合物を同時に検出することが可能とな る。
本発明は、選択性が高ぐノイズレベルの低いダイヤモンド電極型電気化学検出器 とカラムスイッチング法を用いることで、複数化合物を短時間で、精度の高い、安定し た測定法が可能となる。
[0049] 以下、実施例を用いて本発明をより詳しく説明するが、これらの例は本発明を何ら 限定するものではない。
実施例 1
[0050] (移動相)
50mmolZLリン酸二水素ナトリウム及び 5mmolZLオクタンスルホン酸ナトリウム 溶液に、リン酸を所定量加えることにより、酸性 (pH2. 2)の緩衝液を調製した。この 緩衝液 97. 5重量部に対し、ァセトニトリルを 2. 5重量部加えることによって移動相を 得た。
[0051] (標準溶液)
デシケータ (減圧、五酸化リン)で 3時間乾燥した定量用 L システィンを移動相に 溶かした。別に、 105°Cで 3時間乾燥した定量用 L シスチンを少量の ImolZL塩 酸試液に溶カゝして水をカ卩えて所定量にする。次に、この L システィン溶液及び L— シスチン溶液をそれぞれ所定量はカゝり取り、移動相を加え混合および希釈して、標 準溶液を得た。
[0052] (分析条件)
この実施例では図 1および 2に模式的に表現される分析システムを構築して分析を 実施した。詳細な条件は以下のとおりである。 分析カラム:イナ一トシル ODS— 3 (ジーエルサイエンス社製)
150mmX 3. Omml. D. dp = 3 ^ m
前処理カラム:イナ一トシル ODS— 3 (ジーエルサイエンス社製)
d3mmX 3. Omml. D. dp = 3 ^ m
カラム温度: 40°C
検知器:電気化学検出器、導電性ダイヤモンド電極 1600mV
参照電極、 Ag/AgCl
流量: 0. A L/ mm
注入量:
[0053] (ダイヤモンド電極の酸化電解研磨)
移動相条件:ァセトニトリル ZO. 1%リン酸 = 50Z50
流速: 0. AmL/ min
印カロ電圧: 5000mV
処理時間: 24時間放置
ダイヤモンド電極の酸ィ匕電解研磨は、実際の測定に使用するシステムを構築した 状態で移動相を流し、上記条件で行った。本条件はシスティンに有効であった一例 であり、各種の化合物においては強酸性条件において移動相を測定条件とほぼ同 等な速度で流し、 2000mV以上の高電圧で 6時間以上放置処理し、酸化電解研磨 を完了することが好ましい。
[0054] (標準溶液の分析)
上述の標準溶液を用い、図 1および図 2に模式的に示される測定系において検出 器 3の作用電極の印加電圧を 1600mVに設定し、その電流変化を検出した。このと き、図 1および図 2において点線で囲われた領域、すなわち、前処理カラム 1と分析力 ラム 2とバルブ 6とを含む領域を 40°Cにて一定に保った。この操作の結果、 L—シス ティン及び L シスチンの同時分析が可能であることが確認できた。図 3はこの標準 溶液の分析によって得られたクロマトグラムである。
[0055] ダイヤモンド電極の酸ィ匕電解研磨処理を行わない場合、初期の分析から 10時間 経過するとシスティンピーク面積値が約 66%に減ってしまっていた力 酸化電解研 磨処理を行った場合は、 96%の面積値とほぼはじめの状態の面積値を維持して ヽ た。
[0056] 図 4は酸化電解研磨処理を行わずに、 5時間後、 10時間後に同じ分析を行って得 られたクロマトグラムであり、表 2はその面積値である。
[0057] [表 2]
Figure imgf000022_0001
[0058] 図 5は、酸化電解研磨処理を行った後に、 5時間後、 10時間後に同じ分析を行つ て得られたクロマトグラムであり、表 3はその面積値である。
[0059] [表 3]
Figure imgf000022_0002
[0060] 移動相を流しながらの酸ィ匕電解研磨処理力 本システムに十分有効であることが確 f*i¾ れ 。
[0061] (輸液製剤の分析)
輸液製剤 (糖 ·電解質 ·アミノ酸液「ツインパル (登録商標)」味の素社製)を、上述の 移動相で希釈して試料溶液を得た。この試料溶液を、標準溶液と同様にして分析を 試みたところ、 L—システィン及び L—シスチンの特異的な分析が可能であることが確 認できた。図 6はこの輸液製剤の分析によって得られたクロマトグラムである。
[0062] この輸液製剤の組成は、表 4 (I層(糖'電解質液) )および表 5 (II層(アミノ酸液) )の とおりである。分析の際には、 II層または I層と II層とを混合した試料を用いた。図 6に は、 II層を試料としたときのクロマトグラムを示す。
[0063] 本輸液製剤の場合、 500mL容量(I層: 350mL、 II層: 150mL)と lOOOmL容量(I 層: 700mL、 II層: 300mL)と 2容量あり、試料としては 2容量用いた。
[0064] [表 4] I層 (耱 ·電解質)
成分 3 5 OmL中 7 0 OrnL中
プドゥ糖 3 7. 4 9 9 g 74 9 9 8 g
塩ィ匕ナトリウム 0. 3 99 g 0 . 79 8 g
乳酸ナトリウム 1. 1 45 g 2 . 28 9 g
ク''ノレコン ί7ノレ、ンゥ Λ 0. 5 60 g 1 ■ 1 2 0 g
硫酸マグネシウム 0. 3 1 2 g 0 . 62 3 g
硫酸亜鉛 0. 7 0 Om g 1 . 4 0 Omg
添力 D物
亜硫酸水素ナトリウム 0. 0 1 5 0 5 g 0. 0 3 0 1 g
氷酢酸 (ρΗ調節剤) 適量 適量
[0065] [表 5]
I I層 (アミノ酸液)
成分 15 OmL中 30 OmL中
アミノ酸 L—ロイシン 2. 100 g 4. 200 g
L一イソロイシン 1. 200 g 2. 400 g
L—バリン 1. 200 g 2. 400 g
塩酸 L—リジン 1. 965 g 3. 930 g
Lートレオ-ン 0. 855 g 1. 7 1 0 g
L一 トリプトファン 0. 300 g 0. 600 g
L—メチォニン 0. 585 g 1. 1 70 g
L—フエ二ルァラニン 1. 050 g 2. 1 00 g
L—システィン 0. 150 g 0. 300 g
Lーチロジン 0. 075 g 0. 1 50 g
L一アルギニン 1. 575 g 3. 1 50 g
L—ヒスチジン 0. 750 g 1. 500 g
Lーァラエン 1. 200 g 2. 400 g
L プロリン 0. 750 g 1. 500 g
Lーセリン 0. 450 g 0. 900 g
ダリシン 0. 885 g 1. 7 70 g
Lーァスパラギン酸 0. 150 g 0. 300 g
L—グノレタミン酸 0. 150 g 0. 300 g
リン酸ニ力リウム 0. 870 g 1. 740 g
添力!]物
亜硫酸水素ナトリゥム 0. 030 g 0. 060 g
氷酢酸 (pH調節剤) 適量 適量
[0066] 本発明分析法では真度及び併行精度も良好であり、 L システィン;回収率:101 %、相対標準偏差: 0.9%、L シスチン;回収率:100%、相対標準偏差: 0.7%( すべて、 n= 9で実施)であった。
特に、本実施例にあたっては、図 1、 2で示した、カラムスイッチング法が重要な役 割を果たして 、る。ダイヤモンド電極を使用した電気化学検出器は選択性の高 、装 置ではあるが、システィン、シスチン以外にも、メチォニン、チロシン、ヒスチジン、フエ 二ルァラニンなどのアミノ酸も検出される。これらのアミノ酸は、輸液製剤や生体試料 中にも多く含まれる成分である。カラムスイッチング法を使用しない場合、これらのアミ ノ酸は 45分から 280分の間で溶出される(図 16)。このため、 1サンプルあたりの分析 時間が非常に長くなつてしまい、事実上、実サンプルの測定には使用できないことに なる。
実施例 2
[0067] (標準溶液)
80°Cで 3時間乾燥した定量用 N—ァセチル— L—システィンを移動相に溶力した。 次に、この N—ァセチルー L—システィン溶液を所定量は力り取り、移動相をカ卩えて 希釈して、標準溶液を得た。なお、移動相は実施例 1と同様のものとした。
[0068] (分析条件)
この実施例では図 1および 2に模式的に表現される分析システムを構築して分析を 実施した。詳細な条件は実施例 1の場合と同じである。
[0069] (標準溶液の分析)
上述の標準溶液を用い、図 1および図 2に模式的に示される測定系において実施 例 1の場合と同様の操作を行なつた結果、 N—ァセチル— L—システィンの同時分析 が可能であることが確認できた。図 7はこの標準溶液の分析によって得られたクロマト グラムである。
[0070] (輸液製剤の分析)
輸液製剤 (アミノ酸 '電解質液「市販のビタミン B '糖'電解質'アミノ酸液」)を、上述
1
の移動相で希釈して試料溶液を得た。この試料溶液を、標準溶液と同様にして分析 を試みたところ、 N -ァセチル -L-システィンの特異的な分析が可能であることが 確認できた。図 8はこの輸液製剤の分析によって得られたクロマトグラムである。
[0071] この輸液製剤の組成は、表 6 (上室液 (アミノ酸 ·電解質液))および表 7 (下室液 (ビ タミン B '糖'電解質液))のとおりである。分析の際には、上室液または上室液と下室
1
液とを混合した試料を用いた。図 8には、上室液を試料としたときのクロマトグラムを示 す。
[0072] 本輸液製剤の場合、 500mL容量(上室液: 150mL、下室液: 350mL)と lOOOmL 容量(上室液: 300mL、下室液: 700mL)と 2容量あり、試料としては 2容量用いた [0073] [表 6]
上室液 (アミノ酸 ·電解質液)
Figure imgf000025_0001
[0074] [表 7]
下室液(ビタミン B, '糖'電解質液)
Figure imgf000026_0001
実施例 3
[0075] (標準溶液)
デシケータ (減圧、五酸化リン)で 3時間乾燥した L システインスルフィン酸、 L ホ モシステインスルフィン酸、 DL ホモシスティン及び還元型ダルタチオンを移動相に 溶かし混合溶液とした。同様に乾燥した L—ホモシスチンを少量の ImolZL塩酸試 液に溶力して水をカ卩えて所定量とし、 L ホモシスチン溶液とする。次に、この混合溶 液及び L ホモシスチン溶液をそれぞれ所定量はカゝり取り、移動相を加え混合およ び希釈して、含硫アミノ酸 '含硫ィ匕合物の標準溶液を得た。なお、移動相は実施例 1 と同様のものとした。
[0076] (分析条件)
この実施例では図 1および 2に模式的に表現される分析システムを構築して分析を 実施した。詳細な条件は実施例 1の場合と同じである。
[0077] (標準溶液の分析)
上述の標準溶液を用い、図 1および図 2に模式的に示される測定系において実施 例 1の場合と同様の操作を行なった結果、含硫アミノ酸 ·含硫化合物の標準溶液の 同時分析が可能であることが確認できた。図 9はこの標準溶液の分析によって得られ たクロマトグラムである。
本法は、 L システィン等のアミノ酸の分解物の検索に有効な方法と考えられる。な お、図 9でリテンションタイム 2. 1分のピークは L—システインスルフィン酸に由来し、 2 . 5分のピークはし -ホモシステインスルフィン酸に由来する。 実施例 4
[0078] (標準溶液)
システィン、シスチン、還元型ダルタチオン、ホモシスティンを所定量はカゝり取り、希 塩酸を用いて溶解した。その後、水をカ卩えて順次希釈し、 6 molZLのシスティン、 15 μ molZLのシスチン、 3 μ molZLの還元型グルタチオンおよび 6 μ molZLのホ モシスティンを含有する標準溶液を得た。
[0079] (血漿サンプルの調製)
マウス、ラット、ィヌおよびヒト等の血漿に対し、トリクロ口酢酸溶液を添加し、遠心分 離により、タンパク成分を除去した。遠心上清を水で希釈し、血漿サンプルを得た。
[0080] (分析条件)
この実施例では図 1および 2に模式的に表現される分析システムを構築して分析を 実施した。詳細な条件は以下のとおりである。
分析カラム:イナ一トシル ODS— 3 (ジーエルサイエンス社製)
100mm X 3. Omml. D. άρ = 3 ^ πι
前処理カラム:イナ一トシル ODS— 3 (ジーエルサイエンス社製)
lOmm X 3. Omml. D. dp = 5 ^ m
カラム温度: 50°C
移動相: 1 ヘプタンスルホン酸ナトリウム(20mM)およびリン酸(25mM)を含有 する緩衝液 98. 5重量部と、 1. 5重量部のァセトニトリルとの混合液
検知器:電気化学検出器、導電性ダイヤモンド電極 1600mV
参照電極、 Ag/AgCl
流量: 0. 8mL/ mm
注入量:
カラムスイッチング時間 2. 1 min
検出 : ECD 20. 0分 1600mV
20. 1分 4000mV
21. 0分 1600mV
被検対象物が検出され分析が終了した 20. 1分後に、電極表面に堆積してしまう 汚れを高電圧を印加することで落とし、電気化学的に再生した。
[0081] (標準溶液の分析)
上述の標準溶液を用い、図 1および図 2に模式的に示される測定系において検出 器 3の作用電極の印加電圧を 1600mVに設定し、その電流変化を検出した。このと き、図 1および図 2において点線で囲われた領域、すなわち、前処理カラム 1と分析力 ラム 2とバルブ 6とを含む領域を 50°Cにて一定に保った。この操作の結果、システィン 、シスチン、還元型ダルタチオン、ホモシスティンの同時分析が可能であることが確 認できた。図 10は標準溶液で、システィン 6 μ mol/L, 還元型ダルタチオン 3 m olZL、 ホモシスティン 6 molZL、 シスチン 15 molZLを分析したクロマトグラ ムであり、図 13は図 10のホモシスティン溶出部分を拡大した図である。
[0082] (血漿サンプルの分析)
上述の前処理を施した血漿サンプルを、標準溶液と同様にして分析を試みたところ 、血漿中のシスティン、シスチン、還元型ダルタチオン、ホモシスティンの特異的な分 祈が可能であることが確認できた。図 11はマウス血漿サンプルの分析によって得ら れたクロマトグラムである。
[0083] (血漿添加サンプルの分析)
図 12は血漿(図 11)に標準溶液 6 μ mol/L還元型ダルタチオン、 3 μ mol/L, ホモシスティン 6 μ mol/L, シスチン 15 molZLを添カ卩し、分析した結果である 。図 14は図 12のホモシスティン溶出部分を拡大した図である。
[0084] 図 10は標準溶液分析より、添加したシスティン、還元型ダルタチオン、ホモシスティ ン、シスチンのみが検出されている。図 11では血漿中に含まれている成分として、シ スティン、還元型ダルタチオン、シスチンが検出されている。
血漿中ではホモシスティンが検出されていないため、図 12において、血漿中に添 加したホモシスティンの濃度は図 10と同濃度の 6 molZLとなる。図 12で得られた ホモシスティンのピークと図 10のホモシスティンのピークはほぼ同一であり、かつ、図 13と図 14から、ピークの高さとノイズが同程度であることが確認された。以上の結果 から、マトリクスに夾雑物質を含む血漿中の分析においても、標準溶液分析と同様の 感度が得られることがわ力つた。 [0085] 実際の血漿等の生体試料においては様々な夾雑物質が含まれており、その中に は電気化学的な活性を示すものが存在する。しかし、先行文献においては夾雑物質 が含まれて!/、な!/、標準品分析のデータしか提示されて!、な!、のが現状である。 電気化学的な選択性とカラムスイッチング等の分離手法を組み合わせた選択性の 調整が、本システムを複雑なマトリクスを含む材料に適用する際には不可欠である。 事実医薬品や食品分析における検出限界はバックグラウンドの 3 σと定義づけされて おり、ダイヤモンド電極電気化学検出器が優れた検出能を有していても、夾雑物質と 分離できる選択性の調整が達成できない限り、感度は上がらない。
このように、複雑なマトリクスサンプルであり夾雑物質が含まれて 、る血漿ブランクサ ンプルにおいても、標準溶液分析と同じ感度が得られたことは、電気化学的選択性と カラムスイッチング手法を組み合わせた本システムによって初めて達成されるもので ある。
[0086] 本法にっ ヽて、ラット血漿を用いて、定量性を確認した結果、直線性、同時再現性 、 日間再現性、安定性 (オートサンプラー 4°C)、正確度等良好な結果が得られた。定 量範囲は、システィン、ホモシスティン: 6〜120 /ζ M、還元型グルタチオン: 3〜60 μ Μ、シスチン: 15〜300 μ Μであった。
実施例 5
[0087] (標準溶液を添加した血漿試料の調製)
ラット血漿 100 μ Lに水 20 μ L、 10%トリクロ口酢酸 80 μ Lを添カ卩して、タンパクを変 性させる。遠心分離をした上清 100 Lに対し、システィン'シスチン混合試料 10 L 、精製水 890 Lを加え攪拌したサンプルを血漿試料とした。
この血漿試料を用いて連続分析を行った。
[0088] (分析条件)
図 1および図 2に模式的に示される測定系において検出器 3の作用電極の印加電 圧を 1600mVに設定し、その電流変化を検出した。
詳細な条件は実施例 1の場合と同じである。なお、分析サイクルは 1分析あたり 20 分とした。
[0089] (血漿添加サンプルの連続測定) 図 15は、 1000回の連続分析の中で、初期、 500回、 1000回目のクロマトグラムで ある。
初期、 500回、 1000回のクロマトグラムにおいて、システィン、シスチンのピーク強度 は変わらず、ベースラインも安定している。
表 8は、 1000回の連続分析のうち、 21〜29回目、 481〜489回目、 961〜969回 目それぞれ連続する 9回分析における保持時間と面積値の変動率 (CV%)を示すも のである。システィン、シスチンとも保持時間の変動率は 1%以下、面積値の CV値 は最大でも約 3. 9%と良好な結果が得られた。
[表 8]
シス亍イン シスチン 保持時間 面積値 保持時間 面積 1匿
No.21 8.55 1990736 11.67 1584148
No.22 8.57 2005372 11.69 1590631
No.23 8.59 1993448 11.73 1581780
No.24 8.57 2003073 11.71 1591177
No.25 8.58 1995416 11.74 1576519
No.26 8.59 1984225 11.75 1561195
No.27 8.61 1988878 11.77 1571165
No.28 8.62 1997933 11.78 1572204
No.29 8.61 1988053 11.78 1564621 平均 8.59 1994126 11.74 1577049
C.V. % 0.26 0.35 0.34 0.68
No.481 8.64 1977296 11.82 1555770
No.482 8.64 1975804 11.83 1556187
No.483 8.62 1970091 11.82 1540298
No.484 8.67 1953552 11.88 1538601
No.485 8.68 1955012 11.90 1541438
No.486 8.64 1950153 11.87 1532854
No.487 8.64 1884830 11.87 1472321
No.488 8.68 1935552 11.91 1517861
No.489 8.66 1882094 11.90 1465871 平均 8.65 1942709 11.87 1524578
C.V.% 0.23 1.86 0.29 2.20
No.961 8.71 1853978 11.98 1444785
No.962 8.66 1845355 11.92 1434181
No.963 8.63 1876312 11.85 1451503
No.964 8.67 1896138 11.87 1477201
No.965 8.60 1926472 11.79 1501052
No.966 8.65 1997225 11.82 1552627
No.967 8.59 2015465 11.75 1569259
No.968 8.62 2037288 11.77 1594782
No.969 8.58 1967084 11.73 1525248 平均 8.63 1935035 11.83 1505626
C.V. % 0.51 3.72 0.69 3.87 表 9 :システィン面積値の変化(ダイヤモンド電極)
Figure imgf000032_0001
[0092] [表 10]
表 1 0:シスチン面積値の変化(ダイヤモンド電極)
Figure imgf000032_0002
[0093] 表 9、 10に 1000回連続分析を行った中の、 7時間後(20回め)、 160時間後(480 回め)、 320時間後(960回め)のピーク面積値をピックアップし、その減少率を示した 。 320時間後でもその減少率は 5%以下とわずかであり、システムの安定性が確認さ れた。
以上より、非常に多くの夾雑物質を含む複雑なマトリクスである血漿サンプルを試料 として、短時間で、精度の高い定量分析が可能であることが示された。
これには、カラムスイッチング法を用いて夾雑物質を効率よく除去し、分析時間の短 縮ィ匕と電極の劣化を防いだこと、導電性ダイヤモンド電極を使用したため、カーボン では電極に負荷の力かるアルキルスルホン酸塩を十分な濃度で使用でき、かつ、高 い印加電圧をかけて電極表面を酸ィ匕電解研磨する洗浄ができること、さらに注入ごと に洗浄ができることなどが大きく寄与していると考えられ、夾雑物質の影響を受けず、 安定した分析を可能とするものである。
実施例 6
[0094] 一方、データ安定性の比較対照として、グラッシ一カーボン電極を使用した標準溶 液の分析を行った。グラッシ一カーボン電極は、高い印加電圧をかけることができな V、ため、反応電位の高!、シスチンは検出することができずにシスティンのみ行って!/ヽ る。
[0095] (分析条件)
分析カラム: Inertsil ODS— 3 (ジーエルサイエンス社製) 3 m 3. Oxl 50mm 移動相: lOOmM リン酸緩衝液— 5mMオクタンスルホン酸ナトリウム(pH2. 2)/メタ ノール = 95/5
流速: 0. 8mL/ min
カラム温度: 40°C
検出:電気化学検出器 グラッシ一カーボン電極
印加電圧: 500mV
[0096] (グラッシ一カーボン電極を使用する標準溶液の分析)
3種類の濃度に標準溶液を調整し、 日が経過した場合の面積値変化を見たものが 表 11〜13である。
グラッシ一カーボン電極を用いたシスティン分析では、時間の経過に伴 、面積値が 変化し、 96時間ですでに 20%以上面積値が減少したことから、安定性に欠けること が確認された。
このことから、先の、ダイヤモンド電極で構築した分析システム力 試料に夾雑物質 を多く含む過酷な条件にもかかわらず、いかに安定したものであるかが際立つ結果と なった。
[0097] [表 11] 表 1 1:面積値の変化(グラッシ一力一ボン電極使用): 10 mol/L
Figure imgf000033_0001
[0098] [表 12]
表 1 2:面積値の変化(グラッシ一カーボン電極使用): 50 mol/L
Figure imgf000033_0002
[0099] [表 13] 表 1 3:面積値の変化(グラッシ一カーボン電極使用): 200 mol/L
システィン 初日 96時間(4日目) 168時間(7日目)
200 μ mol/L 10436372 7756323 7424948 減少率(%) ― 25.7 28.9 実施例 7
[0100] (発酵液である赤ワイン分析)
発酵液の分析例として、赤ワイン、および、その強制酸ィ匕品の分析を本発明のシス テムで行った。
図 1および図 2に模式的に示される測定系において検出器 3の作用電極の印加電 圧を 1600mVに設定し、その電流変化を検出した。詳細な条件は実施例 4の場合と 同じである。
[0101] (酸化条件'サンプル前処理条件)
赤ワインをスクリューバイアルに 1Z3量程度入れ、フタをした後、超音波を 30分間 力けた。その後、未処理の赤ワイン、および、酸ィ匕処理した赤ワインを 10%トリクロ口 酢酸で除タンパクし、その遠心上清を希釈して本発明のシステムで測定を行った。
[0102] (分析結果)
図 17に結果を示す。本発明のシステムを用いることで、多くの成分を含む発酵液を 短時間で再現性良く測定することが可能となった。 2種のクロマトグラムを比較したとこ ろ約 10分までのシグナルについては、同等の分離 '強度が得られている。一方、 10 〜: L 1分、および、 14〜15分のシグナルについてはピーク強度が大きく変動している 。これらの化合物は、サンプルの酸ィ匕状態を示すシグナルであり、本発明のシステム を用いることで、精度良く短時間に分析が可能である。
実施例 8
[0103] (標準溶液の分析)
チオール基をその構造に持ち、グレープフルーツの香として知られている 3—メル カプト— 1—へキサノールを、強制的に酸ィ匕し、本発明のシステムでその酸ィ匕体の分 析を行った。
[0104] 分析カラム: Inertsil ODS— 3 (ジーエルサイエンス社製) 3 M 2. 1x150mm 移動相: 50mMリン酸緩衝液 (pH2. 8) /ァセトニトリル = 50/50
流速: 0. 2 L/ min
カラム温度: 40°C
検出:電気化学検出器 導電性ダイヤモンド電極 印加電圧: 1600mV
[0105] (3 メルカプト 1一へキサノールの酸化条件)
3 メルカプト一 1―へキサノール 10 Lに水一ジメチルホルムアミド混合溶液 (1 : 1 )を添加し、 30分超音波処理後、室温で 12時間静置した。これを水で 6倍希釈し、 3 —メルカプト一 1—へキサノールの酸ィ匕試料として分析に用いた。
[0106] (分析結果)
図 18は、 3 メルカプト 1 へキサノールの酸化試料の分析によって得られたクロ マトグラムである。
3 メルカプト 1一へキサノールを酸化させた場合、 5分に 3 メルカプト 1一へ キサノール、 10. 5分に 3 メルカプト 1一へキサノール二量体と考えられる 2本の ピークが検出された。
チオール基を持つ化合物の 1量体と 2量体の同時分析が可能であることが確認され た。
実施例 9
[0107] (標準溶液の分析)
チオール基をその構造に持ち、珈琲の香として知られているフランチオールを、シ スティンと合わせて強制的に酸ィ匕し、本発明のシステムでその酸ィ匕体の分析を行つ た。
[0108] (分析条件)
分析カラム: Inertsil ODS— 3 (ジーエルサイエンス社製) 3 μ Μ 2. lxl 50mm 移動相: 50mMリン酸緩衝液 (pH2. 8) /ァセトニトリル = 50/50
流速: 0. 2 L/ min
カラム温度: 40°C
検出:電気化学検出器 導電性ダイヤモンド電極
印加電圧: 1600mV
[0109] (フランチオールとシスティンの酸化条件)
システィン lOmgZmL (水:ジメチルホルムアミド = 1: 1で溶解)とフランチオール 1 0 Lを混合し、 30分超音波処理後、室温で 12時間静置したものを、フランチオール -システィン混合酸ィ匕試料として分析に用いた。
システィン lOmgZmL (水:ジメチルホルムアミド = 1: 1で溶解)を上記と同様に酸 化させ、ジメチルホルムアミドで 10倍希釈後、システィンの酸ィ匕試料として分析に用 いた。
フランチオール 10 Lは、上記と同様に酸ィ匕させて分析に用いた。
[0110] (分析結果)
図 19は、前記したフランチオール システィン混合酸ィ匕試料、フランチオール、シ スティンの分析によって得られたクロマトグラムである。
フランチオールのみを酸ィ匕した場合、 7. 5分にフランチオール、 24. 5分にフランチ オール二量体のピークが検出され、マススペクトルにより同定することができた。 フランチオールとシスティンを混合し酸ィ匕した場合、システィンピークと、フランチォ ールのみの酸ィ匕では見られなカゝつたピークが数本出現し、システィンを混合したこと でフランチオールとシスティンが反応し、酸ィ匕体が生成したと考えられた。ダイヤモン ド電極を使用した電気化学検出器により、チオールのホモ 2量体だけではなぐ異な るチオール間で形成される酸ィヒ体の測定が可能であることが確認された。
実施例 10
[0111] イオンペアクロマトグラフィー以外の分離モードの事例として、 HILICモードでの分 析を実施した。システィン、シスチン、還元型ダルタチオン、および、酸化型ダルタチ オンのクロマトグラムを図 20に示す。
[0112] (分析条件)
分析カラム: ZIC— HILIC 4. 6 X 250mm
移動相:ァセトニトリル Z50mM 酢酸 +5mM 酢酸アンモ-ゥム = 70/30 カラムオーブン温度: 40°C設定
流速: 1. 0 ml/ mm
注入量: 10 μ \
検出: ECD 30 min 1600 mV
31 min 4000 mV
31 min 1600 mV HILICモードの移動相とイオンペアクロマトグラフィーの移動相(実施例 1、 4)を比 較した場合、緩衝液の種類、塩強度、イオンペア試薬の有無、および、有機溶媒濃 度などが大きく異なっていることがわかる。このような異なる移動相条件においても、 システィン、シスチン、還元型ダルタチオン、および、酸化型ダルタチオンは、ダイヤ モンド電極付電気化学検出器により、全く支障なく検出されている(図 20)。以上のこ とから、本分析システムにおいては、分離モードに依存することなく含硫アミノ酸、含 硫ィ匕合物を分析することが可能と考えられる。 本出願は、日本で出願された特願 2006— 166556を基礎としており、その内容は 本明細書にすべて包含されるものである。 本発明がその好ましい態様を参照して提示又は記載される一方、本明細書中にお いて、添付の請求の範囲で包含される発明の範囲を逸脱することなぐ形態や詳細 の様々な変更をなし得ることは当業者に理解されるであろう。本明細書中に示され又 は参照されたすベての特許、特許公報及びその他の刊行物は、参照によりその全体 が取り込まれる。

Claims

請求の範囲
[I] 測定試料に含まれる被検対象物の分析方法であって、
測定試料を移動相とともに以下の流路 P1に流す工程(1)、
測定試料を含まない移動相を以下の流路 P2および流路 P3に流す工程 (2)、なら びに、
工程(1)および工程(2)によって分析カラムから出た上記被検対象物のクロマトダラ ムを、ダイヤモンド電極を作用電極として有する電気化学検出器によって取得するェ 程 (3)、を有し
(但し、流路 P1は、前処理カラムを順方向に通り、次いで分析カラムを経て検出器へ 至る流路であり、流路 P2は、前処理カラムを通らずに、分析カラムを経て検出器へ至 る流路であり、流路 P3は、前処理カラムを逆方向に通り、分析カラムを経ず、検出器 も経ずに排出される流路である。 )、
工程(1)にお ヽて上記被検対象物が前処理カラムを通過した後に工程(1)を終了 して工程 (2)を開始する、前記分析方法。
[2] 測定試料に含まれる被検対象物より大幅に長い通過時間を要する夾雑物質は分 析カラムを経由しない請求項 1の分析方法。
[3] 被検対象物が含硫化合物である請求項 1または 2の分析方法。
[4] 含硫ィ匕合物がチオール基またはジスルフイド結合をもつ化合物である請求項 3の分 析方法。
[5] 含硫化合物が含硫アミノ酸である請求項 3の分析方法。
[6] 含硫化合物が N -ァセチルシスティンである請求項 3の分析方法。
[7] 含硫ィ匕合物がホモシスティンまたはダルタチオンである請求項 3の分析方法。
[8] 被検対象物が 2種以上の含硫ィ匕合物である請求項 1または 2の分析方法。
[9] 2種以上の含硫ィ匕合物がシスティンおよびシスチンである請求項 8の分析方法。
[10] 被検対象物が 2種以上のアミノ酸である請求項 1または 2の分析方法。
[II] 移動相が、水、電解質を含む請求項 1〜10のいずれか 1項の分析方法。
[12] 移動相が、水、電解質およびイオンペア化合物を含み、 pHが 1〜3である請求項 1 〜 10のいずれか 1項の分析方法。
[13] イオンペア化合物がアルキルスルホン酸塩およびアルキル硫酸塩からなる群から 選ばれる少なくとも 1種である請求項 12の分析方法。
[14] 分析カラムが、逆相カラム、順相カラム、またはイオン交換カラムの 、ずれかである 請求項 1〜13のいずれか 1項の分析方法。
[15] 分析カラムが、逆相カラムである請求項 14の分析方法。
[16] ダイヤモンド電極が導電性ダイヤモンド電極である、請求項 1〜15のいずれか 1項 の分析方法。
[17] 導電性ダイヤモンド電極が、酸化電解研磨された電極である、請求項 16の分析方 法。
[18] 導電性ダイヤモンド電極が、移動相を流した状態で酸ィ匕電解研磨された電極であ る、請求項 16の分析方法。
[19] 測定試料が輸液製剤、透析剤、醱酵液、生体試料のいずれかである請求項 1〜18 の!、ずれか 1項の分析方法。
[20] 工程 (3)の終了後、工程(1)、 (2)および (3)を開始し、連続繰り返し分析を行う請 求項 1の分析方法。
[21] 請求項 1〜20のいずれか 1項の分析方法を用いることを特徴とする測定試料に含 まれる 2種以上の含硫ィ匕合物の同時検出方法。
[22] 測定試料に含まれる被検対象物の分析装置であって、
流路の方向を可逆的に切り換えることができる流路切換装置と、
移動相を測定試料とともに流路切換装置へ流す試料導入用流路と、
移動相を単独で流路切換装置へ流す移動相導入用流路と、
流路切換装置から出て前処理カラムを経て再び流路切換装置に戻る流路と、 流路切換装置カゝら出て分析カラムを経て被検対象物のクロマトグラムを取得するこ とができるダイヤモンド電極を作用電極として有する電気化学検出器へ至る流路と、 流路切換装置力 出て前処理カラムも分析カラムも経ずに当該装置外へ至る排出 路と、を有し、流路切換装置は、下記 (A)及び (B)の状態に相互に切り換えることが できるように構成されている、被検対象物の分析装置。
(A)試料導入用流路から、前処理カラムを順方向に通り、次いで分析カラムを経て検 出器へ至る流路 PIを構成する状態、
(B)試料導入用流路から、前処理カラムを通らずに、分析カラムを経て検出器へ至る 流路 P2、および、移動相導入用流路から、前処理カラムを逆方向に通り、排出路へ 至る流路 P3を構成する状態。
[23] 被検対象物が含硫化合物である請求項 22の装置。
[24] 含硫ィ匕合物がチオール基またはジスルフイド結合をもつ化合物である請求項 23の 装置。
[25] 含硫化合物が含硫アミノ酸である請求項 23の装置。
[26] 含硫化合物が N—ァセチルシスティンである請求項 23の装置。
[27] 含硫ィ匕合物がホモシスティンまたはダルタチオンである請求項 23の装置。
[28] 被検対象物が 2種以上の含硫化合物である請求項 22の装置。
[29] 2種以上の含硫ィ匕合物がシスティンおよびシスチンである請求項 28の装置。
[30] 被検対象物が 2種以上のアミノ酸である請求項 22の装置。
[31] 分析カラムが、逆相カラム、順相カラム、またはイオン交換カラムの 、ずれかである 請求項 22〜30の!、ずれか 1項の装置。
[32] 分析カラムが、逆相カラムである請求項 31の装置。
[33] ダイヤモンド電極が導電性ダイヤモンド電極である、請求項 22〜32のいずれか 1 項の装置。
[34] 導電性ダイヤモンド電極が、酸化電解研磨された電極である、請求項 33の装置。
[35] 導電性ダイヤモンド電極が、移動相を流した状態で酸ィ匕電解研磨された電極であ る、請求項 33の装置。
[36] 測定試料が輸液製剤、透析剤、醱酵液、生体試料の!/、ずれかである請求項 22〜3 6のいずれ力 1項の装置。
PCT/JP2007/062177 2006-06-15 2007-06-15 被検対象物の分析方法および分析装置 WO2007145343A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008521283A JPWO2007145343A1 (ja) 2006-06-15 2007-06-15 被検対象物の分析方法および分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-166556 2006-06-15
JP2006166556 2006-06-15

Publications (1)

Publication Number Publication Date
WO2007145343A1 true WO2007145343A1 (ja) 2007-12-21

Family

ID=38831855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062177 WO2007145343A1 (ja) 2006-06-15 2007-06-15 被検対象物の分析方法および分析装置

Country Status (2)

Country Link
JP (2) JPWO2007145343A1 (ja)
WO (1) WO2007145343A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130031A (ja) * 2012-12-28 2014-07-10 Horiba Ltd 電気化学的分析方法、電気化学的分析装置及び試薬セット
WO2020043026A1 (zh) * 2018-08-28 2020-03-05 长沙理工大学 一种l-胱氨酸的检测方法及传感器
JP2020034408A (ja) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ 電気化学測定装置及びその洗浄方法
CN112924565A (zh) * 2019-12-05 2021-06-08 湖北远大生物技术有限公司 一种丝氨酸原料中丝氨酸含量的检测方法
CN117928655A (zh) * 2024-03-22 2024-04-26 济宁万生环保材料有限公司 一种物料反应瞬时酸价数据在线监测系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455249B1 (ja) 2023-02-27 2024-03-25 住友化学株式会社 電気化学的測定方法、電気化学的測定装置、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850461A (ja) * 1981-09-22 1983-03-24 Mitsui Petrochem Ind Ltd 液体クロマトグラフの分析装置
JPH10282079A (ja) * 1997-04-07 1998-10-23 Yamazen Kk 分取液体クロマトグラフィ
JPH1137985A (ja) * 1997-07-15 1999-02-12 Tosoh Corp 切り替え弁を用いた液体クロマトグラフ
WO2001067089A1 (fr) * 2000-03-10 2001-09-13 Center For Advanced Science And Technology Incubation, Ltd. Procede d'analyse par chromatographie liquide
JP2002189016A (ja) * 2000-12-21 2002-07-05 Sentan Kagaku Gijutsu Incubation Center:Kk チオールの濃度測定法およびそれに用いられるセンサ
JP2005069692A (ja) * 2003-08-22 2005-03-17 Tsutomu Nagaoka アミノ酸の分析装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191453B2 (ja) * 1992-11-10 2001-07-23 株式会社島津製作所 高感度電気化学検出器
AU2003220877A1 (en) * 2002-03-14 2003-09-22 Hiroshi Kasai Method of purifying oxidatively injured guanine nucleoside, method of measuring the same and analyzer for the embodiment thereof
JP4414277B2 (ja) * 2004-05-19 2010-02-10 東亜ディーケーケー株式会社 酸化還元電流測定装置および酸化還元電流測定装置の洗浄方法
JP4324672B2 (ja) * 2004-09-24 2009-09-02 国立大学法人宇都宮大学 ダイアモンド電極及びこれを用いた無電解ニッケルめっき浴の管理方法並びに測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850461A (ja) * 1981-09-22 1983-03-24 Mitsui Petrochem Ind Ltd 液体クロマトグラフの分析装置
JPH10282079A (ja) * 1997-04-07 1998-10-23 Yamazen Kk 分取液体クロマトグラフィ
JPH1137985A (ja) * 1997-07-15 1999-02-12 Tosoh Corp 切り替え弁を用いた液体クロマトグラフ
WO2001067089A1 (fr) * 2000-03-10 2001-09-13 Center For Advanced Science And Technology Incubation, Ltd. Procede d'analyse par chromatographie liquide
JP2002189016A (ja) * 2000-12-21 2002-07-05 Sentan Kagaku Gijutsu Incubation Center:Kk チオールの濃度測定法およびそれに用いられるセンサ
JP2005069692A (ja) * 2003-08-22 2005-03-17 Tsutomu Nagaoka アミノ酸の分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STEIN A.F.: "HIGH-PERFORMANCE LIQUID CHROMATOGRAPHIC ANALYSIS OF GLUTATHIONE AND ITS THIOL AND DISULFIDE DEGRADATION PRODUCTS", JOURNAL OF CHROMATOGRAPHY, vol. 381, 1986, pages 259 - 270, XP003020813 *
STENKEN J.A.: "Detection of N-acetylcysteine, cysteine and their disulfides in urine by liquid chromatography with a dual-electrode amperometric detector", JOURNAL OF PHARMACEUTICAL & BIOMEDICAL ANALYSIS, vol. 8, no. 1, 1990, pages 85 - 89, XP003020812 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130031A (ja) * 2012-12-28 2014-07-10 Horiba Ltd 電気化学的分析方法、電気化学的分析装置及び試薬セット
WO2020043026A1 (zh) * 2018-08-28 2020-03-05 长沙理工大学 一种l-胱氨酸的检测方法及传感器
US11939625B2 (en) 2018-08-28 2024-03-26 Changsha University Of Science And Technology Method and sensor for detecting L-cystine
JP2020034408A (ja) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ 電気化学測定装置及びその洗浄方法
JP7227714B2 (ja) 2018-08-29 2023-02-22 株式会社 堀場アドバンスドテクノ 電気化学測定装置及びその洗浄方法
CN112924565A (zh) * 2019-12-05 2021-06-08 湖北远大生物技术有限公司 一种丝氨酸原料中丝氨酸含量的检测方法
CN117928655A (zh) * 2024-03-22 2024-04-26 济宁万生环保材料有限公司 一种物料反应瞬时酸价数据在线监测系统

Also Published As

Publication number Publication date
JP2013137326A (ja) 2013-07-11
JP5438854B2 (ja) 2014-03-12
JPWO2007145343A1 (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
Camera et al. Analytical methods to investigate glutathione and related compounds in biological and pathological processes
JP5438854B2 (ja) 被検対象物の分析方法および分析装置
Clarke et al. An integrated amperometry waveform for the direct, sensitive detection of amino acids and amino sugars following anion-exchange chromatography
Krömer et al. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum
Agüí et al. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode
CN101273267B (zh) 样品溶液中白蛋白的分析方法
Chwatko et al. Determination of cysteine and glutathione in cucumber leaves by HPLC with UV detection
Ensafi et al. Determination of glutathione in hemolysed erythrocyte by flow injection analysis with chemiluminescence detection
Eggli et al. Electrochemical flow-through detector for the determination of cystine and related compounds
Kehr Determination of glutamate and aspartate in microdialysis samples by reversed-phase column liquid chromatography with fluorescence and electrochemical detection
Eto et al. High-throughput comprehensive analysis of d-and l-amino acids using ultra-high performance liquid chromatography with a circular dichroism (CD) detector and its application to food samples
Zacharis et al. Ethyl propiolate as a post-column derivatization reagent for thiols: Development of a green liquid chromatographic method for the determination of glutathione in vegetables
Lajin et al. Exploring the sulfur species in wine by HPLC-ICPMS/MS
Głowacki et al. A simple HPLC—UV method for simultaneous determination of cysteine and cysteinylglycine in biological fluids
Görüşük et al. ABTS radical-based single reagent assay for simultaneous determination of biologically important thiols and disulfides
Benkova et al. Determination of plasma aminothiols by high performance liquid chromatography after precolumn derivatization with N-(2-acridonyl) maleimide
Niebch et al. Enantioselective high‐performance liquid chromatography assay of (+) R‐and (−) S‐α‐lipoic acid in human plasma
Sakhi et al. Simultaneous and trace determination of reduced and oxidized glutathione in minute plasma samples using dual mode fluorescence detection and column switching high performance liquid chromatography
Cataldi et al. Determination of free proline and monosaccharides in wine samples by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD)
Lunte et al. Detection of thiols and disulfides in liver samples using liquid chromatography/electrochemistry
Genzel et al. Amino acid analysis in mammalian cell culture media containing serum and high glucose concentrations by anion exchange chromatography and integrated pulsed amperometric detection
Pelletier et al. HPLC simultaneous analysis of thiols and disulfides: on-line reduction and indirect fluorescence detection without derivatization
Fung et al. Determination of amino acids and proteins by dual-electrode detection in a flow system
Passarinha et al. The effect of temperature on the analysis of metanephrine for catechol‐O‐methyltransferase activity assay by HPLC with electrochemical detection
Cheng et al. Use of disposable gold working electrodes for cation chromatography–integrated pulsed amperometric detection of sulfur-containing amino acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008521283

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745431

Country of ref document: EP

Kind code of ref document: A1