WO2007145293A1 - 新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス - Google Patents

新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス Download PDF

Info

Publication number
WO2007145293A1
WO2007145293A1 PCT/JP2007/062040 JP2007062040W WO2007145293A1 WO 2007145293 A1 WO2007145293 A1 WO 2007145293A1 JP 2007062040 W JP2007062040 W JP 2007062040W WO 2007145293 A1 WO2007145293 A1 WO 2007145293A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
fluorine
group
compound
layer
Prior art date
Application number
PCT/JP2007/062040
Other languages
English (en)
French (fr)
Inventor
Kimiaki Kashiwagi
Tetsuo Tsutsui
Takeshi Yasuda
Original Assignee
Asahi Glass Company, Limited
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006187503A external-priority patent/JP2009206108A/ja
Application filed by Asahi Glass Company, Limited, Kyushu University, National University Corporation filed Critical Asahi Glass Company, Limited
Publication of WO2007145293A1 publication Critical patent/WO2007145293A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/24Halogenated aromatic hydrocarbons with unsaturated side chains
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • Novel fluorine-containing aromatic compounds organic semiconductor materials, and organic thin film devices
  • the present invention relates to a novel fluorine-containing aromatic compound, an organic semiconductor material, and an organic thin film device that can be applied to an organic thin film device.
  • organic electronics devices using organic compounds as semiconductor materials have made remarkable progress.
  • Typical applications include organic EL devices (organic electoluminescence devices) that are expected as next-generation flat panel displays, organic thin-film solar cells as lightweight and flexible power supplies, and pixel drive for displays.
  • Organic thin film transistors (hereinafter referred to as “organic TFTs”) are attracting attention because thin film transistors (TFTs) used can be manufactured by a low-cost process such as printing and can be used for flexible substrates. It is done.
  • organic compounds are easier to process than inorganic silicon, it is expected to realize low-cost devices by using organic compounds as semiconductor materials.
  • semiconductor devices using organic compounds can be manufactured at a low temperature, so that a wide variety of substrates including plastic substrates can be used.
  • organic compound semiconductor materials are structurally flexible, it is expected to realize devices such as flexible displays by using a combination of plastic substrates and organic compound semiconductor materials. .
  • Non-Patent Document 1 examples of using condensed polycyclic compounds such as pentacene that have a conjugated system extended by a planar structure and a strong intermolecular interaction by ⁇ stack (see Non-Patent Document 1), and electron withdrawing properties.
  • An example of controlling the molecular arrangement just by increasing the intermolecular interaction by causing a bias in the charge by coexisting the aromatic group and electron donating aromatic group in the molecule see Non-Patent Document 2 .
  • organic semiconductor materials generally have a large number of vertical semiconductor materials having hole transport properties, and relatively few ⁇ semiconductor materials have electron transport properties.
  • perylenetetracarboxylic anhydride or its diimide derivative, fullerene (C60), fluorinated copper phthalocyanine, fluorinated pentacene, etc. are known to have high carrier mobility.
  • Non-Patent Document 1 D. J. Gundlach, S. F. Nelson, T. N. Jachson et al., Appl. Phys.
  • Non-Patent Document 2 H. Tada, Y. Yamashita et al., Materials Research Societ y Symposium Proceedings, (2002), 725, 143.
  • Non-Patent Document 3 G. W. Coates, J. W. Ziller, R. H. Grubbs et al., J. Am. Chem. Soc., (1998), 120, 3641.
  • Non-Patent Document 4 J. E. Anthony, G. G. Malliaras et al., Org. Lett., (2005), 7 (15), 3163.
  • Non-Patent Document 5 H. E. Katz, et al., Nature, (2000), 404, 478.
  • the present invention can be used as an organic semiconductor material that solves the above-described problems of the prior art, and is a ⁇ -conjugate formed by combining a hydrocarbon aromatic group and a fluorine-containing aromatic group. It is an object to provide a compound and an organic semiconductor material excellent in carrier mobility and the like using the ⁇ -conjugated compound as a charge transport material.
  • Another object of the present invention is to provide a high-performance organic thin film device containing the organic semiconductor material.
  • the present inventor has ⁇ -type semiconductor characteristics when a specific fluorine-containing aromatic compound is used as an organic semiconductor material in an organic thin film device. And having high carrier mobility, the present invention was completed.
  • the gist of the present invention is the following (i) to (vii).
  • Ar F is a perfluoroaromatic group (provided that the fluorine atom in the perfluoroaromatic group is substituted with a perfluoroalkyl group !, may be! /, Etc.).
  • n is an integer from 1 to 4.
  • Q is an n-valent aromatic group obtained by removing n hydrogen atoms from the structural force represented by the following formula (2) (provided that the hydrogen atom in the aromatic group has 1 to 8 carbon atoms). Or an alkyl group or a fluorine-containing alkyl group having 1 to 8 carbon atoms.
  • [Chemical 2] p is an integer from 0 to 4.
  • a / is a perfluoroaromatic group in which a group force including a perfluorophenyl group, a perfluoronaphthyl group, and a perfluorobiphenyl group is also selected, and p is 0 or 1.
  • the fluorine-containing aromatic compound represented by the formula (1) is a compound represented by the following formula (11), a compound represented by the following formula (12), and a formula (13)
  • the compound represented by the following formula (14), the compound represented by the following formula (15), and the compound represented by the following formula (16) are also selected.
  • An organic thin film device comprising an organic thin film transistor having a gate electrode, a gate insulating layer, an organic semiconductor layer, a source electrode and a drain electrode on a substrate, wherein the organic semiconductor layer is the above
  • An organic thin film device comprising the fluorine-containing aromatic compound according to any one of (i) to (vi).
  • the organic compound layer is the fluorine-containing aromatic compound according to any one of (i) to (vi) above. Including organic thin film devices.
  • the fluorine-containing aromatic compound of the present invention and the organic semiconductor material of the present invention have high carrier mobility as a charge transporting material and also have an electron transporting property. Therefore, high-performance organic TFTs, organic EL devices, etc. Can be obtained.
  • FIG. 1 is a graph showing the electrical characteristics of an organic TFT produced in Example 2.
  • the fluorine-containing aromatic compound of the present invention is a compound represented by the following formula (1).
  • “compound represented by formula (1)” and the like are referred to as “compound (1)” and the like.
  • perfluorinated aromatic group means a group in which all hydrogen atoms of a monovalent hydrocarbon group exhibiting aromaticity are substituted with fluorine atoms.
  • the fluorine atom in the perfluoroaromatic group may be substituted with a perfluoroalkyl group.
  • the perfluoroalkyl group is preferably a linear or branched alkyl group having 1 to 8, preferably 1 to 4 carbon atoms.
  • Ar F includes an unsubstituted perfluorophenyl group, an unsubstituted perfluoronaphthyl group, and an unsubstituted perfluorobiphenyl group (—CFCF).
  • the selected perfluoroaromatic group is an unsubstituted perfluorophenyl group or an unsubstituted perfluoronaphthyl group.
  • n represents an integer of 1 to 4. n is preferably 1 or 2, more preferably 2.
  • Q is a structural force represented by the following formula (2), excluding n hydrogen atoms
  • the resulting n-valent aromatic group is substituted with an alkyl group having 1 to 8, preferably 1 to 4 carbon atoms, or a fluorine-containing alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms.
  • p represents an integer of 0 to 4. p is preferably 0 or 1.
  • n is 2, and p is preferably 0 or 1, and n is 2, p is 0 or 1, and the hydrogen atom in the aromatic group is unsubstituted. More preferably.
  • the molecules are regularly arranged in the crystal structure. Therefore, it is preferable that the symmetry of the molecule is high. From the viewpoint of molecular symmetry, the bonding position of —C ⁇ C Ar F in Q is preferably 2 and 6 when n is 2 and p is 0; When n is 2 and p is 1, it is preferably the 2nd and 6th positions or the 9th and 10th positions.
  • the production method of compound (1) is not particularly limited, but can be produced by the following method.
  • n is 1 in the compound (1), the following (1) or (
  • Ar F and Q have the same meaning as in the above formula (1), and L is a desorption.
  • L is a desorption.
  • the leaving group L is a halogen atom such as a chlorine atom, a bromine atom or an iodine atom.
  • a transition metal such as palladium, copper, platinum or nickel, a salt thereof or a complex thereof as a catalyst.
  • the catalyst may be used alone or in combination of two or more.
  • a zero-valent palladium catalyst such as tetrakis (triphenylphosphine) palladium (0) and a transition metal salt such as copper bromide or copper iodide are used in combination.
  • a transition metal salt such as copper bromide or copper iodide
  • a lithium halide salt such as lithium bromide or lithium iodide may be mixed in the catalyst.
  • an amine solvent is generally used, which is preferably a solvent capable of capturing the produced HL.
  • a solvent capable of capturing the produced HL for example, triethylamine, diisopropylamine, pyridine, pyrrolidine, piperidine and the like are used. These may be mixed with other solvents. In that case, it is preferable to use an aprotic solvent such as benzene, toluene or tetrahydrofuran as the other solvent.
  • the reaction temperature is preferably 30 to 150 ° C. Of these, heating to about 70-100 ° C is preferred.
  • the compound represented by the formula Q—C ⁇ C H in the reaction formula (a) can be produced, for example, by the following method.
  • Ar F , Q and L have the same meaning as in the above formula (a).
  • reaction represented by the reaction formula (c) is a coupling reaction, and can be performed under the same conditions as the coupling reaction represented by the above formula (a) or (b).
  • the reaction represented by the reaction formula (d) is a reaction for producing an ethynyl group by deacetone and is usually performed under basic conditions.
  • the base used include potassium hydroxide, sodium hydroxide, calcium hydroxide, potassium carbonate, sodium carbonate and the like. It is preferable to use it.
  • this reaction is preferably carried out under reduced pressure, even while it is preferable to perform the reaction while quickly removing the generated acetone. It is preferable to carry out by heating with.
  • the reaction pressure is preferably in the range of 0.01 to 0.5 Pa, more preferably in the range of 0.3 to 0.5 Pa.
  • the reaction temperature is preferably 30 to 200 ° C. Of these, heating to about 100 to 150 ° C. is preferable.
  • a compound represented by the formula H—C ⁇ C Ar F in the reaction formula (b) can also be produced by the same method.
  • Ar F and Q each have the same meaning as in the above formula (1), and M represents a monovalent metal.
  • M lithium, potassium, sodium and the like can be used.
  • This nucleophilic substitution reaction is preferably carried out in an aprotic polar solvent at a low temperature.
  • the reaction temperature is preferably 80 to 10 ° C, more preferably 20 to 5 ° C.
  • an aprotic polar solvent is preferably used.
  • jetyl ether, tert-butylenomethineatere, tetrahydrofuran, dimethylformamide, dimethylacetamide, and dimethylsulfoxide are used.
  • the organic semiconductor material of the present invention is an organic semiconductor material containing the compound (1) described above.
  • the organic semiconductor material of the present invention is not particularly limited as long as it contains the compound (1).
  • the organic semiconductor material may be used by mixing with other organic semiconductor materials, or may contain various dopants.
  • the dopant for example, coumarin, quinacridone, rubrene, stilbene derivatives and fluorescent dyes can be used when used as a light emitting layer of an organic EL device.
  • the organic thin film device of the present invention is an organic thin film device using the organic semiconductor material of the present invention. That is, the organic thin film device of the present invention is an organic thin film device containing the compound (1). Specifically, the organic thin film device of the present invention includes at least one organic layer, and at least one of the organic layers includes the compound (1) described above.
  • the organic thin film device of the present invention can be used in various modes.
  • One example is organic TFT.
  • an organic thin film device comprising an organic TFT having a gate electrode, a gate insulating layer, an organic semiconductor layer, a source electrode and a drain electrode on a substrate, wherein the organic semiconductor layer is And an organic thin film device containing the composite (1).
  • Compound (1) achieves a high carrier mobility with a large intermolecular interaction due to the interaction between the perfluoroaromatic group represented by A / and the hydrocarbon aromatic group represented by Q. Therefore, it is effective when used for an organic semiconductor layer (organic active layer) of an organic TFT.
  • the compound (1) can be used as an n-type semiconductor because it has a high electron-accepting property due to the electron affinity effect of the fluorine-containing aromatic group.
  • the substrate is not particularly limited, and may have a conventionally known configuration, for example.
  • the substrate examples include glass (for example, quartz glass), silicon, ceramic, and plastic.
  • plastic examples include general-purpose resin substrates such as polyethylene terephthalate, polyethylene naphthalate, and polycarbonate.
  • the resin substrate is preferably formed by laminating a gas noble film for lowering the permeability of gases such as oxygen and water vapor.
  • the gate electrode is not particularly limited, and may be a conventionally known configuration, for example.
  • gate electrode examples include metals such as gold, platinum, chromium, tungsten, tantalum, nickel, copper, aluminum, silver, magnesium, and calcium, or alloys thereof, polysilicon, amorphous silicon, graphite, and tin-doped indium oxide (hereinafter referred to as “gate electrode”). "ITO”), materials such as zinc oxide and conductive polymers can be used.
  • ITO indium oxide
  • the gate insulating layer is not particularly limited, and may be a conventionally known configuration, for example.
  • Gate insulation layers include SiO, Si N, SiON, Al 2 O, Ta 2 O, amorphous silicon,
  • Use materials such as polyimide resin, polybutanol resin, polyparaxylylene resin, polymethylmethacrylate resin, fluorine resin (PTFE, PFA, PETFE, PCTFE, CYTOP (registered trademark), etc.) Can do.
  • the organic semiconductor layer is not particularly limited as long as it is a layer containing the compound (1).
  • it may be a layer in which only the compound (1) is actually effective, or a layer containing a substance other than the compound (1).
  • the source electrode and the drain electrode are not particularly limited in displacement, and can be, for example, a conventionally known configuration.
  • all metals such as gold, platinum, chromium, tungsten, tantalum, nickel, copper, aluminum, silver, magnesium, calcium, or alloys thereof, polysilicon, amorphous silicon, graphite, ITO Further, materials such as zinc oxide and conductive polymer can be used.
  • the stacked structure of the organic TFT has a gate electrode, a gate insulating layer, an organic semiconductor layer, and a source electrode and a drain electrode in this order from the substrate side (1); A structure having an electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer in this order (2); from the substrate side, the organic semiconductor layer, the source electrode and the drain electrode, and the gate insulating layer; The configuration (3) having the gate electrode in this order; and the configuration (4) having the source and drain electrodes, the organic semiconductor layer, the gate insulating layer, and the gate electrode in this order from the substrate side. Even so.
  • the manufacturing method of the organic TFT is not particularly limited.
  • a top in which a gate electrode, a gate insulating layer, an organic semiconductor layer, a drain electrode, and a source electrode are sequentially stacked on a substrate.
  • the contact source / drain method is used.
  • there is a bottom contact source / drain method in which a gate electrode, a gate insulating layer, a drain electrode and a source electrode, and an organic semiconductor layer are sequentially stacked on a substrate.
  • a top gate type manufacturing method is also mentioned.
  • the formation method of the gate electrode, the gate insulating layer, the source electrode, and the drain electrode is not particularly limited.
  • any of the above-described materials may be used for the vacuum evaporation method and the electron beam evaporation method.
  • the film can be formed by a known film production method such as a sputtering method, an RF sputtering method, a spin coating method, or a printing method.
  • the formation method of the organic semiconductor layer is not particularly limited.
  • the organic semiconductor layer can be formed by a known film formation method such as a vacuum deposition method, a spin coating method, an inkjet method, or a printing method using the above-described compound (1). it can.
  • the compound (1) has a chemical structure in which a perfluoroaromatic group represented by ⁇ / and a hydrocarbon aromatic group represented by Q are regularly arranged to some extent.
  • Aroma Perfluoroaromatic groups and hydrocarbon aromatic groups are alternately stacked by the interaction between the aromatic group and the hydrocarbon aromatic group, resulting in a stacked crystal structure.
  • high carrier mobility can be expected due to the overlap of ⁇ electron orbitals between molecules with large intermolecular interactions. Therefore, by using this material for the organic semiconductor layer (also called “organic active layer”) of an organic TFT (field effect transistor), large field effect mobility characteristics can be realized.
  • the organic thin film device of the present invention comprising an organic TFT is not particularly limited in use, but is suitably used as a TFT for driving a flexible display using, for example, a plastic substrate.
  • TFTs made of inorganic materials In general, it is difficult to manufacture TFTs made of inorganic materials on a plastic substrate.
  • processes such as vacuum deposition, spin coating, ink jet, and printing are used, and high temperature processes are not used.
  • a TFT for driving a pixel can be formed on the substrate.
  • the compound (1) used in the present invention is soluble in general-purpose organic solvents such as black mouth form and tetrahydrofuran, low-cost processes such as spin coating, ink jet, and printing can be applied. Suitable for the production of inexpensive paper-like (flexible) displays.
  • Another preferred embodiment of the organic thin film device characterized by containing the compound (1) of the present invention is an organic EL element.
  • an organic thin film device comprising an anode, an organic compound layer having a structure of one or more layers, and a cathode on a substrate, wherein the organic compound layer is as described above.
  • An organic thin film device containing compound (1) can be mentioned.
  • the substrate, the anode, and the cathode are not particularly limited, and any of them may have a conventionally known configuration.
  • the substrate is not particularly limited, and may be a conventionally known configuration, for example.
  • a transparent material such as glass or plastic is preferably used.
  • a material other than a transparent material for example, silicon can also be used.
  • the anode is not particularly limited, and may be a conventionally known configuration, for example. Specifically, a material that transmits light is used. More specifically, ITO, indium oxide, tin oxide, indium oxide, and zinc oxide are preferable.
  • a thin film of a metal such as gold, platinum, silver, or magnesium alloy; a polymer organic material such as polyarine, polythiophene, polypyrrole, or a derivative thereof can also be used.
  • the cathode is not particularly limited, and may be a conventionally known configuration, for example. Specifically, it is preferable to use a low work function alkali metal such as Li, K or Na; an alkaline earth metal such as Mg or Ca. It is also preferable to use halides of alkali metals such as LiF, LiCl, KF, KC1, NaF, NaCl, and stable metals such as Al provided thereon.
  • a low work function alkali metal such as Li, K or Na
  • an alkaline earth metal such as Mg or Ca.
  • halides of alkali metals such as LiF, LiCl, KF, KC1, NaF, NaCl, and stable metals such as Al provided thereon.
  • the organic compound layer has a structure of one or more layers, and the layer structure thereof is not particularly limited, and can be, for example, a conventionally known structure.
  • a one-layer structure composed of a light-emitting layer For example, from the anode side to the cathode side, a one-layer structure composed of a light-emitting layer; a two-layer structure composed of a hole transport layer Z light-emitting layer; a two-layer structure composed of a light-emitting layer Z electron transport layer; a hole transport layer Z Light-emitting layer 3 layer structure consisting of Z electron transport layer; hole injection layer Z hole transport layer Z light emission layer 4 layer structure consisting of Z electron injection layer; hole injection layer z hole transport layer Z light emission layer Z electron transport layer A typical example is a five-layer structure consisting of a Z electron injection layer.
  • the organic compound layer includes the compound (1) described above.
  • the organic compound layer should just contain the compound (1) at least 1 layer among each layer used in the various layer structure mentioned above.
  • at least one layer selected from the group force consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer may contain the compound (1).
  • the above-mentioned compound (1) may be used alone or in combination of two or more.
  • a luminescent organic compound other than the compound (1) may be used in combination.
  • the luminescent organic compound other than the compound (1) is not particularly limited, and for example, a conventionally known one can be used.
  • Each of the organic compound layers is publicly known except that at least one layer contains the compound (1). It can be an intelligent configuration.
  • the case where the organic compound layer has a five-layer structure will be described as an example. However, the present invention is not limited to this.
  • the material constituting the hole injection layer or the hole transport layer includes conductive polymers such as phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, aromatic tertiary amine derivatives, stilbenes, polybutcarbazole, polythiophene, and polyarine.
  • a compound containing a skeleton or substituent having a high electron donating property as a material is preferably exemplified.
  • the material constituting the hole injection layer is preferably a compound that can easily inject anodic holes and has a small ion potential.
  • As the material for the hole transport layer a compound having the same ionization potential as that of the light emitting layer is preferred! /.
  • Examples of the light-emitting material or host material of the light-emitting layer include metal complexes such as quinoline metal complexes, aminominoquinoline metal complexes, and benzoquinoline metal complexes; Is mentioned. Further, a small amount of coumarin, quinacridone, rubrene, stilbene derivatives, fluorescent dyes and the like may be doped in the light emitting layer.
  • the material constituting the electron transport layer or the electron injection layer include, for example, oxadiazole, triazole, phenanthrene, bathocuproine, quinoline complex, perylene tetracarboxylic acid, and derivatives thereof. It is not limited.
  • Each of these layers is composed of two or more layers of force.
  • the layered structure in the organic EL element is, for example, a structure having an anode, an organic compound layer having a structure of one or more layers, and a cathode in this order from the substrate side, and a cathode and one layer from the substrate side.
  • the structure which has the organic compound layer of the above structure, and an anode in this order is mentioned.
  • the method for producing the organic EL element is not particularly limited. For example, a method of sequentially stacking an anode, an organic compound layer, and a cathode on a substrate; a cathode, an organic compound layer, and a substrate; And a method of sequentially laminating the positive electrode and the positive electrode.
  • the formation method of the anode and the cathode is not particularly limited.
  • any of the above-described materials may be used to form a vacuum deposition method, an electron beam deposition method, an RF sputtering method, a spin coating method, an ink jet It can be formed by well-known film production methods such as the printing method, printing method, and spray method. wear.
  • the formation method of the organic compound layer is not particularly limited.
  • a vacuum deposition method, a spin It can be formed by a known film production method such as a coating method or a printing method.
  • a vacuum evaporation method, an electron beam evaporation method, an RF sputtering method, a spin coating method, an inkjet method, a printing method It can be formed by a known film production method such as a spray method.
  • the anode force also efficiently extracts holes and injects them into the light emitting layer, and cathode power electrons are efficiently extracted and injected into the light emitting layer, so that the holes and electrons are not lost to the light emitting layer.
  • the anode force also efficiently extracts holes and injects them into the light emitting layer, and cathode power electrons are efficiently extracted and injected into the light emitting layer, so that the holes and electrons are not lost to the light emitting layer.
  • the compound (1) since the compound (1) has excellent hole and electron transport properties, at least one of the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer of the organic EL element. Useful for one layer. In addition, since it is necessary to inject both holes and electrons into the light emitting layer and recombine them, it is also preferable to use it for the light emitting layer.
  • Electrons can be efficiently injected into the light emitting layer, thereby increasing the light emission efficiency and reducing the drive voltage.
  • the organic thin film device of the present invention having an organic EL elemental power is not particularly limited in use, but is suitably used for, for example, an organic EL display device.
  • An organic EL display device consists of an organic EL display element in which multiple organic EL elements that serve as pixels are arranged. I have.
  • a nossing type organic EL element typically has a light emitting layer between the intersections of anode wiring arranged in a stripe and cathode wiring arranged in a stripe so as to intersect the anode wiring.
  • the organic compound layer is sandwiched so that pixels as light emitting elements are formed at each intersection, and the pixels are arranged in a matrix.
  • an organic EL display element can be formed by arranging elements in which organic TFTs for switching are combined with organic EL elements in a matrix.
  • a plastic substrate is used in addition to a glass substrate as a substrate of an electric device such as a transistor or an optical device such as an organic EL element. It is possible.
  • the plastic used as the substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability and low moisture absorption.
  • plastics include polyethylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyacrylate, and polyimide.
  • the organic thin film device of the present invention it is preferable to have a moisture permeation preventing layer (gas barrier layer) on one or both of the electrode side surface and the surface opposite to the electrode of the substrate.
  • a moisture permeation preventing layer gas barrier layer
  • the material constituting the moisture permeation preventive layer include inorganic materials such as nitrided silicon and oxidized silicon.
  • the moisture permeation preventing layer can be formed by a known film production method such as RF sputtering.
  • the organic thin film device of the present invention may have a hard coat layer and an undercoat layer as necessary.
  • the organic thin film device of the present invention may have various modes other than the organic TFT and the organic EL described above.
  • an organic thin film solar cell is one of still another preferred embodiments of the organic thin film device characterized by including the compound (1) of the present invention.
  • the use of the organic thin film device of the present invention is not particularly limited, and a display device (display), display element, backlight, optical communication, electrophotography, illumination light source, recording light source, exposure light source, reading light source, label, It can be used for a wide range of applications such as signs, interiors, and batteries.
  • Example [0064] The present invention will be specifically described below with reference to examples. However, the present invention is not construed as being limited to these.
  • 2,6-Jetul naphthalene was synthesized according to the following formulas (A) and (B) as intermediates for the synthesis of compounds (11) and (12) described later.
  • THF tetrahydrofuran
  • the glass substrate having a thickness of 130nm was fixed to a substrate holder of a vacuum deposition apparatus, the pressure was reduced to a vacuum degree 1 X 10 "6 Torr (l.33X 10- 4 Pa).
  • the resultant compound (11) was deposited on a glass substrate so as to have a thickness of 40 nm at a deposition rate of 0.2 nmZ seconds.
  • the ion potential of the thin film of the deposited compound (11) was measured using an atmospheric photoelectron spectrometer (AC-3, manufactured by Riken Keiki Co., Ltd.) and found to be 6.2 eV.
  • the absorption maximum wavelengths were 280 nm and 336 nm, the longest.
  • the wavelength of the absorption edge on the wavelength side was 372 nm. From these characteristics, the HOMO and LUMO levels of the thin film of Compound (11) were determined as -6.2 eV and -2.9 eV, respectively. Therefore, the thin film of compound (11) is expected to have electron transport properties.
  • a gate electrode having a width of 5 mm and a thickness of 30 nm was formed on a glass substrate by sputtering gold through a mask.
  • a gate insulating layer (polymer insulating film) was formed by vapor-deposition polymerization of a thin film of polymonoclonal paraxylylene on it.
  • a monolithic xylylene dimer (Parylene C, manufactured by Japan Parylene Co., Ltd.) was heated and evaporated under reduced pressure, and pyrolyzed through a calo heat tube heated to 680 ° C to generate a diradical monomer. It was.
  • the generated diradical monomer was introduced onto the glass substrate on which the gate electrode maintained at room temperature was formed, and a polymonoclonal paraxylylene thin film having a thickness of 990 nm was formed.
  • the compound (12) was deposited to a thickness of about 40 nm at a deposition rate of 0.05 nmZ seconds to form an organic semiconductor layer.
  • Vacuum in Chang Ba evaporation apparatus was less than 2 X 10- 4 Pa.
  • the channel width (W) and channel length (L) of the organic TFT were 5 mm and 75 ⁇ m, respectively.
  • FIG. 1 is a graph showing the electrical characteristics of the organic TFT produced in Example 6.
  • the horizontal axis is the drain voltage (V)
  • the vertical axis is the drain current (A).
  • the drain current change curve at each gate voltage has a low V, linear region of the drain voltage (voltage proportional region) and a saturation region at a high drain voltage. It was. Further, the threshold voltage (Vt) of the organic TFT fabricated in Example 2 was 23V.
  • the electron mobility () of the organic TFT can be calculated by the following equation (A) representing the saturated drain current Id.
  • L is the channel length
  • W is the channel width
  • Ci is the capacitance per unit area of the insulating layer
  • Vg is the gate voltage
  • Vt is the threshold voltage.
  • Ci poly monochrome port para-xylylene used as the insulating layer 2. a 86 X 10- 9 F / cm 2 .
  • Example 6 An organic TFT using compound (14) was produced in the same manner as in Example 6.
  • the fabricated organic TFT showed the characteristics of an n-type semiconductor.
  • Example 6 Results of calculation of the electron mobility) in the same manner as, 2. 7 X 10- 4 cm 2 ZVs it is component of force electron mobility can be obtained ivy.
  • An organic TFT was created using this.
  • the fabricated organic TFT showed the characteristics of a p-type semiconductor. Results of calculating the hole mobility) in the same manner as in Example 6, it was found that 6. Hall 4 mobility of X 10- 3 cm 2 ZVs is obtained.
  • the fluorine-containing aromatic compound and the organic semiconductor material of the present invention can be used for high-performance organic TFTs, organic EL devices, and the like. Furthermore, for a wide range of applications such as organic thin-film solar cells, display devices (displays), display elements, backlights, optical communications, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, batteries, etc. Can be used.
  • the Japanese Patent Application 2006-167014 filed on June 16, 2006, the Japanese Patent Application 2006-187503 filed on July 7, 2006, and the application filed August 7, 2006 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2006-214239 are incorporated herein by reference and incorporated as the disclosure of the specification of the present invention.

Abstract

 有機半導体材料として有機薄膜デバイスに用いられた場合に、キャリア移動度等が優れたものになる、炭化水素芳香族基と含フッ素芳香族性基とが結合してなるπ共役化合物、ならびに該π共役化合物を電荷輸送材料として用いた有機半導体材料の提供。  下記式(1)で表される含フッ素芳香族化合物(式中、ArFはペルフルオロ芳香族性基(ただし、前記ペルフルオロ芳香族性基中のフッ素原子はペルフルオロアルキル基により置換されていてもよい。)。nは1~4の整数。Qは下記式(2)で表される構造からn個の水素原子を除いて得られるn価の芳香族性基(ただし、前記芳香族性基中の水素原子は炭素原子数1~8のアルキル基または炭素原子数1~8の含フッ素アルキル基により置換されていてもよい。)。pは0~4の整数。)。含フッ素芳香族化合物を含む有機半導体材料。

Description

明 細 書
新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバィ ス
技術分野
[0001] 本発明は、有機薄膜デバイスに応用可能な新規な含フッ素芳香族化合物、有機半 導体材料および有機薄膜デバイスに関する。
背景技術
[0002] 近年、有機化合物を半導体材料として用いた有機エレクトロニクス素子がめざまし い発展を遂げている。その代表的な応用例としては、次世代のフラットパネルデイス プレイとして期待される有機 EL素子 (有機エレクト口ルミネッセンス素子)、軽量かつ フレキシブルな電源としての有機薄膜太陽電池、ディスプレイの画素駆動用等に使 用される薄膜トランジスタ(Thin Film Transistor: TFT)を印刷等の低コストプロ セスで製造できることやフレキシブルな基板に対応できることで注目されて 、る有機 薄膜トランジスタ (以下「有機 TFT」と記す。 )が挙げられる。
[0003] 有機化合物は、無機物のシリコンと比較して加工することが容易であるため、半導 体材料として有機化合物を用いることによって低価格なデバイスを実現することが期 待されている。また、有機化合物を用いた半導体デバイスに関しては、デバイスを低 温で製造することが可能であるため、プラスチック基板を含む多種多様な基板を適用 することが可能である。さら〖こ、有機化合物の半導体材料は、構造的に柔軟であるた め、プラスチック基板および有機化合物の半導体材料を組み合わせて用いることで、 フレキシブルなディスプレイ等のデバイスを実現することが期待されている。
[0004] 一般に、有機 EL素子の長寿命化および低駆動電圧化、有機 TFT素子の低閾値 電圧化、スイッチング速度向上等のために、有機半導体材料のキャリア移動度の向 上が求められている。有機半導体材料のキャリア移動度は一般的に低いが、近年、 ペンタセンを用いた有機 TFT素子にお!、て、アモルファスシリコン並みの移動度( > 1. Ocm2ZVs)が実現されつつある (非特許文献 1参照。 ) 0
[0005] 有機半導体材料において、キャリア移動度の向上のための手段としては、未だ有 効な手段は確立していないが、分子間相互作用を強くすることや、分子の配列を制 御することが重要と言われて!/ヽる。
具体的には、平面構造により共役系が拡張され、 πスタックによる強い分子間相互 作用を持つペンタセン等の縮合多環系の化合物を利用した例 (非特許文献 1参照。 )や、電子吸引性の芳香族基と電子供与性の芳香族基を分子内に共存させることに より、電荷の偏りを生じさせ、分子間相互作用を高めるだけでなぐ分子配列を制御 した例 (非特許文献 2参照。)が知られている。
[0006] また、分子間相互作用を高める手段としては、含フッ素芳香族性基および炭化水 素芳香族基の相互作用が知られている (例えば、非特許文献 3参照。 )0
し力しながら、この相互作用を有機半導体材料のキャリア移動度の向上のために利 用した例は少なぐペンタセンの骨格にフッ素原子を導入した例はあるが、キャリア移 動度は十分に高 、とは言えな 、ものであった (非特許文献 4参照。 )。
一方、有機半導体材料は一般的にホール輸送性を有する Ρ型半導体材料が多ぐ 電子輸送性を有する η型半導体材料は比較的少ない。特に、 η型半導体特性を示す ものとしては、ペリレンテトラカルボン酸無水物もしくはそのジイミド誘導体、フラーレン (C60)、フッ素ィ匕銅フタロシアニン、フッ素化ペンタセン等が知られている力 高いキ ャリア移動度を有するもの、大気中で高い安定性を示すものが少なぐ有機薄膜デバ イスとして実用的な材料がな!ヽと ヽうことが問題であった (非特許文献 5参照。 )
[0007] 非特許文献 1 : D. J. Gundlach, S. F. Nelson, T. N. Jachsonら、 Appl. Phys.
Lett. , (2002) , 80, 2925.
非特許文献 2 : H. Tada, Y. Yamashita et al. , Materials Research Societ y Symposium Proceedings, (2002) , 725, 143.
非特許文献 3 : G. W. Coates, J. W. Ziller, R. H. Grubbs et al. , J. Am. Che m. Soc. , (1998) , 120, 3641.
非特許文献 4 :J. E. Anthony, G. G. Malliaras et al. , Org. Lett. , (2005) , 7 (15) , 3163.
非特許文献 5 : H. E. Katz, et al. , Nature, (2000) , 404, 478.
発明の開示 発明が解決しょうとする課題
[0008] 本発明は、上記のような従来技術が有する問題点を解決する有機半導体材料とし て用いることができる、炭化水素芳香族基と含フッ素芳香族性基とが結合してなる π 共役化合物、ならびに該 π共役化合物を電荷輸送材料として用いた、キャリア移動 度等に優れる有機半導体材料を提供することを目的とする。
また、本発明は、上記有機半導体材料を含む高性能な有機薄膜デバイスを提供す ることを目的とする。
課題を解決するための手段
[0009] 本発明者は、上記目的を達成すべく鋭意研究した結果、特定の含フッ素芳香族化 合物が、有機半導体材料として有機薄膜デバイスに用いられた場合に、 η型半導体 特性を有することおよび高いキャリア移動度を有することを見出し、本発明を完成さ せた。
[0010] 即ち、本発明は、以下の (i)〜(vii)を要旨とする。
(i)下記式(1)で表される含フッ素芳香族化合物。
[化 1]
Figure imgf000005_0001
ArFはペルフルォロ芳香族性基 (ただし、前記ペルフルォロ芳香族性基中のフッ素 原子はペルフルォロアルキル基により置換されて!、てもよ!/、。 )。
nは 1〜4の整数。
Qは下記式 (2)で表される構造力も n個の水素原子を除 、て得られる n価の芳香族 性基 (ただし、前記芳香族性基中の水素原子は炭素原子数 1〜8のアルキル基また は炭素原子数 1〜8の含フッ素アルキル基により置換されて 、てもよ 、。 )。
[化 2]
Figure imgf000005_0002
pは 0〜4の整数。
(ii) nが 2である上記 (i)に記載の含フッ素芳香族化合物。
(iii) A /がペルフルオロフヱ-ル基、ペルフルォロナフチル基およびペルフルォロ ビフヱ-ル基カもなる群力も選択されるペルフルォロ芳香族性基であり、 pが 0または 1である、上記 )に記載の含フッ素芳香族化合物。
(iv) pが 0であり、 Qにおける C≡C ArFの結合位置が 2位と 6位である、上記(iii )に記載の含フッ素芳香族化合物。
(v) pが 1であり、 Qにおける C≡C—ArFの結合位置が 2位と 6位、または、 9位と 1 0位である、上記 (iii)に記載の含フッ素芳香族化合物。
(vi)前記式(1)で表される含フッ素芳香族化合物が、下記式(11)で表される化合 物、下記式(12)で表される化合物、下記式(13)で表される化合物、下記式(14)で 表される化合物、下記式( 15)で表される化合物および下記式( 16)で表される化合 物からなる群力も選択される化合物である、上記 (iii)に記載の含フッ素芳香族化合 物。
[化 3]
Figure imgf000007_0001
(vii)上記 (i)〜 (vi)の ヽずれかに記載の含フッ素芳香族化合物を含む有機半導 体材料。
(viii)基板上に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ソース電極およ びドレイン電極とを有する有機薄膜トランジスタカゝらなる有機薄膜デバイスであって、 前記有機半導体層が上記 (i)〜 (vi)の 、ずれかに記載の含フッ素芳香族化合物を 含む有機薄膜デバイス。
(ix)基板上に、陽極と、 1層以上の構造の有機化合物層と、陰極とを有する有機 E L素子力もなる有機薄膜デバイスであって、
前記有機化合物層が上記 (i)〜 (vi)の 、ずれかに記載の含フッ素芳香族化合物を 含む有機薄膜デバイス。
発明の効果
[0011] 本発明の含フッ素芳香族化合物ならびに本発明の有機半導体材料は、電荷輸送 材料としてキャリア移動度が高ぐまた、電子輸送性を有するため、高性能な有機 TF T、有機 EL素子等を得ることができる。
図面の簡単な説明
[0012] [図 1]実施例 2で作製した有機 TFTの電気特性を示すグラフである。
発明を実施するための最良の形態
[0013] 以下に本発明の実施の形態を、代表例を示して詳細に説明する。初めに、本発明 の含フッ素芳香族化合物について説明する。
本発明の含フッ素芳香族化合物は、下記式(1)で表される化合物である。なお、本 明細書にお 1、ては、「式( 1)で表される化合物」等を「化合物( 1)」等と記す。
[0014] [化 4]
Figure imgf000008_0001
[0015] 化合物(1)にお 、て、 ΑΓΊまペルフルォロ芳香族性基である。ここで、「ペルフルォ 口芳香族性基」は、芳香族性を示す 1価の炭化水素基の水素原子をすベてフッ素原 子で置換したものを意味する。ただし、前記ペルフルォロ芳香族性基中のフッ素原 子はペルフルォロアルキル基により置換されていてもよい。この場合、ペルフルォロ アルキル基は、炭素原子数が 1〜8、好ましくは 1〜4の直鎖のまたは分岐のアルキル 基であるのが好ましい。 ArFとしては無置換のペルフルオロフェ-ル基、無置換のぺ ルフルォロナフチル基および無置換のペルフルォロビフエ-ル基(—C F C F )から
6 4 6 5 なる群力 選択されるペルフルォロ芳香族性基であるのが好ましぐ無置換のペルフ ルォロフエ-ル基または無置換のペルフルォロナフチル基であるのがより好ましい。
[0016] 化合物(1)において nは 1〜4の整数を表す。 nは、 1または 2であるのが好ましぐ 2 であるのがより好ましい。
[0017] 化合物(1)において、 Qは下記式(2)で表される構造力 n個の水素原子を除いて 得られる n価の芳香族性基である。ただし、前記芳香族性基中の水素原子は炭素原 子数が 1〜8、好ましくは 1〜4のアルキル基または炭素原子数が 1〜8、好ましくは 1 〜4の含フッ素アルキル基により置換されて!、てもよ!/、。
[0018] [化 5]
Figure imgf000009_0001
[0019] ここで、 pは 0〜4の整数を表す。 pは 0または 1であるのが好ましい。
Qとしては、 nが 2であり、 pが 0または 1であるのが好ましく;また、 nが 2であり、 pが 0 または 1であり、前記芳香族性基中の水素原子が無置換であるのがより好ましい。 化合物(1)は、結晶構造において分子が規則的に並んでいることが好ましぐその ため、分子の対称性が高いことが好ましい。分子の対称性の観点から、 Qにおける— C≡C ArFの結合位置については、 nが 2であり、 pが 0である場合は、 2位と 6位であ るのが好ましく;また、 nが 2であり、 pが 1である場合は、 2位と 6位、または、 9位と 10 位であるのが好ましい。
[0020] さらに、化合物(1)としては、下記式(11)で表される化合物、下記式(12)で表され る化合物、下記式(13)で表される化合物、下記式(14)で表される化合物、下記式( 15)で表される化合物および下記式(16)で表される化合物からなる群から選択され る化合物であるのが好まし 、。
[0021] [化 6]
Figure imgf000010_0001
[0022] 化合物(1)は、その製造方法を特に限定されないが、以下の方法により製造可能 である。例えば、化合物(1)において nが 1である場合を例にとると、下記(1)または(
2)の方法により製造することができる。
[0023] (1)下記式 (a)または (b)で表される、活性プロトンを有するェチ-レンィ匕合物との力 ップリング反応を利用する方法:
[0024] Q-C≡C-H + L-ArF → Q— C≡C ArF + HL (a)
または
Q-L + H-C≡C-ArF → Q— C≡C— ArF + HL (b)
[0025] ここで、 ArFおよび Qは、それぞれ上記式(1)におけるのと同じ意味であり、 Lは脱離 基を表す。脱離基 Lは、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子である。 本カップリング反応は、触媒として、パラジウム、銅、白金、ニッケル等の遷移金属、そ の塩またはその錯体を使用するのが好ましい。触媒は 1種のみで用いてもよぐ 2種 以上を混合して用いてもよい。 2種以上を混合して用いる例としては、テトラキス(トリ フエニルホスフィン)パラジウム (0)等の 0価のパラジウム触媒と、臭化銅、ヨウ化銅等 の遷移金属塩とを混合して用いることが挙げられる。また、上記触媒には、臭化リチウ ム、ヨウ化リチウム等のハロゲン化リチウム塩を混合して用いてもょ 、。
[0026] また、上記カップリング反応の溶媒としては、生成する HLを捕捉することができる溶 媒が好ましぐ一般にァミン系の溶媒が用いられる。具体的には、例えば、トリェチル ァミン、ジイソプロピルァミン、ピリジン、ピロリジン、ピぺリジンなどが用いられる。また 、これらは他の溶媒と混合してもよぐその場合は、他の溶媒として、ベンゼン、トルェ ン、テトラヒドロフラン等の非プロトン性溶媒を用いるのが好ま U、。
[0027] 本反応の反応温度としては、 30〜150°Cで行うのが好ましい。中でも、 70〜100°C 程度に加熱して行うのが好まし 、。
[0028] 反応式 (a)中の式 Q— C≡C Hで表される化合物は、例えば、以下の方法により 製造することができる。
[0029] Q-L + H-C≡C-C (CH ) OH
3 2
→ Q-C≡C-C (CH ) OH + HL (c)
3 2
[0030] Q-C≡C-C (CH ) OH
3 2
→ Q— C≡C H + 0 = C (CH ) (d)
3 2
[0031] ここで、 ArF、 Qおよび Lは、それぞれ上記式(a)におけるのと同じ意味である。
反応式 (c)で表される反応はカップリング反応であり、上記式 (a)または (b)で表さ れるカップリング反応と同様の条件で行うことができる。
反応式 (d)で表される反応は脱アセトンによるェチニル基の生成反応であり、通常 は塩基性条件下にて行われる。用いられる塩基としては水酸化カリウム、水酸化ナト リウム、水酸ィ匕カルシウム、炭酸カリウム、炭酸ナトリウム等が挙げられ、塩基性の強さ の観点力も水酸ィ匕カリウム、水酸ィ匕ナトリウムを用いるのが好ましい。また、本反応は 生成するアセトンを系中力 速やかに除去しながら行うのが好ましぐ中でも、減圧下 で加熱して行うのが好ましい。反応圧力としては、 0. 01-0. 5Paの範囲で行うのが 好ましく、 0. 3〜0. 5Paの範囲で行うのがより好ましい。反応温度としては 30〜200 °Cで行うのが好ましい。中でも、 100〜150°C程度に加熱して行うのが好ましい。
[0032] 反応式 (b)中の式 H— C≡C ArFで表される化合物も同様の方法で製造可能で ある。
[0033] (2)下記式で表されるフッ素原子の脱離を伴う求核置換反応を利用する方法: [0034] Q-C≡C-M + F-ArF → Q C≡C ArF + MF
[0035] ここで、 ArFおよび Qは、それぞれ上記式(1)におけるのと同じ意味であり、 Mは 1価 の金属を表す。 1価の金属 Mとしては、リチウム、カリウム、ナトリウム等を使用すること ができる。本求核置換反応は低温下、非プロトン性極性溶媒中で行うのが好ましい。 反応温度としては 80〜10°Cで行うのが好ましぐ 20°C〜5°Cで行うのがより好ま しい。本反応の溶媒としては、非プロトン性極性溶媒を用いるのが好ましい。具体的 には、例えば、ジェチルエーテル、 tーブチノレメチノレエーテノレ、テトラヒドロフラン、ジメ チルホルムアミド、ジメチルァセトアミド、ジメチルスルホキシドが用いられる。
[0036] つぎに、本発明の有機半導体材料および本発明の有機薄膜デバイスについて説 明する。
本発明の有機半導体材料は、上述した化合物(1)を含む有機半導体材料である。 本発明の有機半導体材料は、化合物(1)を含むものであればよぐ例えば、他の有 機半導体材料に混合して用いてもよぐまた、種々のドーパントを含んでいてもよい。 ドーパントとしては、例えば、有機 EL素子の発光層として用いる場合には、クマリン、 キナクリドン、ルブレン、スチルベン系誘導体および蛍光色素等を用いることができる
[0037] つぎに、本発明の有機薄膜デバイスについて説明する。
本発明の有機薄膜デバイスは、本発明の有機半導体材料を用いた有機薄膜デバ イスである。すなわち、本発明の有機薄膜デバイスは、化合物(1)を含む有機薄膜デ バイスである。具体的には、本発明の有機薄膜デバイスは、少なくとも 1層の有機層 を備え、この有機層のうち少なくとも 1層が上述したィ匕合物(1)を含む。
本発明の有機薄膜デバイスは、種々の態様とすることができる力 好適な態様の一 つとして、有機 TFTが挙げられる。
より具体的には、基板上に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ソー ス電極およびドレイン電極とを有する有機 TFTからなる有機薄膜デバイスであって、 前記有機半導体層が上述したィ匕合物(1)を含む有機薄膜デバイスが挙げられる。 化合物(1)は、 A /で表されるペルフルォロ芳香族性基と Qで表される炭化水素芳 香族基の相互作用により、分子間相互作用が大きぐ高キャリア移動度を達成するこ とができるので、有機 TFTの有機半導体層(有機活性層)に用いると効果的である。 また、化合物(1)は、含フッ素芳香族基の電子親和性の効果により、電子受容性が 高ぐ電子輸送性を有するので、 n型半導体として用いることができる。
[0038] 上記基板は、特に限定されず、例えば、従来公知の構成とすることができる。
基板としては、例えば、ガラス (例えば、石英ガラス)、シリコン、セラミック、プラスチ ックが挙げられる。
プラスチックとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート 、ポリカーボネート等の汎用の榭脂基板が挙げられる。榭脂基板は、酸素、水蒸気等 のガスの透過性を低くするためのガスノ リア膜を積層したものであることが好ましい。
[0039] ゲート電極は、特に限定されず、例えば、従来公知の構成とすることができる。
ゲート電極としては、例えば、金、白金、クロム、タングステン、タンタル、ニッケル、 銅、アルミニウム、銀、マグネシウム、カルシウム等の金属またはそれらの合金、ポリシ リコン、アモルファスシリコン、グラフアイト、スズドープ酸化インジウム(以下「ITO」と称 する。)、酸化亜鉛、導電性ポリマー等の材料を用いることができる。
[0040] ゲート絶縁層は、特に限定されず、例えば、従来公知の構成とすることができる。
ゲート絶縁層としては、 SiO、 Si N、 SiON、 Al O、 Ta O、アモルファスシリコン、
2 3 4 2 3 2 5
ポリイミド榭脂、ポリビュルフエノール榭脂、ポリパラキシリレン榭脂、ポリメチルメタタリ レート榭脂、フッ素榭脂(PTFE、 PFA、 PETFE、 PCTFE、 CYTOP (登録商標)等 )等の材料を用いることができる。
[0041] 有機半導体層は、化合物(1)を含む層であれば、特に限定されない。例えば、実 質的に化合物(1)のみ力 なる層であってもよぐ化合物(1)以外の他の物質を含有 する層であってもよい。 [0042] ソース電極およびドレイン電極は、 、ずれも特に限定されず、例えば、従来公知の 構成とすることができる。
ソース電極およびドレイン電極としては、いずれも、金、白金、クロム、タングステン、 タンタル、ニッケル、銅、アルミニウム、銀、マグネシウム、カルシウム等の金属または それらの合金、ポリシリコン、アモルファスシリコン、グラフアイト、 ITO、酸化亜鉛、導 電性ポリマー等の材料を用いることができる。
[0043] 有機 TFTにおける積層の構成は、基板側から、ゲート電極と、ゲート絶縁層と、有 機半導体層と、ソース電極およびドレイン電極とをこの順に有する構成(1);基板側 から、ゲート電極と、ゲート絶縁層と、ソース電極およびドレイン電極と、有機半導体 層とをこの順に有する構成(2);基板側から、有機半導体層と、ソース電極およびドレ イン電極と、ゲート絶縁層と、ゲート電極とをこの順に有する構成(3);および、基板 側から、ソース電極およびドレイン電極と、有機半導体層と、ゲート絶縁層と、ゲート 電極と、をこの順に有する構成 (4)の 、ずれであってもよ 、。
有機 TFTの作製方法は、特に限定されないが、構成(1)の場合、例えば、基板上 に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ドレイン電極およびソース電極 とを順次積層するトップコンタクトソース ドレイン法が挙げられる。構成 (2)の場合、 基板上に、ゲート電極と、ゲート絶縁層と、ドレイン電極およびソース電極と、有機半 導体層とを順次積層するボトムコンタクトソース ドレイン法が挙げられる。また、構成 (3)や構成 (4)の場合、トップゲート型の作製方法も挙げられる。
[0044] ゲート電極と、ゲート絶縁層と、ソース電極およびドレイン電極とは、形成方法を特 に限定されないが、いずれも、例えば、上述した材料を用いて、真空蒸着法、電子ビ ーム蒸着法、 RFスパッタ法、スピンコート法、印刷法等の周知の膜作製方法により形 成させることができる。
有機半導体層は、形成方法を特に限定されないが、例えば、上述した化合物(1) を用いて、真空蒸着法、スピンコート法、インクジェット法、印刷法等の周知の膜作製 方法により形成させることができる。
[0045] 化合物(1)は、 Α /で表されるペルフルォロ芳香族性基と Qで表される炭化水素芳 香族基とがある程度規則的に配置された化学構造を有しており、ペルフルォロ芳香 族性基および炭化水素芳香族基の相互作用により、ペルフルォロ芳香族性基と炭 化水素芳香族基が交互にスタツキングし、積層した結晶構造を有する。このため分子 間相互作用が大きぐ分子同士で π電子軌道がオーバーラップすることによる高キヤ リア移動度を期待することができる。したがって、この材料を有機 TFT (電界効果トラ ンジスタ)の有機半導体層 (「有機活性層」とも呼ばれる。)に用いることで、大き ヽ電 界効果移動度特性を実現することができる。
[0046] 有機 TFTからなる本発明の有機薄膜デバイスは、用途を特に限定されな!ヽが、例 えばプラスチック基板を用 ヽたフレキシブルディスプレイの駆動用 TFTとして好適に 用いられる。
一般的にプラスチック基板上に無機物で構成された TFTを作製することはプロセス 上困難である。しかし、有機 TFTからなる本発明の有機薄膜デバイスの作製工程で は、上述したように真空蒸着法、スピンコート法、インクジェット法、印刷法等のプロセ スを用い、高温プロセスを使用しないため、プラスチック基板上に画素駆動用の TFT を形成しうる。特に、本発明に用いられる化合物(1)は、クロ口ホルム、テトラヒドロフラ ン等の汎用有機溶媒に可溶であるため、スピンコート法、インクジェット法、印刷法等 の低コストプロセスを適用可能であり、安価なペーパーライク(フレキシブル)ディスプ レイの作製に適している。
本発明の化合物(1)を含むことを特徴とする有機薄膜デバイスの別の好適態様の 一つとして、有機 EL素子が挙げられる。
具体的には、基板上に、陽極と、 1層以上の構造の有機化合物層と、陰極とを有す る有機 EL素子カゝらなる有機薄膜デバイスであって、前記有機化合物層が上述した 化合物(1)を含む有機薄膜デバイスが挙げられる。
[0047] 基板と、陽極と、陰極とは、特に限定されず、いずれも従来公知の構成とすることが できる。
[0048] 基板は、特に限定されず、例えば、従来公知の構成とすることができる。
基板としては、例えば、ガラス、プラスチック等の透明材料を用いるのが好ましい態 様の一つである。また、陰極に透過性を持たせて陰極側から発光を取り出す場合は 、透明材料以外の材料、例えば、シリコンを用いることもできる。 [0049] 陽極は、特に限定されず、例えば、従来公知の構成とすることができる。具体的に は、光を透過させる材料を用いる。より具体的には、 ITO、酸化インジウム、酸化スズ 、酸化インジウム、酸ィ匕亜鉛であるのが好ましい。また、金、白金、銀、マグネシウム合 金等の金属の薄膜;ポリア-リン、ポリチォフェン、ポリピロール、それらの誘導体等の 高分子有機材料を用いることもできる。
[0050] 陰極は、特に限定されず、例えば、従来公知の構成とすることができる。具体的に は、仕事関数の低い、 Li、 K、 Na等のアルカリ金属; Mg、 Ca等のアルカリ土類金属 を用いるの力 電子注入性の観点力 好ましい。また、 LiF、 LiCl、 KF、 KC1、 NaF、 NaCl等のアルカリ金属のハロゲン化物とその上に設けられる安定な Al等の金属とを 用 、ることも好まし 、。
[0051] 有機化合物層は、 1層以上の構造であり、その層構成を特に限定されず、例えば、 従来公知の構成とすることができる。
例えば、陽極側から陰極側へ向かって、発光層からなる 1層構造;正孔輸送層 Z発 光層からなる 2層構造;発光層 Z電子輸送層からなる 2層構造;正孔輸送層 Z発光 層 Z電子輸送層からなる 3層構造;正孔注入層 Z正孔輸送層 Z発光層 Z電子注入 層からなる 4層構造;正孔注入層 z正孔輸送層 Z発光層 Z電子輸送層 Z電子注入 層からなる 5層構造が典型的に挙げられる。
[0052] 上述したように、有機化合物層は、上述したィ匕合物(1)を含む。有機化合物層は、 上述した各種層構成において用いられる各層のうち、少なくとも 1層が化合物( 1 )を 含んでいればよい。例えば、上記 5層構造の場合、正孔注入層、正孔輸送層、発光 層、電子輸送層および電子注入層からなる群力 選ばれる少なくとも 1層が化合物( 1)を含んでいればよい。
有機化合物層においては、上述した化合物(1)は、 1種を用いてもよぐ 2種以上を 併用してちょい。
また、有機化合物層においては、化合物(1)以外の発光性有機化合物を併用して もよい。化合物(1)以外の発光性有機化合物は、特に限定されず、例えば、従来公 知のものを用いることができる。
[0053] 有機化合物層は、少なくとも 1層が化合物(1)を含んでいる以外は、各層を従来公 知の構成とすることができる。以下、有機化合物層が 5層構造である場合を例に挙げ て説明する。ただし、本発明はこれに限定されるものではない。
正孔注入層または正孔輸送層を構成する材料としては、フタロシアニン誘導体、ナ フタロシアニン誘導体、ポルフィリン誘導体、芳香族三級アミン誘導体、スチルベン、 ポリビュルカルバゾール、ポリチォフェン、ポリア-リン等の導電性高分子材料で電子 供与性の高い骨格または置換基を含む化合物が好適に例示される。特に、正孔注 入層を構成する材料としては、陽極力 正孔が注入しやす 、イオンィ匕ポテンシャルが 小さい化合物が好ましい。また、正孔輸送層を構成する材料としては、発光層とィォ ン化ポテンシャルが同程度の化合物が好まし!/、。
発光層の発光材料またはホスト材料としては、例えば、キノリン金属錯体、ァミノキノ リン金属錯体、ベンゾキノリン金属錯体等の金属錯体;アントラセン、フエナントレン、 ピレン、テトラセン、コロネン、タリセン、ペリレン等の縮合多環化合物が挙げられる。 また、クマリン、キナクリドン、ルブレン、スチルベン系誘導体、蛍光色素等を発光層 に微量ドープしてもよい。
電子輸送層または電子注入層を構成する材料としては、具体的には、例えば、ォ キサジァゾール、トリァゾール、フエナントレン、バソクプロイン、キノリン錯体、ペリレン テトラカルボン酸、またはそれらの誘導体などが挙げられるが、これらに限定されるも のではない。
これらの層は、それぞれ 2層以上力 構成されて 、てもよ 、。
[0054] 有機 EL素子における積層の構成は、例えば、基板側から、陽極と、 1層以上の構 造の有機化合物層と、陰極とをこの順に有する構成、基板側から、陰極と、 1層以上 の構造の有機化合物層と、陽極とをこの順に有する構成が挙げられる。
[0055] 有機 EL素子の作製方法は、特に限定されないが、例えば、基板上に、陽極と、有 機化合物層と、陰極とを順次積層する方法;基板上に、陰極と、有機化合物層と、陽 極とを順次積層する方法が挙げられる。
[0056] 陽極と、陰極とは、形成方法を特に限定されないが、いずれも、例えば、上述した 材料を用いて、真空蒸着法、電子ビーム蒸着法、 RFスパッタ法、スピンコート法、ィ ンクジェット法、印刷法、スプレー法等の周知の膜作製方法により形成させることがで きる。
有機化合物層は、形成方法を特に限定されないが、上述したィ匕合物(1)を含有す る層については、例えば、上述したィ匕合物(1)を用いて、真空蒸着法、スピンコート 法、印刷法等の周知の膜作製方法により形成させることができる。また、上述したィ匕 合物(1)を含有しない層については、例えば、上述した材料を用いて、真空蒸着法、 電子ビーム蒸着法、 RFスパッタ法、スピンコート法、インクジェット法、印刷法、スプレ 一法等の周知の膜作製方法により形成させることができる。
[0057] 一般に、有機 EL素子において、陽極と陰極との間に電圧を印加すると、陽極から は正孔が正孔注入層ゃ正孔輸送層を介して発光層に注入され、陰極からは電子が 電子注入層や電子輸送層等を介して発光層に注入される。これにより、正孔と電子と が発光層で再結合し、その際に生じるエネルギーにより発光層に含まれる発光性有 機化合物の分子が励起し、励起子が生成する。そして、生成した励起子が基底状態 に失活する過程で発光現象が生じる。
従来、有機 EL素子を実用化するに際し、駆動電圧の低減化や発光量子効率の上 昇が重要な課題となっている。この課題の解決には、陽極力も正孔を効率よく引き出 して発光層に注入し、陰極力 電子を効率よく引き出して発光層に注入し、正孔およ び電子を発光層まで損失なく効率よく輸送することが、求められている。
[0058] 本発明においては、化合物(1)が正孔および電子の輸送性に優れているので、有 機 EL素子の正孔注入層、正孔輸送層、電子注入層および電子輸送層の少なくとも 1層に用いると効果的である。また、発光層中にも正孔および電子の両者を注入し、 再結合させる必要があるため、発光層に用いることも好ま 、。
力べして、高キャリア移動度の化合物(1)を有機 EL素子の正孔注入層、正孔輸送 層、電子注入層、電子輸送層および発光層の少なくとも 1層に用いることによって、 正孔および電子を発光層中に効率よぐ注入することが可能となり、これにより、発光効 率を高め、駆動電圧を低下させることができる。
[0059] 有機 EL素子力もなる本発明の有機薄膜デバイスは、用途を特に限定されないが、 例えば、有機 EL表示装置に好適に用いられる。
有機 EL表示装置は、画素となる有機 EL素子を複数配置した有機 EL表示素子を 備えている。
例えば、ノッシブ型の有機 EL素子は、典型的には、ストライプ状に配置された陽極 配線と、陽極配線に交差するようにストライプ状に配置された陰極配線との交差部の 間に発光層を含む有機化合物層が挟持された構造となっており、交差部ごとに、発 光素子としての画素が形成され、画素がマトリクス状に配列して 、る。
また、有機 EL素子にスイッチング用の有機 TFTを組み合わせた素子を、マトリック ス状に配置することにより、アクティブ型の有機 EL表示素子とすることができる。
[0060] 本発明の有機薄膜デバイスにお ヽては、上述したように、トランジスタ等の電気デ バイス、有機 EL素子等の光デバイスの基板として、ガラス基板のほかに、プラスチッ ク基板を使用することが可能である。
基板として用いられるプラスチックは、耐熱性、寸法安定性、耐溶剤性、電気絶縁 性、加工性、低通気性および低吸湿性に優れているのが好ましい。このようなプラス チックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、 ポリカーボネート、ポリアタリレート、ポリイミド等が挙げられる。
[0061] 本発明の有機薄膜デバイスにお ヽては、基板の電極側の面および電極と反対側の 面の一方または両方に、透湿防止層(ガスバリア層)を有するのが好ましい。透湿防 止層を構成する材料としては、窒化ケィ素、酸ィ匕ケィ素等の無機物が好適に例示さ れる。透湿防止層は RFスパッタ法等の周知の膜作製方法により形成することができ る。
また、本発明の有機薄膜デバイスにおいては、必要に応じて、ハードコート層ゃァ ンダーコー卜層を有していてもよい。
[0062] 本発明の有機薄膜デバイスは、上述した有機 TFTおよび有機 EL以外の種々の態 様とすることもできる。例えば、有機薄膜太陽電池は、本発明の化合物(1)を含むこ とを特徴とする有機薄膜デバイスの更に別の好適な態様の一つである。
[0063] 本発明の有機薄膜デバイスは、用途を特に限定されず、表示装置 (ディスプレイ)、 表示素子、バックライト、光通信、電子写真、照明光源、記録光源、露光光源、読取 光源、標識、看板、インテリア、電池等の広範な用途に用いることができる。
実施例 [0064] 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限 定して解釈されるものではな 、。
1. 中間体の合成
(1) 2, 6—ジェチュルナフタレンの合成
後述する化合物( 11)および( 12)の合成に用 、る中間体として、下記式 (A)およ び(B)により、 2, 6—ジェチュルナフタレンを合成した。
[0065] [化 7]
Figure imgf000020_0001
[0066] 2, 6—ジェチュルナフタレンの具体的な合成方法を以下に示す。
熱電対温度計およびメカ-カルスターラを取り付けた容量 300mLの四つロフラス コに、 20. 15gの 2, 6—ジブ口モナフタレン、 2. Ogのテトラキス(トリフエ-ルホスフィ ン)パラジウム(0)および 1. 14gのトリフエ-ルホスフィンを仕込み、系を窒素置換し た。そして、 60mLのトリエチルァミンを仕込んだ。さらに、 0. 15gの臭ィ匕銅 (I)および 0. 59gの臭化リチウムを 15mLのテトラヒドロフラン(以下「THF」という。)に溶解した ものを仕込み、そこへ 23. 9gの 2—メチルブター 3—インー2—オールを添カ卩した。そ して、系を 90〜95°Cに加熱し、 2〜3時間攪拌した。続いて、反応系を室温まで冷却 した後、 200mLの 0. 5molZL塩酸を投入し、析出した固体をろ過して回収した。回 収した固体について水による洗浄、トルエンによる洗浄およびメタノールによる洗浄を この順で行った後に、 50°Cで 2時間真空乾燥を行って、ほぼ純粋な 4, 4' - (ナフタ レン—2, 6—ジィル)ビス(2—メチルブター 3—インー2—オール)を 16. Og得た(収 率: 77%) (上記式 (A)参照。)。
[0067] こうして得られた生成物を、熱電対温度計およびメカニカルスターラを取り付けた容 量 300mLの四つ口フラスコに移し、そこへ 29. 8gの流動パラフィンおよび 13. 4gの 粉砕した水酸ィ匕カリウムを仕込み、攪拌して分散した。そして、系を 0. 23Paまで減 圧した後、 100〜130°Cに加熱し、アセトンの発生による発泡がなくなるまで加熱、攪 拌し続けた。続いて lOOmLのジクロロメタンおよび lOOmLの水を添カ卩し、攪拌した 後、不溶な固体をろ過して取り除いた。粗生成物はジクロロメタンにより抽出し、濃縮 することにより流動パラフィンとの混合物として得られ、それをカラムクロマトグラフィー により精製することにより、ほぼ純粋な 2, 6—ジェチ二ルナフタレンを 7. 3g得た (収 率: 86%) (上記式(B)参照。 )。なお、 2, 6—ジェチュルナフタレンは、 iH— NMR の分析により同定した。分析結果を以下に示す。
[0068] 'H - NMR OOO. 4MHZ,溶媒: CDCl ,基準: TMS) δ (ppm) ; 3. 18 (s, 2H) ,
3
7. 53 (d, 2H) , 7. 74 (d, 2H) , 7. 98 (s, 2H)
[0069] (2) 2, 6—ジェチュルアントラセンの合成
後述する化合物(13)および(14)の合成に用いる中間体として、下記式 (C)および
(D)により、 2, 6—ジェチ二ルアントラセンを合成した。
[0070] [化 8]
Figure imgf000021_0001
2, 6—ジェチュルアントラセンの具体的な合成方法を以下に示す。
熱電対温度計を取り付け、マグネティックスターラを投入した容量 50mLの三つ口 フラスコに、 1. Ogの 2, 6—ジブロモアントラセン、 94mgのテトラキス(トリフエニルホス フィン)パラジウム(0)および 57mgのトリフエ-ルホスフィンを仕込み、系を窒素置換 した。そして、 2mLのトリエチルァミンを仕込んだ。さら〖こ、 12mgの臭ィ匕銅 (I)および 25mgの臭ィ匕リチウムを 0. 75mLの THFに溶解したものを仕込み、そこへ 1. Ogの 2 ーメチルブター 3—インー2—オールを添カ卩した。そして、系を 90〜95°Cに加熱し、 3〜4時間攪拌した。続いて、反応系を室温まで冷却した後、 40mLの 0. 5mol/L 塩酸を投入し、析出した固体をろ過して回収した。回収した固体について水による洗 浄、トルエンによる洗浄およびメタノールによる洗浄をこの順で行った後に、 50°Cで 2 時間真空乾燥を行って、ほぼ純粋な 4, A' —(アントラセン— 2, 6—ジィル)ビス(2 ーメチルブター 3 インー2 オール)を 0. 9g得た (収率: 85%) (上記式 (C)参照。
) o
[0072] こうして得られた生成物のうち 0. 8gを、熱電対温度計およびメカ-カルスターラを 取り付けた容量 200mLの四つ口フラスコに移し、そこへ 2. 2gの流動パラフィンおよ び 0. 7gの粉砕した水酸ィ匕カリウムを仕込み、攪拌して分散した。そして、系を 0. 23 Paまで減圧した後、 100〜130°Cに加熱し、アセトンの発生による発泡がなくなるま で加熱、攪拌し続けた。続いて 40mLのジクロロメタンおよび 40mLの水を添カ卩し、攪 拌した後、不溶な固体をろ過して取り除いた。粗生成物はジクロロメタンおよびクロ口 ホルムにより抽出し、濃縮することにより流動パラフィンとの混合物として得られ、それ をカラムクロマトグラフィーにより精製することにより、ほぼ純粋な 2, 6 ジェチニルァ ントラセンを 0. 45g得た (収率: 87%) (上記式 (D)参照。 ) 0なお、 2, 6 ジェチニル アントラセンは、 — NMRの分析により同定した。
分析結果を以下に示す。
[0073] NMR(300. 4MHz,溶媒: CDC1 ,基準: TMS) δ (ppm) ; 3. 22 (s, 2H) ,
3
7. 48 (d, 2H) , 7. 95 (d, 2H) , 8. 19 (s, 2H) , 8. 35 (s, 2H)
[0074] 2.含フッ素芳香族化合物の合成
(実施例 1) :化合物(11)
(1)化合物(11)の合成
熱電対温度計およびメカ-カルスターラを取り付けた容量 300mLの四つロフラス コに、 1. 7gの 2, 6 ジェチュルナフタレン、 0. 5gのテトラキス(トリフエ-ルホスフィ ン)パラジウム (0)および 0. 09gの臭化銅 (I)を仕込み、系を窒素置換した。続いて、 35mLのトルエンおよび 4. 5mLのトリエチルァミンを仕込んだ。さらに、そこへ 7. 3g のブロモペンタフルォロベンゼンを添カ卩した。そして、系を 90〜95°Cにカロ熱し、 3〜4 時間攪拌した。続いて、反応系を室温まで冷却した後、 lOOmLの 0. 5molZL塩酸 を投入し、析出した固体をろ過して回収した。回収した固体について水による洗浄、 トルエンによる洗净およびメタノールによる洗净をこの順で行った後に、 60°Cで 2時 間真空乾燥を行って、ほぼ純粋な化合物(11)を 4. lg得た (収率: 87%)。
[0075] (2)化合物(11)の精製 上記で得られた化合物(11)のうちの 2. Ogを 5.5X10— 4〜6.0X10— 4Paの減圧下 、 250°Cで昇華精製を行うことにより、純粋な白色結晶 1.8gを得た。この白色結晶は 、 19F— NMRおよび1 H— NMRの各分析により 2, 6 ビス(ペンタフルオロフェ-ル ェチニル)ナフタレン (ィ匕合物(11) )であると同定された。分析結果を以下に示す。
[0076] 19F-NMR(282.7MHz、溶媒: CDC1、基準: CFC1 ) δ (ppm);— 136.34(4
3 3
F), -152.70 (2F), —162.14 (4F)
'H-NMROOO. 4MHZ,溶媒: CDCl ,基準: TMS) δ (ppm) ;7. 64 (d, 2H)
3
, 7.84 (d, 2H), 8.11 (s, 2H)
[0077] (実施例 2):化合物(12)
(1)化合物(12)の合成
熱電対温度計およびメカ-カルスターラを取り付けた容量 300mLの四つロフラス コに、 0.3gの 2, 6 ジェチュルナフタレン、 0.09gのテトラキス(トリフエ-ルホスフィ ン)パラジウム (0)および 0.03gの臭化銅 (I)を仕込み、系を窒素置換した。続いて、 6mLのトルエンおよび 0.75mLのトリェチルァミンを仕込んだ。さらに、そこへ 1.7g の 2 ブロモヘプタフルォロナフタレンを添カ卩した。そして、系を 90〜95°Cに加熱し 、 3〜4時間攪拌した。続いて、反応系を室温まで冷却した後、 lOOmLの 0.5mol/ L塩酸を投入し、析出した固体をろ過して回収した。回収した固体について水による 洗净、トルエンによる洗浄およびアセトンによる洗浄をこの順で行った後に、 60°Cで 2 時間真空乾燥を行って、ほぼ純粋な化合物(12)を 5.6g得た (収率: 92%)。
[0078] (2)化合物(12)の精製
上記で得られた化合物(12)のうちの 1. Ogを 5.5X10— 4〜6.0X10— 4Paの減圧下 、 350°Cで昇華精製を行うことにより、純粋な白色結晶 0.5gを得た。この白色結晶は 、 19F— NMRおよび1 H— NMRの各分析により 2, 6 ビス((ヘプタフルォロナフタレ ン 2—ィル)ェチニル)ナフタレン (ィ匕合物(12) )であると同定された。分析結果を 以下に示す。
[0079] 19F-NMR(282.7MHz、溶媒: THF—d、基準: CFC1 ) δ (ppm);— 113. 1(
8 3
2F), -134.5(2F), —144.1 (2F) , —144.6(2F), —149.3(2F), —153. 2(2F), -156.3(4F) 'H -NMR OOO. 4MHZ,溶媒: THF— d ,基準: TMS) δ (ppm) ; 7. 74 (d, 2
8
H) , 8. 03 (d, 2H) , 8. 29 (s, 2H)
[0080] (実施例 3) :化合物(13)
(1)化合物(13)の合成
熱電対温度計を取り付け、マグネティックスターラを投入した容量 50mLの三つ口 フラスコに、 0. 29gの 2, 6—ジェチ-ルアントラセン、 88mgのテトラキス(トリフエ-ル ホスフィン)パラジウム (0)および 19mgの臭ィ匕銅 (I)を仕込み、系を窒素置換した。 続いて、 6mLのトルエンおよび 0. 75mLのトリェチルァミンを仕込んだ。さらに、そこ へ 1. Ogのブロモペンタフルォロベンゼンを添カ卩した。そして、系を 95°Cに加熱し、 3 〜4時間攪拌した。続いて、反応系を室温まで冷却した後、 40mLの 0. 5molZL塩 酸を投入し、析出した固体をろ過して回収した。回収した固体について水による洗浄 、トルエンによる洗浄およびメタノールによる洗浄をこの順で行った後に、 60°Cで 2時 間真空乾燥を行って、ほぼ純粋な化合物(13)を 0. 44g得た (収率: 62%)。
[0081] (2)化合物(13)の精製
上記で得られた化合物(13)のうちの 0. 3gを 5. 5 X 10— 4〜6. 0 X 10— 4Paの減圧下 、 350°Cで昇華精製を行うことにより、純粋な白色結晶 0. 15gを得た。
この白色結晶は、 19F— NMRおよび1 H— NMRの各分析により 2, 6—ビス(ペンタフ ルォロフエ-ルェチュル)ナフタレン (ィ匕合物(13) )であると同定された。分析結果を 以下に示す。
[0082] 19F-NMR(282. 7MHz、溶媒: THF— d、基準: CFC1 ) δ (ppm) ;— 137. 20
8 3
(4F) , - 153. 78 (2F) , —162. 95 (4F)
'H -NMR OOO. 4MHZ,溶媒: THF— d ,基準: TMS) δ (ppm) ; 7. 59 (d, 2
8
H) , 8. 12 (d, 2H) , 8. 40 (s, 2H) , 8. 58 (s, 2H)
[0083] (実施例 4) :化合物(14)
(1)化合物(14)の合成
熱電対温度計を取り付け、マグネティックスターラを投入した容量 50mLの三つ口 フラスコに、 0. 3gの 2, 6—ジェチ二ルアントラセン、 77mgのテトラキス(トリフエニル ホスフィン)パラジウム (0)および 14mgの臭ィ匕銅 (I)を仕込み、系を窒素置換した。 続いて、 6mLのトルエンおよび 0.75mLのトリェチルァミンを仕込んだ。さらに、そこ へ 1.4gの 2 ブロモヘプタフルォロナフタレンを添カ卩した。そして、系を 95°Cに加熱 し、 3〜4時間攪拌した。続いて、反応系を室温まで冷却した後、 40mLの 0.5mol/ L塩酸を投入し、析出した固体をろ過して回収した。回収した固体について水による 洗净、トルエンによる洗浄およびアセトンによる洗浄をこの順で行った後に、 60°Cで 2 時間真空乾燥を行って、ほぼ純粋な化合物(14)を 0.8 lg得た (収率: 82%)。
[0084] (2)化合物(14)の精製
上記で得られた化合物(14)のうちの 0.5gを 5.5X10— 4〜6.0X10— 4Paの減圧下 、 400°Cで昇華精製を行うことにより、純粋な白色結晶 0.26gを得た。この白色結晶 は、 19F— NMRおよび1 H— NMRの各分析により 2, 6 ビス((ヘプタフルォロナフタ レン 2 ィル)ェチュル)アントラセン (ィ匕合物(14) )であると同定された。分析結果 を以下に示す。
[0085] 19F-NMR(282.7MHz、溶媒: THF— d、基準: CFC1 ) δ (ppm);— 113.2(
8 3
2F), -134.6(2F), —144.1 (2F) , —144.5(2F), —149.4(2F), —153. 2(2F), -156.4(4F)
'H-NMROOO. 4MHZ,溶媒: THF— d ,基準: TMS) δ (ppm) ;7. 60 (d, 2
8
H), 8. ll(d, 2H), 8.41 (s, 2H), 8.59 (s, 2H)
[0086] 3.含フッ素芳香族化合物の薄膜の物性の評価
(実施例 5)
厚さ 130nmのガラス基板を真空蒸着機の基板ホルダーに固定して、真空度 1 X 10 "6Torr(l.33X 10— 4Pa)まで減圧した。つぎに、合成例 1で合成され、精製されたィ匕 合物(11)を蒸着速度 0.2nmZ秒で 40nmの厚さとなるようにガラス基板上に蒸着し た。
蒸着されたィ匕合物(11)の薄膜のイオンィ匕ポテンシャルを、大気中光電子分光装置 (AC— 3、理研計器社製)を用いて測定したところ、 6.2eVであった。
また、蒸着された化合物(11)の薄膜の吸収スペクトルを、分光高度計 (UV— 310 0、島津製作所社製)を用いて測定したところ、吸収極大の波長は 280nmおよび 33 6nmであり、最も長波長側の吸収端の波長は 372nmであった。 これらの特性から、化合物(11)の薄膜の HOMOおよび LUMOの準位がそれぞ れ—6. 2eVおよび—2. 9eVと求められた。したがって、化合物(11)の薄膜が電子 輸送性を有することが予想される。
[0087] 4.有機 TFTの作製および評価
(実施例 6)
ガラス基板上にマスクを介して、金をスパッタリングすることにより成膜し、幅 5mm、 厚さ 30nmのゲート電極を形成した。
ついで、その上にポリモノクロ口パラキシリレンの薄膜を蒸着重合することによりゲー ト絶縁層(高分子絶縁膜)を形成した。具体的には、減圧下でモノクロ口キシリレンダ イマ一 (パリレン C、日本パリレン (株)製)を加熱して蒸発させ、 680°Cに加熱したカロ 熱管を通して熱分解させて、ジラジカルモノマーを発生させた。ついで、室温に保持 したゲート電極を形成されたガラス基板上へ、発生させたジラジカルモノマーを導入 し、厚さ 990nmのポリモノクロ口パラキシリレンの薄膜を形成した。
以降の過程はすべて蒸着機、グローブボックス内で行った。
ゲート絶縁層を形成されたガラス基板上に、化合物(12)を蒸着速度 0. 05nmZ秒 で約 40nmの厚さとなるように蒸着し、有機半導体層を形成した。蒸着装置のチャン バ内の真空度は 2 X 10—4Pa以下であった。
つぎに、有機半導体層上に、金属マスクを用いてカルシウムを真空蒸着法で成膜 してソース電極およびドレイン電極を形成し、更に、その上に銀を蒸着して保護層を 形成し、有機 TFTを得た。
有機 TFTのチャネル幅(W)およびチャネル長 (L)は、それぞれ 5mmおよび 75 μ mとした。
[0088] 図 1は、実施例 6で作製した有機 TFTの電気特性を示すグラフである。図 1にお ヽ て、横軸はドレイン電圧 (V)、縦軸はドレイン電流 (A)である。
図 1から、実施例 6において化合物(12)を用いて作製した有機 TFTが n型半導体 の特性を示すことが分かる。
また、図 1に示されるように、各ゲート電圧におけるドレイン電流の変化曲線は、低 V、ドレイン電圧の線形領域 (電圧比例領域)と高 ヽドレイン電圧での飽和領域を有し ていた。また、実施例 2で作製した有機 TFTの閾値電圧 (Vt)は 23Vであった。
[0089] 一般に、有機 TFTの電子移動度( )は、飽和ドレイン電流 Idを表わす下記式 (A) 力 算出することができる。
[0090] Id= (W/2L) μ Ci (Vg-Vt)2 (A)
[0091] 式中、 Lはチャネル長であり、 Wはチャネル幅であり、 Ciは絶縁層の単位面積当た りの容量であり、 Vgはゲート電圧であり、 Vtは閾値電圧である。絶縁層として用いた ポリモノクロ口パラキシリレンの Ciは 2. 86 X 10— 9F/cm2である。
上記式 (A)を用いて電子移動度( μ )を計算した結果、実施例 6で作製した有機 Τ FTでは、 2. 6 X 10— 4cm2ZVsの電子移動度が得られることが分力つた。
(実施例 7)
実施例 6と同様の方法にて化合物(14)を用いた有機 TFTを作製した。作製した有 機 TFTは n型半導体の特性を示した。実施例 6と同様の方法にて電子移動度 )を 計算した結果、 2. 7 X 10— 4cm2ZVsの電子移動度が得られることが分力つた。
(比較例 1)
ソース、ドレイン電極としてカルシウムの代わりに金を蒸着すること以外は実施例 6と 同様の方法にて、化合物(12)のフッ素置換ナフチル基を無置換のナフチル基に変 更した化合物(17)を用いて、有機 TFTを作成した。作成した有機 TFTは p型半導 体の特性を示した。実施例 6と同様の方法にてホール移動度 )を計算した結果、 6 . 4 X 10— 3cm2ZVsのホール移動度が得られることが分かった。
[0092] [化 9]
Figure imgf000027_0001
産業上の利用可能性
[0093] 本発明の含フッ素芳香族化合物及び有機半導体材料は、高性能な有機 TFT、有 機 EL素子等に使用できる。さらに、有機薄膜太陽電池、表示装置 (ディスプレイ)、 表示素子、バックライト、光通信、電子写真、照明光源、記録光源、露光光源、読取 光源、標識、看板、インテリア、電池等の広範な用途に用いることができる。 なお、 2006年 6月 16曰に出願された曰本特許出願 2006— 167014号、 2006年 7月 7日に出願された日本特許出願 2006— 187503号および 2006年 8月 7日に出 願された日本特許出願 2006— 214239号の明細書、特許請求の範囲、図面及び 要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものであ る。

Claims

請求の範囲 下記式( 1)で表される含フッ素芳香族化合物。
[化 1]
Figure imgf000029_0001
ArFはペルフルォロ芳香族性基 (ただし、前記ペルフルォロ芳香族性基中のフッ素 原子はペルフルォロアルキル基により置換されて!、てもよ!/、。 )。
nは 1〜4の整数。
Qは下記式 (2)で表される構造力も n個の水素原子を除 、て得られる n価の芳香族 性基 (ただし、前記芳香族性基中の水素原子は炭素原子数 1〜8のアルキル基また は炭素原子数 1〜8の含フッ素アルキル基により置換されて 、てもよ 、。 )。
[化 2]
Figure imgf000029_0002
pは 0〜4の整数。
[2] nが 2である請求項 1に記載の含フッ素芳香族化合物。
[3] ArFがペルフルオロフヱ-ル基、ペルフルォロナフチル基およびペルフルォロビフ ェニル基力もなる群力も選択されるペルフルォロ芳香族性基であり、 pが 0または 1で ある、請求項 2に記載の含フッ素芳香族化合物。
[4] pが 0であり、 Qにおける— C≡C— ArFの結合位置が 2位と 6位である、請求項 3に 記載の含フッ素芳香族化合物。
[5] pが 1であり、 Qにおける— C≡C— ArFの結合位置が 2位と 6位、または、 9位と 10位 である、請求項 3に記載の含フッ素芳香族化合物。
[6] 前記式(1)で表される含フッ素芳香族化合物が、下記式(11)で表される化合物、 下記式(12)で表される化合物、下記式(13)で表される化合物、下記式(14)で表さ れる化合物、下記式( 15)で表される化合物および下記式( 16)で表される化合物か らなる群から選択される化合物である、請求項 3に記載の含フッ素芳香族化合物。
[化 3]
Figure imgf000030_0001
[7] 請求項 1〜6のいずれかに記載の含フッ素芳香族化合物を含む有機半導体材料。
[8] 基板上に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ソース電極およびドレ イン電極とを有する有機薄膜トランジスタカゝらなる有機薄膜デバイスであって、 前記有機半導体層が請求項 1〜6のいずれかに記載の含フッ素芳香族化合物を 含む有機薄膜デバイス。
[9] 基板上に、陽極と、 1層以上の構造の有機化合物層と、陰極とを有する有機 EL素 子カゝらなる有機薄膜デバイスであって、 前記有機化合物層が請求項 1〜6のいずれかに記載の含フッ素芳香族化合物を 含む有機薄膜デバイス。
PCT/JP2007/062040 2006-06-16 2007-06-14 新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス WO2007145293A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-167014 2006-06-16
JP2006167014 2006-06-16
JP2006187503A JP2009206108A (ja) 2006-06-16 2006-07-07 有機半導体材料および有機薄膜デバイス
JP2006-187503 2006-07-07
JP2006-214239 2006-08-07
JP2006214239A JP2009078975A (ja) 2006-06-16 2006-08-07 新規含フッ素芳香族化合物

Publications (1)

Publication Number Publication Date
WO2007145293A1 true WO2007145293A1 (ja) 2007-12-21

Family

ID=38831807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062040 WO2007145293A1 (ja) 2006-06-16 2007-06-14 新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス

Country Status (1)

Country Link
WO (1) WO2007145293A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125721A1 (ja) * 2008-04-10 2009-10-15 出光興産株式会社 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
JP2010181690A (ja) * 2009-02-06 2010-08-19 Canon Inc 画像表示装置
WO2011036866A1 (ja) * 2009-09-25 2011-03-31 出光興産株式会社 有機薄膜トランジスタ
GB2474827A (en) * 2009-08-04 2011-05-04 Cambridge Display Tech Ltd Surface modification
WO2012005310A1 (ja) * 2010-07-08 2012-01-12 旭硝子株式会社 含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス
KR20140041426A (ko) * 2011-01-10 2014-04-04 메르크 파텐트 게엠베하 액정 매질용 화합물, 및 고주파 부품에서의 이의 용도

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138467A1 (en) * 2002-11-26 2004-07-15 French Roger Harquail Aromatic and aromatic/heteroaromatic molecular structures with controllable electron conducting properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138467A1 (en) * 2002-11-26 2004-07-15 French Roger Harquail Aromatic and aromatic/heteroaromatic molecular structures with controllable electron conducting properties

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452476B2 (ja) * 2008-04-10 2014-03-26 出光興産株式会社 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
WO2009125721A1 (ja) * 2008-04-10 2009-10-15 出光興産株式会社 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
JPWO2009125721A1 (ja) * 2008-04-10 2011-08-04 出光興産株式会社 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
JP2010181690A (ja) * 2009-02-06 2010-08-19 Canon Inc 画像表示装置
US8710631B2 (en) 2009-08-04 2014-04-29 Cambridge Display Technology Limited Surface modification
GB2474827A (en) * 2009-08-04 2011-05-04 Cambridge Display Tech Ltd Surface modification
US9112153B2 (en) 2009-08-04 2015-08-18 Cambridge Display Technology Limited Surface modification
JPWO2011036866A1 (ja) * 2009-09-25 2013-02-14 出光興産株式会社 有機薄膜トランジスタ
WO2011036866A1 (ja) * 2009-09-25 2011-03-31 出光興産株式会社 有機薄膜トランジスタ
JP5677306B2 (ja) * 2009-09-25 2015-02-25 出光興産株式会社 有機薄膜トランジスタ
JP2015109455A (ja) * 2009-09-25 2015-06-11 出光興産株式会社 有機薄膜トランジスタ
WO2012005310A1 (ja) * 2010-07-08 2012-01-12 旭硝子株式会社 含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス
CN102971283A (zh) * 2010-07-08 2013-03-13 旭硝子株式会社 含氟芳香族化合物、有机半导体材料和有机薄膜器件
KR20140041426A (ko) * 2011-01-10 2014-04-04 메르크 파텐트 게엠베하 액정 매질용 화합물, 및 고주파 부품에서의 이의 용도
JP2014510710A (ja) * 2011-01-10 2014-05-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体のための化合物および高周波コンポーネントのための前記化合物の使用
KR101930568B1 (ko) * 2011-01-10 2019-03-11 메르크 파텐트 게엠베하 액정 매질용 화합물, 및 고주파 부품에서의 이의 용도

Similar Documents

Publication Publication Date Title
WO2012005310A1 (ja) 含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス
JP4692025B2 (ja) 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
Kumar et al. Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes
JP2015518653A (ja) 有機発光素子における半導体化合物の使用
Li et al. Fluorinated 9, 9′-spirobifluorene derivatives as host materials for highly efficient blue organic light-emitting devices
WO2011074232A1 (ja) 多環縮環化合物、及び、それを用いた有機薄膜トランジスタ
Jou et al. A wet-and dry-process feasible carbazole type host for highly efficient phosphorescent OLEDs
WO2006129589A1 (ja) 電荷輸送性ポリマーを含有する電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子
JP5773638B2 (ja) 縮合多環化合物及びこれを用いた有機発光素子
JPWO2011074231A1 (ja) 多環縮環化合物及びそれを用いた有機薄膜トランジスタ
US20060134538A1 (en) Aromatic chalcogen compounds and their use
WO2007145293A1 (ja) 新規な含フッ素芳香族化合物、有機半導体材料および有機薄膜デバイス
Kim et al. Synthesis and characterization of new blue light emitting material with tetraphenylsilyl
Promarak et al. Thermally and electrochemically stable amorphous hole-transporting materials based on carbazole dendrimers for electroluminescent devices
WO2012115218A1 (ja) ジアントラ[2,3-b:2',3'-f]チエノ[3,2-b]チオフェンの製造方法並びにその用途
JP4985343B2 (ja) 電荷輸送膜用組成物、及び、それを用いた有機電界発光素子
CN116023344B (zh) 一种含三嗪和螺芴结构的化合物及其在有机电致发光器件上的应用
Li et al. Expanded benzofuran-decorated twistacene derivatives: synthesis, characterization and single-component white electroluminescence
JP2009078975A (ja) 新規含フッ素芳香族化合物
JP6945841B2 (ja) 近赤外吸収スクアリリウム誘導体、及びそれを含む有機電子デバイス
TW201238971A (en) Dinaphtho[2,3-a:2',3'-h]phenazines and their use as organic semiconductors
Hriz et al. New anthracene-based semi-conducting polymer analogue of poly (phenylene sulfide): Synthesis and photophysical properties
Cho et al. Diamine-cored tetrastilbene compounds as solution-processable hole transport materials for stable organic light emitting diodes
JP5836771B2 (ja) 新規有機化合物およびそれを有する有機発光素子
JP2012067051A (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP