WO2007142017A1 - 顕微鏡 - Google Patents

顕微鏡 Download PDF

Info

Publication number
WO2007142017A1
WO2007142017A1 PCT/JP2007/060363 JP2007060363W WO2007142017A1 WO 2007142017 A1 WO2007142017 A1 WO 2007142017A1 JP 2007060363 W JP2007060363 W JP 2007060363W WO 2007142017 A1 WO2007142017 A1 WO 2007142017A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
focusing
objective lens
microscope
aperture
Prior art date
Application number
PCT/JP2007/060363
Other languages
English (en)
French (fr)
Inventor
Yasuharu Nakajima
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020087028674A priority Critical patent/KR101375196B1/ko
Priority to EP07743797A priority patent/EP2028518B1/en
Priority to AT07743797T priority patent/ATE530942T1/de
Priority to CN200780021423XA priority patent/CN101467088B/zh
Publication of WO2007142017A1 publication Critical patent/WO2007142017A1/ja
Priority to US12/289,451 priority patent/US7791795B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0096Microscopes with photometer devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the present invention relates to a microscope provided with a focusing support device for focusing on an object surface of an object to be measured visually during microscope observation.
  • FIG. 1 shows a schematic configuration diagram of a microscope provided with a conventional focusing device described in Patent Document 1.
  • the lens 12 is configured so that the collector lens 10 and the split prism 5 have a substantially conjugate positional relationship.
  • the split prism 5 includes a base prism 14 having a predetermined apex angle and a semicircular prism 16 having an apex angle twice that of the base prism.
  • a focusing pattern 15 is formed on the light source side of the base prism 14.
  • the focusing pattern also includes at least one line force, and extends over two regions to which different declination angles are given by the base prism 14 and the semicircular prism 16, respectively.
  • the emitted light is limited by the aperture stop 13 to the optimum condition for focusing support, and enters the split prism 5.
  • the aperture stop 13 is imaged on a microscope aperture stop 19 having a variable diameter by lenses 17 and 18. However, here the image of aperture stop 13 is split prize
  • the beam is branched into two parts by the declination action of the system 5, and each image is shifted to a symmetrical position across the optical axis of the device.
  • the focusing support device is placed on a gantry of a vertical movement device (not shown), and is used to adjust the relative position between the objective lens 23 and the object plane 24 in the optical axis direction.
  • the operation unit of the moving device By operating the operation unit of the moving device, the entire optical system moves together in the optical axis direction.
  • the images of the focusing pattern move in opposite directions in the field of view, and the focal position of the objective lens 23 matches the sample surface 24.
  • it is arranged so that the image of the focusing pattern can be seen in a matched state.
  • the image of the focus pattern appears shifted, and the lines of the focus pattern are projected as two lines separated by d on the sample surface 24a. Is done.
  • the aperture stop 13 and the split prism 5 are configured such that the optical path force can be removed by an unillustrated insertion / removal mechanism.
  • the split prism 5 and the aperture stop 13 are inserted into the optical path, and the focus pattern Focus by matching.
  • the aperture stop 13 and the split prism 5 are removed from the optical path to function as a normal microscope epi-illuminator.
  • Patent Document 1 UK Patent Publication GB2076176A
  • the aperture stop 13 is conjugated with the microscope aperture stop 19 and the focusing pattern 15 is conjugated with the microscope field stop 20 by the lenses 17 and 18, and the intermediate focusing is performed once. After being imaged, they are projected onto the objective lens pupil plane and the sample plane 24, respectively.
  • the equipment configuration is complicated, and if the cost increases, the equipment is not force. This is unfavorable because it leads to enlargement.
  • an object of the present invention is to provide a microscope equipped with a focusing support device that can focus accurately without being limited by the magnification of the objective lens or NA.
  • a first means for solving the above problem is a microscope provided with a focusing support device, which is conjugated with a light source, a first lens group, and the light source via the first lens group.
  • a variable-diameter aperture disposed on the optical path, and an optical path branching member that is illuminated with a light beam limited by the variable-diameter aperture, has a focus index, and forms two light beams that are inclined at a predetermined angle from the optical axis.
  • a second lens group and an objective lens, and the aperture having a variable diameter is disposed conjugate with the pupil of the objective lens via the second lens group, and the focusing index of the optical path branching member
  • the microscope is characterized in that the surface to be observed is arranged in a conjugate manner by the second lens group and the objective lens, and the optical path branching member can be inserted into and removed from a microscope optical path.
  • Patent Document 1 the optical path branching member and its focusing index are arranged at the position where the microscope field stop 20 is placed, and the optical path branching member can be removed from the microscope optical path. I have to. Therefore, the focus index is directly projected onto the surface to be observed without intermediate imaging, and the configuration is simpler and smaller than the conventional one.
  • a second means for solving the above-mentioned problem is the first means, and when the optical path branching member is inserted into the microscope optical path, the diameter ⁇ of the variable diameter diaphragm is equal to the total diameter. It can be set to a predetermined value suitable for focus support.
  • the aperture of the microscope is a variable diameter iris (iris stop), and the luminous flux at the time of focusing support It is possible to optimize. Therefore, the configuration is simpler and more compact, and the diameter ⁇ of the variable diameter diaphragm can be set to a predetermined value suitable for focusing support, as shown in a specific example later.
  • the microscope can be provided with a focusing support device that can focus accurately without being limited by the magnification of the objective lens or NA.
  • a third means for solving the problem is the second means, and the setting suitable for the focusing support satisfies the following conditional expressions (1) and (2) simultaneously: It is characterized by being given by [Number 1]
  • is an image of the light source 2 at the aperture position with the variable diameter by the first lens group.
  • A is the size of the light source, ⁇ is the maximum diameter of the variable aperture, and ⁇ is the
  • the tilt angle of the light beam provided by the optical path branching member L is the distance between the variable diameter aperture and the focusing index, ⁇ is the diameter of the pupil of the objective lens, ⁇ is the variable diameter aperture of the second aperture.
  • the magnification of an image formed on the pupil position of the objective lens through the lens group is the magnification of an image formed on the pupil position of the objective lens through the lens group.
  • the phenomenon that the diameter ⁇ of the variable diameter diaphragm is too small to cause illumination light to reach the object surface does not occur, and the diameter ⁇ of the variable diameter diaphragm is large.
  • the function as a focusing support device will not be performed too much. Therefore, the setting suitable for focusing support can be achieved.
  • a fourth means for solving the above problem is the second means, and the setting suitable for the focusing support is the following conditional expressions (3), (4), (5 ) Is given at the same time.
  • is the magnification of the image formed by the light source on the aperture of the diameter variable by the first lens group
  • a is the size of the light source
  • is the maximum diameter of the aperture of variable diameter
  • is above
  • the tilt angle of the light beam provided by the optical path branching member L is the distance between the variable diameter aperture and the focusing index, ⁇ is the diameter of the pupil of the objective lens, ⁇ is the variable diameter aperture of the second aperture.
  • the magnification of an image formed on the pupil position of the objective lens through the lens group is the magnification of an image formed on the pupil position of the objective lens through the lens group.
  • the inclination angle of the light beam given by the optical path branching member The phenomenon that the illumination light does not reach the object surface because ⁇ is too large does not occur, and the tilt angle ⁇ force of the light beam given by the optical path branching member is too small to perform the function as a focusing support device. Disappears. Therefore, it can be set to be suitable for focusing support.
  • a fifth means for solving the above-mentioned problem is the third means, characterized in that the following conditional expression (6) is satisfied.
  • a sixth means for solving the above problem is the fourth means, characterized in that the following conditional expression (7) is satisfied.
  • a microscope having a focusing support device that has a simpler and more compact configuration and can focus accurately without being limited by the magnification or the eyelid of the objective lens. Can be provided.
  • FIG. 1 is a diagram showing a configuration of a focusing operation support device in the prior art.
  • FIG. 2 is a diagram showing a configuration of a focusing support device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a light beam on an objective lens pupil in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a light beam on an objective lens pupil in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a focusing support device according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a light beam on an objective lens pupil according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a light beam on an objective lens pupil according to the second embodiment of the present invention.
  • the light emitted from the light source 1 is collected at the position of the iris diaphragm 30 by the collector lens 10 and the lens 12, and forms an image of the light source 1 at a magnification j81.
  • the split prism 5 includes a base prism 14 having a predetermined apex angle and a semicircular prism 16 having an apex angle twice that of the base prism. Further, a focusing pattern 15 is formed on the light source side of the base prism 14.
  • the focusing pattern is composed of at least one line cover, and straddles two regions where different declination angles are given by the base prism 14 and the semicircular prism 16, respectively.
  • the split prism 5 is installed so that the optical path force of the apparatus can be inserted and removed by an insertion / removal mechanism (not shown).
  • the split prism 5 When observing the sample, the split prism 5 is removed from the optical path force of the apparatus, and functions as a general microscope incident illumination apparatus. At this time, when the split prism 5 deviates from the optical path force in order to limit an extra light beam of illumination, it is preferable to insert a field stop 19 in place of the split prism 5.
  • the diameter of the iris diaphragm 30 is configured to be freely set within its mechanical constraints, and is used to control the coherence factor of the illumination light. By adjusting the diameter of the iris diaphragm 30, the coherence factor can be increased or decreased to enable the observer to freely set the lighting conditions according to the observation target.
  • the split prism 5 is inserted for focusing.
  • the light emitted from the light source is limited in its luminous flux by the iris diaphragm 30 and enters the split prism 5.
  • the image of the iris diaphragm 30 passes through the beam splitter 22 by the image forming action of the lens 21, and the objective lens 2 3 pupils form an image on EP.
  • the image of the iris diaphragm 30 is branched into two by the declination action of the split prism 5, and each image is shifted to a symmetric position across the optical axis of the device.
  • the image of the iris diaphragm 30 branched into two is further formed on the objective lens 23 (strictly, the pupil of the objective lens 23) through the beam splitter 22 by the image forming action of the lens 21.
  • the focusing support device is placed on a gantry of a vertical movement device (not shown), and is used to adjust the relative position between the objective lens 23 and the object plane 24 in the optical axis direction.
  • the operation unit of the moving device By operating the operation unit of the moving device, the entire optical system moves together in the optical axis direction.
  • the image of the focusing pattern 15 moves in the opposite direction in the field of view, and the focal position of the objective lens 23 is on the sample surface 24. It is arranged so that the image of the in-focus pattern 15 can be seen in the matched state at the time of in-focus.
  • out of focus for example, when the sample surface is at 24a
  • the image of the focus pattern 15 appears shifted, and the line of the focus pattern 15 is two lines separated by d on the sample surface 24a. As projected.
  • FIG. 3 and 4 both show the spread of the light beam on the objective lens pupil plane EP.
  • Fig. 3 shows the case where equation (1) is satisfied.
  • the maximum diameter of the iris diaphragm 30 is smaller than that of the light source 1 image formed at the position of the iris diaphragm 30. It shows the case where an object is illuminated using a part of the area of light source 1.
  • the iris diaphragm 30 is branched into two by the declination action of the split prism 5, and images of the iris diaphragm 30 are formed on the objective lens pupil plane EP as 30a and 30b.
  • FIGS. 3A to 3E show how the sizes of the images 30a and 30b are changed by adjusting the diameter of the iris diaphragm 30.
  • FIG. 3A when the iris diameter of the iris diaphragm 30 is too small as shown in FIG. 3A, the illumination light beam does not enter the pupil of the objective lens, and the illumination light does not reach the object plane.
  • the iris diameter of the iris diaphragm 30 is too large as shown in Fig. 3 (e), the light beam is projected onto the sample surface 24 without being tilted. And no longer function as a focusing support device. Therefore, the diameter of the iris diaphragm 30 at the time of focusing support needs to be adjusted as shown in FIGS. 3 (b) to 3 (d). Equation (2) expresses this condition range.
  • To set the above conditions open the microscope. The mouth is an iris diaphragm 30 and the objective lens pupil at the time of focusing support is observed to optimize the light flux.
  • the dimensions, magnifications, and deflection angles of the split prism 5 are designed so as to satisfy the above-mentioned conditions. It is desirable that the iris diaphragm 30 be designed so as to satisfy the above conditions simply by opening it.
  • an unillustrated insertion / removal mechanism for removing and splitting the split prism 5 is operated to forcibly set the diameter of the iris diaphragm 30 to a range that satisfies the above conditions when the split prism 5 is inserted. It is to be done.
  • FIG. 4 shows the case where the expression (3) is satisfied.
  • the iris diaphragm 30 has a larger maximum diameter than the iris diaphragm 30. It shows the case where the object is illuminated using the entire area of the light source 1 when it is opened.
  • the aperture stop 30 is bifurcated by the declination effect of the split prism 5, and images of the iris stop 30 are formed on the objective lens pupil plane EP as 30a and 30b.
  • the image of the light source 1 is formed as la, lb on the pupil plane EP of the objective lens.
  • FIGS. 4 (a) to 4 (d) show how the split prism 5 changes depending on the deflection angle ⁇ . If the declination ⁇ is too large as shown in Fig. 4 (a), the illumination beam does not enter the pupil of the objective lens, and the illumination light does not reach the object plane. On the other hand, when the declination ⁇ is too small as shown in FIG. 4 (e), the light beam is projected onto the sample surface 24 without being inclined, so that the image of the reference pattern 15 moves in accordance with the vertical movement of the apparatus. They will disappear and will no longer function as a focusing support device. Therefore, the declination ⁇ of the split prism 5 used for focusing support needs to be designed as shown in FIGS. 4 (b) to 4 (d). Expression (5) expresses this condition range. In addition, the iris diaphragm 30 needs to be incident on the pupil EP of the objective lens without obstructing the image of the light source 1, and equation (4) shows this condition.
  • the dimensions, magnification, and declination angle of the split prism 5 are designed so as to satisfy the above-mentioned conditions. It is desirable that the lens is designed so as to satisfy the above-described condition only by opening the aperture.
  • an unillustrated insertion / removal mechanism for removing and splitting the split prism 5 is used. It is to operate so that when the split prism 5 is inserted, the diameter of the iris diaphragm 30 is forcibly set to a range that satisfies the above-mentioned conditions.
  • the microscope of the present invention is not limited to the above-described embodiment, and can be freely changed within the scope of the present invention. is there.
  • the microscope optical system has been described using a schematic diagram of an infinite optical system.
  • the present invention is not limited to this, and the present invention is also applicable to a finite optical system.
  • the split prism 5 is composed of the base prism 14 and the semicircular prism 16 having an apex angle twice that of the base prism.
  • the present invention is not limited to this configuration.
  • the base prism 14 may be a parallel plate 34, and two declination prisms 32 having a predetermined declination may be joined to the base prism so as to incline the light beams in opposite directions.
  • the above shape may be integrally molded with a plastic mold.
  • suitable condition settings are shown in a microscope that switches a plurality of objective lenses. Note that the schematic configuration of the microscope including the focusing device according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
  • FIG. 6 shows a case where the expression (1) is satisfied, and the iris diaphragm 30 whose maximum diameter is smaller than the image of the light source 1 that forms an image at the position of the iris diaphragm 30 is opened.
  • the object is illuminated using a part of the area of the light source 1.
  • the pupil diameter of the objective lens is different, and tends to increase as the magnification increases and decreases as the magnification increases.
  • the condition is set such that the light beam 30a and the light beam 30b just touch each other on the objective lens pupil.
  • Conditional Expression (6) is a condition that does not depend on the pupil diameter ⁇ of the objective lens.
  • the aperture of the microscope is an iris diaphragm, and the objective lens pupil at the time of focusing support is observed to enable optimization of the light flux.
  • FIG. 7 shows a case where the expression (3) is satisfied.
  • the iris diaphragm 30 having a larger maximum diameter is provided. It shows the case where the object is illuminated using the entire area of the light source 1 when it is opened.
  • the declination ⁇ of the split prism 5 used for focusing support is designed so as to satisfy the condition that the light flux la and the light flux lb just touch each other on the objective lens pupil.
  • Expression (7) expresses the condition range. It is clear that conditional expression (7) is a condition that does not depend on the pupil diameter ⁇ of the objective lens. In addition, the iris diaphragm 30 captures the image of light source 1.
  • Equation (4) shows this condition that needs to be incident on the pupil of the objective lens without obstruction.
  • the dimensions, magnifications, and declination angle of the split prism 5 are designed so as to satisfy the above-mentioned conditions when the maximum iris diameter of the iris diaphragm is set, and focusing support is provided. Sometimes it is desirable to design the lens so that the above condition is satisfied by simply opening the iris diaphragm.
  • an unillustrated insertion / removal mechanism for removing and splitting the split prism is operated to forcibly set the diameter of the iris diaphragm 30 to a range that satisfies the above conditions when the split prism is inserted. It is to be done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 合焦支援時にはスプリットプリズム5を挿入して焦点合わせを行う。虹彩絞り30の像はスプリットプリズム5の偏角作用により2つに分岐され、各々装置光軸を挟んで対称な位置にずれて結像している。この2つに分岐された虹彩絞り30の像はさらに、レンズ21の結像作用によりビームスプリッタ22を経て対物レンズ23上に像を結ぶ。上下動装置の操作部を操作して光学系を上下させることにより、視野内で合焦パターン15の像が互いに逆方向に動くのが見えるとともに、対物レンズ23の焦点位置が試料面24に合致した合焦時には、合焦パターン15の像が合致した状態で見えるように配置されている。よって、対物レンズの倍率やNAに制限されることなく精度良く合焦することができる。

Description

明 細 書
顕微鏡
技術分野
[0001] 本発明は、顕微鏡観察時に目視により被測定物の物体面にピントを合わせるため の合焦支援装置を備えた顕微鏡に関するものである。
背景技術
[0002] 一般に、顕微鏡において被測定物の物体面の像を目視観察する場合 (例えば、対 物レンズにより焦点板上に結像された物体面の像を接眼レンズを通して観察する場 合)、物体面が対物レンズの焦点深度内にあれば、その範囲内で対物レンズの光軸 方向における物体面と対物レンズとの相対位置を変えても、焦点板上に結像された 物体面の像はピントが合っているように見える。そのため、被測定物のある一つの物 体面内での寸法や形状を精度良く測定する場合、及び被測定物の高さ方向の寸法 、例えば対物レンズの光軸方向にずれた 2つの物体面間の寸法を精度良く測定する 場合には、特に、前記相対位置を調節して対物レンズの焦点位置を前記各物体面 に精度良く合致させる合焦装置が必要である。
[0003] 従来、このような合焦装置を備えた顕微鏡としては、例えば、英国特許公報 GB2 076176A (特許文献 1)に開示されているものが知られている。図 1は特許文献 1に 記載されて ヽる従来の合焦装置を備えた顕微鏡の概略構成図を示して 、る。レンズ 12はコレクタレンズ 10とスプリットプリズム 5を概ね共役な位置関係にするように構成 されている。スプリットプリズム 5は所定の頂角を有するベースプリズム 14とベースプリ ズムの 2倍の頂角を有する半円形プリズム 16から構成されている。また、ベースプリズ ム 14の光源側には合焦パターン 15が形成されている。合焦パターンは少なくとも 1 本のライン力も構成されており、ベースプリズム 14および半円形プリズム 16によりそ れぞれ異なる偏角が与えられる 2つの領域を跨 、で 、る。
[0004] 光源力 放出された光は開口絞り 13により合焦支援に最適な条件に光束を制限さ れ、スプリットプリズム 5に入射する。開口絞り 13はレンズ 17および 18によって径可変 の顕微鏡開口絞り 19上に結像する。ただし、ここで開口絞り 13の像はスプリットプリズ ム 5の偏角作用により 2つに分岐され、各々装置光軸を挟んで対称な位置にずれて 結像している。
[0005] この 2つに分岐された開口絞り 13の像はさらに、レンズ 21の結像作用により顕微鏡 視野絞り 20及びビームスプリッタ 22を経て対物レンズ 23上(厳密には対物レンズ 23 の瞳)に像を結ぶ。
[0006] 合焦支援装置は、不図示の上下動装置の架台上に載置されており、前記光軸方 向における対物レンズ 23と物体面 24との相対位置を調節するために、前記上下動 装置の操作部を操作することにより、光学系全体が前記光軸方向に一緒に移動する ようになつている。上下動装置の操作部を操作して光学系を上下させることにより、視 野内で合焦パターンの像が互いに逆方向に動くのが見えるとともに、対物レンズ 23 の焦点位置が試料面 24に合致した合焦時には、合焦パターンの像が合致した状態 で見えるように配置されている。また、非合焦時 (たとえば試料面が 24aにある時)に は合焦パターンの像がずれた状態で見え、合焦パターンのラインは試料面 24a上で dだけ離れた 2つのラインとして投影される。
[0007] 開口絞り 13、スプリットプリズム 5は不図示の挿脱機構により光路力も揷脱可能に構 成されており、合焦支援時にはスプリットプリズム 5と開口絞り 13を光路に挿入し、合 焦パターンの合致により合焦をおこなう。また観察時には開口絞り 13とスプリットプリ ズム 5を光路から外すことで通常の顕微鏡落射照明装置として機能する。
特許文献 1 :英国特許公報 GB2076176A
発明の開示
発明が解決しょうとする課題
[0008] 特許文献 1に記載の合焦支援装置においては、レンズ 17, 18によって開口絞り 13 を顕微鏡開口絞り 19と共役、合焦パターン 15を顕微鏡視野絞り 20に共役に配置し 、一度中間結像されたのちにそれぞれ対物レンズ瞳面と試料面 24に投影されている 。これにより 12〜18をモジュールィ匕することを可能にし、通常の顕微鏡に付加的に 機能追加できる反面、装置構成が複雑になっており、コストアップの原因となっている ば力りでなく装置の肥大化を招き好ましくない。
[0009] 本発明はこのような事情に鑑みてなされたもので、より簡素かつ小型化された構成 であり、また対物レンズの倍率や NAに制限されることなく精度良く合焦することがで きる合焦支援装置を備えた顕微鏡を提供することを課題とする。
課題を解決するための手段
[0010] 前記課題を解決するための第 1の手段は、合焦支援装置を備えた顕微鏡であって 、光源と、第 1のレンズ群と、前記第 1のレンズ群を介して光源と共役に配置される径 可変な絞りと、前記径可変な絞りにより制限される光束で照明され、合焦指標を有し 光軸から互いに所定の角度で傾斜する 2つの光束を形成する光路分岐部材と、第 2 のレンズ群と、対物レンズにより構成され、前記径可変な絞りは第 2のレンズ群を介し て前記対物レンズの瞳と共役に配置され、かつ前記光路分岐部材の前記合焦指標 と、前記被観察面とが前記第 2のレンズ群及び前記対物レンズにより共役に配置され 、前記光路分岐部材は顕微鏡光路から挿脱可能であることを特徴とする顕微鏡であ る。
[0011] 本手段においては、前記特許文献 1において、顕微鏡視野絞り 20が置かれた位置 に光路分岐部材とその合焦指標を配置し、光路分岐部材は顕微鏡光路から揷脱可 能であるようにしている。よって、合焦指標を中間結像なしに直接被観察面に投影す る構成となり、従来のものに比較して、より簡素で小型化された構成となる。
[0012] 前記課題を解決するための第 2の手段は、前記第 1の手段であって、前記光路分 岐部材を顕微鏡光路に挿入した際に、前記径可変な絞りの径 φが、合焦支援に適し た所定の値に設定可能であることを特徴とするものである。
[0013] 本手段においては、従来の手法において照明条件の最適化のために用いられた 開口絞りを省略する代わりに顕微鏡の開口を径可変な絞り(虹彩絞り)とし、合焦支援 時の光束の最適化を可能にしている。よって、より簡素で小型化された構成となると 共に、後に具体的な例を示すように、径可変な絞りの径 φが、合焦支援に適した所 定の値に設定可能であるので、対物レンズの倍率や NAに制限されることなく精度良 く合焦することができる合焦支援装置を備えた顕微鏡とすることができる。
[0014] 前記課題を解決するための第 3の手段は、前記第 2の手段であって、前記合焦支 援に適した設定は、以下の条件式(1)、 (2)を同時に満たすことで与えられることを 特徴とするものである。 [数 1]
Figure imgf000006_0001
ί
2Ltan f -tan < 21 tan f + tan -1 Φ。
'(2)
2∑β2 ただし、 β は前記光 2源が前記第 1のレンズ群により前記径可変な絞りの位置に結像
, 2
する像の倍率、 aは前記光源の大きさ、 φ は前記径可変な絞りの最大径、 εは前記
Μ
光路分岐部材により与えられる光束の傾斜角、 Lは前記径可変な絞りと前記合焦指 標との距離、 φ は前記対物レンズの瞳の直径、 β は前記径可変な絞りが前記第 2
0 2
のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
[0015] 本手段においては、後に示すように、径可変な絞りの径 φが小さすぎて物体面に 照明光が到達しないと言う現象が起こらず、かつ、径可変な絞りの径 φが大きすぎて 合焦支援装置としての機能を果たさなくなることが無くなる。よって、合焦支援に適し た設定とすることができる。
[0016] 前記課題を解決するための第 4の手段は、前記第 2の手段であって、前記合焦支 援に適した設定は、以下の条件式 (3)、(4)、(5)を同時に満たすことで与えられるこ とを特徴とするものである。
[数 2]
β,α < Φ≤ΦΜ -(4)
•(5)
Figure imgf000006_0002
ただし、 β は前記光源が前記第 1のレンズ群により前記径可変な絞りの位置に結像 する像の倍率、 aは前記光源の大きさ、 φ は前記径可変な絞りの最大径、 εは前記
Μ
光路分岐部材により与えられる光束の傾斜角、 Lは前記径可変な絞りと前記合焦指 標との距離、 φ は前記対物レンズの瞳の直径、 β は前記径可変な絞りが前記第 2
0 2
のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
[0017] 本手段においては、後に示すように、光路分岐部材により与えられる光束の傾斜角 εが大きすぎて物体面に照明光が到達しないと言う現象が起こらず、かつ、光路分 岐部材により与えられる光束の傾斜角 ε力 、さすぎて合焦支援装置としての機能を 果たさなくなることが無くなる。よって、合焦支援に適した設定とすることができる。
[0018] 前記課題を解決するための第 5の手段は、前記第 3の手段であって、以下の条件 式 (6)を満たすことを特徴とするものである。
[数 3] φ = 2∑ tan ε - - -(6)
[0019] 本手段においては、後に示すように、異なる瞳径の対物レンズを切り替えて使用す る場合にも、対物レンズの瞳径に依存せず、常に良好な合焦支援が可能となる。
[0020] 前記課題を解決するための第 6の手段は、前記第 4の手段であって、以下の条件 式 (7)を満たすことを特徴とするものである。
画 βια = 21 ίΆηε …(ァ)
[0021] 本手段においては、後に示すように、異なる瞳径の対物レンズを切り替えて使用す る場合にも、対物レンズの瞳径に依存せず、常に良好な合焦支援が可能となる。 発明の効果
[0022] 本発明によれば、より簡素かつ小型化された構成であり、また対物レンズの倍率や ΝΑに制限されることなく精度良く合焦することができる合焦支援装置を備えた顕微 鏡を提供することができる。
図面の簡単な説明
[0023] [図 1]従来技術における合焦操作支援装置の構成を示す図である
[図 2]本発明の第 1の実施の形態における合焦支援装置の構成を示す図である。
[図 3]本発明の第 1の実施の形態における対物レンズ瞳上の光束を表す図である。
[図 4]本発明の第 1の実施の形態における対物レンズ瞳上の光束を表す図である。
[図 5]本発明の第 1の実施の形態における合焦支援装置の構成を示す図である。
[図 6]本発明の第 2の実施の形態における対物レンズ瞳上の光束を表す図である。 [図 7]本発明の第 2の実施の形態における対物レンズ瞳上の光束を表す図である。 符号の説明
[0024] 1 :光源、 la, lb :対物レンズ瞳上の光源像、 5 :スプリットプリズム、 10 :コレクタレンズ 、 12、 17、 18、 21 :レンズ、 13 :開口絞り、 14 :ベースプリズム、 15 :合焦ノ《ターン、 1 6 :半円形プリズム、 19 :顕微鏡開口絞り、 20 :顕微鏡視野絞り、 22 :ビームスプリッタ 、 23 :対物レンズ、 24 :試料面、 24a :試料面、 30 :虹彩絞り、 30a, 30b :対物レンズ 瞳上の虹彩絞りの像、 31 :第 2対物レンズ、 32 :偏角プリズム
発明を実施するための最良の形態
[0025] 以下本発明第 1の実施の形態に係る合焦装置を備えた顕微鏡について、図 2を参 照して説明する。光源 1から放出された光は、コレクタレンズ 10及びレンズ 12により虹 彩絞り 30の位置に集光され、光源 1の像を倍率 j8 1で結像している。スプリットプリズ ム 5は所定の頂角を有するベースプリズム 14とベースプリズムの 2倍の頂角を有する 半円形プリズム 16から構成されている。また、ベースプリズム 14の光源側には合焦パ ターン 15が形成されている。合焦パターンは少なくとも 1本のラインカゝら構成されてお り、ベースプリズム 14および半円形プリズム 16によりそれぞれ異なる偏角が与えられ る 2つの領域を跨いでいる。スプリットプリズム 5は不図示の挿脱機構により装置の光 路力 挿脱可能に設置されている。
[0026] 試料の観察時にはスプリットプリズム 5を装置の光路力 外し、一般的な顕微鏡落 射照明装置として機能する。このとき照明の余分な光束を制限するためにスプリット プリズム 5が光路力も外れるときには、スプリットプリズム 5に代わって視野絞り 19が揷 入されることが好ましい。
[0027] 虹彩絞り 30の直径は、その機構的制約以内で自由に設定可能なように構成されて おり、照明光のコヒーレンスファクターを制御するために用いられる。虹彩絞り 30の径 を調整することでコヒーレンスファクターを増減させ観察対象に応じた照明条件を観 察者が自由に設定することを可能にして 、る。
[0028] 一方で合焦支援時にはスプリットプリズム 5を挿入して焦点合わせを行う。光源から 放出された光は虹彩絞り 30により光束を制限され、スプリットプリズム 5に入射する。 虹彩絞り 30の像はレンズ 21の結像作用によりビームスプリッタ 22を経て対物レンズ 2 3の瞳 EP上に結像する。ただし、ここで虹彩絞り 30の像はスプリットプリズム 5の偏角 作用により 2つに分岐され、各々装置光軸を挟んで対称な位置にずれて結像してい る。この 2つに分岐された虹彩絞り 30の像はさらに、レンズ 21の結像作用によりビー ムスプリッタ 22を経て対物レンズ 23上 (厳密には対物レンズ 23の瞳)に像を結ぶ。
[0029] 合焦支援装置は、不図示の上下動装置の架台上に載置されており、前記光軸方 向における対物レンズ 23と物体面 24との相対位置を調節するために、前記上下動 装置の操作部を操作することにより、光学系全体が前記光軸方向に一緒に移動する ようになつている。上下動装置の操作部を操作して光学系を上下させることにより、視 野内で合焦パターン 15の像が互いに逆方向に動くのが見えるとともに、対物レンズ 2 3の焦点位置が試料面 24に合致した合焦時には、合焦パターン 15の像が合致した 状態で見えるように配置されている。また、非合焦時 (たとえば試料面が 24aにある時 )には合焦パターン 15の像がずれた状態で見え、合焦パターン 15のラインは試料面 24a上で dだけ離れた 2つのラインとして投影される。
[0030] ここで図 3、および図 4を参照して合焦支援時の最適な設定について説明する。図 3、図 4はともに対物レンズ瞳面 EP上での光束の広がりを示している。図 3は(1)式を 満足する場合であり、虹彩絞り 30の位置に結像する光源 1の像に比べ、虹彩絞り 30 の最大径の方が小さぐ虹彩絞り 30を開放にしたときに光源 1の面積の一部を用いて 物体を照明する場合を示している。虹彩絞り 30はスプリットプリズム 5の偏角作用によ り二つに分岐して対物レンズ瞳面 EP上に虹彩絞り 30の像を 30a、 30bのように結像 している。
[0031] 図 3 (a)〜図 3 (e)は虹彩絞り 30の径を調整することで像 30a、 30bの大きさが変化 している様子を示している。ここで、図 3 (a)のように虹彩絞り 30の絞り径が小さすぎる 場合、照明光束が対物レンズの瞳に入射せず、物体面に照明光が到達しない。一 方で、図 3 (e)のように虹彩絞り 30の絞り径が大きすぎる場合は、光束が傾斜せずに 試料面 24に投影されるため、基準パターン 15の像が装置上下動に応じて移動しなく なってしまい、合焦支援装置としての機能を果たさなくなる。そのため、合焦支援時 の虹彩絞り 30の径は図 3 (b)〜図 3 (d)のように調整される必要がある。この条件範囲 を式で表したものが(2)式である。以上のような条件を設定するために、顕微鏡の開 口を虹彩絞り 30とし、合焦支援時の対物レンズ瞳を観察することで光束の最適化を 可能にしている。
[0032] 虹彩絞り 30の調整について、虹彩絞り 30の最大絞り径に設定した際に前述の条 件を満足するよう各部の寸法、倍率、スプリットプリズム 5の偏角を設計し、合焦支援 時には虹彩絞り 30を開放にするだけで前記条件を満たすように設計されることが望 ましい。
[0033] さらに好ましい形態としては、スプリットプリズム 5の揷脱を行う不図示の挿脱機構を 操作し、スプリットプリズム 5を挿入する時に強制的に虹彩絞り 30の径が前記条件を 満たす範囲に設定されるようにされて ヽることである。
[0034] 一方で図 4は(3)式を満足する場合であり、虹彩絞り 30の位置に結像する光源 1の 像に比べ、虹彩絞り 30の最大径の方が大きぐ虹彩絞り 30を開放にしたときに光源 1 の全面積を用いて物体を照明する場合を示している。開口絞り 30はスプリットプリズ ム 5の偏角作用により二つに分岐して対物レンズ瞳面 EP上に虹彩絞り 30の像を 30a 、 30bのように結像している。また、光源 1の像も同様に対物レンズの瞳面 EP条に光 源 1の像を la, lbのように結像している。
[0035] 図 4 (a)〜図 4 (d)はスプリットプリズム 5の偏角 εに応じて変化して 、る様子を示し ている。図 4 (a)のように偏角 εが大きすぎる場合、照明光束が対物レンズの瞳に入 射せず、物体面に照明光が到達しない。一方で、図 4 (e)のように偏角 εが小さすぎ る場合は、光束が傾斜せずに試料面 24に投影されるため、基準パターン 15の像が 装置上下動に応じて移動しなくなってしまい、合焦支援装置としての機能を果たさな くなる。そのため、合焦支援時に用いるスプリットプリズム 5の偏角 εは図 4 (b)〜図 4 ( d)のように設計される必要がある。この条件範囲を式で表したものが(5)式である。加 えて虹彩絞り 30は光源 1の像を遮ることなく対物レンズの瞳 EPに入射させる必要が ある、この条件を式で示したものが (4)式である。
[0036] 虹彩絞り 30の調整について、虹彩絞りの最大絞り径に設定した際に前述の条件を 満足するよう各部の寸法、倍率、スプリットプリズム 5の偏角を設計し、合焦支援時に は虹彩絞りを開放にするだけで前記条件を満たすように設計されることが望ましい。
[0037] さらに好ましい形態としては、スプリットプリズム 5の揷脱を行う不図示の挿脱機構を 操作し、スプリットプリズム 5の挿入する時に強制的に虹彩絞り 30の径が前記条件を 満たす範囲に設定されるようにすることである。
[0038] 以上、本発明の実施形態による合焦支援機能を有する顕微鏡を説明したが、本発 明の顕微鏡は上述の実施形態に限定されず、本発明の範囲内において自由に変更 が可能である。例えば、上記実施形態においては、顕微鏡光学系が無限遠光学系 の顕微鏡概略図を用いて説明したが、これに限られず、本発明は有限遠光学系に おいても同様に適用可能である。
[0039] また、本実施の形態においてスプリットプリズム 5をベースプリズム 14とベースプリズ ムの 2倍の頂角を有する半円形プリズム 16から構成したが、本発明はこの構成に限 らず、例えば図 5に示すようにベースプリズム 14を平行平板 34とし、所定の偏角を有 する偏角プリズム 32を 2つ互いに逆方向に光束を傾斜させるようベースプリズムに接 合してもよい。もしくは、上記形状をプラスチックモールドにより一体に成型してもよい
[0040] 次に本発明の第 2の実施の形態に係る合焦装置を備えた顕微鏡について図 6及び 図 7を参照して説明する。第 2の実施の形態においては、複数の対物レンズを切り替 える顕微鏡において好適な条件設定を示している。なお、本実施の形態に係る合焦 装置を備えた顕微鏡の概略構成については、第 1の実施の形態と同様であり、説明 は省略する。
[0041] 図 6は(1)式を満足する場合であり、虹彩絞り 30の位置に結像する光源 1の像に比 ベ、虹彩絞り 30の最大径の方が小さぐ虹彩絞り 30を開放にしたときに光源 1の面積 の一部を用いて物体を照明する場合を示している。一般に対物レンズの瞳の直径は 個々に異なっており、高倍になるほど小さぐ低倍であるほど大きい傾向にある。第 2 の実施の形態においては、図 6に示すとおり対物レンズ瞳上で光束 30aと光束 30b が丁度接する条件に設定している。
[0042] このように設定することにより、このように異なる瞳径の対物レンズを切り替えて使用 する場合においても対物レンズの瞳径に依存せず常に良好な合焦支援可能にして いる。この条件範囲を式で表したものが(6)式である。条件式 (6)が明らかに対物レ ンズの瞳径 φ に依存しない条件であることが分かる。以上のような条件を設定するた めに、顕微鏡の開口を虹彩絞りとし、合焦支援時の対物レンズ瞳を観察することで光 束の最適化を可能にして 、る。
[0043] 一方で図 7は(3)式を満足する場合であり、虹彩絞り 30の位置に結像する光源 1の 像に比べ、虹彩絞り 30の最大径の方が大きぐ虹彩絞り 30を開放にしたときに光源 1 の全面積を用いて物体を照明する場合を示している。図 7に示すとおり対物レンズ瞳 上で光束 laと光束 lbが丁度接する条件を満足するよう合焦支援時に用いるスプリット プリズム 5の偏角 εを設計している。このように設計することにより、異なる瞳径の対物 レンズを切り替えて使用する場合においても対物レンズの瞳径に依存せず常に良好 な合焦支援可能にしている。
[0044] この条件範囲を式で表したものが(7)式である。条件式(7)が明らかに対物レンズ の瞳径 φ に依存しない条件であることが分かる。加えて虹彩絞り 30は光源 1の像を
0
遮ることなく対物レンズの瞳 ΕΡに入射させる必要がある、この条件を式で示したもの が(4)式である。
[0045] 虹彩絞り 30の調整について、好ましくは虹彩絞りの最大絞り径に設定した際に前 述の条件を満足するよう各部の寸法、倍率、スプリットプリズム 5の偏角を設計し、合 焦支援時には虹彩絞りを開放にするだけで前記条件を満たすように設計されること が望ましい。
[0046] さらに好ましい形態としては、スプリットプリズムの揷脱を行う不図示の挿脱機構を操 作し、スプリットプリズムの挿入する時に強制的に虹彩絞り 30の径が前記条件を満た す範囲に設定されることである。

Claims

請求の範囲
[1] 合焦支援装置を備えた顕微鏡であって、
光源と、
第 1のレンズ群と、
前記第 1のレンズ群を介して光源と共役に配置される径可変な絞りと、
前記径可変な絞りにより制限される光束で照明され、合焦指標を有し光軸から互い に所定の角度で傾斜する 2つの光束を形成する光路分岐部材と、
第 2のレンズ群と、
対物レンズにより構成され、
前記径可変な絞りは第 2のレンズ群を介して前記対物レンズの瞳と共役に配置され、 かつ前記光路分岐部材の前記合焦指標と、前記被観察面とが前記第 2のレンズ群 及び前記対物レンズにより共役に配置され、前記光路分岐部材は顕微鏡光路から 挿脱可能であることを特徴とする顕微鏡。
[2] 前記光路分岐部材を顕微鏡光路に挿入した際に、前記径可変な絞りの径 φが、合 焦支援に適した所定の値に設定可能であることを特徴とする請求項 1に記載の顕微 鏡。
[3] 前記合焦支援に適した設定は、以下の条件式(1)、(2)を同時に満たすことで与え られることを特徴とする請求項 2に記載の顕微鏡。
[数 1] β^≥ΦΜ … )
2L tan 一tan—1 Φο < φ < 2∑ tan s + tan- 1 J …
2LB. 2∑β, ただし、 βェは前記光源が前記第 1のレンズ群により前記径可変な絞りの位置に結像 する像の倍率、 aは前記光源の大きさ、 φ は前記径可変な絞りの最大径、 εは前記
Μ
光路分岐部材により与えられる光束の傾斜角、 Lは前記径可変な絞りと前記合焦指 標との距離、 φ は前記対物レンズの瞳の直径、 β は前記径可変な絞りが前記第 2
0 2
のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。 [4] 前記合焦支援に適した設定は、以下の条件式 (3)、(4)、(5)を同時に満たすこと で与えられることを特徴とする請求項 2に記載の顕微鏡。
[数 2]
Figure imgf000014_0001
βια< <ΦΜ ""-
(4)
2L ran — tan— Φ。 : βια<2∑ί3η £- + tan Φο
••(5)
2LB. 2∑β2 ただし、 βェは前記光源が前記第 1のレンズ群により前記径可変な絞りの位置に結像 する像の倍率、 aは前記光源の大きさ、 φ は前記径可変な絞りの最大径、 εは前記
Μ
光路分岐部材により与えられる光束の傾斜角、 Lは前記径可変な絞りと前記合焦指 標との距離、 φ は前記対物レンズの瞳の直径、 β は前記径可変な絞りが前記第 2
0 2
のレンズ群を介して前記対物レンズの瞳の位置に結像する像の倍率である。
[5] 以下の条件式 (6)を満たすことを特徴とする請求項 3に記載の顕微鏡。
[数 3]
<i = 2 tanff -- (6)
[6] 以下の条件式 (7)を満たすことを特徴とする請求項 4に記載の顕微鏡。
[数 4] βχα - 2L tan ε -(7)
PCT/JP2007/060363 2006-06-09 2007-05-21 顕微鏡 WO2007142017A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020087028674A KR101375196B1 (ko) 2006-06-09 2007-05-21 현미경
EP07743797A EP2028518B1 (en) 2006-06-09 2007-05-21 Microscope
AT07743797T ATE530942T1 (de) 2006-06-09 2007-05-21 Mikroskop
CN200780021423XA CN101467088B (zh) 2006-06-09 2007-05-21 设有聚焦辅助装置的显微镜
US12/289,451 US7791795B2 (en) 2006-06-09 2008-10-28 Microscope with a focusing assist apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006160548A JP4997834B2 (ja) 2006-06-09 2006-06-09 顕微鏡
JP2006-160548 2006-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/289,451 Continuation US7791795B2 (en) 2006-06-09 2008-10-28 Microscope with a focusing assist apparatus

Publications (1)

Publication Number Publication Date
WO2007142017A1 true WO2007142017A1 (ja) 2007-12-13

Family

ID=38801280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060363 WO2007142017A1 (ja) 2006-06-09 2007-05-21 顕微鏡

Country Status (8)

Country Link
US (1) US7791795B2 (ja)
EP (1) EP2028518B1 (ja)
JP (1) JP4997834B2 (ja)
KR (1) KR101375196B1 (ja)
CN (1) CN101467088B (ja)
AT (1) ATE530942T1 (ja)
TW (1) TWI417568B (ja)
WO (1) WO2007142017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483962B (zh) * 2008-01-09 2015-05-11 Hitachi Chemical Co Ltd 轉移成型用組成物、光半導體元件搭載用基板及其製造方法以及光半導體裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039950B4 (de) * 2010-08-30 2021-07-22 Leica Microsystems Cms Gmbh Mikroskop mit Mikro- und Makro-Objektiven
US9323039B2 (en) 2012-11-06 2016-04-26 Industrial Technology Research Institute Particle manipulation system and projection device
CN103529542A (zh) * 2013-10-24 2014-01-22 广州粤显光学仪器有限责任公司 偏振光调制相衬显微镜
CN107329240B (zh) * 2017-08-30 2023-05-23 南京波长光电科技股份有限公司 一种实现激光扫描与同轴监控一体的高倍显微物镜光路系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076176A (en) 1980-05-19 1981-11-25 Vickers Ltd Focusing Optical Apparatus
JPH09127421A (ja) * 1995-08-29 1997-05-16 Nikon Corp 合焦装置を備えた顕微鏡
JP2004151607A (ja) * 2002-11-01 2004-05-27 Nikon Corp 落射蛍光及びリフレクションコントラスト観察可能な顕微鏡及びその顕微鏡の使用方法
JP2006023624A (ja) * 2004-07-09 2006-01-26 Olympus Corp 合焦検出装置を備えた顕微鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420915A (ja) * 1990-05-16 1992-01-24 Nikon Corp 自動焦点望遠鏡
US5784164A (en) * 1997-03-20 1998-07-21 Zygo Corporation Method and apparatus for automatically and simultaneously determining best focus and orientation of objects to be measured by broad-band interferometric means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076176A (en) 1980-05-19 1981-11-25 Vickers Ltd Focusing Optical Apparatus
JPH09127421A (ja) * 1995-08-29 1997-05-16 Nikon Corp 合焦装置を備えた顕微鏡
JP2004151607A (ja) * 2002-11-01 2004-05-27 Nikon Corp 落射蛍光及びリフレクションコントラスト観察可能な顕微鏡及びその顕微鏡の使用方法
JP2006023624A (ja) * 2004-07-09 2006-01-26 Olympus Corp 合焦検出装置を備えた顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483962B (zh) * 2008-01-09 2015-05-11 Hitachi Chemical Co Ltd 轉移成型用組成物、光半導體元件搭載用基板及其製造方法以及光半導體裝置

Also Published As

Publication number Publication date
CN101467088A (zh) 2009-06-24
EP2028518A4 (en) 2010-03-17
JP4997834B2 (ja) 2012-08-08
EP2028518A1 (en) 2009-02-25
ATE530942T1 (de) 2011-11-15
CN101467088B (zh) 2012-02-22
JP2007328223A (ja) 2007-12-20
US20090080069A1 (en) 2009-03-26
KR101375196B1 (ko) 2014-03-18
KR20090018924A (ko) 2009-02-24
TWI417568B (zh) 2013-12-01
US7791795B2 (en) 2010-09-07
TW200745601A (en) 2007-12-16
EP2028518B1 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
KR102458592B1 (ko) 자동 현미경 초점을 위한 시스템, 장치 및 방법
JP2006292782A (ja) 外部レーザ導入装置
WO2007142017A1 (ja) 顕微鏡
JP2009009134A (ja) センタリングされた照明を持つ顕微鏡
US7522336B2 (en) Microscope tube
JP4370404B2 (ja) Dlp式エバネッセンス顕微鏡
JP2009110004A (ja) 光学顕微鏡用の照明装置及び該照明装置を有する光学顕微鏡
JP2009205162A (ja) 顕微鏡用の照明装置
JP5629904B2 (ja) ビームスプリッタ装置を備える立体顕微鏡
JP2010176131A (ja) 実体顕微鏡システム
JP5084183B2 (ja) 顕微鏡用落射照明光学系
JP5579969B2 (ja) センタリングされた照明を持つ顕微鏡
JP2003307682A5 (ja)
JP4434612B2 (ja) 顕微鏡およびズーム対物レンズ
JP2006220953A5 (ja)
JP4792163B2 (ja) 顕微鏡装置
JP2010008458A (ja) 光学式測定装置および投影板に形成されたパターン
JP2018028587A (ja) 手術顕微鏡の照明構造
JP6714913B2 (ja) 手術顕微鏡
JP2006106336A (ja) 走査型光学顕微鏡
US20200400931A1 (en) Camera module for a microscope, and method for operating same
JP5023934B2 (ja) 顕微鏡
JP2009192721A (ja) 共焦点顕微鏡
JPH0695001A (ja) 顕微鏡装置
JP2009069295A (ja) ズーム顕微鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021423.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007743797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087028674

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE