WO2007142089A1 - 光送信モジュール及びその製造方法 - Google Patents

光送信モジュール及びその製造方法 Download PDF

Info

Publication number
WO2007142089A1
WO2007142089A1 PCT/JP2007/060957 JP2007060957W WO2007142089A1 WO 2007142089 A1 WO2007142089 A1 WO 2007142089A1 JP 2007060957 W JP2007060957 W JP 2007060957W WO 2007142089 A1 WO2007142089 A1 WO 2007142089A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
carrier
optical device
transmission module
optical transmission
Prior art date
Application number
PCT/JP2007/060957
Other languages
English (en)
French (fr)
Inventor
Mitsunori Kanemoto
Taro Kaneko
Mitsuru Kurihara
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/303,906 priority Critical patent/US8192093B2/en
Priority to JP2008520512A priority patent/JP5287243B2/ja
Publication of WO2007142089A1 publication Critical patent/WO2007142089A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to an optical transmission module used in an optical communication system and a method for manufacturing the same, and particularly to an optical transmission module in which a plurality of optical devices such as a semiconductor laser and a semiconductor optical amplifier are accommodated in the same package. It relates to a manufacturing method.
  • Both 1S have a complicated structure and are difficult to mass-produce. Therefore, realization of a wavelength tunable light source suitable for mass production is desired.
  • Non-Patent Document 1 and Non-Patent Document 2 include conventional tunable optical transmission modules.
  • the optical transmission modules disclosed in these non-patent documents have a type of structure called an external resonance type.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-110190
  • Patent Document 2 JP 2005-150724 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-352230
  • Non-patent literature l ftp : ⁇ download.intel.com/design/network/ProdBrf/30081902.pdf
  • Patent literature 2 ftp: / 1 download.intel.com/design/network/products/optical/prodbrf/ 30664501.pdf
  • optical transmission modules disclosed in Non-Patent Document 1 and Non-Patent Document 2 have the following problems.
  • the optical axis tends to deviate because the rigidity in the optical axis direction is small. This is because the external resonance type itself uses a large number of optical parts such as mirrors and has a complicated structure, which increases the length of the optical transmission module.
  • the loss of optical output is large. This is because a large number of optical parts such as mirrors are used, and light attenuation and vignetting occur when passing through the optical parts.
  • the present invention has been made in view of the problem, and is excellent in long-term reliability such as impact resistance and thermal shock resistance, and is easy to be integrated with downsizing and weight reduction with high manufacturing efficiency. Therefore, an object of the present invention is to provide an optical transmission module and a method for manufacturing the same. Means for solving the problem
  • the present invention provides, as a first aspect, a first optical device disposed on the output side, and a second optical element disposed with the optical axis aligned with the first optical device.
  • An optical device a package containing the first and second optical devices, and light emitted by the first optical device
  • An optical transmission module characterized in that the first optical device and the second optical device are fixed in close contact with each other on a plane perpendicular to the optical axis.
  • the first optical device is fixed to the first carrier via the first subcarrier, and the second optical device is fixed to the second carrier.
  • the first carrier is preferably fixed in close contact with the second carrier on a plane perpendicular to the optical axis.
  • the first and second carriers are fixed on the same Peltier element, or the first and second carriers are respectively fixed on different Peltier elements. More preferred,
  • a thin wall portion is provided in a portion that abuts against the first carrier of the second carrier.
  • the fixing force between the first carrier and the second carrier is more preferred to be done in the thin part, and in addition, the second carrier has a thin part. It is still more preferable that an opening or a recess for forming is formed.
  • the first carrier and the second carrier are fixed by welding. Is preferred.
  • the first carrier and the second carrier are preferably fixed by adhesion, and in addition, an ultraviolet curable adhesive is used for adhesion between the first carrier and the second carrier. It is more preferable.
  • the first carrier and the second carrier are preferably fixed by brazing.
  • the first carrier and the second carrier are fixed on the same Peltier element. .
  • the first carrier and the second carrier are preferably fixed on different Peltier elements.
  • the first optical device is preferably a semiconductor optical amplifier that amplifies incident signal light.
  • the second optical device is preferably a planar lightwave circuit.
  • the present invention is arranged on the output side as a second aspect.
  • a first optical device, a second optical device arranged with its optical axis aligned with the first optical device, a package containing the first and second optical devices, and a first optical device are provided.
  • a method of manufacturing an optical transmission module comprising light derivation means for deriving emitted light out of a package, wherein the first optical device and the second optical device are brought into close contact with each other on a plane perpendicular to the optical axis. It is intended to provide a method of manufacturing an optical transmission module characterized in that the optical transmission module is fixed.
  • At least two points that are symmetric with respect to the plane perpendicular to the optical axis of the first and second optical devices are welded at least at a total of four points simultaneously. It is preferable to fix the first optical device and the second optical device. It is also preferable to weld two points that are plane-symmetric with respect to a plane perpendicular to the main surface of the carrier passing through the optical axis.
  • the first and second optical devices are bonded in a region that is plane-symmetric with respect to a plane perpendicular to the main surface of the carrier that passes through the optical axis of the first and second optical devices. It is preferable to fix the optical device and the second optical device.
  • the first and second optical devices are brazed in a region that is plane-symmetric with respect to a plane perpendicular to the main surface of the carrier that passes through the optical axis of the first and second optical devices. It is preferable to fix the first optical device and the second optical device.
  • an optical transmission module that has excellent impact resistance, high manufacturing efficiency, small size, light weight, and easy integration, and a small optical output loss, and a manufacturing method thereof.
  • FIG. 1 is a cross-sectional view of the optical transmission module according to the present embodiment.
  • FIG. 2 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission module 1 includes a package 111, a Peltier element 112, an optical transmission unit 2, a fiber support 113, a ferrule 114, an optical fiber 115, and a coupling lens 116.
  • the Peltier element 112 is installed in the knock 111 and controls the temperature of the optical transmission unit 2. I will do it.
  • the optical transmission unit 2 is installed on the Peltier element 112.
  • the fiber support 113 is attached to the opening of the package 111.
  • Ferrule 114 is supported by fiber support 113.
  • the optical fiber 115 is held by the ferrule 114.
  • the coupling lens 116 is installed at the tip of the ferrule 114.
  • the optical transmission unit 2 includes a first carrier 117, a first optical device 118, a first subcarrier 119, a lens 120, a second carrier 121, and a second optical device 122.
  • the first carrier 117 becomes part of the base.
  • the first optical device 118 is installed on the first carrier 117 via the first subcarrier 119.
  • the lens 120 is fixed on the first carrier 117.
  • the second carrier 121 becomes part of the base.
  • the second optical device 122 is fixed on the second carrier 121.
  • the signal light emitted from the first optical device 118 passes through the second optical device 122, is optically adjusted by the second optical device 122, and then again the first optical device 118.
  • the returned light is amplified.
  • the amplified light passes through the coupling lens 116 via the lens 120 and enters the optical fiber 115.
  • the Peltier element 112 maintains the temperature of the first optical device 118 and the second optical device 122 within a predetermined range.
  • the first optical device 118 is die-bonded to the first subcarrier 119 using AuSn solder or the like, and the first subcarrier 119 is die-bonded to the first carrier 117 using AuSn solder or the like.
  • the lens 120 is fixed on the first carrier 117 by a method such as adhesion.
  • the second optical device 122 is die bonded to the second carrier 121 using AuSn solder or the like.
  • the first optical device unit 3 includes a first subcarrier 119, a first optical device 118, and a lens 120.
  • the second optical device unit 4 is also in force with the second carrier 121 and the second optical device 122.
  • the first optical device unit 3 and the second optical device unit 4 include, for example, a surface perpendicular to the optical axis of the first carrier 117 and a second carrier using an ultraviolet curable adhesive. It is fixed on a plane perpendicular to the optical axis of 121.
  • the ultraviolet irradiation condition when the first optical device unit 3 and the second optical device unit 4 are fixed is an irradiation distance at which sufficient welding strength is obtained and the positional deviation when bonded is minimized, It is preferable to investigate and optimize the irradiation time and output distribution beforehand.
  • the irradiation intensity is the most desirable irradiation time within the range where adhesive fixing is possible.
  • the minimum time is most desirable within the range where adhesion is possible.
  • the output distribution of ultraviolet rays gradually increases with time in order to suppress the occurrence of residual stress and displacement due to abrupt changes in the shrinkage force of the adhesive. It is preferable to lower. Residual stress greatly affects reliability. Since these ultraviolet irradiation conditions depend largely on the shape and conditions of the bonded parts, it is necessary to experimentally investigate the ultraviolet irradiation conditions for each of the bonded parts and optimize them based on positional deviation and adhesive strength. desirable.
  • the second carrier 121 transmits ultraviolet rays in order to reliably cure the adhesive, to ensure long-term reliability and adhesive strength, and to ensure thermal characteristics as an optical transmission module.
  • a material having good thermal conductivity examples include aluminum nitride-based translucent ceramics.
  • the second carrier 121 is composed of a combination of a plurality of different materials, and a portion (ultraviolet irradiation portion) 41 that irradiates ultraviolet rays (ultraviolet irradiation portion) 41 is made of a material having excellent ultraviolet transmittance (such as glass). It is preferable to use a material (copper tungsten, aluminum nitride, etc.) having good thermal conductivity for the other part (ultraviolet non-irradiated part) 42 used.
  • the material of the first carrier 117 uses a material having high thermal conductivity, that is, copper tungsten-aluminum nitride, in order to ensure thermal characteristics as the optical transmission module 2, and increase the ultraviolet irradiation efficiency. Therefore, it is preferable to apply a surface treatment that has an effect of reflecting ultraviolet rays, such as gold plating, to the adhesive surface with the second carrier 121.
  • a material having a high ultraviolet transmittance is used for the portion to be irradiated with ultraviolet rays, and the thermal conductivity is directly below the element requiring temperature control, such as the first optical device 118 and the second optical device 122.
  • High material is used.
  • UV transmittance It is important that the other adhesive surface of the high-quality material is subjected to a surface treatment that enhances the reflection efficiency of ultraviolet rays, using a material having high ultraviolet reflection efficiency.
  • first optical device unit 3 and the second optical device unit 4 are fixed not only with an ultraviolet curable adhesive but also with other adhesives, YAG laser welding, brazing, or the like. Any technique may be used.
  • the second optical device 118 and the second optical device 122 may be fixed, or two points that are plane-symmetric with respect to a plane perpendicular to the main surface of the first carrier 117 passing through the optical axis may be welded simultaneously. Thus, it is possible to minimize the influence of misalignment caused by welding.
  • the first carrier 118 may be pressed against the second carrier 122 and fixed.
  • the first optical device unit 3 having the first optical device 118 is assembled.
  • the first subcarrier 119 is die bonded to the first carrier 117 using AuSn solder or the like, and the first optical device 118 is bonded to the first subcarrier 119 using AuSn solder or the like in the optical axis direction. To be fixed with high precision die bonding. Then, the position of the lens 120 is adjusted on the first carrier 117.
  • the position of the lens 120 is adjusted by causing the first optical device 118 to emit light, installing an infrared vidicon camera at the location where the light from the lens 120 should be emitted, and observing the monitor connected to the infrared visual camera.
  • the output is maximized and fixed on the first carrier 117 by adhesion or the like.
  • the first optical device unit 3 having the first optical device 118 is completed.
  • the second optical device unit 4 having the second optical device 122 is assembled.
  • the second optical device 122 is fixed onto the second carrier 121 by AuSn solder with high precision die bonding in the optical axis direction.
  • the first optical device unit 3 and the second optical device unit 4 As shown in FIG. 4 (a), the first optical device unit 3 and the second optical device unit The knit 4 is brought into close contact with the surfaces perpendicular to the optical axis, and the second optical device unit 4 is gripped by the gripping tool 32 and moved in the X and Y directions for alignment. That is, the first optical device 118 emits light, and its optical output is observed with a power meter (not shown) via the fiber coupling lens 34 and the optical fiber 33. Adjust the position to maximize. During the adjustment, the pressure on the second carrier 121 by the pusher 35 is gradually increased. As shown in FIG.
  • the second carrier 121 is pushed by the pusher 35 in the holding area 35a at three force points. At that time, the center of gravity of the presser should match the optical axis as much as possible (ideal is to match). Also, when gradually increasing the pressing force on the second carrier 121, the three power points are controlled while keeping the balance of the forces so that the optical axis does not shift.
  • the gripping of the second optical device unit 4 by the gripper 32 is released and bonded (FIG. 4 (b)). This bonding is performed by bonding portions 45a and 45b that are positioned symmetrically with respect to the optical axis. By simultaneously curing these two regions under the same conditions, it is possible to balance the shrinkage force generated when the adhesive is cured, and to minimize the positional and angular shifts associated with bonding.
  • These adhesive portions are formed in the openings shown in FIGS. 6A and 6B (the gap between the first carrier 117 and the second carrier 121).
  • first carrier 117 and the second carrier are arranged so that the first optical device 118 and the second optical device 122 do not shift in the optical axis distance due to the thickness of the applied adhesive.
  • the carrier 121 has an adhesive surface similar to that shown in Figs. 7 (a) to 7 (c), and the area where the adhesive is applied has a step of about 5 ⁇ m.
  • the plane perpendicular to the optical axis is fixed to the second carrier 21 to suppress the displacement of the first optical device 118 and the second device 122 in the optical axis direction.
  • the approximately 5 ⁇ m step at the center of the first carrier 117 (the hatched portion in the leftmost figures of FIGS. 7 (b) and (c)) is coated with adhesive, cured, and bonded. This is to increase the strength.
  • an adhesive is applied to the place where the light of the first optical device 118 and the second optical device 122 passes.
  • a groove with a width of 0.5 mm and a depth of 0.1 mm is provided in the first carrier 117 to prevent the flow of the adhesive.
  • the first optical device unit 3 and the second optical device unit 4 After fixing the first optical device unit 3 and the second optical device unit 4, heating is performed at a predetermined temperature for a predetermined time in order to cure the uncured portion of the adhesive and relieve internal stress. Thereafter, as shown in FIG. 1, the first optical device unit 3 and the second optical device unit 4 are fixed to the Peltier element 112 in the package 111, and an optical parameter (not shown) is attached to the optical fiber 115. While checking the optical output by connecting, adjust the position of the fiber support 113 so that the optical output is maximized. First, after adjusting the position by moving the fiber support 113 in the X and Y directions, the fiber support 113 was fixed to the package 111 by YAG laser welding, and then the position was adjusted by moving the ferrule 114 in the Z direction. After that, the ferrule 114 is fixed to the fiber support 113 by YAG laser welding.
  • the irradiation conditions of the ultraviolet rays for each of the above-mentioned bonded portions are experimentally investigated in advance for irradiation intensity, irradiation time, and output distribution so that a sufficient bonding strength can be obtained and the positional deviation when bonded is minimized. And optimized.
  • first optical device unit 3 and the second optical device unit 4 may be fixed not only by an ultraviolet curable adhesive but also by any other method such as other adhesives, YAG welding, brazing, and the like. It may be used.
  • FIG. 8 is a cross-sectional view of the optical transmission module according to the present embodiment
  • FIG. 9 is a perspective view of the optical transmission unit that works on the present embodiment.
  • the configuration described here applies a semiconductor optical amplifier 18 as the first optical device, a planar lightwave circuit 22 as the second optical device, and a rectangular aspheric lens 20 as the lens installed on the first carrier. It is.
  • the optical transmission module 1 includes a package 11, an optical transmission unit 2, a Peltier element 12, a fiber support 13, a ferrule 14, an optical fiber 15, and a coupling lens 16.
  • the Peltier element 12 is installed in the package 11 and controls the temperature of the optical transmission unit 2. light
  • the transmission unit 2 is installed on the Peltier element 12.
  • the fiber support 13 is attached to the opening of the package 11.
  • Ferrule 14 is supported by fiber support 13.
  • the optical fiber 15 is held by a ferrule 14.
  • the coupling lens 16 is disposed at the tip of the ferrule 14.
  • the optical transmission unit 2 includes a first carrier 17, a semiconductor optical amplifier 18, a first subcarrier 19, a square aspheric lens 20, a second carrier 21, and a planar lightwave circuit 22.
  • the first carrier 17 is part of the base.
  • the semiconductor optical amplifier 18 is mounted on the first carrier 17 via the first subcarrier 19.
  • the square aspheric lens 20 is fixed on the first carrier 17.
  • the second carrier 21 is part of the base.
  • the planar lightwave circuit 22 is fixed to the second carrier 21.
  • the signal light emitted from the semiconductor optical amplifier 18 passes through the planar lightwave circuit 22, generates a predetermined wavelength in the planar lightwave circuit 22, returns to the semiconductor amplifier 18 again, and the returned light is amplified. .
  • the amplified light passes through the coupling lens 16 via the rectangular aspheric lens 20 and enters the optical fiber 15.
  • the Peltier device 12 keeps the planar lightwave circuit 22 and the semiconductor optical amplifier 18 at a constant temperature.
  • the semiconductor optical amplifier 18 is die bonded to the first subcarrier 19 using AuSn solder.
  • the first subcarrier 19 is die-bonded to the first carrier 17 using AuSn solder! /.
  • the square aspheric lens 20 is fixed on the first carrier 20 by mounting.
  • the planar lightwave circuit 22 is die-bonded on the second carrier 21 using AuSn solder.
  • the first optical device unit 3 includes a first subcarrier 19, a semiconductor optical amplifier 18, and a rectangular aspheric lens 20.
  • the second optical device unit 4 includes a second carrier 21 and a planar lightwave circuit 22.
  • the first optical device unit 3 and the second optical device unit 4 are composed of a surface perpendicular to the optical axis of the first carrier 17 and the second carrier 21 using an ultraviolet curable adhesive. It is fixed on a plane perpendicular to the optical axis.
  • An ultraviolet irradiation condition when the first optical device unit 3 and the second optical device unit 4 are fixed The conditions are conditions optimized by investigating in advance experimentally the irradiation intensity, irradiation time, and output distribution at which a sufficient bond strength is obtained and the positional deviation when bonded is minimized.
  • the thickness of the bonded portion is reduced. Furthermore, the output distribution of ultraviolet rays should be gradually lowered in order to suppress the occurrence of residual stress and displacement due to a sudden change in the shrinkage force of the adhesive. ing. Since these ultraviolet irradiation conditions depend largely on the shape and conditions of the bonded part, the ultraviolet irradiation conditions are experimentally investigated for each bonded part shape, and are optimized from the positional deviation and adhesive strength.
  • the second carrier 21 transmits ultraviolet light in order to ensure the adhesive is cured, to ensure long-term reliability and adhesive strength, and to ensure thermal characteristics as an optical transmission module. It is made of aluminum nitride-based translucent ceramic with good thermal conductivity.
  • the material of the first carrier 17 a material having high thermal conductivity, that is, copper tungsten or aluminum nitride is used in order to secure thermal characteristics as the optical transmission module 2.
  • the surface to be bonded to the second carrier 21 is subjected to a surface treatment such as gold plating that has an effect of reflecting ultraviolet rays.
  • the adhesive portions 45 a and 45 b that irradiate ultraviolet rays are provided with a thin portion on the second carrier 21, thereby further increasing the ultraviolet transmittance.
  • the thickness of the thin part is 0.2 mm in thickness and 0.5 mm in length in consideration of the mechanical processing limit and the strength of the thin part.
  • the first carrier 17 or the second carrier 21 is bonded so that the semiconductor optical amplifier 18 and the planar lightwave circuit 22 are not misaligned in the optical axis direction depending on the thickness of the applied adhesive.
  • step part of about 5 ⁇ m in the center of the first carrier (the part indicated by hatching in the leftmost figures of FIGS. 7 (b) and (c)) is coated with adhesive, cured, and bonded. This is to increase the strength.
  • the adhesive flows in the place where the light of the semiconductor optical amplifier 18 and the planar lightwave circuit 22 passes.
  • a groove having a width of 0.5 mm and a depth of 0.1 mm is provided in the first carrier 17.
  • the first subcarrier 19 is die-bonded to the first carrier 17 using AuSn solder, and the semiconductor optical amplifier 18 is heightened in the optical axis direction on the first subcarrier 19 using AuSn solder. Fixed by die bonding (on the order of microns) with accuracy. Then, the position of the square aspheric lens 20 in the first carrier 17 was adjusted. The position of the lens 20 is adjusted by causing the semiconductor optical amplifier 18 to emit light, installing an infrared visual camera where the light from the rectangular aspherical lens 20 should be emitted, and installing a monitor connected to the infrared visual camera. This was done by maximizing the light output while watching. After the adjustment, a square aspheric lens 20 was adhered and fixed on the first carrier 17.
  • planar lightwave circuit 22 was fixed on the second carrier 21 by die bonding with high precision (on the order of microns) on the second carrier 21 using AuSn solder.
  • the first optical device unit 3 and the second optical device unit 4 are brought into close contact with each other at a plane perpendicular to the optical axis,
  • the optical device unit 4 was gripped by the gripping tool 32 and moved in the X and Y directions for alignment.
  • the semiconductor optical amplifier 18 emits light, and the output light is oscillated from the semiconductor optical amplifier 18 by the planar lightwave circuit 22 while observing with a power meter (not shown) through the fiber coupling lens 34 and the optical fiber 33. It was performed by adjusting to an optimal position so that the light output of the wavelength was maximized.
  • the pressing force applied to the second carrier 21 by the pusher 35 was gradually increased.
  • the pressing of the second carrier 21 by the pusher 35 was performed in the pressing region 35a at three force points, similarly to the state shown in FIG. At that time, the center of gravity of the presser and the optical axis are matched as much as possible.
  • the bonding surface of the first carrier 17 or the second carrier 21 is set as shown in Fig. 7 so that the positional deviation in the optical axis direction between the semiconductor amplifier 18 and the planar lightwave circuit 22 does not occur due to the thickness of the adhesive.
  • the part where the adhesive is applied is a step of about 5 ⁇ m, and it is perpendicular to the optical axis of the first carrier 17 and the second carrier 21.
  • the step portion of about 5 ⁇ m in the center of the first carrier 17 is for applying and curing an adhesive to increase the adhesive strength.
  • a groove having a width of 0.5 mm and a depth of 0.1 mm is provided in the first carrier 17 so that the adhesive does not flow to the portion where the light of the semiconductor optical amplifier 18 and the planar lightwave circuit 22 passes. The flow is prevented.
  • the first optical device unit 3 and the second optical device unit 4 are fixed on the Peltier element 12 in the package 11 and are not shown in the optical fiber 15.
  • the optical power meter was connected and the position was adjusted to maximize the light output while checking the light output.
  • the fiber support 13 is fixed to the package 11 by YAG laser welding, and then the ferrule 14 is moved in the Z direction. After adjusting the ferrule 14, the ferrule 14 was fixed to the fiber support 13 by YAG laser welding.
  • the irradiation conditions of the ultraviolet rays for each of the above-mentioned bonded portions are such that sufficient adhesive strength can be obtained and the positional deviation when bonded is minimized so that the positional deviation is minimized. This is a condition in which the output distribution is experimentally investigated in advance and optimized.
  • the optical transmission module formed in this way has high rigidity in the optical axis direction, and the optical axis is difficult to shift. This is because the structure of the external resonance type itself can be realized by a planar lightwave circuit, whereby the length of the optical transmission module itself is shortened and the rigidity in the optical axis direction is mechanically increased.
  • the loss of light output is minimized. This is because optical components such as mirrors are used to a minimum, so that light attenuation and vignetting loss when passing through the optical components can be minimized.
  • FIG. 10 is a cross-sectional view of the optical transmission module according to the present embodiment
  • FIG. 11 is a perspective view of the optical transmission unit.
  • the optical transmission module according to the present embodiment is different from the first embodiment in that the Peltier element is divided into two and the first carrier 117 and the second carrier 121 are fixed to each other. To do.
  • the temperature of the first optical device unit 3 and the second optical device unit 4 can be individually controlled.
  • the difference in height between the bottom surfaces of the first optical device unit 3 and the second optical device unit 4 can be absorbed by the Peltier element 112 and the Peltier element 112a, respectively.
  • the semiconductor optical amplifier 18 is used as the first optical device
  • the planar lightwave circuit 22 is used as the second optical device
  • the rectangular aspherical lens 20 is used as the lens placed on the first carrier, and two Peltier elements are used. Divided into two.
  • the temperature of the first optical device unit 3 and the second optical device unit 4 can be individually controlled. Further, the difference in height between the bottom surfaces of the first optical device unit 3 and the second optical device unit 4 can be absorbed by the Peltier elements 12 and 12a.
  • FIG. 12 is a cross-sectional view of the optical transmission module according to the present embodiment
  • FIG. 13 is a perspective view of the optical transmission unit.
  • the optical transmission module according to the present embodiment has a force that is almost the same configuration as the optical transmission module that is applied to the second embodiment.
  • the contact area between the first carrier 117 and the second carrier 121 differs in that it speaks.
  • the adhesion area between the first carrier 117 and the second carrier 121 can be increased, and the adhesion strength can be improved.
  • the configuration described here applies a semiconductor optical amplifier 18 as a first optical device, a planar lightwave circuit 22 as a second optical device, and a rectangular aspherical lens 20 as a lens placed on the first carrier.
  • the element is divided into two.
  • the contact area between the first optical device unit 3 and the second optical device unit 4 is larger than the configuration example shown in the second embodiment, the first carrier 17 and the second optical device unit 4
  • the adhesion area with the carrier 19 of 2 is secured large, and the adhesion strength is further increased.
  • the stability when the second carrier 21 is pressed by the pusher 35 is further improved.
  • the optical axis alignment between the semiconductor amplifier 18 and the planar lightwave circuit 22 can be performed smoothly.
  • FIG. 14 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission unit according to this embodiment is substantially the same as that of the first embodiment, but is different in that the bonding area is enlarged above the first carrier 117 and the second carrier 121.
  • the bonding surface between the first carrier 17 and the second carrier 21 By expanding the bonding surface between the first carrier 17 and the second carrier 21 above the optical transmission module 2, the bonding area between the first carrier 17 and the second carrier 21 is increased, and the bonding is performed. Strength is increased. Further, the stability when the second carrier 21 is pressed by the pusher 35 is further increased. Also, the optical axis alignment between the semiconductor optical amplifier 18 and the planar lightwave circuit 22 can be performed smoothly.
  • FIG. 15 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission unit according to the present embodiment is substantially the same as that of the third embodiment, but differs in that the bonding area between the third carrier 117 and the second carrier 121 is expanded both in the vertical direction.
  • FIG. 16 shows the present embodiment. It is a perspective view of the optical transmission unit concerning.
  • the configuration of the optical transmission unit that works in the present embodiment is substantially the same as that in the first embodiment, but a shape to be an adhesive portion is provided on the first carrier 117 side. Note that one or two Peltier elements can be applied.
  • FIG. 17 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission unit that works in the present embodiment has a configuration in which the contact portion is enlarged upward as in the fourth embodiment, but a shape to be an adhesive portion is provided on the first carrier 117 side.
  • FIG. 18 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission unit that works in the present embodiment has a configuration in which the contact portion is expanded downward as in the third embodiment, but a shape to be an adhesive portion is provided on the first carrier 117 side.
  • FIG. 19 is a perspective view of the optical transmission unit according to the present embodiment.
  • the optical transmission unit that is effective in the present embodiment has a configuration in which the contact portion is expanded both vertically and in the same manner as in the fifth embodiment, but the shape serving as an adhesive portion is provided on the first carrier 117 side.
  • FIG. 1 is a cross-sectional view showing a configuration of an optical transmission module according to a first embodiment in which the present invention is preferably implemented.
  • FIG. 2 is a perspective view showing a configuration of an optical transmission unit applied to the optical transmission module according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration of a second carrier formed of a composite material.
  • FIG. 4 is a diagram showing a method of fixing the first optical device unit and the second optical device unit 4.
  • FIG. 5 is a diagram showing a region pressed by a pusher.
  • FIG. 6 is a diagram showing the position of an adhesive part.
  • FIG. 7 is a diagram showing the shape of the end face of the first carrier.
  • FIG. 8 is a diagram illustrating a configuration example of an optical transmission module according to the first embodiment.
  • FIG. 9 is a diagram showing a configuration example of an optical transmission unit applied to the optical transmission module according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration of an optical transmission module according to a second embodiment in which the present invention is preferably implemented.
  • FIG. 11 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a second embodiment.
  • FIG. 12 is a cross-sectional view showing a configuration of an optical transmission module according to a third embodiment in which the present invention is preferably implemented.
  • FIG. 13 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a third embodiment.
  • FIG. 14 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a fourth embodiment in which the present invention is preferably implemented.
  • FIG. 15 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a fifth embodiment in which the present invention is preferably implemented.
  • FIG. 16 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a sixth embodiment in which the present invention is preferably implemented.
  • FIG. 17 is applied to the optical transmission module according to the seventh embodiment in which the present invention is preferably implemented. It is a perspective view which shows the structure of the optical transmission unit.
  • FIG. 18 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to an eighth embodiment in which the present invention is preferably implemented.
  • FIG. 19 is a perspective view showing a configuration of an optical transmission unit applied to an optical transmission module according to a ninth embodiment in which the present invention is preferably implemented.

Abstract

 耐衝撃性や耐熱衝撃性などの長期信頼性に優れ、製造効率が高く、小型化・軽量化・集積化が容易で、光出力の損失が小さい光送信モジュールを提供する。  出力側に配置される第1の光デバイス118と、第1の光デバイス118と光軸が合わされて配置される第2の光デバイス122と、第1及び第2の光デバイス118、122を収容するパッケージ111と、第1の光デバイス118が出射する光をパッケージ111外へ導出する光ファイバ115とを備え、第1の光デバイス118と第2の光デバイス122とが互いに光軸に垂直な面で密着して固定されている。

Description

明 細 書
光送信モジュール及びその製造方法
技術分野
[0001] 本発明は、光通信システムにおいて用いられる光送信モジュール及びその製造方 法に関し、特に、半導体レーザと半導体光増幅器などの複数の光デバイスを同一パ ッケージ内に収容した光送信モジュール及びその製造方法に関する。
背景技術
[0002] 近年、光通信需要の拡大にともな!/、、波長多重通信システムにお!/、ては、光フアイ バアンプの 32nm程度の帯域内に 40〜80波もの波長信号を束ねるため、多くの波 長の光源が必要となり、また、ネットワーク障害時の予備用光源も数多く用意せねば ならな ヽと ヽぅ問題があった。
[0003] また、ネットワークの柔軟性を高めるために、遠隔操作により各波長信号のルートを 変える機能への要求が高まっており、この点からも光ファイバアンプの帯域をカバー する広範囲の波長可変光源が望まれて 、る。
[0004] これを実現するものとして、これまでにいくつかの波長可変光源が実現されている
1S いずれも構造が複雑であって量産が難しぐ価格も高い。よって、量産に適した 波長可変光源の実現が望まれて ヽる。
[0005] 従来の波長可変光送信モジュールとしては、非特許文献 1や非特許文献 2に開示 されるものがある。これらの非特許文献に開示される光送信モジュールは外部共振 型と呼ばれるタイプの構造である。
[0006] また、波長可変光送信モジュールの別の従来技術として、特許文献 1に開示される 「レーザモジュール」、特許文献 2に開示される「多重チャンネル光源及びそれを用い た多重チャンネル光モジュール」、特許文献 3に開示される「光モジュール」などがあ る。
特許文献 1:特開 2003 - 110190号公報
特許文献 2 :特開 2005— 150724号公報
特許文献 3:特開 2005 - 352230号公報 非特許文献 l :ftp:〃 download.intel.com/design/network/ProdBrf/30081902.pdf 特許文献 2: ftp:/ 1 download.intel.com/ design/ network/ products/ optical/ prodbrf/ 30664501.pdf
発明の開示
発明が解決しょうとする課題
[0007] しかし、非特許文献 1や非特許文献 2に開示された光送信モジュールには、下記の ような問題がある。
[0008] 第 1に、光軸方向の剛性が小さぐ光軸がずれやすい。この原因は、外部共振型自 体が、ミラーなどの光部品を多数使用し、それによつて複雑な構造となっているため、 光送信モジュールの長さが長くなるためである。
[0009] 第 2に、低価格ィ匕が難しく製造効率も悪い。この原因は、構成部品点数が多いため に製造工程が長ぐ製造原価が高いためである。
[0010] 第 3に、小型化、軽量化、及び集積ィ匕を図る上で不利である。この原因は構成部品 が多ぐそれらを設置するスペースを必要とするためである。
[0011] 第 4に、光出力の損失が大きい。この原因は、ミラーなどの光部品を多数使用して いるため、光部品を通過する際の光の減衰、ケラレ損の発生があるためである。
[0012] また、特許文献 1〜3のそれぞれに開示される発明では、二つの光素子が密着して 固定されてはいないため、二つの光素子の光軸がズレやすぐ耐衝撃性や耐熱衝撃 性などの長期信頼性に劣ることとなる。さらに、二つの光素子を温度制御する材料と して、熱伝導率の良い材料を使用していないために、熱の伝わりが悪ぐ熱特性に劣 ることとなる。
[0013] 本発明は、カゝかる問題に鑑みてなされたものであり、耐衝撃性や耐熱衝撃性などの 長期信頼性に優れ、製造効率が高ぐ小型化'軽量化'集積化が容易で、光出力の 損失が小さ!ヽ光送信モジュール及びその製造方法を提供することを目的とする。 課題を解決するための手段
[0014] 上記目的を達成するため、本発明は、第 1の態様として、出力側に配置される第 1 の光デバイスと、第 1の光デバイスと光軸が合わされて配置される第 2の光デバイスと 、第 1及び第 2の光デバイスを収容するパッケージと、第 1の光デバイスが出射する光 をパッケージ外へ導出する光導出手段とを備え、第 1の光デバイスと第 2の光デバイ スとが互いに光軸に垂直な面で密着して固定されていることを特徴とする光送信モジ ユールを提供するものである。
[0015] 本発明の第 1の態様においては、第 1の光デバイスが第 1のサブキャリアを介して第 1のキャリアに固定されており、第 2の光デバイスが第 2のキャリアに固定されており、 第 1のキャリアは、第 2のキャリアと光軸に垂直な面で密着して固定されていることが 好ましい。これに加えて、第 1及び第 2のキャリアは、同じペルチェ素子の上に固定さ れていること、又は、第 1及び第 2のキャリアは、それぞれ異なるペルチェ素子の上に 固定されて 、ることがより好まし 、。
[0016] 本発明の第 1の態様の、第 1及び第 2のキャリアを備えた構成においては、第 2のキ ャリアの第 1のキャリアに突き当てられる部分には、薄肉部が設けられていることが好 ましぐこれにカ卩えて、第 1のキャリアと第 2のキャリアとの固定力 薄肉部においてな されることがより好ましぐさらに加えて、第 2のキャリアには、薄肉部を形成するため の開口若しくは凹部が形成されていることがなお好ましい。
[0017] 本発明の第 1の態様の、第 1及び第 2のキャリアを備えた上記のいずれの構成にお いても、第 1のキャリアと第 2のキャリアとの固定が溶接によってなされることが好ましい 。又は、第 1のキャリアと第 2のキャリアとの固定が接着によってなされることが好ましく 、これに加えて、第 1のキャリアと第 2のキャリアとの接着に、紫外線硬化型接着剤が 用いられることがより好ましい。又は、第 1のキャリアと第 2のキャリアとの固定がロウ付 けによつてなされることが好ましい。
[0018] 本発明の第 1の態様の、第 1及び第 2のキャリアを備えた構成においては、第 1のキ ャリアと第 2のキャリアとが同じペルチェ素子上に固定されていることが好ましい。又は 、第 1のキャリアと第 2のキャリアとがそれぞれ異なるペルチェ素子上に固定されてい ることが好ましい。
[0019] 本発明の第 1の態様の上記のいずれの構成においても、第 1の光デバイスは、入 射された信号光を増幅する半導体光増幅器であることが好ましい。また、第 2の光デ バイスは、プレーナ光波回路であることが好ましい。
[0020] また、上記目的を達成するため、本発明は、第 2の態様として、出力側に配置される 第 1の光デバイスと、第 1の光デバイスと光軸が合わされて配置される第 2の光デバイ スと、第 1及び第 2の光デバイスを収容するパッケージと、第 1の光デバイスが出射す る光をパッケージ外へ導出する光導出手段とを備えた光送信モジュールの製造方法 であって、第 1の光デバイスと第 2の光デバイスとを互いに光軸に垂直な面で密着さ せて固定することを特徴とする光送信モジュールの製造方法を提供するものである。
[0021] 本発明の第 2の態様においては、第 1及び第 2の光デバイスの光軸に垂直な面に 対し対称となる点同士を少なくとも 2点づつ、少なくとも合計 4点を同時に溶接して第 1の光デバイスと第 2の光デバイスとを固定することが好ましい。また、光軸を通るキヤ リアの主面と垂直な面に対し面対称となる 2点を同時に溶接することが好ましい。
[0022] 又は、本発明の第 2の態様においては、第 1及び第 2の光デバイスの光軸を通るキ ャリアの主面と垂直な面に対し面対称となる領域で接着して第 1の光デバイスと第 2 の光デバイスとを固定することが好まし 、。
[0023] 又は、本発明の第 2の態様においては、第 1及び第 2の光デバイスの光軸を通るキ ャリアの主面と垂直な面に対し面対称となる領域でロウ付けして第 1の光デバイスと第 2の光デバイスとを固定することが好ま 、。
[0024] 本発明の第 2の態様の上記のいずれの構成においても、第 1の光デバイスを第 2の 光デバイスに押圧しつつ、これらを固定することが好まし 、。
発明の効果
[0025] 本発明によれば、耐衝撃性に優れ、製造効率が高ぐ小型化'軽量化'集積化が容 易で、光出力の損失が小さい光送信モジュール及びその製造方法を提供できる。 発明を実施するための最良の形態
[0026] 〔第 1の実施形態〕
本発明を好適に実施した第 1の実施形態について説明する。図 1は、本実施形態 にかかる光送信モジュールの断面図である。また、図 2は、本実施形態に係る光送信 ユニットの斜視図である。
光送信モジュール 1は、パッケージ 111、ペルチェ素子 112、光送信ユニット 2、ファ ィバサポート 113、フエルール 114、光ファイバ 115及び結合レンズ 116を有する。 ペルチェ素子 112は、ノ ッケージ 111内に設置され、光送信ユニット 2の温度を制 御する。光送信ユニット 2は、ペルチェ素子 112の上に設置される。ファイバサポート 113は、パッケージ 111の開口部に取り付けられる。フエルール 114は、ファイバサポ ート 113によって支持される。光ファイバ 115は、フェルール 114によって保持される 。結合レンズ 116は、フェルール 114の先端に設置される。
[0027] 光送信ユニット 2は、第 1のキャリア 117、第 1の光デバイス 118、第 1のサブキャリア 119、レンズ 120、第 2のキャリア 121、及び第 2の光デバイス 122を有する。
第 1のキャリア 117は、ベースの一部となる。第 1の光デバイス 118は、第 1のキヤリ ァ 117上に第 1のサブキャリア 119を介して設置される。レンズ 120は、第 1のキャリア 117上に固定される。第 2のキャリア 121は、ベースの一部となる。第 2の光デバイス 1 22は、第 2のキャリア 121上に固定される。
[0028] 光送信モジュール 1において、第 1の光デバイス 118から出射された信号光は、第 2の光デバイス 122を通り、第 2の光デバイス 122で光調整がされた上で再び第 1の 光デバイス 118へと戻り、戻った光が増幅される。増幅された光は、レンズ 120を介し て結合レンズ 116を通り、光ファイバ 115へ入射される。ペルチェ素子 112は、第 1の 光デバイス 118及び第 2の光デバイス 122の温度を所定の範囲内に維持する。
[0029] 第 1の光デバイス 118は、第 1のサブキャリア 119に AuSnはんだなどを用いてダイ ボンディングされており、第 1のサブキャリア 119は第 1のキャリア 117に AuSnはんだ などによってダイボンディングされて 、る。
レンズ 120は、第 1のキャリア 117上に接着などの方法によって固定されている。
[0030] 第 2の光デバイス 122は、第 2のキャリア 121に AuSnはんだなどを用いてダイボン デイングされている。
[0031] 第 1の光デバイスユニット 3は、第 1のサブキャリア 119と、第 1の光デバイス 118と、 レンズ 120とで構成される。
[0032] 第 2の光デバイスユニット 4は、第 2のキャリア 121と第 2の光デバイス 122と力もなる
[0033] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とは、例えば、紫外線硬化 型接着剤を用いて、第 1のキャリア 117の光軸に垂直な面と、第 2のキャリア 121の光 軸に垂直な面とで固定されている。 [0034] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との固定時の紫外線照射条 件は、十分な溶接強度が得られ、接着したときの位置ズレが最小となる照射距離、照 射時間、出力分布を予め実験的に調査し、最適化しておくことが好ましい。接着固定 時に発生する接着剤の収縮力を最小に抑える(すなわち、接着による位置ズレを最 小に抑える)ことを考えると、照射強度は、接着固定できる範囲で最小出力が最も望 ましぐ照射時間は、接着できる範囲で最小時間が最も望ましい。照射強度を減少さ せ、かつ、照射時間を短縮して接着可能とするには、接着部の肉厚を薄くすることが 有効である。さら〖こ、紫外線の出力分布は、接着剤の収縮力の急激な変化に起因し て、残留応力が発生したり、位置ズレが発生したりするのを抑制するために、時間的 に徐々に下がるようにすることが好ましい。残留応力は、信頼性に大きく影響する。こ れらの紫外線照射条件は、接着部の形状、条件によるところが大きいため、各々の接 着部の形状で紫外線照射条件を実験的に調査し、位置ズレと接着強度とから最適 化するのが望ましい。
[0035] さらに、接着剤を確実に硬化させて、長期信頼性と接着強度とを確保するため、及 び光送信モジュールとしての熱特性を確保するために、第 2のキャリア 121は紫外線 を透過させ、かつ熱伝導率の良い材料とすることが好ましい。このような材料としては 、窒化アルミ系の透光セラミックがあげられる。なお、図 3に示すように、第 2のキャリア 121を異なる複数の材料を複合した構成とし、紫外線を照射する部分 (紫外線照射 部) 41には紫外線透過率に優れた材料 (ガラスなど)を用い、その他の部分 (紫外線 非照射部) 42には熱伝導率の良 、材料 (銅タングステンゃ窒化アルミなど)用いるこ とが好ましい。
[0036] 一方、第 1のキャリア 117の材料は、光送信モジュール 2として熱特性を確保するた めに熱伝導率の高い材料、すなわち、銅タングステンゃ窒化アルミを用い、紫外線照 射効率を上げるために、第 2のキャリア 121との接着面には金メッキなどの紫外線を 反射させる効果のある表面処理を施すことが好まし ヽ。
[0037] つまり、紫外線を照射する箇所には、紫外線透過率の高い材料を用い、第 1の光 デバイス 118や第 2の光デバイス 122などの温度制御を要する素子の真下には、熱 伝導率の高い材料を用いる。また、紫外線照射効率を上げるために、紫外線透過率 の高い材料の他方の接着面は、紫外線の反射効率の高い材料を用いるカゝ、紫外線 の反射効率を高める表面処理を施すことが重要である。
[0038] また、第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との固定は、紫外線硬 化型接着剤のみならず、その他の接着剤、又は、 YAGレーザ溶接、ロウ付けなどい かなる手法を用いても良い。
溶接の場合には、第 1の光デバイス 118及び第 2の光デバイス 122の光軸に垂直 な面に対し対称となる点同士を少なくとも 2点づつ、少なくとも合計 4点を同時に溶接 して第 1の光デバイス 118と前記第 2の光デバイス 122とを固定したり、光軸を通る第 1のキャリア 117の主面と垂直な面に対し面対称となる 2点を同時に溶接したりするこ とにより、溶接に伴う位置ズレの影響を最小限に抑えられる。
接着、溶接及びロウ付けのいずれの手法を用いる場合でも、第 1のキャリア 118を 第 2のキャリア 122に押圧しつつ、これらを固定すると良い。
[0039] 本実施形態に力かる光送信モジュールの組立方法にっ 、て説明する。
まず、第 1の光デバイス 118を有する第 1の光デバイスユニット 3を組み立てる。第 1 のキャリア 117に第 1のサブキャリア 119を AuSnはんだなどを用いてダイボンディン グし、さらに、第 1のサブキャリア 119上に第 1の光デバイス 118を AuSnはんだなどを 用いて光軸方向に高精度にダイボンディングして固定する。そして、第 1のキャリア 1 17上にお!、てレンズ 120の位置を調整する。
レンズ 120の位置の調整は、第 1の光デバイス 118を発光させ、レンズ 120からの 光が出射されるべき箇所に赤外ビジコンカメラを設置し、赤外ビジュアルカメラに接続 したモニタを見ながら光出力が最大となるようにすることで行 、、第 1のキャリア 117上 に接着するなどして固定する。
これで、第 1の光デバイス 118を有する第 1の光デバイスユニット 3が完成する。
[0040] 次に、第 2の光デバイス 122を有する第 2の光デバイスユニット 4を組み立てる。第 2 の光デバイス 122を AuSnはんだによって第 2のキャリア 121上に光軸方向に高精度 にダイボンディングして固定する。
[0041] 次に、第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との固定方法につい て説明する。図 4 (a)に示すように、第 1の光デバイスユニット 3と第 2の光デバイスュ ニット 4とを光軸に垂直な面同士で密着させ、また、第 2の光デバイスユニット 4を把持 具 32にて把持し、 X, Y方向に移動させて調芯を行う。すなわち、第 1の光デバイス 1 18を発光させ、その光出力をファイバ結合レンズ 34及び光ファイバ 33を介して不図 示のパワーメータで観測しながら、第 1の光デバイス 118からの光出力が最大となる ように位置を調整する。その調整の際にプッシャ 35による第 2のキャリア 121への押 圧力を徐々に高めていく。プッシャ 35による第 2のキャリア 121の押さえ込みは、図 5 に示すように、 3力所の押さえ領域 35aにて行う。その際、押さえの重心は光軸とでき るだけ一致させる(理想は一致することである)。また、第 2のキャリア 121への押圧力 を徐々に高めていく際にはその 3力所を各々力のバランスを取りながら光軸がずれな いように制御しながら行う。プッシャ 35によって第 2のキャリア 121を押さえ込んだ状 態で把持具 32による第 2の光デバイスユニット 4の把持を解除し、接着する(図 4 (b) ) 。この接着は、光軸に対して対称的に位置する接着部 45a, 45bによって行う。この 二つの領域を同時に同一条件で硬化させることによって、接着剤が硬化する際に発 生する収縮力のバランスをとることができ、接着に伴う位置ズレ、角度ズレを最小限に 抑えられる。
接着部の光軸を通る垂直線からの距離 a、 bは、 a = bの関係が成立するようにする。 なお、これらの接着部は、図 6 (a)、(b)に示す開口部(第 1キャリア 117と第 2のキヤリ ァ 121との隙間)に形成されるものである。
[0042] また、塗布した接着剤の厚さによって第 1の光デバイス 118と第 2の光デバイス 122 とに光軸方向の距離の位置ズレが発生しないように、第 1のキャリア 117と第 2のキヤ リア 121の接着面を図 7 (a)〜(c)に示した形状と同様の形状とし、接着剤を塗布する 箇所を約 5 μ mの段差として、確実に第 1のキャリア 17と第 2のキャリア 21とを光軸と 垂直な面同士を固定し、第 1の光デバイス 118と第 2のデバイス 122の光軸方向の位 置ズレを抑える。
なお、第 1のキャリア 117の中央の約 5 μ mの段差部分(図 7 (b)、 (c)の最も左の図 にハッチングで示す部分)は、接着剤を塗布し、硬化させ、接着強度を高めるための ものである。
[0043] さらに、第 1の光デバイス 118と第 2の光デバイス 122の光が通る箇所に、接着剤が 流れないように、幅 0. 5mm、深さ 0. 1mmの溝を第 1のキャリア 117に設け、接着剤 の流れを防いでいる。
[0044] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とを固定した後、接着剤の 未硬化部の硬化と内部応力の緩和とのために、所定温度で所定時間加熱する。そ の後、図 1に示すように、第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とを パッケージ 111内のペルチェ素子 112に固着し、光ファイバ 115に不図示の光パヮ 一メータを接続して光出力を確認しながら、光出力が最大となるようにファイバサポー ト 113の位置を調整する。まず、ファイバサポート 113を X、 Y方向に移動させて位置 調整を行った後ファイバサポート 113を YAGレーザ溶接によってパッケージ 111に 固定し、続いてフェルール 114を Z方向に移動させて位置調整を行った後、フェルー ル 114を YAGレーザ溶接によってファイバサポート 113に固定する。
[0045] 上記の各接着部に対する紫外線の照射条件は、十分な接着強度が得られ、接着 したときの位置ズレが最小となるように、照射強度、照射時間、出力分布を予め実験 的に調査し、最適化してある。
[0046] また、第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との固定は、紫外線硬 化型接着剤のみならず、その他の接着剤、 YAG溶接、ロウ付けなどのいかなる手法 を用いても良い。
その場合、第 1のキャリア 117及び第 2のキャリア 121のような、その固定方法に特 有の部品形状と組み立て方法を考慮する必要がある場合もある。
[0047] 本実施形態に係る光送信モジュールの構成の一例について説明する。図 8に、本 実施例に係る光送信モジュールの断面図、図 9に、本実施例に力かる光送信ュニッ トの斜視図を示す。
ここで説明する構成は、第 1の光デバイスとして半導体光増幅器 18、第 2の光デバ イスとしてプレーナ光波回路 22、第 1のキャリア上に設置するレンズとして角形非球 面レンズ 20を適用したものである。
[0048] 光送信モジュール 1は、パッケージ 11、光送信ユニット 2、ペルチェ素子 12、フアイ バサポート 13、フエルール 14、光ファイバ 15及び結合レンズ 16を有する。ペルチェ 素子 12はパッケージ 11内に設置されており、光送信ユニット 2の温度制御を行う。光 送信ユニット 2はペルチェ素子 12上に設置されている。ファイバサポート 13は、パッ ケージ 11の開口部に取り付けられている。フエルール 14は、ファイバサポート 13によ つて支持されている。光ファイバ 15は、フェルール 14によって保持されている。結合 レンズ 16は、フェルール 14の先端に配置されている。
[0049] 光送信ユニット 2は、第 1のキャリア 17、半導体光増幅器 18、第 1のサブキャリア 19 、角形非球面レンズ 20、第 2のキャリア 21、及びプレーナ光波回路 22を有する。第 1 のキャリア 17はベースの一部をなしている。半導体光増幅器 18は、第 1のキャリア 17 上に第 1のサブキャリア 19を介して取り付けられている。角形非球面レンズ 20は、第 1のキャリア 17上に固定されている。第 2のキャリア 21は、ベースの一部をなしている 。プレーナ光波回路 22は、第 2のキャリア 21に固定されている。
[0050] 半導体光増幅器 18から出射された信号光は、プレーナ光波回路 22を通り、プレー ナ光波回路 22で所定の波長を生成し、再び半導体増幅器 18に戻り、戻った光が増 幅される。その増幅された光は、角形非球面レンズ 20を介して結合レンズ 16を通り、 光ファイバ 15に入射する。ペルチェ素子 12は、プレーナ光波回路 22及び半導体光 増幅器 18を一定温度に保つ。
[0051] 半導体光増幅器 18は、第 1のサブキャリア 19に AuSnはんだを用いてダイボンディ ングされている。また、第 1のサブキャリア 19は AuSnはんだを用いて第 1のキャリア 1 7にダイボンディングされて!/、る。
角形非球面レンズ 20は、第 1のキャリア 20上に装着によって固定されている。
[0052] プレーナ光波回路 22は、第 2のキャリア 21上に AuSnはんだを用いてダイボンディ ングされている。
[0053] 第 1の光デバイスユニット 3は、第 1のサブキャリア 19、半導体光増幅器 18及び角 形非球面レンズ 20からなる。
第 2の光デバイスユニット 4は、第 2のキャリア 21とプレーナ光波回路 22とからなる。
[0054] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とは、紫外線硬化型接着剤 を用いて、第 1のキャリア 17の光軸に垂直な面と、第 2のキャリア 21の光軸に垂直な 面とで固定されている。
[0055] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との固定時の紫外線照射条 件は、十分な接着強度が得られ、接着した時の位置ズレが最小となる照射強度、照 射時間、出力分布を予め実験的に調査し、最適化した条件である。
照射強度を低下させ、かつ照射時間を短縮して接着可能とするために、接着部の 肉厚を薄くしている。さらに、紫外線の出力分布は、接着剤の収縮力の急激な変化 に起因して残留応力が発生したり、位置ズレが発生したりするのを抑制するために、 時間的に徐々に下がるようにしている。これらの紫外線照射条件は、接着部の形状、 条件によるところが大きいため、各々の接着部の形状で紫外線照射条件を実験的に 調査し、位置ズレと接着強度とから最適化している。
[0056] さらに、接着剤を確実に硬化させ、長期信頼性と接着強度とを確保するため、及び 光送信モジュールとしての熱特性を確保するために、第 2のキャリア 21は紫外線を透 過させ、かつ熱伝導率の良 ヽ窒化アルミ系の透光セラミックで形成して 、る。
[0057] 一方、第 1のキャリア 17の材料は、光送信モジュール 2として熱特性を確保するた めに熱伝導率の高い材料、すなわち、銅タングステンゃ窒化アルミを用いている。ま た、紫外線照射効率を上げるために、第 2のキャリア 21との接着面には金メッキなど の紫外線を反射させる効果のある表面処理を施して ヽる。
[0058] また、図 5に示したように、紫外線を照射する接着部 45a、 45bは、第 2のキャリア 21 に薄肉部を設けることにより、紫外線透過率をさらに高めてある。薄肉部の薄さは、機 械加ェ限界及び薄肉部の強度を鑑みて、厚さ 0. 2mm X長さ 0. 5mmとしている。
[0059] また、塗布した接着剤の厚さによって、半導体光増幅器 18とプレーナ光波回路 22 とに光軸方向の位置ズレが発生しないように、第 1のキャリア 17又は第 2のキャリア 21 の接着面を図 7 (a)〜 (c)に示した形状と同様の形状とし、接着剤を塗布する箇所を 約 5 μ mの段差として、確実に第 1のキャリア 17と第 2のキャリア 21とを光軸に垂直な 面同士で固定し、半導体光増幅器 18とプレーナ光波回路 22との光軸方向の位置ズ レを抑えている。
なお、第 1のキャリアの中央の約 5 μ mの段差部分(図 7 (b)、(c)の最も左の図にハ ツチングで示す部分)は、接着剤を塗布し、硬化させ、接着強度を高めるためのもの である。
さらに、半導体光増幅器 18とプレーナ光波回路 22の光が通る箇所に接着剤が流 れないように、幅 0. 5mm、深さ 0. 1mmの溝を第 1のキャリア 17に設け、接着剤の流 れを防いでいる。
[0060] 次に、組み立て方法について説明する。
まず、 AuSnはんだを用いて第 1のキャリア 17に第 1のサブキャリア 19をダイボンデ イングし、さらに、 AuSnはんだを用いて第 1のサブキャリア 19上に半導体光増幅器 1 8を光軸方向に高精度に (ミクロンオーダーで)ダイボンディングして固定した。そして 、第 1のキャリア 17において角形非球面レンズ 20の位置を調整した。レンズ 20の位 置の調整は、半導体光増幅器 18を発光させ、角形非球面レンズ 20からの光が出射 されるべき箇所に赤外ビジュアルカメラを設置し、赤外ビジュアルカメラに接続された モニタを見ながら光出力が最大となるようすることで行った。調整終了後、第 1のキヤ リア 17上に角形非球面レンズ 20を接着して固定した。
[0061] 次に、プレーナ光波回路 22を AuSnはんだを用いて第 2のキャリア 21上に光軸方 向に高精度に (ミクロンオーダーで)ダイボンディングして固定した。
[0062] 図 4 (a)に示した状態と同様に、第 1の光デバイスユニット 3と第 2の光デバイスュ- ット 4とを光軸に垂直な面同士で密着させ、さらに、第 2の光デバイスユニット 4を把持 具 32によって把持し、 X、 Y方向に移動させて調芯を行った。調芯は、半導体光増幅 器 18を発光させ、その出力光をファイバ結合レンズ 34と光ファイバ 33とを通して不図 示のパワーメータで観測しながら半導体光増幅器 18からプレーナ光波回路 22で共 振した波長の光出力が最大となるように最適な位置に調整することで行った。
その調整の際には、プッシャ 35による第 2のキャリア 21への押圧力を徐々に高めた 。プッシャ 35による第 2のキャリア 21の押さえ込みは、図 5に示した状態と同様に、 3 力所の押さえ領域 35aにて行った。その際、押さえの重心と光軸とをできる限り一致さ せている。
[0063] また、第 2のキャリア 21への押圧力を徐々に高めていく際には、その 3力所を各々 力のバランスを取りながら光軸がずれないように制御しながら行った。その後、プッシ ャ 35によって第 2のキャリア 21を押さえ込んだ状態で把持具 32による第 2の光デバイ スユニット 4の把持を解除し、接着した(図 4 (b)と同様)。この接着は、図 5に示した状 態と同様に、光軸に対して対称的に位置する接着部 45a、 45bにて行った。この二つ の領域を同時に同一条件にて硬化させることにより、接着剤が硬化する際に発生す る収縮力のバランスをとり、接着に伴う位置ズレ、角度ズレを最小限に抑えている。こ のために、光軸を通る垂直線からの各接着部までの距離 a、 bは a = bとしている。な お、これらの接着部は、図 6 (a)、(b)に示した構成と同様に、開口部(第 1キャリア 17 と第 2のキャリア 21との隙間)に形成されている。
[0064] また、接着剤の厚さにより半導体増幅器 18とプレーナ光波回路 22の光軸方向の 位置ズレが発生しないように、第 1のキャリア 17又は第 2のキャリア 21の接着面を図 7 (a)〜 (c)に示した形状と同様の形状として、接着剤を塗布する箇所を約 5 μ mの段 差部分とし、第 1のキャリア 17と第 2のキャリア 21との光軸に垂直な面同士を確実に 固定し、半導体光増幅器 18とプレーナ光波回路 22との光軸方向の位置ズレを抑え た。
[0065] なお、第 1のキャリア 17の中央部の約 5 μ mの段差部分は、接着剤を塗布、硬化さ せ、接着強度を高めるためのものである。
さらに、半導体光増幅器 18とプレーナ光波回路 22の光が通る箇所に接着剤が流 れないように、幅 0. 5mm、深さ 0. 1mmの溝を第 1のキャリア 17に設け、接着剤の流 れを防いでいる。
[0066] 第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とを紫外線照射にて固定し た後、接着剤の未硬化部の硬化と内部応力の緩和とのために、 85°Cで 2時間加熱し た。
[0067] その後、図 8に示した状態と同様に、第 1の光デバイスユニット 3と第 2の光デバイス ユニット 4とをパッケージ 11内のペルチェ素子 12上に固着し、光ファイバ 15に不図示 の光パワーメータを接続して光出力を確認しながら、光出力が最大となるように位置 を調整した。
[0068] まず、ファイバサポート 13を X、 Y方向に移動させて位置を調整した後、ファイバサ ポート 13を YAGレーザ溶接によってパッケージ 11に固定し、続 、てフエルール 14を Z方向に移動させて位置を調整した後フエルール 14を YAGレーザ溶接によってファ ィバサポート 13に固定した。上記の各接着部に対する紫外線の照射条件は、十分な 接着強度が得られ、接着したときの位置ズレが最小となるように照射強度、照射時間 、出力分布を予め実験的に調査し、最適化した条件である。
[0069] このようにして形成した光送信モジュールは、光軸方向の剛性が高ぐ光軸がずれ にくい。これは、外部共振型自体の構造がプレーナ光波回路で実現でき、それにより 、光送信モジュール自体の長さが短くなり、力学的に光軸方向の剛性が高くなるため である。
また、低価格ィ匕が可能となり、製造効率が向上し、さらには、製造歩留まりが向上す る。これは、構成部品を最小限の点数に抑えることができ、その結果、製造工程を短 ぐ製造原価を低くできるためである。
また、小型化、軽量ィ匕及び集積ィ匕が可能である。これは、構成部品を最小限の点 数に抑えることができ、それらを設置するのに要するスペースが縮小されるためであ る。
また、光出力の損失が最小限に抑えられる。これは、ミラーなどの光部品を最小限 に使用しているため、光部品を通過する際の光の減衰、ケラレ損の発生が最小限に 抑えられるためである。
[0070] 〔第 2の実施形態〕
本発明を好適に実施した第 2の実施形態について説明する。図 10は、本実施形態 に係る光送信モジュールの断面図、図 11は、光送信ユニットの斜視図である。
本実施形態に係る光送信モジュールは、ペルチェ素子が二つに分割されており、 第 1のキャリア 117と第 2のキャリア 121とのそれぞれ固着された構成である点で第 1 の実施形態と相違する。
[0071] このような構成とすることで、
(1)第 1の光デバイスユニット 3と第 2の光デバイスユニット 4とを、それぞれ個別に温 度制御できる。
(2)第 1の光デバイスユニット 3と第 2の光デバイスユニット 4との底面の高さの差をそ れぞれペルチェ素子 112、ペルチェ素子 112aで吸収できる。
という利点がある。
[0072] この他に関しては第 1の実施形態と同様であるため、重複する説明は割愛する。
[0073] 本実施形態に係る光送信モジュールの構成の一例について説明する。ここで説明 する構成は、第 1の光デバイスとして半導体光増幅器 18、第 2の光デバイスとしてプ レーナ光波回路 22、第 1のキャリア上に設置するレンズとして角形非球面レンズ 20を 適用し、ペルチェ素子を二つに分割したものである。
[0074] ペルチェ素子を分割することにより、第 1の光デバイスユニット 3と第 2の光デバイス ユニット 4とを、それぞれ個別に温度制御できる。また、第 1の光デバイスユニット 3と 第 2の光デバイスユニット 4の底面の高さの差をペルチェ素子 12及び 12aで吸収でき る。
[0075] 〔第 3の実施形態〕
本発明を好適に実施した第 3の実施形態について説明する。図 12は、本実施形態 に係る光送信モジュールの断面図、図 13は、光送信ユニットの斜視図である。
本実施形態に係る光送信モジュールは、第 2の実施形態に力かる光送信モジユー ルとほぼ同様の構成である力 第 1のキャリア 117と第 2のキャリア 121との接触面積
Figure imgf000017_0001
ヽる点で相違する。
[0076] このような構成とすることで、第 2の実施形態での利点に加え、
(1)第 1のキャリア 117と第 2のキャリア 121との接着面積を大きくとることができ、接 着強度を向上させることができる。
(2)プッシャ 35で第 2のキャリア 121を押さえる際の安定性を高められる。
(3)第 1の光デバイス 118と第 2の光デバイス 122との光軸調芯をスムーズに行える という利点がある。
[0077] この他に関しては第 2の実施形態と同様であるため、重複する説明は割愛する。
[0078] 本実施形態に係る光送信モジュールの構成の一例について説明する。ここで説明 する構成は、第 1の光デバイスとして半導体光増幅器 18、第 2の光デバイスとしてプ レーナ光波回路 22、第 1のキャリア上に設置するレンズとして角形非球面レンズ 20を 適用し、ペルチェ素子を二つに分割したものである。
[0079] 第 2の実施形態において示した構成例と比較して第 1の光デバイスユニット 3と第 2 の光デバイスユニット 4との接触面積が大きくなつているため、第 1のキャリア 17と第 2 のキャリア 19との接着面積が大きく確保され、接着強度がさらに高められている。ま た、プッシャ 35で第 2のキャリア 21を押さえる際の安定性がより向上している。し力も 、半導体増幅器 18とプレーナ光波回路 22との光軸調芯をスムーズに行える。
[0080] 〔第 4の実施形態〕
本発明を好適に実施した第 4の実施形態について説明する。図 14は、本実施形態 に係る光送信ユニットの斜視図である。
本実施形態に係る光送信ユニットは、第 1の実施形態とほぼ同様であるが、第 1の キャリア 117と第 2のキャリア 121との上方に接着面積が拡大されている点で相違す る。
[0081] 本実施形態に係る光送信モジュールの構成の一例にっ 、て説明する。
第 1のキャリア 17と第 2のキャリア 21との接着面を光送信モジュール 2の上方へ拡 大したことにより、第 1のキャリア 17と第 2のキャリア 21との接着面積が大きくなり、接 着強度が高められている。また、プッシャ 35で第 2のキャリア 21を押さえる際の安定 性がさらに高まる。し力も、半導体光増幅器 18とプレーナ光波回路 22との光軸調芯 をスムーズに行える。
[0082] 〔第 5の実施形態〕
本発明を好適に実施した第 5の実施形態について説明する。図 15は、本実施形態 に係る光送信ユニットの斜視図である。
本実施形態に係る光送信ユニットは、第 3の実施形態とほぼ同様であるが、第 3の キャリア 117と第 2のキャリア 121との接着面積が上下両方向に拡大されている点で 相違する。
[0083] 本実施形態に係る光送信モジュールの構成の一例にっ 、て説明する。
第 1のキャリア 17と第 2のキャリア 21との接着面を光送信モジュール 2の上方へ拡 大することにより、第 1のキャリア 17と第 2のキャリア 21との接着面積が大きく確保され 、接着強度がさらに高まる。また、プッシャ 35で第 2のキャリア 21を押さえる際の安定 性が高まる。さらに、半導体光増幅器 18とプレーナ光波回路 22との光軸調芯を一層 スムーズに行える。
[0084] 〔第 6の実施形態〕
本発明を好適に実施した第 6の実施形態について説明する。図 16は、本実施形態 にかかる光送信ユニットの斜視図である。
本実施形態に力かる光送信ユニットの構成は、第 1の実施形態とほぼ同様であるが 、接着部となる形状を第 1のキャリア 117側に設けている。なお、ペルチェ素子は一 つ又は二分割したものを適用できる。
[0085] このような構成としても、第 1の実施形態又は第 2の実施形態と同様の効果が得られ る。
[0086] 〔第 7の実施形態〕
本発明を好適に実施した第 7の実施形態について説明する。図 17は、本実施形態 にかかる光送信ユニットの斜視図である。
本実施形態に力かる光送信ユニットは、第 4の実施形態と同様に接触部分を上方 向に拡大した構成であるが、接着部となる形状を第 1のキャリア 117側に設けて 、る。
[0087] このような構成としても、第 4の実施形態と同様の効果が得られる。
[0088] 〔第 8の実施形態〕
本発明を好適に実施した第 8の実施形態について説明する。図 18は、本実施形態 にかかる光送信ユニットの斜視図である。
本実施形態に力かる光送信ユニットは、第 3の実施形態と同様に接触部分を下側 に拡大した構成であるが、接着部となる形状を第 1のキャリア 117側に設けている。
[0089] このような構成としても第 3の実施形態と同様の効果が得られる。
[0090] 〔第 9の実施形態〕
本発明を好適に実施した第 9の実施形態について説明する。図 19は、本実施形態 にかかる光送信ユニットの斜視図である。
本実施形態に力かる光送信ユニットは、第 5の実施形態と同様に接触部分を上下 双方に拡大した構成であるが、接着部となる形状を第 1のキャリア 117側に設けてい る。
[0091] このような構成としても、第 5の実施形態と同様の効果が得られる。
[0092] なお、上記各実施形態は本発明の好適な実施の一例であり、本発明はこれらに限 定されることなく様々な変形が可能である。
図面の簡単な説明 [図 1]本発明を好適に実施した第 1の実施形態にカゝかる光送信モジュールの構成を 示す断面図である。
[図 2]第 1の実施形態に係る光送信モジュールに適用される光送信ユニットの構成を 示す斜視図である。
[図 3]複合材料で形成された第 2のキャリアの構成を示す図である。
[図 4]第 1の光デバイスユニットと第 2の光デバイスユニット 4の固定方法を示す図であ る。
[図 5]プッシャによって押圧する領域を示す図である。
[図 6]接着部の位置を示す図である。
[図 7]第 1のキャリアの端面の形状を示す図である。
[図 8]第 1の実施形態に係る光送信モジュールの構成例を示す図である。
[図 9]第 1の実施形態に係る光送信モジュールに適用される光送信ユニットの構成例 を示す図である。
[図 10]本発明を好適に実施した第 2の実施形態に係る光送信モジュールの構成を示 す断面図である。
[図 11]第 2の実施形態に係る光送信モジュールに適用される光送信ユニットの構成 を示す斜視図である。
[図 12]本発明を好適に実施した第 3の実施形態に係る光送信モジュールの構成を示 す断面図である。
[図 13]第 3の実施形態に係る光送信モジュールに適用される光送信ユニットの構成 を示す斜視図である。
[図 14]本発明を好適に実施した第 4の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
[図 15]本発明を好適に実施した第 5の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
[図 16]本発明を好適に実施した第 6の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
[図 17]本発明を好適に実施した第 7の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
[図 18]本発明を好適に実施した第 8の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
[図 19]本発明を好適に実施した第 9の実施形態に係る光送信モジュールに適用され る光送信ユニットの構成を示す斜視図である。
符号の説明
1 光送信モジュール
2 光送信ユニット
3 第 1の光デバイスユニット
4 第 2の光デバイスユニット
11、 111 ノ ッケージ
12、 12a, 112, 112a ペルチェ素子
13、 113 ファイバサポート
14、 114 フエルール
15、 33、 115 光ファイバ
16、 116 結合レンズ
17、 117 第 1のキャリア
18 半導体光増幅器
19、 119 第 1のサブキャリア
20 角形非球面レンズ
21、 121 第 2のキャリア
22 プレーナ光波回路
32 把持具
34 ファイバ結合レンズ
35 プッシャ
35a 押さえ領域
41 紫外線照射部
42 紫外線非照射部 118 第 1の光デバイス
120 レンズ
122 第 2の光デバイス

Claims

請求の範囲
[1] 出力側に配置される第 1の光デバイスと、
前記第 1の光デバイスと光軸が合わされて配置される第 2の光デバイスと、 前記第 1及び第 2の光デバイスを収容するパッケージと、
前記第 1の光デバイスが出射する光を前記パッケージ外へ導出する光導出手段と を備え、
前記第 1の光デバイスと前記第 2の光デバイスとが互いに前記光軸に垂直な面で 密着して固定されていることを特徴とする光送信モジュール。
[2] 前記第 1の光デバイスが第 1のサブキャリアを介して第 1のキャリアに固定されており 前記第 2の光デバイスが第 2のキャリアに固定されており、
前記第 1のキャリアは、前記第 2のキャリアと前記光軸に垂直な面で密着して固定さ れていることを特徴とする請求項 1記載の光送信モジュール。
[3] 前記第 1及び第 2のキャリアは、同じペルチェ素子の上に固定されていることを特徴 とする請求項 1又は 2記載の光送信モジュール。
[4] 前記第 1及び第 2のキャリアは、それぞれ異なるペルチヱ素子の上に固定されてい ることを特徴とする請求項 1又は 2記載の光送信モジュール。
[5] 前記第 2のキャリアの前記第 1のキャリアに突き当てられる部分には、薄肉部が設け られて 、ることを特徴とする請求項 2から 4の 、ずれか 1項記載の光送信モジュール。
[6] 前記第 1のキャリアと前記第 2のキャリアとの固定が、前記薄肉部においてなされた ことを特徴とする請求項 5記載の光送信モジュール。
[7] 前記第 2のキャリアには、前記薄肉部を形成するための開口若しくは凹部が形成さ れていることを特徴とする請求項 6記載の光送信モジュール。
[8] 前記第 1のキャリアと前記第 2のキャリアとの固定が溶接によってなされたことを特徴 とする請求項 2から 7のいずれか 1項記載の光送信モジュール。
[9] 前記第 1のキャリアと前記第 2のキャリアとの固定が接着によってなされたことを特徴 とする請求項 2から 7のいずれか 1項記載の光送信モジュール。
[10] 前記第 1のキャリアと前記第 2のキャリアとの接着に、紫外線硬化型接着剤が用いら れたことを特徴とする請求項 9記載の光送信モジュール。
[11] 前記第 1のキャリアと前記第 2のキャリアとの固定がロウ付けによってなされたことを 特徴とする請求項 2から 7のいずれか 1項記載の光送信モジュール。
[12] 前記第 1のキャリアと前記第 2のキャリアとが同じペルチェ素子上に固定されている ことを特徴とする請求項 2から 11のいずれか 1項記載の光送信モジュール。
[13] 前記第 1のキャリアと前記第 2のキャリアとがそれぞれ異なるペルチェ素子上に固定 されていることを特徴とする請求項 2から 11のいずれか 1項記載の光送信モジュール
[14] 前記第 1の光デバイスは、入射された信号光を増幅する半導体光増幅器であること を特徴とする請求項 1から 13のいずれか 1項記載の光送信モジュール。
[15] 前記第 2の光デバイスは、プレーナ光波回路であることを特徴とする請求項 1から 1
4の!、ずれか 1項記載の光送信モジュール。
[16] 出力側に配置される第 1の光デバイスと、
前記第 1の光デバイスと光軸が合わされて配置される第 2の光デバイスと、 前記第 1及び第 2の光デバイスを収容するパッケージと、
前記第 1の光デバイスが出射する光を前記パッケージ外へ導出する光導出手段と を備えた光送信モジュールの製造方法であって、
前記第 1の光デバイスと前記第 2の光デバイスとを互いに前記光軸に垂直な面で密 着させて固定することを特徴とする光送信モジュールの製造方法。
[17] 前記第 1及び第 2の光デバイスの光軸に垂直な面に対し対称となる点同士を少なく とも 2点づつ、少なくとも合計 4点を同時に溶接して前記第 1の光デバイスと前記第 2 の光デバイスとを固定することを特徴とする請求項 16記載の光送信モジュールの製 造方法。
[18] 光軸を通るキャリアの主面と垂直な面に対し面対称となる 2点を同時に溶接すること を特徴とする請求項 16又は 17記載の光送信モジュールの製造方法。
[19] 前記第 1及び第 2の光デバイスの光軸を通るキャリアの主面と垂直な面に対し面対 称となる領域で接着して前記第 1の光デバイスと前記第 2の光デバイスとを固定する ことを特徴とする請求項 16記載の光送信モジュールの製造方法。
[20] 前記第 1及び第 2の光デバイスの光軸を通るキャリアの主面と垂直な面に対し面対 称となる領域でロウ付けして前記第 1の光デバイスと前記第 2の光デバイスとを固定 することを特徴とする請求項 16記載の光送信モジュールの製造方法。
[21] 前記第 1の光デバイスを前記第 2の光デバイスに押圧しつつ、これらを固定すること を特徴とする請求項 16から 20のいずれか 1項記載の光送信モジュールの製造方法
PCT/JP2007/060957 2006-06-08 2007-05-30 光送信モジュール及びその製造方法 WO2007142089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/303,906 US8192093B2 (en) 2006-06-08 2007-05-30 Optical transmission module and manufacturing method thereof
JP2008520512A JP5287243B2 (ja) 2006-06-08 2007-05-30 光送信モジュール及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006159855 2006-06-08
JP2006-159855 2006-06-08

Publications (1)

Publication Number Publication Date
WO2007142089A1 true WO2007142089A1 (ja) 2007-12-13

Family

ID=38801346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060957 WO2007142089A1 (ja) 2006-06-08 2007-05-30 光送信モジュール及びその製造方法

Country Status (3)

Country Link
US (1) US8192093B2 (ja)
JP (1) JP5287243B2 (ja)
WO (1) WO2007142089A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233214B2 (en) * 2008-02-13 2012-07-31 Maxim Bolshtyansky Optical fiber amplifier and a control method therefor
JP6303481B2 (ja) * 2013-12-20 2018-04-04 セイコーエプソン株式会社 発光素子モジュール、量子干渉装置、原子発振器、電子機器および移動体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199482A (ja) * 1987-01-21 1988-08-17 エイ・ティ・アンド・ティ・コーポレーション 光通信用ハイブリッドレーザ
JPH0537025A (ja) * 1991-08-02 1993-02-12 Japan Aviation Electron Ind Ltd 半導体光源モジユール
JPH10254001A (ja) * 1997-03-17 1998-09-25 Fuji Photo Film Co Ltd 光波長変換モジュール
JP2000228556A (ja) * 1999-02-08 2000-08-15 Mitsubishi Electric Corp 半導体レーザ装置
JP2001196683A (ja) * 2000-01-17 2001-07-19 Fuji Photo Film Co Ltd 半導体レーザモジュールおよびその作製方法
JP2002374031A (ja) * 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc 半導体レーザ用集光系
JP2003060296A (ja) * 2001-08-09 2003-02-28 Sumitomo Electric Ind Ltd 外部共振器半導体レーザを製造する方法、外部共振器半導体レーザ、および波長多重伝送システム
JP2003110190A (ja) * 2001-09-28 2003-04-11 Furukawa Electric Co Ltd:The レーザモジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914667A (en) 1987-01-21 1990-04-03 American Telephone And Telegraph Company, At&T Bell Laboratories Hybrid laser for optical communications, and transmitter, system, and method
JP2001284699A (ja) * 2000-01-25 2001-10-12 Furukawa Electric Co Ltd:The 光通信機器および光モジュールの固定方法
US6467972B2 (en) * 2000-02-29 2002-10-22 Kyocera Corporation Optical interconnection module
WO2001091259A1 (en) * 2000-05-24 2001-11-29 Italtel S.P.A. External cavity laser
US6819700B2 (en) 2001-08-09 2004-11-16 Sumitomo Electric Industries, Ltd. Method of manufacturing an external cavity semiconductor laser, external cavity semiconductor laser, and wavelength multiplex transmission system
DE60221334D1 (de) 2001-09-28 2007-09-06 Furukawa Electric Co Ltd Optisches Filter, Lasermodul und Wellenlängenverriegelungsmodul
KR100532303B1 (ko) 2003-11-15 2005-11-29 삼성전자주식회사 다중 채널 광원과 그를 이용한 다중 채널 광모듈
JP4105660B2 (ja) 2004-06-11 2008-06-25 株式会社日立製作所 光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199482A (ja) * 1987-01-21 1988-08-17 エイ・ティ・アンド・ティ・コーポレーション 光通信用ハイブリッドレーザ
JPH0537025A (ja) * 1991-08-02 1993-02-12 Japan Aviation Electron Ind Ltd 半導体光源モジユール
JPH10254001A (ja) * 1997-03-17 1998-09-25 Fuji Photo Film Co Ltd 光波長変換モジュール
JP2000228556A (ja) * 1999-02-08 2000-08-15 Mitsubishi Electric Corp 半導体レーザ装置
JP2001196683A (ja) * 2000-01-17 2001-07-19 Fuji Photo Film Co Ltd 半導体レーザモジュールおよびその作製方法
JP2002374031A (ja) * 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc 半導体レーザ用集光系
JP2003060296A (ja) * 2001-08-09 2003-02-28 Sumitomo Electric Ind Ltd 外部共振器半導体レーザを製造する方法、外部共振器半導体レーザ、および波長多重伝送システム
JP2003110190A (ja) * 2001-09-28 2003-04-11 Furukawa Electric Co Ltd:The レーザモジュール

Also Published As

Publication number Publication date
US8192093B2 (en) 2012-06-05
JPWO2007142089A1 (ja) 2009-10-22
JP5287243B2 (ja) 2013-09-11
US20100178012A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
US10054748B2 (en) Micromechanically aligned optical assembly
CN101986179B (zh) 半导体器件组件
CN109613655B (zh) 一种光学组件及其制造方法
JP6230720B2 (ja) 光部品、光モジュールおよび光部品の製造方法
JP2019512736A (ja) 光電子デバイスに対する光学サブアセンブリの光学アラインメント
US20030108304A1 (en) Optical component attachment to optoelectronic packages
US20130258505A1 (en) Optical apparatus and method of manufacturing the same
JP2010186090A (ja) 光送受信モジュール
JP2019066739A (ja) 光受信モジュールの製造方法
WO2011122540A1 (ja) レーザ装置
JP2006267237A (ja) レーザー装置およびその組立方法並びにその取付構造
JP2017130543A (ja) 光送信機およびその製造方法
WO2017057243A1 (ja) 光通信モジュールの光軸調芯組立装置および光軸調芯組立方法
JP5287243B2 (ja) 光送信モジュール及びその製造方法
JPWO2019155609A1 (ja) 光合分波器の製造方法
JP2009093041A (ja) 光モジュール
JP2004006879A (ja) 光モジュール光軸整列方法
JP2005227553A (ja) 光導波路と光素子を接続する装置および接続方法ならびに光モジュール
WO2019208053A1 (ja) 光モジュール、光配線基板および光モジュールの製造方法
JP5554297B2 (ja) 光学モジュールおよび光学モジュール製造方法
KR101118841B1 (ko) 집적형 두 파장 광 송신 모듈
JPH03192208A (ja) 光モジュール
JP2022112609A (ja) 発光装置、光源装置、光ファイバレーザ、および発光装置の製造方法
JP2002141600A (ja) 光結合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520512

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12303906

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07744372

Country of ref document: EP

Kind code of ref document: A1